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EDITORIAL =

Allow Me To Introduce Myself

Using data mining techniques to write an editorial.

In Overload 108, Ric Parkin said goodbye as

Overload editor after a four year stint. Allow me to

introduce myself. I’'m Fran Buontempo and I am your

new editor. Choosing a suitable topic for editorials is

difficult, yet it seems suitable to use this as an

opportunity to reminisce about issues gone by, as we
say goodbye to our old editor, while obviously looking forward to many
articles from him in the future. Many months ago, in January in fact, Nigel
Lister posted a word cloud of this year’s conference on accu-general
[Lister12]. This is a beautiful way of representing the frequency of words
contained in documents. A more traditional approach would present a
histogram, with bars showing how many times an item appears. Wikipedia
[Histogram] suggests these were invented by Karl Pearson, though I like
to think the ideas trace back to Florence Nightingale’s innovations in
statistical graphics, such as the rose diagrams [Nightingale]. I therefore
produced a word cloud of Overload 108 [Overload], and was pleased to
see the words ‘Surreal’ ‘“Mutation’ standing out proudly.

Word clouds are part of the growing ‘Big data’ trend, which seems to be
one of the latest buzz-words [Gigaom]. Though big data involves the
hardware to deal with vast quantities of bits and bytes, at its heart is the
attempt to extract information from data, which can be used to make
money through smart business decisions, to cure cancer or to categorise
proteins or new galaxies. I regard big data as the trendy face of data mining
and machine learning. These disciplines are related to statistics, though
encompass a much broader scope of approaches including swarm-inspired
algorithms such as ant-colony optimisations, other nature inspired
approaches such as neural networks and genetic algorithms, as well as
clustering and classification and many other ways of searching data for
meaning, or at least patterns. On a smaller scale, data mining and machine
learning can provide a way to reflect and reminisce on historical trends,
for example, issues of a magazine. Communications, the ACM members
magazine, recently ran an article using n-Grams to analyse its previous
content [ACM]. The motivation of the article was to delve into the
institution's identity, considering its worldwide readership, long history
and churn of members, using previous publications as input. As an
organisation, the ACCU seems to have been through a time of similar
reflection, for example musing on the ‘Professionalism in Programming’
tag line on accu-general. The coincidence between the ACM musings and
our search for identity, and amused by ‘surreal’ ‘mutations’ in the
Overload 108 tag cloud, the most sensible option for my first editorial had
to be to get a computer to write it for me. I’'m a geek, so what did you
expect?

By saving all the words in Overload 103—
108 inclusive in separate text files, and
applying the Porter stemmer algorithm,
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Overload Editions
Word
103 104 105 106 107 108

function 0 0 0 112 100 0
differ 0 0 67 0 0 0
code 0 74 109 0 86 148
develop 0 78 0 0 0 0
specif 107 0 0 0 0 0
express 0 0 0 0 158 0
list 0 0 0 91 134 0
except 145 0 0 0 0 0
equal 135 0 0 0 0
unit 0 0 0 0 138
channel 0 0 0 91 0 0
file 0 86 0 0

error 0 0 62 0

test 0 308 0 0 309
mutat 0 0 158
type 0 80 145 0 0
valu 109 0 0 0 0 0

Table 1

[Porter], a tally chart of word frequencies for each edition can be
produced. This algorithm trims or stems words such as ‘mutation’ and
‘mutated’ to ‘mutat’, so they are counted as the same word. When this is
applied to several journals the information can be combined to graph the
top n words for each issue, over time. Taking care to insert zeros for runs
where words disappear off the radar, this can be used to look for trends.
Using so few articles will almost certainly not reveal any long term trends,
but will hopefully give a starting point for further investigation. Table 1
shows the frequencies of the top four stem words over the articles
considered, and Figure 1 graphs this for us. Immediately ‘test’ jumps out
as the highest scorer in two different issues, by a large margin. Perhaps
this is a topic that captures our imagination at periodic intervals. Next,
certain words seem to have a mini-trend for two or three articles running
such as ‘function’, ‘code’, ‘list’ and ‘type’. The stemmer algorithm will
chop short words, such as C++, C, Go, R, Q, so it might be interesting to

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically
in Chemical Engineering, but mainly programming and learning about Al and data mining. She has
been a programmer for over 12 years professionally, and learnt to program by reading the manual for
her Dad’s BBC model B machine. She can be contacted at frances.buontempo @ gmail.com.
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adapt it to include language specific words that it would otherwise filter
out, taking care to disambiguate ‘go’ and the language ‘Go’. Increasing the
number of top words considered will clearly reveal further trends and mini-
trends, but filling my editorial with computer generated graphs and tables
might be considered cheating.

I look forward to the future editions of Overload, and
would like to thank Ric for all his hard work, including
keeping an eye on my first issue as editor. Thanks also
to the Overload review team, and welcome to Chris
Oldwood who has just come on board.
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Valgrind provides several mechanisms to locate memory
problems in your code. Paul Floyd shows us how to use them.

this article, I’ll expand on that and cover the difficult cases that I touched

In the previous part of this series I covered basic use of memcheck. In
on previously:

1. Compiling with Valgrind macros.
2. Attaching a debugger.
3. Using memory pools.

When you are testing an application with memcheck, you have a passive
role interacting with Valgrind. Valgrind will only generate output if an
error occurs (not counting the header that contains copyright information,
the Valgrind options in effect, shared libraries and function intercepted and
the footer with a summary of errors found and suppressions used). You
have no access to the internals of the VEX virtual machine or the state of
memory. Valgrind provides you with macros that allow you to actively
control output and interact with the VM.

In order to trace down the precise origins of an error, you might want to
generate output at points prior to the error. Alternatively, you might want
to examine memory even when there are no errors. You can think of the
macros for this purpose as being a bit like printf statements, with the output
going into Valgrind’s output (the console or the log file). In addition to
Valgrind’s output, the macros may return a value, either ‘directly’ from
the macro as a status, or through inout arguments to the macro. There are
also macros to trigger Valgrind actions like performing a leak check
(which otherwise will only happen when the application under test
terminates).

In your C or C++ source file, you have to include the appropriate header,
e.g.,
#include “valgrind/memcheck.h”

(you might prefer to use <memcheck. h> if Valgrind is installed with its
include files in the system header directories).

Then you need to add the include path to the compiler directive, if the
headers are not in the system include path. For instance, in a GNU makefile

CPPFLAGS += -I “/Applications/valgrind/include”

Then you can use the macros in your source. Since Valgrind does not link
any extra libraries, these macros use a different mechanism. The macros
contain a sequence of machine instructions that no known compiler would
ever issue and that have no side effects. The Valgrind virtual machine
detects this sequence and instigates a client request. When not running
under Valgrind, there is no effect other than a very small time penalty. For
example, on x86 the following is used:

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Mentor Graphics developing a mixed signal circuit simulator.
He can be contacted at pjfloyd @ wanadoo.fr.
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VALGRIND_MAKE MEM NOACCESS (_gzz_addr, qzz_len)
VALGRIND_MAKE MEM UNDEFINED (_qzz_addr,_gzz_len)
VALGRIND MAKE MEM DEFINED (_gzz_addr,_gqzz_len)
VALGRIND MAKE MEM DEFINED IF ADDRESSABLE (_qzz_add
r,_qzz_len)

VALGRIND_CREATE_BLOCK (_qzz_addr,_qzz_len,
_qzz_desc)

VALGRIND_ DISCARD (_gzz_blkindex)

VALGRIND CHECK MEM IS ADDRESSABLE (_qzz_addr,_gqzz_
len)

VALGRIND_ CHECK_MEM IS DEFINED (_gzz_addr,_qgzz_len)
VALGRIND CHECK VALUE IS DEFINED(__ lvalue)
VALGRIND DO_LEAK CHECK

VALGRIND_DO_ADDED_LEAK CHECK

VALGRIND DO_CHANGED LEAK CHECK

VALGRIND DO _QUICK LEAK CHECK

VALGRIND_COUNT_LEAKS (leaked, dubious, reachable,
suppressed)

VALGRIND_COUNT LEAK BLOCKS (leaked, dubious,
reachable, suppressed)

VALGRIND GET VBITS(zza,zzvbits,zznbytes)
VALGRIND_SET VBITS(zza,zzvbits,zznbytes)

Listing 1
#idefine __SPECIAL_INSTRUCTION_PREAMBLE \
"roll $3, %%edi ; roll $13, %%edi\n\t" \
"roll $29, %%edi ; roll $19, %%edi\n\t"

which rotates EDI by 64bits, leaving it unchanged.

There are numerous such macros: Listing 1 shows the client macros in
memcheck.h.

Let’s take a look at an example (Listing 2).

This is intended to be built on a 64bit system, though the results should be
similar on a 32bit system.

A pointer to int, pi, gets assigned to 2 ints worth (8 bytes) in the heap.
The first int is initialized. Then I do some nasty casting, first to initialize
the first half (2 bytes) of the second int. Then, with recourse to a struct
with a bitfield, I initialize just two bits in the last byte of the 2nd int. So
of the 4 bytes in that 2nd int, the 1st two are initialized, the third is
uninitialized and the fourth has 2 bits initialized.

After all of the initialization (or not) come Valgrind client request macros.
The first checks if the 8 bytes allocated are addressable. The second checks
if 9 bytes are addressable. The third gets the initialization status of each
of the bits that were allocated.

If I compile this and run it outside of Valgrind I get Listing 3. However,
running it under Valgrind gives Listing 4.

As expected, the check whether the 8 bytes were addressable returns 0,
meaning that they are all addressable. The check whether 9 bytes are
accessible provokes a ‘Unaddressable byte(s) found during client check
request’ message with information and a return of the address of the first



// main.c

// clientreq
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "memcheck.h"

struct two_bit
{
char foo:2;
char :0;
};
int main (int argc, const char * argv[])
{
const size_t size = 2*sizeof (int) ;
int *pi = malloc(size);
short *ps;
struct two_bit *ptb;

pi[0] = 1;
ps = (short *)pi;
psl2] = 2;

ptb = (struct two_bit *)pi;
ptb[7].foo = 3;

unsigned long addressable
= VALGRIND_CHECK MEM IS_ADDRESSABLE
(pi, size);
printf ("addressable %1x\n", addressable) ;
addressable
= VALGRIND_CHECK MEM IS_ADDRESSABLE
(pi, size+l);
printf ("addressable %1x\n", addressable) ;
int status = 0;
unsigned char bits[8];
memset (bits, 0, 8);
status = VALGRIND_GET VBITS (pi,bits,size);
for (int i = 0; i < size; ++i)
{
printf ("byte %d bits %x\n",
i, (unsigned int)bits[i]);
}
free (pi);
return 0;

Listing 2

unaddressable byte. The loop over the 8 bytes that were allocated show
that the 1st 6 bytes have been initialized, byte 6 is uninitialized and byte
7 has the bottom 2 bits initialized and the top 6 bits uninitialized.

So at the cost of having to change how the executable was built, we’ve
gained access down to the bit of the memory status of the executable.
That’s great, but it does have the drawback of being static — you can’t easily
change at runtime what is analysed. Since Valgrind 3.7.0, there is a way
to have more dynamic access to the internals while the executable is
running, and that is to use the built in gdbserver. Not only can you access

addressable 0
addressable 0
byte 0 bits 0
byte 1 bits 0
byte 2 bits 0
byte 3 bits 0
byte 4 bits 0
byte 5 bits 0
byte 6 bits 0
byte 7 bits 0

Listing 3

n FEATURE

addressable 0

==3089== Unaddressable byte(s) found during client
check request

==3089== at 0x100000D46: main (in /Users/paulf/
Library/Developer/Xcode/DerivedData/clientreq-
einugynxilcucqauaotevhsuanfx/Build/Products/
Debug/clientreq)

==3089== Address 0x1000040e8 is 0 bytes after a
block of size 8 alloc'd

==3089== at 0xD6D9: malloc
(vg_replace_malloc.c:266)

==3089== by 0x100000C3E: main (in /Users/paulf/
Library/Developer/Xcode/DerivedData/clientreq-
einugynxilcucqauaotevhsuanfx/Build/Products/
Debug/clientreq)

==3089==

addressable 1000040e8

byte 0 bits 0
byte bits 0
byte bits 0
byte bits 0
byte bits 0
byte bits 0
byte bits ff
byte bits fc

SJo ok WN K

Listing 4

information like that shown above, you can also (almost) debug the
application like a real application directly under gdb.

Let’s see an example of using the gdbserver. First of all, some example
code, with a print function that reads beyond the array that is passed to
it (Listing 5).

If I compile and run it, I get ‘element 0 0’ to ‘element 11 0’. Running it
under valgrind with the -v option causes the following to be included in
the output (Listing 6).

I was using xterms to do this, and if you are using terminals, either you
need to be very good at coping with the spliced gdb/application under test

#include <iostream>
#include <unistd.h>
using std::cout;

template<typename T>
void init(size_t size, T* ptr)

{

for (size_t i = 0; i < size; ++i)
{
ptr[i] = 0;
}
}
template<typename T>
void print(size_t size, T* ptr)
{
for (size_t i = 0; i < size; ++i)
{
cout << "element " << i << " " << ptr[i]
<< ll\nll’.

}
int main ()
{
//sleep (10);
int *pi = new int[11];
init (10, pi);
print (11, pi);
delete [] pi;

August 2012 | Ouerload | 5
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==12922== TO DEBUG THIS PROCESS USING GDB:
GDB like this

==12922== /path/to/gdb ./vg_gdb
==12922== and then give GDB the following command
==12922==  target remote | /usr/lib/valgrind/../
../bin/vgdb --pid=12922

==12922== --pid is optional if only one valgrind
process is running

start

input and output, or you just use two terminals, which is what I did. The
‘sleep’” was uncommented to give a bit of time to attach gdb. In the first
terminal,

gdb ./vg_gdb
(to be ready with the gdb prompt)
then in the second terminal
valgrind -v ./vg_gdb
Select the text and then quickly switch back to the first terminal and paste

(gdb) target remote | /usr/lib/valgrind/../../

bin/vgdb -pid=12922
Then I could use all of the usual gdb commands like n(ext), s(tep), p(rint)
and so forth. I stepped as far as the print function.
In order to examine ptr I issued the command
(gdb) monitor get_vbits 0x59££f040 44
and got back

00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 ffffffff
monitor is the command that gdb uses to communicate with a remote
server. You should only use it in cases like this and not when you are
debugging an application directly.
As expected, the last int is not initialized, as shown by the £s.

You don’t have to use terminals, this will also work with GUI applications
and GUI wrappers for gdb (like ddd).
You can use the gdbserver for several things as well as get_vbits.
®  Information about errors that have been detected.
®  Changing logging options.
B Change the accessibility flags for given memory.
B Check that memory is addressable.
®  Check for leaks.
See monitor help for details.

If you are using Valgrind prior to 3.7.0, then you will not have this feature
available. You’ll need to use either or both of the macros (as described
above) and the --db-attach=yes option. With this option set, when
memcheck encounters an error, it will ask you if you want to attach a
debugger, like this:

==9654== ---- Attach to debugger ? ---

[Return/N/n/Y/y/C/c] ----
If you type y or Y it will launch gbd and attach it to the application under
test. With the attached debugger you have a static image of the application
—you can do things like go up and down the stack and examine variables,
but you can’t step or run the application. When you quit gdb, control
returns to memcheck running the application under test. Valgrind defaults
to using gdb. You can specify another debugger with the command:

—db-command=<command>

I’ve had trouble with this when I’ve used it in the .valgrindrc file.
When the commands are parsed, they are split on spaces, and this option
usually contains spaces and $ £ for the application file and %p for the pid.
So if my .valgrindrc contains

--db-command="ddd %f %p"
6 | Overlead | August 2012

#include <iostream>
class MemPool
{
public:
MemPool () ;
~MemPool () ;
int *allocInt();
void freeInt(int *ptr);
private:
int *pool;
unsigned int freeMap;
static const size_t poolSize = 32;
}i
MemPool: :MemPool () : pool (new int[poolSize]),
freeMap (0U)
{
}

MemPool:

{

: ~MemPool ()

delete [] pool;
}
int *MemPool::allocInt()
{
for (size_t i = 0;
{
if (! (freeMap & 1U << i))
{
freeMap |= 1 << i;
return &pool[i];

}

i < poolSize; ++i)

}

return 0;

}

void MemPool: :freelInt(int *ptr)

{
for (size_t i = 0; i < poolSize; ++i)
{
if (ptr == &pool[i])
{
freeMap &= ~(1 << i);
return;
}
}
}

int main (int argc,

{
MemPool mempool;
int *ptrs[3];
ptrs[0] = mempool.allocInt();
ptrs[1l] = mempool.allocInt();
ptrs[2] = mempool.allocInt();
mempool. freeInt (ptrs[0]) ;
mempool. freeInt (ptrs[2]);

const char * argvl[])

Listing 7

and I run
valgrind --db-attach=yes xemacs
then I get
valgrind: Bad option: 3f
This will work if you put the commands on the command line

valgrind --db-attach=yes --db-command="ddd %f %p"
xemacs

Another thing that can be difficult is if you use gdb with a command line
application. In this case the output of the application will be mixed with
the output (and input) of gdb.

For the last section in this article, I’ll look at using memory pools. Let’s
start with a little noddy application with memory pool (Listing 7).



==9886== HEAP SUMMARY:
==9886== in use at exit:
==9886== total heap usage:
128 bytes allocated
==9886==

==9886== All heap blocks were freed -- no leaks
are possible

==9886==

==9886== ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 4 from 4)

0 bytes in 0 blocks
1 allocs, 1 frees,

Note the obvious ‘leak’, 3 callsto allocInt butonly 2 calls to freeInt.
Compiling and running this with memcheck detects no errors (Listing 8).

Let’s now add the Valgrind machinery to instrument the memory pool. The
parts that need to be changed are:

1. The constructor, to tell Valgrind about the memory pool and to mark
it as ‘noaccess’.

2. The destructor, to actually perform the leak checks and to tell
Valgrind that the memory pool is no longer used.

3. The allocator, so that Valgrind knows when a chunk in the pool is
used.

4. The deallocator, so that Valgrind knows when chunks in the pool are
released (Listing 9).

Note that the memory ‘leaked’ from the pool is marked as ‘still reachable’
rather than as one of the ‘lost’ categories.

That wraps it up for memcheck. Before I go, a few production notes. On
my Mac (with Mac OS X 10.6.8 on an Intel CPU) I couldn’t get the
memory pool example to work. On the Linux install that T used for the same

#include <iostream>
#include "valgrind/memcheck.h"

class MemPool
{
public:
MemPool () ;
~MemPool () ;
int *allocInt();
void freeInt(int *ptr);
private:
int *pool;
unsigned int freeMap;
static const size_t poolSize = 32;
};

MemPool: :MemPool () : pool(new int[poolSize]),

freeMap (0U)
{
VALGRIND MAKE MEM NOACCESS (pool,
poolSize*sizeof (int));
VALGRIND_CREATE_MEMPOOL(pool,
poolSize*sizeof (int), 0);
}
MemPool : : ~MemPool ()
{

VALGRIND DO_LEAK CHECK;
VALGRIND_DESTROY_MEMPOOL(pool);
delete [] pool;

}

n FEATURE

example (openSUSE 11.4) the Valgrind headers were missing and I had
to add the valgrind-devel package.

In my next article, I’ll cover Callgrind, a tool for time profiling
applications. B

int *MemPool::allocInt()
{
for (size_t i = 0; i < poolSize; ++i)
{
if (! (freeMap & 1U << i))
{
freeMap |= 1 << i;
VALGRIND MEMPOOL ALLOC (pool, &pooll[il],
sizeof (int));
return &pooll[i];

}

return 0;

void MemPool: :freelInt(int *ptr)
{
for (size_t i = 0;
{
if (ptr == &pool[i])
{
VALGRIND_MEMPOOL_FREE(pool, ptr);
freeMap &= ~(1 << i);
return;

i < poolSize; ++i)

int main (int argc,
{
MemPool mempool;
int *ptrs[3];

const char * argv][])

ptrs[0] mempool.allocInt() ;
ptrs[1l] = mempool.allocInt();
ptrs[2] = mempool.allocInt();

mempool . freeInt (ptrs[0]) ;
mempool. freeInt (ptrs[2]);

valgrind -v --leak-check=full--show-reachable=yes
./main

==9971== Searching for pointers to 1 not-freed
blocks

==9971== Checked 180,728 bytes

==99071==

==9971== 4 bytes in 1 blocks are still reachable
in loss record 1 of 1

==9971== at 0x400C28: MemPool::allocInt()
(main.cpp:46)

==9971== by 0x400D6C: main (main.cpp:73)
==9971==

==9971== LEAK SUMMARY:

==9971== definitely lost: 0 bytes in 0 blocks

==9971== indirectly lost: 0 bytes in 0 blocks

==9971== possibly lost: 0 bytes in 0 blocks

==9971== still reachable: 4 bytes in 1 blocks

==9971== suppressed: 0 bytes in 0 blocks
Listing 9 (cont'd)

August 2012 | Ouerload | 7
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The Black-Scholes model is a financial model. Wei Wang
outlines its design and implementation for those who want to
understand how algorithms can be implemented in hardware.

Black and M. Scholes in the early1970s for valuing European call and

put options on a non-dividend-paying stock [Hull06]. European
option is a type of option that can be exercised only at the end of its life,
whereas American option is another type of option that can be exercised
at any time up to the expiration date. A call option gives the holder the
right to buy an underlying asset by a certain date at a certain price. A put
option gives the holder the right to sel/l an underlying asset by a certain date
at a certain price. The date specified in the contract is known as the
expiration date or the maturity date. The price specified in the contract is
known as the exercise price or the strike price.

T he Black-Scholes model is a mathematical model developed by F.

The Black-Scholes formula for the prices at time zero of a European call
option on a non-dividend-paying stock is:

c=8,N(d,)-Ke"N(d,)

(1.1)
and a European put option on a non-dividend-paying stock is:
p=Ke'"N(-d,)-S,N(-d,)=c+Ke"" -8, (12)
where:
In(S,/K)+(r+c?/2)T
d, =
oT (1.3)
2
d, = In(S,/K) +(r=0*/2)T _ i —oT
o T (1.4)

The variables c and p are the European call and put option price, S is the
stock price at time zero, K is the strike price, r is the continuously
compounded risk-free interest rate, ois the stock price volatility, and T is
the time to maturity of the option, which is represented as: 3 months as
0.25, 6 months as 0.5, 1 year as 1.0.

The function N(x) in (1.1) and (1.2) is the cumulative probability
distribution function of a standard normal distribution. The probability
function of a standard normal distribution is given by the following
equation, which is the first-order derivative of the standard normal
distribution density function N(x).

1 e—xz/Z
V2r (1.5)

The only problem in implementing equations (1.1) and (1.2) is in
computing the cumulative normal distribution function N(x). This function

P(x)=N'(x)=

Wei Wang studied Engineering at Cambridge. Wei currently
works in computer systems research, with interests in how
software stacks run on CPUs and interact with memory systems
and 1/O. Over the past two+ years Wei has used C++ intensively
for building a computer system simulator for performance
evaluation. Wei can be contacted at w.wang.05@cantab.net
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can be approximated by a polynomial function that gives six-decimal-
place accuracy:

1- N'(x)(ak +a k> +ak’ +ak* +ak’),x>0

N = { 1= N(=x),x <0

(1.6)

where:

k= ! , ¥=02316419,
I+yx

a, =0.319381530, a, =—-0.356563782, a, =1.781477937,
a, =—1.821255978, a; =1.330274429

The Black-Scholes model implemented in the PARSEC benchmark
[Bienial 1] is exactly as introduced in this section, and in the next section,
the software implementation is from the PARSEC implementation with
minor modifications [PARSEC], the benchmark also comes with synthetic
test data inputs (portfolio) based on replication of 1,000 real options. The
benchmark is coded in C/C++ with default single precision floating point.
The benchmark implementation offers thread-level parallelism with
Pthreads, OpenMP and Intel TBB, and runs on Linux, Solaris 10, and
Windows platforms. The benchmark can be compiled with GCC 4.3 and
ICC 10.1 to run on SPARC, 1386, X86 64 and ARM CPU architectures. !

Software implementation of the Black-Scholes model

To compute a call or put option price in equations (1.1) and (1.2), we
should first compute d1 and d2 in equations (1.3) and (1.4), and use the
results to compute the standard normal distribution probability function in
equation (1.5) and feed into the cumulative normal distribution function
in equation (1.6), and then feed the results to compute the option price in
equation (1.1) or (1.2). Following the flow of data, the model can be clearly
divided into three sequential blocks: 1) D1D2, that is d1 from equation
(1.3) and d2 from equation (1.4); 2) CNDF, the cumulative normal
distribution function in equation (1.6); and 3) OP, the option price as in
equation (1.1) and (1.2). The implementation of each function block with
data inputs and outputs is shown below in sequence.

The D1D2 function takes five input parameters — spot price, strike price,
interest rate, volatility and time-to-maturity — into computing equation
(1.3) and (1.4), the results are returned into d1 and d2. (See Listing 1.)

The CNDF function implements cumulative normal distribution function
in equation (1.5) and (1.6).The function takes d1 and d2 separately as its
input and computes the cumulative normal distribution as its output (see
Listing 2).

1. The PARSEC benchmark also includes another financial analysis
application, the HIM (Heath-Jarrow-Morton) model to price swaptions,
implemented in C++ with multithreading support for Pthreads and Intel
TBB on Linux and Solaris 10 platforms. Due to the data-level
parallelization of the workload, the performance scales well with the
number of available cores on a CPU.



n FEATURE

multithreaded Black-Scholes
application
concurrent threads
match the number of cores

//Cumulative Normal Distribution Function
#define inv_sqrt_2xPI 0.39894228040143270286
fptype CNDF (fptype InputX)

typedef float fptype;

void D1D2(
{
//inputs int sign;
fptype spotprice, fptype OutputX;
fptype strike, fptype xInput;

fptype rate, fptype xNPrimeofX;

fptype volatility, fptype expValues;

fptype time, fptype xK2;
fptype xK2_2, xK2_3;

//outputs fptype xK2_4, xK2_5;

fptype* dl, fptype xLocal, xLocal 1;

fptype* d2) fptype xLocal_ 2, xLocal_3;
//Check for negative value of InputX
if (InputX<0.0){

{
fptype xSqrtTime = sqrt(time) ; I?putx=—InputX;
fptype logValues = log(spotprice/strike) ; sign=1;
fptype xPowerTerm = volatility * volatility; )else
xPowerTerm = xPowerTerm * 0.5; sign=0;
xInput=InputX;
fptype xD1 = rate + xPowerTerm;
xD1 = xD1 * time; // compute NPrimeX term common to both four &
xD1 = xD1 + logValues; // six decimal accuracy calcs
expValues = exp(-0.5f * InputX * InputX);
fptype xDen = volatility * xSqrtTime; xNPrimeofX = expValues;
xD1 = xD1/xDen; xXNPrimeofX = xNPrimeofX * inv_sqrt_ZxPI;
fptype xD2 = xD1 - xDen; xK2 = 0.2316419 * xInput;
xK2 = 1.0 + xK2;
*dl = xD1; xK2 = 1.0/xK2;
*d2 = xD2; xK2_2 = xK2 * xK2;
} xK2 3 = xK2_2 * xK2;
xK2 4 = xK2 3 * xK2;
Listing 1 xK2_5 = xK2_4 * xK2;
xLocal 1 = xK2 * 0.319381530;
xLocal 2 = xK2 2 * (-0.356563782);
xLocal 3 = xK2 3 * 1.781477937;
The Black-Scholes equation takes seven input parameters, and computes xLocal:2 = xLoZal_2 + xLocal_3;
the option price. The function implements equation (1.1) and (1.2) with xLocal_3 = xK2_4 * (-1.821255978);
calls to function D1D2 and CNDF (see Listing 3). xLocal_2 = xLocal_2 + xLocal_3;

xLocal 3 = xK2 5 * 1.330274429;
xLocal_2 = xLocal_2 + xLocal_3;
xLocal_l = xLoca1_2 + xLocal_1;
xLocal = xLocal_l * xNPrimeofX;
xLocal = 1.0 - xLocal;
OutputX=xLocal;
if (sign) {

OutputX = 1.0 - OutputX;

To run the multithreaded Black-Scholes application efficiently on a
multicore CPU, the number of concurrent threads should match the
number of cores to avoid unnecessary context switch, also use thread
affinity to avoid unnecessary threads migration among different cores, and
each thread should match its working sets size to the CPU cache and
memory hierarchy. For example, one option input data entry can fit in one
cache line of 64 bytes, a 64KB L1 cache can hold up to 1000 options, and

while a2MB L2 cache can hold up to a portfolio of 32 sets of 1000 options. }
As L1 access latency is a few (<10) cycles, L2 access latency is 10+ cycles, return OutputX;
while L3 is usually shared among cores with 40 cycles access latency, and }

the off-chip memory takes more than 100 cycles to access, it makes sense
to match the data sizes with the cache and memory hierarchy.

Listing 2
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FPGA GPU Cell BE cPU
Floating point Fixed point
Single Double Single Double
Double Single 48hit 32hit 18hit
4LUTs 55925 27793 36183 15757 8850 - - - -
DSP blocks 124 31 83 48 12 - - - -
Cores (LX/SX) 1/0 3/1 1/1 2/3 8/5 unknown 16 32 1
Clock (MHz) 67 61 49 64 81 400 3200 3200 2500
Least? error 2x10® 4x108 8x10® 8x10® 6x102 4x10% 8x107%" 4x10° 8x10®
Acceleration (x) 15 41 1 29 146 32* 5 29 1

Table 1

FPGA hased accelerators for financial applications

There are a few companies offering FPGA-based accelerators for
computing the Black-Scholes model and Monte-Carlo simulation for
pricing options, such as Celoxica [Morris07] and Maxeler [Richards11].

Celoxica had implemented FPGA based acceleration technologies for
European options pricing. They achieved 15 times speed-up over an
existing server at full precision and have similar performance to GPU and
Cell implementations as shown in the table below [Morris07]. The
accelerations achieved by FPGA, GPU and Cell BE are compared against
the fully optimized C++implementation running on a PC with a single core
AMD 2.5GHz Opteron processor with 2 Gb of RAM and the Windows
2000 OS.

Table 1 shows a comparison of resource utilization, error and acceleration
for different implementations of European option benchmark. In the table,
LX/SX stands for two FPGA devices from the Xilinx Virtex 4 family, the
LX160 and the SX55. The FPGA clock rates and accelerations are given
for the LX device. Results indicated by * are estimates. The SX variant of
the Virtex 4 family is significantly richer in DSP blocks resources, at the
expense of fewer 4LUTS. The speed grade chosen for both devices was at
the same -10 speed grade.

The component implemented in the FPGA is the computation unit for
computing the following payoff equation (1.7). The computationally
intensive component of computing the payoff equation is the Gaussian
Random Number Generator, as Z, is generated by the Gaussian Random
Number Generator (GRNG). The other components other than the GRNG
for computing the above equation are just multipliers, adder, natural
exponent, subtractor, max and accumulator.

i max(0, S(0)e" % —K)
= (1.7)

The payoff equation is implemented in HyperStreams that is built on the
Handel-C? programming language. The data flow and the control flow of
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the implementation are separated, the data flow is programmed using the
HyperStreams abstraction, and the control flow is programmed using
traditional Handel-C syntax. The designs were synthesized using Celoxica
DKS5 and Xilinx ISE 9.1.

The block diagram in Figure 1 shows the portion of the European option-
pricing algorithm implemented on FPGA, noting the separation of control
and pipelined data flow. The parameters provided from the control flow
to the data flow are fixed constants during the computation of the above
equation and are therefore calculated in software.

As the FPGA designs are implemented in the high-level abstraction
Handel-C programming language rather than implemented in RTL, it’s not
a difficult task to implement the design in different flavours of floating
point and fixed point. Balancing the resource utilization, performance and
precision, the 32-bit fixed-point implementation offers the best results.
The 18-bit fixed-point implementation offers 146 times performance
acceleration but has 133 times worse precision compared to CPU as shown
in Table 1, the single floating-point implementation offers 41 times
acceleration but has 200 times downgrade on precision.

The power consumption and cost have not been taken into account when
comparing the performances of different implementations. The Handel-C
approach has a clear advantage on the time-to-market metric, as the five
different flavours of floating point and fixed-point implementations only
took two person days to implement. However, this approach doesn’t work
out-of-the-box with legacy C/C++ code base, which limits its potential.

Maxeler worked with J.P. Morgan Quantitative Research to accelerate
their tranche valuation [Richards11]. The base correlation with stochastic
recovery model is used to price and calculate risk for tranche-based
products, such as vanilla tranches, bespoke tranches, n-th to default and

2. Handel-C is a programming language and is not a Hardware
Description Language (HDL) for compiling programs into hardware
images of FPGAs or ASICs. It is a rich subset of C, with non-standard
extensions to control hardware instantiation and parallelism.



CDO?. At its core, the model involves two key computationally intensive
loops of constructing 1) the conditional survival probabilities using a
Copula as shown in Equation (1.8) and 2) the probability of loss
distribution using convolution as shown in Figure 2. Inside the
convolution, FFT is used to evaluate the integral:

— Nﬁl(pi)_\/;M
gp("“”)‘N[ e J 0

where g, is the conditional survival probability for this name, p; is the
unconditional survival probability for this name, p is the correlation and
M is the market factor.

The valuation of tranched CDOs can be expressed in flattened C code as
below after removing all use of classes, templates and other C++ features

//OptionPrice

fptype BlackScholes (fptype spotprice,
fptype strike, fptype rate, fptype volatility,
fptype time, int otype, float timet)

fptype OptionPrice;
fptype FutureValueX;
fptype NofXdl;
fptype NofXd2;
fptype NegNofXdl;
fptype NegNofXd2;
fptype dl;

fptype d2;

//D1D2
D1D2 (spotprice,
time, &d1,

strike,
&d2) ;

rate, volatility,

//CNDF
NofXdl
No£Xd2

CNDF (d1) ;
CNDF (d2) ;

//OP
FutureValueX = strike * (exp(-(rate)*(time)));
if (otype==0) {
OptionPrice = (spotprice * NofXdl) -
(FuturevValueX * NofXd2) ;
}else{
NegNofXdl
NegNofXd2 =
OptionPrice =

(1.0 - NofXxdl);

(1.0 - NofXd2) ;

(FutureValueX * NegNofXd2) -
(spotprice * NegNofXdl) ;

}

return OptionPrice;

Listing 3

WEI'WANG = FEATURE l

in order to simplify parallelization. The Copula takes 23% of execution
time and the Convolution takes 75% of execution time in CPU. (Listing 4.)

After offloading the computation of Copula and Convolution onto the
FPGA from the CPU, a single FPGA prices a complex trade 134 times

Figure1

Conditional Survival Probabﬂitre::s
=3 &3

]

| Weights

Notional

+— (Credits Unrolled (¢c)—

Accumulated Loss Distribution
(weighted sum)

1
Market Factors Unrolled (my—

—

Figure 2
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atthe core of financial

faster than a single CPU. As a result, end-to-end time to price global credit
hybrids portfolio once reduced to ~125 seconds with pure FPGA time of
~2 seconds to price ~30,000 tranches and total compute time of ~30
seconds. End-to-end time for pointwise credit deltas on global credit
hybrids portfolio reduced to ~238 seconds with pure FPGA time of ~12
seconds, using a 40-node FPGA machine. End-to-end time to run multiple
trading/risk scenarios for desk reduced to ~320 seconds with results
accurate to within $5 across global portfolio, while it’s not previously
possible to run such scenarios multiple times within a single trading day.

In addition to acceleration, the FPGA based solutions have predictable
performance for computation and data I/O, as FPGAs are statically
scheduled and with no cache involved. However, JPMorgan took a 20%
stake in Maxeler, which potentially limits its adoption in other financial
institutions.

FPGA hased high performance computing
for financial applications

Tandon [Tandon03] completed a Master’s Thesis on 4 Programmable
Architecture for Real-Time Derivative Trading, which he implements the
Black-Scholes European Option Pricing model on FPGA, simulated ARM
processor and Mathematica, which is used as the reference platform, and
compares their performance acceleration and accuracy. The results are
shown in Table 2.

In Table 2, time per iteration means the time used to compute either a call
or put option price using the Black-Scholes model given a set of input data.
The Reference Mathematica test is conducted on Mathematica 5.0 on an
Intel Pentium 4 processor at 2.53 GHz. The Black-Scholes model is
implemented in Mathematica using some of its library functions that are
assumed to have suitable optimizations or approximations. Floating point

for i in O . markets-1
for j in O . names-1
prob = cum_norm((inv_norm(Q[j])
-sqrt (p)M) /sqrt(1-p);
loss = calc_loss(prob,Q2[j],
RR[j] ,RM[]j]) *notional[]j];
n integer (loss) ;
L fractional (loss) ;
for k in 0 . bins-1
if j ==
dist[k]

=k=0"7?1.0:0.0;

dist[k] = dist[k]*(1-prob) +
dist[k-n] *prob* (1-L) +
dist[k-n-1] *prob*L;

ifj==credits -1

final dist[k] += weight[i] * dist[k];
end # for k
end # for j
end # for i

Listing 4
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is used in this implementation, but the thesis doesn’t tell whether it being
single or double floating point. The simulated ARM processor is done on
a simulated ARM7TDMI processor running at 200MHz, the Black-
Scholes model is implemented in ANSI-C with floating point and targets
towards an ARM?7 processor. The simulated ARM7TDMI simulates all
floating-point computations within the processor itself rather than having
a dedicated floating-point unit. The FPGA based implementation coded in
VHDL? has not been synthesized successfully due to it being a purely
floating-point computation and the IEEE math library that is used for the
floating-point computations is designed for simulation only. However,
modifications have been made to the design to make it integer based, the
performance numbers are drawn from the integer-based implementation
of the Black-Scholes model on a Virtex-II Pro FPGA. The 50ns time per
iteration number shown in the table, however, is not measured from real
experimental hardware rather it is an estimated number inferred from the
synthesis report of the design. The downgrade from floating point to
integer-based implementation significantly undermines the accuracy.

The challenges faced in the Black-Scholes model FPGA implementation
using floating point in the thesis however points out that a fixed-point
implementation of the Black-Scholes model on FPGA is more favourable
considering the manpower required to implemented the floating-point
capability and the accuracy tradeoff between floating point and fixed point.

It is also pointed out that financial models are very heavily dependent on
calculus, probability, statistics and other branches of Mathematics, a logic
library which has RTL implementations of some fundamental
mathematical functions would be very useful, such as, integration, higher
order derivation, random number generation, statistical and stochastic
modelling, vector calculus, trigonometric functions and logarithmic
functions. Although the idea is constructive for putting more financial
models on FPGAs easily, it should be noted that integration is not
necessary for calculating cumulative normal distribution function in the
Black-Scholes model, as a polynomial approximation that gives six-
decimal-place accuracy is given in [Hull06].

Black-Scholes hardware design

The Black-Scholes model can be similarly implemented in three hardware
modules: D1D2, CNDF and OptionPrice, as shown in Figure 3. D1D2
module computes Equations (1.3) and (1.4); it takes five data inputs and

Experiment platform :;I:::tl::l: Accuracy
Mathematica -Reference 15.625 ps Very high
Simulated ARM processor 170 ps High
Reconfigurable logic 50 ns Medium high

Table 2

3. VHSIC Hardware Description Language
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then feed the two outputs to the two parallel CNDF modules. CNDF
(Cumulative Normal Distribution function) module computes Equation
(1.5) and (1.6); it takes the input from D1D2 and feeds the output to
OptionPrice module. OptionPrice computes Equation (1.1) and (1.2); it
takes four data inputs, one option type control signal and two data feeds
from CNDF modules, the module gives the price of the option as the
output. The implementation takes 25 clock cycles to compute the option
price based on the five data inputs and one option type control input, with
each arithmetic unit taking only one cycle to compute for simplicity4. The
data path resource utilization and the time delay of each module are
summarized in Table 3.

The resource utilization count assumes each hardware arithmetic unit is
shared among D1D2, CNDF and OptionPrice blocks where possible. In a

Arithmetic Unit
+ - x + v | ¢ |In(x) | Cycles
D1D2 1 1 2 1 1 0 1 7
CNDF 1 1 3 1 0 1 0 12
OptionPrice 1 1 2 0 0 1 0 6
BlackScholes| 1 1 3 1 1 1 1 25

Table 3

4. The one cycle implementation is not area efficient and cost effective,
the more complex arithmetic units, such as divide, square root, and
logarithm and exponential, take more than 20 cycles to compute in
practice.

fully pipelined implementation, we would see at the bottom row the sum
of each column rather than the maximum of each column, for example, in
column +, it would be three + hardware arithmetic units rather than one
unit to be needed for the implementation. The clock cycle count can be seen
visually in the block diagrams as shown in Figure 4, Figure 5, Figure 6,
each horizontal level represents one cycle delay.

In the following sections, the implementation details of D1D2, CNDF and
OptionPrice blocks are explained.

D1D2 hlock design

This block takes 7 cycles to execute, it has 1 add unit, 1 subtract unit, 2
multiply units, 1 divide unit, 1 square root unit and 1 logarithm unit, as
shown in Figure 4. The inputs to the block are spot price, strike price, time
to mature, volatility and interest rate, which are shown on the top of Figure
4, and the outputs of the block are d1 and d2, which are shown at the bottom
of Figure 4. The input from the right of the block diagram is the control
signal to the data path; it is a constant in this case.

This block takes 12 cycles to execute, it has 1 add unit, 1 subtract unit, 3
multiply units, 1 divide unit, 1 exponential unit, as shown in Figure 5. The
inputs on the top of the block diagram are inputs to the module and the
outputs at the bottom of the block diagram are the outputs of the module.
The inputs from the right of the diagram are control signals to the data path.

OptionPrice block design

This block takes 6 cycles to execute, it has 1 add unit, 1 subtract unit, 2
multiply units and 1exponential unit as shown in Figure 6. The inputs on
the top of the diagram are inputs to the module and the outputs at the bottom

August 2012 | Ouerload | 13



FEATURE »

spot strike timetm volatility rate
A \ vV
! sqrt X
In X - X  -—0.5—
In(S,/K) T y i -
+ -
L X
(r+0'1/2)7¢
S —————— — +
\I’i
/
1
o
d1 ik
d‘2
\
Figure 4

of the diagram are the outputs of the module. The inputs from the right of
the diagram are control signals to the data path.

Black-Scholes hardware implementation

The hardware implementation is based on single precision floating point,
as the baseline implementation in PARSEC is in single precision floating
point. The decision to implement the model whether in single-precision
floating point or 32-bit/18-bit fixed point depends on the efforts to
implement, the logic resource requirement, and the speed of acceleration
and the accuracy. The floating-point arithmetic units make use of the
components from the Synopsys DesignWare floating-point datapath
library [Synop