

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

ACCU
ACCU is an organisation of programmers
who care about professionalism in
programming. That is, we care about
writing good code, and about writing it in
a good way. We are dedicated to raising
the standard of programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of ACCU
For details of ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Valgrind Part 3 – Advanced Memcheck
Paul Floyd shows how Valgrind provides several
mechanisms to locate memory problems.

8 Black-Scholes in Hardware
Wei Wang uses the Black-Scholes model to illustrate
the implementation of algorithms in hardware.

16 Replace User, Strike Any Key?
Sergey Ignatchenko asks if the user is really the
primary source of all IT problems.

19 Simple Mock Objects for C++11
Michael Rüegg shows us how to use C++11 to
implement mock objects in our unit tests.

22 Large Objects and Iterator Blocks
Frances Buontempo uses iterator blocks to solve
memory issues in .Net.

OVERLOAD 110

August 2012

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Richard Blundell
richard.blundell@gmail.com

Matthew Jones
m@badcrumble.net

Alistair McDonald
alistair@inrevo.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication in
Overload 111 should be submitted
by 1st September 2012 and for
Overload 112 by 1st November
2012.

EDITORIAL FRANCES BUONTEMPO
Allow Me To Introduce Myself
Using data mining techniques to write an editorial.
In Overload 108, Ric Parkin said goodbye as
Overload editor after a four year stint. Allow me to
introduce myself. I’m Fran Buontempo and I am your
new editor. Choosing a suitable topic for editorials is
difficult, yet it seems suitable to use this as an
opportunity to reminisce about issues gone by, as we

say goodbye to our old editor, while obviously looking forward to many
articles from him in the future. Many months ago, in January in fact, Nigel
Lister posted a word cloud of this year’s conference on accu-general
[Lister12]. This is a beautiful way of representing the frequency of words
contained in documents. A more traditional approach would present a
histogram, with bars showing how many times an item appears. Wikipedia
[Histogram] suggests these were invented by Karl Pearson, though I like
to think the ideas trace back to Florence Nightingale’s innovations in
statistical graphics, such as the rose diagrams [Nightingale]. I therefore
produced a word cloud of Overload 108 [Overload], and was pleased to
see the words ‘Surreal’ ‘Mutation’ standing out proudly.
Word clouds are part of the growing ‘Big data’ trend, which seems to be
one of the latest buzz-words [Gigaom]. Though big data involves the
hardware to deal with vast quantities of bits and bytes, at its heart is the
attempt to extract information from data, which can be used to make
money through smart business decisions, to cure cancer or to categorise
proteins or new galaxies. I regard big data as the trendy face of data mining
and machine learning. These disciplines are related to statistics, though
encompass a much broader scope of approaches including swarm-inspired
algorithms such as ant-colony optimisations, other nature inspired
approaches such as neural networks and genetic algorithms, as well as
clustering and classification and many other ways of searching data for
meaning, or at least patterns. On a smaller scale, data mining and machine
learning can provide a way to reflect and reminisce on historical trends,
for example, issues of a magazine. Communications, the ACM members
magazine, recently ran an article using n-Grams to analyse its previous
content [ACM]. The motivation of the article was to delve into the
institution's identity, considering its worldwide readership, long history
and churn of members, using previous publications as input. As an
organisation, the ACCU seems to have been through a time of similar
reflection, for example musing on the ‘Professionalism in Programming’
tag line on accu-general. The coincidence between the ACM musings and
our search for identity, and amused by ‘surreal’ ‘mutations’ in the
Overload 108 tag cloud, the most sensible option for my first editorial had
to be to get a computer to write it for me. I’m a geek, so what did you

expect?
By saving all the words in Overload 103–

108 inclusive in separate text files, and
applying the Porter stemmer algorithm,

[Porter], a tally chart of word frequencies for each edition can be
produced. This algorithm trims or stems words such as ‘mutation’ and
‘mutated’ to ‘mutat’, so they are counted as the same word. When this is
applied to several journals the information can be combined to graph the
top n words for each issue, over time. Taking care to insert zeros for runs
where words disappear off the radar, this can be used to look for trends.
Using so few articles will almost certainly not reveal any long term trends,
but will hopefully give a starting point for further investigation. Table 1
shows the frequencies of the top four stem words over the articles
considered, and Figure 1 graphs this for us. Immediately ‘test’ jumps out
as the highest scorer in two different issues, by a large margin. Perhaps
this is a topic that captures our imagination at periodic intervals. Next,
certain words seem to have a mini-trend for two or three articles running
such as ‘function’, ‘code’, ‘list’ and ‘type’. The stemmer algorithm will
chop short words, such as C++, C, Go, R, Q, so it might be interesting to

Table 1

Word
Overload Editions

103 104 105 106 107 108

function 0 0 0 112 100 0

differ 0 0 67 0 0 0

code 0 74 109 0 86 148

develop 0 78 0 0 0 0

specif 107 0 0 0 0 0

express 0 0 0 0 158 0

list 0 0 0 91 134 0

except 145 0 0 0 0 0

equal 135 0 0 0 0 0

unit 0 0 0 0 0 138

channel 0 0 0 91 0 0

file 0 86 0 0 0 0

error 0 0 62 0 0 0

test 0 308 0 0 0 309

mutat 0 0 0 0 0 158

type 0 0 80 145 0 0

valu 109 0 0 0 0 0
2 | Overload | August 2012

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically
in Chemical Engineering, but mainly programming and learning about AI and data mining. She has
been a programmer for over 12 years professionally, and learnt to program by reading the manual for
her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

EDITORIALFRANCES BUONTEMPO
adapt it to include language specific words that it would otherwise filter
out, taking care to disambiguate ‘go’ and the language ‘Go’. Increasing the
number of top words considered will clearly reveal further trends and mini-
trends, but filling my editorial with computer generated graphs and tables
might be considered cheating.
I look forward to the future editions of Overload, and
would like to thank Ric for all his hard work, including
keeping an eye on my first issue as editor. Thanks also
to the Overload review team, and welcome to Chris
Oldwood who has just come on board.

References
[ACM] Communications of the ACM, Vol 55, No 5, 2012
[Gigaom] http://gigaom.com/cloud/big-data-the-quick-and-the-dead/
[Histogram] http://en.wikipedia.org/wiki/Histogram
[Lister12] http://dl.dropbox.com/u/34106607/

ACCU_SCHEDULE_smaller.png
[Nightingale] http://en.wikipedia.org/wiki/Florence_Nightingale
[Overload] http://www.wordle.net/show/wrdl/5128616/overload108
[Porter] http://www.tartarus.org/~martin/PorterStemmer

Figure 1
August 2012 | Overload | 3

http://gigaom.com/cloud/big-data-the-quick-and-the-dead/
http://en.wikipedia.org/wiki/Histogram
http://dl.dropbox.com/u/34106607/ACCU_SCHEDULE_smaller.png
http://dl.dropbox.com/u/34106607/ACCU_SCHEDULE_smaller.png
http://en.wikipedia.org/wiki/Florence_Nightingale
http://www.wordle.net/show/wrdl/5128616/overload108
http://www.tartarus.org/~martin/PorterStemmer

FEATURE PAUL FLOYD
Valgrind Part 3
Advanced memcheck
Valgrind provides several mechanisms to locate memory
problems in your code. Paul Floyd shows us how to use them.
n the previous part of this series I covered basic use of memcheck. In
this article, I’ll expand on that and cover the difficult cases that I touched
on previously:

1. Compiling with Valgrind macros.
2. Attaching a debugger.
3. Using memory pools.

Compiling with Valgrind macros
When you are testing an application with memcheck, you have a passive
role interacting with Valgrind. Valgrind will only generate output if an
error occurs (not counting the header that contains copyright information,
the Valgrind options in effect, shared libraries and function intercepted and
the footer with a summary of errors found and suppressions used). You
have no access to the internals of the VEX virtual machine or the state of
memory. Valgrind provides you with macros that allow you to actively
control output and interact with the VM.
In order to trace down the precise origins of an error, you might want to
generate output at points prior to the error. Alternatively, you might want
to examine memory even when there are no errors. You can think of the
macros for this purpose as being a bit like printf statements, with the output
going into Valgrind’s output (the console or the log file). In addition to
Valgrind’s output, the macros may return a value, either ‘directly’ from
the macro as a status, or through inout arguments to the macro. There are
also macros to trigger Valgrind actions like performing a leak check
(which otherwise will only happen when the application under test
terminates).
In your C or C++ source file, you have to include the appropriate header,
e.g.,
 #include “valgrind/memcheck.h”

(you might prefer to use <memcheck.h> if Valgrind is installed with its
include files in the system header directories).
Then you need to add the include path to the compiler directive, if the
headers are not in the system include path. For instance, in a GNU makefile
 CPPFLAGS += -I “/Applications/valgrind/include”

Then you can use the macros in your source. Since Valgrind does not link
any extra libraries, these macros use a different mechanism. The macros
contain a sequence of machine instructions that no known compiler would
ever issue and that have no side effects. The Valgrind virtual machine
detects this sequence and instigates a client request. When not running
under Valgrind, there is no effect other than a very small time penalty. For
example, on x86 the following is used:

#define __SPECIAL_INSTRUCTION_PREAMBLE \
 "roll $3, %%edi ; roll $13, %%edi\n\t" \
 "roll $29, %%edi ; roll $19, %%edi\n\t"

which rotates EDI by 64bits, leaving it unchanged.
There are numerous such macros: Listing 1 shows the client macros in
memcheck.h.
Let’s take a look at an example (Listing 2).
This is intended to be built on a 64bit system, though the results should be
similar on a 32bit system.
A pointer to int, pi, gets assigned to 2 ints worth (8 bytes) in the heap.
The first int is initialized. Then I do some nasty casting, first to initialize
the first half (2 bytes) of the second int. Then, with recourse to a struct
with a bitfield, I initialize just two bits in the last byte of the 2nd int. So
of the 4 bytes in that 2nd int, the 1st two are initialized, the third is
uninitialized and the fourth has 2 bits initialized.
After all of the initialization (or not) come Valgrind client request macros.
The first checks if the 8 bytes allocated are addressable. The second checks
if 9 bytes are addressable. The third gets the initialization status of each
of the bits that were allocated.
If I compile this and run it outside of Valgrind I get Listing 3. However,
running it under Valgrind gives Listing 4.
As expected, the check whether the 8 bytes were addressable returns 0,
meaning that they are all addressable. The check whether 9 bytes are
accessible provokes a ‘Unaddressable byte(s) found during client check
request’ message with information and a return of the address of the first

I

Listing 1

VALGRIND_MAKE_MEM_NOACCESS(_qzz_addr,_qzz_len)
VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr,_qzz_len)
VALGRIND_MAKE_MEM_DEFINED(_qzz_addr,_qzz_len)
VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(_qzz_add
r,_qzz_len)
VALGRIND_CREATE_BLOCK(_qzz_addr,_qzz_len,
_qzz_desc)
VALGRIND_DISCARD(_qzz_blkindex)
VALGRIND_CHECK_MEM_IS_ADDRESSABLE(_qzz_addr,_qzz_
len)
VALGRIND_CHECK_MEM_IS_DEFINED(_qzz_addr,_qzz_len)
VALGRIND_CHECK_VALUE_IS_DEFINED(__lvalue)
VALGRIND_DO_LEAK_CHECK
VALGRIND_DO_ADDED_LEAK_CHECK
VALGRIND_DO_CHANGED_LEAK_CHECK
VALGRIND_DO_QUICK_LEAK_CHECK
VALGRIND_COUNT_LEAKS(leaked, dubious, reachable,
suppressed)
VALGRIND_COUNT_LEAK_BLOCKS(leaked, dubious,
reachable, suppressed)
VALGRIND_GET_VBITS(zza,zzvbits,zznbytes)
VALGRIND_SET_VBITS(zza,zzvbits,zznbytes)

Paul Floyd has been writing software, mostly in C++ and C, for over
20 years. He lives near Grenoble, on the edge of the French Alps, and
works for Mentor Graphics developing a mixed signal circuit simulator.
He can be contacted at pjfloyd@wanadoo.fr.
4 | Overload | August 2012

FEATUREPAUL FLOYD
unaddressable byte. The loop over the 8 bytes that were allocated show
that the 1st 6 bytes have been initialized, byte 6 is uninitialized and byte
7 has the bottom 2 bits initialized and the top 6 bits uninitialized.
So at the cost of having to change how the executable was built, we’ve
gained access down to the bit of the memory status of the executable.
That’s great, but it does have the drawback of being static – you can’t easily
change at runtime what is analysed. Since Valgrind 3.7.0, there is a way
to have more dynamic access to the internals while the executable is
running, and that is to use the built in gdbserver. Not only can you access

information like that shown above, you can also (almost) debug the
application like a real application directly under gdb.
Let’s see an example of using the gdbserver. First of all, some example
code, with a print function that reads beyond the array that is passed to
it (Listing 5).
If I compile and run it, I get ‘element 0 0’ to ‘element 11 0’. Running it
under valgrind with the -v option causes the following to be included in
the output (Listing 6).
I was using xterms to do this, and if you are using terminals, either you
need to be very good at coping with the spliced gdb/application under test

Listing 2

// main.c
// clientreq
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "memcheck.h"

struct two_bit
{
 char foo:2;
 char :0;
};
int main (int argc, const char * argv[])
{
 const size_t size = 2*sizeof(int);
 int *pi = malloc(size);
 short *ps;
 struct two_bit *ptb;

 pi[0] = 1;
 ps = (short *)pi;
 ps[2] = 2;
 ptb = (struct two_bit *)pi;
 ptb[7].foo = 3;

 unsigned long addressable
 = VALGRIND_CHECK_MEM_IS_ADDRESSABLE
 (pi, size);
 printf("addressable %lx\n", addressable);
 addressable
 = VALGRIND_CHECK_MEM_IS_ADDRESSABLE
 (pi, size+1);
 printf("addressable %lx\n", addressable);
 int status = 0;
 unsigned char bits[8];
 memset(bits, 0, 8);
 status = VALGRIND_GET_VBITS(pi,bits,size);
 for (int i = 0; i < size; ++i)
 {
 printf("byte %d bits %x\n",
 i, (unsigned int)bits[i]);
 }
 free(pi);
 return 0;
}

Listing 3

 addressable 0
 addressable 0
 byte 0 bits 0
 byte 1 bits 0
 byte 2 bits 0
 byte 3 bits 0
 byte 4 bits 0
 byte 5 bits 0
 byte 6 bits 0
 byte 7 bits 0

Listing 4

addressable 0
==3089== Unaddressable byte(s) found during client
check request
==3089== at 0x100000D46: main (in /Users/paulf/
Library/Developer/Xcode/DerivedData/clientreq-
einugynxilcucqauaotevhsuanfx/Build/Products/
Debug/clientreq)
==3089== Address 0x1000040e8 is 0 bytes after a
block of size 8 alloc'd
==3089== at 0xD6D9: malloc
(vg_replace_malloc.c:266)
==3089== by 0x100000C3E: main (in /Users/paulf/
Library/Developer/Xcode/DerivedData/clientreq-
einugynxilcucqauaotevhsuanfx/Build/Products/
Debug/clientreq)
==3089==
addressable 1000040e8
byte 0 bits 0
byte 1 bits 0
byte 2 bits 0
byte 3 bits 0
byte 4 bits 0
byte 5 bits 0
byte 6 bits ff
byte 7 bits fc

Listing 5

#include <iostream>
#include <unistd.h>
using std::cout;

template<typename T>
void init(size_t size, T* ptr)
{
 for (size_t i = 0; i < size; ++i)
 {
 ptr[i] = 0;
 }
}
template<typename T>
void print(size_t size, T* ptr)
{
 for (size_t i = 0; i < size; ++i)
 {
 cout << "element " << i << " " << ptr[i]
 << "\n";
 }
}
int main()
{
 //sleep(10);
 int *pi = new int[11];
 init(10, pi);
 print(11, pi);
 delete [] pi;
}

August 2012 | Overload | 5

FEATURE PAUL FLOYD
input and output, or you just use two terminals, which is what I did. The
‘sleep’ was uncommented to give a bit of time to attach gdb. In the first
terminal,
 gdb ./vg_gdb

(to be ready with the gdb prompt)
then in the second terminal
 valgrind -v ./vg_gdb

Select the text and then quickly switch back to the first terminal and paste
 (gdb) target remote | /usr/lib/valgrind/../../
 bin/vgdb –pid=12922

Then I could use all of the usual gdb commands like n(ext), s(tep), p(rint)
and so forth. I stepped as far as the print function.
In order to examine ptr I issued the command
 (gdb) monitor get_vbits 0x59ff040 44

and got back
 00000000 00000000 00000000 00000000 00000000
 00000000 00000000 00000000
 00000000 00000000 ffffffff

monitor is the command that gdb uses to communicate with a remote
server. You should only use it in cases like this and not when you are
debugging an application directly.
As expected, the last int is not initialized, as shown by the fs.
You don’t have to use terminals, this will also work with GUI applications
and GUI wrappers for gdb (like ddd).
You can use the gdbserver for several things as well as get_vbits.

Information about errors that have been detected.
Changing logging options.
Change the accessibility flags for given memory.
Check that memory is addressable.
Check for leaks.

See monitor help for details.
If you are using Valgrind prior to 3.7.0, then you will not have this feature
available. You’ll need to use either or both of the macros (as described
above) and the --db-attach=yes option. With this option set, when
memcheck encounters an error, it will ask you if you want to attach a
debugger, like this:
 ==9654== ---- Attach to debugger ? ---
 [Return/N/n/Y/y/C/c] ----

If you type y or Y it will launch gbd and attach it to the application under
test. With the attached debugger you have a static image of the application
– you can do things like go up and down the stack and examine variables,
but you can’t step or run the application. When you quit gdb, control
returns to memcheck running the application under test. Valgrind defaults
to using gdb. You can specify another debugger with the command:
 –db-command=<command>

I’ve had trouble with this when I’ve used it in the .valgrindrc file.
When the commands are parsed, they are split on spaces, and this option
usually contains spaces and %f for the application file and %p for the pid.
So if my .valgrindrc contains
 --db-command="ddd %f %p"

and I run
 valgrind --db-attach=yes xemacs

then I get
 valgrind: Bad option: %f

This will work if you put the commands on the command line
 valgrind --db-attach=yes --db-command="ddd %f %p"
 xemacs

Another thing that can be difficult is if you use gdb with a command line
application. In this case the output of the application will be mixed with
the output (and input) of gdb.
For the last section in this article, I’ll look at using memory pools. Let’s
start with a little noddy application with memory pool (Listing 7).

Listing 6

==12922== TO DEBUG THIS PROCESS USING GDB: start
GDB like this
==12922== /path/to/gdb ./vg_gdb
==12922== and then give GDB the following command
==12922== target remote | /usr/lib/valgrind/../
../bin/vgdb --pid=12922
==12922== --pid is optional if only one valgrind
process is running

Listing 7

#include <iostream>
class MemPool
{
public:
 MemPool();
 ~MemPool();
 int *allocInt();
 void freeInt(int *ptr);
private:
 int *pool;
 unsigned int freeMap;
 static const size_t poolSize = 32;
};
MemPool::MemPool() : pool(new int[poolSize]),
 freeMap(0U)
{
}
MemPool::~MemPool()
{
 delete [] pool;
}
int *MemPool::allocInt()
{
 for (size_t i = 0; i < poolSize; ++i)
 {
 if (!(freeMap & 1U << i))
 {
 freeMap |= 1 << i;
 return &pool[i];
 }
 }
 return 0;
}
void MemPool::freeInt(int *ptr)
{
 for (size_t i = 0; i < poolSize; ++i)
 {
 if (ptr == &pool[i])
 {
 freeMap &= ~(1 << i);
 return;
 }
 }
}
int main (int argc, const char * argv[])
{
 MemPool mempool;
 int *ptrs[3];
 ptrs[0] = mempool.allocInt();
 ptrs[1] = mempool.allocInt();
 ptrs[2] = mempool.allocInt();
 mempool.freeInt(ptrs[0]);
 mempool.freeInt(ptrs[2]);
}

6 | Overload | August 2012

FEATUREPAUL FLOYD
Note the obvious ‘leak’, 3 calls to allocInt but only 2 calls to freeInt.
Compiling and running this with memcheck detects no errors (Listing 8).
Let’s now add the Valgrind machinery to instrument the memory pool. The
parts that need to be changed are:

1. The constructor, to tell Valgrind about the memory pool and to mark
it as ‘noaccess’.

2. The destructor, to actually perform the leak checks and to tell
Valgrind that the memory pool is no longer used.

3. The allocator, so that Valgrind knows when a chunk in the pool is
used.

4. The deallocator, so that Valgrind knows when chunks in the pool are
released (Listing 9).

Note that the memory ‘leaked’ from the pool is marked as ‘still reachable’
rather than as one of the ‘lost’ categories.
That wraps it up for memcheck. Before I go, a few production notes. On
my Mac (with Mac OS X 10.6.8 on an Intel CPU) I couldn’t get the
memory pool example to work. On the Linux install that I used for the same

example (openSUSE 11.4) the Valgrind headers were missing and I had
to add the valgrind-devel package.
In my next article, I’ll cover Callgrind, a tool for time profiling
applications.

Listing 8

==9886== HEAP SUMMARY:
==9886== in use at exit: 0 bytes in 0 blocks
==9886== total heap usage: 1 allocs, 1 frees,
128 bytes allocated
==9886==
==9886== All heap blocks were freed -- no leaks
are possible
==9886==
==9886== ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 4 from 4)

Listing 9

#include <iostream>
#include "valgrind/memcheck.h"

class MemPool
{
public:
 MemPool();
 ~MemPool();
 int *allocInt();
 void freeInt(int *ptr);
private:
 int *pool;
 unsigned int freeMap;
 static const size_t poolSize = 32;
};

MemPool::MemPool() : pool(new int[poolSize]),
 freeMap(0U)
{
 VALGRIND_MAKE_MEM_NOACCESS(pool,
 poolSize*sizeof(int));
 VALGRIND_CREATE_MEMPOOL(pool,
 poolSize*sizeof(int), 0);
}

MemPool::~MemPool()
{
 VALGRIND_DO_LEAK_CHECK;
 VALGRIND_DESTROY_MEMPOOL(pool);
 delete [] pool;
}

Listing 9 (cont’d)

int *MemPool::allocInt()
{
 for (size_t i = 0; i < poolSize; ++i)
 {
 if (!(freeMap & 1U << i))
 {
 freeMap |= 1 << i;
 VALGRIND_MEMPOOL_ALLOC(pool, &pool[i],
 sizeof(int));
 return &pool[i];
 }
 }
 return 0;
}

void MemPool::freeInt(int *ptr)
{
 for (size_t i = 0; i < poolSize; ++i)
 {
 if (ptr == &pool[i])
 {
 VALGRIND_MEMPOOL_FREE(pool, ptr);
 freeMap &= ~(1 << i);
 return;
 }
 }
}

int main (int argc, const char * argv[])
{
 MemPool mempool;
 int *ptrs[3];

 ptrs[0] = mempool.allocInt();
 ptrs[1] = mempool.allocInt();
 ptrs[2] = mempool.allocInt();

 mempool.freeInt(ptrs[0]);
 mempool.freeInt(ptrs[2]);
}

valgrind -v --leak-check=full--show-reachable=yes
./main

==9971== Searching for pointers to 1 not-freed
blocks
==9971== Checked 180,728 bytes
==9971==
==9971== 4 bytes in 1 blocks are still reachable
in loss record 1 of 1
==9971== at 0x400C28: MemPool::allocInt()
(main.cpp:46)
==9971== by 0x400D6C: main (main.cpp:73)
==9971==
==9971== LEAK SUMMARY:
==9971== definitely lost: 0 bytes in 0 blocks
==9971== indirectly lost: 0 bytes in 0 blocks
==9971== possibly lost: 0 bytes in 0 blocks
==9971== still reachable: 4 bytes in 1 blocks
==9971== suppressed: 0 bytes in 0 blocks
August 2012 | Overload | 7

FEATURE WEI WANG
Black-Scholes in Hardware
The Black-Scholes model is a financial model. Wei Wang
outlines its design and implementation for those who want to
understand how algorithms can be implemented in hardware.
he Black-Scholes model is a mathematical model developed by F.
Black and M. Scholes in the early1970s for valuing European call and
put options on a non-dividend-paying stock [Hull06]. European

option is a type of option that can be exercised only at the end of its life,
whereas American option is another type of option that can be exercised
at any time up to the expiration date. A call option gives the holder the
right to buy an underlying asset by a certain date at a certain price. A put
option gives the holder the right to sell an underlying asset by a certain date
at a certain price. The date specified in the contract is known as the
expiration date or the maturity date. The price specified in the contract is
known as the exercise price or the strike price.
The Black-Scholes formula for the prices at time zero of a European call
option on a non-dividend-paying stock is:

(1.1)
and a European put option on a non-dividend-paying stock is:

(1.2)
where:

(1.3)

(1.4)
The variables c and p are the European call and put option price, S0 is the
stock price at time zero, K is the strike price, r is the continuously
compounded risk-free interest rate, σ is the stock price volatility, and T is
the time to maturity of the option, which is represented as: 3 months as
0.25, 6 months as 0.5, 1 year as 1.0.
The function N(x) in (1.1) and (1.2) is the cumulative probability
distribution function of a standard normal distribution. The probability
function of a standard normal distribution is given by the following
equation, which is the first-order derivative of the standard normal
distribution density function N(x).

(1.5)
The only problem in implementing equations (1.1) and (1.2) is in
computing the cumulative normal distribution function N(x). This function

can be approximated by a polynomial function that gives six-decimal-
place accuracy:

(1.6)
where:

The Black-Scholes model implemented in the PARSEC benchmark
[Bienia11] is exactly as introduced in this section, and in the next section,
the software implementation is from the PARSEC implementation with
minor modifications [PARSEC], the benchmark also comes with synthetic
test data inputs (portfolio) based on replication of 1,000 real options. The
benchmark is coded in C/C++ with default single precision floating point.
The benchmark implementation offers thread-level parallelism with
Pthreads, OpenMP and Intel TBB, and runs on Linux, Solaris 10, and
Windows platforms. The benchmark can be compiled with GCC 4.3 and
ICC 10.1 to run on SPARC, i386, X86_64 and ARM CPU architectures.1

Software implementation of the Black-Scholes model
To compute a call or put option price in equations (1.1) and (1.2), we
should first compute d1 and d2 in equations (1.3) and (1.4), and use the
results to compute the standard normal distribution probability function in
equation (1.5) and feed into the cumulative normal distribution function
in equation (1.6), and then feed the results to compute the option price in
equation (1.1) or (1.2). Following the flow of data, the model can be clearly
divided into three sequential blocks: 1) D1D2, that is d1 from equation
(1.3) and d2 from equation (1.4); 2) CNDF, the cumulative normal
distribution function in equation (1.6); and 3) OP, the option price as in
equation (1.1) and (1.2). The implementation of each function block with
data inputs and outputs is shown below in sequence.
The D1D2 function takes five input parameters – spot price, strike price,
interest rate, volatility and time-to-maturity – into computing equation
(1.3) and (1.4), the results are returned into d1 and d2. (See Listing 1.)
The CNDF function implements cumulative normal distribution function
in equation (1.5) and (1.6).The function takes d1 and d2 separately as its
input and computes the cumulative normal distribution as its output (see
Listing 2).

T

c S N d Ke N drT= − −
0 1 2() ()

p Ke N d S N d c Ke SrT rT= − − − = + −− −() ()2 0 1 0

d S K r T
T1

0
2 2

=
+ +ln() ()σ
σ

d S K r T
T

d T2
0

2

1
2

=
+ −

= −
ln() ()σ

σ
σ

P x N x e x() ()= ′ = −1
2

2 2

π

1. The PARSEC benchmark also includes another financial analysis
application, the HJM (Heath-Jarrow-Morton) model to price swaptions,
implemented in C++ with multithreading support for Pthreads and Intel
TBB on Linux and Solaris 10 platforms. Due to the data-level
parallelization of the workload, the performance scales well with the
number of available cores on a CPU.

N x
N x a k a k a k a k a k x

N x x
()

()(),
(),

=
− ′ + + + + ≥

− − <

⎧
⎨
⎩

1 0
1 0

1 2
2

3
3

4
4

5
5

k
x

a a a

=
+

=

= = − =

1
1

0

0 0 01 2 3

γ
γ, . ,

. , . ,

 2316419

31938153 356563782 1.. ,
. , .

781477937
1821255978 133 274429a a4 5 0= − =

Wei Wang studied Engineering at Cambridge. Wei currently
works in computer systems research, with interests in how
software stacks run on CPUs and interact with memory systems
and I/O. Over the past two+ years Wei has used C++ intensively
for building a computer system simulator for performance
evaluation. Wei can be contacted at w.wang.05@cantab.net
8 | Overload | August 2012

FEATUREWEI WANG

To run the multithreaded Black-Scholes
application efficiently on a multicore CPU,
the number of concurrent threads should

match the number of cores
The Black-Scholes equation takes seven input parameters, and computes
the option price. The function implements equation (1.1) and (1.2) with
calls to function D1D2 and CNDF (see Listing 3).
To run the multithreaded Black-Scholes application efficiently on a
multicore CPU, the number of concurrent threads should match the
number of cores to avoid unnecessary context switch, also use thread
affinity to avoid unnecessary threads migration among different cores, and
each thread should match its working sets size to the CPU cache and
memory hierarchy. For example, one option input data entry can fit in one
cache line of 64 bytes, a 64KB L1 cache can hold up to 1000 options, and
while a 2MB L2 cache can hold up to a portfolio of 32 sets of 1000 options.
As L1 access latency is a few (<10) cycles, L2 access latency is 10+ cycles,
while L3 is usually shared among cores with 40 cycles access latency, and
the off-chip memory takes more than 100 cycles to access, it makes sense
to match the data sizes with the cache and memory hierarchy.

Listing 1

typedef float fptype;

void D1D2(

 //inputs
 fptype spotprice,
 fptype strike,
 fptype rate,
 fptype volatility,
 fptype time,

 //outputs
 fptype* d1,
 fptype* d2)

{
 fptype xSqrtTime = sqrt(time);
 fptype logValues = log(spotprice/strike);
 fptype xPowerTerm = volatility * volatility;
 xPowerTerm = xPowerTerm * 0.5;

 fptype xD1 = rate + xPowerTerm;
 xD1 = xD1 * time;
 xD1 = xD1 + logValues;

 fptype xDen = volatility * xSqrtTime;
 xD1 = xD1/xDen;
 fptype xD2 = xD1 - xDen;

 *d1 = xD1;
 *d2 = xD2;
}

Listing 2

//Cumulative Normal Distribution Function
#define inv_sqrt_2xPI 0.39894228040143270286
fptype CNDF(fptype InputX)
{
 int sign;
 fptype OutputX;
 fptype xInput;
 fptype xNPrimeofX;
 fptype expValues;
 fptype xK2;
 fptype xK2_2, xK2_3;
 fptype xK2_4, xK2_5;
 fptype xLocal, xLocal_1;
 fptype xLocal_2, xLocal_3;
 //Check for negative value of InputX
 if (InputX<0.0){
 InputX=-InputX;
 sign=1;
 }else
 sign=0;
 xInput=InputX;

 // compute NPrimeX term common to both four &
 // six decimal accuracy calcs
 expValues = exp(-0.5f * InputX * InputX);
 xNPrimeofX = expValues;
 xNPrimeofX = xNPrimeofX * inv_sqrt_2xPI;
 xK2 = 0.2316419 * xInput;
 xK2 = 1.0 + xK2;
 xK2 = 1.0/xK2;
 xK2_2 = xK2 * xK2;
 xK2_3 = xK2_2 * xK2;
 xK2_4 = xK2_3 * xK2;
 xK2_5 = xK2_4 * xK2;
 xLocal_1 = xK2 * 0.319381530;
 xLocal_2 = xK2_2 * (-0.356563782);
 xLocal_3 = xK2_3 * 1.781477937;
 xLocal_2 = xLocal_2 + xLocal_3;
 xLocal_3 = xK2_4 * (-1.821255978);
 xLocal_2 = xLocal_2 + xLocal_3;
 xLocal_3 = xK2_5 * 1.330274429;
 xLocal_2 = xLocal_2 + xLocal_3;
 xLocal_1 = xLocal_2 + xLocal_1;
 xLocal = xLocal_1 * xNPrimeofX;
 xLocal = 1.0 – xLocal;
 OutputX=xLocal;
 if(sign){
 OutputX = 1.0 - OutputX;
 }
 return OutputX;
}

August 2012 | Overload | 9

FEATURE WEI WANG

the cumulative normal distribution function ...
can be approximated by a polynomial function
that gives six-decimal-place accuracy
FPGA based accelerators for financial applications
There are a few companies offering FPGA-based accelerators for
computing the Black-Scholes model and Monte-Carlo simulation for
pricing options, such as Celoxica [Morris07] and Maxeler [Richards11].
Celoxica had implemented FPGA based acceleration technologies for
European options pricing. They achieved 15 times speed-up over an
existing server at full precision and have similar performance to GPU and
Cell implementations as shown in the table below [Morris07]. The
accelerations achieved by FPGA, GPU and Cell BE are compared against
the fully optimized C++ implementation running on a PC with a single core
AMD 2.5GHz Opteron processor with 2 Gb of RAM and the Windows
2000 OS.
Table 1 shows a comparison of resource utilization, error and acceleration
for different implementations of European option benchmark. In the table,
LX/SX stands for two FPGA devices from the Xilinx Virtex 4 family, the
LX160 and the SX55. The FPGA clock rates and accelerations are given
for the LX device. Results indicated by * are estimates. The SX variant of
the Virtex 4 family is significantly richer in DSP blocks resources, at the
expense of fewer 4LUTS. The speed grade chosen for both devices was at
the same -10 speed grade.
The component implemented in the FPGA is the computation unit for
computing the following payoff equation (1.7). The computationally
intensive component of computing the payoff equation is the Gaussian
Random Number Generator, as Zn is generated by the Gaussian Random
Number Generator (GRNG). The other components other than the GRNG
for computing the above equation are just multipliers, adder, natural
exponent, subtractor, max and accumulator.

(1.7)
The payoff equation is implemented in HyperStreams that is built on the
Handel-C2 programming language. The data flow and the control flow of

the implementation are separated, the data flow is programmed using the
HyperStreams abstraction, and the control flow is programmed using
traditional Handel-C syntax. The designs were synthesized using Celoxica
DK5 and Xilinx ISE 9.1.
The block diagram in Figure 1 shows the portion of the European option-
pricing algorithm implemented on FPGA, noting the separation of control
and pipelined data flow. The parameters provided from the control flow
to the data flow are fixed constants during the computation of the above
equation and are therefore calculated in software.
As the FPGA designs are implemented in the high-level abstraction
Handel-C programming language rather than implemented in RTL, it’s not
a difficult task to implement the design in different flavours of floating
point and fixed point. Balancing the resource utilization, performance and
precision, the 32-bit fixed-point implementation offers the best results.
The 18-bit fixed-point implementation offers 146 times performance
acceleration but has 133 times worse precision compared to CPU as shown
in Table 1, the single floating-point implementation offers 41 times
acceleration but has 200 times downgrade on precision.
The power consumption and cost have not been taken into account when
comparing the performances of different implementations. The Handel-C
approach has a clear advantage on the time-to-market metric, as the five
different flavours of floating point and fixed-point implementations only
took two person days to implement. However, this approach doesn’t work
out-of-the-box with legacy C/C++ code base, which limits its potential.
Maxeler worked with J.P. Morgan Quantitative Research to accelerate
their tranche valuation [Richards11]. The base correlation with stochastic
recovery model is used to price and calculate risk for tranche-based
products, such as vanilla tranches, bespoke tranches, n-th to default and

Table 1

FPGA GPU Cell BE CPU

Floating point Fixed point
Single Double Single Double

Double Single 48bit 32bit 18bit

4LUTs 55925 27793 36183 15757 8850 - - - -

DSP blocks 124 31 83 48 12 - - - -

Cores (LX/SX) 1 / 0 3 / 1 1 / 1 2 / 3 8 / 5 unknown 16 32 1

Clock (MHz) 67 61 49 64 81 400 3200 3200 2500

Least2 error 2x10-5 4x10-3 8x10-5 8x10-5 6x10-3 4x10-3* 8x10-5* 4x10-3 8x10-5

Acceleration (x) 15 41 11 29 146 32* 5 29 1

max(, ())0 0
1

S e Kx Z

i

n
n+

=

−∑ σ

2. Handel-C is a programming language and is not a Hardware
Description Language (HDL) for compiling programs into hardware
images of FPGAs or ASICs. It is a rich subset of C, with non-standard
extensions to control hardware instantiation and parallelism.
10 | Overload | August 2012

FEATUREWEI WANG

Following the flow of data, the
model can be clearly divided into

three sequential blocks
CDO2. At its core, the model involves two key computationally intensive
loops of constructing 1) the conditional survival probabilities using a
Copula as shown in Equation (1.8) and 2) the probability of loss
distribution using convolution as shown in Figure 2. Inside the
convolution, FFT is used to evaluate the integral:

(1.8)
where gp is the conditional survival probability for this name, pi is the
unconditional survival probability for this name, ρ is the correlation and
M is the market factor.
The valuation of tranched CDOs can be expressed in flattened C code as
below after removing all use of classes, templates and other C++ features

in order to simplify parallelization. The Copula takes 23% of execution
time and the Convolution takes 75% of execution time in CPU. (Listing 4.)
After offloading the computation of Copula and Convolution onto the
FPGA from the CPU, a single FPGA prices a complex trade 134 times

Listing 3

//OptionPrice
fptype BlackScholes(fptype spotprice,
 fptype strike, fptype rate, fptype volatility,
 fptype time, int otype, float timet)
{
 fptype OptionPrice;
 fptype FutureValueX;
 fptype NofXd1;
 fptype NofXd2;
 fptype NegNofXd1;
 fptype NegNofXd2;
 fptype d1;
 fptype d2;

 //D1D2
 D1D2(spotprice, strike, rate, volatility,
 time, &d1, &d2);

 //CNDF
 NofXd1 = CNDF(d1);
 NofXd2 = CNDF(d2);

 //OP
 FutureValueX = strike * (exp(-(rate)*(time)));
 if (otype==0) {
 OptionPrice = (spotprice * NofXd1) -
 (FutureValueX * NofXd2);
 }else{
 NegNofXd1 = (1.0 - NofXd1);
 NegNofXd2 = (1.0 - NofXd2);
 OptionPrice = (FutureValueX * NegNofXd2) -
 (spotprice * NegNofXd1);
 }
 return OptionPrice;
}

g p N
N p M

ui
i

ρ

ρ

ρ
,() = () −

−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1

1

Figure 1

Figure 2
August 2012 | Overload | 11

FEATURE WEI WANG

Derivatives pricing is at the core of financial
trading and risk management
faster than a single CPU. As a result, end-to-end time to price global credit
hybrids portfolio once reduced to ~125 seconds with pure FPGA time of
~2 seconds to price ~30,000 tranches and total compute time of ~30
seconds. End-to-end time for pointwise credit deltas on global credit
hybrids portfolio reduced to ~238 seconds with pure FPGA time of ~12
seconds, using a 40-node FPGA machine. End-to-end time to run multiple
trading/risk scenarios for desk reduced to ~320 seconds with results
accurate to within $5 across global portfolio, while it’s not previously
possible to run such scenarios multiple times within a single trading day.
In addition to acceleration, the FPGA based solutions have predictable
performance for computation and data I/O, as FPGAs are statically
scheduled and with no cache involved. However, JPMorgan took a 20%
stake in Maxeler, which potentially limits its adoption in other financial
institutions.

FPGA based high performance computing
for financial applications
Tandon [Tandon03] completed a Master’s Thesis on A Programmable
Architecture for Real-Time Derivative Trading, which he implements the
Black-Scholes European Option Pricing model on FPGA, simulated ARM
processor and Mathematica, which is used as the reference platform, and
compares their performance acceleration and accuracy. The results are
shown in Table 2.
In Table 2, time per iteration means the time used to compute either a call
or put option price using the Black-Scholes model given a set of input data.
The Reference Mathematica test is conducted on Mathematica 5.0 on an
Intel Pentium 4 processor at 2.53 GHz. The Black-Scholes model is
implemented in Mathematica using some of its library functions that are
assumed to have suitable optimizations or approximations. Floating point

is used in this implementation, but the thesis doesn’t tell whether it being
single or double floating point. The simulated ARM processor is done on
a simulated ARM7TDMI processor running at 200MHz, the Black-
Scholes model is implemented in ANSI-C with floating point and targets
towards an ARM7 processor. The simulated ARM7TDMI simulates all
floating-point computations within the processor itself rather than having
a dedicated floating-point unit. The FPGA based implementation coded in
VHDL3 has not been synthesized successfully due to it being a purely
floating-point computation and the IEEE math library that is used for the
floating-point computations is designed for simulation only. However,
modifications have been made to the design to make it integer based, the
performance numbers are drawn from the integer-based implementation
of the Black-Scholes model on a Virtex-II Pro FPGA. The 50ns time per
iteration number shown in the table, however, is not measured from real
experimental hardware rather it is an estimated number inferred from the
synthesis report of the design. The downgrade from floating point to
integer-based implementation significantly undermines the accuracy.
The challenges faced in the Black-Scholes model FPGA implementation
using floating point in the thesis however points out that a fixed-point
implementation of the Black-Scholes model on FPGA is more favourable
considering the manpower required to implemented the floating-point
capability and the accuracy tradeoff between floating point and fixed point.
It is also pointed out that financial models are very heavily dependent on
calculus, probability, statistics and other branches of Mathematics, a logic
library which has RTL implementations of some fundamental
mathematical functions would be very useful, such as, integration, higher
order derivation, random number generation, statistical and stochastic
modelling, vector calculus, trigonometric functions and logarithmic
functions. Although the idea is constructive for putting more financial
models on FPGAs easily, it should be noted that integration is not
necessary for calculating cumulative normal distribution function in the
Black-Scholes model, as a polynomial approximation that gives six-
decimal-place accuracy is given in [Hull06].

Black-Scholes hardware design
The Black-Scholes model can be similarly implemented in three hardware
modules: D1D2, CNDF and OptionPrice, as shown in Figure 3. D1D2
module computes Equations (1.3) and (1.4); it takes five data inputs and

Listing 4

for i in 0 ... markets-1
 for j in 0 ... names-1
 prob = cum_norm((inv_norm(Q[j])
 -sqrt(p)M)/sqrt(1-p);
 loss = calc_loss(prob,Q2[j],
 RR[j],RM[j])*notional[j];
 n = integer(loss);
 L = fractional(loss);
 for k in 0 ... bins-1
 if j == 0
 dist[k] = k == 0 ? 1.0 : 0.0;

 dist[k] = dist[k]*(1-prob) +
 dist[k-n]*prob*(1-L) +
 dist[k-n-1]*prob*L;
 ifj==credits -1
 final_dist[k] += weight[i] * dist[k];
 end # for k
 end # for j
end # for i

3. VHSIC Hardware Description Language

Table 2

Experiment platform
Time per
iteration

Accuracy

Mathematica -Reference 15.625 μs Very high

Simulated ARM processor 170 μs High

Reconfigurable logic 50 ns Medium high
12 | Overload | August 2012

FEATUREWEI WANG

The downgrade from floating point to
integer-based implementation

significantly undermines the accuracy
then feed the two outputs to the two parallel CNDF modules. CNDF
(Cumulative Normal Distribution function) module computes Equation
(1.5) and (1.6); it takes the input from D1D2 and feeds the output to
OptionPrice module. OptionPrice computes Equation (1.1) and (1.2); it
takes four data inputs, one option type control signal and two data feeds
from CNDF modules, the module gives the price of the option as the
output. The implementation takes 25 clock cycles to compute the option
price based on the five data inputs and one option type control input, with
each arithmetic unit taking only one cycle to compute for simplicity4. The
data path resource utilization and the time delay of each module are
summarized in Table 3.
The resource utilization count assumes each hardware arithmetic unit is
shared among D1D2, CNDF and OptionPrice blocks where possible. In a

fully pipelined implementation, we would see at the bottom row the sum
of each column rather than the maximum of each column, for example, in
column +, it would be three + hardware arithmetic units rather than one
unit to be needed for the implementation. The clock cycle count can be seen
visually in the block diagrams as shown in Figure 4, Figure 5, Figure 6,
each horizontal level represents one cycle delay.
In the following sections, the implementation details of D1D2, CNDF and
OptionPrice blocks are explained.

D1D2 block design
This block takes 7 cycles to execute, it has 1 add unit, 1 subtract unit, 2
multiply units, 1 divide unit, 1 square root unit and 1 logarithm unit, as
shown in Figure 4. The inputs to the block are spot price, strike price, time
to mature, volatility and interest rate, which are shown on the top of Figure
4, and the outputs of the block are d1 and d2, which are shown at the bottom
of Figure 4. The input from the right of the block diagram is the control
signal to the data path; it is a constant in this case.

CNDF block design
This block takes 12 cycles to execute, it has 1 add unit, 1 subtract unit, 3
multiply units, 1 divide unit, 1 exponential unit, as shown in Figure 5. The
inputs on the top of the block diagram are inputs to the module and the
outputs at the bottom of the block diagram are the outputs of the module.
The inputs from the right of the diagram are control signals to the data path.

OptionPrice block design
This block takes 6 cycles to execute, it has 1 add unit, 1 subtract unit, 2
multiply units and 1exponential unit as shown in Figure 6. The inputs on
the top of the diagram are inputs to the module and the outputs at the bottom

4. The one cycle implementation is not area efficient and cost effective,
the more complex arithmetic units, such as divide, square root, and
logarithm and exponential, take more than 20 cycles to compute in
practice.

Figure 3

Table 3

Arithmetic Unit

+ − × ÷ √ ex ln(x) Cycles

D1D2 1 1 2 1 1 0 1 7

CNDF 1 1 3 1 0 1 0 12

OptionPrice 1 1 2 0 0 1 0 6

BlackScholes 1 1 3 1 1 1 1 25
August 2012 | Overload | 13

FEATURE WEI WANG
of the diagram are the outputs of the module. The inputs from the right of
the diagram are control signals to the data path.

Black-Scholes hardware implementation
The hardware implementation is based on single precision floating point,
as the baseline implementation in PARSEC is in single precision floating
point. The decision to implement the model whether in single-precision
floating point or 32-bit/18-bit fixed point depends on the efforts to
implement, the logic resource requirement, and the speed of acceleration
and the accuracy. The floating-point arithmetic units make use of the
components from the Synopsys DesignWare floating-point datapath
library [Synopsys] and the Synopsys Synplify Premier 2010.09 for FPGA
implementation. DesignWare floating-point library contains all the
components needed to implement the floating point arithmetic functions
of +, -, *, /, sqrt, exp and ln in the Black-Scholes model. The Synopsys
DesignWare library is optimized for ASIC implementation rather than
FPGA, though the design efforts are minimal, the area of the design is huge
when synthesized to FPGA.

An area optimized floating point library of square root, logarithm and
exponential components was later developed specifically for FPGA, which
showed significant improvements in implementation area and fits the
whole design onto a tiny Xilinx Spartan 3A FPGA as shown in Table 4.
The Add/Sub/Mult/Div uses the Xilinx floating-point operators. The
square root and logarithm are implemented CORDIC rolled
[Wikipedia11], while the exponential is implemented using table lookup.

Figure 4

Figure 5

Table 4

 4-input LUTs MULT BRAM (Kbit) Clock freq (MHz) Clock cycle Throughput (KFLOPS)

Original 34747 (295%) 20 90.11 (5 blocks) 8.2 25 328

New 10228 (86%) 20 92.16 (5 blocks) 58.54 277 211
14 | Overload | August 2012

FEATUREWEI WANG
Conclusion
Derivatives pricing is at the core of financial trading and risk management.
As shown in [Richards11], FPGA offers the opportunity for real-time risk
visibility to monitoring and controlling financial risk of complex
derivatives that are not possible on CPUs.
The intention for this article is to show software engineers how an
algorithm can be implemented in software and hardware. As each
arithmetic unit matches to a hardware component, so the software
implementation is intentionally coded like how it should be implemented
in hardware. The idea is that it should be very easy to match the hardware
block diagrams to the corresponding software function implementations.
The Black-Scholes model serves as a baseline of all financial models for
pricing derivatives, most of these financial models rely on the same
floating point computations of the seven basic arithmetic operations: add,
subtract, multiply, divide, square root, logarithm and exponential. The
intention is that it should be very easy to move from Black-Scholes to
another financial model, such as HJM for pricing swaptions or base
correlation with stochastic recovery for pricing tranches.

References
[Bienia11] Christian Bienia, Benchmarking Modern Multiprocessors,

Princeton University, New Jersey, PhD Thesis 2011.
[Hull06] John C. Hull, Options, futures and other derivatives, 6th ed. New

Jersey, U.S.A: Prentice-Hall, 2006, pp. 295-298.

[Morris07] Gareth W. Morris and Matt Aubury, ‘Design Space
Exploration of the European Option Benchmark Using
HyperStreams’ in Field Programmable Logic and Applications
(FPL), 2007., Amsterdam, 2007, pp. 5-10.

[PARSEC] Source code available at: http://parsec.cs.princeton.edu/
[Richards11] Peter Richards and Stephen Weston. (2011, May) Stanford

EE Computer Systems Colloquium.[Online].
http://www.stanford.edu/class/ee380/Abstracts/110511.html

[Synopsys] Synopsys Inc. ‘Datapath – Floating Point Overview.’
[Tandon03] Sachin Tandon, A Programmable Architecture for Real-Time

Derivative Trading, Computer Science, University of Edinburgh,
Edinburgh, MSc Thesis 2003.

[Wikipedia11] Wikipedia. (2011, Feb) http://en.wikipedia.org/wiki/
CORDIC.

Figure 6
August 2012 | Overload | 15

http://parsec.cs.princeton.edu/
http://www.stanford.edu/class/ee380/Abstracts/110511.html
http://en.wikipedia.org/wiki/CORDIC.
http://en.wikipedia.org/wiki/CORDIC.

FEATURE SERGEY IGNATCHENKO
Replace User, Strike Any Key?
There is a common perception in the IT industry that
the user is the primary source of all the problems.
Sergey Ignatchenko asks if this is true.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Bunny, and do not necessarily coincide with opinions of the
translator or Overload editors; please also keep in mind that translation
difficulties from Lapine (like those described in [Loganberry2004]) might
have prevented from providing an exact translation. In addition, both
translator and Overload expressly disclaim all responsibility from any
action or inaction resulting from reading this article.

Our jobs would be so much easier
 if it weren’t for all those pesky users.

~ [ComputerWeekly2010]

here is a common perception in IT industry that user is the primary
source of all the problems. In a sense, it is true: if not for users, there
wouldn’t be any IT jobs, and therefore won’t be any IT problems; I

am not sure though if this is what IT professionals should really want.
While having too many problems on the job is not that good, having one
single problem of ‘how to find the job’ is IMNSHO a significantly worse
alternative.
The question of relations between users and developers has already been
touched in [NoBugs2011], which establishes that it is the user who has the
upper hand in the user-developer relationship, and that it is responsibility
of developer to make the user happy. This article aims to analyze the
problem in more detail and from different angles.

There is always somebody else to blame
Nihil humani a me alienum puto

(Nothing human can be alien to me)
~ Publius Terentius Afer, 2nd century BC

First of all, let’s start with a trivial observation: rabbits (as well as people)
in general are rarely willing to admit their own mistakes; one very good
book on this subject is [MistakesWereMade]. Here we will not go into
details of this phenomenon, but will merely admit that IT professionals
(including us, developers), are still human (or sometimes rabbit) beings,
and therefore we have a natural tendency to blame the others for our own
mistakes. In the case when we didn’t expect that the user will press that
specific button in that specific situation, it is very natural to shout ‘You
need to be an idiot to <place whatever we didn’t expect user to do here>!!!’
In fact, the tradition of blaming users for whatever happens to what we’ve
made, is not specific to IT. For example, famous Murphy’s Law has
originated when Edward Murphy blamed a technician from MX981 team
for incorrectly connecting sensors for the system Murphy designed
[HistoryOfMurphysLaw]; it obviously didn’t cross Murphy’s mind (at
least not at that time) that a robust system should have connectors which

don’t allow for incorrect connection. This tradition of blaming users for
our own mistakes has flourished in IT world.

On reasonable expectations
If I ordered a general to fly from one flower to another like a
butterfly, … and if the general did not carry out the order that

he had received, which one of us would be in the wrong? …
The general, or myself?

~ Antoine de Saint-Exupéry,
The Little Prince

One huge mistake developers (and even business analysts) tend to make,
is that they expect users to behave rationally at all times. Nothing could
possibly be further from reality. From time to time, everybody is entitled
to make a mistake; and users are entitled to make them much more often
than developers, because usually it is users who’re paying.
Even if developer is right 99% of the time, he’s still wrong in 1% of cases.
This means that even if users make the same percentage of mistakes (which
is, as explained above, a very optimistic estimate), and if your application
has 1 million users making 100 operations per day each, you’ll still get 1
million mistakes per day made by users. Among those mistakes, most will
be trivial, but given the sheer volume of attempts, users will almost
certainly try pretty much every erroneous scenario, including those we
have not thought about. Who is here to blame? IT tradition assumes that
‘it is those stupid users’; users (sometimes joined by management) tend to
say ‘it is those idiot developers’. In this debate, we take the third position:
we say that the blame is on those rabbits who expected that under the
circumstances, mistakes (on both sides) won’t happen.
Whenever a system of this scale is first launched, it is reasonable to expect
that some of erroneous scenarios won’t be covered in original release, and
to be prepared to identify problems and to fix them within reasonable (for
the users, not for the developers) time frame. Still, while expecting flawless
programs from the very beginning is not exactly reasonable, it is important
to realize that while some bugs are inevitable, they still are bugs (and not
users fault), and therefore must be fixed.
In addition, it should be noted that in many cases, mistakes are direct result
of the fact that developers and users have very different perspectives of
the software, which results in miscommunications. We feel that it is the
developer’s responsibility at least to try to look at the program from user’s
point of view, which leads us to...

Trying on the user’s hat
He that increaseth knowledge increaseth sorrow.

~ Ecclesiastes, 1. 18

Another important thing for the developer is understanding how users will
use the program. And here developers tend to have major problems. In
[NoBugs2011] it has been noted that developers are notoriously bad in
creating UIs; here we will elaborate on it.
In fact, it seems that developers are not only bad in creating UIs, but are
also bad in any task which needs the programmer to put on the user’s shoes.

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 12+ years of industry experience, and
recently has started an uphill battle against common wisdoms in
programming and project management. He can be contacted at
si@bluewhalesoftware.com
16 | Overload | August 2012

FEATURESERGEY IGNATCHENKO

One should never ever try to formalize things
at a level which one doesn’t understand
So, we asked ourselves: is it due to developers being inherently different
or because of them already being involved with the project in another role?
To find it out, we’ve tried a small-scale experiment with a few of our fellow
rabbits. We asked the very same developers who were notorious for
creating pretty bad UIs, to design UI for a project where developers were
not involved. The result was rather obvious (though due to small scale it
is unclear if it is statistically significant, and further research is suggested):
the very same rabbits who designed bad UIs when they were involved as
developers, created very decent UIs when they were designing UIs while
being completely in user’s shoes, in particular, not being involved in the
project in any other way, and without any knowledge about
implementation.
If further research will confirm this hypothesis, it will mean that it is
knowledge about system implementation which causes developers to fail
to look at things from user’s perspective. It calls for creating a separate
team of business analysts (BAs); while this practice is already rather
common in the industry, what is new is that our research suggests that the
same rabbit might be able to work both as a developer and as a BA, as long
as her work as a developer and as BA occurs only in completely separate
projects.

EU cookie directive
The road to hell is paved with good intentions

~ proverb

For a long time we thought that developers were the worst rabbits to design
UIs. Recently, we’ve found there are rabbits out there who can do even
worse, and they are bureaucrats. One recent example is an infamous EU
Cookie Directive (strict name is ‘Directive on Privacy and Electronic
Communications’, but here we will be dealing with one aspect of it, namely
with websites being required to ask consent of users before storing a cookie
on users’ computers ([2009/136/EC], [ICOGuidance])).
This whole document (as well as preceding directive 2002/22/EC) is based

on fatal lack of understanding of
underlying technologies, while
attempting to regulate those

technologies directly. What
this will lead to, we
will analyze now.

Without going into details of legaleze in the related documents, what it
essentially required from web sites (in UK – starting from May 2012), is
to ask user confirmation before ‘storing’ a cookie on an end-user’s
computer. While obviously well-intended (the idea was to protect users’
privacy), both proposed requirements and their interpretations are fatally
flawed. Essentially, what is required is to ask a user before site placing any
cookie; many sites have already started changing UIs just to comply with
the directive. What will happen when enough sites implement it, is
obvious: when users will get used to such requests (usually phrased as ‘to
access this site, you need to enable cookies, please confirm <yes>/<no>’),
users will start pressing ‘Yes, I want a cookie’ button every time they see
it. This phenomenon (known as capture errors) is well-known in security
industry (see, for example, [SecurityEngineering], section 2.3.1), and is
clearly unavoidable here. As soon as it happens, the whole point of
directive would be lost, and it will merely create a nuisance for users,
without any perceivable benefit.
This is not the only problem with the directive. Whoever made it, has tried
to think about it a bit further; unfortunately, without understanding
technology involved, an attempt to formalize requirements at technology
level has had an exactly opposite effect. The directive provides for an
exemption for ‘where such storage or access is strictly necessary for the
provision of an information society service requested by the subscriber or
user’. Once again, intentions were good. Unfortunately, ‘strictly
necessary’ wording makes it perfectly useless (and actually, even worse
than that, as described below). As we know, strictly speaking, cookies are
never ‘strictly necessary’ (this is because you can always, for example, put
all information you need, into dynamic URL; it is a major hassle, but it is
still possible, therefore alternatives are not ‘strictly necessary’). Now
things begin to become even worse. The Information Commissioner’s
Office has provided an interpretation of the EU directive, where ‘strictly
necessary’ is not really ‘strictly’ necessary, but ‘essential, rather than
reasonably necessary’ [ICOGuidance]; here ‘strictly necessary’ has
degraded to ‘essential’ (which is still not exactly defined). What this
travesty means in practice, is that those who will interpret it on a cautious
side, will still ask for a confirmation, and will annoy their users, losing
business and money; and those who don’t care about privacy at all, will
improve their business even further. The whole result seems to be an exact
opposite of good intentions behind the directive.
One should never ever try to formalize things at a level which one doesn’t
understand. To do a reasonably good job, members of the European
parliament have had two options: a) to specify privacy requirements
without going into this level of details, and avoiding reference to specific
technologies (admittedly, they’ve tried to, but level of requirements
they’ve chosen, was apparently still too low), or b) to understand how
cookies really work, and to take several less drastic and more reasonable
measures, including, probably, a prohibition on third-party cookies (which
is where most privacy leaks reside). In fact, members of European
parliament have decided to take a middle ground between these two
options, which (as we’ve seen above) has failed miserably.
August 2012 | Overload | 17

FEATURE SERGEY IGNATCHENKO

any decision should belong to the one who
is in better position to make it, and very
often it is the developer who has a better
understanding of the issue in hand
Options: why more is less
Carving is easy, you just go down to the skin and stop.

~ Michelangelo

A designer knows he has achieved perfection not when there is
nothing left to add, but when there is nothing left to take away.

~ Antoine de Saint-Exupéry

Actually, there is one thing useful about EU Cookie Directive: it shows us
that shifting responsibility to the user is not always a good thing. In fact,
it is rarely a good thing. Obviously, for a developer it is always very
convenient, if he has any doubts, just not to make any decisions, and
provide user with an option, to shift responsibility from developer to the
user.
In practice, such ‘passing the buck’ is often not a good idea for one simple
reason: because any decision should belong to the one who is in better
position to make it, and very often it is the developer who has a better
understanding of the issue in hand. This is especially true when we’re
speaking about technical side of the program: asking user questions ‘what
do you want to pay for’ is clearly a user question, but asking ‘how much
cache do you want to use for this program’ is a developer question, whether
we like it or not. In addition, shifting responsibility to user contributes to
anxiety of customers related to having too many choices (for details, see
[ParadoxOfChoice] book).
Still, developers often ‘pass the buck’ merely because they don’t want any
responsibility (with a common argument being ‘I’ve already provided you
with all the options, what else do you want?’). Unfortunately, this tendency
is often aggravated by pressure from users (usually via managers) who are
asking for slightly different things, usually for no really
good reason), Here we should to point out that all
modern programming languages are Turing-
complete, and therefore are able to do absolutely
everything (out of tasks which can be
possibly done). It means that any
program is essentially a process of
reducing this ability to do absolutely
everything into an abi l i ty to do
something useful. Paraphrasing the
famous quote of Michelangelo about
carving, we can say ‘Programming is
easy, you just keep restricting user
choices until you get what user really
needs and stop’.

References
[2009/136/EC] DIRECTIVE 2009/136/EC OF THE EUROPEAN

PARLIAMENT AND OF THE COUNCIL of 25 November 2009
amending Directive 2002/22/EC on universal service and users’
rights relating to electronic communications networks and services,
Directive 2002/58/EC concerning the processing of personal data
and the protection of privacy in the electronic communications sector
and Regulation (EC) No 2006/2004 on cooperation between national
authorities responsible for the enforcement of consumer protection
laws

[ComputerWeekly2010] Users remain the weakest link in the IT security
chain http://www.computerweekly.com/blogs/editors-blog/2010/03/
users-remain-the-weakest-link.html

[HistoryOfMurphysLaw] A History of Murphy’s Law Nick T. Spark,
2006

[ICOGuidance] Guidance on the rules on use of cookies and similar
technologies, Information Commissioner’s Office

[Loganberry2004] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[MistakesWereMade] Mistakes Were Made (But Not by Me): Why We
Justify Foolish Beliefs, Bad Decisions, and Hurtful Acts Carol
Tavris, Elliot Aronson, 2007

[NoBugs2011] The Guy We’re All Working For , Overload #103
[ParadoxOfChoice] The Paradox of Choice: Why More Is Less Barry

Schwarz, 2004
[SecurityEngineering] Security Engineering 2nd Edition, Ross Anderson,

2008
18 | Overload | August 2012

http://www.computerweekly.com/blogs/editors-blog/2010/03/users-remain-the-weakest-link.html
http://www.computerweekly.com/blogs/editors-blog/2010/03/users-remain-the-weakest-link.html

FEATUREMICHAEL RÜEGG
Simple Mock Objects for C++11
New C++11 features can be used to implement
mock objects for unit tests. Michael Rüegg shows us
how he does this in Mockator.
n our last article ‘Refactoring Towards Seams in C++’ (appeared in
issue 108), we described how we can break dependencies in legacy code
by applying seams with the help of our engineered refactorings. Once

we have managed to apply seams, our code is not relying on fixed
dependencies anymore, but instead asks for collaborators through
dependency injection. Not only has our design greatly improved, but we
are now also able to write unit tests for our code.
Sometimes it is impractical or impossible to exercise our code with real
objects. If a real object supplies non-deterministic results, is slow or
contains states that are difficult to create, then we might want to use mock
objects to test our objects in isolation. In this article we present how we
can mock objects by creating a small but useful mock object library that
makes use of the new language features of C++11.

How to mock objects
To start with an example, consider the system under test (SUT) Trader
shown in Listing 1. Trader has a fixed relationship to Nasdaq which
makes it hard to test in isolation because its operations require network
calls which we do want to avoid when we run our unit tests. Nasdaq is
therefore a good candidate to be replaced with a mock object.
One of the many possibilities in C++ to inject dependencies from outside
is to extract a template parameter and to inject the dependency at compile
time making use of parametric polymorphism. We therefore call this seam
type compile seam. After applying the refactoring extract template
parameter, the code results as shown in Listing 2.
This code has a seam because we now have an enabling point: the place
where the template class TraderT is instantiated. Note that we create a
typedef which instantiates the template with the concrete type that has
been used before applying the refactoring (here through the use of a default
template parameter). This has the advantage that we do not break existing
code that still wants to use Nasdaq.

We now give a complete example of how we think mocking objects should
be done in C++ and explain the internals of our approach in the subsequent
sections of this article. We apply the classic unit test work flow proposed
by the XUNIT pattern [Meszaros07] in Listing 3: setup, exercise, verify and
teardown (whereas the latter is not necessary here).
We use the vector allCalls to register all function calls the SUT makes
on the injected local class MockExchange. It needs to be defined static
because of the shortcomings local classes still have with C++11. We create
the vector initially with a size of one. Index 0 is reserved for calls of static
member functions on the mock object. Note that every mock object has a
mock ID which is used to access the calls made by the SUT on a specific
instance of the mock object class. In the registrations of the function calls,
we use this to store the call for the corresponding mock object instance.
Also note the usage of C++11’s new initialiser lists for specifying our
expectations. At the end of our example, we assert the calls made with the
index 1 (we only have one instance of MockExchange) with our
expectations.
We think it is worthwhile to have the code for the mock object in the unit
test without hiding it behind DSL’s built up of macros as other mock object
libraries do. This yields more transparency and exploits the full power of
the host language when the library does not provide a desired feature.
Furthermore, we circumvent the numerous problems that come with the
application of macros.

I

Listing 1

#include "nasdaq.h"
struct Trader {
 void stopLoss(std::string symbol,
 unsigned int amount,
 Price lowerLimit) {
 Share share = exchange.lookupBy(symbol);
 // causes network call
 Price currPrice = share.currentPrice();
 if (currPrice < lowerLimit)
 exchange.sell(share, amount);
 // dito
 }
 }
private:
 Nasdaq exchange;
};

Listing 2

#include "nasdaq.h"
template<typename STOCKEXCHANGE=Nasdaq>
struct TraderT {
 void stopLoss(std::string symbol,
 unsigned int amount, Price lowerLimit) {
 // as before
 }
private:
 STOCKEXCHANGE exchange;
};
typedef TraderT<> Trader;

Michael Rüegg is a scientific assistant at the Institute for
Software of University of Applied Sciences Rapperswil. Mockator
was the result of his master’s thesis under the supervision of Prof.
Peter Sommerlad.

A seam is a place in the code where we can alter behaviour without being
forced to edit it in that place [Feathers04]. Every seam has one important
property: an enabling point. This is the place where we can choose
between one behaviour or another. There are different kinds of seam
types. C++ supports object, compile, preprocessor and link seams.

What is a seam?
August 2012 | Overload | 19

FEATURE MICHAEL RÜEGG

An important part of a mock object
implementation is the recognition of the
function calls the SUT makes on the mock
object while a unit test runs
In the classic mock object approach the unit test does not exercise any
assertions. This is entirely handled by the mock object which – when called
during SUT execution – compares the actual arguments received with the
expected arguments using equality assertions and fails the test if they do
not match. We have decided against this common approach and exercise
the assertions in the unit test itself because we want to be independent of
the underlying unit testing framework. We therefore do not assert for
equality in the mock object member functions, but instead compare the
string traces in the unit test. Also note that our comparisons are order-
sensitive and therefore we use strict mock objects [Meszaros07].

How to record function calls
An important part of a mock object implementation is the recognition of
the function calls the SUT makes on the mock object while a unit test runs.

Beside the sequence and number of calls, we are also often interested in
their argument values. We therefore have to store these facts to be able to
later compare the calls with the users expectations.
We use an abstraction named call for this purpose which represents a call
of a function. Its basic functionality is shown in Listing 4. A function call
consists of the signature of the function and its argument values. Because
we have to allow arguments of any type, we use a template parameter for
the arguments in the constructor of call. Due to the fact that we do not
want to restrict the number of arguments, we use a variadic template
parameter pack.
The constructor of call uses the variadic template member function
record to recursively process the arguments of the function call.
record(Head const&, Tail const&) is used as the recursion step
whereas record() handles the basic case of the recursion. Note the use
of template parameter unpacking in the sizeof call to separate the
argument values with commas and for the recursive call in record.
call uses a std::string object to store the function signature and the
argument values. This is used to remember the values of any possible

Listing 3

#include "mockobjects.h"
#include <cassert>
void
test_sell_shares_when_current_price_below_stop_los
s_limit() {
 // setup
 static std::vector<calls> allCalls{1};
 struct MockExchange {
 MockExchange() :
 mockid{reserveNextCallId(allCalls)} {
 allCalls[mockid].pushback
 (call{"MockExchange()"});
 }
 Share lookupBy(std::string symbol) {
 allCalls[mockid].pushback
 (call{"lookupBy(std::string)", symbol});
 return {Share{symbol, Price{29}};
 }
 void sell(Share share, unsigned int amount) {
 allCalls[mockid].pushback
 (call{"sell(Share, unsigned int)",
 share, amount});
 }
 const size_t mockid;
 };
 // exercise
 TraderT<MockExchange> trader;
 trader.stopLoss("FB", 1000000, Price{30});
 // verify
 calls expected = {
 {"MockExchange()"},
 {"lookupBy(std::string)", "FB"},
 {"sell(Share, unsigned int)", "FB", 1000000}
 };
 assert(expected == allCalls[1]);
}

Listing 4

// mockobjects.h
#include <sstream>
#include <vector>
struct call {
 template<typename ...Param>
 call(std::string const& funSig,
 Param const& ...params) {
 record(funSig, params ...);
 }
 template<typename Head, typename ...Tail>
 void record(Head const& head,
 Tail const& ...tail) {
 std::ostringstream oss;
 toStream(oss, head);
 if (sizeof...(tail)) {
 oss « ",";
 }
 trace.append(oss.str());
 record(tail ...);
 }
 void record() { }
 std::string trace;
};
typedef std::vector<call> calls;

Local classes are still not first-class citizens even in C++11. Declarations
in local classes can only use type names, static and external variables,
functions and enums from their enclosing scope. Access to automatic
variables is therefore prohibited [ISO/IEC11]. Furthermore, they are also
not allowed to have static and template members.

Local classes: 2nd class citizens in the C++ world
20 | Overload | August 2012

FEATUREMICHAEL RÜEGG
argument type and to give the user as much information as possible when
a comparison fails. Also note the typedef calls which we use to store
the calls on an instance of a mock object class.

Requirements on function parameter types
To store the argument values in a string, we expect that types used for the
function arguments implement a corresponding operator(ostream&,
Type). To prevent cryptic compiler errors if this is not the case, we use
some template meta programming tricks taken from the Boost exception
library. The interested reader might want to have a look at the file
is_output_streamable.hpp in a recent Boost library version to see
how this works. This is done in the function toStream which delegates
the work of using the stream output operator in case it is defined and
otherwise writing a message into the stream to inform the user about the
missing operator.
 template<typename T>
 std::ostream& toStream(std::ostream& os,
 T const& t) {
 selectbuiltinshiftif<T,
 isoutputstreamable<T>::value> out(os);
 return out(t);
 }

Specifying expectations with initialiser lists
When unit testing our objects, we want to compare a list of function calls
against our expectations. We use initialiser lists for specifying
expectations the SUT has to fulfil. Note that C++ always allowed
initialisation of plain old data (POD) types and arrays with initialiser lists,
i.e., to give a list of arguments in curly brackets. But it was not possible
in the old standard to use initialiser lists with regular (non-POD) classes.
This has changed with C++11 where we are now able to instantiate regular
classes with initialiser lists. This can be seen here with our calls vector.
 calls expected = {
 {"foo(int i)", 42},
 {"bar(char c)", 'x'},
 {"foo(std::string s, double d)",
 "mockator", 3.1415}
 };

In order to make comparisons work between the actual executed calls of
the SUT on the mock object and our expectations, we have to provide an
equality operator for call. operator== just delegates the work to the
equality operator of std::string to compare the traced function call.
To allow unit testing frameworks to print a string representation of the
object under consideration if a comparison fails, we also provide a stream
operator for call.

 bool operator==(call const& lhs,
 call const& rhs) {
 return lhs.trace == rhs.trace;
 }
 std::ostream& operator«(std::ostream& os,
 call const& c) {
 return os « c.trace;
 }

Another important thing to explain is the function reserveNextCallId
applied in Listing 3. This function is used to initialise the ID of the mock
object and to add another call vector to the allCalls vector which
collects all calls made on all instances of the mock object class. Its
implementation is:
 size_t reserveNextCallId
 (std::vector<calls> &allCalls) {
 size_t counter = allCalls.size();
 allCalls.pushback(calls{});
 return counter;
 }

Reference implementation
Based on the mock object library discussed in this article, we have
implemented Mockator. Mockator is a plug-in for the Eclipse C/C++
Development Tooling (CDT) platform including a header-only C++ based
mock object library. The library also supports order-independent
comparisons, the use of regular expressions in the expectations, nice string
representations for easier comparisons of STL containers when used as
function arguments and C++03 beside C++11.
Because common mock object libraries often lack good IDE support, we
implemented a plug-in for Eclipse CDT that – beside its support for seams
presented in the foregoing article –recognises missing member functions
the SUT calls on the mock object and is able to generate them including
the presented call registrations. It is able to generate code for both C++
standards and not only supports the common mock objects based on
inhertiance, but also ones based on parametric polymorphism.
We recognised that it is often beneficial to just mock a single function
instead of extracting an interface or a template parameter for classes.
Therefore, we also implemented mocking of functions. Additionally, we
provide various convenience functions to make working with mock
objects easier like moving them to a namespace (useful if the unit test gets
too big because of the mock object code and to share mock objects between
unit tests), converting fake to mock objects, toggling the call recording on
a member function level and recognising inconsistent expectations. The
interested reader can download Mockator and give it a try. It is available
as an alpha version under [Rüegg12].

References
[Feathers04] Working Effectively With Legacy Code, Michael C. Feathers

2004
[ISO/IEC11] Working Draft, Standard for Programming Language C++,

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/
n3242.pdf, February 2011

[Meszaros07] Gerard Meszaros, Unit Test Patterns: Refactoring Test
Code, Addison-Wesley 2007

[Rüegg12] Michael Rüegg, ‘Mockator’, available from
http://www.mockator.com, 2012

Variadic templates – introduced with C++11 – basically address two
limitations we have with the old C++ standard: the impossibility to
instantiate class and function templates with arbitrary long parameter
lists and to pass any number of arguments to a function in a type-safe
manner. The ellipsis used on the left side of the parameter in variadic
templates denote a so called template parameter pack which groups
zero or more template arguments. The inverse action of packing is called
unpacking and is applied when the ... operator is used on the right side
of a template or function call argument. Variadic templates are often used
in combination with recursion which we also apply in this article.

What are variadic templates?
August 2012 | Overload | 21

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.mockator.com

FEATURE FRANCES BUONTEMPO
Large Objects and Iterator Blocks
Arrays can cause memory issues in .Net.
Frances Buontempo shows how iterator blocks
can help to relieve the pressure.
 is a garbage collected language. This allows you to create new
objects at will, and the garbage collector will clear them up as
and when needed. Despite this, out of memory errors seem to

be frighteningly common in some large scale C# applications I have come
across. It isn’t just me: Stackoverflow [SO] gives nearly 3,000 questions
related to C# and ‘out of memory’. How is this possible, given the hype
about automatic memory management through the garbage collector?
Previous articles [Overload63] have dealt with the IDISPOSABLE pattern,
with reference to avoiding leaks. This article will instead focus on objects
that are likely to make it to the large object heap and therefore probably
persist for the lifetime of an application. Let us begin with a brief overview
of garbage collection.

Garbage
Garbage collection has a long history. Wikipedia claims ‘Garbage
collection was invented by John McCarthy around 1959 to solve problems
in Lisp’ [GC]. It is an active area of research, used by a variety of languages
including python, Java and C# [REJ]. Garbage collection can be
implemented in a variety of ways, for example reference counting with
cycle detection versus generational, blocking versus concurrent, and many
other variations.
.Net uses a generational garbage collector, which ‘moves’ or compacts
objects after a collection. Every time a new object is created, it is placed
in generation zero. When the garbage collector runs, it drops unused
objects from generation zero, queuing up finalizers. The surviving objects
are then compacted, unless they have been pinned. Anything that survives
the next run gets promoted to generation one. The same happens from time
to time with generation one and surviving objects get promoted to
generation two. Less frequently, generation two is inspected along with the
large object heap. These objects might well last for the lifetime of an
application.
This begs the question, ‘What does ‘large’ mean?’

Objects that are greater than approximately 85,000 bytes are treated as
large objects by the garbage collector and are directly allocated in a
special heap; they are not promoted through the generations. [LOH]

This decision appears to be a performance decision [LOH-MS]. For
example, compacting large objects takes longer than compacting small
objects. As noted, large objects are only collected when a generation two
collection happens, so they could stay around for a very long time, thereby
using up a large amount of memory. This can clearly cause problems.

Avoiding arrays
How could an object of approximately 85,000 bytes get created? Though
many applications end up with gigantic strings, for example reading a
whole file into memory or working with huge amounts of xml, we will
focus on numbers rather than strings. Or at least arrays, which frequently
crop up in mathematical contexts and contain doubles, for example in a
MonteCarlo simulation with, say 100,000 paths, immediately providing
over 85,000 bytes. The internet also suggests that arrays of 1,000 or more
doubles get placed on the large object heap [LOH-Doubles], again for
performance reasons: ‘The LOH is aligned to 8 bytes so access to ‘big’
arrays is much faster if it is allocated on the LOH...the best tradeoff is when
the array is bigger than 1000 elements.’
It is hard to imagine why you would ever need all the numbers in the array
to be in memory at once. Frequently, an average, maximum or minimum
of these numbers will be required. This can be calculated if functions return
an IEnumerable<double> rather than a double[], in other words, if
we provide an iterator block instead. These have been around since .Net 2
and a clear and thorough explanation is given in [Skeet]. Put simply, they
are ‘syntactic sugar’ which causes the compiler to build a state machine,
allowing each request for the next item to be lazily evaluated.
Iterator blocks will work for other objects besides doubles, but without loss
of generality consider the following fictitious function.
 public static double[] Value()
 {
 double[] res = new double[10000];
 for (int i = 0; i < 10000; ++i) res[i] = 42.0;
 return res;
 }

The calling code is likely to take the form
 var v = Value();
 foreach (double d in v)
 {
 //do something
 }

The following simple change to the function will reduce the lines of code,
which is always a good thing, and reduce the memory it uses, without
changing the client code.
 public static IEnumerable<double> Value()
 {
 for (int i = 0; i < 10000; ++i)
 yield return 42.0;
 }

This no longer allocates an array. Since the calling code simply iterates
over the items, the iterator block can now yield the required numbers one
at a time, using less memory. Significantly, this will no longer shove an
array on the large object heap, potentially leaving it hanging around for
the lifetime of the application.

C#

Frances Buontempo has a BA in Maths + Philosophy, an MSc in
Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She
has been a professional programmer for over 12 years. She can
be contacted at frances.buontempo@gmail.com.
22 | Overload | August 2012

FEATUREFRANCES BUONTEMPO

Clues can be provided by the Performance
counters which will give further details

about memory usage in each generation
and on the large object heap
Prove it
A high level view of total memory usage is provided by the System.GC
object.
 static public void ShowMemory(string explanation)
 {
 long memory = GC.GetTotalMemory(true);
 Console.WriteLine("{0,]30} {1}",
 explanation + ":", memory);
 }

Calling our first value function which allocates a large array of doubles
gives 635056 bytes, whereas the second version gives 555088. Though this
high level view doesn’t say exactly where the memory is, it does show less
is being used. In order to see exactly which objects are taking up how much
space, we’d need to use a profiler, such as Microsoft’s CLRProfiler
[CLRProfiler4], or use SOS in Windebug, which is beyond the scope of
this article. Clues can be provided by the Performance counters which will
give further details about memory usage in each generation and on the
l a rge ob j ec t heap . Sampl e co de i s sh own in by th e
ShowGensAndLOHMemory function. Note that some counters update at
the end of a garbage collection, not at each allocation [LOH], so you need
to provoke a garbage collection in order to get accurate counts back. The
ShowMemory function will do this, since we send true to the GC’s
GetTotalMemory function, which forces a full collection (Listing 1).
If this is called on the Value functions above we see a reduction in large
object heap memory usage. This proves we have used less overall memory,
and specifically less of the large object heap. See Table 1 for details.

A final example
Suppose we wish to do something a bit more complicated, such as bale out
without returning values if a condition is met (Listing 2).
It is likely the calling code will be very similar to the initial simpler
example, though the function returning the numbers is now a little more
complicated. This can still be changed to use iterator blocks, most likely
without changing the calling code. (Listing 3)
In this case, we yield break when there is nothing to return. It does not have
to be at the start of the iterator block function, for example it could happen
if a condition was met within the main loop instead. In this example, data

Table 1

Arrays Iterator Block

(loh) memory 126248 46216

(Gen0) memory 4194300 4194300

(Gen1) memory 12 12

(Gen2) memory 520004 520052

Listing 1

static public void ShowGensAndLOHMemory()
{
 PerformanceCounter loh =
 new PerformanceCounter(".NET CLR Memory",
 "Large Object Heap size",
 Process.GetCurrentProcess().ProcessName,
 true);
 PerformanceCounter perfGen0Heap =
 new PerformanceCounter(".NET CLR Memory",
 "Gen 0 heap size",
 Process.GetCurrentProcess().ProcessName,
 true);
 PerformanceCounter perfGen1Heap =
 new PerformanceCounter(".NET CLR Memory",
 "Gen 1 heap size",
 Process.GetCurrentProcess().ProcessName,
 true);
 PerformanceCounter perfGen2Heap =
 new PerformanceCounter(".NET CLR Memory",
 "Gen 2 heap size",
 Process.GetCurrentProcess().ProcessName,
 true);

 Console.WriteLine("(loh) memory: {0}",
 loh.NextValue());
 Console.WriteLine("(Gen0) memory: {0}",
 perfGen0Heap.NextValue());
 Console.WriteLine("(Gen1) memory: {0}",
 perfGen1Heap.NextValue());
 Console.WriteLine("(Gen2) memory: {0}",
 perfGen2Heap.NextValue());
}

Listing 2

public static double[] ValueAtTime(double t)
{
 Dictionary<double, double> data =
 new Dictionary<double, double> {{-1.0,10.0},
 {0.0, 20.0}, {1.0, 30.0}, {2.0, 40.0}};
 var dates = data.Where(a => a.Key < t);
 if (!dates.Any())
 return new double[0];
 double amount =
 dates.OrderBy(a => a.Key).Last().Value;
 double[] res = new double[10000];
 for (int i = 0; i < 10000; ++i)
 res[i] = amount;
 return res;
}

August 2012 | Overload | 23

FEATURE FRANCES BUONTEMPO

It is surprisingly easy to run out of memory
in .Net, but there are some simple things you
can do to reduce memory usage
is small, but a more realistic example with a huge amount of data will
reduce the memory, because we don’t create an array upfront.
.Net 4 allows us to write this with even fewer lines of code, using
Enumerable. (Listing 4)

Caveats
We have seen that iterator blocks can help with memory issues, however
a couple of things need to be borne in mind. You need to take care where

you place yield statements. In particular, you can’t yield from a try block
with a catch block, or in a catch block or a finally block. In addition,
the client code may never consume the whole iteration. This means if it
contains a finally block, either explicitly or through a using statement,
that may never be executed, unless the iterator block is wrapped in a using
statement. Locks and threading can be dangerous too. See [Skeet] for more
details.

Conclusion
It is surprisingly easy to run out of memory in .Net, but there are some
simple things you can do to reduce memory usage. This article has shown
how iterator blocks can reduce memory footprint without changing the
client code. Significantly, if an object is large enough to end up on the
LOH, swapping to iterator blocks where possible could stop your
application falling over due to a System.OutOfMemory exception.
There are many other ways to reduce memory that we have not considered
here, such as using IDISPOSABLE, interning strings and remembering to
state a capacity of a List<T> on construction, since calling Add will
possibly do a reallocation, dumping the previous list, which could
potentially be on the large object heap already, giving you two large objects
with the price of one.

References
[CLRProfiler4] http://www.microsoft.com/en-us/download/

details.aspx?id=16273
[GC] http://en.wikipedia.org/wiki/

Garbage_collection_(computer_science)
[LOH] http://msdn.microsoft.com/en-us/library/x2tyfybc(v=vs.90).aspx
[LOH-Doubles] https://connect.microsoft.com/VisualStudio/feedback/

details/266330/large-object-heap-loh-does-not-behave-as-expected-
for-double-array-placement

[LOH-MS] http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
[Overload63] ‘Garbage Collection and Object Lifetime’ Ric Parkin,

Overload #63, Oct 2004.
[REJ] http://www.cs.kent.ac.uk/people/staff/rej/gc.html
[Skeet] http://csharpindepth.com/Articles/Chapter6/

IteratorBlockImplementation.aspx
[SO] http://stackoverflow.com/search?q=C%23+out+of+memory+

Listing 3

public static IEnumerable<double>
 ValueAtTime (double t)
{
 Dictionary<double, double> data =
 new Dictionary<double, double> {
 { -1.0, 10.0 }, { 0.0, 20.0 },
 { 1.0, 30.0 }, { 2.0, 40.0 } };
 var dates = data.Where(a => a.Key < t);
 if (!dates.Any())
 yield break;
 double amount =
 dates.OrderBy(a => a.Key).Last().Value;
 for (int i = 0; i < 10000; ++i)
 yield return amount;
}

Listing 4

public static IEnumerable<double>
 ValueAtTime (double t)
{
 Dictionary<double, double> data =
 new Dictionary<double, double> {
 { -1.0, 10.0 }, { 0.0, 20.0 },
 { 1.0, 30.0 }, { 2.0, 40.0 } };
 var dates = data.Where(a => a.Key < t);
 if (!dates.Any())
 return Enumerable.Empty< double >();
 return Enumerable.Repeat
 (dates.OrderBy(a => a.Key).Last().Value,
 10000);
}

24 | Overload | August 2012

http://www.microsoft.com/en-us/download/details.aspx?id=16273
http://www.microsoft.com/en-us/download/details.aspx?id=16273
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://msdn.microsoft.com/en-us/library/x2tyfybc(v=vs.90).aspx
https://connect.microsoft.com/VisualStudio/feedback/details/266330/large-object-heap-loh-does-not-behave-as-expected-for-double-array-placement
https://connect.microsoft.com/VisualStudio/feedback/details/266330/large-object-heap-loh-does-not-behave-as-expected-for-double-array-placement
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.cs.kent.ac.uk/people/staff/rej/gc.html
http://csharpindepth.com/Articles/Chapter6/IteratorBlockImplementation.aspx
http://csharpindepth.com/Articles/Chapter6/IteratorBlockImplementation.aspx
http://stackoverflow.com/search?q=C%23+out+of+memory+

	Overload_110_Final.pdf
	Allow Me To Introduce Myself
	Valgrind Part 3 Advanced memcheck
	Black-Scholes in Hardware
	Replace User, Strike Any Key?
	Simple Mock Objects for C++11
	Large Objects and Iterator Blocks

