
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 11

December 1995

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

Tools of the devil? 3

Thanks! 3

Software Development in C++ 5

Classes and Associations 5

Java? Where is that? 15

The Draft International C++ Standard 18

The Casting Vote 18

Some thoughts on linkage 19

Literally yours 21

Anonymously yours 22

C++ Techniques 23

Simple classes for debugging in C++ – Part 2 23

A deeper look at copy assignment 28

Change of address 34

/tmp/late/* Generating constants with templates 37

editor << letters; 39

++puzzle; 40

Date with a Design 40

Books and Journals 41

Scientific and Engineering C++ 42

News & Product Releases 43

SNiFF+2.1 43

 Overload – Issue 11 – December 1995

 Page 3

Editorial
I suppose I should wish you all Merry Christmas
and a Happy New Year.

This is the sixth issue of Overload this year – it’s
been hard work and a lot of fun. I hope you’ve
been pleased with the year’s material? If not,
please contribute something you would like to
read.

Tools of the devil?

Craftsmen rely on the tools of their trade. If a
tool is faulty, they can take it back, get a re-
placement and carry on with their work. An in-
convenience, but not likely to be a disaster. Their
business won’t necessarily go broke from poor
tools. Perhaps more to the point, their tools mar-
ket is mature enough and competitive enough
that faulty tools are quite rare.

You know what I’m going to say next, of course.
I can hear the words forming in your minds:
software development tools regularly have faults.
We learn to live with them, don't we? Compiler
bugs can be infuriating, they cost us money, but
we can usually work around them and get on
with the job. Debuggers, testing tools, CASE
software – we workaround, grumble and con-
tinue. And our business suffers a little each time,
but we don’t measure the loss and we let it pass.

But not all software tools are like this. Consider a
substantial third-party library, perhaps a database
class library or a GUI class library. Often, a deci-
sion to adopt one of these tools has to be made
early on in the lifecycle of a project and the pro-
ject soon comes to rely on the tool. What hap-
pens when faults are uncovered in such a library?
Can you take it back to the vendor and get a re-
placement that works? Very unlikely (“That’ll be
fixed in the next release, next year.”). Can you
change vendors? Also very unlikely – interfaces
are not mature enough to swap out one library
and swap in another without fairly major changes
to the client code.

Should you try to get your money back? How
much have you lost: the cost of the tool, a per-
centage of the cost of development invested in
your existing code... Lost time, however, may be
more critical. Redevelopment using a new library
might cause you to miss a window of opportu-
nity in the market – what cost your lost business,
or even the entire business itself?

I have just witnessed a project collapse due to the
failings of a well-known, cross-platform GUI
library. Since I heard the news, I have read sev-
eral reports on the ‘net that confirm these failings
on other platforms that the library supposedly
supports. A very expensive experience and I
hope that the victim of this fiasco can recover
and doesn’t suffer too much from the lost market
opportunity.

Is there anything our industry can do about this
sort of thing? Tool vendors can take more care –
so few companies actually exercise “best prac-
tice” that the age-old excuse that “bugs are inevi-
table in a product this complex” just won’t wash:
they could do better! As users, and victims, of
these faulty products, we can be more publicly
vocal about bad products. Write to the press (in-
cluding Overload!), post information on the ‘net,
exercise your legal right to products that are “fit
for purpose”. Ask the vendor for a refund and if
that fails, sue them. Delivering poor quality
software tools must stop being financially viable
for companies.

Thanks!

Welcome to the Kevlin Henney special edition of
Overload! Thanks for contributing so much to
this issue after I said that Overload 11 was look-
ing a little thin.

If the rest of you want such gratitude, start writ-
ing articles for the February issue!

Sean A. Corfield
overload@corf.demon.co.uk

 Overload – Issue 11 – December 1995

 Page 4

FULL PAGE ADVERT GOES HERE!

 Overload – Issue 11 – December 1995

 Page 5

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

David Davies follows up his article on OOA by looking at that part of the software process where design
actually becomes code and The Harpist takes a brief look at Java.

Classes and Associations
by David Davies

Introduction
A previous article gave an overview of the OOA
process and showed how a requirement specifi-
cation was flowed down to high level design
constructs[1]. The analysis exercise identified the
classes, relationships between classes, class at-
tributes and operations required to realise the
specification. This article looks at some of the
implementation issues of one of the outputs of
the OOA activity – the Information Model and in
particular, associations between classes. To re-
cap, the Information Model, in Shlaer-Mellor
terminology, identifies objects, their attributes
and the static relationships between them. It is a
way of capturing the semantics of the problem
domain and organising the information into a
formal structure.

Associations
In any sizeable application, separate independent
classes collaborate to carry out a specific task.
Classes that collaborate are said to be “associ-
ated” or “related”. Relationships may be binary
(between two classes), ternary (between three
classes) or of higher order. Higher order relation-
ships are much more complex and are generally
to be avoided. This article considers only binary
relationships or associations.

Associations provide the means to link objects in
a meaningful way. Each pair of instantiated ob-
jects can be considered as a unit or tuple reflect-
ing a particular instance. An association between
classes Owner and Dog would have instances:
Jack and his dog, Rover; Ray and his dog, Bonzo.

Using an associative object to express an asso-
ciation is another way of modelling the same
underlying concept. Since objects have proper-
ties, the associative object can be used to hold
properties of the relationship. The association
between Owner and Dog could be expressed
through associative object Licence which in addi-

tion to linking instances of Owner and Dog
would contain licence details such as serial num-
ber, date of expiry.

Generally an associative object is used if the tu-
ple has subsidiary information, otherwise an as-
sociation is used.

Cardinality
The cardinality of an association is the number of
instances of a class that participate in an associa-
tion and can be one-to-one, one-to-many or
many-to-many. The example of the one-to-one
association used in the article is the MP and con-
stituency association. There can only be one MP
representing a constituency and a MP may repre-
sent only one constituency. The one-to-many
association is taken from a library scenario
where a borrower can borrow many books but a
book can only be borrowed by a single borrower
at a time. The many-to-many association is dem-
onstrated by the actor-play association. An actor
can appear in many plays and a play has many
actors.

Implementation considerations
There are several ways of implementing associa-
tions depending on the cardinality of the rela-
tionship and whether traverse is required from
one end only or from both ends. If only one end
needs to refer to the other an unidirectional trav-
erse can be implemented, if both ends are in-
volved then a bidirectional traverse is required. A
unidirectional traverse is simpler to accomplish
as only one end of the association has to hold
information about the other and may be suitable
when the reverse relationship is never, or only
infrequently, required. Although it is possible to
traverse in the opposite direction, it involves in-
terrogating every object which has traverse in-
formation and determining if it is part of the
association in question. A potentially lengthy and
expensive operation.

Table 1 shows the various options discussed in
this article. For the one-to-many association,
three traverse conditions are considered; unidi-
rectional from the “one” end, unidirectional from

 Overload – Issue 11 – December 1995

Cardinality Traverse Technique Listing
1-m unidirectional from "1" basic Listing 1
1-m unidirectional from "1" using Container Class Listing 2
1-m unidirectional from "many" with pointers Listing 3
1-1 bidirectional with pointers and friends Listing 4
1-1 unidirectional using Association & Diction-

ary Classes
Listing 5

1-1 bi-directional using associate class Listing 6
1-m bi-directional with pointers and friends Listing 7
m-m bi-directional with pointers and friends Listing 8

Table 1 Some methods of implementing associations
the “many” end and bidirectional. For the one-to-
one association both unidirectional and bidirec-
tional traverses are considered.

The high level constructs produced in the analy-
sis stage require fleshing out to ensure that use-
able, robust and maintainable classes are
produced. An analysis of a library system has
identified that there is a one to many relationship
between Borrower and Books. Using the OMT
notation for describing classes (where a class is
represented by a rectangle divided into three
horizontal sections: the top section contains the
class name, the middle section the attributes of
the class and the lower section the member func-
tions) the analysís view of the classes and their
relationship is shown in Fig 1A. Fig 1B shows
the class designer’s view of the relationship, hav-
ing to add constructors, destructors and access
members in order to produce an implementable
design, plus class libraries that provide standard
reusable components for incorporation into the
application.

 Page 6

A common problem in real life applications is
the handling of groups of items. Developing data
structures to hold and manipulate these items can
take up a lot of
development
time. Borland
C++ provides
programmers
with a robust col-
lection of reus-
able container
classes so that
effort can be con-
centrated on the
application and
less on the im-
plementation de-
tails.

The OO philosophy can be expressed as:

• Don’t build, buy

• Don’t invent, reuse.

With this in mind several of the implementations
use the Borland container class library to illus-
trate how incorporating these can simplify appli-
cation development.

And soon we will all have access to the pow-
erful set of container classes from STL that
will be available with every C++ compiler as
part of the standard library – Ed.

Listings
A brief description of the salient implementation
issues of each approach is given below. The pro-
grams were compiled using Borland C++ 4.0.

Fig 1 Implementing a class design

 Overload – Issue 11 – December 1995

 Page 7

One-to-many association. Listing 1
This design approach is the simplest of the eight
covered in this article. The Borrower class con-
tains an array of Book objects which holds de-
tails of books on loan. It supports traverse from
Borrower to Books and so it is easy to ascertain
which books have been borrowed by a particular
borrower. However, it is not so straightforward
to determine which borrower has a particular
book as it involves searching through all borrow-
ers to find it. It is not a particularly efficient de-
sign as it holds objects (rather than pointers to
objects) and an array is not a particularly good
data structure when there are variable storage
requirements. The size of the array is set to the
maximum regardless of how many books the
borrower has out on loan. It is also “hand
crafted” and does not include any features utilis-
ing re-use of existing components.

One-to-many using Class Library. Listing
2
In a re-use frame of mind, the built-in Container
classes can be incorporated to reduce the amount
of hand-crafted code. Listing 2 uses a container
class to provide data storage and so is an im-
provement on the first offering. The iterators
provided with the container class make manipu-
lation of the data easier. Again the container
holds book objects, a better design approach
would be to use an indirect container which
holds pointers to book objects.

One-to-many using pointers. Listing 3
This provides unidirectional traverse from the
many to the one. Each Book object holds a
pointer to its associated Borrower. It enables the
question “Who has book X?” to be easily an-
swered as each Book object holds a reference to
its Borrower. As a borrower may have many
books on loan it follows that the same reference
will have to be used by several Books. Since only
a single copy of a specific Borrower object can
exist, pointers are necessary so that multiple in-
stances of Books can refer to the same Borrower
object. Objects of book and borrower are instan-
tiated and initially books have their borrower
pointer set to zero. The borrowBook member sets
the pointer to the appropriate borrower object.
Returning a book is modelled by calling the re-
turnBook member which resets the pointer to
zero.

One-to-one with pointers and friends.
Listing 4
Listing 4 shows an implementation for a bidirec-
tional one-to-one association. Traverse is sup-
ported in both directions making it easy to
efficiently move in both directions and to be able
to answer such questions as “Who is the MP for
the New Forest constituency?” or “Which con-
stituency does Sir Patrick McNair-Wilson repre-
sent?”

A difficulty in implementing bidirectional trav-
erse is that cross references have to be main-
tained between the two objects. One way to
achieve this is by using friends. I know that the
use of friends is frowned upon in some quarters,
but taking a pragmatic view, I believe that there
are some instances where friendship can facili-
tate understandable and maintainable design.
Friendship is a controlled way of defeating en-
capsulation and granting another class access to
the private data of another. The operative word is
“granting” – a class can only be given friendship,
it cannot claim it.

In this example each class has friend members to
link or unlink associations between objects. The
link and unlink functions update the attributes of
the associated class in addition to their own class
via private members to maintain data integrity.
Instantiation and deletion of objects is performed
separately from linking. Linking only sets the
links between existing objects.

An alternative implementation, which maintains
encapsulation, uses public members to update the
book and borrower details. To maintain data in-
tegrity the members have to be used properly but
there is no mechanism to enforce this. The class
designer, therefore, has no control on how they
are used. This type of implementation is not cov-
ered in this article.

One to one association using class li-
braries. Listing 5
As in listing 2 the design can be implemented
utilising the class libraries supplied with the
compiler. Listing 5 shows a one-to-one associa-
tion implemented using the provided Association
and Dictionary classes. The two classes Tenant
and Apartment are associated via the TIIAssocia-
tion Association. The ‘I’s in the name indicate
indirect storage is used, hence pointers are stored
by the association object. The associations are
then stored in TIDictionary lettings. After three
entries associating a tenant with an apartment,

 Overload – Issue 11 – December 1995

the contents of the dictionary are displayed using
the dictionary iterator function.

 Page 8

The Association class defines a relationship be-
tween two entities, the key and the value. In this
example tenant is the key whilst apartment is the
value. However the order could easily be re-
versed with apartment as the key. It is always the
first parameter in the association declaration that
is taken as the key. The class Dictionary is inter-
nally implemented with a hash table and so Ten-
ant has to be derived from String to give access
to String’s HashValue member function and so
generate a hash value for the Tenant object.

Objects of type Tenant and Apartment are first
created. Then they are linked into an association
and added to the dictionary. A meaningful ==
operator has to be provided in the class that is
used as the key in the association. This is re-
quired to ensure correct operation of the hash
function.

One-to-one association with associative
class. Listing 6
An association can be represented by using an
associative object that contains references to
identifiers in each of the participating instances.
This is applicable when information about the
association has to be held. The association be-
tween tenant and apartment is used as an exam-
ple. There is a one-to-one association between
tenant and apartment of lease, a tenant leases an
apartment and an apartment is leased to a tenant.
Lease can be implemented as an associative ob-
ject when information on the lease such as dura-
tion, rent etc. has to be held. See fig 2.

In this example, associative object lease contains
pointers to each object participating in the rela-

tionship. tenant and apartment. Reverse
pointers to lease are held by tenant and
apartment. This supports bidirectional trav-
erse from tenant and apartment.

One to many bi-directional traverse.
Listing 7
This is an implementation of a bidirectional
one to many relationship for the library sce-
nario. In this case it is possible to efficiently
traverse in both directions. It enables the
identification of the borrower of a particular
book without having to interrogate every
borrower. Each Borrower object holds an

array of pointers to borrowed Book objects and
each Book has a pointer to its current Borrower.
Friend members make or remove links between
Borrower and Books. Objects are created and
destroyed at the start and end of the main pro-
gram. The general design is shown in Fig 3.

Fig 2 Representing an association by an associative object

The slots in the array holding pointers to book
objects are initially set to zero. The BorrowBook
member looks for the first free slot in the array
and inserts the new pointer in that location.

Many-to-many bi-directional traverse.
Listing 8
The thespian scenario is used as an example of a
bidirectional many to many relationship. An ac-
tor can appear in many plays and a play has a
cast of many actors. Unlike the example library
where there was a requirement limiting the num-
ber of books taken out by a borrower at any time
here the cardinality of the relationship is unde-
fined, the number of entries depends on the
popularity of the actor. Instead of using a fixed
size data structure such as an array, an extensible
data structure which can grow as the number of
entries increases is required. A linked list is a
suitable data structure. These come in many fla-
vours, single, double, sorted etc but the example
uses a simple single linked list. The design uses a
variant on the one-to-many implementation
shown in listing 7. In this case each object on
both sides of the association holds a collection of
pointers to linked objects on the other side. The
links are balanced, both ends are updated con-
temporaneously.

 Overload – Issue 11 – December 1995

The Clist, holding cast details, and RList, holding
actor details, are based on a single linked list of
void pointers, Blist. Such a list is considered to
be type unsafe insofar as it can hold pointers of
any type. Type safety is achieved by ensuring
that the insert and remove members of Clist and
Rlist will only accept pointers of the appropriate
type.

Friend members update the links on both sides of
the association and data integrity is ensured by
using private members to modify the link details.

 Page 9

Conclusion
This article has explored some of the ways that
relationships between classes can be imple-
mented. Variations on the techniques described
can be used in real life applications. Currently
there are a multitude of books on C++ program-
ming covering the ‘nuts and bolts’ of writing
code and a vast number which have either OOA
or OOD in their title but very few which cover
the transition from analysis to code. An article in
a recent issue of EXE [2] touches on this issue.
One of the few books to explore the relationship
between object modelling and C++ programming
is “Inside the Object Model” by David Papurt
[3].

David Davies

References
[1] Overload 8, “OOA- The Shlaer-Mellor

Approach”, David Davies

[2] EXE vol. 10 Issue 1 June 1995, pp 47-
54, “Seamless, but open to interpreta-

tion “ Mary Hope

[3] SIGS Books, “Inside the Object
Model”, David Papurt 1995 ISBN 1-
884842-05-4

I have decided to break with tradition by in-
cluding the entire source code verbatim. This
has been done because quite a large part of
David’s article refers directly to the different
approaches used in the source code.

The code will be on a future CVu disk and
later on Demon’s ftp site. Once you have the
code in your hands, I would welcome contri-
butions which recast David’s code using STL
and comment on benefits and disadvantages
(e.g., the STL array container – vector – can
change size; the list container does not offer a
choice of singly-linked implementation; the
dictionary container – map – is not hash-
value based) – Ed.

//Listing 1
#include <iostream.h>
#include <string.h>

class Book;

class Book
{
public:
 Book(int refnum, char* author, char*
title);
 Book();
 Book& operator=(const Book& b);
 void showBook(Book book);
 int GetBookNo(){return o_refnum;}
private:
 int o_refnum;
 char o_author[30];
 char o_title[30];
};

class Borrower
{
public:
 Borrower(char* name, char* address);
 void borrowBook(Book book);

Fig 3. 1-M Bidirectional traverse

 Overload – Issue 11 – December 1995

 Page 10

 void returnBook(Book book);

 void listBooksOnLoan();

private:
 char o_name[20];
 char o_address[30];
 Book onLoan[5];
 int noOfBooks;
};

Book::Book(int refnum, char* author, char* title)
 {
 o_refnum = refnum;
 strcpy(o_author, author);
 strcpy(o_title, title);
 }

Book::Book()
 {
 o_refnum = 0;
 strcpy(o_author,"");
 strcpy(o_title, "");
 }

Book& Book::operator=(const Book& b)
{
 o_refnum = b.o_refnum;
 strcpy(o_author, b.o_author);
 strcpy(o_title, b.o_title);
 return *this;
}

void Book::showBook(Book book)
{
cout << " Book number: " << book.o_refnum <<
 ", Author: " << book.o_author
 << ", Title: " << book.o_title << "\n";
}

Borrower::Borrower(char* name, char* address)
 {
 strcpy(o_name, name);
 strcpy(o_address, address);
 noOfBooks = 0;
 int i = 0;
 Book t;
 while (i < 5)
 onLoan[i++] = t;
 }

void Borrower::borrowBook(Book book)
 {
 if(noOfBooks == 5)
 cout << " You have borrowed the “
 “ maximum permited number
“
 “of books\n";
 else
 {
 int i = 0;
 while (onLoan[i].GetBookNo() !=0)
 i++;
 onLoan[i] = book;
 ++noOfBooks;
 }
 }

void Borrower::returnBook(Book book)
 {
 if(noOfBooks == 0)
 cout << " No books on loan\n";
 else
 {
 int i =5;
 Book t;
 while(i-- > 0)
 if(onLoan[i].GetBookNo()
 == book.GetBookNo())
 {
 cout << " Book "
 << book.GetBookNo()
 << " returned\n";
 onLoan[i] = t;
 }
 noOfBooks--;
 }
 }

void Borrower::listBooksOnLoan()
 {
 Book bk;
 for(int l =0; l<5; l++)
 if(onLoan[l].GetBookNo() != 0)
 bk.showBook(onLoan[l]);
 }

int main()
{
Borrower fred("F James", "40 Riverside");

Borrower john("John Smith", "345 Station Rd"); Book book1(1234, "Oscar Wilde",
 "Picture of Dorien Gray");
Book book2(12345, "Charlotte Bronte", "Jane Eyre");
Book book3(2345, "Oscar Wilde",
 "Importance of Being Earnest");
Book book4(2348, "C Dickens", "A Christmas Carol");
Book book5(5348, "C Dickens", "A Tale Of Two
Cities");
fred.borrowBook(book1);
john.borrowBook(book3);
fred.borrowBook(book2);
john.borrowBook(book4);
fred.borrowBook(book5);
cout << "List Fred's books \n";
fred.listBooksOnLoan();
cout << "List John's books \n";
john.listBooksOnLoan();
fred.returnBook(book2);
cout << "List Fred's books \n";
fred.listBooksOnLoan();
return 0;
}

//Listing 2

#include <iostream.h>
#include <string.h>
#include <classlib\arrays.h>

class Book
{
public:
 Book(int refnum, char* author, char*
title);
 Book();
 Book& operator=(const Book& b);
 int operator == (const Book& b)
 {return o_refnum == b.o_refnum;};
 void showBook(Book book);
private:
 int o_refnum;
 char o_author[30];
 char o_title[30];
};

typedef TArrayAsVector<Book> bookArray;
typedef TArrayAsVectorIterator<Book> bookIterator;

class Borrower
{
public:
 Borrower(char* name, char* address);
 void borrowBook(Book book);
 void returnBook(const Book& book);
 void listBooksOnLoan();
private:
 char o_name[20];
 char o_address[30];
 bookArray *onLoan;
 int noOfBooks;
};

Book::Book(int refnum, char* author, char* title)
 {
 o_refnum = refnum;
 strcpy(o_author, author);
 strcpy(o_title, title);
 }

Book::Book()
 {
 o_refnum = 0;
 strcpy(o_author,"");
 strcpy(o_title, "");
 }

Book& Book::operator=(const Book& b)
{
 o_refnum = b.o_refnum;
 strcpy(o_author, b.o_author);
 strcpy(o_title, b.o_title);
 return *this;
}

void Book::showBook(Book book)
{
 cout << " Book number: " << book.o_refnum
 << ", Author: " << book.o_author
 << ", Title: " << book.o_title << "\n";
 }

Borrower::Borrower(char* name, char* address)
 {
 strcpy(o_name, name);
 strcpy(o_address, address);

 Overload – Issue 11 – December 1995

 Page 11

 noOfBooks = 0;
 onLoan = new bookArray(10);
 }

void Borrower::borrowBook(Book book)
 {
 if(noOfBooks == 6)
 cout << " You have borrowed the “
 “maximum permited number of “
 “books\n";
 else
 {
 onLoan->Add(book);
 noOfBooks++;
 }
 }

void Borrower::returnBook(const Book& book)
 {
 if(noOfBooks == 0)
 cout << " No books on loan\n";
 else
 {
 onLoan->Detach(book);
 noOfBooks--;
 }
 }

void Borrower::listBooksOnLoan()
 {
 bookIterator i(*onLoan);
 Book bk;
 while(i)
 {
 bk = i++;
 bk.showBook(bk);
 }
 }

//uses same main() as listing 1
int main()
{
Borrower fred("F James", "40 Riverside");
Borrower john("John Smith", "345 Station Rd");
Book book1(1234, "Oscar Wilde",
 "Picture of Dorien Gray");
Book book2(12345, "Charlotte Bronte", "Jane Eyre");
Book book3(2345, "Oscar Wilde",
 "Importance of Being Earnest");
Book book4(2348, "C Dickens", "A Christmas Carol");
Book book5(5348, "C Dickens", "A Tale Of Two
Cities");
fred.borrowBook(book1);
john.borrowBook(book3);
fred.borrowBook(book2);
john.borrowBook(book4);
fred.borrowBook(book5);
cout << "List Fred's books \n";
fred.listBooksOnLoan();
cout << "List John's books \n";
john.listBooksOnLoan();
fred.returnBook(book2);
cout << "List Fred's books \n";
fred.listBooksOnLoan();
return 0;
}

//Listing 3
#include <iostream.h>
#include <string.h>

class Book;

class Borrower
 {
 public:
 Borrower(char* A);
 ~Borrower() { delete aName;}
 void showBorrower()
 {cout << aName << "\n";}
 private:
 char* aName;

 };

class Book
 {
 public:
 Book(char* T);
 ~Book()
 {LoanedTo(0); delete aTitle;}
 void LoanedTo(Borrower* br)
 {a= br;}
 Borrower* onLoanTo() {return a;}
 void BorrowBook(Borrower &a,
 Book &b);

 void ReturnBook(Borrower &a); private:
 Borrower *a;
 char* aTitle;
 };

Borrower::Borrower(char* A)
 {
 aName = new char[strlen(A)+1];
 strcpy(aName, A);
 cout << "Borrower " << aName
 << "\n";
 }

Book::Book(char* T)
 {
 a = 0;
 aTitle = new char[strlen(T)+1];
 strcpy(aTitle, T);
 cout << "Book " << aTitle << "\n";
 }
void BorrowBook(Borrower & A, Book & B)
 {
 if(!B.onLoanTo())
 {
 B.LoanedTo (&A);
 }
 }

void ReturnBook (Book & A)
 {
 if(A.onLoanTo())
 {
 A.LoanedTo(0);
 }
 }

int main()
{
Book oliverTwist("Oliver Twist");
Book eyre("Jane Eyre");
Book pictureOfDorienGray("Picture of Dorien Gray");
Borrower smith("John Smith");
Borrower jones("David Jones");
BorrowBook(smith,oliverTwist);
BorrowBook(smith,pictureOfDorienGray);
BorrowBook(jones,eyre);
cout << " Traverse from book to Borrower\n";
cout << "Who has Oliver Twist? ";
Borrower *p=oliverTwist.onLoanTo();
p->showBorrower();
cout << "Returns book\n";
ReturnBook(oliverTwist);
BorrowBook(jones,oliverTwist);
cout << "Book now borrowed by Jones \n";
cout << "Who has Oliver Twist? ";
Borrower *q=oliverTwist.onLoanTo();
q->showBorrower();
ReturnBook(oliverTwist);
return 0;
}

//Listing 4
#include <iostream.h>
#include <string.h>

class Book;

class Author
 {
 public:
 Author(char* A);
 ~Author(){unlink(*this); delete
aName;}
 Book * Publication() {return b;}
 void showAuthor(){cout << aName <<
"\n";}
 friend void link (Author &a, Book
&b);
 friend void unlink(Author &a);
 friend void unlink (Book &b);
 private:
 Book *b;
 char* aName;
 void Publication(Book * bk){ b
=bk;}
 };

class Book
 {
 public:
 Book(char* T);
 ~Book()
 {unlink(*this); delete aTitle;}
 Author * writer() {return a;}
 void showBook()
 {cout << aTitle << "\n";}

 Overload – Issue 11 – December 1995

 Page 12

 friend void link (Author &a, Book &b);
 friend void unlink(Author &a);
 friend void unlink (Book &b);
 private:
 Author *a;
 char* aTitle;
 void writer(Author * auth)
 {a= auth;}
};

Author::Author(char* A)
 {
 b = 0;
 aName = new char[20];
 strcpy(aName, A);
 }

Book::Book(char* T)
{
a = 0;
aTitle = new char[20];
strcpy(aTitle, T);
 }

void link(Author & A, Book & B)
 {
 if(!A.Publication() && !B.writer())
 {
 A.Publication(&B);
 B.writer (&A);
 }
 }

void unlink (Author & A)
 {
 if(A.Publication())
 {
 A.Publication()->writer(0);
 A.Publication(0);
 }
 }

void unlink (Book & B)
 {
 if(B.writer())
 {
 B.writer()->Publication(0);
 B.writer(0);
 }
 }

int main()
{
Author dickens("Charles Dickens");
Book oliverTwist("Oliver Twist");
Book eyre("Jane Eyre");
Author bronte ("Charlotte Bronte");
Author wilde("Oscar Wilde");
Book pictureOfDorienGray("Picture of Dorien Gray");
link(dickens,oliverTwist);
link(wilde,pictureOfDorienGray);
link(bronte ,eyre);
cout << " Traverse from author to book\n";
cout << "Dickens wrote ";
dickens.Publication()->showBook();
cout << " Traverse from book to author\n";
cout << "Jane Eyre was written by ";
 eyre.writer()->showAuthor();
unlink(dickens);
unlink(bronte);
unlink(wilde);
return 0;
}

//Listing 5
#include <string.h>
#include<iostream.h>
#include<cstring.h>
#include<classlib\assoc.h>
#include<classlib\dict.h>

class Tenant:string
{
public:
 Tenant():string(){};
 Tenant(char *A):string()
 {iname = new char[strlen(A) +1];
 strcpy(iname, A);}
 ~Tenant(){delete iname;}
 int operator ==(const Tenant &T)const
 {return stricmp(iname, T.iname) ? 0:1;};
 void getTenant()const{cout << iname;}
 unsigned HashValue()const{return hash();}
private:
 char * iname;

};
class Apartment
{
public:
 Apartment(){};
 Apartment(char *D){pname = new
char[strlen(D)+1]; strcpy(pname, D);}
 ~Apartment(){delete pname;}
 void getApartment()const {cout << pname;}
private:
 char *pname;
 };

typedef TIIAssociation<
Tenant,Apartment>Association;
typedef TIDictionaryAsHashTable<Association>
Lettings;
typedef
TIDictionaryAsHashTableIterator<Association>
 AssocIterator;

int main()
{
Lettings lettings;
Tenant * dave = new Tenant("Dave");
Apartment * hillside15a =
 new Apartment("15A Hillside");
Tenant * fred = new Tenant("Fred");
Apartment * hillside15b =
 new Apartment("15B Hillside");
Tenant * jane = new Tenant("Jane");
Apartment * hillside15c =
 new Apartment("15C Hillside");
Association *entry =
 new Association(dave, hillside15a);
lettings.Add(entry);
Association *entry1 =
 new Association(fred, hillside15b);
lettings.Add(entry1);
Association *entry2 =
 new Association(jane, hillside15c);
lettings.Add(entry2);
AssocIterator i(lettings);
Association *p;
const Apartment *flat;
const Tenant *occupier;
cout << "List lettings\n";
while(i)
 {
 p =i++;
 cout << "\t";
 flat = p->Value();
 flat->getApartment();
 cout << " has been let to ";
 occupier = p->Key();
 occupier->getTenant();
 cout << "\n";
 }
return 0;
}

// Listing6
#include <iostream.h>
#include <string.h>

class Tennant;
class Apartment;

class Lease
{
private:
 Tennant *i;
 Apartment *c;
 int rent;
 int duration;
public:
 Lease(Tennant& I, Apartment& C,
 int n, int d);
 ~Lease();
 void getRent()
 {cout << "ú" << rent; cout << " PCM\n";}
 void getDuration()
 {cout << duration;cout << " months\n";}
 Apartment * flat(){return c;}
 Tennant *occupier(){return i;}
};

class Tennant
{
private:
 Lease *p;
 char * iname;
public:
 Tennant(char *A)
 {p = 0;iname = new char[strlen(A) +1];
 strcpy(iname, A);}

 Overload – Issue 11 – December 1995

 Page 13

 ~Tennant(){delete p;delete iname;}
 void getTennant(){cout << iname <<"\n";}
 Lease * Lease(){return p;}
 Apartment *flat(){ return p ? p->flat()
:0;}
 friend class Lease;
};

class Apartment
{
private:
 Lease *p;
 char *pname;
public:
 Apartment(char *D)
 {p = 0;pname = new char[strlen(D)+1];
 strcpy(pname, D);}
 ~Apartment(){delete p;delete pname;}
 void getApartment(){cout << pname <<"\n";}
 Lease *Lease(){return p;}
 Tennant *occupier()
 {return p ? p->occupier():0;}
 friend class Lease;
};

Lease::Lease(Tennant &I,Apartment &C,int n,int d)
:i(&I),c(&C),rent(n),duration(d)
{
if(!i->p && !c->p)
 {
 i->p = this;
 c->p = this;
 }
else
 cout << "ERROR\n";
}

Lease::~Lease()
{
i->p = 0;
c->p = 0;
}

int main()
{
 Tennant * dave = new Tennant("Dave");
 Apartment * hillside15a =
 new Apartment("15A Hillside");
 new Lease(*dave, *hillside15a, 234, 23);
 cout << "Where does Dave live? ";
 dave->flat()->getApartment();
 cout << "Who has tennancy of 15A Hillside?
";
 hillside15a->occupier()->getTennant();
 cout << "What is the rent of Daves' flat?
";
 dave->Lease()->getRent();
 cout << "How long is the lease on 15A “
 “Hillside? " ;
 hillside15a->Lease()->getDuration();
 delete dave;
 delete hillside15a;
 return 0;
}

//Listing 7
#include <iostream.h>
#include <string.h>

class Book;

class Borrower
 {
 public:
 Borrower(){};
 Borrower(char* A);
 ~Borrower()
 { delete [] bookLoan;delete
aName;}
 Book * Publication()
 {return *bookLoan;}
 void getBorrower()
 {cout << aName << "\n";}
 void ListBooks();
 friend void BorrowBook(Borrower &A, Book
&B);
 friend void ReturnBook(Book & B);
 private:
 Book ** bookLoan;
 char* aName;
 int booksOnLoan;
 };

class Book
 {
 public:

 Book(){}; Book(char* T)
 { aTitle = new char[20];
 strcpy(aTitle, T);}
 ~Book(){delete aTitle;}
 Borrower * aquirer() {return a;}
 char * getBook(){return aTitle;}
 void WhoHas();
 friend void BorrowBook(Borrower &a, Book
&b);
 friend void ReturnBook(Book & B);
 private:
 Borrower *a;
 char *aTitle;
 void aquirer(Borrower * br)
 {a = br;}

 };

Borrower::Borrower(char* A)
 {
 aName = new char[20];
 strcpy(aName, A);
 bookLoan = new Book *[5];
 booksOnLoan = 0;
 int i = 0;
 while (i < 5)
 bookLoan[i++]= NULL;
 }

void Borrower::ListBooks()
 {
 int x =0;
 while (x < 5)
 {
 if (bookLoan[x] != NULL)
 cout <<"\t" <<
bookLoan[x]->getBook() << "\n";
 x++;
 }
}

void BorrowBook(Borrower & A, Book & B)
 {
 int i =0;
 while(A.bookLoan[i] !=NULL)
 ++i;
 A. bookLoan[i] = & B;
 B.aquirer (&A);
 A.booksOnLoan++;
 }

void ReturnBook (Book & B)
{
Borrower * A = B.aquirer();
if(A->Publication())
{
 int i = A->booksOnLoan;
 while (i-->0)// A.booksOnLoan)
 if (A->bookLoan[i]->getBook() ==
 B.aTitle)
 {
 cout << "Book " <<
 B.aTitle <<
 " returned by ";
 A->getBorrower();
 A->bookLoan[i] = 0;
 A->booksOnLoan--;
 }
 A->Publication()->aquirer(0);
}
}

void Book::WhoHas()
{
 Borrower * br = aquirer();
 br->getBorrower();
}

int main()
{
 Book eightyFour("1984");
 Book solentShores("Solent Shores");
 Book maidenVoyage("Maiden Voyage");
 Book vanityFair("Vanity Fair");
 Book sealord("Sealord");
 Book treasureIsland("Treasure Island");
 Borrower james("James");
 Borrower stevenson("Stevenson");
 BorrowBook(james,sealord);
 BorrowBook(james,vanityFair);
 BorrowBook(stevenson,solentShores);
 BorrowBook(stevenson,eightyFour);
 BorrowBook(stevenson,maidenVoyage);
 BorrowBook(stevenson,treasureIsland);
 cout << "List books borrowed by James\n";
 james.ListBooks();
 cout << "List books borrowed by
Stevenson\n";
 stevenson.ListBooks();

 Overload – Issue 11 – December 1995

 Page 14

 cout << "Who has Maiden Voyage? ";
 maidenVoyage.WhoHas();
 cout << "Who has Sealord? ";
 sealord.WhoHas();
 ReturnBook(sealord);
 ReturnBook(maidenVoyage);
 cout << "List books borrowed by James\n";
 james.ListBooks();
 cout << "List books borrowed by
Stevenson\n";
 stevenson.ListBooks();
 return 0;
}

// listing 8
#include <iostream.h>
#include <string.h>

class Actor;
class TVSeries;

class node
{
private:
friend class BList;
node *next;
void * pd;
};

class BList
{
public:
 BList(){start = 0;}
 ~BList();
 void insert(void *p);
 void *remove();
 void *remove(void *p);
 void reset();
 void *next();
private:
 node *start;
 node *c;
};

BList::~BList()
{
node *p1, *p2;
if(!start) return;
p1 =start;
while (p1)
 {
 p2 = p1->next;
 delete p1;
 p1 = p2;
 }
}

void BList:: insert(void *p)
{
node *temp;
temp = new node;
if(!start)
 {
 start = temp;
 temp->next = 0;
 }
else
 {
 temp->next = start;
 start = temp;
 }
temp -> pd = p;
}

void * BList::remove()
{
while(start)
 {
 node * p1 = start;
 start = start->next;
 delete p1;
 }
return 0;
}

void * BList::remove(void * p)
{
node *p1, *p2;
p1 = start;
p2 = 0;
if(p1->pd == p)
 {
 p2 = p1->next;

 delete p1; start = p2;
 }
else
 {
 while(p1)
 {
 p2 =p1->next;
 if(p2->pd == p)
 {
 p1->next = p2->next;
 delete p2;
 return p;
 }
 p1 = p1->next;
 }
 }
return 0;
}

void BList::reset()
{
c = start;
}

void * BList::next()
{
if(c)
 {
 void *r = c->pd;
 c= c->next;
 return r;
 }
else
 return 0;
}

class CList
 {
 private:
 BList v;
 CList(const CList &);
 CList & operator =(const CList &);
 public:
 CList() : v() {};
 ~CList(){};
 void reset(){v.reset();}
 Actor * remove()
 {return(Actor *)v.remove();}
 Actor * remove(Actor *p)
 {return(Actor *)v.remove(p);}
 void insert(Actor
*p){v.insert(p);}
 Actor * next()
 {return(Actor *)v.next();}
 };

 class RList
 {
 private:
 BList v;
 RList(const RList &);
 RList & operator =(const RList &);
 public:
 RList() : v() {};
 ~RList(){};
 void reset(){v.reset();}
 TVSeries * remove()
 {return(TVSeries *)v.remove();}
 TVSeries * remove(TVSeries *p)
 {return(TVSeries *)v.remove(p);}
 void insert(TVSeries *p)
 {v.insert(p);}
 TVSeries * next()
 {return(TVSeries *)v.next();}
 };

class TVSeries
 {
 private:
 CList cast;
 char* aName;
 void insert(Actor * t)
 {cast.insert(t);}
 Actor * remove()
 {return cast.remove();}
 Actor * remove(Actor *A)
 {return cast.remove(A);}
 public:
 TVSeries():cast(){};
 TVSeries(char* A):cast()
 {aName = new char[20];
 strcpy(aName, A);}
 ~TVSeries()
 {delete aName; cast.remove();}
 Actor * Appearance()
 {return cast.next();}
 void getTVSeries()

 Overload – Issue 11 – December 1995

 Page 15

 {cout << "\t" << "TV Series:\t"
 << aName << "\n";}
 void reset(){cast.reset();}
 void ListCast();
 friend void link (TVSeries &A, Actor &B);
 friend void unlink(TVSeries & A, Actor &
B);
 };

class Actor
 {
 private:
 RList roles;
 char* aName;
 void insert(TVSeries * t)
 {roles.insert(t);}
 TVSeries * remove()
 {return roles.remove();}
 TVSeries * remove(TVSeries *A)
 {return roles.remove(A);}
 public:
 Actor():roles(){};
 Actor(char* A):roles()
 {aName = new char[20];
 strcpy(aName, A);}
 ~Actor()
 {delete aName; roles.remove();}
 TVSeries * CastOfActors()
 {return roles.next();}
 void getActor()
 {cout << "\t" << "Actor:\t"
 << aName << "\n";}
 void reset(){roles.reset();}
 void ListAppearances();
 friend void link (TVSeries &A, Actor &B);
 friend void unlink(TVSeries & T, Actor &
A);
 };

void TVSeries::ListCast()
 {
 Actor * p ;
 reset();
 while ((p=Appearance())!=0)
 p->getActor();
 }

void Actor::ListAppearances()
 {
 TVSeries * p ;
 reset();
 while ((p=CastOfActors())!=0)
 p->getTVSeries();
 }

void link(TVSeries & A, Actor & B)
 {
 B.insert(&A);
 A.insert(&B);
 }

void unlink (TVSeries & A, Actor & B)
 {
 B.remove(&A);
 A.remove(&B);
 }

int main()
 {
 //Create TV show and actor objects
 TVSeries minder("Minder");
 TVSeries sweeney("The Sweeney");
 TVSeries morse("Inspector Morse");
 Actor cole("George Cole");
 Actor waterman("Dennis Waterman");
 Actor thaw("John Thaw");
 Actor foster("Barry Foster");
 link (minder, waterman);
 link (sweeney, waterman);
 link (minder, cole);
 link (sweeney, thaw);
 link (sweeney, foster);
 cout << "List the cast of 'The Sweeney'\n";
 sweeney.ListCast();
 cout << "List the cast of 'Minder'\n";
 minder.ListCast();
 cout << "Dennis Waterman apeared in\n";
 waterman.ListAppearances();
 cout << "Unlink sweeney, waterman\n";
 unlink(sweeney, waterman);
 cout << "Dennis Waterman appeared in:\n";
 waterman.ListAppearances();
 cout << "List the cast of 'The Sweeney'\n";
 sweeney.ListCast();
 return 0;
 }

Java? Where is that?
by The Harpist

One of the hottest topics on the Internet these
days is a new language from Sun Microsystems
called Java. The purpose of this article is to in-
troduce you, as a C++ user, to Java. Some may
see it as competition, I do not. I think we should
welcome it and provide information to ACCU
members as well as invite Java users to join us.
In the long run, Overload may not be the right
place for Java topics, maybe it will be entitled to
a publication of its own – though that will have
to depend on interest as well as an editor becom-
ing available.

Java joins several other object-oriented deriva-
tives of C. The best known is C++ and the most
tenuously connected is Eiffel. There is also Ob-
jective C – the development of Tom Love and
best known in the NextStep environment. Two
important features contribute to the success of a
language. The first is that it is easy to learn,
based on prior knowledge. The second is an al-
most immeasurable quality of ‘timeliness’.

Both Eiffel and Objective C are easy languages
to learn if you are familiar with C syntax. The
thing that has inhibited the move to Eiffel is the
need to radically change one’s programming
style (or what the Americans call a paradigm).
Combining this with an early shortage of com-
pilers, the relative slowness of those that did ex-
ist and natural human resistance to changing to
something because ‘it was better for you’ re-
sulted in the initial uptake of Eiffel being slow.
Many programmers resent being told that they
should change languages because the new one
will prevent them from doing silly things.

I’d say Eiffel owes more to Pascal than C but
that’s basically irrelevant to The Harpist’s
point – Ed.

Objective C probably suffered from being pro-
moted with an excellent operating system that in
turn was bound to a specific piece of hardware.
By the time all the bits had been decoupled in
peoples minds, C++ was up and running.

So why did C++ succeed. Probably three major
elements brought this about. Initially it was
something that was evolving from C. Those us-
ing “C with Classes” did not immediately realise
that their new tools were going to radically
change their way of working. The most obvious

 Overload – Issue 11 – December 1995

 Page 16

extensions just met problems that they were hav-
ing with C. The second item was the rapid devel-
opment of Cfront which made C++ accessible to
anyone with a suitable C compiler. The over-
whelmingly important element was that C++ was
being developed by a major user of software and
software development tools. C++ spread very
rapidly through the telecommunications industry.
That C was the native language of Unix made it
even easier for C++ to spread.

Francis Glassborow takes every opportunity to
highlight the fact that evolution eventually pro-
duces different species. He believes that C and
C++ are now quite different languages, While
there is some truth in this view, it is not suffi-
cient to force the two programming cultures
apart. Many programmers need to use both lan-
guages. C++ is inextricably bound to the mis-
takes in C – rather like the problem Intel has with
the binding between the Pentium and its ances-
tors, the 8088, the 8080 and the even earlier
4040. We know that early design decisions make
little if any sense today but we are bound to
maintain the existing interface (after all that is
one of the fundamental pillars of object-
orientation).

Now suppose that another vibrant culture arose
in which there was no need to retain compatibil-
ity with the past, what language would you then
design? One design criterion would be that it
should be easy for those familiar with C and C++
(Objective C and even Eiffel) to learn. In other
words it should have a similar ‘look and feel’.
But if we were no longer constrained by the need
to use and maintain legacy code we could free
ourselves of many problems. I am not going to
list them here, but any honest C/C++ program-
mer knows that there are a multitude of problems
that make these languages tarpits for the inexpe-
rienced.

What else might we want from a language that
was to be a kind of redesigned C with classes?
Platform independence certainly must be a strong
contender. This strongly suggests some form of
virtual machine. Actually we have visited this
problem with portability before, p-code and
USCD Pascal. In the last twenty years consider-
able advances have been made, but something
along the lines of p-code with a powerful modern
interpreter would seem possible. If efficiency
mattered we could use the kind of interpreter that
converts the code to machine code as it is first
executed – i.e., a slightly slower first pass

through any piece of code but with much faster
subsequent passes.

Support for distributed processing would also
seem to be a good candidate for consideration.
Throw in multi-threading and we begin to have
something that would look attractive to modern
network users.

Over the last four years there has been an explo-
sive growth of Internet use. This has incorpo-
rated many substantial innovations. One of these
is the concept of active documents. The latest
multi-user games have full motion activity – for
example you can now fly combat missions
against other players. However much the band-
width has been improving we are far from being
able to send full motion, interactive graphics
through telecommunications networks. What we
can do is to send data to an interpreter at the
other end. In effect, we are sending a kind of p-
code to an interpreter. As players want to use
their own favourite computing platform, the data
(p-code) is platform independent, it is the inter-
preter’s job to convert it into visuals for the
owner’s hardware.

Very little of this is new – what is new is that we
have literally millions of people who are inter-
ested in using ‘active’ pages and a substantial
proportion of those want to be able to do it for
themselves. This provides an environment in
which a new programming language can take
root and flourish. Note that users will not be tied
by legacy code, but many of them will already
have some familiarity with either C or C++.

This is where Java comes in. I would counsel
against being sucked in by all the hype that is
flying around, but I would also advise you to
find out about Java. Let me list a few points:

• It is designed by a single group from Sun
Microsystems who are familiar with both C
and C++.

• It is only currently available in various al-
pha’s and beta’s

• It requires (or seems to) a 32-bit (or larger)
platform

• It requires a platform that can support multi-
threading

Currently the only versions available are a beta
for Solaris and a late alpha (admittedly with a
couple of serious bugs) for Windows NT and

 Overload – Issue 11 – December 1995

 Page 17

Windows 95. There are other versions being de-
veloped by groups outside Sun Microsystems.

There are substantial commercial interests in its
success and widespread adoption.

Despite claims by enthusiasts, there are good
reasons why systems administrators (and that
includes you if you have your own Internet con-
nection) should be wary of allowing HotJava
(interpreters for code provided remotely) to run
on their machine. How happy are you with the
idea of allowing externally provided code to run
on your hardware? As one of the things for
which Java is being advocated is updating your
software with patches, I must wonder about the
potential for updating software with viruses. If
remotely provided code can touch your disk,
there are inherent dangers.

Java is very C++ like, but many of the things that
cause the greatest problems have been replaced.
For example multithreading is built into the lan-
guage (the programmer does not have to handle
potential race conditions etc).

Java uses garbage collection (running as a low
priority thread) so the programmer no longer has
to do the memory management.

Java does not use pointers so all the bugs those
can produce have gone. Don’t start jumping up
and down and shouting about how useful point-
ers are: stop and think about whether you would
prefer the same functionality without pointers?
Java provides true array types, so this aspect of
pointers has gone. References are the norm for
passing objects around.

Built-in types are strictly and completely de-
fined. No more of the problems we have with
different implementations using different size
ints and different rules for negative values.

Pascal programmers will be delighted to find that
Java does not support any form of automatic
conversions between built-in types. If you want
to divide an int by a float and store the answer in
a long you will need to make the conversions
explicit.

Java is object-oriented. There are no procedural
aspects (except within the context of a single
class method). Like Smalltalk, all classes are de-
rived from the single superclass ‘object’ and
there is no multiple inheritance.

No multiple inheritance? Yuk! :-) – Ed.

I could go on but I think you should get the drift
by now.

Java v C++
I would be profoundly unhappy if someone sug-
gested that Java should replace C++. However,
remember that C++ claims that its great strength
is in writing programs that are fifty-thousand
lines plus. I have absolutely no doubt that C++
should and will remain a vitally important com-
puter language. Having said that let me suggest
some areas where Java might be a powerful al-
ternative.

The first is the ordinary hobbyist programmers.
These will find Java an easier language to use
without constantly shooting oneself in the foot. It
will also provide portability – that carefully
crafted demo of one’s programming skills will
run on your friends’ machines.

Next we have the professional programmer who
needs to develop small special purpose pro-
grams. Again, the advantage of platform inde-
pendence coupled with Java’s features
supporting robustness and security will prove
attractive.

What about those that want to write material to
run over a LAN? I think they will find that Java
has a lot to offer.

Those working in application areas where multi-
threading or garbage collection are advantageous
will find that Java is a strong candidate for their
work.

Of course there will be a heavy push from those
surfing the net to adopt Java for their activities.
These, I think, will provide the first impetus for
wide availability of Java interpreters and devel-
opment systems.

Conclusion
Just as I do not believe C++ replaces C, I do not
think that Java need replace either. The advan-
tage of having a third language with very similar
syntax is that experienced programmers will be
able to capitalise on their skills while choosing
the most appropriate tools for the current task. C
is ideal where efficient value based programming
is essential. C++ has great strengths where mixed
paradigm programming is important. It also has
considerable advantages for large scale pro-
gramming. Java would seem to be a good candi-
date for object-oriented, multi-threaded
programming.

 Overload – Issue 11 – December 1995

 Page 18

This is only a brief first view of a new language
derived from C. I hope that many readers will
have open minds, try Java for themselves and
feed back their experiences to ACCU members
via an appropriate publication.

The ball is now in your court.

The Harpist

Addendum from
Francis Glassborow
Some people are puzzled by the names HotJava
and Java. HotJava is a WWW browser from Sun
Microsystems that can be extended to handle a

variety of protocols (ftp, http, mail servers etc)
via applets written in Java. Java is the program-
ming language used to write these applets. Java
is a full programming langauge and can be used
(as The Harpist indicates) to do ordinary OO
programming.

Francis Glassborow
francis@robinton.demon.co.uk

If there is sufficient interest, I am happy to
run a “Java Corner” in Overload based on
your contributions – Ed.

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

In addition to my regular column on the progress of the standard, Francis Glassborow reflects on the mean-
ing of linkage and Kevlin Henney considers a couple of possible language changes that might make C++
more consistent.

The Casting Vote
by Sean A. Corfield

The location of the latest meeting was exotic
enough to make up for the relatively dull deci-
sions made: Tokyo was the venue for the No-
vember ‘95 ISO/ANSI C++ meeting.

Not that we should be doing anything exciting at
this stage of the standards process – the focus of
the committee’s work is on resolving small is-
sues now. A large number of these small prob-
lems were sorted out with the committee voting
on 31 motions, all of which dealt with one or
more “bug” in the draft.

Debugging the draft
I said “bug” because in many ways the C++
standards process can be viewed like any other
software project: we have a tight deadline and
limited resources and we have to release a prod-
uct onto the world market for which there will
effectively be no upgrades for many years. We
produced an “alpha” release this year – the first
CD – and several countries rejected it, including
France, Germany, Netherlands, Sweden and the
UK. At the moment, we are fixing the problems
identified by those alpha testers so that we can
ship a beta release next year – the second CD. If
that proves acceptable, we can ship the prere-
lease version in 1997 – the DIS – which hope-

fully will require no more than a few typos being
fixed.

So how do you manage bug reports on 700+
pages of “source”? Each module – “clause” – is
the responsibility of one member of the commit-
tee who gathers bug reports for their module,
analyses the problems and suggests possible
resolutions. A subgroup of the committee then
examines and sometimes reworks the resolution
to produce a proposal for the full committee. If
the majority of the committee think the fix will
“work”, it is accepted and the “programmers” –
the Project Editor1 and his team of helpers – in-
tegrate the resolution into the source.

Testing the fixes
This is the hard part at the moment: there are no
compilers that implement the whole draft. With-
out widespread support for, and use of, the lan-
guage features that we are “fixing” we cannot
test the solutions to any great extent. Microsoft’s
latest offering supports namespace and RTTI,
alongside templates and exception handling.

1 I intend no slight to Andrew Koenig by the
classification of “programmer” here! The Project
Editor’s job carries a tremendous amount of re-
sponsibility and is damned hard work – I don’t
believe there is a true simile within the software
development world.

 Overload – Issue 11 – December 1995

 Page 19

Soon, many UNIX vendors will also be offering
namespace and we will begin to see how this
feature behaves in use and whether the small
fixes applied at this meeting were, in fact, correct
– I believe they were.

The same is true for other parts of the standard
and especially so for the library. Although im-
plementations of parts of the library have been
available for some time, I find it hard to accept
that the gothic monstrousities that are locale and
iostream have been seriously tested in commer-
cial use.

We have to face the fact that when C++ v1.0 ap-
pears, it may have many dark untested corners
and v1.1 will be some years away – v2.0 will be
5 to 10 years away.

On the horizon
Perhaps more interesting than what we did at this
meeting is what we have yet to solve. The library
has a myriad open issues – some of you who’ve
been trying to use auto_ptr or the STL will have
already encountered some of them. Within the
language itself, there are probably only three or
four dozen known bugs that we have to solve
next time. However, two of those are long-
standing, difficult problems:

• name injection

• template compilation

We now have ideas on how to resolve these and
solutions should be available for the next com-
mittee meeting – which will be reported on in
Overload 13 (April ‘96). That’s all I have time
for – I have some template papers to write for
the post-Tokyo mailing!

Sean A. Corfield
Object Consultancy Services

ocs@corf.demon.co.uk

Some thoughts on linkage
by Francis Glassborow

I have just recently come to understand what
linkage is about in C and C++ and thought I
would share my insights with the rest of you (and
the experts can tell me where I am wrong).

I suppose most of us, who think about it, think
that linkage is something to do with the linker.
That then leaves us slightly mystified by C’s in-
ternal and external linkage. If linkage were
something to do with the linker, what is the sig-

nificance of internal linkage as opposed to no
linkage. C seems to say that internal linkage is
some sort of linkage that explicitly is not the
concern of the linker. So let me take you back to
the drawing board because this whole issue is
very important in C++ while being largely trivial
to the C programmer.

Linkage is about the declaration of names (i.e.,
the process of giving an identifier a meaning). It
is not directly connected to definitions except
that we cannot actually define something without
also declaring its identifier – that is the way lan-
guages derived from C work. We can declare
without defining but we cannot define without
declaring (actually K&R C complicated thing by
talking about tentative definitions, or is it tenta-
tive declarations? I am really sublimely uninter-
ested because I think it is just another place
where poor choice of terminology only serves to
confuse).

Now C is quite clear: you can only define some-
thing once. If you try to do it twice, either the
compiler (if it is in the same file) or the linker (if
it is in different files) will spot it and stop you.
C++ cannot work with this simple view, things
like class definitions, inline functions (yes I
know C++ uses a hack for this one and the next
one, but I will get round to that) and const
‘globals’ may need to have definitions in all the
files where they are used. Remember that the
concept of a file is largely a human artifact
though the idea of compiling in sections is valu-
able. This is why C++ has had to come up with
what is called the ‘One Definition Rule’. This
enshrines the intent that however many times
some items must appear to be defined in a pro-
gram, it must behave as if there is only a single
definition.

Now some identifiers can only be declared once:
there is no legal way of declaring them twice.
Parameters of functions are like this – they turn
up in the definition (their appearance in a proto-
type is something else and has no connection
with the names used in the definition). Such
names are said to have no linkage. If such names
are declared two or more times, it is either an
error or the scope is different (and so they only
look the same).

Mostly, identifiers can be declared more than
once. For example, the name of a function can be
both declared (as a prototype) and defined (in
either the same file or another one). Names that
can be declared more than once require linkage,

 Overload – Issue 11 – December 1995

 Page 20

that is, they have a quality that can be used at
some stage to connect the multiple instances to a
single ‘thing’. Ideally, that is all we need. Some
names are declared in contexts that mean they
cannot be redeclared and are said to have no
linkage. Other names are declared in contexts
where there may sometimes be another declara-
tion of the same name elsewhere (like function
names as opposed to parameters) – these must
possess the property of linkage.

Up to here, life is simple. However, C actually
needs redeclaration of the same name in a single
file even if the name is not supposed to leak out
of a single file context. For example, when two
structs contain pointers to each other (mutual
recursion), one must be declared before it is de-
fined:
struct A; /* just a declaration */
struct B { /* a combined declaration
 and definition */
 struct A* pntA;
 /* other members */
};
struct A { /* now its definition that
 requires linking to the
 earlier declaration */
 struct B* pntB;
 /* other members */
};

If you need this kind of data structure you must
have linkage. If you do not want the name to leak
out you must do something else as well. What C
did was to invent two flavours of linkage, inter-
nal (basically for the benefit of the compiler) and
external (largely for the linker). By default the
names of functions have external linkage and we
have to take specific action to restrict the link-
age. Remember that C hated adding keywords,
so it abused one that already existed and instead
of having intern it used static. Silly, but it no
doubt seemed a good idea at the time.

In C, types always have no linkage but in
C++ they do indeed have linkage – just to
further confuse the issue – Ed.

The problem with variables is slightly different.
The default declaration for a variable is a defini-
tion as well, so in this case we have two prob-
lems to cope with. When a global variable is
intended for use in more than one file we have to
stop the extra declarations from being redefini-
tions and causing havoc with the dumb linker
technology of the seventies. So now we intro-
duce the keyword extern which doesn’t actually
mean what it appears to mean. What it means in
the context of a global variable is that you are

only declaring the name, not defining it (the
definition is elsewhere). Global variables have
external linkage by default, just like functions
and if we want them to be restricted to a single
file (i.e., have internal linkage) we have got to
use that static keyword again. Of course static
has a perfectly valid meaning in the context of a
local variable definition where it means that the
variable must be placed in static memory. It may
be very nice to keep to not more than 32 key-
words when you want to pretend that you have
some virtual C machine that wants to store the
keyword tokens in 5-bits, but accepting a limit of
64 keywords would have made life much easier.

Before you all start writing in about that last
sentence, I’ll comment that I am assuming it
is Francis having a little joke! – Ed.

Now let me move to C++. In the early days C++
simply accepted the C concept of two flavours of
linkage. But as time has passed this has looked
increasingly artificial, as well as producing some
quite unpleasant results. For example I recently
wanted to use __FILE__ as a non-type argument
to a template.

The rules, as they currently stand, say that non-
type template arguments must either be a con-
stant of builtin type or be addresses of objects
that have external linkage (I suspect that this is
related to the way Cfront implemented tem-
plates). Now let me consider my options:
template <char[] ac> class Ta ...

won’t work because arrays will not do. This may
seem a bit of language awkwardness, but if you
think about it you will realise that allowing it
would make life difficult. So it looks as if it will
have to be:
template <char* pc> class Tc ...

So now lets move to the point of declaration of
an instance:
Tc<__FILE__>

won’t cut it. Remember that __FILE__ is a pre-
processor macro so by the time the compiler sees
your code you will be trying to instantiate a tem-
plate with a literal string.

So the next shot might look something like this:
char* file = __FILE__;
Tc<file> filename;

Fine until you declare (define) file in a second
source file and you get clobbered by the linker

 Overload – Issue 11 – December 1995

 Page 21

for redefinition. It’s no good using extern, be-
cause we want the correct string in the context of
each file. So the ‘obvious’ step is to write:
static char* file = __FILE__;
Tc<file> filename;

This actually works with Borland C++ but breaks
the current rules because the non-type argument
is required to have external linkage. I have no
doubt that there are workable alternatives but my
point is that we are suffering from an historical
separation of linkage into two flavours (I think it
was a hack). We simply will not need this dis-
tinction in C++ once namespace is generally
available. Any name that we want to keep within
the scope of a file (translation unit if you want to
be technical) can be placed in the unnamed
namespace. Such names will have external link-
age (i.e., the linker etc. can see it) but will have a
unique ‘unpronouncable’ namespace qualifica-
tion that will distinguish it from all apparently
similar names used in other files. This may
sound complicated, but it simply means that C++
now has a mechanism for stopping names leak-
ing out of files and so we no longer need two
flavours of linkage. All names can either have
linkage (with the name qualified by its name-
space), global, unnamed (and hence secretly pro-
vided with a unique qualification shared by
names in the unnamed namespace in a single
file) or named; or have no linkage because they
are inherently not redeclarable.

For this to work, we need to make all the file-
scope uses of static (both explicit and implicit,
e.g., const int j = 7; at file scope) be synonyms
for declaration in the unnamed namespace. Such
a change should simplify things for everyone.

The idea of an unnamed (secretly named) scope
is so useful that I would not be surprised to see C
adopt it in its next revision. The only apparent
problem in implementing a secret name is that it
makes true names longer. But if you, as a pro-
grammer, cannot utter the hidden name the com-
piler could always just not export the names in a
C context (that is, do what it does now). If true
names are required to support template technol-
ogy in C++ then the unutterable secret name
solves the problem. Neither C nor C++ needs to
have two flavours of linkage so let us quietly
bury them. As most programmers do not under-
stand linkage anyway, this would be a benefit to
many.

The floor is yours.

Francis Glassborow
francis@robinton.demon.co.uk

Literally yours
by Kevlin Henney

The actual type of a string literal is an artefact
from C that continues to plague C++. When seen
in the initialiser for an array of char it acts as a
short hand form of an aggregate initialiser, but in
other expressions it is a pointer to a string of
static storage duration. More accurately we
might say that a string literal refers to an un-
nameable array declared static within a declara-
tion unit:
void foo(char *bar)
{
 strcpy(bar, "foo");
}

can be considered equivalent to
static char __str_0001__[4] =
 {'f', 'o', 'o',
'\0'};
void foo(char *bar)
{
 strcpy(bar, __str_0001__);
}

Where __str_0001__ represents a compiler gen-
erated name for the dummy array that represents
the literal. This array view of string literals gives
the correct answer for sizeof, i.e., sizeof "a literal
string" gives 17 rather than sizeof(char*).

Intuitively, however, there is something wrong
here: literals are normally considered to be mani-
fest constants. Originally C had no way of de-
claring objects as constant, so there was simply
no way of expressing that a string literal was an
immutable array of char. With ANSI C came the
introduction of const – borrowed, in fact, from
the youthful C++. Also with ANSI C came the
requirement for backward compatibility. This
prevented the obvious and desirable move of de-
fining string literals as const, by taking into ac-
count the important and even more desirable aim
of not breaking almost every K&R C program
ever written.

Instead, the committee contented themselves
with saying that the type of a string literal was
not const, but any attempt to modify it would
result in undefined behaviour. This leaves im-
plementations free to put string literals in write-
protected memory. In effect, a string literal is
const but its compilation type is not, i.e., this is a
part of C’s typing expressed outside of the type

 Overload – Issue 11 – December 1995

 Page 22

system. It is as if the implementation were
equivalent to
static const char __str_0001__[4] =
 {'f', 'o', 'o',
'\0'};
void foo(char *bar)
{
 strcpy(bar, (char *)__str_0001__);
}

In C, we simply learn to discipline ourselves and
ensure that we, as programmers, only attach
string literals to const char*:
char *do_not_do_this = "bad practice";
const char *do_this_instead =
 "good practice";

We can get by with this in C, and some code
checking tools will give us a hand in shoring up
the type system. With C++ many of the same
issues remain, but there is an added complexity:
overloading. Whereas C allowed us to transpar-
ently treat string literals as const, although the
compiler front end considered them to be other-
wise, C++ defeats us with its dexterity and con-
venience:
void call_me(char* modifiable)
{
 reverse(modifiable,
 modifiable +
strlen(modifiable));
 cout << "modified: " << modifiable
 << endl;
}

void call_me(const char* unmodifiable)
{
 cout << "unmodified: "
 << unmodifiable << endl;
}
...
call_me("kenneth"); // void
call_me(char*)

In other words, the overloading is counter-
intuitive and we have no language support for
our expectations – not a better C. A solution to
this would be to consider a string literal const for
all matching purposes. In the absence of a good
match a compiler could then consider an implicit
const_cast ahead of the literal. This implicit
conversion to non-const could be marked up as
deprecated (highlighted for potential removal
from a future standard) and would elicit a diag-
nostic from good compilers. The same rules
would apply to wide character string literals.

Given that the joint standardisation committees
have thrown out the default int rule, there is no
reason that they should not at least try to fix
string literals for future generations. And fixing
is indeed the correct word: they can only be con-
sidered broken as they stand. Sean made a pro-

posal along these lines a while back, but it was
not accepted: the core working group was having
a day of indifference at the time. This was obvi-
ously not the same day the ludicrous proposal
was accepted for main’s return value to default to
0 if the programmer forgot or was too lazy to put
in a return statement. It is the compiler’s job to
diagnose, not to correct, broken programs.

I intend to raise this issue again at the next BSI
C++ panel meeting, and would be interested in
reader opinion (either directly to myself or via
Sean). Come to that, what do you think of main’s
default return value – inspiration or desperation?

Kevlin Henney
kevlin@two-sdg.demon.co.uk

I think the sanctioning of such sloppiness was
a dreadful idea – the argument in favour was
that main is a very special function, despite
the fact that it looks just like any other C++
function. There are moves afoot to exempt
main from the default int rule too – something
I shall strongly oppose! – Ed.

Anonymously yours
by Kevlin Henney

What is to struct as
union
{
 long as_long;
 double as_double;
};

is to union? The answer is, at the moment, noth-
ing.

Unions invite danger, but they have their uses.
Although less common in C++ than in C – deri-
vation covering many of the uses – C++ offers a
method to wrap them up behind a safe class in-
terface (see Stroustrup’s The C++ Programming
Language, second edition, for an example).

What anonymous unions offer is a simple flatten-
ing of name space, i.e., I do not have to refer to
the union by name followed by one of its mem-
bers, as the union member names are considered

 Overload – Issue 11 – December 1995

 Page 23

to be in the enclosing scope. Anonymous unions
may be used within other structures, in local
scope, or at file scope with internal linkage. To
all intents and purposes the members simply be-
come variables in the relevant scope, albeit at the
same offset:
if (convert(text, as_long)) ...
else if (convert(text, as_double)) ...
else ...

So what would anonymous structs offer? At first
sight they may seem a little redundant: separately
named variables at separate offsets in the enclos-
ing name space – why not just declare them as
separate variables? Consider, however, the fol-
lowing:
int first;
int second;
...
if (&first < &second) ...

Is the result defined? No. But the following
would be:
struct
{
 int first;
 int second;
};
...
if (&first < &second) ...

Members in an aggregate declared within the
same access group are contiguous with ascending
addresses, so such comparisons are well defined.
A feature like this is redundant within an enclos-

ing struct, but at file scope and in local scope an
ordering would now be present where there was
previously none. For instance, a number of
dummy opaque types could be defined statically
within a translation unit and at once be named
and ordered.

Flattening the member access path also finds use
within anonymous unions:
class number
{
 ...
private:
 ...
 union
 {
 double real;
 struct
 {
 int numerator;
 int denominator;
 };
 };
};

By imposing an ordering on members, anony-
mous structs have a role to play with regards to
systems programming, convenience, and or-
thogonality. However, they are not currently de-
fined in C++. Should they be?

Kevlin Henney
kevlin@two-sdg.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

Roger Lever continues his series on writing useful classes for debugging, Uli Breymann looks at the diffi-
culties involved in writing a correct assignment operator, Kevlin Henney revisits the Address class prob-
lem and also begins a new series on template techniques which I hope will open your eyes and expand
your mind!

Simple classes for debugging in
C++ – Part 2
by Roger Lever

Part 1 laid the foundations of a simple debugging
class. This was done by using a minimal inheri-
tance hierarchy of Base and Derived combined
with a test main() which showed object construc-
tion and destruction, along with a few common
problems. RNLI was introduced as the debugging
class via inheritance, but it is currently very ba-
sic, only outputting its creation and destruction

events. Some design decisions associated with
what RNLI would do were also discussed.

The overall gameplan for RNLI’s growth was
outlined in Part 1:

• Very basic debug class which will output
state messages

• Provide some macro magic to automatically
enable or disable debug

• Differentiating between memory allocated
statically and with new

 Overload – Issue 11 – December 1995

 Page 24

• Provide some heap walking capability to
“see” what’s in memory

• Output debugging information to a file

Macro magic
C already has a well established and well known
mechanism for placing debug code within the
source file(s) which can be easily removed. The
mechanism is to use macros, statements that the
compiler will expand (or contract to nothing)
during the precompilation phase. This expansion
or contraction can be controlled by a flag vari-
able which is used during precompilation. The
ANSI C library’s assert is an example of this,
where the assert statement is included into the
final program based on whether NDEBUG is
defined. C++ has inherited these macro tricks
and it will be used here to insert or remove RNLI
from the code. The code to do this is split into
three parts:

1) Flag status variable, either defined (in
main.cpp) or not
#define CHECK_ON
Note that CHECK_ON must be defined be-
fore the #include of rnli.h

2) Macros to either use RNLI via inheritance, or
nothing
#ifdef CHECK_ON
#define USE_CHECK : public RNLI
#else
#define USE_CHECK
#endif

3) Use a disciplined approach to class declara-
tions
class MyClass USE_CHECK
{
// whatever
};

This process auto-magically includes or removes
RNLI from the class declaration depending on
whether CHECK_ON has been defined or not:
class MyClass
 : public RNLI {}; // CHECK_ON defined
class MyClass {}; // CHECK_ON not
defined

This establishes the basic mechanism for adding
RNLI to classes and removing it again from the
final production code.

Canonical form for RNLI
Various authors of C++ books talk of a canonical
class declaration or what every class should con-

tain. Cline [1] uses the term “The Big Three” to
refer to members that will be created by the
compiler by default if the class declaration does
not include them:

• Destructor

• Assignment operator

• Copy constructor

Cline omits the default constructor, which will
also be created by the compiler. Coplien [2] has
stated a more complete list, that for any class X,
it should contain:

• A default constructor (X::X())

• A copy constructor (X::X(const X&))

• An assignment operator
(X& X::operator=(const X&))

• A destructor (X::~I())

The guiding principle here is to avoid surprises
from the compiler which will generate these dec-
larations and definitions, if you the programmer
do not, and the need arises. Of course, if you
know that the compiler will never need to gener-
ate one of these or that a compiler generated de-
fault one is fine for the task – then it can be
omitted. However, can you be that sure? Even if
you do know now, will you know in six months
time? Will your successor? Leave that visual re-
minder, declare the class in the canonical form.

There is another important benefit from these
visual reminders, they have also declared the
original designer’s intent: that RNLI is not de-
signed to support the copy construction and as-
signment operations. It has formed part of the
class documentation at the point it is most
needed (or most likely to be read) – the source.
So, RNLI becomes:
class RNLI {
public:
 RNLI()
 { cout << “RNLI constructor\n”; }
 virtual ~RNLI()
 { cout << “RNLI destructor\n”; }
private:
 RNLI& operator=(const RNLI& r);
 RNLI(const RNLI& r);
};

The assignment operator and copy constructor
are declared private to disable expressions like:
RNLI r1;
RNLI r2 = r1;

By declaring them private no-one else has ac-
cess to them. They do not need to be defined

 Overload – Issue 11 – December 1995

 Page 25

within rnli.cpp, the compiler will not issue warn-
ings or error messages. RNLI has a virtual de-
structor – why?

Virtual destructor
The virtual destructor enables the runtime
mechanism to call the appropriate destruction
routine of the object. This process ensures that
all of the allocated objects are destroyed cor-
rectly. If, for example, RNLI was declared with
an ordinary destructor it would be very easy to
engineer an accident:
// Original code and output for
comparison
Base* ptrD = new Derived;
ptrD->print();
delete ptrD;

RNLI contructor
Base constructor
Derived constructor
Derived print
Derived destructor
Base destructor
RNLI destructor

// Modified version and output
RNLI* ptrD = new Derived;
delete ptrD;

RNLI contructor
Base constructor
Derived constructor
RNLI destructor

Clearly the Base and Derived components have
not been destroyed. The fact that both Base and
Derived do have virtual destructors is irrelevant
since the runtime mechanism will never get be-
yond RNLI. Contrived? Yes, but not much. It is a
very simple mistake to make and possibly could
go unnoticed for quite a while. On the other
hand, if Derived controlled a vital resource such
as an important file or a semaphore it would be
much more noticeable!

Building up RNLI’s interface
RNLI is pretty useless right now. It has not pro-
vided any services or behaviour that will help in
a debugging process. What is needed now is to
add some real functionality to:

a) Track the creation of RNLI derived objects

b) Track the destruction of RNLI derived ob-
jects

c) Provide a mechanism to validate individual
objects

A straightforward way to provide this set of ser-
vices is to create a collection of RNLI objects. In
C++ each object has an implicit this member,

RNLI could use this during construction to iden-
tify a particular object and maintain it within its
collection. Consequently, the original object
could be verified by checking it against the cor-
responding RNLI collection item. This is not a
totally foolproof mechanism but it is adequate
for the purpose. By adding this collection capa-
bility RNLI will start to gain some substance:
class RNLI {
public: // as before plus...
 bool isValid() const
 { return (this == me); }

private: // as before plus...
 RNLI* me;
 RNLI* next;
 static RNLI* rnliHeap;
};

The me and next member variables are used to
track objects during their construction by adding
them to a static (shared between RNLIs) list –
rnliHeap. The reason for naming the list rnli-
Heap will become clear when we add another
static list to the class later.

Now that an object is identified with me and is
held in a simple list, the original object can be
verified using isValid(). This member function
will compare the object’s this member with me
and return the result.

Building up RNLI’s implementation
The implementation details for these addtional
members are:
RNLI* RNLI::rnliHeap = 0;

The construction and destruction event will still
be signalled by a message, however, the impor-
tant detail of tracking the object is now being
done.
RNLI::RNLI()
: me(this) {
 next = rnliHeap;
 rnliHeap = this;
 cout << “RNLI constructor” << endl;
}

RNLI::~RNLI(){
 assert(isValid());

 rnliHeap = me->next;
 cout << “RNLI destructor” << endl;

 me = 0;
 next = 0;
}

The destructor includes a validity check prior to
its action helping to ensure that the object being
destroyed is still valid. The RNLI pointers (me
and next) are set to zero for sanity checking.

 Overload – Issue 11 – December 1995

 Page 26

RNLI test run
The redefinition of RNLI so far has not changed
the output of the test program, what has been
done with RNLI is transparent to Base and De-
rived and the contents of main.cpp. It would be
interesting to see what happens now if a buglet is
introduced:
Base* ptrD = new Derived;
Base* ptrD1 = new Derived;
ptrD = ptrD1; //remember this one?
delete ptrD;
delete ptrD1;

Output:
Assertion failed: isValid(), file
RNLI.CPP, line 12
Abnormal program termination

Clearly what has happened is that one object is
deleted twice via the Base pointers. Previously,
there was no indication that anything was wrong
and the program appeared to be operating cor-
rectly. That is precisely the problem, since that
can take a great deal of time and effort to track
down. Here, with RNLI providing a level of
safety, a problem is identified immediately. The
diagnostic information would help to track the
problem back to the offending line of code which
in this instance is looking for delete statements.

It could be argued that aborting a program (or a
controlled crash) is a little drastic and a nicer
mechanism should be used instead. Fine – the
bottom line is to find those buglets as quickly
and as early as possible. Later, additional checks
will be introduced so that RNLI can find the er-
rant line(s) of code even more quickly and per-
haps prior to a crash. An example could be by
taking a snapshot of memory (showing the con-
tents of RNLI’s collection).

Memory allocated with new
Milestone three is to differentiate between the
mechanism used for memory allocation. To sim-
plify the issue considerably, memory is allocated
in one of three ways:

1) Statically, or before a program starts
#include “myclass.h”
MyClass instantiatedObj;
int main() { // whatever
}

2) Heap, allocated dynamically with new
#include “myclass.h”
int main() {
 MyClass* aPtr = new MyClass;
}

3) Stack, or local variable, usually allocated for
a function
void MyClass::foo(MyClass& arg) {
 MyClass temp;
}

There are plenty of variations of these three
themes but that would only complicate the mat-
ter. Discussing memory alone could take up an
entire article! However, for practical purposes
RNLI only differentiates memory allocated with
new, everything else is lumped together.

To do this requires overloading the operators
new and delete. At times there are very good
reasons (usually performance) for taking control
of memory allocation, however, it is not for the
faint hearted! The following implementation is
for the faint hearted! It is very simple and as-
sumes a vanilla setup with no other overloads of
the global new operator.
class RNLI { // as before plus...
public:
 void* operator new(size_t size);
 void operator delete(void* ptr);
private:
 static bool newAllocation;
 bool newAlloc;
 static RNLI* rnliStack;
};

The class declaration now includes operators
new and delete to help determine from where
memory is allocated (heap or elsewhere). As a
rule of thumb, if the new operator is modified
then the delete operator will also need to be
modified. The newAllocation is a simple boolean
flag indicating when new is used. The reason it is
declared static is to enable the operator new to
access it.

If it was declared without static the error mes-
sage is:

• Member newAllocation cannot be used
without an object

Perhaps the next ‘obvious’ thing to try is:
this->newAllocation = true;

However, this also fails:

• ‘this’ can only be used within a member
function

Using newAllocation as a global variable is nei-
ther appropriate or necessary since using it as a
static member provides the required functional-
ity. The newAlloc is the local (to that RNLI ob-
ject) version of newAllocation enabling the
destructor to remove the object from the correct

 Overload – Issue 11 – December 1995

 Page 27

list. The destructor simply verifies via newAlloc
whether the object was allocated via the heap or
not before destroying it.

RNLI memory allocation implementa-
tion
As usual the static variable must be initialised
separately:
bool RNLI::newAllocation = false;

In line with our faint heart approach, the new
and delete simply call the global version with the
one exception of new setting the static flag to
indicate that new was used to allocate the mem-
ory.
void* RNLI::operator new(size_t size) {
 newAllocation = true;
 return ::operator new(size);
}

void RNLI::operator delete(void* ptr) {
 ::operator delete(ptr);
}

The constructor becomes a little more complex;
first, initialise RNLI’s me with this from the ob-
ject under construction. Next check the static flag
(newAllocation) to add me to rnliHeap or rnliS-
tack, set newAlloc as required and then signal the
fact with a simple message. Finally set the static
newAllocation to false if the object was allocated
from the heap, i.e., newAllocation was true. This
is necessary to ensure that subsequent objects
will be added to the correct list.

The destructor is very similar except it uses ne-
wAlloc to decide from which list to remove the
object.
RNLI::RNLI() : me(this) {
 if (newAllocation) {
 next = rnliHeap;
 rnliHeap = this;
 newAlloc = true;
 cout << “RNLI Heap constructor”
 << endl;
 newAllocation = false;
 } else {
 next = rnliStack;
 rnliStack = this;
 newAlloc = false;
 cout << “RNLI Stack constructor”
 << endl;
 }
}

RNLI::~RNLI() {
 assert(isValid());

 if (newAlloc) {
 rnliHeap = me->next;
 cout << “RNLI Heap destructor” <<
endl;
 } else {
 rnliStack = me->next;
 cout << “RNLI Stack destructor”

 << endl;
 }

 me = 0;
 next = 0;
}

Roger has tripped over an interesting bug
here – can anyone see what it is? Consider
the following code fragment:

Base* p1 = new Derived;
Base* p2 = new Derived;
delete p1;
delete p2;

What happens to RNLI::rnliHeap in each de-
structor call? – Ed.

Test the latest version
Now that the memory routines are in place it is
time to look at the output again with a simple test
program:
int main() {
 cout << “Create D on stack” << endl;
 Derived D;
 cout << “Create ptrD on heap” << endl;
 Base* ptrD = new Derived;
 delete ptrD;
 cout << “Scope rules delete stack
item”
 << endl;
 return 0;
}

The output:
Create D on stack
RNLI Stack constructor
Base constructor
Derived constructor
Create ptrD on heap
RNLI Heap constructor
Base constructor
Derived constructor
Derived destructor
Base destructor
RNLI Heap destructor
Scope rules delete stack item
Derived destructor
Base destructor
RNLI Stack destructor

This is better. Perhaps adding pointer location
would be useful? Putting this code into the
RNLI’s constructor and destructor would do that:
cout << “location: “ << me << endl;

Summary
RNLI is coming along nicely. It now has the ca-
pability to verify objects, differentiate heap allo-
cated objects and add or remove the debug
statements using macro magic. In the process,
items such as static variables, the canonical class,

 Overload – Issue 11 – December 1995

 Page 28

operators new and delete and virtual destructors
have been touched on.

That’s it for part 2, the last part will extend RNLI
to:

• Provide some heap walking capability to
“see” what’s in memory

• Provide some random check capability
within main

• Output debugging information to a file

Roger Lever
rnl16616@ggr.co.uk

References
[1] Addison-Wesley, “C++ FAQ Fre-

quently Asked Questions”, Marshall
Cline & Greg Lomov

[2] Addison-Wesley, “Advanced C++,
Programming Styles and Idioms”,
James Coplien

A deeper look at copy
assignment

by Uli Breymann

Note: This article was given as a talk at the
ACCU meeting at Object World, Frankfurt
‘95, 9th Oct 1995

Introduction
Sometimes copy assignment of objects of de-
rived classes is a nontrivial task. Based on a pat-
tern for classes which need a special (i.e., not
system generated) copy constructor, destructor,
and assignment operator, some possible pitfalls
are shown and solutions presented. An interest-
ing result is that a safe virtual assignment opera-
tor in the presence of virtual base classes is first
made feasible with the introduction of dy-
namic_cast into the language.

Some classes need a special copy constructor
which means that it is not generated by the sys-
tem. In general, these classes also need a special
destructor and a special assignment operator.
This article concentrates on such classes only
and uses the most simple case in the examples:
each class has a private int* as pointer to the
data, the data being simply an int object, which
has to be created in the constructor and destroyed
in the destructor.

The copy constructor initialises an object with
the contents of another object by allocating
memory and copying, the destructor destroys the
object’s content, and the assignment operator
needs both operations: first destroy the old con-
tents of the object, then construct it again. In or-
der not to write the code for destroying and
constructing twice, a pattern is presented in [1],
which says exactly what is meant:
class Thing
{
public:
 Thing(const Thing& rhs)
 {
 construct(rhs);
 }
 ~Thing()
 {
 destroy();
 }
 Thing& operator=(const Thing& rhs)
 {
 // do not assign identical objects
 if (this != &rhs)
 {
 destroy();
 construct(rhs);
 }
 return *this;
 }
private:
 void construct(const Thing& rhs);
 void destroy();
};

Andrew Koenig points out, that the “example
above, despite its nice structure, still conceals
one nasty pitfall, which makes it impossible to
apply this technique in some circumstances.”
([1], to find the pitfall was left to the reader).
One of these circumstances is the use of inheri-
tance, both single and multiple inheritance, and
in fact, there is more than one possible pitfall,
mainly connected with the assignment operator.
The consequences of using inheritance in combi-
nation with the pattern above will be investigated
in more detail. To have a working example, we
complete the class Thing. In addition a further
function localAssign is introduced, which com-
bines destroy() and construct():
class Thing
{
public:
 Thing(int i=0)
 {
 ptrToThingData = new int;
 *ptrToThingData = i;
 }
 Thing(const Thing& rhs)
 { construct(rhs); }
 ~Thing()
 { destroy(); }
 Thing& operator=(const Thing& rhs)
 {
 if(this != &rhs)
 {

 Overload – Issue 11 – December 1995

 Page 29

 localAssign(rhs);
 }
 return *this;
 }
private:
 void construct(const Thing& rhs)
 {
 ptrToThingData = new int;
 *ptrToThingData =
*rhs.ptrToThingData;
 }
 void destroy()
 {
 delete ptrToThingData;
 }

 void localAssign(const Thing& rhs)
 {
 destroy();
 construct(rhs);
 }
 int* ptrToThingData;
};

Pitfall One: The pattern has to be
modified for single inheritance
Suppose there is a class AThing which inherits
from Thing and has its own local dynamic data:
class AThing : public Thing
{
public:
 AThing(int i=0, int ia=0)
 : Thing(i)
 {
 ptrToAThingData = new int;
 *ptrToAThingData = ia;
 }
 AThing(const AThing& rhs)
 : Thing(rhs)
 { construct(rhs); }
 ~AThing()
 { destroy(); }
 AThing& operator=(const AThing& rhs)
 {
 if(this != &rhs)
 { // modification:
 // base class part
 Thing::operator=(rhs);
 // same as before:
 // only local data
 localAssign(rhs);
 }
 return *this;
 }
private:
 void construct(const AThing& rhs)
 {
 ptrToAThingData = new int;
 *ptrToAThingData =
 *rhs.ptrToAThingData;
 }
 void destroy()
 { delete ptrToAThingData; }
 void localAssign(const AThing& rhs)
 {
 destroy();
 construct(rhs);
 }
 int *ptrToAThingData;
};

We see at once that the pattern is broken in the
assignment operator. localAssign() only refers to

class-local data, but clearly the Thing-subobject
within an AThing-object has to be assigned to
also. Obviously there is a missing feature: Thing
is not designed for inheritance. This aspect will
be discussed after looking at multiple inheri-
tance.

Pitfall Two: The pattern has to be
modified even more for multiple in-
heritance
Consider the following inheritance hierarchy (see
Fig. 1), where there is one virtual base class
Thing and some other classes. “Virtual” means

that there is only one Thing-subobject in every
DThing-object. This one subobject is common to
the AThing-subobject and the BThing-subobject
of a DThing-object.

As we do not discuss here system-generated as-
signment operators, it is assumed that all classes
in Fig.1 have local data requiring a special copy
constructor, destructor, and assignment operator.
For the sake of simplicity we presume a similar
structure, i.e., BThing has a private data member
ptrToBThingData, CThing has a private data
member ptrToCThingData and so on. Of course
the constructors have to initialise the base class
subobject of type Thing, if a concrete object of
one of the classes is defined in a program. The
most derived object, also called the complete
object, is responsible for the virtual base class
initialisation to avoid inconsistencies ([2],
12.6.2). If the complete object does not initialise
the virtual base class subobject, the default con-
structor is called. Further initialisations (e.g., by
the constructor of BThing) are ignored, i.e., do

Thing

AThing BThing

DThing

V V

Figure 1 Inheritance hierarchy

 Overload – Issue 11 – December 1995

not take place. As an example only class DThing
at the bottom of the hierarchy is shown in detail:

 Page 30

// now virtual inheritance
class AThing : virtual public Thing
{ // rest as before
};

class BThing : virtual public Thing
{ // rest like AThing
};

class CThing : public AThing
{ // similar to AThing
};

class DThing
: public CThing, public BThing
{
public:
 DThing(int i =0, int ia=0, int ic=0,
 int ib=0, int id=0)
 // initialisation of base class
 // subobjects, including Thing
 : Thing(i), CThing(i, ia, ic),
 BThing(i, ib)
 {
 ptrToDThingData = new int;
 *ptrToDThingData = id;
 }
 DThing(const DThing& rhs)
 // initialisation of base class
 // subobjects, including Thing
 : Thing(rhs), CThing(rhs),
 BThing(rhs)
 { construct(rhs); }
 ~DThing()
 { destroy(); }
 DThing& operator=(const DThing& rhs)
 {
 if(this != &rhs)
 {
 CThing::operator=(rhs);
 // CThing subobject
 // second modification!
 // local BThing data
 BThing::localAssign(rhs);
 // only local data
 localAssign(rhs);
 }
 return *this;
 }
private:
 void construct(const DThing& rhs)
 {
 ptrToDThingData = new int;
 *ptrToDThingData =
 *rhs.ptrToDThingData;
 }
 void destroy()
 { delete ptrToDThingData; }
 void localAssign(const DThing& rhs)
 {
 destroy();
 construct(rhs);
 }
 int *ptrToDThingData;
};

What do we see? The pattern of the assignment
operator is modified again! Remember the rule
for initialising base class subobjects only from a
complete object – there are similar reasons here.
According to the AThing pattern above, the base
class assignment operators could be called:

// buggy
CThing::operator=(rhs); // CThing
part
BThing::operator=(rhs); // BThing
part

But as we have seen, the assignment operator
also copies the subobjects, including the virtual
Thing-subobject.

That means:
CThing::operator=() calls
 AThing::operator=()
AThing::operator=() calls
 Thing::operator=()
and
BThing::operator=() calls
 Thing::operator=()

so that Thing::operator=() is called twice! This
is certainly not wanted and may be plainly
wrong. Calling Thing::operator=() twice would
be correct only if Thing was a non-virtual base
class. For virtual base classes (here Thing) op-
erator=() must be called at most for one base
class (here CThing), and all other base class ini-
tialisations (here BThing) should use their corre-
sponding local initialisations. Of course,
BThing::localAssign() can no longer be private!
The method has to be protected, which is the
third modification to the pattern. Some of these
aspects are discussed at length in [3]. The discus-
sion shall not be repeated, but the resulting stan-
dard recommendations are:

• operator=() performs a complete object
assignment.

• There should be protected member func-
tions in all base classes to allow for assign-
ment of local data.

• operator=() is responsible for assigning the
virtual base class part.

So the operator for assigning a DThing could be
written like
DThing& operator=(const DThing& rhs)
{
 if(this != &rhs)
 {
 // Thing subobject
 Thing::operator=(rhs);
 // AThing local data
 AThing::localAssign(rhs);
 // BThing local data
 BThing::localAssign(rhs);
 // CThing local data
 CThing::localAssign(rhs);
 // DThing local data
 localAssign(rhs);
 }
 return *this;
}

or better:

 Overload – Issue 11 – December 1995

 Page 31

DThing& operator=(const DThing& rhs)
{
 if(this != &rhs)
 {
 // BThing local data
 BThing::localAssign(rhs);
 // complete CThing object
 CThing::operator=(rhs);
 // DThing local data
 localAssign(rhs);
 }
 return *this;
}

The idea of encapsulation is partially negated,
because class DThing has to know a lot about its
base classes and also their base classes, but there
is no way to avoid it. The pattern for such cases
is:

• One path in the inheritance graph from the
current class to the top can be served by call-
ing operator=() for one of the base classes.
In this example, CThing::operator=(rhs) is
called.

• In order to avoid multiple assignments, all
other assignments have to be local assign-
ments for the specific base classes, in our ex-
ample by calling BThing::localAssign(rhs).

As stated above, class Thing lacks a certain fea-
ture: it is not designed for inheritance, and the
key word for this feature is polymorphism. Until
now polymorphism has been ignored in this arti-
cle, and it is not addressed at all in [3], which
provoked reactions from readers, discussed in
[5]. Polymorphism allows us to invoke the right
method for the right object at runtime. A conse-
quence is that the behaviour of an object does not
depend on the kind of access, be it via the ob-
ject’s name or a pointer (or reference) to the ob-
ject, where the pointer (or reference) maybe of a
base class type.

Pitfall Three: Is polymorphism con-
sidered?
The rationale behind polymorphism may be
shown by a simple example:
class Base
{ // ...
 virtual Base& operator=(const Base&);
};

class Derived : public Base
{ // ...
 virtual Derived& operator=(const
Base&);
};
Derived D1, D2;
Base* firstPtrToBase = &D1;
Base* secondPtrToBase = &D2;

// as wanted, Derived::operator=() is
// called here:
*firstPtrToBase = *secondPtrToBase;

Without polymorphism, Base::operator=()
would be called, and the semantics of the pro-
gram would change if we changed the type of the
pointers to Derived*.

To achieve the desired behavior in our example
classes, we have to modify class Thing first:

• The destructor must be virtual to guarantee a
proper cleanup.

class Thing
{ // ...
 virtual ~Thing() { destroy(); }

• The assignment operator must be virtual to
ensure polymorphic behavior.

 virtual Thing& operator=
 (const Thing&
rhs)
 { // ... same as before
 }
 // ...
}; // end of class declaration

As we all know, polymorphic behavior in C++ is
realised by virtual functions, which must have
the same interface, i.e., the same name and num-
ber and kind of arguments. The return type of the
functions is less restricted. It may be the same
type or a pointer or a reference to the type of the
class (or a base class of it), where operator=() is
declared. Let us list the modified prototypes of
the assignment operators of our example:
virtual Thing& Thing::operator=
 (const Thing&
rhs);
virtual AThing& AThing::operator=
 (const Thing&
rhs);
virtual BThing& BThing::operator=
 (const Thing&
rhs);
virtual CThing& CThing::operator=
 (const Thing&
rhs);
virtual DThing& DThing::operator=
 (const Thing&
rhs);

Note that we now have the same arguments all
over, instead of before const AThing& rhs, const
BThing& rhs and so on. Now let us feed our
compiler that stuff – it does not like our modifi-
cations! For example it complains within
DThing::operator=():
virtual DThing& DThing::operator=
 (const Thing&
rhs)
{
 if(this != &rhs)
 {

 Overload – Issue 11 – December 1995

 Page 32

 Thing::operator=(rhs);
 AThing::localAssign(rhs); // Oops!
 // type
mismatch
 // .. rest as before
 }
 return *this;
}

The compiler is right: rhs is a Thing, not an ATh-
ing, at least from a compile time point of view.
What we need to know is whether the actual ar-
gument passed to operator=() at runtime is of
type AThing or derived from it to maintain the
normal semantics of an assignment. Possibly a C
programmer would just try to cast rhs to the ap-
propiate type. However, an ordinary cast from a
virtual base class to a derived class is not possi-
ble, and besides, C++ has a better solution for
that. It is better, because it is type-safe, and its
name is dynamic_cast, introduced into the lan-
guage in March 1993. dynamic_cast<T*>(p)
converts its operand p into the desired type T* at
runtime, if *p is really a T or derived from T;
otherwise the value of dynamic_cast<T*>(p) is
0 [6]. dynamic_cast can also be used for refer-
ences instead of pointers (see below). Instead of
returning 0, dynamic_cast then throws an excep-
tion. Using dynamic_cast is depicted for class
DThing only, but the method applies in all de-
rived classes.
// argument named r instead of rhs
virtual
DThing& DThing::operator=(const Thing&
r)
{ // construct reference rhs from r
 const DThing& rhs =
 dynamic_cast<const
DThing&>(r);
 if(this != &rhs)
 {
 Thing::operator=(rhs);
 AThing::localAssign(rhs);
 // compiler is happy now!
 // .. rest as before

The use of dynamic_cast was briefly discussed
in [5].

At least we now know how to avoid three pitfalls
which may appear when combining copy as-
signment and inheritance.

Pitfall or not? Checking object iden-
tity with (this != &rhs)
The assignment operator checks the identity of
objects by comparing the addresses:
if(this != &rhs)
{ // do something, but only if the
 // addresses differ
}

Is that correct in any case, especially with multi-
ple inheritance? In the following code example
we will see two different addresses on the screen:
DThing aDThing;
BThing &refDB = aDThing; // legal
CThing &refDC = aDThing; // legal,
 // same object
cout << unsigned(&refDB) << endl;
cout << unsigned(&refDC) << endl;

What we see is actually the address of the
BThing representation of a DThing. But we
should not jump to conclusions or bother about
memory layout; rather let’s consult the ARM: An
explicit or implicit conversion from a pointer or
reference to a derived class to a pointer or refer-
ence to one of its base classes must unambigu-
ously refer to the same object representing the
base class.([2], 10.1.1)

What does that mean? Let’s consider a call to
DThing::operator=(const Thing&);

using the references from above:
refDB = refDC;

By means of the virtual mechanism,
DThing::operator=(const Thing&) is called,
because the operator function is virtual and
refDB is a reference to a DThing object. The
right hand side, refDC, is converted to const
Thing& according to the rule from the ARM
cited above. Within DThing::operator=(const
Thing& r), we can be sure that the argument r
represents exactly the object we mean. We need
not discuss the this pointer, but what about con-
structing rhs from r by means of dynamic_cast?
There is no problem: given a pointer v to a base
class of an object, dynamic_cast<T>(v) returns a
pointer of type T to that object – the identity is
not lost.

If assignment operators are built correctly, then
the suspected pitfall discussed is no pitfall at all.
Now consider what to do without dynamic_cast,
bearing in mind that an ordinary cast from a vir-
tual base class to a derived class is not possible?
One could think of a two-stage cast: first from
Thing* to a basic data type, e.g., unsigned*, and
then back to the desired type. Ugly, ugly! (as C-
style casts mostly are) This leads to loss of in-
formation about the object identity, which cannot
be restored (see results of cout << un-
signed(&refDB) and cout << unsigned(&refDC)
above).

The conclusion: in the presence of multiple in-
heritance and virtual base classes it is not feasi-

 Overload – Issue 11 – December 1995

 Page 33

ble to construct a safe virtual assignment opera-
tor without dynamic_cast! The advantages far
outweigh clumsy workarounds, despite the risk
of a possible exception.

One year ago, there were opinions that use of
dynamic_cast cannot be recommended [4, 5].
One reason for that, namely that compilers do
not support dynamic_cast, is not true any more,
as the complete example compiles and works
with Borland C++ 4.5 (not with Microsoft Visual
C++ 2.0. I did not test other compilers). The
main reason in [4] is that Scott Myers prefers
static type checking (as I normally do). He rec-
ommends “Avoid having concrete classes inherit
from concrete classes”.

Concrete class means that you can declare ob-
jects of this type, in contrast to abstract classes.
Objects of abstract classes can only be subob-
jects of other objects, but not selfstanding ob-
jects. But sometimes there are cases, where his
advice is not feasible:

• You develop a class by inheriting from a
concrete library class.

• You develop a class by inheriting from an
abstract class which has its own dynamic
data.

The second point is more important because as
was shown above, it is not the property ‘con-
crete’ or ‘abstract’ that leads to the use of dy-
namic_cast, but the property ‘having own
dynamic data’ (with the consequence of needing
a special copy constructor, destructor and as-
signment operator).

Of course, a concrete class without data should
probably be an abstract class, but this is not the
point here.

In a later personal communication via email,
Scott Meyers clarifies his point:

My recommendation is to make opera-
tor= protected in base classes. That way
derived class operator= functions can
call their base classes’ operator= func-
tions, but general clients don’t run the
risk of performing partial assignments.

In short, my advice is to make base
classes abstract and to give them pro-
tected assignment operators.

He is perfectly right, preferring non-virtual op-
erator=() functions. In our Thing-example we
don’t have any abstract classes, but we also don’t

have the risk of a partial assignment, because
according to the rule above operator=() per-
forms a complete object assignment. With a vir-
tual operator=() there is no chance of
inadvertently doing a partial assignment. You
have to write it down explicitly
// forced partial assignment
aDThing.CThing::operator=(aCThing);

but then you should know what you are doing!
By the way, this statement yields no compiler
error, but a runtime exception if the argument is,
for example, of type Thing, i.e., not of type
CThing or derived from it.

Conclusion
Sometimes copy assignment of objects of de-
rived classes is a nontrivial task, especially if a
class needs a special copy constructor, assign-
ment operator and destructor, normally if the
class makes use of pointers. Some possible pit-
falls have been shown for the case of single in-
heritance and multiple inheritance with special
respect to polymorphism and virtual base classes.
Solutions were presented, including the use of
run time type information (RTTI). There is no
elegant solution without dynamic_cast since you
have somehow to determine the type at runtime.
The use of dynamic_cast shown here is there-
fore applicable in a similar manner for all binary
functions taking a polymorphic class argument,
e.g., operator==().

Dr. Ulrich Breymann
breymann@alf.zfn.uni-bremen.de

References
[1] Andrew Koenig, Using constructors

for assignment, C++ Report, 7(2), Feb-
ruary 1995, p. 22.

[2] Margaret A. Ellis, Bjarne Stroustrup,
The Annotated C++ Reference Man-
ual. Addison--Wesley 1990

[3] Scott Meyers, Our friend, the assign-
ment operator, C++ Report, 6(4), May
1994, p. 51.

[4] Scott Meyers, Code reuse, concrete
classes and inheritance, C++ Report,
6(6), July-August 1994, p. 46.

[5] Scott Meyers, operator=: The readers
fight back, C++ Report, 6(9), Novem-
ber-December 1994, p. 17.

 Overload – Issue 11 – December 1995

 Page 34

[6] Bjarne Stroustrup, The Design and
Evolution of C++. Addison-Wesley
1994, p. 308.

Change of address
by Kevlin Henney

In [1], the Harpist designed a postal address class
and called for comments. Here is the class as it
originally appeared:
class Address {
 const char* const country;
public:
 enum type { UK, US, Germany, France };
 const char* get_country() { return
country; }
 virtual void printon(ostream& =cout) =
0;
 virtual void getfrom(istream& = cin) =
0;
private:
 void operator=(const Address&);
public:
 Address(const char*);
 Address(const Address&);
 virtual ~Address() = 0;
};

Representing your country
The first thing to notice is that the principle
query function, get_country, lacks a const quali-
fier. There is no actual or observable change in
state so the definition should read
const char* get_country() const
{ return country; }

I am not sure what the enumeration type is doing.
Or rather, I am sure that it serves no good pur-
pose: it is not used anywhere in the interface, and
would unnecessarily constrain the design of de-
rived classes if it were. Thus we can drop it.

I will admit it’s a personal preference, but I pre-
fer attribute style naming for attribute methods.
The use of get as a prefix suggests a change of
state: one gets a takeaway, but one does not get a
person’s name from memory. It just sounds so
very clunky and procedural, and quite unabstract.
Just as you would prefer size to get_size and
is_in_range to get_whether_in_range (or worse,
get_in_range), in this case country is preferable
to get_country. Yes, this means that in the cur-
rent implementation the country data member
needs renaming, but that should not be an issue.
Remember that the public interface should be
designed for the convenience of others and not as
an afterthought tacked onto the implementation.

As it happens, no renaming is required: the coun-
try data member is surplus to requirements so we

can drop it. Consider that if the intent is to parti-
tion derivation by country, the country will be
the same for all objects of a given derived class.
If it is the same, why are we making a copy for
every object? By making the country an actual
data member we have at once lost flexibility in
our design and created an inefficient implemen-
tation.

The country, and its implementation, depend on
the derived class. This suggests the following
declaration:
virtual const char* country() const = 0;

For one of the classes suggested by the Harpist
we now have the following lightweight imple-
mentation:
const char* UK_address::country() const
{
 return “United Kingdom”;
}

In truth, I do not believe the Harpist’s assertion
that all addresses are explicitly associated with a
country. Come Christmas, my relatives in Brazil
will receive cards explicitly addressed to Brazil,
but the addresses for my family in the UK will
not contain an explicit United Kingdom. You
might say that this is the basis of relative ad-
dressing.

In this case, country is not an abstract property
and we can provide a default implementation in
the base class:
const char* Address::country() const
{
 return “”;
}

Access, your flexible friend
The declaration order in the original class seems
somewhat arbitrary. A good rule of thumb is to
use what I call “need to know ordering”. The
items which are most relevant to public users
should go first, followed by protected, followed
by private.

This raises the rather interesting issue of what to
do with constructor declarations: in an abstract
class they are of no use to a public user as no
instances can be created. The appropriate solu-
tion to this is to declare constructors as pro-
tected. This is a useful recommendation [2] as it
serves to emphasise the abstract nature of the
class. In the absence of an abstract keyword it
serves to back up the syntactically inconspicuous
= 0 suffix.

 Overload – Issue 11 – December 1995

 Page 35

As an aside, this technique provides a useful so-
lution to an issue in Roger Lever’s article [3].
The RNLI debugging class is effectively a mixin
base class without any polymorphic behaviour.
The destructor was declared virtual for the sole
reason that proper base classes should do this.
However, you will find that most mixins need
not bother. Providing a public virtual destructor
is equivalent to saying “it is meaningful to delete
this object through a pointer to the mixin part”.
Most mixins do not represent any ownership
concept, and this is certainly not what you want
them to advertise.

The solution is to make the destructor protected.
The virtual keyword can be dropped as there is
no longer an issue of publicly deleting through a
pointer to base without calling derived class de-
structors. This will have the added benefit of
making the generated code slightly lighter and,
in the case of the RNLI class, the semantics of
derived classes remain unchanged. This last
point is important: the RNLI class is intended to
be a lightweight and unobtrusive class that can
be removed for production software. In the event
of someone actually forgetting to make a de-
structor virtual this ‘invisible’ class should not
accidentally correct it.

The Address class is a proper base class through
which objects of derived classes may be legiti-
mately deleted. This is a public property so we
leave it declared as virtual near the top of the
class.

Show and tell
The printon member is missing a const qualifier:
I would be most surprised if writing an object to
a stream changed the state of that object. If we
were implementing an archiving scheme things
would be different, but we’re not so this is a
simple query function:
virtual void printon
 (ostream& out = cout) const =
0;

Even in the archiving case, you could argue it
might be reasonable to remain const and
have the internal state information mutable (if
the externally visible ‘state’ does not change)
– Ed.

The naming of the I/O functions needs some at-
tention. I am not simply referring to the absence
of underscores: the names do not work meaning-
fully with the default arguments. Consider:

SomeAddress address;
address.get_from();
address.print_on();

Get from where? Print on what? Either you can
drop the default streams – a good idea as cin and
cout are highly overrated as default arguments –
or rename the I/O functions. Renaming is proba-
bly not a bad idea anyway as print and get are
not antonyms. There is a natural tendency to se-
lect read and write. Even though the istream and
ostream classes have read and write members I
am a little wary of using these identifiers: they
are reserved as part of the POSIX name space
and can thus be macros – I have seen them le-
gitimately implemented as such.

I am going to look at the issue of stream naming
from a different angle. What I would like to write
is something like
SomeAddress address;
cin >> address;
cout << address;

As I cannot implement the stream operators for
Address as members of istream and ostream,
they must be global. The one thing they are not,
however, is friend functions. This is a common
mistake made by novices and experts alike.
There are legitimate uses for friend classes, but
friend functions often indicate a design fault. In
this case the design fault is quite obvious: there
is no private state to befriend and global func-
tions are not polymorphic.

The stream operators are nothing more than syn-
tactic sugar: the real functionality is implemented
by calling member functions on the Address ob-
ject. To some extent we are back where we
started; what I have tried to emphasise here is the
importance of conforming to expectation, in this
case to the iostream view of the world. In this
respect we can view the process of reading from
or writing to a stream as a form of stream ma-
nipulation. Stream manipulators are functions, or
objects that behave like functions (functors [4]),
that may be called on directly on a stream or be
‘streamed’ on it. For instance, consider the famil-
iar endl manipulator:
cout << endl; // write a newline and
 // flush cout
endl(cout); // ditto

For Address we overload operator() to achieve
the same effect:
ostream &operator<<(
 ostream& out,
 const Address& address
)

 Overload – Issue 11 – December 1995

 Page 36

{
 address(out);
 return out;
}
istream &operator>>(
 istream& in,
 Address& address
)
{
 address(in);
 return in;
}

The Tower of Babel
Here is the result of the discussion so far:
class Address
{
public: // attributes (presume to add
 // others in full design)
 virtual const char *country() const;
public: // I/O as manipulator
 virtual ostream &operator(ostream&)
 const =
0;
 virtual istream &operator(istream&) =
0;
public: // destruction
 virtual ~Address();
protected: // construction
 Address();
 Address(const Address&);
private: // disallowed
 Address &operator=(const Address&);
};
ostream &operator<<(ostream&,
 const Address&);
istream &operator>>(istream&, Address&);

This class addresses all of the specific detailed
design issues raised of the original class. Let us
now consider some fundamental problems with
this as a base class.

How did we intend deriving from it? The gist of
the Harpist’s article suggests that we should be
partitioning the derived classes by country. So
for our French address we can implement the
country attribute as
const char* French_address::country()
const
{
 return “France”;
}

What about a German address? A problem that
might have been apparent to some of you earlier
becomes more obvious now: where are we ad-
dressing from? If I am holding addresses for ad-
dressing from English speaking countries only,
then the country attribute is “Germany”. From
France, it becomes “Allemagne”. In effect I have
created a class that unnecessarily hardwires a
number of assumptions.

There are a number of routes we can consider,
most of them leading to dead ends. I won’t con-
sider them here, just to say that they are exam-

ples of what Koenig calls anti-patterns [5] –
where a pattern is a successful solution strategy
to a generic problem.

If you are serious about modelling countries in a
locale-aware manner, be sure that you are very
clear about your requirements. A generic solu-
tion may prove elusive or cumbersome. Other-
wise you will find that holding the country as an
optionally blank uninterpreted text field is a dis-
armingly simple and effective solution.

The Babel Fish
Partitioning by country may prove to be less than
useful in a number of cases, raising more prob-
lems than are solved. So how to divide up the
address space? Take a look at a number of ad-
dresses, both in your own country and for others.
See any common features? There are two funda-
mental ways in which addresses differ: content
and layout.

To take an example of addresses that differ in
content, simply consider addressing a cottage on
a small island versus a department of a corpora-
tion in a shared building in a city. There is a
great deal of variation here.

One way to capture it is to leave attribute han-
dling for derived classes, and simply have the
Address base class responsible for declaring I/O
functions as pure virtuals. Assignment is not
meaningful for any of the abstract classes in such
a system, and should only be declared and de-
fined in the concrete classes at the leaves of the
hierarchy.

Alternatively, you can make addresses more
flexible by defining all the reasonable possibili-
ties in a fat interface. In such a scenario all at-
tributes exist in the interface although many are
optional. Additionally you may wish to define
some rules governing the relationship between
them. The advantage of this approach is that it
requires only one class, is flexible, and is simple
to map to form entry. The disadvantage is that
overspecification may lead to a bloated interface,
and underspecification to many changes in the
future.

Layout is presentation logic. As such it is not a
good candidate for modelling in the address hier-
archy itself. By presentation logic I mean the
possible appearance and access for a text file, a
binary file, for a console, for a window, for dia-
log entry fields, etc. To try and put all this into a
single class would be a mistake.

 Overload – Issue 11 – December 1995

 Page 37

This is what the MODEL-VIEW-CONTROLLER
(MVC) architecture (no, it’s not a paradigm as it
is often quoted as being) and, more generally, the
OBSERVER pattern [6] address. Where there is
significant variation in the way that you might
change or look at a class, capture this variation
outside the class with controllers and viewers. In
other words, separate input and output classes.
Much as you might like to believe in the symme-
try of I/O, this is a forced illusion – just try con-
vincing a laser printer to read back from the
paper it just spat out, or tell your mouse to run
around the desktop. Address concentrates on be-
ing an address and doing that one job well, with
all the fuss and bother of presentation factored
out into manageable and separate units.

Calling time at the bar
Another example recently outlined by the Harp-
ist [7] can be reviewed in the light of what I have
said. Given a class Window and a class Text, how
do we compose a class TextWindow? The Harpist
dismissed the idea of linear inheritance from
Window and some kind of association with Text,
opting instead for multiple inheritance from both
Text and Window. This is unfortunate, as the first
solution is in fact the appropriate one: a
TextWindow is no more a Text object than an ice
cream van is an ice cream, or a beer glass is a
beer. The TextWindow is merely a way of inter-
acting with a Text object – both viewing and con-
trolling in this case – but it is not the same thing
as one.

Given this separation of concerns by separation
of hierarchies, you may now see a couple of
ways in which you may wish to re-approach
modelling countries. That, as they say, is left as
an exercise for the reader.

The separation of control and view from repre-
sentation responsibility is an important idea that
helps shape your approach, giving you cleaner
designs and allowing you to tackle other tricky
problems. Another example would be handling
the difference between universal (UTC) and local
time: the former is the canonical representation
and the model, and the latter is a view. I had a
good discussion recently with Francis on more
exotic calendars, and believe me there are some
wild ways of counting the days out there! I will
leave it to Francis to say more on the subject
some time, but unless you are a historian or a
religious functionary you probably don’t need
anything more sophisticated than a system de-
fined in terms of UTC. Frequently asking your-

self “What is the problem I am trying to solve?”
should save you from the excesses of providing
your clients with business time management
software that handles calendars from fallen civi-
lisations.

Conclusion
In a well defined context the address example
can be useful but, as I showed before, a lack of
concrete requirements will lead you nowhere
useful, slowly and in circles. It seems to be a
good teaching example in that it has a simple
entry level, as well as more advanced depths to
sink your teeth and learning into. Just beware of
requirements, relevance to your system, blind
alleys, and when to stop.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

References
[1] The Harpist, “Addressing polymorphic

types”, Overload 10

[2] Taligent, Taligent’s Guide to Design-
ing Programs: Well Mannered Object-
Oriented Design in C++, Addison-
Wesley

[3] Roger Lever, “Simple classes for de-
bugging in C++ – part 1”, Overload 10

[4] James Coplien, Advanced C++: Pro-
gramming Styles and Idioms, Addison-
Wesley

[5] Andrew Koenig, “Patterns and antipat-
terns”, Journal of Object-Oriented
Programming, March-April 1995

[6] Gamma, Helm, Johnson and Vlissides,
Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-
Wesley

[7] The Harpist, “Having Multiple Per-
sonalities”, Overload 8

/tmp/late/*
Generating constants with tem-

plates
by Kevlin Henney

There’s a lot more to templates than simple type
based genericity. If you thought that containers
and generic algorithms were all they were about,
you may be in for a shock. Responding to Sean’s

 Overload – Issue 11 – December 1995

 Page 38

request for articles on templates, this is the first
of what I hope to be a series of articles focusing
on a number of the more interesting template
techniques I have come across.

Sooner rather than later
I have been reading the excellent book Designing
and Coding Reusable C++ by Martin Carroll and
Margaret Ellis. I came across the following code
and text in their discussion of macro elimination:

Sometimes, replacing a use of the pre-
processor with an inline function re-
quires some additional program
transformations. Consider this code:
#define CONTROL(c) ((c) – 64)
// ...
switch (c) {
case CONTROL(‘a’): // ...
case CONTROL(‘b’): // ...
// ...
}

Because it is illegal in C++ for a case
label to be a function call, replacing the
CONTROL macro with an inline func-
tion would result in illegal code. We can,
however, transform the code as follows:
inline char decontrol(char c)
{
 return c + 64;
}
// ...
switch (decontrol(c)) {
case ‘a’: // ...
case ‘b’: // ...
// ...
}

(Because it does the addition in decon-
trol at run time, this version is slightly
slower than the version using the
macro.)

They go on to talk about templates and type
genericity.

I’m no fan of the preprocessor: it’s a dreadful
tool whose only purpose in C++, in my opinion,
is to include header files, compile conditionally,
and be used when having to deal with poorly
designed and implemented third party libraries.
In their closing comment the authors unfortu-
nately missed the possibility that the required
transformation can be performed cleanly at com-
pile time without using the preprocessor:
template<char raw> struct control
{
 static const char value = raw – 64;
};

The constant also requires a separate uninitial-
ised definition. If your compiler does not yet
support inline initialisation of static constants
you will have to use an anonymous enum:
template<char raw> struct control
{
 enum { value = raw – 64 };
};

You lose the exact typing, but for the context in
which we plan to use it the decay to an integer is
fine:
switch(c)
{
case control<’a’>::value: // ...
case control<’b’>::value: // ...
// ...
}

We have expressed very early binding for ab-
stracted constant calculations, and inside rather
than outside the language proper. In effect this
use of templates emulates the idea of templated
constants. The struct is being used here purely as
a scope mechanism; a vehicle for implementa-
tion. If templated namespace definitions were
possible we would use these in place of the state-
less struct. Although not a plain C struct, it fails
our litmus test for an encapsulated object type
and hence we favour struct over class.

Power rangers
Every now and then I come across the need for a
relatively complex compile time calculation for
something like an array size. By “relatively com-
plex” I mean something more than a simple self
explanatory arithmetic expression. For instance,
flattening a fixed branch, fixed depth tree into an
array. It might be a short summed series or pro-
gression, but inevitably it’s me rather than the
development or runtime system that performs the
calculation. And me that inserts a comment to
explain what I think I’m doing.

Raising two to the power of a natural number is
easy: just shift it. Other numbers tend to be a lit-
tle more reluctant to fit into the binary world.
Naturally I would still like to make the compiler
do the work for me. Here’s how:
template<long radix, int exponent>
struct power
{
 static const long value =
 exponent == 0 ? 1
 : radix * power<radix,
 exponent –
1>::value;
};

 Overload – Issue 11 – December 1995

 Page 39

If you’ve not seem them before, you’re probably
saying “Whoa! You’ve got to be kidding: recur-
sive templates?”. You’d better believe it!

The Draft Standard defines a depth limit of sev-
enteen to the recursion. This prevents potentially
infinite recursion in the compiler and traps ex-
pressions that are most likely to be errors. In this
case, domain errors:
const long illegal = power<3, -
1>::value;
 // fails to
compile

In fact, the depth limit is only an implementa-
tion quantity – a minimum requirement that
compilers must support. The above example
isn’t strictly illegal but is unlikely to be com-
pilable on any machine with a fixed resource
limit – Ed.

By choosing the widest signed representation,
the compiler also has the opportunity to catch
range errors in the event of integer overflow.
Note that floating point types cannot be template
parameters, so there are limits to your template
creativity.

I have used the conditional expression to bottom
out the recursion, but an alternative technique is
available in the form of partial template speciali-
sation. As we already have a simple working ex-
ample, I will leave specialisations for another
time.

Summary
The technique described here can be used for
specifying all kinds of values as compile time
constants: simplifying bit sets, summing short
series, and calculating the inevitable factorial, to
name but a few. In most places where C required
a compile time constant C++ is more lenient, but

there are still a few cases where they are needed:
array sizes, enumeration constants, case labels,
bit fields, and template parameters.

The more general technique that this article has
illustrated is sometimes known as meta-
programming. Literally, we are executing code to
achieve results before runtime. It is an area I will
be returning to in future articles.

I hope I have demonstrated to you that not only
is the C preprocessor unnecessary for generating
derived compile time constants, but that it is in
fact inferior to the template solution.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

editor << letters;
The only person who wrote to me this time was Andrew King of Microsoft – and he only wrote to com-
plain that I was having an unfair dig at their compiler! Think of Overload when you’re writing your xmas
cards...

Hi Sean, thanks for running the news item on
Visual C++ 4.0.

Just a couple of comments on your comments:

• page 15, article on namespaces. You com-
mented that only Metaware supports this –
but as you mentioned on Page 29 – Visual
C++ 4.0 also now supports namespaces

• page 26 – your comment re: STL support in
MSC++, that the customer was on a loser(!)
– again, as you mentioned on Page 29 – Vis-
ual C++ 4.0 ships with the Standard Tem-
plate Library and compiles it quite
happily(!).

 Overload – Issue 11 – December 1995

 Page 40

Do you have Chris Simons’ email address so I
can tell him he’s on a winner if he upgrades his
VC++ to version 4.0?

Thanks

Andrew King
andrewki@microsoft.com

So what missing language feature should
I complain about now? :-)

++puzzle;
Francis sets an interesting challenge this time – with a prize! – so try not to underwhelm him with contri-
butions or he’ll be accusing me of redirecting his mail again.

Date with a Design
by Francis Glassborow

I am always on the look out for good program-
ming exercises. What I am looking for is some-
thing that can be sensibly handled at many
different levels of expertise and insight. The ad-
dress class hierarchy that the Harpist hijacked
from me in the last issue is good example.

Too often, people approach problems as if there
is an ultimate best answer to which all others are
approximations. I do not think that this is true.
For example, suppose that you had never seen a
quadratic equation before but urgently needed to
solve one. You might quite reasonably use trial
and error methods to achieve an answer (other
possibilities include finding someone else who
could solve it for you).

Now suppose that you are faced with not one,
but a large number to solve. At that stage it
would be worth looking for some general solu-
tion. You might eventually come up with a
method such as completing the square. That
would be more than adequate for a single batch,
but what would happen if you found you needed
to solve quadratic equations regularly or even get
someone else to do so for you? At that stage you
might encapsulate your algorithmic solution as a
formula. Until relatively recently that would be
the end of the trail. With the advent of modern
technology we have two further options, write a
computer program to do it, and finally produce
firmware for a calculator to do it. Actually there
is another generalisation which almost closes the
circle, use graphical methods and a computer to
produce progressively refined approximations
for solving equations. Then, of course we set off
on another journey.

At no stage is there an ultimate best solution (and
there are other solutions that I have not even
touched on that might be more appropriate in
other circumstances). What we have is a problem

and a set of resources for solving it. We need to
find the most appropriate solution judged by
some metric that seems reasonable to us.

Let’s look at that address problem. If all you are
doing is preparing a database of addresses of
members of your local golf club, consideration of
the problem of an international address is defi-
nitely over the top. On the other hand if you are
preparing a world-wide mailing system for an
international company you need to consider the
problem of the country from which a letter is
being dispatched as well as the one too which it
is being sent. There is no point in beautifully ad-
dressing a letter in flowing Punjabi if you write
the country in Punjabi as well. The country of
dispatch may eventually determine what lan-
guage the address is in, but you will be very
lucky if that happens very quickly. In other
words, efficient international addressing requires
different parts of the address to be in different
languages.

Now approach this problem from a different di-
rection. It will do very little for the novice pro-
grammer to present them with a fully worked out
hierarchy for international mailing. Even if they
can understand what you are doing they will be
completely befuddled by the methods you are
using. The ideal problem is one that can be le-
gitimately targeted at different levels of compe-
tence. No one wants to do something that could
not conceivably be of use, yet the less experi-
enced does not need to be defeated by design
issues that are well beyond their competence.

When we present answers or just discuss the de-
sign of something such as an address type we
need to provide a range of solutions so that our
readers can see that there are good solutions at
all levels. I think that this is something at which
many of us ‘experts’ are very bad. We make mat-
ters worse by treating the most complicated ver-
sion we can personally tackle as being the ‘best’
solution. I think some of us need to be willing to

 Overload – Issue 11 – December 1995

 Page 41

present a wider range of answers without deni-
grating the ones that are less demanding.

I, for one, would much like to see a carefully
documented, jargon free, working out of the de-
sign of an address type. Even more would I ap-
preciate a multi-layered one that avoided being
overly critical of the simpler layers. I get a little
tired of people who start off ‘You don’t want to
do that ... when you use that next year you will
find ...’ What I want is a helping hand to the next
level of programming and an appreciation that
solving today’s problem adequately is a good
deal better than producing bug-ridden, ill-
designed solutions through over-reaching.

So now to a problem for all of you, and one that I
hope will generate good, well argued solutions at
all levels.

The basic problem is to design a date class –
simple did I hear you say? Yes, but I want to see
designs at all the following levels (together with
some implementation guidelines and justification
for choices):

• A simple class that will handle dates in a
single format.

• A class that will handle dates in multiple
numerical formats (e.g., UK, US and Japa-
nese)

• A class that will handle non-numerical for-
mats.

• A class that handles non-numerical formats
and locale based day and month information
(e.g., the French names of days and months
for a French locale etc).

• Finally, a full extensible multi-calendar date
system (and you’d better not assume that
such a calendar will even use weeks and
months – I know of some really weird sys-
tems that have been used in the past).

Each of these levels has a target type of user. If
you want to think about the last one, remember
that historians and archaeologists often need to
try to relate dates in different systems.

I am primarily interested in the design (hierar-
chies and class definitions), documented so that
someone with a little less skill than yourself will

be able to follow it. I expect to see adequate
treatment of such problems as invalid dates
(when capturing date data, a date will often pass
through invalid states, there should be a mecha-
nism to handle dates that are left in an invalid
state.). Don’t forget that you also need to handle
incomplete dates. ‘How’ is your problem.

I hope that there will be many contributions (if
appropriate, some might finish up in CVu). Send
them direct to me. I will collate them all and
produce one or more articles based on them. I
will arbitrarily award the one I like best a copy
of the Anniversary Edition of Frederick Brooks’
“The Mythical Man Month.” In this context, “ar-
bitrary” means that I decide and the criteria are
clarity and appropriateness to the level you have
chosen to tackle. If you think that there is some
other level that I have not specified, you are free
to specify it, give an example of a target user of
the specification and then design the solution. It
will be harder to produce a good solution to the
more complicated levels because I will expect
adequate documentation of all aspects so that
most readers of Overload will get something
from your submission even if ultimately it is us-
ing methods that are far beyond them (or even
me, if the truth be known).

The deadline is January 6th (it will allow the
fully employed to spend Christmas working on
it). Some earlier submissions would help me get
a preliminary column into the next issue of Over-
load.

Francis Glassborow
francis@robinton.demon.co.uk

The prize is certainly worth winning and the
puzzle provides opportunities at all levels so
get writing! – Ed.

Books and Journals
I’m still looking for a reviewer for “Foundations of Visual C++ programming for Windows 95” – if you
have Windows 95, VC++2.0 (or later) and a CD-ROM drive, please drop me a line.

 Overload – Issue 11 – December 1995

 Page 42

Sean A. Corfield
overload@corf.demon.co.uk

Scientific and Engineering C++
reviewed by Sean A. Corfield

Title: Scientific and Engineering C++ –
An Introduction with Advanced
Techniques and Examples

Authors: Barton, Nackman

Publisher: Addison-Wesley

ISBN: 0-201-53393-6

Price: £28.95

Format: hardback, 670 pages

Barton and Nackman clearly love C++ – let me
quote from the preface: “We think you should try
C++, and we wrote this book to help you get
started.” If you’ve read the book, you’ll share my
amusement over this quote, but the question is:
“does this book live up to its title?”

An Introduction
Despite my initial scepticism, the book provides
a good grounding for non-C, or at least
FORTRAN, programmers by showing the C++
equivalent for common FORTRAN constructs,
explaining references by analogy to FORTRAN’s
pass by reference and explaining pointers with
clear diagrams. Alongside this, Barton & Nack-
man give useful hints and tips for C++ that avoid
some of the major pitfalls. The brief chapter pur-
porting to explain C++ to non-FORTRAN pro-
grammers is less successful in my view because
it ignores the “bad habits” that C programmers
often carry over to C.

Classes are introduced gently using a fairly stan-
dard example (Point and Line) but their approach
is to focus on design and use rather than imple-
mentation which I hope makes it easier for non-
C++ programmers. By page 100 we have tem-
plates and a few pages later, exception handling.
Both of these are introduced with similar focus
on design and use. This focus on designing ele-
gant, extensible solutions to a range of well
thought out problems allows the authors to intro-
duce interface classes (ABCs), relationship
classes, multiple inheritance and so on in a natu-
ral progression, allowing even relatively new
programmers to follow the discussion.

The section on Object Lifetime and Memory
Management is particularly well thought out,
constructing trace classes that are used to show,
in detail, how objects are born and when they
die, even in the presence of exception handling.

At the end of the day, however, Barton & Nack-
man shouldn’t be your only introductory text and
they agree, pointing to several other “learn C++”
books.

Advanced Techniques
The middle section of the book concentrates on
identifying commonality, encapsulation and
making the most of OOP in C++. A straightfor-
ward, focused example is presented and repeat-
edly refined as more sophisticated commonality
is identified and isolated using various inheri-
tance patterns (public and private inheritance,
single and multiple base classes, virtual inheri-
tance and so on). Templates are featured heavily
in ways that may not be familiar to many C++
programmers, e.g., to provide function structure
commonality through a template base class.

Although their intense analysis of commonality
overwhelms their examples to some extent, their
techniques should be useful in real world pro-
jects if applied with care. They do note that iden-
tifying commonality for its own sake is not
always productive.

Examples
The first serious example comes after the intro-
ductory chapters and concerns a “mesh” as used
in the numerical solution to partial differential
equations – you don’t need to understand the
maths because the example focuses on design
and respresentation. The authors develop an “ob-
vious” solution and then provide critiques and
refinements that improve the robustness to
change in a very convincing manner. They repeat
this for electrical test equipment – used exten-
sively throughout the commonality chapters –
and later for increasingly sophisticated array im-
plementations.

Quite often the authors omit initialisations, con-
structors and so on but they explain exactly what
the compiler does in these cases and justify why
they choose to rely on the generated defaults. I
was somewhat nervous of this as a general tech-
nique but there are some places where it is actu-

 Overload – Issue 11 – December 1995

 Page 43

ally safer to follow their lead, e.g., multiple in-
heritance with virtual bases.

Scientific and Engineering C++
The third section of the book covers various sci-
entific application areas (LAPACK, data model-
ing, dimensional analysis, groups and rings, 2-d
and 3-d arrays and projections). Some of this
material has appeared in their regular column in
the C++ Report and although it contains many
interesting techniques, parts of it are of much
more specialised appeal than the rest of the book.

In the light of STL and the fervour that has gen-
erated, it is interesting to note that Barton and
Nackman introduce iterators as part of their ex-
position of arrays with similar justifications – to
produce algorithms that work independently of
the container being operated on.

For me, the highlight of this section of the book
is the chapter on function objects which quickly
builds up classes for performing symbolic alge-
bra – for simplicity and power.

Summary
For FORTRAN programmers, a good starting
point but otherwise not ideal for learning C++
although since their intent is to take you beyond
that level fairly quickly, I can’t really criticise
them for it.

What everyone will read this book for is the
“Advanced Techniques” that Barton and Nack-
man present for expressing relationships and
commonality in various forms. The authors’ en-
thusiasm draws the reader in but at times that
enthusiasm runs away with them and they make
mental leaps that can take a few readings to catch
up with – I sometimes needed to put the book
down simply to take a rest from the flow of ideas
– but overall I found their style produced a read-
able but highly technical book.

All the code fragments are available by anony-
mous FTP and the authors provide an email ad-
dress (via Addison-Wesley).

If you don’t already own this book, buy it now!

Sean A. Corfield
sean@corf.demon.co.uk

News & Product Releases
This section contains information about new products and is mainly contributed by the vendors them-
selves. If you have an announcement that you feel would be of interest to the readership, please submit it
to the Editor for inclusion here.

The following news item is taken from Take-
Five’s newsletter – SNiFF+ is an open-
architecture, integrated development environ-
ment. Perhaps we’ll see a Java parser as part of
SNiFF+ soon?

SNiFF+2.1

We’ll be adding significant functionality in this
release. Look for:

• Multi-Programming-Language-Support

• Symbol table API: enables programmers to
create their own applications through access
to underlying symbol information

• DDE and dbxtra debugger integration: fur-
ther expands SNiFF+’s openness in includ-
ing a range of the most popular debuggers

• 30-50% faster project loading times

• SNiFF+ on SCO Unix, Novell UnixWare
and Linux as product available

Family of programming-language
parsers
For the first time, projects that include different
languages can be edited and managed in ONE
integrated development environment. All object-
oriented languages that have concepts similar to
C/C++ or that are extensions of C/C++, e.g.,
IDL, 4GL (TCL, PERL, Python, etc.), as well as
common procedural languages like FORTRAN
or COBOL, can be integrated thanks to
SNiFF+’s language-independency. No other de-
velopment environment offers this feature.

There are many ways of taking advantage of
SNiFF+2.1’s language-independency. For exam-
ple, companies can integrate source code from
any given language into SNiFF+2.1. On the
other hand, software systems which are already
available can be re-implemented and therefore
integrated into an object-oriented C++ develop-
ment environment. All in all, language-
independency will make SNiFF+’s C/C++ de-

 Overload – Issue 11 – December 1995

 Page 44

velopment environment more universally appli-
cable!

In order to also support proprietary languages,
SNiFF+2.1 can be used in conjunction with an
Open Parser API, thereby allowing SNiFF+ users
to write their own parsers. The Open Parser API
will be available for all SNiFF+ versions includ-
ing and subsequent to SNiFF+2.1.

Besides offering customers the possibility of
writing their own parsers for proprietary lan-
guages, TakeFive Software will also make avail-
able a family of programming-language
solutions.

TakeFive Software GmbH, Salzburg, Austria,
announced at the GUUG95 trade show in Wies-
baden, Germany, that SNiFF+2.1 can be ex-
tended with an IDL-Parser through a cooperation
with Interactive Objects Software, Elzach, Ger-
many.

Interactive Objects Software has been selected as
TakeFive’s partner for developing the IDL-
Parser. Interactive Objects has an in-depth
knowledge of CORBA development due to its
distribution of and consultancy work for
CORBA products. A further aspect of
SNiFF+2.1’s language-independency is the abil-
ity of having multiple parsers running simultane-
ously and in parallel with each other.

Europe: info@takefive.co.at, +43 662 457 915
USA: info@takefive.com, +1 408 777 1440

WWW: http://www.takefive.com

 Overload – Issue 11 – December 1995

 Page 45

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthorse Lane

Woking, Surrey, GU21 4XS
john@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 12 (February) must be submitted to the editor by January
8th.

 Overload – Issue 11 – December 1995

 Page 46

FULL PAGE ADVERT GOES HERE!

	Editorial
	Tools of the devil?
	Thanks!

	Software Development in C++
	Classes and Associations
	Introduction
	Associations
	Cardinality
	Implementation considerations
	Listings
	One-to-many association. Listing 1
	One-to-many using Class Library. Listing 2
	One-to-many using pointers. Listing 3
	One-to-one with pointers and friends. Listing 4
	One to one association using class libraries. Listing 5
	One-to-one association with associative class. Listing 6
	One to many bi-directional traverse. Listing 7
	Many-to-many bi-directional traverse. Listing 8

	Conclusion
	References

	Java? Where is that?
	Java v C++
	Conclusion
	Addendum fromFrancis Glassborow

	The Draft International C++ Standard
	The Casting Vote
	Debugging the draft
	Testing the fixes
	On the horizon

	Some thoughts on linkage
	Literally yours
	Anonymously yours

	C++ Techniques
	Simple classes for debugging in C++ – Part 2
	Macro magic
	Canonical form for RNLI
	Virtual destructor
	Building up RNLI’s interface
	Building up RNLI’s implementation
	RNLI test run
	Memory allocated with new
	RNLI memory allocation implementation
	Test the latest version
	Summary
	References

	A deeper look at copyassignment
	Introduction
	Pitfall One: The pattern has to be modified for single inheritance
	Pitfall Two: The pattern has to be modified even more for multiple inheritance
	Pitfall Three: Is polymorphism considered?
	Pitfall or not? Checking object identity with (this != &rhs)
	Conclusion
	References

	Change of address
	Representing your country
	Access, your flexible friend
	Show and tell
	The Tower of Babel
	The Babel Fish
	Calling time at the bar
	Conclusion
	References

	/tmp/late/*Generating constants with templates
	Sooner rather than later
	Power rangers
	Summary

	editor << letters;
	++puzzle;
	Date with a Design

	Books and Journals
	Scientific and Engineering C++
	An Introduction
	Advanced Techniques
	Examples
	Scientific and Engineering C++
	Summary

	News & Product Releases
	SNiFF+2.1
	Family of programming-language parsers

