

SEP 2012 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Different Strokes
ver the last few years I have found myself using a few
favourite programming languages to do my day to day
work as well as just practising or programming for

the sake of it. These days I tend to reach for Python first,
and it’s a while since I’ve written C++ in anger, while
my day job is largely C# with some Powershell thrown in
(we’ll leave arguments about whether or not that’s
programming for now). Lately I’ve also been dipping my
toes in F# and gingerly fiddling with Javascript – but only a
little.

When learning a new language, it’s natural to try to compare
features with one or more languages you already know. Taking
this a stage further, it’s also natural to try and figure out how the
new language copes with your favourite funky features of
other languages. It’s important not to get too carried away,
or course; common idioms in one language can be evil and
disruptive in another.

It’s also common to see this effect in reverse; when you’ve
become somewhat familiar with your new toy, you’ll have
discovered its own funky features and start to wonder how to
make use of those in the other languages you know. Learning the new has
informed your use of something you thought you already knew well.

Just occasionally, this back-porting of features – and even programming styles –
becomes mainstream. I doubt that C#’s designers foresaw the techniques familiar
to anyone who uses Linq a lot, much less how that technology would introduce a
more functional style of writing C# code in general. Support for templates in C++
was overhauled to help Alex Stepanov achieve his vision of a generic algorithms
library. Few – if any – people then foresaw the surge of metaprogramming and
how it in turn would inform how C++ libraries are written.

When taking features from one language and using them in another, it’s important
to make the distinction between features and styles that are informed by the
language’s existing idioms and add value, and those that only create a friction
point. On the other hand, we should not be afraid to go against the grain in order to
create new value.

O
Volume 24 Issue 4
September 2012

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Robert Bentall, Pete Goodliffe,
Paul Grenyer, Thomas Guest,
Roger Orr, Richard Polton,
Mark Radford, Mark Ridgewell,
Matthew Wilson

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

2 | | SEP 2012

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
25 Code Critique Competition

Competition 77 and the
answers to 76.

29 Standards Report
Mark Radford presents
the latest news from the
ongoing C++ Standards
process.

30 Desert Island Books
Mark Ridgewell packs for
the island.

30 ACCU Bristol and Bath
Launched
Thomas Guest reports
from the inaugural
meeting.

REGULARS
31 Bookcase

The latest roundup of
book reviews.

32 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 24.5: 1st October 2012
C Vu 24.6: 1st December 2012

Overload 112:1st November 2012
Overload 113:1st January 2013

FEATURES
3 The Curious Case of the Frozen Code

Pete Goodliffe describes the vagaries of the ‘code freeze’.

6 Learning and Applying the Personal Software Process
Robert Bentall shares his experiences from learning to
measure his own performance.

10 Anatomy of a CLI Program Written in C
Matthew Wilson dissects a simple console application to
reveal hidden complexity.

21 Patterns and Active Patterns
Richard Polton continues to explore how functional style
can improve imerative programs.

24 Keeping Up-to-Date
Paul Grenyer reflects on what we need to do to stay on top
of things.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 76
The Curious Case of the Frozen Code
Pete Goodliffe describes the vagaries of the ‘code freeze’.

There she blows!—there she blows!
A hump like a snow-hill! It is Moby Dick!

~ Herman Melville (Moby Dick)

anagers pronounce it in planning meetings. Developers utter it in
reverent awe. Process ceremonies build up around it. And I have to
stifle the gag reflex.

It’s a shout I imagine coming from a sailor in Moby Dick. Not ‘There she
blows!’ but ‘Code freeze!’ It’s about as likely, and just as fictitious.

Our hunt for another mythical state of code.

Hunting the code freeze
Code freeze is a term bandied around with, presumably, good intentions.
But often people don’t intend to say what the words actually implies.

A code freeze denotes the period between some ‘done’ point – when no
further work is expected to be performed – and the release date.

Exactly when are these points? And what happens in the middle?

 The release date is pretty easy to define: sometimes called release
to manufacture or RTM.

It’s when the Gold Master of an installer disk is burnt and sent for
duplication. In the enlightened 21st century we may not always ship
physical media, but we tend to follow the mechanical conventions
dictated by such a release schedule nonetheless. Is this useful and
appropriate? Sometimes yes; sometimes no. It does lend a useful
cadence to the delivery schedule.

 But what is the preceding ‘done’ point that initiates code freeze?
Clearly, it should be the point when we consider the code to be
complete, with all features implemented and no egregious
outstanding bugs. However, some ‘freeze’ their code at:

 the feature complete point, when all functionality has been
written, but not fully tested, and no bugs necessarily addressed.

 The point of the first alpha or beta release being made (of
course, the definition of these states is also beautifully
ambiguous).

 When a release candidate build is first made.

During this period we ‘freeze’ the code so that no further work ought to
be performed on it. However this notion is pure bunk; the code never stands
still. Whatever happens to the code, this is the phase when a final,
exhaustive regression test sweep is run on the software to ensure that it is
adequate for release.

‘Code freeze’ is the period leading up to a release when no
changes are anticipated.

At best: frozen is figurative term. The code is considered frozen for
development work, but is still open for final testing. We anticipate some
changes being made in light of these tests – if it was not possible to change
the code at all, we could just release it now regardless.

Since we’re testing to find problems, we will probably uncover a few nasty
things that need remedial work. What happens then? You must fix the
faults; which implies that the code isn’t as frozen as all that! It’s not a very
deep freeze.

At worst: the code freeze metaphor isn’t particularly useful. It’s a
misnomer.

‘Code freeze’ is a misleading term. Code never stands still, even
if you’d like it to.

A new world order
So, at code freeze, we do anticipate some final work will be required. But
we carefully monitor the software’s development, selectively including or
excluding changes in the release code.

Rather than a complete lock-down on changes, ‘code freeze’ really
signifies a new rule of order is in place for the development effort. Changes
cannot be applied blindly. Even worthwhile changes must be added with
careful agreement.

We work very hard to maintain the integrity of the release, so each change
is reviewed very carefully before inclusion. We only include changes that
are strictly necessary for the release. Not all issues or bugs found in the
‘frozen’ code will be considered for fixing post code freeze. Only ‘show
stoppers’ that will prevent a release from being made will be addressed.
Some lower priority issues may be queued for a later release, depending
on their priority. We balance the risk: it may be more important to release
the product than invest time and energy finding and fixing these faults.

Specifically, there is absolutely no more work on new features. No bugs
are ‘fixed’ without prior agreement; we prioritise the issues that have to
be addressed. This is a discipline; we do this since even the simplest feature
addition or bug fix may introduce unexpected and unwanted side effects.

So this stage of development is not so much a ‘freeze’ of the code; it is
more a very intentional deceleration. It is a mindful reduction of the rate
of change of the code line.

We slow down development work to carefully shepherd a code
line to release, managing the final fixes and changes carefully.

Careless speed costs lines (of code).

During the freeze period, some larger (and more departmental)
organisations will invoke the services of the ‘installer team’ to create the
install/distribution systems, or get to work on any remaining collateral
(artwork, text files, etc) for the final release. Personally, I believe this is
wrong – by the time you enter a ‘freeze’ all work should have been
completed, ready for final test.

Forms of freeze
It helps to consider the three different forms of ‘freeze’, and to be specific
in the terms we use. Code freeze itself is a bit too woolly and misleading.

 Feature freeze

A feature freeze declares that only bug fixes may now be committed
– no new features will be developed. This helps to avoid ‘feature

M

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
SEP 2012 | | 3{cvu}

creep’ – as we get near a scheduled release it’s always tempting to
sneak that one extra little facility in without fully considering the
risk or potential bugs that the change may introduce.

 Code freeze

We no longer work on any features, nor on any bugs that have not
been highly prioritised. We only accept fixes for ‘show-stopping’
issues. We dearly need a better, less ambiguous, name for this state.

 ‘Hard’ code freeze

No changes are allowed at all. Any change required after this point
is tantamount to bringing out the defibrillators and trying to revivify
the development team. We never really consider this state, as by the
time you get here the software has shipped, and the party has moved
on to another code line.

Branches make it work
Typically, when a code freeze is declared, we branch the code in the
revision control system. Specifically, we create a release branch. This
allows the release’s development code line to be frozen, without delaying
other work that can continue on the main code branch.

It is best practice, when working with a release branch, that absolutely no
code work takes place on the branch itself. The release branch remains,
always, stable with no speculative changes applied.

Instead, all work takes place on a spongier branch, perhaps the
development mainline. Each fix is tested and verified there and, only when
ready, is merged to the release branch. By doing this, only acceptably good
code ever arrives on the release branch.

Code should always flow between branches towards points of stability. We
‘promote’ change sets based on their proven quality.

Every change that is incorporated into the frozen branch goes through more
rigour than previous development changes:

 They are each carefully reviewed.

 They are given focused testing effort.

 They are risk-analysed, so any potential differences they introduce
are well understood and, if necessary, mitigated.

 They are prioritised – they will be carefully reviewed for
appropriateness in the release.

Branches are pivotal to a team being able to manage code freezes. Without
a release branch, all the developers would physically have to put down their
tools, and stall work for the duration of the freeze. This isn’t a good use
of time or expensive resources. Developers like to develop; soon they’ll
get itchy feet, and write code anyway.

Branch or bust.

That said, it’s a good idea to avoid concurrent work as much as possible
– it can be confusing and lead to conflicting goals and aims for the team.

But it's not really frozen!
Be careful that the ‘code freeze’ misnomer doesn't lead you into a false
sense of confidence. Often the term code freeze is pronounced to managers
to imply a more stable project state, to garner their confidence. It sounds
great, doesn’t it?

But don’t believe your code is in a better state than it is. At all times it’s
important to have a realistic appraisal of the state of your project.

Be wary that the word ‘freeze’ doesn’t tempt you to keep things rigid when
they should not be. When changes must be made, they must be made.

Length of the freeze
You must declare a digital winter for the right length of time. Like the
Narnian winter, you don’t want an unnecessarily lengthy freeze where
Christmas never comes! But have it too short, and the freeze is a pointless
exercise.

The correct period depends on the complexity of your project, the test
demands it imposes (both on people and resources: do we need to install/
configure a whole separate test platform with administrators and boffins
to keep it spinning), the scope of the changes that have gone into this
release (which may influence the level of regression testing performed),
and the resources available to devote to test and verification.

A typical freeze period size is two weeks.

Beware the Pareto principle: we often see in IT projects where the ‘last’
20% of effort expands to take up 80% of the total time (or thereabouts).
To avoid this, make sure you enter the freeze at the right point. Don’t
declare a freeze when you think you just need to ‘finish off’ a few things.
You freeze once everything is finished off.

Feel the freeze
A code freeze is the hard road to release – not a picnic in the park. Set your
expectations accordingly.

During a code freeze period expect to find bugs that you will not be able
to fix because they are not important enough to risk inclusion. This is no
longer a coding free-for-all where any code change is permissible;
otherwise you wouldn’t have declared freeze. Therefore expect to be
disappointed, and to ship product that you’d hope would be better!
4 | | SEP 2012{cvu}

It’s not unusual (or wrong) to ship software which you know
could be better.

Look on the bright side: since you’ve found them, you can fix those bugs
in the next release.

Also expect to rack up technical debt during a freeze [1]. This is one of
the few valid times to do so: when there’s no scope to make wide-ranging
repairs, you have to fix problems with stop-gap ‘paper over the cracks’
techniques to get a ‘good enough’ shipping product. But do remember to
consider this kind of work debt, not normal practice, and plan to pay this
off in the development cycles after the release.

During code freeze you will accrue technical debt. Monitor this,
and be prepared to pay the debt off soon after the release ships.

If you make a change during freeze that has serious implications, consider
if the code should be thawed and re-frozen, with a thorough test cycle
kicked off from scratch. Postpone the release and restart your code freeze
period if you have to.

Scientists tell us that freezing-thawing-freezing is bad for your health. So
be careful not to do this too many times, though, or you’ll end up with food
poisoning!

A long freeze period is a warning sign that you have not got a stable enough
codebase.

The end draws near
At the end of a code freeze period, when we reach the RTM point, the code
line is really, honestly frozen. No changes will now occur as the release
has (finally) been made. Close the release branch. Archive the code line.
Go and celebrate.

Any further changes will be made to a different code line.

The only true ‘code freeze’ is when an acceptable release is made.
This is the point that the code is finally set in stone.

This point is the real honest-to-goodness code freeze. But no one ever talks
about this!

Antifreeze
If you work well enough, it is possible to actually avoid code freeze
periods. You can skip this sordid dance altogether.

This is possible since many development teams no longer constrained by
physical manufacturing process – they ship software over internet, or
create web services that can be deployed into production servers in a
heartbeat.

The ‘disaster’ of a bug making it through to an external release is
minimised here – an online software update can be deployed to remedy
the issue in the field before many users spot the problem. However, we
still strive to avoid bugs appearing shortly after a release.

We can minimise code freeze periods by:

 Employing continuous delivery; setting up a pipeline that ushers
each build into a full deployable state. This ensures that you are
always ready to deploy.

 Establishing a good automated test coverage. These tests must cover
the code, the integration, and final user-facing aspects of the system
to give reliable feedback on the state of the product.

 Good acceptance criteria testing – tools like Cucumber [2] can be
used to ensure that the full set of high-level user requirements have
been met by the software.

 Reduce the test period – reduce scope/size of project so that you
don’t need a lengthy lock-down for each release.

Conclusion
Code freeze is a problematic term; it is a misleading metaphor. Code
doesn’t really freeze or thaw. Code is a malleable substance, constantly
changing and adapting to the world around it. What really happens is the
rate of change of development slows, and we change the focus of our work.

However, it is true that as we get near a software release we need more
discipline in the development regimen to ensure the software is of a
releasable quality.

Questions
1. Do you have a formal code freeze period in your development

practice?

2. How do you ensure that changes applied in the freeze period are safe
and appropriate?

3. Is a single person responsible for the quality of the build, or is it a
team concern? Which is the right approach, and why?

4. Does it take your project a long time to get to the code freeze point?
Why? How can you shorten this?

References
[1] The Technical Debt metaphor:

http://martinfowler.com/bliki/TechnicalDebt.html
[2] Cucumber http://cukes.info
SEP 2012 | | 5{cvu}

http://martinfowler.com/bliki/TechnicalDebt.html
http://cukes.info

Learning and Applying the
Personal Software Process

Robert Bentall shares his experiences from learning
to measure his own performance.

n the mid-1990s, I spent a couple of years as a postgraduate student at
the Royal Northern College of Music in Manchester (UK). I was
focused on becoming a professional horn player, and the accepted route

is to go through a conservatoire training.

As I did this, it became clear that the most important part of my training
was learning to listen – to myself, my teachers, my peers, and those in the
profession I wished to emulate. This relationship between between
practice, observations, and goals is shown if Figure 1.

It’s this awareness that is the foundation of performance improvement.
Without it,

 I couldn’t tell how well I was doing

 it became much harder for me to refine my goals

 my practice was less effective.

As a musician, I figured out how well I was doing by listening. But as a
software engineer, I don’t have access to such direct feedback. We
engineers need tools to gather data on how well we are doing, models to
help us interpret that data, and techniques we can use to solve common
problems.

That is the essence of the PSP training. It teaches the fundamentals of
performance management as applied to the individual software engineer.
By undergoing the training, we engineers can learn how to

 gather data about our performance

 compute measurements from that data

 interpret those measurements

 use different techniques to improve performance.

Once we’ve grasped these concepts, we are in a position to determine
which techniques and methods work best for us and to continually improve
our performance.

I began the PSP training in July 2011 and completed it about six months
later. The course was both challenging and rewarding, and it has already
started to pay dividends. The techniques I learned can be applied to good
effect on a day-to-day basis, and the breadth of the course has provided a
solid base for my future development.

History
PSP was the brainchild of Watts Humphrey (1927–2010).[1] He spent
most of his career at IBM as a senior executive, and after retiring from
IBM, he moved to the Software Engineering Institute (SEI) at Carnegie
Mellon University. While at SEI, he was instrumental in the development
of the capability maturity model. He started applying the model’s
principles to writing software, and over time, this grew into the PSP. His
obituary, found on the SEI website, contains a wealth of information on
his life.[2] An oral history, recorded with Grady Booch, gives us an insight
into the breadth and depth of his expertise.[3]

His intention was to apply personal quality management techniques to the
development of ‘module-sized’ programs so that the work of each
individual software developer would be of a very high quality.

Course structure
The course is structured as two 1-week parts, with report assignments at
the conclusion of each part. Part 1 covers measurement, planning, and
estimation. Part 2 addresses software quality, design, defect detection and
removal techniques, and process management.

Each course includes lectures, programming exercises, and data analysis.
The mix of theory, practice, and analysis is crucial to learning to apply the
techniques and figuring out how to interpret the results.

The PSP course is based on a set of training processes; each process version
builds techniques incrementally. Participants must write one or more
programs using each process and undertake data analysis exercises at the
mid-point and end of the course.

The processes have a simple linear structure comprising a sequence of up
to eight steps:

 planning

 design

 design review

 coding

 code review

 compilation

 test

 postmortem.

This provides the framework to introduce the different techniques that are
taught on the course (see Table 1).

The course covers a lot of ground in a short period of time, but because
participants are always practising the techniques learned in previous
versions of the process, it doesn’t take too long to master them.

Scripts are used to guide workflow and these provide operational
definitions [4] of each version of the process. This helps prevent important
tasks from being missed and makes it much easier to apply the techniques.
It also helps ensure consistency of data capture.

I

ROBERT BENTALL
Robert Bentall is a software engineer for an oilfield services
business. He works on the development of reservoir
engineering simulators using Microsoft C# and C++ / CLI. He
can be contacted at robertbentall@supanet.com

Figure 1
6 | | SEP 2012{cvu}

The first program I wrote used the PSP 0 process. This was intended to be
a relatively small step from my existing development approach, and it
introduced the basics of personal process measurement. By the time I got
to PSP 2.1, the process had become a little more complex. But because the
techniques had been built incrementally, it was still straightforward.

A common mistake when looking at the PSP is to think that it reduces the
developer to ‘development by checklist’ and that it enforces the use of a
waterfall. Both concerns are misplaced. It’s straightforward to work
iteratively within each version of the PSP, and while the use of scripts to
guide workflow may seem alien, I found it liberating – I no longer had to
worry about forgetting to do something. It freed me up to concentrate on
the problem I should be solving.

What are the options for taking the course?
There are three options for people wanting to take the course:

 attend one of the SEI courses [5]

 obtain the materials and self-teach [6]

 work with a coach.

For me, the prospect of an SEI course was remote, so I opted to work with
a coach. Working with a coach proved to be very interesting and
worthwhile. Although anyone can just follow the book and materials, it is
much easier with support and external feedback.

The course materials are readily available. [6] The course textbook, PSP
– A Self-Improvement Process for Software Engineers, [1] provides all the
theory needed, and an open-source tool, the Process Dashboard, makes
metrics collection easier. [7]

Completing the course took me about 300 hours, including the time I spent
writing extra programs and reworking several of my analyses. The target
time for completing both parts of the course is 150 hours, and there are
significant benefits to be gained just by completing the first part. This
means that for an investment of 50 to 100 hours, we can gain much of the
technique and insight needed to introduce personal quality management
into our work.

Lessons learned during the PSP training
The course imparts a large amount of valuable information, and I know I
will continue to use the techniques I’ve learned. The lessons I have learned
can be divided logically into two groups:

 techniques

 conclusions about my performance.

Techniques

The course provides an opportunity to practise new techniques in a safe
environment:

 a structured approach to estimating the size, quality, and cost of
software deliverables

 effective project tracking and status reporting

 classification and analysis of defects

 performing personal design and code reviews

 program verification

 measuring and managing quality.

Each one of these can be applied in isolation to target a specific problem.
This means that once I’d learned the techniques I could introduce them
progressively into my daily work. Although all the techniques are valuable,
the design and code reviews stand out as surprisingly powerful.

My conclusions about my performance

It’s important to be cautious about the conclusions we draw with respect
to our own performance. I was learning new techniques and drawing
conclusions from small sets of data. Both factors should cause us to be
tentative in our interpretations, so please keep this in mind as you read my
conclusions.

I found that my size and time estimation accuracy improved a little during
the course (Figure 2, which shows size-estimating errors for Programs 2
to 9 and Figure 3, which shows time-estimating error for Programs 1 to 9).

I’ve used control charts [8] to show changes in my performance during the
course. These were invented in the 1920s by Walter Shewhart and made
popular by his pupil W. Edwards Deming. They can be used to understand
the variability within a time series dataset, which enabled me to identify
where significant changes have occurred. At least 5 points per process are
needed, so these results are intended only for illustration. For more details
on use of control charts, refer to the book by Don Wheeler. [9]

I have split the data so that Programs 1–4 are considered as one process
and Programs 5–9 are considered as a separate process. The logic for this
is that the earlier programs were written using different versions of the PSP
but Programs 5–9 were all written using one version, PSP 2.1. I calculated
the process mean and control limits using the normal rules. Zone A
corresponds to ± 3 standard deviations, Zone B to 2, and Zone C to 1.

For the size estimation, I made these tentative conclusions:

 I was going from continually underestimating by a large amount to
estimates balanced around zero.

Techniques

Process Version

Process
discipline and
measurement

Estimation
and planning

Quality
management
and design

PSP
0

PSP
0.1

PSP
1.0

PSP
1.1

PSP
2.0

PSP
2.1

Process measurement

Coding standard process
improvement proposals,
size measurement

Size estimation, test
reports

Task planning, schedule
planning

Design reviews, code
reviews

Design templates

Ta
bl

e
1

Figure 2
Figure 3
SEP 2012 | | 7{cvu}

 The variability of estimates was improving slightly: Zone C was
moving from ±85% to ±60%.

For time-estimating accuracy, the tentative conclusions were that I was
improving a little:

 My process average improved from -120% in the first five programs
to -10% in the second four programs.

 The variability of estimates improved: Zone C is ±75% for first five
programs and ±40% in last four programs.

These results do not mean that my size- and time-estimating accuracy will
continue to improve in the future, merely that I improved as I progressed
through the programs.

There were some interesting patterns in the defects I injected. I rarely made
significant errors in the structure of my programs (e.g., class design,
relationships between classes, etc.), but the most expensive ones were
design errors, typically related to algorithm structure. I also found that 50%
of the total defect fix cost was due to only 8% of the defects (as seen in
Figure 4).

This chart is derived by taking the cost of fixing each defect and ordering
it by phase injected and descending fix cost. The fix cost values are then
plotted cumulatively as a percentage of the total fix cost for all defects.
Vertical lines mark phase boundaries. Fix cost is the time taken to fix a
defect, from the point at which the defect is first found to the point at which
the fix is completed.

This profile is really interesting, because once I recognized the pattern, it
became possible to design filters to reduce or even eliminate the issue. For
example, I found that in the earlier programs, I was not specifying error
behaviour accurately enough to allow me to code it without error. I
introduced a check into my design review to prompt me to validate the
expected error behaviour. This went some way to trapping these defects
earlier in the process.

More generally, the PSP training emphasizes the use of individual
developer reviews of design and code as a very powerful defect-detection
technique. Personal defect data provide an excellent basis for tuning
reviews to find the kinds of defects typically injected.

Although individual developer reviews are not as effective as properly
conducted team-based inspections, they can still find a very significant
percentage of the defects in a software artefact. A 2006 study by Cisco
Systems found that individual developers inspecting their own code would
find approximately 50% of the defects that were found by the team review.
[10]

In PSP, ‘Yield’ is used to measure the effectiveness of defect-removal
processes and is the ratio of defects found divided by total defects in the
system at that point in time. I found that I was consistently getting 70% to
80% yield before the compile stage, meaning that only 20% to 30% of the
defects were being found during compile and test (Figure 5).

In PSP, a defect is counted each time an artefact from a previous phase
needs to be corrected. This could be an error in a design document, in test
data, or in code. This chart therefore tells us the percentage of errors that

are corrected before compile. A similar chart can also be plotted using the
fix cost of each defect, which allows derivation of a fix cost profile for the
development process.

Again I’ve used a control chart to show changes in my performance during
the course. Looking at this data, my performance seemed to stabilize fairly
quickly. I’ve opted to treat Programs 3–9 as one process, purely because
that seems the most natural separation based on the precompile yield.

I had less success with the design verification techniques. Although they
are good if they can be mastered, I found they didn't significantly increase
my defect detection rate but did consume significant effort. I suspect that
with further practice on my part I will become a lot more efficient and
effective.

PSP has a rich set of metrics that provide insight into our development
habits. The examples given are just a small subset that I’ve used to illustrate
some of the lessons I have learned.

How I apply lessons learned

The wonderful thing about the techniques is that they are all independent.
I can employ just the techniques I need, when I need them. This allows me
to introduce them to my work progressively. For example,

 I started tracking most of my projects using the techniques taught on
the PSP course as soon as I had learned them. They provided a
simple graphical approach to demonstrate progress against plan.

 I developed and used a process for guiding defect resolution with a
client. This facilitated clear communication, more accurate plans,
and better management of the project.

 when I’m estimating cost, size, and schedule, I use the PSP
techniques to do the estimates.

Going beyond the PSP: the team software process

One of the interesting points identified by Watts Humphrey was that after
completing the course, most PSP trained developers tended not to apply
techniques in their day-to-day work. This was primarily because of the
levels of self-discipline required and the environmental challenges faced
by the developer. [11] To address this finding, he went on to develop the
Team Software ProcessSM. [12] This process took the techniques of the
PSP and applied them to the work of software teams. When applied
correctly, the techniques have improved the quality, cost, and schedule
record of software development teams. [13]

Closing thoughts

It’s been a big investment to complete the course. However, the course
teaches something pretty fundamental. It’s about learning to listen to
ourselves as software engineers, and about understanding how we can use
the information we hear to improve our performance. In some areas of my
performance, I am starting to see the benefits, although it has taken time.

I know of no other training program that provides a consistent, complete
grounding in pretty much all the tools needed to improve performance. In
that sense, I suspect the course is unique.

Figure 5
Fi

gu
re

 4
8 | | SEP 2012{cvu}

Achieving ‘master level’ performance in any field takes a lot of effort. The
oft-quoted number is 10,000 hours of practice over 10 years.[14] Viewed
in that light, 300 hours doesn’t seem so bad. Perhaps we shouldn’t be
surprised that becoming a good programmer takes a lot of time.

In one of his interviews, Watts Humphrey noted that he was taking
techniques already in existence and scaling them to apply to the individual
software engineer. [15]

What has been fascinating as I’ve gone through the training is that I’ve
become much more aware of this. Many of the problems that software
developers face on a day-to-day basis have already been solved. We just
need to recognize this and understand how to apply the solutions.

My advice? Do the course.

References
[1] Humphrey, Watts S.: PSP: A Self-Improvement Process for Software

Engineers, Upper Saddle River, New Jersey, USA, Addison-Wesley
Professional, (2005).

[2] Carnegie Mellon University: http://www.cmu.edu/news/archive/
2010/October/oct28_wattshumphreyobit.shtml (accessed 10 May
2012).

[3] Pearson Education, Informit, An Interview with Watts Humphrey:
http://www.informit.com/promotions/
promotion.aspx?promo=137746 (accessed 10 May 2012).

[4] W. Edwards Deming, Out of the Crisis (1st ed.), Cambridge, MIT
Press (2000), 276.

[5] Carnegie Mellon University:
SEI Training, http://www.sei.cmu.edu/training/?location=main-
nav&source=1358 (accessed 11 May 2012).

[6] Carnegie Mellon University:
SEI Training, http://www.sei.cmu.edu/tsp/tools/student/
?location=tertiary-nav&source=5784 (accessed 2 July 2012).

[7] The Software Process Dashboard Initiative,
http://www.processdash.com/ (accessed 11 May 2012).

[8] Wikipedia, Control chart, http://en.wikipedia.org/wiki/
Control_chart (accessed 11 May 2012).

[9] Wheeler, Don: Understanding Variation-The Key to Managing
Chaos, Knoxville, Tennessee, USA, SPC Press Inc. (1993).

[10] Cohen, Jason: Best Kept Secrets of Peer Code Review, Beverly,
Massachusetts, USA, SmartBear Software (2006), as cited in Oram,
Andy and Wilson, Greg (eds.), Making Software: What Really
Works, and Why We Believe It, Cepastopol, California, USA,
O’Reilly Media Inc. (2010) 336.

[11] Pearson Education, Informit, An Interview with Watts Humphrey:
http://www.informit.com/articles/article.aspx?p=1625324
(Accessed 2 July 2012)

[12] Carnegie Mellon Software Institute, Team Software Process,
http://www.sei.cmu.edu/tsp/ (accessed 11 May 2012).

[13] Jones, C., Software Engineering Best Practices, New York,
McGraw-Hill (2009) 293-298.

[14] Ericsson, K.A., Krampe, R. Th., and Tesch-Romer, C.: ‘The Role of
Deliberate Practice in Expert Performance’, Psychological Review
(1993) 103, 363-406.

[15] Pearson Education, Informit, An Interview with Watts Humphrey,
Part 21: The Personal Software Process, http://www.informit.com/
articles/article.aspx?p=1614506 (accessed 11 May 2012).

Software
Engineering
(part-time)

MSc in

����������	
������������	����������
���	����	�������	����������������
������	����	����������

���������	�������������	��������
������ ������
��������������
	�����	��������	������!�	�������

����������"�	����#���������������
�	�������	� ��	������������������
����������������	��

��������	���	�����������������
�	��������� ��	������	��	���	��
���
�� �$������ �����%��	�
SEP 2012 | | 9{cvu}���&������&�&��&�!

http://www.informit.com/articles/article.aspx?p=1614506
http://www.informit.com/articles/article.aspx?p=1614506
http://www.sei.cmu.edu/tsp/
http://www.informit.com/articles/article.aspx?p=1625324
http://en.wikipedia.org/wiki/Control_chart
http://en.wikipedia.org/wiki/Control_chart
http://www.sei.cmu.edu/tsp/tools/student/?location=tertiary-nav&source=5784
http://www.sei.cmu.edu/tsp/tools/student/?location=tertiary-nav&source=5784
http://www.processdash.com/
http://www.sei.cmu.edu/training/?location=main-nav&source=1358
http://www.sei.cmu.edu/training/?location=main-nav&source=1358
http://www.informit.com/promotions/promotion.aspx?promo=137746
http://www.informit.com/promotions/promotion.aspx?promo=137746
http://www.cmu.edu/news/archive/2010/October/oct28_wattshumphreyobit.shtml
http://www.cmu.edu/news/archive/2010/October/oct28_wattshumphreyobit.shtml

Software Anatomy # 1
Anatomy of a CLI Program Written in C
Matthew Wilson dissects a simple console application

to reveal hidden complexity.

want to stop thinking! More precisely, I want to stop thinking about
basic things. More accurately, I want to stop thinking about fundamental
things.

During our 2011–12 Christmas trip back to Blighty I had the singular
pleasure of spending 90 densely-conversational minutes in a London pub
with Chris Oldwood and Steve Love talking about, as Steve coined it
‘fundamental, not basic’ issues of programming. Steve related tales of
former colleagues’ frustrations with having to think about ‘basic things’,
to which he offers the above apposite correction. Thinking about
fundamental things is not a waste of time. The fact is, software
development is still a very young field, as those of us who try hard at our
practice know all too well – we do not even use basic terms such as ‘error’
properly or definitively [1].

The more software I write, the more I am concerned with fundamental
things. The trains of thought, and the concomitant changes to my practice,
that prompted me to start (and soon pick up again) my ‘Quality Matters’
column, mean that I can no longer develop software in quite the same ways
as before. I must perforce consider quality, and most particularly failure,
a lot more – diagnostics, contracts, testability, and so on – when I write
even simple programs.

But there’s a limit to how interesting such concerns can be, and how
productive they can let one be, and I’ve reached it, at least in one area of
programming: it’s time for me to start drawing some lines in the sand when
it comes to command-line interface (CLI) programming. I’ve been writing
CLI programs in C for 25 years (and in other languages for considerable
times too). I’ve been using program-generating wizards for almost 20
years. But these tools are well past use-by-date, not only in terms of the
environments within which they run, but also regarding the state of the art
of the language(s), libraries, and (good) practices that they employ.

Now I want to identify definitively the ‘anatomies’ of CLI programs,
solidify them in libraries and program generating wizards, and just crack
on. I also seek, wherever possible, to identify ways in which the boilerplate
aspects of programs can be abstracted without detracting from flexibility
or transparency, such that their visual impact can be hidden/diminished,
thereby increasing the transparency of program-specific code (and, in a
real sense, increasing the ‘average’ transparency of all the code that I
write).

Ideally, I’d like to be able to begin this series of articles with an oracular
stipulation of the definitive taxonomy of software anatomies and a
presentation of matrices of program-area module-type language, then
distil them in subsequent instalments for particular programming areas in
a simple fait accompli. Certainly I do have some strong feelings in this area,
e.g. where diagnostic facilities should be located in dependency graphs.
Problem is, I don’t (yet) know them all: that’s what I’m hoping to identify
as we go.

So, where to start? Because I’ve done a tremendous amount of CLI
programming (in C, C++, C#, and Ruby) this last couple of years, I do have
strong feelings about CLI program anatomies, and much (and varied)

experience to back them up. So, the plan is to work bottom up, starting with
CLI programs written in C. Naturally, I hope (and request!) to receive
plenty of feedback to these articles from you gentle readers, since I cannot
expect to have captured all good and bad practices, even in those areas in
which I’m most experienced.

Anatomy
First I should explain the use of the term ‘anatomy’. Simply, I’m interested
in both logical structure and physical structure, so I chose anatomy as an
umbrella term, rather than having to constantly refer to ‘both logical and
physical structure’. Hopefully it’ll catch on.

For example, it’s useful that the core elements of a CLI program be (more)
testable, particularly in automated test harnesses. Both physical and logical
dependencies impact on this. If the core program functionality is located
within the same physical file as main(), that increases the difficulties in
compiling and linking it into a test harness – we’ll be forced to use some
Feathers-like pre-processor manipulation [2]. Conversely, if the core logic
depends on specific third-party ‘general services’ libraries – e.g.
diagnostic logging, contract enforcement, database manipulation – these
will significantly increase the difficulty and scope of the testing.

I hope to elucidate the impacts of both aspects of program anatomy as this
series progresses.

Logical layers of components/services
Another aspect in which I’m very interested is the layering of the logical
dependencies. Considering just a CLI program, we can identify a number
of components/services that may be found:

 Operating System services;

 Language Runtime services;

 Language Standard Library components;

 Diagnostic services (including Diagnostic Logging, Runtime
Contract Enforcement, Code Coverage, Memory-leak Detection);

 Command-line Parsing component;

 other 3rd-party library services/components; and, of course

 all the programmer-written code: process command-line arguments;
decide what to do; do it.

It seems pretty uncontentious to claim that Operating System services must
be ready and available to Language Runtime services, and that Language
Runtime services must be ready and available to all other components/
services. However, I think there will be some equivocation on what the
dependency graph looks like beyond that point, and that will also depend
on language and program type. All I will stipulate for now is Figure 1; I’ll
revisit this graph many times in the coming series.

Example program: slsw
The only way I know to go about this is to use an example, starting simple
and building up to what I consider to be a releasable standard, or until I
run out of stream or space (or time!). After fluffing around with several
different programs I’ve settled on rewriting an existing tool slsw (slash
swap), which, er, swaps slashes in its input to its output.

I

MATTHEW WILSON
Matthew is a software development consultant and trainer for
Synesis Software who helps clients to build high-performance
software that does not break, and an author of articles and
books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.
10 | | SEP 2012{cvu}

For this first article there are several simplifications:

 no diagnostic logging;

 most-basic contract enforcement, using assert(); and

 assumption that it is a standalone program. In reality it is one of a
suite of related, and similarly implemented tools, the significance of
which, to program generation and coding practice, will be discussed
at a later time.

Let’s dig in.

Step 1 – Initial version
The first step is shown in Listing 1. I trust it’s largely self-explanatory; the
use of stdin and stdout via the in and out variables is a minor sop to
revisibility (see sidebar) in light of what’s to come.

The implementation is all very well if:

 we only want to read from standard input and write to standard
output;

 we only want to swap backslashes to slashes; and

 you don’t have to ask the program how to use it.

Step 2 – Read from file / stdin, write to file / stdout
Let’s deal with the first of these issues, limitation to using standard input
and standard output. While UNIX-like filter programs [3] are most often
used in this manner, it is also useful, and therefore common practice, to
allow filenames to be specified for the input and/or output, as in:

 $ slsw input.txt output.txt

Furthermore, in order to cope with the situation of wanting to write to a
named file while still reading from standard input, it's also common to
interpret a filename of ‘-’ as meaning read from (or write to) standard input
(or standard output); this was discussed in more detail in my article about
CLASP [4].

Without resorting to use of any other libraries, we can support almost all
of this properly by changing the two lines declaring and assigning to our
FILE* variables, as shown in Listing 2. (NOTE: for reasons of brevity, in
this case I do not test and close FILE* variables, since streams are closed
by the runtime when the program exits; it is best practice to do so explicitly
in general.)

The reason it’s only almost proper is because the command-line flag --,
by convention, is used to specify that all subsequent arguments be treated
as a value, regardless of whether they begin with (or consist solely of) a
hyphen. In the case of slsw, this would allow for specification of a file
named ‘-’. I’m ignoring this, because the issue was dealt with in the
CLASP article, and, as you’ve probably guessed, I’m going to have to plug
CLASP in pretty soon.

The code in Listing 2 works well in the normative case. But it’s opaque,
and not something anyone would write with any justified pride. Much
worse, it (mis-)handles non-normative behaviour by undefined behaviour:

Over the last decade of writing about software, I’ve become increasingly
engaged with the notion of studying the history of a given source code
entity throughout its life. As a consequence of many such studies, it’s
become clear that there are many practices – whether accidental or
deliberate – that can significantly affect the ease with which such
historical studies may be conducted.
As you may know, gentle readers, I’m always seeking out precise
definitions for software development concepts (mainly to aid in clearing
the ever-gathering fog of future shock in my own mind), and I
occasionally suggest new names for such. I like to think I do the former
reasonably well, but concede readily that I often stumble in the latter.
And so you have been warned.
With a little help – though the blame remains all my own – from the
ACCU General list members, I’ve devised two names for the two
concepts described above:
 Revisiology is the study of source control entity histories;
 Revisibility is the degree of ease by which an understanding of the

(the nature and purpose of) differences in revisions of a source
control entity can be gleaned. Revisibility is of particular interest (to
me, at least) where it may be strongly affected by decisions made in
aspects of coding in which choices exist. For example, the new code
added from Step 2 Step 3 is highly revisible. (That it’s not good
code, in so far as it builds upon poor coding present in Step 2, is
incidental to its revisibility, though not to its fitness otherwise!)

How far I will take these terms, and for how long, is yet to be determined,
but I’ll certainly be using them throughout this series of articles. (I
reserve the right to rename them, though, if someone suggests better
alternatives.)

Revisiology and Revisibility

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv)
{
 FILE* in = stdin;
 FILE* out = stdout;
 int ch;
 for(; EOF != (ch = fgetc(in));)
 {
 if('\\' == ch)
 {
 ch = '/';
 }
 fputc(ch, out);
 }
 return EXIT_SUCCESS;
}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char** argv)
{
 FILE* in = (argc < 2 || 0 == strcmp("-",
 argv[1])) ? stdin : fopen(argv[1], "r");
 FILE* out = (argc < 3 || 0 == strcmp("-",
 argv[2])) ? stdout : fopen(argv[2], "w");
 int ch;
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}

Li
st

in
g

1
Listing 2

Fi
gu

re
 1
SEP 2012 | | 11{cvu}

passing the name of an unreadable input file causes a segmentation fault
(on Mac OS-X, and likely on other systems also). Yikes!

Clearly, we have to check for failure to open named files.

Step 3 – Failure handling
For reasons of pedagogy and revisibility alone, I fix the non-normative
issue in the manner shown in Listing 3; if this were to be the (near-)final
implementation of the program, I would instead process detecting and
processing the path arguments together, and much more clearly.
Thankfully, I don’t have to, because that’s already too much silliness and
wasted effort in command-line argument processing. It’s time to call in
CLASP.

Note that, according to UNIX convention, the non-normative output – that
which occurs when the program is not achieving its primary purpose: in
this case the contingent reports in the unrecoverable condition handlers just
added – is marked with the program name, and the normative output is not
(as it would stop it being of any use as a filter).

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char** argv)
{
 char const* inName = NULL;
 char const* outName = NULL;
 FILE* in = (argc < 2 || 0 == strcmp("-",
 inName = argv[1])) ? stdin :
 fopen(inName, "r");
 FILE* out = (argc < 3 || 0 == strcmp("-",
 outName = argv[2])) ? stdout :
 fopen(outName, "w");
 int ch;
 if(NULL == in)
 {
 int const e = errno;
 fprintf(stderr, "slsw: could not open '%s'
 for read access: %s\n", inName,
 strerror(e));
 return EXIT_FAILURE;
 }
 if(NULL == out)
 {
 int const e = errno;
 fprintf(stderr, "slsw: could not open '%s'
 for write access: %s\n", outName,
 strerror(e));
 return EXIT_FAILURE;
 }
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}

int main(int argc, char** argv)
{
 clasp_arguments_t const* args;

 int const cr = clasp_parseArguments(
 CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE
 , argc
 , argv
 , aliases
 , NULL
 , &args
);

 if(0 != cr)
 {
 fprintf(stderr, "slsw: failed to parse
 command-line: %s\n", strerror(cr));
 return EXIT_FAILURE;

 }

 else
 {
 char const* inName = NULL;
 char const* outName = NULL;
 FILE* in = stdin;
 FILE* out = stdout;
 int ch;
 clasp_argument_t const* arg;

 if(clasp_checkValue(args, 0, &inName,
 NULL, &arg))
 {
 if(0 == arg->givenName.len)
 {
 if(NULL == (in = fopen(inName, "r")))
 {
 int const e = errno;
 fprintf(stderr, "slsw: could not open
 '%s' for read access: %s\n",
 inName, strerror(e));
 clasp_releaseArguments(args);
 return EXIT_FAILURE;
 }
 }
 }

 if(clasp_checkValue(args, 1, &outName,
 NULL, &arg))
 {
 if(0 == arg->givenName.len)
 {
 if(NULL == (out = fopen(outName, "w")))
 {
 int const e = errno;
 fprintf(stderr, "slsw: could not open
 '%s' for write access: %s\n",
 outName, strerror(e));
 clasp_releaseArguments(args);
 return EXIT_FAILURE;
 }
 }
 }

 for(; EOF != (ch = fgetc(in));)
 . . .
 clasp_releaseArguments(args);
 return EXIT_SUCCESS;
 }
}

#include <systemtools/clasp/clasp.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static clasp_alias_t aliases[] =
{
 CLASP_ALIAS_ARRAY_TERMINATOR

};

Listing 4 (cont’d)
Li

st
in

g
4

Li
st

in
g

3

12 | | SEP 2012{cvu}

Step 4 – Using CLASP (longhand)
Plugging CLASP straight into main(), giving Listing 4, results in a file
of nearly triple the size. (For sure, it’s a lot more transparent than the mess
of Step 3, but still …) As touched upon in [4], it’s almost never the right
thing to plug it straight into main() along with your program logic. This
issue of where different parts of the program should go is one of the main
themes of this article, which I’ll go into in a lot more detail later. For now,
just go along with the incremental steps, if you don’t mind.

Hopefully it’s all pretty self-evident in light of the CLASP article [4], with
the probable exception of the check on givenName’s length: this uses a
feature of CLASP whereby ‘-’ arguments that are not preceeded by --
and thus would usually be interpreted as flags are instead interpreted as
values if the CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE parsing
flag is specified, and identified as such by having non-empty givenName
(and resolvedName, for that matter), which no other values ever have;
only when the value is present and is not ‘-’ do we open a file, rather than
accept the built-in stream. (Note to self: perhaps some more transparency-
engendering macro/function – e.g. clasp_valueIsSingleHyphen()
– might be a good addition to the next release.)

(NOTE: once again, revisibility influences the declarations of clflags,
as it allows me to add/remove flags in a manner – one-per-line – that is
isolated and unambiguous. This tactic I employ in real work.)

Step 5 – Using CLASP::Main
Although, in my opinion at least, the code in Step 4 is much improved in
transparency – as well as actually properly handling all the required
command-line permutations, don’t forget – it is actually a good deal more
verbose. Furthermore, although not shown in the listing, in the actual code
I made two mistakes. The first was in comparing cr less than 0, rather than
not equal 0: easy to do, hard to spot, even harder to test against (since
clasp_parseArgument() failures are exceedingly rare [4]). The
sec ond wa s i n omi t t i ng t he f i r s t t wo ca l l s t o
clasp_releaseArguments(): again, easy to do, and hard to spot.

Thankfully, CLASP::Main, a CLASP extension library, provides a way
to avoid (mis-)writing this boilerplate from program to program, via
initialisation-function layering, obviating both my real mistakes. Applying
it gives Step 5, as shown in the differential Listing 5.

Although the code is a lot clearer, we’ve still not much reduced the number
of source lines. Now is a good time for me to foreshadow one of the themes
of this study: considering how much of program source is dedicated to
(uninteresting) boilerplate.

The still-small actual ‘doing’ logic – the for-loop – is drowning in a much
bigger function steeped in ‘deciding’ logic – the command-line handling
– and support/boilerplate logic. The delineations between the deciding and
the doing, and the interesting and the uninteresting, are points of interest
in program anatomy.

#include <systemtools/clasp/clasp.h>
#include <systemtools/clasp/main.h>
#include <errno.h>
. . .
static clasp_alias_t aliases[] =
. . .
static
int clasp_main(clasp_arguments_t const* args)
{
 char const* inName = NULL;
 . . .
 if(clasp_checkValue(args, 0, &inName, NULL,
 &arg))
 . . .
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}

int main(int argc, char** argv)
{
 int const clflags = 0
 | CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE
 ;
 return clasp_main_invoke(argc, argv,
 clasp_main, "slsw", aliases, clflags, NULL);
}

. . .
static clasp_alias_t aliases[] =
{
 CLASP_FLAG(NULL, "--help",
 "invokes this help and terminates"),
 CLASP_ALIAS_ARRAY_TERMINATOR
};
static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 clasp_argument_t const* arg;
 if(clasp_flagIsSpecified(args, "--help"))
 {
 clasp_showUsage(
 NULL
 , aliases
 , "slsw"
 , "Synesis Software SystemTools
 (http://synesis.com.au/systools)"
 , NULL
 , "Swaps slashes in text"
 , "slsw [... options ...] [<input-file>|-]
 [<output-file>|-]"
 , 0
 , 1
 , 6
 , clasp_showHeaderByFILE
 , clasp_showBodyByFILE
 , stdout
 , 0
 , 76
 , -4
 , 1
);
 return EXIT_SUCCESS;
 }
 if(0 != clasp_reportUnusedFlagsAndOptions(args,
 &arg, 0))
 {
 fprintf(
 stderr
 , "slsw: unrecognised argument: %s\n"
 , arg->givenName.ptr
);
 return EXIT_FAILURE;
 }
 if(clasp_checkValue(args, 0, &inName, NULL,
 &arg))
 . . .
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}
. . .

Li
st

in
g

5
Listing 6
SEP 2012 | | 13{cvu}

Step 6 – Implementing ‘--help’ flag
It’s time to start handling some flags, starting with the conventional
‘--help’ flag: display usage information and quit. Listing 6 shows the
differential changes for Step 6.

Disregarding the somewhat alarming use of magic numbers, and assuming
your willingness to read the CLASP docs for clasp_showUsage(), this
should be reasonably easy to understand. But none of it’s interesting:
nothing more than more boilerplate.

I’ve also corrected an earlier oversight: So far, passing an unrecognised
flag to the program will be treated as a file name (Steps 1–3) or silently
ignored (Steps 4–5), neither of which is appropriate. We need to employ
clasp_reportUnusedFlagsAndOptions() (see [4]), as shown,
after all known flags/options are processed explicitly.

Packaging concerns

As of Step 6, only 8 of the 100+ source code lines are actually to do with
the business of swapping slashes! Even though that’s probably a smaller
ratio than would be the case in most programs of greater complexity of
purpose, it’s still not unrepresentatively low. From my experience in
writing CLI programs, it’s invariably the case that the wood is obscured
by the trees. And this brings me back to two of my areas of interest:
coupling and code generation.

As I mentioned in the introduction, I want to be able to start to think less
about fundamental issues upon which there is general agreement, and to
update my long-in-the-tooth code generation wizards accordingly, and, as
a consequence of both, write better software more rapidly.

I’ve been threatening C Vu with writing a series of articles on program
anatomy for an embarrassingly long time now, and despite my
procrastinations (righteous and otherwise) have been thinking about the
subject a lot. Consequently, I’ve come to the position that all CLI program
logic that is ‘written’ by the author – i.e. is not part of standard, system,or
third-party libraries; this includes code that might be wizard-generated at
the author’s behest – can be considered to comprise the following
behavioural/anatomical groups:

 Decision logic: the code that works out what needs to be done and
which component(s) will do it;

 Action logic: the code that does the work deemed necessary by the
decision-logic; and

 Support logic: all the other stuff, including command-line parsing,
diagnostic logging, and so forth.

Of course, now I’ve said it, it looks blindingly obvious, and not the least
original. Furthermore, it’s very likely to apply, albeit with differences, to
other types of link-units; I’ve just not given them as much thought yet, so
don’t want to jump the gun.

But the point I want to proselytise in this article (and the others that’ll look
at different types of link-units and different languages) is that it’s not just
a thinking taxonomy: it’s a doing one.

Let’s consider again our little slsw program. As of Step 6 we can divide
the code into the three groups as follows:

 Decision:

 Detection of the ‘--help’ flag, and invocation of third-party
(CLASP) library functions to respond; or

 Detection of 0–2 command-line values, and invocation of third-
party (CLASP) and standard library functions to open named
files (and deal with failure to do so);

 Invocation of the fgetc() / fputc() for-loop; and

 Issuing of return value EXIT_SUCCESS.

 Action:

 The fgetc() / fputc() for-loop; and

 The invocation of clasp_showUsage().

 Support:

 All 6 #includes;

 Definition of aliases array; and

 All of main().

One could argue that detecting and handling the ‘--help’ flag could, by
virtue of its conventional nature, be classed as support logic, but I don’t
think that’s helpful. Rather, it’s decision and action logic that can be wizard
generated.

Step 7 – Abstracting out ‘--help’ action logic
The obvious next step is to implement ‘--version’. But if we follow what
was done for ‘--help’ that’s going to pad out our ‘main’ (clasp_main())
even more. Innately (or experientially, at least) I have qualms about the
anatomy of the program as it stands: all logic is clumped together. So, let’s
first start making things a bit more transparent by abstracting out the
‘--help’ implementation – the action logic – into a worker function
show_help() (see Listing 7).

Step 8 – Implementing ‘--version’ flag
Given the foregoing two steps, the implementation of the ‘--version’ flag
is simple and obvious, as shown in Listing 8. Take note that the major,
minor, and revision version numbers – 0, 1, and X (currently 8) – are
specified in two places! This is a clear violation of DRY SPOT ([5], [6],
[7]), and it won’t surprise you in the least to learn that I actually fluffed it
and got them out of step during the development. We’ll deal with this soon,
after we deal with the problem that our slash swapping action logic is
drowning in a sea of main()s.

Step 9 – Abstracting out slash-swapping action logic
You can really see the influence of revisibility in this one: I’ve abstracted
out the slash-swapping action logic into the slsw() function by providing
a forward function declaration and then extract-as-function refactored
right where it sits, as shown in Listing 9. Now clasp_main() is almost
entirely, ‘cleanly’, composed of decision logic: I think that’s a major

. . .

static
void show_help(FILE* stm);

static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 if(clasp_flagIsSpecified(args, "--help"))
 {
 show_help(stdout);
 return EXIT_SUCCESS;
 }
 if(clasp_checkValue(args, 0, &inName, NULL,
 &arg))
 . . .
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}
. . .
static
void show_help(FILE* stm)
{
 clasp_showUsage(
 NULL
 , aliases
 . . .
);
}

Listing 7
14 | | SEP 2012{cvu}

improvement, and sits well with our understanding of its purpose in
deciding what to do, and not worrying about how that’s done.

Note that every code change since Step 1 is code that can, and probably
should, be generated by a wizard.

Step 10 – Windows-compatible swapping
So far, we’ve spent most of our time looking at command-line handling,
and haven’t taken a look at all at the slash-swapping action logic itself. One
of the first things that jumps out is that it is UNIX-specific: it assumes that
backslashes are ‘wrong’ and forward slashes are ‘right’. (To be sure, this
is true, but it’s not the view of the entire computational world.) We can

. . .

static clasp_alias_t aliases[] =
{
 CLASP_FLAG(NULL, "--help",
 "invokes this help and terminates"),
 CLASP_FLAG(NULL, "--version",
 "displays version and terminates"),
 CLASP_ALIAS_ARRAY_TERMINATOR
};

static
void show_help(FILE* stm);
static
void show_version(FILE* stm);

static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 if(clasp_flagIsSpecified(args, "--help"))
 {
 show_help(stdout);
 return EXIT_SUCCESS;
 }
 if(clasp_flagIsSpecified(args, "--version"))
 {
 show_version(stdout);
 return EXIT_SUCCESS;
 }
 if(clasp_checkValue(args, 0, &inName,
 NULL, &arg))
 . . .
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}
. . .
static
void show_help(FILE* stm)
. . .
static
void show_version(FILE* stm)
{
 clasp_showVersion(
 NULL
 , "slsw"
 , 0
 , 1
 , 8
 , clasp_showVersionByFILE
 , stm
 , 0
);
}

Li
st

in
g

8 . . .
static clasp_alias_t aliases[] =
. . .
static
int slsw(
 FILE* in
, FILE* out
);
static
void show_help(FILE* stm);
static
void show_version(FILE* stm);

static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 if(clasp_checkValue(args, 1, &outName,
 NULL, &arg))
 {
 . . .
 }
 return slsw(
 in
 , out
);
}
static
int slsw(
 FILE* in
, FILE* out
)
{
 int ch;
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}
. . .

Listing 9
Listing 10

static
int slsw(
 FILE* in
, FILE* out
)
{
#if defined(_WIN32)
define SLSW_AMBIENT_CHAR_ '\\'
define SLSW_ALT_CHAR_ '/'
#elif defined(UNIX) || \
 defined(unix)
define SLSW_AMBIENT_CHAR_ '/'
define SLSW_ALT_CHAR_ '\\'
#else
error Operating-system not discriminated
#endif
 char const srch = SLSW_ALT_CHAR_;
 char const repl = SLSW_AMBIENT_CHAR_;
 int ch;
 for(; EOF != (ch = fgetc(in));)
 {
 if(srch == ch)
 {
 ch = repl;
 }
 fputc(ch, out);
 }
 return EXIT_SUCCESS;
}

SEP 2012 | | 15{cvu}

address this within the newly separated slsw() function, as shown in
Listing 10.

Step 11 – Implementing ‘--reverse’ flag

Having got to an implementation of slsw() that works correctly on both
UNIX and Windows, it's now time to provide the more sophisticated
behaviour that is provided by the extant slsw tool: to be able to ‘reverse’
the ambient swapping (something that is very useful when writing on one
operating system about coding on another, as it happens). We’ll support
this by adding support for a ‘--reverse’ flag, as shown in Listing 11.

Step 12 – Added ‘--mode’ option, and sophisticated
behaviour
Of course, once you start to add sophistication, it’s often tempting to add
more. We can readily imagine a future version of such a tool needing to

Li
st

in
g

11 . . .
static clasp_alias_t aliases[] =
{
 CLASP_FLAG("-r", "--reverse",
 "reverses the swapping from non-ambient=>
 ambient to ambient=>non-ambient"),
 CLASP_FLAG(NULL, "--help",
 "invokes this help and terminates"),
 CLASP_FLAG(NULL, "--version",
 "displays version and terminates"),
 CLASP_ALIAS_ARRAY_TERMINATOR
};
static
int slsw(
 FILE* in
, FILE* out
, int reverse
);
. . .
static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 clasp_argument_t const* arg;
 int reverse = 0;
 if(clasp_flagIsSpecified(args, "--help"))
 . . .
 if(clasp_flagIsSpecified(args, "--version"))
 . . .
 reverse = clasp_flagIsSpecified(args,
 "--reverse");
 if(0 != clasp_reportUnusedFlagsAndOptions(args,
 &arg, 0))
 . . .
 if(clasp_checkValue(args, 1, &outName,
 NULL, &arg))
 . . .
 return slsw(
 in
 , out
 , reverse
);
}
static
int slsw(
 FILE* in
, FILE* out
, int reverse
)
{
#if defined(_WIN32)
define SLSW_AMBIENT_CHAR_ '\\'
define SLSW_ALT_CHAR_ '/'
#elif defined(UNIX) || \
 defined(unix)
define SLSW_AMBIENT_CHAR_ '/'
define SLSW_ALT_CHAR_ '\\'
#else
error Operating-system not discriminated
#endif

 char const srch = reverse ? SLSW_AMBIENT_CHAR_ :
 SLSW_ALT_CHAR_;
 char const repl = reverse ? SLSW_ALT_CHAR_ :
 SLSW_AMBIENT_CHAR_;
 int ch;
 for(; EOF != (ch = fgetc(in));)
 . . .
 return EXIT_SUCCESS;
}

Listing 12

. . .
static clasp_alias_t aliases[] =
{
 CLASP_OPTION("-m", "--mode",
 "specifies the mode for slash swapping.
 'ambient' changes non-ambient slashes to
 ambient slashes, and is the default if mode
 not specified; 'back' changes slashes to
 backslashes; 'forward' changes backslashes
 to slashes; 'invert' inverts all slashes;
 'reverse' does the opposite of 'ambient'.",
 "|ambient|back|forward|invert|reverse"),
 CLASP_OPTION_ALIAS("-a", "--mode=ambient"),
 CLASP_OPTION_ALIAS("-b", "--mode=back"),
 CLASP_OPTION_ALIAS("-f", "--mode=forward"),
 CLASP_OPTION_ALIAS("-i", "--mode=invert"),
 CLASP_OPTION_ALIAS("-r", "--mode=reverse"),
#ifndef SLSW_NO_BACKWARDS_COMPATIBILITY
 CLASP_OPTION_ALIAS("--reverse",
 "--mode=reverse"),
 /* backwards compatibility */
#endif
 /* SLSW_NO_BACKWARDS_COMPATIBILITY */
 CLASP_FLAG(NULL, "--help",
 "invokes this help and terminates"),
 CLASP_FLAG(NULL, "--version",
 "displays version and terminates"),
 CLASP_ALIAS_ARRAY_TERMINATOR
};
/* detect operating system */
#if defined(_WIN32)
define SLSW_OS_IS_WINDOWS
#elif defined(UNIX) || \
 defined(unix)
define SLSW_OS_IS_UNIX
#else
error Operating-system not discriminated
#endif
enum slsw_mode_t
{
 /* pseudo-modes */
 SLSW_MODE_AMBIENT = 0,
 SLSW_MODE_REVERSE,
 /* real modes */
 SLSW_MODE_INVERT,
#ifdef SLSW_OS_IS_UNIX
 SLSW_MODE_B2F = SLSW_MODE_AMBIENT,
 SLSW_MODE_F2B = SLSW_MODE_REVERSE,
#endif
#ifdef SLSW_OS_IS_WINDOWS
 SLSW_MODE_B2F = SLSW_MODE_REVERSE,
 SLSW_MODE_F2B = SLSW_MODE_AMBIENT,
16 | | SEP 2012{cvu}

#ifdef SLSW_OS_IS_UNIX
define SLSW_AMBIENT_CHAR_ '/'
define SLSW_ALT_CHAR_ '\\'
#endif
 int ch;
 for(; EOF != (ch = fgetc(in));)
 {
 switch(ch)
 {
 case SLSW_AMBIENT_CHAR_:
 if(SLSW_MODE_AMBIENT != mode)
 {
 ch = SLSW_ALT_CHAR_;
 }
 break;
 case SLSW_ALT_CHAR_:
 if(SLSW_MODE_REVERSE != mode)
 {
 ch = SLSW_AMBIENT_CHAR_;
 }
 break;
 }
 fputc(ch, out);
 }
 return EXIT_SUCCESS;
}

. . .

Listing 12 (cont’d)

expand its abilities as illustrated by Listing 12: in addition to the existing
‘ambient’ and ‘reverse’ modes, it now also supports ‘backward’ and
‘forward’ slashes, and inverting of whatever is encountered, all via the new
‘--mode’ option. Each mode has a flag alias, and the ‘--reverse’ flag
becomes a flag alias for backwards-compatibility.

I leave as an exercise for the reader an examination of the new action logic
– I do rather like the clever interplay ’twixt enumerator values and
switch, but I’m probably kidding myself – and instead point out how the
revisibility is pretty good for such a large change. In and of itself it doesn’t
make the code good, but it does help to follow what’s happening, which
we might presume is an indirect aid to software quality.

Step 13 – Added precondition enforcements to slsw()
Having separated the action logic into a separate function, it behoves us
to enforce precondition enforcements. The precondition is simple: neither
in nor out can be NULL. It is enforced by the standard function-like macro
assert(), introduced by <assert.h>. For brevity, no listing is shown
of the changes.

Step 14 – Handling DRY SPOT violations
Now to tackle another of the issues that are important to program anatomy:
DRY SPOT violations! Specifically, there are four outright violations, and
one somewhat subtle one. The outright violations are the multiple uses of
literals – ‘slsw’, 0, 1, and 15 (now 16) – for specifying program name
and version numbers. The subtle one is the widespread further use of the
string "slsw" within various longer literal strings (used for contingent
reports). If we choose to change the program name in the future, we’d
better hope to be using a good search-replace tool. Better to DRY it now,
and have a SPOT.

This was easy to achieve in this case (see Listing 13) via the four object-
l i ke m ac ros PROGRAM_NAME , PROGRAM_VER_MAJOR ,
PROGRAM_VER_MINOR, and PROGRAM_VER_REVISION. That ease is, in
part, due to the simplicity of slsw: it is written in C; it is a standalone tool;
it does not (yet) use diagnostic logging; the version/usage information is
statically determined.

Li
st

in
g

12
 (c

on
t’d

) #endif
 SLSW_MAX_VALUE
};

typedef enum slsw_mode_t slsw_mode_t;
static
int slsw(
 FILE* in
, FILE* out
, slsw_mode_t mode
);
. . .
static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 clasp_argument_t const* arg;
 slsw_mode_t mode = SLSW_MODE_AMBIENT;
 if(clasp_flagIsSpecified(args, "--help"))
 . . .
 if(clasp_flagIsSpecified(args, "--version"))
 . . .

 arg = clasp_findFlagOrOption(args, "--mode", 0);
 if(NULL != arg)
 {
 if(0 == strcmp(arg->value.ptr, "ambient")) {
 mode = SLSW_MODE_AMBIENT; }
 else
 if(0 == strcmp(arg->value.ptr, "back")) {
 mode = SLSW_MODE_F2B; }
 else
 if(0 == strcmp(arg->value.ptr, "forward")) {
 mode = SLSW_MODE_B2F; }
 else
 if(0 == strcmp(arg->value.ptr, "invert")) {
 mode = SLSW_MODE_INVERT; }
 else
 if(0 == strcmp(arg->value.ptr, "reverse")) {
 mode = SLSW_MODE_REVERSE; }
 else
 {
 fprintf(stderr,
 "slsw: invalid mode specified\n");
 return EXIT_FAILURE;
 }
 }
 if(0 != clasp_reportUnusedFlagsAndOptions(args,
 &arg, 0))
 . . .
 if(clasp_checkValue(args, 1, &outName, NULL,
 &arg))
 . . .
 return slsw(
 in
 , out
 , mode
);
}
static
int slsw(
 FILE* in
, FILE* out
, slsw_mode_t mode
)
{
#ifdef SLSW_OS_IS_WINDOWS
define SLSW_AMBIENT_CHAR_ '\\'
define SLSW_ALT_CHAR_ '/'
#endif
SEP 2012 | | 17{cvu}

18 | | SEP 2012{cvu}

Li
st

in
g

13 . . .
#include <string.h>

#define PROGRAM_NAME "slsw"
#define PROGRAM_VER_MAJOR 0
#define PROGRAM_VER_MINOR 1
#define PROGRAM_VER_REVISION 16
static clasp_alias_t aliases[] =
. . .
static

int clasp_main(clasp_arguments_t const* args)
{
 . . .
 arg = clasp_findFlagOrOption(args, "--mode", 0);
 if(NULL != arg)
 {
 if(0 == strcmp(arg->value.ptr, "ambient")) {
 mode = SLSW_MODE_AMBIENT; }
 . . .
 else
 {
 fprintf(
 stderr
 , "%s: invalid mode specified\n"
 , PROGRAM_NAME
);
 return EXIT_FAILURE;
 }
 }
 if(0 != clasp_reportUnusedFlagsAndOptions(args,
 &arg, 0))
 {
 fprintf(
 stderr
 , "%s: unrecognised argument: %s\n"
 , PROGRAM_NAME
 , arg->givenName.ptr
);
 return EXIT_FAILURE;
 }
 if(clasp_checkValue(args, 0, &inName, NULL,
 &arg))
 {
 if(0 == arg->givenName.len)
 {
 if(NULL == (in = fopen(inName, "r")))
 {
 int const e = errno;
 fprintf(
 stderr
 , "%s: could not open '%s' for read
 access: %s\n"
 , PROGRAM_NAME
 , inName
 , strerror(e)
);
 return EXIT_FAILURE;
 }
 }
 }
 if(clasp_checkValue(args, 1, &outName, NULL,
 &arg))
 {
 if(0 == arg->givenName.len)
 {
 if(NULL == (out = fopen(outName, "w")))
 {
 int const e = errno;

 fprintf(
 stderr
 , "%s: could not open '%s' for write
 access: %s\n"
 , PROGRAM_NAME
 , outName
 , strerror(e)
);
 return EXIT_FAILURE;
 }
 }
 }
 . . .
}
static
int slsw(
 FILE* in
, FILE* out
, slsw_mode_t mode
)
. . .
int main(int argc, char** argv)
{
 int const clflags = 0
 | CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE
 ;
 return clasp_main_invoke(argc, argv,
 clasp_main, PROGRAM_NAME, aliases, clflags,
 NULL);
}
static
void show_help(FILE* stm)
{
 clasp_showUsage(
 NULL
 , aliases
 , PROGRAM_NAME
 , "Synesis Software SystemTools
 (http://synesis.com.au/systools)"
 , NULL
 , "Swaps slashes in text"
 , PROGRAM_NAME " [... options ...]
 [<input-file>|-] [<output-file>|-]"
 , PROGRAM_VER_MAJOR
 , PROGRAM_VER_MINOR
 , PROGRAM_VER_REVISION
 , clasp_showHeaderByFILE
 , clasp_showBodyByFILE
 , stm
 , 0
 , 76
 , -4
 , 1
);
}
static
void show_version(FILE* stm)
{
 clasp_showVersion(
 NULL
 , PROGRAM_NAME
 , PROGRAM_VER_MAJOR
 , PROGRAM_VER_MINOR
 , PROGRAM_VER_REVISION
 , clasp_showVersionByFILE
 , stm
 , 0
);
}

Listing 13 (cont’d)

Step 15 – Splitting into library and main: ‘program
design is library design’
Over the years, I’ve misremembered a Bjarne Stroustrup quote of
longstanding. With the assistance of the good folks on ACCU General, I’ve

now ascertained that the original quote is ‘language design is library
design’ (and there’s also one that says ‘library design is language design’,
for good measure), which I realise now doesn’t really capture what I want
to say here.

Instead, I’m starting my own quote about a form of good practice in
program design: ‘program design is library design’. You all have my
express permission to propagate this to the end of time (with due attribution
).

Let’s now split up the code we’ve arrived at thus far along the lines of
decision vs action logic, giving three files: slsw.h, slsw.c, and
main.c.

slsw.h contains the following:

 a #include for stdio.h (because slsw() references the FILE
type);

 operating system discrimination (because slsw_mode_t requires
it);

 definition of the slsw_mode_t enumeration; and

 declaration of the slsw() function.

slsw.c contains the following:

 required #includes, starting with slsw.h; and

 implementation of the slsw() function.

main.c contains the following (as it did previously):

 required #includes: slsw.h; then CLASP headers; then
standard headers; and

 SPOTs for PROGRAM_NAME, etc;

 aliases array;

 forward declarations for show_help() and show_version();

 clasp_main();

 main(); and

 implementations of show_help() and show_version().

. . .
typedef enum slsw_mode_t slsw_mode_t;
/** Swaps slashes in \c in to \c out,
 * according to \c mode
 *
 * \retval 0 The function succeeded
 * \retval !0 The function failed. errno will
 * indicate reason
 *
 * \pre (NULL != in)
 * \pre (NULL != out)
 */
int slsw(
 FILE* in
, FILE* out
, slsw_mode_t mode
);

Li
st

in
g

14

int slsw(
 FILE* in
, FILE* out
, slsw_mode_t mode
)
{
#ifdef SLSW_OS_IS_WINDOWS
define SLSW_AMBIENT_CHAR_ '\\'
define SLSW_ALT_CHAR_ '/'
#endif
#ifdef SLSW_OS_IS_UNIX
define SLSW_AMBIENT_CHAR_ '/'
define SLSW_ALT_CHAR_ '\\'
#endif
 int ch;
 assert(NULL != in);
 assert(NULL != out);
 for(; EOF != (ch = fgetc(in));)
 {
 switch(ch)
 {
 case SLSW_AMBIENT_CHAR_:
 if(SLSW_MODE_AMBIENT != mode)
 {
 ch = SLSW_ALT_CHAR_;
 }
 break;
 case SLSW_ALT_CHAR_:
 if(SLSW_MODE_REVERSE != mode)
 {
 ch = SLSW_AMBIENT_CHAR_;
 }
 break;
 }
 if(ch != fputc(ch, out))
 {
 return -1;
 }
 }
 if(ferror(in))
 {
 return -1;
 }
 return 0;
}

Li
st

in
g

15

static
int clasp_main(clasp_arguments_t const* args)
{
 . . .
 if(clasp_checkValue(args, 0, &inName, NULL,
 &arg))
 . . .
 if(clasp_checkValue(args, 1, &outName, NULL,
 &arg))
 . . .
 if(0 == slsw(
 in
 , out
 , mode
))
 {
 return EXIT_SUCCESS;
 }
 else
 {
 int const e = errno;
 fprintf(
 stderr
 , "%s: failed to complete slash-swapping:
 %s\n"
 , PROGRAM_NAME
 , strerror(e)
);
 return EXIT_FAILURE;
 }
}

Listing 16
SEP 2012 | | 19{cvu}

I hope it’s now clear that the slsw.h (declarations) and slsw.c
(implementation) together form a library, which can be used independently
of any notion of CLI (or any other particular) execution context. As well
as being used within the slsw program, the library may be reused by other
programs (e.g. slswgui), and, of particular importance for software quality,
in automated test harnesses.

Step 16 – Fixing up coupling and semantics of slsw()
Now we’ve abstracted slsw() into a separate file, its coupling – both
physical and semantic – to the command-line is evident: it relies on
stdlib.h and its return value is EXIT_SUCCESS (or, by implication,
EXIT_FAILURE). This is wrong.

We can fix this very easily, simply by changing it to return 0 for success,
and non-0 for failure, relying on errno (as set by fgetc() or fputc())
for more detailed failure information, as shown in Listings 14–16. As you
may know, gentle readers, the standard requires that a program return value
of EXIT_SUCCESS is treated as equivalent to 0, and that EXIT_FAILURE
is not 0. So we’ve cunningly done nothing to reduce backwards-
compatibility while reducing coupling. Which is nice.

Note that slsw() is simple enough that we don’t have to do diagnostic
logging and contingent reporting here (though even in this we lose the
knowledge of whether it’s input (fgetc()) or output (fputc()) that
fails. More complex action-logic components may have to use more
complex failure reporting to their decision-logic callers, including process/
thread-global error state variables (a la errno), return codes, exceptions,
callbacks, diagnostic logging and contingent reports.

Summary
This article has examined the incremental development of a simple but real
program written in C as a basis for analysis of some of the issues pertaining
to CLI program anatomy. In particular, it has discussed the delineation of
program logic into decision, action, and support, and demonstrated how
separation of the code on such lines brings several benefits: separation of
the action logic into a library increases clarity, scope for reuse, testability,
and modularity. This principle of program design is library design will be
a constant feature of the series.

As a by-product of this exercise, the article has also provided a simple
example of function layering: simplifying a large and complex main()
by abstracting out the boilerplate support logic in the form of a function
to which we pass the address of a smaller, specific ‘main’. Subsequent
articles will consider how other services can be initialised in a similar
manner, enabling access to sophisticated (albeit uninteresting)
functionality with minimal intrusion into the code, preferably in a way that
can be wizard-generated.

Finally, the article described the identification and elimination of sources
of repetition in the program name and version numbers. In the simple case
presented, these ‘identity attributes’ were defined as pre-processor object-
like macros. Subsequent articles will consider alternatives, reflecting
requirements of language and good practice as well as considering how
such attributes may be obtained dynamically (such as from a program’s
Windows version resource), and how (and when) they must be defined to
interact reliably with the phases of ‘main’s and various support services.

Next
In the next article, I will complete the look at CLI programs written in C,
including those that are much bigger than slsw, spanning multiple source
files. I will then turn to the subject of CLI programs written in C++, and
discuss the advantages and disadvantages as compared to C: by then, all
being well, I will have kept my writing momentum up and completed the
next ‘Quality Matters’ instalment – the third in the series on C++
exceptions – for the next issue of Overload and will be able to draw on
that also, and so keep down the length.

Further issues of interest to be covered in the next article will include some/
all of the following:

 Character encodings – multibyte and/or widestring;

 Removable Diagnostic Measures – how to facilitate high quality
software without undue coupling;

 Names – for identity attributes, for namespaces, for files, for
project-related directories;

 Directories – where to place the decision logic, action logic, the
support logic, and the project files;

 Testing – how much can be auto-generated by the wizard; and

 Function Layering to the Max!

Finally, before the next article in the series I intend to complete the first
wizard rewrite, encapsulating all the issues discussed herein, and hope to
be able to report back on being able to generate sophisticated, modular,
program projects according to the principles and techniques presented thus
far. We might even have some downloadable goodies!

Acknowledgements
Many thanks go to Chris Oldwood and Garth Lancaster for helping me
despite what has become typically eleventh-hour preparation of the draft.
Usual thanks/apologies go to Steve Love. I’d promise to write the next
article in plenty of time, but he knows I’d find some reason to break it. Ah
well.

References
[1] ‘Quality Matters, Part 5: Exceptions: The Worst Form of ‘Error’

Handling, Except For All The Others’, Matthew Wilson, Overload
98, October 2010

[2] Working Effectively with Legacy Code, Michael Feathers, Pearson,
2004

[3] A Practical Guide to Linux, Mark G. Sobell, Prentice Hall, 2005
[4] ‘An Introduction to CLASP’, Matthew Wilson, CVu, volume 23

number 6, January 2012
[5] The Pragmatic Programmer, Andy Hunt and Dave Thomas,

Addison-Wesley, 1999.
[6] Imperfect C++, Matthew Wilson, Addison-Wesley, 2004
[7] The Art of UNIX Programming, Eric S. Raymond, Addison-Wesley,

2003
[8] CLASP is an open-source library for Command-Line Argument

Sorting and Parsing, available via the Subversion respository at
http://sourceforge.net/projects/systemtools
20 | | SEP 2012{cvu}

http://sourceforge.net/projects/systemtools

Introducing Some Order # 2
Patterns and Active Patterns
Richard Polton continues to explore how functional

style can improve imperative programs.

uppose we have branching code which is used to
declare a variable, x.

 var x = new X();
 if(condition(a))
 x = x1;
 else

 x = x2;

We can improve this code because we have the ternary operator ?: this
allows us to write declarative code such as

 var x = condition(a) ? x1 : x2;

but this doesn’t allow us to replace something as simple as

 var y = new X();
 if(condition(a))
 {
 log("Condition was true");
 y = x1;
 }
 else
 {
 y = x2;
 }

A first attempt looks like

 Func<X> f = () =>
 {
 log("Condition was true");
 return x1;
 };
 var y = condition(a) ? f() : x2;

which is acceptable in this simple case.

What we want is an if function. But recall the exercise from SICP [1]
where the reader was invited to create such a function. The trap for the
unwary lies in the nature of the function parameters. As C# et al. are
immediate languages, ie not lazy, then the function parameters are
evaluated before the function is called. (The alternative would be lazy
evaluation in which the function parameters are not evaluated until they
are used, within the function body.)

The naive implementation fails this requirement:

 public static B if_<A,B>(bool b, B thenValue,
 B elseValue)

In this case, b, thenValue and elseValue will all be evaluated before
the choice of branch is taken. Instead

 public static B if_<A,B>(Predicate<A> predicate,
 Func<A,B> thenClause,
 Func<A,B> elseClause, A input)

has the desired effect. Typical usage might be

 var b = if_<A,B>(a=>condition(a),
 // which could be replaced in this instance with
 // the method group 'condition'
 i=>{log("Condition was true"); return x1;},
 i=>x2,
 a);

This is just fine and dandy, until we come to a sequence of if ... else
if ... else if ... else constructs. Of course this is representable
in this new format but it becomes quite deeply nested quickly. However,

we could observe that this construct is not dissimilar to a switch block. So
let’s reproduce the C# switch statement now.

 public static B switch_<A,B>(A input, A label1,
 Func<A,B> case1, A label2, Func<A,B> case2,
 Func<A,B> defaultCase)

As you can see, there is a problem with the arbitrary number of pairs of
labels and cases. After taking a moment for reflection, we can see that what
this function requires is a container of pairs followed by the default case
and the input variable. This can be achieved by using a helper function,
toCase:

 public static tuple2<A,Func<A,B>> toCase<A,B>
 (A label,Func<A,B> caseN)

and so the declaration of switch_ becomes

 public static B switch_<A,B>(A input,
 IEnumerable<tuple2<A,Func<A,B>>> cases,
 Func<A,B> defaultCase)

Then all that is required of the programmer is an anonymous array
declaration:

 var z = switch_<A,B>(a, new []{
 toCase("a", i=>i+","),
 toCase("B", i=>i.ToLower())},
 i=>string.Empty);

Now that we have a simple switch function, let us look at the if ...
else if ... else if ... else construct.

 var x = new X();
 if(condition1(a))
 x = x1;
 else if(condition2(a))
 x = x2;
 else if(condition3(a))
 x = x3;
 else
 x = new X();

At first glance, this is not representable as a switch block because the
conditions are not generally known at compile-time. However, in our
declarative switch_ function, we do not require this restriction. Instead,
we modify the signature slightly such that the labels are functions and we
have

 public static B switch_<A,B>(A input,
 IEnumerable<tuple2<Predicate<A>,
 Func<A,B>>> cases, Func<A,B>defaultCase)

and

 public static tuple2<Predicate<A>,
 Func<A,B>> toCase<A,B>(Predicate<A> label,
 Func<A,B> caseN)

S

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to LISP.
He likes ‘making it better’ and enjoys riding his bike
when he can’t. He can be contacted at
richard.polton@shaftesbury.me
SEP 2012 | | 21{cvu}

which can be used like this

 var x = switch_<A,B>(a, new[]{
 toCase<A,B>(condition1,i=>x1),
 toCase<A,B>(condition2,i=>x2),
 toCase<A,B>(condition3,i=>x3)},
 i=>new X());

Unfortunately, in .NET 3.5, it would appear to be necessary to specify
either the type of the generic parameters or the type of the predicate lambda
function parameter.

Nevertheless, this is remarkably close to a clever construct in F# called an
‘Active Pattern’ which I shall describe shortly.

Now, suppose you have code like Listing 1.

Clearly, this has the form of a switch construct but, because the labels
are not compile-time constants, we cannot use the C# switch syntax,
instead having to resort to a series of if .. else if .. else. In
itself this would be acceptable were it not for the fact that the variable x
is declared and then re-initialised with the results of the appropriate do
function. There are a number of ways of modifying this code without
changing the behaviour. For example, we could store all the do functions
in an array and then to initialise x

 var doXs = new Dictionary<string,
 Func <Dictionary<A,B>,C>>{
 {"A",doA}, {"B",doB}, {"C",doC}, {"",doD}
 };
 var x = doXs[key](d)

but we need a practical way to initialise the default case in the dictionary
of results. Alternatively, we could use the switch_ defined above.

 var x = switch_(d, new[]{
 toCase(dict=>dict.ContainsKey("A"),doA),
 toCase(dict=>dict.ContainsKey("B"),doB),
 toCase(dict=>dict.ContainsKey("C"),doC)},
 doD);

This has the advantage of retaining the original feel, more or less, of the
C# switch statement whilst also being a declarative initialiser.

However, this example is still a little cumbersome if we wish to pass the
value from the dictionary into the case function. In the current example,
the value has been encoded into the do function, eg doA knows that the
key was A. We could work around this by passing the key in the function
parameters and the making use of partial function application (Listing 2).

In F#, as mentioned above, there is a construct called the ‘Active Pattern’.
Here is an example active pattern which I have used in my code.

 let (|ContainsKey|_|) key
 (dict:System.Collections.Generic.Dictionary<_,_>)
 = if dict.ContainsKey key then Some(dict.[key])
 else None

The analogue of the previous C# code is

 let x = match d with
 | ContainsKey "A" value -> transform value
 | ContainsKey "B" value -> transform value
 | ContainsKey "C" value -> transform value
 | _ -> doD(d)

Admittedly the syntax for active patterns can look a little clunky, but they
work well.

And now for something completely different....

The .NET f r am ework p r e sen t s t he d i s c r imi na t ed un ion
System.Nullable<T>. This generic class wraps the value-type T and
encapsulates the null / not null value of the underlying object.
Simply put, an object of type Nullable<T> either has a value, which
resolves to an object of type T, or does not have a value. This could be used
to replace all of those horrendous and problematic null checks but, and
this is the key point, T must be a value type - which can’t be null anyway.
The framework as it stands does not provide the analogue for reference
types, thus requiring the user to keep track of nulls (and frequently forget
to check for them).

And so we create OptionType<T> where T is a reference type. We create
an interface which is similar to that of Nullable, but the design decision
was taken early on to force the user to make the value check before
referencing (This was more of a training exercise than a design necessity).
The value check is done in a manner reminiscent of normal reference types,
ie if it is accessed when the value is null then an exception is thrown. In
this way, the users are schooled into checking for null and, in general,
function return types as there are many vendor API calls which return null
to indicate a failure of some description. (See Listing 3.)

In addition to this class we have some utility functions (Listing 4).

The implicit function in OptionType is used to wrap existing types
without having to resort to the usual C# level of verbosity. Therefore, we
can call a vendor API function which returns a T, say, and is known to
return null on occasion and capture it in a local variable of type
OptionType<T>. For example, suppose we have

 public class T1
 {
 public static T1 create() {}
 }

then we might use

 OptionType<T1> myT = T1.create();
 if(myT.None) return; // The API returned null
 myT.Some.doSomething();

It’s a little clunky because the user is forced to dereference using Some.
The possibility of making this function implicit was considered initially
but it was discounted because OptionType was created to encourage
thinking explicitly about return types.

We can also adjust our own API functions to use OptionType<T> instead
of T. If we do this then we must remember our own rule, check for invalid
inputs. To this end, a further function has been created in the Check class,
namely IsNullOrNone, which expects an object of OptionType<T>
and returns bool.

 public class Check
 {
 public static bool
 IsNullOrNone<T>(OptionType<T> t)
 where
 T : class { return t == null || t.None; }
 }

Dictionary<A,B> d;
var x = new C();
Func<Dictionary<A,B>,C> doA;
Func<Dictionary<A,B>,C> doB;
Func<Dictionary<A,B>,C> doC;
Func<Dictionary<A,B>,C> doD;

if(d.ContainsKey("A"))
 x = doA(d);
else if(d.ContainsKey("B"))
 x = doB(d);
else if(d.ContainsKey("C"))
 x = doC(d);
else
 x = doD(d);

Li
st

in
g

1

Func<B,C> transform;
Func<A, Func<Dictionary<A,B>, C>> doX = (A key)
 => ((Dictionary<A,B> dict)
 => transform(dict[key]));
var x = switch_(d, new[]{
 toCase(dict=>dict.ContainsKey("A"),doX("A")),
 toCase(dict=>dict.ContainsKey("B"),doX("B")),
 toCase(dict=>dict.ContainsKey("C"),doX("C"))},
 doD);

Li
st

in
g

2

22 | | SEP 2012{cvu}

Therefore, take our API function

 public static R DoSomething<T,R>(T input) {
 return new R(input);}

and modify it

 public static OptionType<R>
 DoSomething<T,R>(OptionType<T> input) { return
 Check.IsNullOrNone(input) ?
 OptionType<R>.None : new R(input.Some); }

Lovely!

Of course, now that we have abstracted the null checking out of the main
code path, we can chain together consecutive API functions that use
OptionType. For example, where once we had (or should have had if
we had performed the checks)

 T1 myT = T1.create();
 if(myT!=null)
 {
 R r = DoSomething(myT);
 return r!=null ? r : new R();
 }
 return new R();

we can now write

 return DoSomething(T1.create());

Bootiful! (Of course, we have to understand that OptionType<R>.None
has the same meaning as the default constructed R.)

To conclude, I should mention that all of this comes for free, almost, in F#
because the discriminated union type on which this is based works for any
type you may decide to use. That is

 type 'T option =
 | None
 | Some of 'T

References
[1] ‘Structure and Interpretation of Computer Programs 2nd Ed’,

Abelson, Sussman, 1996 MIT Press, also available at
http://mitpress.mit.edu/sicp/full-text/book/book.html

public class EmptyOptionTypeException :
 Exception {}
// Use OptionType<T> when the reference type T
// could be null.
// It behaves likesystem.Nullable<T>.
// If you want to use this for Value Types, use
// System.Nullable<T>
// Also, OptionType<string> behaves slightly
// differently, in that the empty string is also
// considered as an empty OptionType,
// ie OptionType<string>(string.Empty).None
// is true.
public class OptionType<T> : IDisposable
 where T:class
{
 private readonly bool _isEmpty = true;
 protected T _t;
 public OptionType() {}
 public OptionType(T t)
 {
 if ((typeof(T) == typeof(string) &&
 Check.IsNotNullString(t as string)) ||
 (typeof(T) != typeof(string) &&
 Check.IsNotNull(t)))
 {
 _t = t;
 _isEmpty = false;
 }
 else
 {
 _isEmpty = true;
 }
 }
 public T Some { get { if (!_isEmpty) return _t;
 else throw new EmptyOptionTypeException();} }
 public bool None { get { return _isEmpty; } }
 public static OptionType<T> Null { get {
 return new OptionType<T>(); } }
 public static implicit operator OptionType<T>
 (T t) { return new OptionType<T>(t);}
 // We do not have an implicit operator T
 // because we want to be explicit about
 // checking for null
 public void Dispose() {
 if (typeof(T) is IDisposable)
 ((IDisposable)_t).Dispose(); }
}

Li
st

in
g

3 // Generic null checking with a special case for
// string, where string.Empty is treated
// equivalently to (string)null.
public static class Check
{
 public static bool IsNull<T>(T t) where T :
class
 {
 return t == null;
 }
 public
 static bool IsNotNull<T>(T t) where T :
class
 {
 return !IsNull(t);
 }

 // In .NET2.0, we need these two because
 // OptionType<T> cannot call IsNull(string),
 // it can only call IsNull<string>(string)
 public static bool IsNullString(string s)
 {
 return IsNull(s);
 }
 public static bool IsNotNullString(string s)
 {
 return IsNotNull(s);
 }
}

Listing 4
SEP 2012 | | 23{cvu}

If you read something in C Vu that you particularly enjoyed, you disa-
greed with or that has just made you think, why not put pen to paper (or
finger to keyboard) and tell us about it?
Reach us at cvu@accu.org

http://mitpress.mit.edu/sicp/full-text/book/book.html

24 | | SEP 2012{cvu}

Keeping up-to-date
Paul Grenyer reflects on what we need to do

to stay on top of things.

t is not uncommon for people to ask me how I keep my technical
knowledge up-to-date, especially after I’ve just given a presentation on
a subject that is new to them. This is odd because I don’t consider myself

as someone who does keep up-to-date and many of my presentations are
based on things I and other people have been doing for many years, so it’s
hardly up-to-date.

I’ve said this many times, but in my experience there are generally two
types of people (or developers if you prefer to narrow it further), those that
enjoy their work (live-to-work) and those that are just there for the money
(work-to-live). I am firmly in the live-to-work camp and very grateful that
I am lucky enough to do a job I enjoy every day. Not only do I enjoy what
I do at work, I do more of it at home and
get together with like-minded people at
local specialist interest groups and
conferences as often as possible. I’m
constantly striving to be the best at what
I do and that generally requires a lot of
reading (books, the internet, journals,
etc). Of course being the best is usually
an unachievable goal, but it is important
to have something to strive for.

It is unfortunate that, in my experience, most people are in the work-to-
live camp. Even developers. Actually, maybe they have it right and have
a much better work life balance than I do. However most of those who
work-to-live don’t do anything in their own time to improve their skills,
they don’t communicate with other people outside of their organisation and
a lot of them don’t even look to people within their organisation to try and
help themselves improve. They’ve always done it a certain way and they
don’t see why they should change now, even if there is an industry out there
that has moved on to bigger and better things. I hope it’s obvious that these
are two extremes of the spectrum and there are plenty of people that fall
somewhere in between.

It’s clear that to keep up-to-date (for some value of up-to-date) the first
hurdle is wanting to. The chances are that if you want to you are closer to
the live-to-work end of the spectrum and in my opinion that’s the best place
to be. After that what do you actually do? Here are some of the things that
I do in no particular order.

Read like there is no tomorrow and you have to know everything now.
Read books, read journals, read blogs, read the things your friends and
colleagues have written. You will learn an extreme amount from reading.
Then do. If you read and then don’t do you’ll forget it.

Write software in your own time. The goal is to be up-to-date and to do
that you need to use up-to-date technologies. Find the latest technologies
that you are interested in and use them to write software. You’ll learn the
most if you try and solve a real world problem. Aim to write a complete
library, tool or application. By solving real world problems you will learn
the most about how to use the technology in a useful way.

When I first joined the ACCU one of the existing members took me under
his wing. One of the things he told me was that I needed a website. ‘What

for?’ I asked. He told me it would be for all the articles I was going to write.
I didn’t think for a moment that I would have anything to write about. Of
course I was wrong. Writing turned out to be enjoyable, rewarding and
most important of all a learning activity. When you write about something
you examine it in detail to make sure you understand it correctly. This
usually reveals that you don’t, so you look even closer until you do and of
course learn much more in the process. Even if you’ve learnt something
it would be a real shame for people not to read what you’ve written. So
write for your website and other websites, write for your blog, write for
journals, write for your colleagues. Do everything you can to get get people
to read what you’ve written and make sure you get feedback so you can

improve.

Talk to other software engineers. It’s
very difficult to learn in a vacuum and
arrogant to think that you don’t need to
speak to other people doing similar
things to you to learn. Even if you have
other software engineers working with
you join software related groups, like the
ACCU, where you can talk to other
software engineers. Discuss your ideas

and problems and ask questions. You’ll learn a lot this way and the chances
are someone in the group is working with the latest technology that’s
interesting to you or knows someone else who is.

What better way to meet other software engineers that attending local
Special Interest Groups (SIG) and conferences. You can go along and hear
about how other people have solved problems with new technologies that
interest you and then speak and learn with them afterwards. Writing and
giving your own presentation is a great way to learn in the same way as
writing articles. People will want to ask you questions so you need to know
your subject inside out. People in your audience may know different things
to you and answering their questions and interacting with them is another
great way to learn.

To keep up-to-date find out what works for you and keep doing it. If
something doesn’t work for you, stop doing it. Above all learn and have
fun.

I

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com

What better way to meet other
software engineers that

attending local Special Interest
Groups (SIG) and conferences

Code Critique Competition 77
Set and collated by Roger Orr. A book

prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’ve written an exception class that can throws itself, can collect a context
stack and also can’t be ignored as it re-throws itself unless it has been printed
at least once. My idea works with Visual Studio but doesn’t work reliably with
gcc – the exception doesn’t always get rethrown – any idea why?

 Listing 1 is exception.h

 Listing 2 (continued on next page) is test_exception.cpp

#include <iostream>
#include <vector>
// exception class that stacks up context and
// re-throws itself until it is printed by a
// top-level handler.
// use the function operator to add context in
// a catch clause
class exception
{
public:
 exception() {}
 exception(const char *cause)
 : stack(1, cause) {}
 exception(const exception &rhs)
 {
 stack.swap(rhs.stack);
 }
 // throw a copy of myself,
 // if I've not been printed yet.
 ~exception()
 {
 if (rethrow) throw *this;
 }
 // Add context to the exception
 void operator()(const char *context)
 {
 stack.push_back(context);
 }
 // print (and dismiss) the exception
 void print()
 {
 std::copy(stack.begin(), stack.end(),
 std::ostream_iterator<const char *>
 (std::cout, "\n"));
 std::cout << std::flush;
 rethrow = false;
 }
 // like std::exception
 virtual const char *what() const
 {
 return stack[0];
 }
protected:
 mutable std::vector<const char *> stack;
 bool rethrow;
};

#include <iostream>
#include <iterator>
#include "exception.h"
int func(int i)
{
 try
 {
 if (i <= 0)
 {
 throw exception("i must be positive");
 }
 int result(i*i);
 if (result < i)
 {
 throw exception("overflow");
 }
 return result;
 }
 catch (exception & ex)
 {
 ex("in func");
 }
 std::cout << "Shouldn't get here"
 << std::endl;
}
int mid(int i)
{
 try
 {
 return func(1) * func(i);
 }
 catch (exception & ex)
 {
 ex("in mid");
 }
 std::cout << "Shouldn't get here"
 << std::endl;
}
void test(int i)
{
 try
 {
 std::cout << "mid() => " << mid(i)
 << std::endl;
 }

Listing 2

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Li
st

in
g

1

SEP 2012 | | 25{cvu}

Critiques

Paul Floyd <paulf@free.fr>

First impressions. Two bad smells.

The class exception when there is already a class exception in the std
namespace. This is the sort of thing that the namespaces are intended to
protect us from, but there’s no point asking for trouble. All it takes is a user
to type using namespace std; and there’ll be a conflict. An easy way
to avoid any clashes with classes in namespace std is to start all your class
names with a capital letter. So, in this case, I renamed it to
StackContextException.

The next point had me reaching for Scott Meyers’ ‘Effective C++’ 3e. Item
8: Prevent exceptions from leaving destructors. In this case, the design
requires the destructor to throw. Basically the problem is that you’re likely
to end up with an exception thrown whilst an exception is still being
handled, which is either undefined behaviour or will cause a program
crash.

For the sake of it, I tried to get the program to work with GCC. I noted that
the class exception constructors do not initialize rethrow (to true). I
made that change, and also added default constructor calls to stack, which
gave me:

 StackContextException()
 : stack(), rethrow(true) {}
 StackContextException(const char *cause)
 : stack(1, cause), rethrow(true) {}
 StackContextException(
 const StackContextException &rhs)
 : rethrow(true)
 {
 stack.swap(rhs.stack);
 }

Compiling and running that I get:

 Caught exception
 i must be positive
 in func
 in mid
 Caught exception
 overflow
 in func
 in mid

Looks OK, problem solved? Well no, not really. I tried it with Oracle
Solaris Studio 12.3. In this case, it gets to here:

 (dbx) where -h
 =>[1] StackContextException::
 StackContextException(this = 0xfee4c56c,
 rhs = CLASS), line 20 in "exception.h"
 [2] StackContextException::
 ~StackContextException(this=0xfee4c50c),
 line 27 in "exception.h"
 [3] __Cimpl::ex_free(0x8046eb8, 0x0, 0x1,
 0x8046ed3, 0x8046ee8, 0xfefc4a84,

 0xfee4c2b4, 0xfee4b940, 0x80528be,
 0x8065688, 0x0),
 at 0xfee34277
 [4] __Crun::ex_clean(0x80470d0, 0x8046f84,
 0xfeffb910, 0x8046ef8, 0xfee4c50c,
 0xfee42a00), at 0xfee34546
 [5] func(i = 0), line 24
 in "test_exception.cpp"
 [6] mid(i = 0), line 34
 in "test_exception.cpp"
 [7] test(i = 0), line 49
 in "test_exception.cpp"
 [8] main(), line 62 in "test_exception.cpp"

In that call stack, we have the call to func() at level 5, below that at levels
4 and 3 are the C++ runtime library routines for cleaning up the exception
that was caught in func. Level 2 is the destructor. When I stepped through
the assembly, I saw the exception being allocated and the address of
~StackContextException being pushed on to the stack and then the
exception being called. This is the exception cleaning up. At level 1 there
is the copy constructor making a copy of the object that is being destroyed
in order to throw it. I did try to step through the assembly even more, and
waded through some elf, mutex and runtime functions but I was soon out
of my depth. The debugger stopped at an abort, with this call stack

 (dbx) stepi up
 signal ABRT (Abort) in __lwp_kill
 at 0xfed4b7c7
 0xfed4b7c7: __lwp_kill+0x0007:
 jae __lwp_kill+0x15 [0xfed4b7d5, .+0xe]
 Current function is func
 (dbx) where -h
 [1] __lwp_kill(0x1, 0x6), at 0xfed4b7c7
 [2] _thr_kill(0x1, 0x6), at 0xfed46f29
 [3] raise(0x6), at 0xfecf35f3
 [4] abort(0xfee4c2b0), at 0xfecd2951
 [5] __Cimpl::default_terminate(0x8046e10),
 at 0xfee34cfc
 [6] std::terminate(0xfee4c2b0, 0xfee4b940,
 0x8046e20, 0xfee34695, 0xfee4c520,
 0xfee4b940), at 0xfee3471f
 [7] std::bad_exception::bad_exception(0x1,
 0x6, 0xfedbe000, 0x8046d9c, 0xfecf35f3,
 0x1), at 0xfee34d1c
 [8] std::unexpected(0x8046e48, 0x8046e28,
 0xfee4c210, 0xfee4b940, 0xfee35a38,
 0xfee4c56c), at 0xfee34695
 [9] __Cimpl::ex_unexpected(0x8053f60, 0x0,
 0xfee4c56c, 0x0, 0x8052e88, 0x0),
 at 0xfee34c96
 [10] __Crun::ex_chk_unexpected(0x8046ea8,
 0xfefc4a84, 0x8046e88, 0xfee4b940,
 0xfee34546, 0x8065688), at 0xfee35a38
 [11] __Cimpl::ex_free(0x8046eb8, 0x0, 0x1,
 0x8046ed3, 0x8046ee8, 0xfefc4a84,
 0xfee4c2b4, 0xfee4b940, 0x80528be,
 0x8065688, 0x0), at 0xfee3431a
 [12] __Crun::ex_clean(0x80470d0, 0x8046f84,
 0xfeffb910, 0x8046ef8, 0xfee4c50c,
 0xfee42a00), at 0xfee34546
 =>[13] func(i = 0), line 24
 in "test_exception.cpp"
 [14] mid(i = 0), line 34
 in "test_exception.cpp"
 [15] test(i = 0), line 49
 in "test_exception.cpp"
 [16] main(), line 62 in "test_exception.cpp"

and the message

 Exception of type class StackContextException is
 unexpected

 catch (exception & ex)
 {
 std::cout << "Caught exception"
 << std::endl;
 ex.print();
 }
}
int main()
{
 test(0); // should fail first test
 test(0x7fffffff); // should fail second
}

Li
st

in
g

2
(c

on
t’d

)

26 | | SEP 2012{cvu}

So there we have it. Scott was right. Visual Studio (which I didn’t test) and
GCC strike it lucky and manage to get an application with undefined
behaviour to seem to work correctly. It also worked with code 4’s clang++
on Mac OS X. The Oracle compiler gave a program crash (possibly a
blessing in disguise).

No compiler warned about throwing from the destructor (not even g++
with -Weffc++ which warns about some of the items in Meyers’ book).

Usually when I want users to sit up and pay attention to an error, I call
abort.

Huw Lewis <huw.lewis2409@gmail.com>

The headline bug causing the observed problems are the incomplete
constructors. Initialisation of the rethrow member to true solves the
issue and the exception is re-thrown reliably.

However, there’s more to say about this piece of code.

The exception header file is missing inclusion guards to prevent multiple
inclusion. I’d recommend using #pragma once for this purpose if
working with well known modern compilers. Otherwise use the old style
guards:

 #ifndef BLAH_H
 #define BLAH_H

The name ‘exception’ is unwise as it could lead to confusion or
ambiguity with the std::exception type. I would recommend
renaming this class something like AccumulativeException as it is
an exception type that accumulates context information.

Throwing an exception from a destructor is normally one of those things
you should never do. It introduces many problems that are well discussed
and documented (search google for destructor throw...):

 a destructor that throws during stack unwinding due to an original
exception will result in the program terminating (catastrophe).

 Memory management becomes difficult – a resource leak is likely
as the partially destroyed object may be left in limbo.

 Containers of objects that may throw during destruction cannot
complete the destruction of its remaining objects or itself – leaving
significant resource leakage.

This exception type doesn’t come near any of the problem areas and is
therefore of the very few conditions where throwing from a destructor
could be just about acceptable. I still think it is a little dangerous to rethrow
this partially destroyed object. I’d prefer to see a new exception object
constructed for the new exception. I’ve passed into the constructor a non-
const reference to stack which can be efficiently swapped into this new
object.

On the subject of the destructor – it isn’t virtual. This in itself isn’t an
error, but an exception class like this would often be derived from for more
specific exception conditions.

 virtual ~AccumulativeException()
 {
 if (rethrow)
 throw AccumulativeException(stack);
 }

This exception type does not derive from std::exception. I have
personally had some big headaches over exceptions that aren’t derived
from any sensible base. It makes it very difficult for a maintainer to work
out what is going on if they don’t know what exception type they’re
looking for. It is good practice to always use std::exception as the
base for any exception type. In this case, we can’t have std::exception
as a base because our own destructor has a looser throw specification than
std::exception which specifies that its destructor will never throw
(unlike our own). This is something we’ll just have to live with as long as
we stick with the throwing destructor.

The storage (in stack) of const char* raw pointers means that only
statically allocated raw strings can be used with the exception. If any
dynamically constructed string were used, the data would be destroyed

before the exception object and would cause a crash when the now invalid
pointer is dereferenced. The stack container should store std::string
objects to provide this extra flexibility and robustness.

The vector container is a sub-optimal choice of container for ‘stack’ as
it gets re-allocated in its entirety when extended (resized by each
push_back call). The deque container type is a much better fit.

The const correctness of this class is a little screwy. The stack member
variable has been declared mutable so that the copy constructor can
modify (swap) the rhs parameter’s stack. It’s not wrong, but I don’t like
it. The client code calling this constructor wouldn’t usually expect their
original object to be modified by this. I’d suggest making the plain copy
constructor be just that. It won’t be as efficient by copying the stack, but
efficiency is the last priority during exception stack unwinding which is
notoriously slow. This is a clear example of premature optimisation.

The print method writes to the standard output stream, but this might
not be what the client code requires. What if the information is wanted in
a log file or the cerr stream? Modify the print method so that it returns
the text representation of the exception stack as a std::string object.
The client code may then do what it likes with it.

I’d also question the assumption that calling print means that the
exception has been dealt with such that it need not continue to re-throw.
I’d suggest a simple deactivate method to indicate this, then the print
method can become const. That way the print method does just that
without any side effects.

 // Print the exception
 std::string print() const
 {
 std::ostringstream str;
 std::copy(stack.begin(), stack.end(),
 std::ostream_iterator<const std::string&>
 (str, "\n"));
 return str.str();
 }
 // de-activate the exception so that it won't
 // re-throw.
 void deactivate()
 { rethrow = false;}

The what method assumes there is always a non-empty stack. A crash
would be the rather ungraceful result if this method were called on a
‘default constructed’ object.

 const char* what() const
 {
 if (!stack.empty())
 return stack.front().c_str();
 else
 return "Empty exception stack";
 }

If this exception type is to be used as designed, we could offer some help
for the poor developers that would have to add try/catch blocks
throughout their code to add the context information to the exception as it
unwinds. I’d suggest some simple macros as follows:

 // Make this the first line of a function
 #define BEGIN_EXCEPTION(x) \
 std::string exceptionContext_(x); try{
 // Make this the last line of a function
 #define END_EXCEPTION() \
 }catch(exception& e){ e(exceptionContext_42);}

The above macros make that tedious task a little easier, and provide the
bonus that they can be easily removed from production code if required.
Some developers have it in for macros, but used in the appropriate context
they are a powerful tool.

Finally, with the addition of the above helper macros, I believe that the self-
throwing exception type is not worth the trouble and controversy. A simple
modification to the END_EXCEPTION macro provides the same behaviour
without the trouble...
SEP 2012 | | 27{cvu}

 // Make this the last line of a function
 #define END_EXCEPTION() \
 }catch(AccumulativeException& e) \
 { e(exceptionContext_); throw;}

The complete exception module is given below with my suggested
modifications. I realise this no longer fulfils the original brief, but has
additional benefits including simpler code (no need for rethrow flag or
copy semantics) and use of std::exception as base. Also the throw
statement means that this AccumulativeException class can be used
itself as a base for other exception types without being sliced as it is re-
thrown – the original (complete concrete) object gets re-thrown.

 #pragma once
 #include <deque>
 #include <sstream>
 #include <exception>
 class AccumulativeException : public
 std::exception
 {
 public:
 AccumulativeException()
 : stack(){}
 AccumulativeException(
 const std::string& cause)
 : stack(1, cause){}
 virtual ~AccumulativeException() throw ()
 {}
 // Add context to the exception
 void operator()(const std::string& context)
 {
 stack.push_back(context);
 }
 // Print the exception
 std::string print() const
 {
 std::ostringstream str;
 std::copy(stack.begin(), stack.end(),
 std::ostream_iterator
 <const std::string&>(str, "\n"));
 return str.str();
 }
 // override standard 'what'
 virtual const char* what() const throw()
 {
 if (!stack.empty())
 return stack.front().c_str();
 else
 return "Empty exception stack";
 }
 protected:
 std::deque<std::string> stack;
 };
 // Make this the first line of a function
 #define BEGIN_ACCUM_EXCEPTION(x) \
 std::string exceptionContext_(x); try{
 // Make this the last line of a function
 #define END_ACCUM_EXCEPTION() \
 }catch(AccumulativeException& e){
 e(exceptionContext_); throw;}

Commentary
The critique has two main, unrelated, issues. The first one is the
uninitialised variable rethrow which causes the difference in behaviour
between the two compilers the user tried.

With g++ the -effc++ flag (mentioned by Huw) does highlight this issue:
exception.h:14:3: warning: 'exception::rethrow'
should be initialized in the member initialization
list [-Weffc++]

(I couldn’t find a way to automatically detect this with MSVC.)

In my experience uninitialised variables are still a major cause of
problematic behaviour. There was an example on accu-general a few
weeks ago where an uninitialised bool results in a variable that neither
tests true nor false!

The second issue is whether the concept in the code is valid. The relevant
section of the C++11 standard is the std::terminate function
[15.5.1p1] which is called under various cases and in particular: ‘when the
destruction of an object during stack unwinding (15.2) terminates by
throwing an exception’.

The exception object throws a copy of itself in the destructor. The question
is whether or not this is ‘during stack unwinding’.

I added an instrumentation call to std::uncaught_exception in the
destructor and both g++ and MSVC return 0 (no uncaught exception)
during the execution of the destructor of exception.

This is correct as the exception is considered caught when the handler for
the exception becomes active. However, exception handling proceeds as
if the throw creates a temporary object. The compiler is allowed to elide
this copy but is not required to do so. However, the exception class is
unsafe for copy as both the original and the copy will have rethrow set
to true. This means both objects will throw in their destructor and so the
second one to be destroyed will try to throw while an exception is active.
This would result in a call to std::terminate. I wonder whether the
Oracle Solaris compiler is doing this, which is why Paul found the program
aborted with that compiler? The second call stack he shows does include
a call to std::terminate.

Note that this behaviour on copying also means that catching exception
objects by copy rather than by reference will prove fatal! It is possible that
if the copy constructor were to set the rethrow member to false in the
rhs object this would be safe as it would prevent the problematic double
throw.

This does also point to another problem with the proposed exception class.
If you catch an exception object and throw a different exception then
during the stack unwinding caused by this throw the original exception will
be destroyed – and throw. This double exception will invoke
std::terminate and abort the program.

You want exception code to be absolutely robust, so relying on potentially
troublesome code is, in my opinion, not worth the trouble. I was unable to
prove to my complete satisfaction that the code was valid and, as Paul
found, it is very hard to debug problems occurring during exception
handling. It doesn’t really matter anyway – the code breaks on at least one
implementation so should be avoided, I think, even if it is valid according
to the letter of the standard!

Additionally, and slightly controversially, C++11 introduces a rule that
destructors, by default, may not throw. Hence this code would need slightly
modifying to work at all on a conforming C++11 compiler!

The winner of CC 76
It is clear Paul and Huw both disliked the attempted design; and for good
reason. Both of them explicitly answered the presenting problem – the lack
of consistent behaviour with g++ – but proposed rather different solutions
to the design issue. I think I prefer Huw’s proposal, as it doesn’t
unconditionally stop the program, which the use of abort does. So I have
awarded this issue’s prize to Huw.

Code critique 78
(Submissions to scc@accu.org by Oct 1st)

I’m trying to get started with Python ... tell me why the programme below
doesn’t work. The program is supposed to find a nine digit number using all
of the digits 1 to 9 which is divisible by 9 (not difficult!) but is such that

 removing the last digit gives an 8 digit number divisible by 8

 then removing the last digit gives a 7 digit number divisible by 7 … and
so on down to

 then removing the last digit gives a 2 figure number divisible by 2
28 | | SEP 2012{cvu}

Standards Report
Mark Radford presents the latest news from

the ongoing C++ Standards process.

 significant date - or rather, range of dates - in the UK standards
calendar must be 15th - 20th Apr 2013. This is when the UK next
plays host to the ISO C++ Standards Committee meeting. We now

know that Bristol has been chosen as the location for the ACCU
conference, and so it will also be the location of the ISO C++ meeting.

In the nearer future, the next meeting of the C++ Standards Committee
takes place on the dates 15th – 19th October, this year, in Portland, Oregon,
USA. I’m not going, but a delegation from the UK will be going.

Towards C++2017
A topic that has recently interested the BSI C++ Panel is that of scheduling
pieces of work for processing. Normally this would be associated with
scheduling work across multiple threads, but work could (transparently)
be scheduled on a single thread, also. This is something I mentioned in my
last column, and I would like to go into a little more detail this time.

It all started with a proposal from Google [1]. This is a paper that the Panel
has spent quite a lot of time discussing. We want to see the paper make
progress, but some members thought certain issues need addressing.
Further, we thought it important that these issues are addressed sooner
rather than later, to mitigate the risk of the paper running into problems
later on in the process. To this end we put together a response and sent it
to the authors. The response consisted of nine points in total, that individual
panel members believed should be raised.

I don’t have the space here to present the entire contents of our response.
The points made in it contained some detail and therefore it was rather
long. However, here are short versions of a couple of the points made:

1. The C++ in the Google proposal is reminiscent of C++1998/2003,
and come close to pre-standard (ARM) C++. It ignores modern C++
features such as templates and exceptions. This is not saying that
templates and exceptions should be used just because they are there,
but the benefits of using them should not be ignored. Looking at it
another way: modern C++ features are in the language because there
is benefit to having them.

2. Using std::function as the unit of work requires copying. From
the performance point of view, an approach that only requires move
semantics would be better because this facilitates the preservation of
cache locality. Cache locality is very important for performance.

One of the great strengths of Google’s proposal is that it is based on a
library that they use, so it has existing experience behind it. However, point
1 leads to another important consideration: if we want a library based on
the current version of the language, we can’t have one based on existing
experience. After all, you can’t have experience of a language that does
not yet exist. This is another topic I may well return to in a future column.

I’m now interested to see if there is a revised version of Google’s proposal
among the papers submitted for the Portland ISO meeting.

Just before I close this column I would like, once again, to mention that
the call for library proposals is still out there [2].

References
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/

n3378.pdf
[2] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/

n3370.html

A

 then removing the last digit gives a 1 digit number divisible by 1 (not
difficult!).

Why does it tell me that i is not iterable:

 $./program.py
 Traceback (most recent call last):
 File "./program.py", line 8, in <module>
 for i in x:
 TypeError: 'float' object is not iterable

The program is in Listing 3. [Editor’s note: to make this printable I've used
one space, not the recommended four, for each indentation and split long
lines with a continuation character (\)].

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

Code Critique Competition (continued)

 z=10**8*a+10**7*b+10**6*c+ \
 10**5*d+10**4*e+ \
 10**3*f +100*g+10*h+i
 p,q,r,s,t,u,v,w= \
 z-z%10,z-z%100,z-z%1000, \
 z-z%10000,z-z%100000, \
 z-z%1000000,z-z%10000000, \
 z-z%100000000
 p,q,r,s,t,u,v,w= \
 p/10.,q/100.,r/1000.,s/10000., \
 t/100000.,u/1000000.,v/10000000., \
 w/100000000.
 p,q,r,s,t,u,v= \
 p%8,q%7,r%6,s%5,t%4,u%3,v%2,
 x=p+q+r+s+t+u+v
 if x==0:
 print z

#!/usr/bin/python
x=[1,3,7,9]
y=[2,4,6,8]
e=5
for a in x:
 for c in x:
 for g in x:
 for i in x:
 if a<>c and a<>g and a<>i and c<>g and \
 c<>i and g<>i:
 for b in y:
 for d in y:
 for f in y:
 for h in y:
 if b<>d and b<>f and b<>h and d<>f \
 and d<>h and f<>h:

Li
st

in
g

3
Listing 3 (cont’d)
SEP 2012 | | 29{cvu}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3378.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3378.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html

30 | | SEP 2012{cvu}

ACCU Bristol & Bath Launched
Thomas Guest reports from the inaugural meeting.

ightning talks. In a pub. Me first! I hadn’t actually practised but I knew
what I wanted to say and had picked a subject so trivial I couldn’t
possibly overrun.

Yes, it was time, at last, for the first ACCU Bristol & Bath[1] meeting, to
be held in an upstairs room at the Cornubia. We’d reconnoitred the venue
a few weeks earlier. Although the room was dingy and we couldn’t work
out where to put a screen, and despite disturbance from the increasingly
raucous CAMRA meeting next door, the location was ideal and the beer
superb. I looked forward to returning.

Plans change. In an agile last minute switch the meeting relocated to the
Marriot – which, coincidentally, had just been announced as the host of
next year’s ACCU conference[2]. I shuffled through revolving doors into
the hotel’s vacant lobby rehearsing my talk in my head. Where was
everyone? It took some backtracking and interrogation to locate the
subterranean room but fortunately they hadn’t started without me.

Now this was a proper meeting room. Panelled walls, no windows. A blank
TV screen; green apples; red glasses; bottled water.

Ewan welcomed me. ‘Have you got a macbook display adapter?’

No. I didn’t even have the slides to my own presentation – I’d emailed them
ahead to be merged into a single deck.

The screen flicked to life. Nine talks, five minutes each. We’d be done in
an hour. After a brief welcome my slides were on screen and I was off.

Unfortunately I ran out of time, laughing too long at my own lightning
anecdote which framed a talk about ellipses, the triple-dots ... which mean
different things in different places in different programming languages.
Next up was Dan Towner who walked us through the algorithm used by
compilers for allocating registers. It’s a greedy colouring of a planar map,
he said, wrapped in a bail-and-retry loop. Dan Tallis spoke about the single
committer model which works so well on open source projects. Developers

don’t have write access to the repository and must submit patches to the
committer for review, a protocol which encourages incremental and
considered changes to a codebase. Kevlin Henney needed just a single slide
to clear up some misconceptions in exactly five minutes. Chris Simons
didn’t need any slides to describe where designs come from. Pacing the
floor and waving his fingers, he explained that computer systems were
punchlines; design was a matter of figuring out the joke. Attack the
solution space with ants! No ACCU meeting would be complete without
a discourse on C++ test frameworks and Malcolm Noyes duly dazzled us
developing a C++ mocking library before our very eyes. Jim Thomson
compared before and after binaries to prove his source code
rearrangements hadn't done any damage. Ewan Milne, who’d not only
organised and chaired the meeting, also contributed a talk on (guess what?)
planning, subtitled how agile can Kanban be (say it!)

Jon Jagger postponed his closing talk. Macs just work if you’ve got the
right connectors. We hadn't. The audience wanted more but that's no bad
thing. We regathered in the hotel bar to crunch apples and chew over the
evening. The ACCU Bristol & Bath launch had been a success! The price
of a pint and anodyne surroundings discouraged lingering. We drank up
and headed off towards trains, homes, and, for a select few, the Cornubia.

Notes and references
ACCU Bristol & Bath meets every couple of months.

[1] Follow ACCU Bristol & Bath on twitter:
https://twitter.com/accuBristol or [@accuBristol]

[2] ACCU 2013 comes to Bristol!
 http://accu.org/index.php/conferences

[3] Subscribe to the mailing list:
http://lists.accu.org/mailman/listinfo/accu-bristol-bath

L

Desert Island Books
Mark Ridgewell packs for the island.

t’s difficult to choose which technical books I’d want to take. I have a
library of books that I’ve collected over the years, many of them are
becoming increasingly obsolete. I have no intention of taking Petzold’s

Programming Windows 3.11 no matter how useful it was at the time. Just
thinking about the segmented memory model and the complexities of near
far and huge pointers just makes me feel ill. And that’s before trying to
wrap my head around the craziness of Hungarian notation.

My first real computer was an Acorn Electron. My brother
taught me BBC BASIC and started off writing games in that.
After a while we ran into issues of both speed and code size
so started learning 6502 assembler and slowly switched to
using that. It was here where my first book, The Advanced User
Guide for the Acorn Electron, became incredibly useful. I

remember spending ages looking at the memory maps finding where there
was space to put code when in the graphics modes and, when attached, the
floppy drive, where code could be put that would survive a reboot, so that
could get around the copy protection on some tape games and re-save them
out to the floppy.

Skipping forward to my first job programming in C++, here
there are quite a few books and it is more difficult to choose
which one to pick. Stroustrup’s C++ Programming
Language, Meyer’s Effective C++ and its sibling More
Effective C++ and Sutter’s Exceptional C++ and More
Exceptional C++ rank highly in terms of teaching me

things. Of the three I probably gained the most out of Exceptional C++.

[continued overleaf]

I

Desert Island Books is based (loosely) on the popular BBC Radio 4
programme, Desert Island Disks (http://www.bbc.co.uk/radio4/factual/
desertislanddiscs.shtml). Many ACCU members have chosen their
Desert Island Books, and there are plenty more to go. If you would like
to share your Desert Island Books, please email cvu@accu.org
Choose 4 ‘technical’ books – books that have influenced your
programming life or that you would like to read – and explain what
attracts you to them. Include a novel and two albums – you can slip in a
film if you want – as this helps us get to know you better as a person.

What’s it all about?

SEP 2012 | | 31{cvu}

Clojure in Action
By Amit Rathore, published by
Manning, ISBN: 978-1-935182-59-7

Reviewed by Stephen Jackson

Clojure is a Lisp that runs on the
JVM. Amit Rathore’s ‘Clojure
in Action’ is the third Clojure book I have read,
following ‘Programming Clojure’ by Stuart
Halloway and ‘The Joy of Clojure’ by Michael
Fogus and Chris Houser.

In the section ‘About This Book’, the author
states, ‘To get the most out of the book, I've
assumed you’re familiar with an OO language
like Java, C# or C++, but no background in Lisp
or Clojure is required.’ However, I did not find
the core of the book to be particularly Java
oriented - it’s more a case of the reader being left
to their own devices to sort out classpaths and
what not. (If you want to work through all the
examples in Part 2, you also need to install
various additional packages.)

The book is divided into two parts; the first part
(40%), ‘Getting Started’, is meant to teach the
basics of Clojure, and the second part (60%)
‘Getting Real’ is about using Clojure to do real
work.

The first couple of chapters of ‘Getting Started’
present a very good overview of Clojure.
However, I think that the rest of this section,
which goes into the details, rather glosses over

a lot of those details. Perhaps the reader is
expected to go and look things up in the Clojure
API, but there are times when the newcomer to
Clojure would not realise where the holes are. I
think Halloway’s book is much better for the
newcomer than part 1 of this book.

The second section looked very promising,
opening up with an excellent chapter on TDD.
Subsequent chapters cover interfacing to data
stores (MySQL, HBase and Redis), web
services, RabbitMQ and DSLs. Although this
section did provide some useful insights, I was
left ultimately disappointed by part 2.

The book has received some criticism (from an
erstwhile editor of Overload among others)
because there are examples that do not work in

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

Bookshops

To this day the models of exception safety the books introduced me to serve
well in other languages.

Skipping forward many years, and changing more to a mixed C++ and C#
world Chen’s The Old New Thing provided lots of valuable insight into
why things in Windows work the way they do and how much goes on
behind the scenes for compatibility purposes.

For current its a lot more difficult. There is no book that stands out. The
Effective C# and More Effective C# books while good aren’t as good as
their C++ counterparts. JavaScript The Good Parts: I couldn’t find the
good parts. Working with Legacy Code was good, but largely overlaps
various other books that I have.

I am tempted to pick something I haven’t read, and so learn something new
while on the island. This is more difficult as I’d ideally want something
that will be useful. Perhaps a book on raft building, or planning. Growing
Object Orientated Software Guided By Tests would be an interesting one
that has been recommended by many and has been sat on my desk waiting
to be read for months. I would go for something that would allow me to
learn a new language, but without a computer that could get quite
frustrating, so something that I can do without a computer, but with endless
drawings in the sand. On this basis, I’ll take Schneier et al’s Cryptography
Engineering: Design Principles and Practical Applications so can work
through the examples, and be in a better position to know if what I’m
working on makes sense or is fundamentally flawed.

In terms of novels, this is the easiest choice of the lot – Good Omens,
written by two of my favourite authors Terry Pratchett and Neil Gaiman.
Novels written by either I enjoy, but this one written together has me
laughing from start till finish.

Given I’ve got two albums I think I’ll partially cheat and get an album
that’s long that I’ve loved for years – Pink Floyd’s The Wall, which feels
at least as relevant as it was when it first heard it. As I’ve also seen both
the film version and live with the Roger Waters tour in 2011, I can
remember/re-live the different experiences I have had of it.

The second album I’ve found difficult to choose and at one point was
thinking of flipping coins to choose one as there’s no one album where I
really like everything on it. Two Pink Floyd albums would be too much
to take. Counting Crows, Madness, Ke$ha, Nelly Furtado, Queen are all
out as I have to be in the right mood to listen to them. Perhaps I should
pick something so abhorrent so that it forces me to build a raft and get off
the island as soon as possible rather than lying back and relaxing. Although
a Justin Beiber CD would fit this it might be too much and I would try
swimming without the raft. Wish I could have remembered to pick up my
MP3 player stuffed full of music and this wouldn’t be having this problem.

In the end I’m going to settle for Seven Mary Three’s Rock Crown. Their
other albums may have sold better, but of their albums this is the one I like
the most.

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

Desert Island Books (continued)

32 | | SEP 2012

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From the Chair
Alan Griffiths
chair@accu.org

I’ve always found I get a lot out of
the ACCU – hearing about new (or renewed)
ideas in software development, new languages
and technologies (and a place to discuss ways to
cope with the insanities imposed on us software
developers by the businesses that employ us).
But understanding or explaining the ACCU and
how it operates has always been a challenge.

The core of the ACCU is a community of like-
minded individuals with a common interest in
exchanging ideas about our craft. When I first
encountered the ACCU this was something
unique, but other such communities have sprung
up over the decades. Regardless, the ACCU still
has something precious and I am proud to be a
member.

One of the problems facing us at the moment is
to clarify how the organisation operates. I’ve
always thought it simple: the membership gives
the committee authority to run the organisation
and the committee has corresponding
responsibilities to the membership. If anyone
wants something to happen they can contact the
committee who will usually give delegate to

them the necessary authority in return for them
taking the responsibility for taking the necessary
action.

If this sounds somewhat haphazard and informal
then that is because the ACCU is a somewhat
haphazard and informal organisation. That is
both a strength and a weakness – it means that
anyone can spot a worthwhile activity and get
involved on our behalf, it also means that
sometimes no-one steps up to do something that
would be good to do. Everyone involved is
volunteering time, expertise and effort – so we
have to accept that other priorities will
sometimes take precedence.

Over the two committee meetings that I’ve
chaired this year the committee has taken steps
to make the operation of the organisation more
transparent. As part of this minutes of the
committee meetings are now published on the
accu-members mailing list once they are
approved (at the following committee meeting).

The committee has also formed two new
working groups: Dirk Haun, with some other
volunteers, has taken on the task of figuring out
how to enhance the website and ensure that it
remains current, dynamic and interesting. And
Giovanni Asproni (the secretary) is co-

ordinating work on updating the constitution to
reflect the global nature of the ACCU and the
availability of fast electronic communication.
Neither group has yet had time to produce
results, but they can act faster than the full
committee – and are open to active participation
by any interested members.

Another new point of contact on the committee
is Matthew Jones – he has volunteered to co-
ordinate the support we offer to local groups.

There has also been a change to the ‘standards
officer’ – Lois Goldthwate has acted in this role
since the 1990s but has now stepped down in
favour of Mark Radford. In thanks for her long
and valuable service the committee proposes
that she receives an honorary life membership.
Mark has previously been an ACCU committee
member and has worked with Lois and others on
the BSI C++ Panel.

I’m sure that all of the above (and also
committee members of longer standing) would
welcome support from any members willing to
help out with the activities that make the ACCU
what it is.

If you want to help and don’t know who else to
talk to then please contact me at
chair@accu.org.

Clojure 1.3 which had been out for 2 months at
the time of publication in November 2011. I
don’t think that is such a big deal, but the reader
should be aware that because Clojure is young
and rapidly evolving, any book about it will soon
become out of date in some respects. (The 2nd
edition of Programming Clojure, which was
updated for 1.3, came out the same month as 1.4
was released.)

I don’t think that Clojure in Action is a bad book
by any means, and it contains a few chapters that
are real gems, but I struggle to think of the sort
of person I would recommend it to.
Programming Clojure is a better bet if you want
a gentler hand-holding introduction, and The
Joy of Clojure is a must read for those who really
want to ‘get it’.

Elemental Design
Patterns
By Jason McC. Smith, published by
Addison-Wesley Professional,
ISBN: 978-0321711922

Reviewed by Bob Corrick

It’s patterns all the way down: a
review of Elemental Design Patterns.

The author sums up his own research at the end
of the first chapter: ‘Elemental Design Patterns
are the building blocks of computer science.’ He
is not suggesting that we build software pattern
by pattern – rather that patterns, in their simplest

form, are there to be discovered and can be used
to assess and improve programs. The research
produced a pattern discovery tool ‘SPQR’, and
the twenty or so conceptual patterns are shown
in diagrams and in code examples. The
examples mostly use C++ or Java, and some use
Objective C or C.

Overall the book is thoughtfully and
enthusiastically written, and well produced.
Sometimes the author’s enthusiasm packed
rather more into a paragraph than I could digest,
but it hangs together on re-reading. I liked his
use of ‘reliance’ to refer to the relationship
between parts of patterns, which seemed a fresh
and more accurate word to me than
‘dependency’, which would have suggested
something rather too inflexible. It all seems
accessible to a programmer who wants to know
more about patterns, whereas the original
Design Patterns book [GoF] seemed difficult to
apply at the time.

Elemental design patterns are at the simplest
level: calls from one place to another in a body
of software mean that some class or module
relies on another, forming a pattern. Some of the
pattern names are familiar and well-researched
(cohesion, coupling, recursion) and all are
grouped together in some simple diagrams.
These ‘design space’ diagrams help to
distinguish between the various patterns, based

on the similarities in location, type, and name of
the related calls.

Six patterns from GoF are described in detail,
broken down into elemental design patterns. To
support this, Pattern Instance Notation (PIN) has
been used – unfortunately, some of the PIN
diagrams look like a jigsaw puzzle. I can’t
immediately pick out the lines that relate labels
to components, and I couldn’t help wondering
what Edward Tufte would have made of these.
The writing rescues this section, and it is
particularly good on refactoring.

Elemental design patterns can be formed by
relationships between objects, fields, and types
as well as between methods. The analogy with
the periodic table of elements is backed up by an
appendix on the mathematics (rho-calculus),
which I freely admit I haven’t read. I’ve learned
more about software in general and patterns in
particular by reading this book, and I’ll keep it.

Bookcase (continued)

	CVU24-4.pdf
	Different Strokes
	The Curious Case of the Frozen Code
	Learning and Applying the Personal Software Process
	Anatomy of a CLI Program Written in C
	Patterns and Active Patterns
	Keeping up-to-date
	Code Critique Competition 77
	Standards Report
	ACCU Bristol & Bath Launched
	Desert Island Books
	View From the Chair

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

