

JUL 2012 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Flesh on Bones
here’s been quite a bit of activity on the mailing lists
recently (well, recently as I write) about interviews
and the whole recruitment process.

Working as a contractor means I get to take part in this
little pantomime fairly often, sometimes two or three
times in a year. Most often, of course, on the interviewee
side of the table, but occasionally doing the interviewing.

For programming interviews, much is made of gauging the
technical ability of a candidate with respect to actually being
able to write code, and having more than a superficial
understanding of a programming language and environment.
It’s easy – too easy – to become blind to all else when
evaluating this level of competence. The expression that springs
to mind is the one about being able to code one’s way out of
a paper bag.

I have done quite a few programming tests of both the ‘write
on a piece of paper’ and the ‘submit as homework by
Tuesday’ variety. I accept it can be interesting and
enlightening to use this as a way of determining if a candidate
has ever actually written any code, and I also accept that it seems
that a large number of people who apply for programming jobs have not. As both
interviewer and interviewee, though, I find the most enlightening thing is to
discuss the relative merits of different practices and approaches to development
problems. A short code example is sometimes the best vehicle for this debate but
not always. Too often, in my experience, these little code tests are a vehicle for the
interviewer to demonstrate their own prowess.

As an interviewer I often try to develop a philosophical discussion about
approaches to unit testing, code management and delivery, version control,
relative merits between different languages – even, or perhaps especially when the
languages being discussed aren’t even on the job spec. I find it rare that someone
who engages meaningfully in such a conversation is actually a bad programmer.

T
Volume 24 Issue 3
July 2012

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Mick Brooks, Pete Goodliffe,
Paul Grenyer, Seweryn Habdank-
Wojewódzki, Chris Oldwood,
Adam Petersen, Richard Polton,
Roger Orr, Nick Sabalausky

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

2 | | JUL 2012

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
23 Desert Island Books

Paul Grenyer introduces
Mick Brooks.

24 Code Critique Competition
Competition 76 and the
answers to 75.

29 Standards Report
Mark Radford bring us the
latest news.

REGULARS
30 Bookcase

The latest roundup of
book reviews.

32 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 24.4: 1st August 2012
C Vu 24.5: 1st October 2012

Overload 111: 1st September 2012
Overload 112:1st November 2012

FEATURES
3 Development Fuel: Software Testing in the Large

Seweryn Habdank-Wojewódzki and Adam Petersen have
some advice for testing large systems.

8 Metaprogramming Plus: The Flexibility Enhancements
Nick Sabalausky writes more no-compromise code by
metaprogramming in D.

16 ACCU Conference 2012
Chris Oldwood recalls his experiences of the ACCU 2012
conference.

18 The Art of Software Development
Pete Goodliffe vents the modern developer angst.

20 Patterns and Anti-patterns – Factorisation
Richard Polton shows how redundant code can be
removed by factoring to a functional style.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Development Fuel:
Software Testing in the Large

Seweryn Habdank-Wojewódzki and Adam Petersen have
some advice for testing large systems.

s soon as a software project grows beyond the hands of a single
individual, the challenges of communication and collaboration
arise. We must ensure that the right features are developed, that the

product works reliably as a whole and that features interact smoothly. And
all that within certain time constraints. These aspects combined places
testing at the heart of any large-scale software project.

This article grew out of a series of discussions around the role and practice
of tests between its authors. It’s an attempt to share the opinions and
lessons learned with the community. Consider this article more a collection
of ideas and tips on different levels than a comprehensive guide to software
testing. There certainly is more to it.

Keeping knowledge in the tests
We humans are social creatures. Yes, even we programmers. To some
extent we have evolved to communicate efficiently with each other. So
why is it so hard to deliver that killer app the customer has in mind? Perhaps
it’s simply because the level of detail present in our average design
discussion is way beyond what the past millenniums of evolution required.
We’ve gone from sticks and stones to multi-cores and CPU caches. Yet
we handle modern technology with basically the same biological
prerequisites as our prehistoric ancestors.

Much can be said about the human memory. It’s truly fascinating. But one
thing it certainly isn’t is accurate. It’s also hard to back-up and duplicate.
That’s where documentation comes in on complex tasks such as software.
Instead of struggling to maintain repetitive test procedures in our heads,
we suggest relying on structured and automated test cases for recording
knowledge. Done right, well-written test cases are an excellent
communication tool that evolve together with the software during its whole
life-cycle.

Large-scale software projects have challenges of their own. Bugs due to
unexpected feature interactions are quite common. Ultimately, such bugs
are a failure of communication. The complexity in such bugs is often
significant. Not at least since the domain knowledge needed to track down
the bug is often spread across different teams and individuals. Again,
recording that domain knowledge in test cases makes the knowledge
accessible.

Levels of test
It’s beneficial to consider testing at all levels in a software project.
Different levels allow us to capture different aspects and levels of details.
The overall goal is to catch errors as early as possible, preferably on the
lowest possible level in the testing chain. But our division is more than a
technical solution. It’s a communication tool. The tests build on each other
towards the user level. The higher up we get, the more we can involve non-
technical roles in the conversation.

Each level serves a distinct purpose:

1. Unit tests are driven by implicit design requirements. Unit tests are
never directly mapped to formal requirements. This is the
technically most challenging level. It’s impossible to separate unit
tests from design. Instead of fighting it, embrace it; unit tests are an
excellent medium and opportunity for design. Unit tests are written
solely by the developer responsible for a certain feature.

2. Integrations tests are where requirements and design meet. The
purpose of integration tests is to find errors in interfaces and in the
interaction between different units as early as possible. They are
driven by use cases, but also by design knowledge.

3. System tests are the easiest ones to formulate. At least from a
technical perspective. System tests are driven by requirements and
user stories. We have found that most well-written suites are rather
fine-grained. One requirement is typically tested by at least one test
case. That is an important point to make; when something breaks,
we want to know immediately what it was.

 The big win: tap into testers’ creativity by automating

Testing in Figure 1 (the software development cycle from a test-centric
oint of view) refers to any kind of testing. Among them are exploratory
and manual tests. These are the ones that could make a huge qualitative
difference; it’s under adverse conditions that the true quality of any product
is exposed.

A

SEWERYN HABDANK-WOJEWÓDZKI
Seweryn Habdank-Wojewódzki specialises in high-
performance distributed computing. He is also focused on
the industrial quality standards of the code. In his leisure
time he enjoys self-made art. Seweryn can be contacted
at habdank@gmail.com

ADAM PETERSEN
Adam Petersen is a programmer and graduate student. His
interests include Lisp, Erlang, parallel programming martial
arts, music and modern history. He can be contacted at:
adam@adampetersen.se

Figure 1
JUL 2012 | | 3{cvu}

Thus the purpose of this level of testing is to try to break the software,
exploiting its weaknesses, typically by trying to find unexpected scenarios.
It requires a different mindset found in good testers; just like design, testing
is a creative process. And if we manage to get a solid foundation by
automating steps 1–3 above, we get the possibility to spend more time in
this phase. As we see it, that’s one of the big selling-points of automated
tests.

The challenges of test automation
The relative success of a test automation project goes well behind any
technical solutions; test automation raises questions about the roles in a
project. It’s all too easy to make a mental difference regarding the quality
of the production code and the test code. It’s a classic mistake. The test
code will follow the product during its whole life cycle and the same
aspects of quality and maintainability should apply here. That’s why it’s
important to have developers responsible for developing these tools and
frameworks. Perhaps even most test cases in close collaboration with the
testers.

There’s one caveat here though; far too many organizations aren’t shaped
to deal with cross-disciplinary tasks. We often find that although the
developers have the skills to write competent
test frameworks and tools, they’re often not
officially responsible for testing. In social
psychology there’s a well-known phenomenon
known as diffusion of responsibility [1]. Simply
put, a single individual is less likely to take
responsibility for an action (or inaction) when
others are present. The problem increases with
group size and has been demonstrated in a range
of spectacular experiments and fateful real-
world events.

The social game of large-scale software
development is no exception. When an organization fails to adequately
provide and assign responsibilities, we’re often left with an
unmaintainable mess of test scripts, simulators and utilities since the
people developing them aren’t responsible for them; they’re not even the
users. These factors combined prevent the original developers from
gaining valuable feedback. At the end, the product suffers along with the
organization.

Changing a large organization is probably one of the hardest tasks in our
modern corporate world. We’re better advised to accept and mitigate the
problem within the given constraints. One simple approach is to put focus
on mature test environments and/or frameworks. Either a custom self
maintained framework or one off the shelf. A QA Manager should consider
investing in a testing framework, to discipline and speed up testing.
Especially if there already are existing test cases that shall be re-run over
and over again. Such a task is usually quite boring and therefore error
prone. Automating it minimizes the risks of errors due to human boredom.
That’s a double win.

System level testing
System level testing refers to requirements [2], user stories and use cases.
Reading and analysing requirements, user stories and use cases is a vital
part in the preparation of test cases. Use cases are very close to test cases.
However their focus is more on describing how the user interacts with the
system rather than specifying the input and expected results. That said,
when there are good use cases and good test cases, they tend to be very
close to each other.

Preparing test cases – the requirements link

With increasing automation the line between development and testing gets
blurred; writing automated test cases is a development activity. But when
developers maintain the frameworks, what’s the role of the tester?

Well, let’s climb the software hill and discuss requirements first.
Requirements shall be treated and understood as generic versions of use

cases. It is hard to write good requirements, but it is important to have them
to keep an eye on all general aspects of the product. Now, on the highest
level test cases are derived directly and in-directly from the requirements.
That makes the test cases place holders for knowledge. It’s the
communicating role of the test cases. Well-written test cases can be used
as the basis for communication around requirements and features.
Increasingly, it becomes the role of the tester to communicate with
Business Analysts [3] and Product Managers [4].

Once a certain requirement or user story has been clarified, that feedback
goes into the test cases.

The formulation of test cases is done in close collaboration with the test
specialists on the team. The tester is responsible for deciding what to test;
the developer is responsible for how. In that context, there are two common
problems with requirements; they get problematic when they’re either too
strict or too fuzzy. The following sections will explain the details and
cures.

Avoiding too strict requirements

Some requirements are simply too strict, too detailed. Let’s consider the
following simple example. We want to write a calculator, so we write a

requirement that our product shall fulfil the
following: 2 + 2 = 4, 3 * 5 = 15, 9 / 3 = 3. How
many such requirements shall we write? On this
level of detail there will be lots of them (let’s say
infinite...). Writing test cases will immediately
show that the requirements are too detailed.
There is no generic statement capturing the
abstraction behind, specifying what really shall
be done. There are three examples on input and
output. In a pathological case of testing we will
write exactly three test cases (copy paste from
requirements) and reduce the calculator to the

look-up table that contains exactly those three rows with values and
operations as above. It may be a trivial example but it expands to all
computing.

Further, for scalability reasons it’s important to limit the number of test
cases with respect to their estimated static path count. One such technique
is to introduce Equivalence Classes for input data by Equivalence Class
Partitioning (ECP) [5]. That will help to limit number of tests for interface
testing. ECP will also guide in the organization of the test cases by and
dividing them in normal operation test cases, corner cases and error
situations.

Test data based on the ECP technique makes up an excellent base for data-
driven tests. Data-driven tests are another example on separating the
mechanism (i.e. the common flow of operations) from the stimulus it
operates on (i.e. the input data). Such a diversion scales well and expresses
the general case clearer as well.

Cures for fuzzy requirements

Clearly too strict requirements pose a problem. On the other side of the
spectrum we have fuzzy requirements. Consider a requirement like:
‘during start everything shall be logged’. On the development team we
might very well understand the gist in some concrete way, but our customer
may have a completely different interpretation. Simply asking the
customer: ‘How will it be tested?’ may go a long way towards converting
that requirement to something like: ‘During application start-up, it should
be possible to any information to the logger. Where any information
means: start of the main function of the application and all its plug-ins.’

How did our simple question to the customer helped us sort out the
fuzziness in the requirement? First of all ‘every’ was transformed to ‘any’.
To get the conversation going we could ask the user if he/she is interested
in every bit of information, like the spin of the electrons in CPU. Writing
test cases or discussing them with the user often give us his perspective.
Often, the user considers different information useful for different
purposes. Consider our definition of ‘any’ information above. Here ‘any’

There’s one caveat here
though; far too many
organizations aren’t
shaped to deal with

cross-disciplinary tasks
4 | | JUL 2012{cvu}

for release 1.0 could imply logging the start of the main function and plug-
ins. We see here that such a requirement does not limit the possible
extensions for release 2.0.

The discussion also helped us in clarifying what ‘logged’ really meant.
From a testing point of view we now see that test shall consider the
presence of the logger. And later requirements may precisely define the
term logger and what the logs looks like. Again requirements about the
shape of the logs shall be verified by proper test cases and by keeping the
customer in the loop. Preparing the test case may guide the whole
development team towards a very precise definition of logs.

Consider another real-world example from a product that one of the
authors was involved in. The requirements for that product specified that
transactions must be used for all operations in the
database. That’s clearly not something the user cares
about (unless we are developing an API for a
database. . .) . I t ’s a design issue. The real
requirements would be something related to
persistent information in the context of multiple,
concurrent users and leave the technical issues to the
design without specifying a solution.

One symptom of this problem is requirements that
are hard to test. The example above ended up being
verified by code inspection – hard to automate, and
hard to change the implementation. Say we found
something more useful than a relational database.
As long as we provide the persistency needed, it
would be perfectly fine for the end-user. But, such a design change would
trigger a change in the requirements too.

Finally some words on Agile methodologies since they’re commonplace
these days. Agile approaches may help in test preparation as well as in
defining the strategy, tools and writing test cases. The reason Agile
methodologies may facilitate these aspects is indirect through the
potentially improved communication within the project. But, the technical
aspects remain to be solved independent of the actual methodology. Thus,
all aspects of the software product have to be considered anyway from a
test perspective; shipping, installation process, quality of documentation
(which shall be specified in requirements as well) and so on.

Traceability

In safety-critical applications traceability is often a mandatory requirement
in the regulatory process. We would like to stress that traceability is an
important tool on any large-scale project. Done right, traceability is useful
as a way to control the complexity, scale and progress of the development.
By linking requirements to test cases we get an overview of the
requirements coverage. Typically, each requirement is verified by one or
more test cases. A requirement without test(s) is a warning flag; such a
requirement is often useless, broken or simply too fuzzy.

From a practical perspective it’s useful to have bi-directional links. Just
like we should be able to trace a requirement to its test cases, the test cases
should explain which requirement (or component thereof) it tests. Bi-
directional traceability is of vital importance when preparing or generating
test reports.

Such a link could be as simple as a comment or magical tag in each test
case, it could be an entry in the test log, or the links could be maintained
by one of the myriad of available tools for requirements tracing.

Design of test environments
Once we understand enough of the product to start sketching out designs
we need to consider the test environments. As discussed earlier, we
recommend testing on different complementary levels. With respect to the
test environment, there may well be a certain overlap and synergies that
allow parts to be shared and re-used across the different test levels. But
once we start moving up from the solution domain of design (unit tests)
towards the problem domain (system and acceptance tests), the interfaces
change radically. For example, we may go from testing a programmatic

API of one module with unit tests to a fully-fledged GUI for the end-user.
Clearly, these different levels have radically different needs with respect
to input stimulation, deployment and verification.

Test automation on GUI level

In large-scale projects automatic GUI tests are a necessity. The important
thing is that the GUI automation is restricted to check the behaviour of the
GUI itself. It’s a common trap to try to test the underlying layers through
the GUI (for example data access, business logic). Not only does it
complicate the GUI tests and make the GUI design fragile to changes; it
also makes it hard to inject errors in the software and simulate averse
conditions.

However, there are valid cases for breaking this
principle. One common case is when attempting to
add automated tests to a legacy code base. No matter
how well-designed the software is, there will be
glitches with respect to test automation (e.g. lack of
state inspection capabilities, tightly coupled layers,
hidden interfaces, no possibility to stimulate the
system, impossible to predictably inject errors). In
this case, we’ve found it useful to record the existing
behaviour as a suite of automated test cases. It may
not capture every aspect of the software perfectly,
but it’s a valuable safety-net during re-design of the
software.

The test cases used to get legacy code under test are
usually not as well-factored as tests that evolve with the system during its
development. The implication is that they tend to be more fragile and more
inclined to change. The important point is to consider the tests as temporary
in their nature; as the program under test becomes more testable, these
initial tests should be removed or evolve into formal regression tests where
each test cases captures one, specific responsibility of the system under
test.

Integration defines error handling strategies

In large-scale software development one of the challenges is to ensure
feature and interface compatibility between sub-systems and packages
developed by different teams. It’s of vital importance to get that feedback
as early as possible, preferably on each committed code change. In this
scope we need to design all tests to be sure that all possible connections
are verified. The tests shall predict failures and test how one module will
behave in case another other module fails. The reason is twofold.

First, it’s in averse conditions that the real quality of any software is
brutally exposed; we would be rich if given a penny for each Java stack
trace we’ve seen in live systems on trains, airports, etc. Second, by
focusing on inter-module failures we drive the development of an error
handling strategy. And defining a common error handling policy is
something that has to be done early on a multi-team software project. Error
handling is classic example on cross-cutting functionality that cannot be
considered locally.

Simulating the environment

Quite often we need to develop simulators and mock-ups as part of the test
environment. Having or being able to have mock-ups will detect any lack
of interfaces, especially when mock objects or modules has to be used
instead of real ones. Further, simulators allow us to inject errors in the
system that may be hard to provoke when using the real software modules.

Finally, a warning about mock objects based on hard-earned experience.
With the increase in dynamic features in popular programming languages
(reflection, etc) many teams tend to use a lot of mocks at the lower levels
of test (unit and integration tests). That may be all well. Mocks may serve
a purpose. The major problem we see is that mocks encourage interaction
testing which tends to couple the test cases to a specific implementation.
It’s possible to avoid but any mock user should be aware of the potential
problems.

Done right,
traceability is useful

as a way to control
the complexity, scale

and progress of the
development
JUL 2012 | | 5{cvu}

Programming languages for testing
The different levels of tests introduced initially are pretty rough. Most
projects will introduce more fine-grained levels. If we consider such more
detailed layers of testing (e.g. acceptance testing, functional testing,
production testing, unit testing) then except for unit testing, the most
important part here is to separate the language used for testing from the
development language. There are several reasons for this.

The development language is typically selected due to a range of
constraints. These may be due to regulatory requirements in safety or
medical domains, historical reasons, efficiency, or simply due to the
availability of a certain technology on the target platform. In contrast, a
testing language shall be as simple as possible. Further, by using different
languages we enable cross-verification of the
intent which may help in clarifying the details of
the software under test. Developers responsible for
supporting testing shall prepare high level routines
that can be used by testers without harm for the
tested software. It can be either commercial tools
[6] or open sources [7].

When capturing test case we recommend using a
formal language. In system or mission critical SW
development there are formal processes built
around standards like DO-178B and similar. In
regular SW development using an automated
testing framework forces developers to write test
specifications in a dedicated high-level language.
Most testing tools offer such support. This is
important since formal language helps in the same way as normal source
code. It can be verified, executed and is usually expressive in the test
domain. If it is stored in plain text then comparison tools may help to check
modifications and history. More advanced features are covered by Test
Management tools.

TDD, unit tests and the missing link
A frequent discussion about unit tests concern their relationship to the
requirements. Particularly in Test-Driven Development (TDD) [8] where
the unit tests are used to drive the design of the software. With respect to
TDD, The single most frequent question is: ‘how do I know which tests
to write?’ It’s an interesting question. The concept of TDD seems to trigger
something in peoples mind; something that the design process perhaps
isn’t deterministic. It particularly interesting since we rarely hear the
question ‘how do I know what to program?’ although it is exactly the same
problem. As we answer something along the lines that design (as well as
coding) always involves a certain amount of exploration and that TDD is
just another tool for this exploration we get, probably with all rights,
sceptical looks. The immediate follow-up question is: ‘but what about the
requirements?’ Yes, what about them? It’s clear that they guide the
development but should the unit tests be traced to requirements?

Requirements describe the ‘what’ of software in the problem domain. And
as we during the design move deeper and deeper into the solution domain,
something dramatic happens. Our requirements explode. Robert L. Glass
identifies requirements explosion as a fundamental fact of software
development: ‘there is an explosion of “derived requirements” [..] caused
by the complexity of the solution process’ [9]. How dramatic is this
explosion? Glass continues: ‘The list of these design requirements is often
50 times longer than the list of original requirements’ [9]. It is requirements
explosion that makes it unsuitable to map unit tests to requirements; in fact,
many of the unit tests arise due to the ‘derived requirements’ that do not
even exist in the problem space!

Avoid test dependencies on implementation details

Most mainstream languages have some concept of private data. These
could be methods and members in message-passing OO languages. Even
the languages that lack direct language support for private data (e.g.
Python, JavaScript) tend to have established idioms and conventions to

communicate the intent. In the presence of short-term goals and deadlines,
it may very well be tempting to write tests against such private
implementation details. Obviously, there’s a deeper issue with it; most
testers and developers understand that it’s the wrong approach.

Before discussing the fallacies associated with exposed implementation
details, let’s consider the purpose of data hiding and abstraction. Why do
we encapsulate our data and who are we protecting it from? Well, it turns
out that most of the time we’re protecting our implementations from
ourselves. When we leak details in a design we make it harder to change.
At some point we’ve probably all seen code bases where what we expected
to be a localized change turned out to involve lots of minor changes
rippling through the code base. Encapsulation is an investment into the

future. It allows future maintainers to change the
how of the software without affecting the what.

With that in mind, we see that the actual
mechanisms aren’t that important; whether a
convention or a language concept, the important
thing is to realize and express the appropriate level
of abstraction in our everyday minor design
decisions.

Tests are no different. Even here, breaking the seal
of encapsulation will have a negative impact on the
maintainability and future life of the software. Not
only will the tests be fragile since a change in
implementation details may break the tests. Even
the tests themselves will be hard to evolve since
they now concern themselves with the actual

implementation which should be abstracted away.

That said, it may well exist cases where a piece of software simply isn’t
testable without relaying on and inspecting private data. Such a case is
actually a valuable feedback since it often highlights a design flaw; if
something is hard to test we may have a design problem. And that design
problem may manifest itself in other usage contexts later. As the typical
first user of a module, the test cases are the messenger and we better listen
to him. Each case requires a separate analysis, but we've often found one
of the following flaws as root cause:

1. Important state is not exposed – perhaps we shall think about some
state of the module or class that shall be exposed in a kind of
invariant way (e.g. by COW, const).

2. Class/Module is complicated with overly strong coupling.

3. The interface is too poor to write essential test cases.

4. A proper bridge (or in C++ pimpl) pattern is not used to really hide
private details that shall not be visible. In this case it's simply a
failure of the API to communicate by separating the public from the
hidden parts.

Coping with feedback

As a tester starts to write test cases expected to be run in an automated way
he will usually detect anomalies, asymmetric patterns and deviations in the
code. Provided coding and testing are executed reasonably parallel in time,
this is valuable feedback to the developer. On a well-functioning team, the
following information would typically flow back to the designers of the
code:

 Are there any missing interfaces? Or are there perhaps too many
interfaces bloating the design?

 Is it supposed to work like this?

 Is the SW conceptually consistent?

 Are the differences between similar methods documented and
clearly expressed?

Since the test cases typically are the first user of the software they are likely
to run into other issues that have to be addressed earlier rather than
becoming a maintenance cost. One prime example is the instantiation of
individual software components and systems. The production and test code

breaking the seal of
encapsulation will

have a negative
impact on the

maintainability and
future life of the

software
6 | | JUL 2012{cvu}

may have different needs here. In some cases, the test code has to develop
mechanisms for its own unique needs, for example factory objects to
instantiate the components under test. In that case, the tester will
immediately detect flaws and complicated dependency chains.

Automatic test cases has another positive influence on the software design.
When we want to automate efficiently, we will have to separate different
responsibilities. This split is typically done based on layers where each
layer takes us one step further towards the user domain. Examples on such
layers include DB access, communication, business logic and GUI.
Another typical example involves presenting different usage views, for
example providing both a GUI and a CLI.

Filling data into classes or data containers

This topic brings many important design decision under consideration.
Factories but in general construction of the SW is always tricky in terms
of striking a balance between flexibility and safety. Let’s consider a simple
example class, Authentication. Let’s assume the class contains two
fields: login and password. If we will start to write test cases to check
access using that class we could arrive at a table with the following test
data: Authentication = {{A,B},{C,D},{E,F},{G,H},{I,J}}. If the class has
two getters (login, password) and two setters (similar ones), it is very
likely that we do not need to separate login and password. Changing login
usually forces us to change password too. What about having two getters
and one setter that takes two arguments and one constructor with two
arguments? Seems to be good simplification. It means that by preparing
the tests, we arrived at suggested improvements in the design of the class.

Gain feedback from code metrics

When testing against formal requirements the initial scope is rather fixed.
By tracing the requirements to test cases we know the scope and extent of
testing necessary. A more subjective weighting is needed on lower levels
of test. Since unit tests (as discussed earlier) are written against implicit
design requirements there’s no clear test scope. How many tests shall we
write?

Like so many other quality related tools, there’s a point of diminishing
return with unit tests. Even if we cover every corner of the code base with
tests there's absolutely no guarantee that we get it right. There are just too
many factors, too many possible ways different modules can interact with
each other and too many ways the tests themselves may be broken. Instead,
we recommend basing the decision on code metrics.

Calculating code metrics, in particular cyclomatic complexity and
estimated static path count [10], may help us answer the question for a
particular case. Code Complexity shows the minimal number of test
actions or test cases that shall be considered. Estimate Static Path Count
on the other hand shows a kind of maximal number (true maximal number
is quite often infinity). It means that tools which calculate code metrics
point to areas that need improvement as well as how to test the code.
Basically, code metrics highlight parts of the code base that might be
particularly tricky and may require extra attention. Note that these aspects
are a good subject for automation. Automatic tests can be checked against
coverage metrics and the code can be automatically checked with respect
to cyclomatic complexity. Just don’t forget to run the metrics on the test
code itself; after all, it's going to evolve and live with the system too.

Summary
Test automation is a challenge. Automating software testing requires a
project to focus on all areas of the development, from the high-level
requirements down to the design of individual modules. Yet, technical
solutions aren't enough; successful test automation requires a working

communication and structured collaboration between a range
of different roles on the project. This article has touched all
those areas. While there’s much more to write on the subject,
we hope our brief coverage may serve as a starting-point and
guide on your test automation tasks.

References and reading
[1] http://en.wikipedia.org/wiki/Diffusion_of_responsibility
[2] Requirements, http://en.wikipedia.org/wiki/Requirement
[3] Allan Kelly, ‘On Management: The Business Analyst’s Role’,

http://accu.org/index.php/journals/1559
[4] Allan Kelly, ‘On Management: Product Managers’,

http://accu.org/index.php/journals/1552
[5] http://en.wikipedia.org/wiki/Equivalence_partitioning
[6] List of notable test management tools, http://en.wikipedia.org/wiki/

Test_management_tools#List_of_notable_test_management_tools
[7] http://www.opensourcetesting.org/testmgt.php
[8] http://en.wikipedia.org/wiki/Test-driven_development
[9] Robert L. Glass, Facts and Fallacies of Software Engineering
[10] Krusko Armin, ‘Complexity Analysis of Real Time Software –

Using Software Complexity Metrics to Improve the Quality of Real
Time Software’, http://www.nada.kth.se/utbildning/grukth/exjobb/
rapportlistor/2004/rapporter04/krusko_armin_04032.pdf

Adam Petersen, ‘The Roots of TDD’, http://www.adampetersen.se/
articles/designintdd.htm

‘Requirements Analysis’, http://en.wikipedia.org/wiki/
Requirements_analysis

tools which calculate code metrics point to
areas that need improvement as well as
how to test the code
JUL 2012 | | 7{cvu}

http://en.wikipedia.org/wiki/Diffusion_of_responsibility
http://en.wikipedia.org/wiki/Requirement
http://accu.org/index.php/journals/1559
http://accu.org/index.php/journals/1552
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Test_management_tools#List_of_notable_test_management_tools
http://en.wikipedia.org/wiki/Test_management_tools#List_of_notable_test_management_tools
http://www.opensourcetesting.org/testmgt.php
http://en.wikipedia.org/wiki/Test-driven_development
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/krusko_armin_04032.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/krusko_armin_04032.pdf
http://www.adampetersen.se/articles/designintdd.htm
http://www.adampetersen.se/articles/designintdd.htm
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Requirements_analysis

Metaprogramming Plus:
The Flexibility Enhancements

Nick Sabalausky writes more no-compromise code by
metaprogramming in D.

icking up right where we left off in part 1, you may recall Flexibility
was concerned that the metaprogramming approach seemed to
prevent complex configurability. He didn’t think he could use

complex logic to decide what types of Gizmos needed to be made and how
many. The problem is that Gizmo’s settings are specified at compile-time,
but the logic to determine the configuration may need to happen at runtime.
Dr. Metaprogramming knew that could be worked around and promised
to show various methods of handing this.

These methods will be demonstrated by making two basic changes to the
existing metaprogramming example:

1. Currently, there are 1-port, 2-port and 5-port Gizmos. The 5-port
ones will no longer be hardcoded as 5-port. The number of ports on
these larger Gizmos will now be configurable via bigPorts.

2. Only 2,000 spinnable 2-port Gizmos will be made instead of 10,000.
But 8,000 extra Gimos will be created. The type of these extra
Gizmos will be configurable via extrasNumPorts and
extrasIsSpinnable.

Naturally, if you want to compare the time and memory usage with all the
previous versions, then these values should be set to bigPorts = 5,
extrasNumPorts = 2 and extrasIsSpinnable = true.

Note that none of these require any changes to the Gizmo type itself. Only
the code in UltraGiz and main() is affected. That is to say, the only
changes are in setting up and using the same Gizmo types that we’ve
already written.

Method #1: Compile-time function execution
Frequently abbreviated as CTFE, this method can’t be done in all
languages. And in a language that does support it (like D) it can be the least
powerful method. But it’s the simplest and easiest, and is perfectly
sufficient in many situations.

All that needs to be done is assign the return value of a function to a
compile-time value. The compiler will execute the function itself (if it can)
instead of waiting until runtime. Simple. This version is is shown in
Listing 1 (taken from ex6_meta_flex1_ctfe.d).

Method #2: Compiling at runtime
On the downside, this method takes extra time (potentially very noticeable)
whenever a setting needs to be changed. That may or may not be a problem
depending on the nature of the program and the setting. Additionally,
you’ll need to distribute your configurable source code along with your
program. Finally, this method requires either:

1. The user has the appropriate compiler set up.

2. You package the compiler along with your application.

P

NICK SABALAUSKY
Nick Sabalausky has been programming most of his life
(low-power embedded systems, videogames and web
development). His latest interests are training, computer
language processing, and all aspects of software design.
Nick can be contacted via http://semitwist.com/contact

struct UltraGiz
{
 template gizmos(int numPorts, bool isSpinnable)
 {
 Gizmo!(numPorts, isSpinnable)[] gizmos;
 }
 int numTimesUsedSpinny;
 int numTimesUsedTwoPort;

 void useGizmo(T)(ref T gizmo)
 {
 gizmo.doStuff();
 gizmo.spin();

 if(gizmo.isSpinnable)
 numTimesUsedSpinny++;
 if(gizmo.numPorts == 2)
 numTimesUsedTwoPort++;
 }

 static int generateBigPorts()
 {
 // Big fancy computation to determine
 // number of ports
 int num=0;
 for(int i=0; i<10; i++)
 {
 if(i >= 5)
 num++;
 }
 return num; // Ultimately, the result is 5
 }

 static int generateExtrasNumPorts(int input)
 {
 return input - 3;
 }

 static
 bool generateExtrasIsSpinnable(int input=9)
 {
 if(input == 0)
 return false;
 return !generateExtrasIsSpinnable(input-1);
 }
 static immutable bigPort = generateBigPorts();
 static immutable extrasNumPorts =
 generateExtrasNumPorts(bigPort);
 static immutable extrasIsSpinnable =
 generateExtrasIsSpinnable();

Listing 1

Full source code for this article is available on GitHub at:
http://github.com/Abscissa/efficientAndFlexible

Source code
8 | | JUL 2012{cvu}

http://github.com/Abscissa/efficientAndFlexible

Note that rules out using this method for most embedded targets unless you
set up a compilation server. But that comes with its own set of concerns.

So ok, maybe this doesn’t sound very good so far. But there are fairly major
benefits: This method is extremely powerful, viable for a wide variety of
languages, and only requires very simple changes to the code being
configured. Additionally, the compiler requirement may not be as much
of a problem as it may seem if you have permission to redistribute the
compiler, or if you’re targeting Linux (which generally has pretty good
package management and dependency tools), or if your program is only
intended for private use.

The trick here is to generate a small amount of source code at runtime,
recompile your program, and then run the result.

For simplicity, this example will use a separate frontend program that
will configure, compile and run the real example program. But you could
also have it all in one program: After your program issues the command
to recompile itself, it would then relaunch itself (possibly saving and
restoring any important state in the process) much like auto-updating
programs that download and launch newer versions of themselves would

 void run()
 {
 StopWatch stopWatch;
 stopWatch.start();

 // Create gizmos
 gizmos!(1, false).length = 10_000;
 gizmos!(1, true).length = 10_000;
 gizmos!(2, false).length = 10_000;

 // Use extrasNumPorts and extrasIsSpinnable
 // so 8,000 more of these will be made down
 // below.
 gizmos!(2, true).length = 2_000;
 gizmos!(bigPort, false).length = 5_000;
 gizmos!(bigPort, true).length = 5_000;

 // Add in the extra Gizmos
 gizmos!(extrasNumPorts,
 extrasIsSpinnable).length += 8_000;

 // Use gizmos
 foreach(i; 0..10_000)
 {
 foreach(ref gizmo; gizmos!(1, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(1, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(bigPort, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(bigPort, true))
 useGizmo(gizmo);
 }
 writeln(stopWatch.peek.msecs, "ms");
 }
}
void main()
{
 UltraGiz ultra;
 ultra.run();
 // Compile time error: A portless Gizmo is
 // useless!
 //auto g = Gizmo!(0, true);
}

Li
st

in
g

1 (
co

nt
’d

) import std.conv;
import std.file;
import std.process;
import std.stdio;

void main(string[] args)
{
 immutable configFile =
 "ex6_meta_flex2_config.d";
 immutable mainProgram =
 "ex6_meta_flex2_compilingAtRuntime";
 immutable mainProgramSrc =
 "ex6_meta_flex2_compilingAtRuntime.d";
 version(Windows)
 immutable exeSuffix = ".exe";
 else
 immutable exeSuffix = "";

 // Number of ports on each of the many-port
 // Gizmos. Normally 5
 int bigPort;
 // 8,000 extra Gizmos will be created with
 // this many ports and this spinnability.
 // Normally 2-port spinnable
 int extrasNumPorts;
 bool extrasIsSpinnable;
 try
 {
 bigPort = to!int (args[1]);
 extrasNumPorts = to!int (args[2]);
 extrasIsSpinnable = to!bool(args[3]);
 }
 catch(Throwable e)
 {
 writeln("Usage:");
 writeln(" ex6_meta_flex2_frontend "~
 "{bigPort} {extrasNumPorts}
 {extrasIsSpinnable}");
 writeln("Example: ex6_meta_flex2_frontend
 5 2 true");
 return;
 }

 // This is the content of the
 // "ex6_meta_flex2_config.d" file to be
 // generated.
 auto configContent = `
 immutable conf_bigPort =
 `~to!string(bigPort)~`;
 immutable conf_extrasNumPorts =
 `~to!string(extrasNumPorts)~`;
 immutable conf_extrasIsSpinnable =
 `~to!string(extrasIsSpinnable)~`;
 `;

 // Load old configuration
 writefln("Checking \t%s...", configFile);
 string oldContent;
 if(exists(configFile))
 oldContent =
 cast(string)std.file.read(configFile);

 // Did the configuration change?
 bool configChanged = false;
 if(configContent != oldContent)
 {
 writefln("Saving \t%s...", configFile);
 std.file.write(configFile, configContent);
 configChanged = true;
 }

Listing 2
JUL 2012 | | 9{cvu}

do. Or, you could keep the configurable routines in a dynamic library,
unload the dynamic library, recompile it, and then reload it. See Listing 2,
which is taken from ex6_meta_flex2_frontend.d, the frontend
program.

The actual definition of the UltraGiz is exactly the same as in method
#1, but without all the generate*() functions, and the signature
changed from:

 struct UltraGiz

to:

 struct UltraGiz(int bigPort, int extrasNumPorts,
 bool extrasIsSpinnable)

Method #3: Convert a runtime value to compile-time
Yes, you read that right. Though it may sound bizarre, as if it would require
time-travel, it is possible to convert a runtime value to compile-time. It
does have some restrictions:

1. The runtime value can’t cause anything to happen differently at
compile-time. Which is to be expected, since runtime occurs after
compile-time. But the runtime value can ‘pass-through’ the
compile-time code paths and result in other runtime effects.

2. Every possible value that the variable might hold must be
individually handled.

What essentially happens is you take all the compile-time code paths you
may want to trigger at runtime, and you trigger all of them at compile-time.
Each one of them will produce a result that can be accessed at runtime.
Then, at runtime, you just ‘choose your effect’.

If that sounds confusing, don’t worry. It’s really much more
straightforward than it sounds. Listing 3 shows a simple example, taken
from example_runtimeToCompileTime.d.

Of course, given the repetition in there, metaprogramming can be used to
automatically generate the code to handle large numbers of possible
values. Or even the entire range of certain types, such as enum, bool,
byte or maybe even a 16-bit value. A 32-bit value would be unrealistic

 // Need to recompile?
 if(configChanged ||
 !exists(mainProgram~exeSuffix))
 {
 writefln("Compiling \t%s...",
 mainProgramSrc);
 system("dmd "~mainProgramSrc~" -release
 -inline -O -J.");
 }

 // Run the main program
 writefln("Running \t%s...", mainProgram);
 version(Windows)
 system(mainProgram);
 else
 system("./"~mainProgram);
}

//From ex6_meta_flex2_compilingAtRuntime.d,
// the main program:
void main()
{
 mixin(import("ex6_meta_flex2_config.d"));
 UltraGiz!(conf_bigPort, conf_extrasNumPorts,
 conf_extrasIsSpinnable) ultra;
 ultra.run();

 // Compile time error: A portless Gizmo
 // is useless!
 //auto g = Gizmo!(0, true);
}

Li
st

in
g

2
(c

on
t’d

) import std.conv;
import std.stdio;

// Remember, this is a completely different type
// for every value of compileTimeValue.
class Foo(int compileTimeValue)
{
 static immutable theCompileTimeValue =
 compileTimeValue;
 static int count = 0;
 this()
 {
 count++;
 }
 static void display()
 {
 writefln("Foo!(%s).count == %s",
 theCompileTimeValue, count);
 }
}

void main(string[] args)
{
 foreach(arg; args[1..$])
 {
 int runtimeValue = to!int(arg);
 // Dispatch runtime value to compile-time
 switch(runtimeValue)
 {
 // Note:
 // case {runtime value}:
 // new Foo!{equivalent compile
 // time value}();
 case 0: new Foo!0(); break;
 case 1: new Foo!1(); break;
 case 2: new Foo!2(); break;
 case 3: new Foo!3(); break;
 case 10: new Foo!10(); break;
 case 99: new Foo!99(); break;
 default:
 throw new
 Exception(text("Value ",runtimeValue,"
 not supported."));
 }
 }
 Foo!(0).display();
 Foo!(1).display();
 Foo!(2).display();
 Foo!(3).display();
 Foo!(10).display();
 Foo!(99).display();
}

Listing 3

struct UltraGiz
{
 [Omitting other members for brevity. They're
 the same as before.]
 // Note this is templated
 void addGizmosTo(int numPorts,
 bool isSpinnable)(int numGizmos)
 {
 gizmos!(numPorts,
 isSpinnable).length += numGizmos;
 }
 void addGizmos(int numPorts, bool isSpinnable,
 int numGizmos)
 {
 // Dispatch to correct version of
 // addGizmosTo.

Listing 4
10 | | JUL 2012{cvu}

on modern hardware, though. And arbitrary strings would be out of the
question unless you limited them to a predetermined set of strings, or to a
couple of bytes in length (or more if you limited the allowable characters).
But even with these limitations, this can still be a useful technique.

In any case, the fact remains: With certain restrictions, it is possible to
convert a runtime value into a compile-time value. Listing 4 (taken from
ex6_meta_flex3_runtimeToCompileTime1.d) shows how it
can be applied to our Gizmo example.

That will work, but there are two potential problems with it.

The first problem is that it involves extra runtime code. That could cut into,
or possibly even eliminate, the efficiency savings from metaprogramming.
However, the extra runtime code is only run once when setting up the
Gizmos, not while the Gizmos are actually being used. So as long as the
Gizmo usage is enough to overshadow the extra overhead, it should still
be worth it.

The second problem is that the addGizmos() function is an incredibly
repetitive mess of copy-pasted code. It’s a total violation of DRY: Don’t
Repeat Yourself. Maintaining that function would be very error-prone.
Fortunately, that’s easily fixed with a preprocessor, macros, or in D’s case,
a compile-time foreach; see Listing 5, which is taken from
ex6_meta_flex3_runtimeToCompileTime2.d.

 // Effectively converts a runtime value
 // to compile-time.
 if(numPorts == 1)
 {
 if(isSpinnable)
 addGizmosTo!(1, true)(numGizmos);
 else
 addGizmosTo!(1, false)(numGizmos);
 }
 else if(numPorts == 2)
 {
 if(isSpinnable)
 addGizmosTo!(2, true)(numGizmos);
 else
 addGizmosTo!(2, false)(numGizmos);
 }
 [Same code repeated here for values 3, 5
 and 10.]
 else
 throw new Exception(to!string(numPorts)~"
 -port Gizmo not supported.");
 }
 void run(int bigPort)(int extrasNumPorts,
 bool extrasIsSpinnable)
 {
 StopWatch stopWatch;
 stopWatch.start();
 // Create gizmos
 gizmos!(1, false).length = 10_000;
 gizmos!(1, true).length = 10_000;
 gizmos!(2, false).length = 10_000;
 // Use the commandline parameters
 // extrasNumPorts and extrasIsSpinnable
 // so 8,000 more of these will be made below.
 gizmos!(2, true).length = 2_000;
 gizmos!(bigPort, false).length = 5_000;
 gizmos!(bigPort, true).length = 5_000;
 // Add in the extra Gizmos
 addGizmos(extrasNumPorts,
 extrasIsSpinnable, 8_000);
 // Use gizmos
 foreach(i; 0..10_000)
 {
 foreach(ref gizmo; gizmos!(1, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(1, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(bigPort, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(bigPort, true))
 useGizmo(gizmo);
 }
 writeln(stopWatch.peek.msecs, "ms");
 }
}
void main(string[] args)
{
 // Number of ports on each of the many-port
 // Gizmos. Normally 5
 int bigPort;
 // 8,000 extra Gizmos will be created with
 // this many ports and this spinnability.
 // Normally 2-port spinnable
 int extrasNumPorts;
 bool extrasIsSpinnable;

Li
st

in
g

4
(c

on
t’d

) try
 {
 bigPort = to!int (args[1]);
 extrasNumPorts = to!int (args[2]);
 extrasIsSpinnable = to!bool(args[3]);

 if(bigPort != 3 && bigPort != 5 &&
 bigPort != 10)
 throw new
 Exception("Invalid choice for bigPort");
 }

 catch(Throwable e)
 {
 writeln("Usage:");
 writeln
 (" ex6_meta_flex3_runtimeToCompileTime1 "~
 "{bigPort} {extrasNumPorts}
 {extrasIsSpinnable}");
 writeln("bigPort must be 3, 5 or 10");
 writeln("Example:
 ex6_meta_flex3_runtimeToCompileTime1
 5 2 true");
 return;
 }

 UltraGiz ultra;
 // Dispatch to correct version of UltraGiz.run.
 // Effectively converts a runtime value to
 // compile-time.
 if(bigPort == 3)
 ultra.run!3(extrasNumPorts,
 extrasIsSpinnable);
 else if(bigPort == 5)
 ultra.run!5(extrasNumPorts,
 extrasIsSpinnable);
 else if(bigPort == 10)
 ultra.run!10(extrasNumPorts,
 extrasIsSpinnable);

 // Compile time error: A portless Gizmo
 // is useless!
 //auto g = Gizmo!(0, true);
}

Listing 4 (cont’d)
JUL 2012 | | 11{cvu}

Method #4: Dynamic fallback
Just like the town elder who made the handcrafted version, we can fall back
on a dynamic version that uses runtime options instead of compile-time
options.

This is easier and more flexible than the previous method. In fact, method
#1, compile-time function execution, is probably the only method easier
than this, but this is more powerful and supported by more languages. So
this is a pretty good option.

However, the downside is this would naturally be the least efficient of all
the methods, since some of the Gizmos would forgo the metaprogramming
benefits. But as long as you don’t need runtime configurability for all your
Gizmos, then you can still get a net savings over the original non-
metaprogramming version.

To do this, we’ll use the same metaprogramming Gizmo we’ve been using
for all the other methods in this section. But we’ll also add a
DynamicGizmo which is identical to the original Gizmo in
ex1_original.d, just with a different name. The main() function is
trivially similar to method #3 above, so I won’t show it here. Check the
online code listings for this article if you’re interested. Listing 6 is the short
version, from ex6_meta_flex4_dynamicFallback1.d.

The original Gizmo with the runtime options, i.e. DynamicGizmo, is used
where necessary, while the more common cases are optimized with
metaprogramming techniques. Not a bad compromise.

As you can see if you look at the full online code listing for
ex6_meta_flex4_dynamicFallback1.d, I opted to make a
completely separate definition for the dynamic version of Gizmo; that is,
the DynamicGizmo. It would have also been possible to use a single
def in i t ion fo r bo th the metaprogramming Gizmo and the
DynamicGizmo. To do that, you’d just need to add another compile-time
parameter, say bool dynamicGizmo, to go along with numPorts and
isSpinnable. Doing so would probably be a good idea if only part of
your struct is affected by the change from runtime options to compile-time
options. But with Gizmo, the metaprogramming version converted
practically everything to compile-time options, so in this case it was a little
cleaner to just leave DynamicGizmo defined separately.

One other notable change I made was to the gizmos template (ie, the arrays
that had been named gizmosA, gizmosB, etc. in the earlier handcrafted
version). In all the other metaprogramming versions, gizmos had been
templated on number of ports and spinnability. That worked fine, but now
we have DynamicGizmo which doesn’t really fit into that. So now gizmos
is templated on the Gizmo’s type so the dynamic Gizmos can be accessed

void addGizmos(int numPorts, bool isSpinnable,
 int numGizmos)
{
 // Dispatch to correct version of addGizmosTo.
 // Effectively converts a runtime value to
 // compile-time.

 // A 'foreach' over a TypeTuple is unrolled at
 // *compile time*
 foreach(np; TypeTuple!(1, 2, 3, 5, 10))
 if(numPorts == np)
 {
 if(isSpinnable)
 addGizmosTo!(np, true)(numGizmos);
 else
 addGizmosTo!(np, false)(numGizmos);
 return;
 }

 throw new Exception(to!string(numPorts)~"
 -port Gizmo not supported.");
}

Li
st

in
g

5 struct UltraGiz
{
 template gizmos(T)
 {
 T[] gizmos;
 }

 // Shortcut for non-dynamic gizmos, so we can
 // still say:
 // gizmos!(2, true)
 // instead of needing to use the more verbose:
 // gizmos!(Gizmos!(2, true))
 template gizmos(int numPorts, bool isSpinnable)
 {
 alias gizmos!(Gizmo!(numPorts,
 isSpinnable)) gizmos;
 }
 int numTimesUsedSpinny;
 int numTimesUsedTwoPort;

 [Same useGizmo() as before, omitted for
 brevity]

 void run(int bigPort, int extrasNumPorts,
 bool extrasIsSpinnable)
 {
 StopWatch stopWatch;
 stopWatch.start();

 // Create gizmos
 gizmos!(1, false).length = 10_000;
 gizmos!(1, true).length = 10_000;
 gizmos!(2, false).length = 10_000;

 // Use the commandline parameters
 // extrasNumPorts and extrasIsSpinnable
 // so 8,000 more of these will be made down
 // below as dynamic gizmos.
 gizmos!(2, true).length = 2_000;

 gizmos!(DynamicGizmo).length = 18_000;
 foreach(i; 0..5_000)
 gizmos!(DynamicGizmo)[i] =
 DynamicGizmo(bigPort, false);

 foreach(i; 5_000..10_000)
 gizmos!(DynamicGizmo)[i] =
 DynamicGizmo(bigPort, true);

 foreach(i; 10_000..18_000)
 gizmos!(DynamicGizmo)[i] =
 DynamicGizmo(extrasNumPorts,
 extrasIsSpinnable);
 // Use gizmos
 foreach(i; 0..10_000)
 {
 foreach(ref gizmo; gizmos!(1, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(1, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!DynamicGizmo)
 useGizmo(gizmo);
 }
 writeln(stopWatch.peek.msecs, "ms");
 }
}

Listing 6
12 | | JUL 2012{cvu}

with gizmos!(DynamicGizmo). Unfortunately, that also means the
nice simple:

 gizmos!(2, true)

becomes the ugly:

 gizmos!(Gizmos!(2, true))

So I created an overload of the gizmos template which maps the nice simple
old syntax to the new one.

As an extra benefit, templating gizmos on type makes it easy to clean up
all those repetitive foreach statements in UltraGiz.run() (Listing 7).

The last remaining elephant in the room:
Runtime conversion
Don’t worry, I’m not really going to introduce an elephant into the story...

We’ve already seen various methods of configuring a compile-time option
at runtime. But that was limited to creating a Gizmo. Once created, a
Gizmo was stuck with those settings. So what if the number of ports and
spinnability of an existing Gizmo needs to change? If only a few Gizmos
need to be able to change, we can just make those few out of the
DynamicGizmo from earlier with only trivial modifications. But suppose
all the Gizmos need to be changeable: Now how do we change the settings
of an existing Gizmo without giving up the metaprogramming benefits?

In our original example way back in part 1, it would have been trivial to
modify the Gizmo code so you could change a Gizmo’s number of ports
and spinnability after it was created. They were already runtime values.
But our metaprogramming examples have taken advantage of the fact that
such values were fixed when a Gizmo is created. In fact, that’s the
fundamental key of the metaprogramming versions: ‘Turn your runtime
options into compile-time options.’

If one of these settings needs to change frequently during a program’s run,
then naturally it must be a runtime option. Turning it into a compile-time
value won’t improve its efficiency. That’s because the ‘runtime to
compile-time’ trick works by taking advantage of the fact that certain
values don’t really need to change. So unfortunately, if a setting needs to
change frequently, it must remain a runtime value. The only way to
optimize it out is to eliminate the feature entirely.

However, if the settings only need to change occasionally, then we’re still
in business.

‘What? Have you completely lost it? Configuring a compile-time option at
runtime was crazy enough. And now you intend to change a compile-time
option at runtime?! They’re immutable!’

It not so strange, really. In fact, functional programming experts probably
already know where I’m going with this...

Listen carefully: We converted the runtime values to compile-time ones
by encoding them as part of the type, right? So to change the compile-time
value, all we have to do is convert the variable to a different type. Just like
converting an integer to a string. Easy. Except this is even easier because
the types we’re converting are fundamentally very similar.

Naturally, this does take extra processing. Likely much more than just
simply changing an ordinary runtime variable. That’s why I made a big
deal about how frequently you need the value to change. If it changes a
lot, you’ll just slow things down from all the converting. But as long as it
doesn’t change enough to use up the efficiency savings from
metaprogramming, you’ll still end up ahead.

I’ll demonstrate this by shuffling around a few Gizmos on every iteration.
You’ll notice that I’m always keeping the same number of each type of
Gizmo, but that’s not a real limitation: That’s only so we can still compare
benchmarks. It would be trivial to actually change a Gizmo without

// Use gizmos
foreach(i; 0..10_000)
{
 // Think of this as an array of types:
 alias TypeTuple!(
 Gizmo!(1, false),
 Gizmo!(1, true),
 Gizmo!(2, false),
 Gizmo!(2, true),
 DynamicGizmo,
) AllGizmoTypes;

 foreach(T; AllGizmoTypes)
 foreach(ref gizmo; gizmos!T)
 useGizmo(gizmo);
}

Li
st

in
g

7

// This is a member of the Gizmo type:
TOut convertTo(TOut)()
{
 TOut newGizmo;

 static if(isSpinnable && TOut.isSpinnable)
 newGizmo.spinCount = this.spinCount;

 int portsToCopy = min(newGizmo.numPorts,
 this.numPorts);
 newGizmo.ports[0..portsToCopy] =
 this.ports[0..portsToCopy];

 // If there were any other data, we'd copy it
 // to the newGizmo here

 return newGizmo;
}

Li
st

in
g

8

// Use gizmos
foreach(i; 0..10_000)
{
 // Modify some gimos:
 // Save a 1-port non-spinny
 auto old1PortNoSpin = gizmos!(1, false)[i];

 // Convert a 2-port spinny to 1-port non-spinny
 gizmos!(1, false)[i] =
 gizmos!(2, true)[i].convertTo!(Gizmo!(1,
 false))();

 // Convert a 5-port spinny to 2-port spinny
 gizmos!(2, true)[i] =
 gizmos!(5, true)[i%2].convertTo!(Gizmo!(2,
 true))();

 // Convert the old 1-port non-spinny to
 // 5-port spinny
 gizmos!(5, true)[i%2] =
 old1PortNoSpin.convertTo!(Gizmo!(5,
 true))();

 // Use gizmos as usual
 foreach(ref gizmo; gizmos!(1, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(1, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(2, true))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(5, false))
 useGizmo(gizmo);
 foreach(ref gizmo; gizmos!(5, true))
 useGizmo(gizmo);
}

Listing 9
JUL 2012 | | 13{cvu}

keeping everything balanced. All you’d have to do is remove the old
Gizmo from the array for the old type, and append the newly converted
one to the array for the new type. Of course, if you were to do this, you’d
probably want to use a linked list or a stack instead of an array, since arrays
have poor performance with such a usage pattern.

For simplicity, I won’t use any of the ‘Flexibility Enhancements’ covered
in the previous section. But the techniques can certainly still be combined.

This time around, the Gizmo is exactly the same as the original
m e t a p r og r a m m i n g v e r s i o n f rom pa r t 1 , L i s t i ng 6
(ex4_metaprogramming.d), but with one member function added.
See Listing 8.

The UltraGiz is also nearly identical to the original metaprogramming
example. Except now we swap some Gizmos around when using them in
UltraGiz’s run() in Listing 9.

Conversion downsides and possible fixes
There are a couple downsides to the runtime conversions above. But, they
can be dealt with.

Hold it, Gizmo! Quit squirming around!

One issue with converting a Gizmo is that doing so puts it in a different
memory location. This means that if anything was keeping a reference to
the Gizmo, after conversion the reference is no longer pointing to the newly
converted Gizmo. It’s still referring to the old location.

This may not always be an issue. But if it does matter, you can solve it by
using a tagged union. Something like Listing 10 (which is taken from
example_anyGizmo.d).

As you see in main() in Listing 10, before you use an AnyGizmo, you
first check the type via currentType and then use the appropriate
member of gizmoUnion.

Alternatively, D’s standard library offers an Algebraic type [1], which
is the same thing, but safer and easier:.

 import std.variant;
 alias Algebraic!(
 Gizmo!(1, false),
 Gizmo!(1, true),
 Gizmo!(2, false),
 Gizmo!(2, true),
 Gizmo!(5, false),
 Gizmo!(5, true),
) AnyGizmo;

Either way, this approach does have a few gotchas:

First, you have the runtime cost of checking the type before using the
Gizmo. But this may be minimal, since you won’t usually need to check
the type on every single member access, only when it might have changed.

Second, since a union must be the size of its largest member, you won’t
get as much space savings when using an AnyGizmo. But, if the mere
existence of one of your optional features requires extra time-consuming
processing, you can at least save time because any Gizmos that forgo that
feature won’t incur the extra cost. Plus, this issue will only affect an
AnyGizmo, not any other Gizmos you may have in use.

The final gotcha is that this makes converting a Gizmo more costly since
the newly converted Gizmo needs to be copied back to the memory
location of the original Gizmo. But if the Gizmo only needs to be converted
occasionally, this shouldn’t be a problem. If it is a problem, though, it may
be possible to do the conversion in-place in memory.

Hey data, get back here!

The other main issue with converting Gizmos is that some conversions can
lose data. Suppose we convert a spinny Gizmo to a non-spinny and back
again. The non-spinny Gizmos don’t have a spinCount, so our newly re-
spinified Gizmo has lost its original spinCount data. It’s back at zero
again. Same thing with the ports: Convert a 5-port to a 2-port and back
again and you’ve lost the numZaps from the last three ports.

Sometimes that might matter, sometimes it might not. Or it might matter
for only some pieces of data. In any case, there’s an easy fix: just make
sure every Gizmo type has the data you don’t want to lose. Even if a certain
type of Gizmo doesn’t actually use that data, let the Gizmo hold on to that
data anyway.

import std.stdio;

struct Gizmo(int _numPorts, bool _isSpinnable)
{
 // So other generic code can determine the
 // number of ports and spinnability:
 static immutable numPorts = _numPorts;
 static immutable isSpinnable = _isSpinnable;
 // The rest here...
}

struct AnyGizmo
{
 TypeInfo currentType;
 GizmoUnion gizmoUnion;

 union GizmoUnion
 {
 Gizmo!(1, false) gizmo1NS;
 Gizmo!(1, true) gizmo1S;
 Gizmo!(2, false) gizmo2NS;
 Gizmo!(2, true) gizmo2S;
 Gizmo!(5, false) gizmo5NS;
 Gizmo!(5, true) gizmo5S;
 }

 void set(T)(T value)
 {
 static if(is(T==Gizmo!(1, false)))
 gizmoUnion.gizmo1NS = value;
 else static if(is(T==Gizmo!(2, true)))
 gizmoUnion.gizmo2S = value;
 [etc...]

 currentType = typeid(T);
 }
}

void useGizmo(T)(T gizmo)
{
 writeln("Using a gizmo:");
 writeln(" ports=", gizmo.numPorts);
 writeln(" isSpinnable=", gizmo.isSpinnable);
}

void main()
{
 AnyGizmo anyGizmo;
 anyGizmo.set(Gizmo!(2, true)());

 if(anyGizmo.currentType ==
 typeid(Gizmo!(1, false)))
 useGizmo(anyGizmo.gizmoUnion.gizmo1NS);

 else if(anyGizmo.currentType ==
 typeid(Gizmo!(2, true)))
 useGizmo(anyGizmo.gizmoUnion.gizmo2S);

 [etc...]

 else
 throw new Exception("Unexpected type");
}

Listing 10
14 | | JUL 2012{cvu}

If you need to hold on to all the data, then as with the AnyGizmo above,
each Gizmo type will take up as much space as the largest Gizmo. In fact,
in such a case, using the AnyGizmo above may be a good idea. Except
this time, the performance cost of doing conversions can be almost
completely eliminated.

How? Suppose every type of Gizmo does need to hold all the possible
Gizmo data, and you use AnyGizmo. In that case, if you arrange all the
data members of all the Gizmo types so everything is always laid out in
memory the same way, then to convert the AnyGizmo from one type to
another, all you need to do is change the currentType member. That’s
it. Everything else will already be in the right place.

At this point, it might sound like we’ve merely re-invented the
DynamicGizmo. While it is similar, there are two important differences:

First, this method allows us to have completely different functions for each
Gizmo type. Each type can have a different set of functions, and each
function can be specially-tailored to the features that Gizmo is supposed
to support. So the Gizmos don’t have to spend any extra processing time
dealing with being flexible (for instance, by checking their own
isSpinnable variables to see whether or not to actually spin).
Essentially, we have a cheaper form of polymorphism. In fact, if a
DynamicGizmo isn’t included in the AnyGizmo, then there can still be
a space savings over DynamicGizmo because variables like
isSpinnable still won’t need to exist at runtime at all.

Second, if we want to change multiple settings on a Gizmo at the same
time, we only need to actually modify one value: currentType.

Curtain call
Although the examples throughout this article have focused on situations
with large numbers of simplistic objects, these techniques can also work
very well with smaller numbers of objects that do a lot of processing. The
templated versions of UltraGiz give just a small glimpse of this.

We’ve seen that you can use metaprogramming with structs to achieve
much of the same flexibility as classes while avoiding the class overhead.
But even if you do go with classes, these metaprogramming techniques can
still aid in optimization without forcing you to cut features and give up
flexibility.

Ok, so towards the end we did start running into more tension between
efficiency and flexibility. Perhaps those wacky nuts will never fully
resolve their differences. But even so, they’ve made some major progress.

Whenever you have values or settings that don’t need to change, you don’t
have to choose between eliminating them for efficiency and keeping them
for flexibility. You can have both, with no compromise. And even if your
values and settings do need to change, but just not constantly, you still have
many options available for getting your efficiency and flexibility to
cohabitate peacefully. So go ahead, use metaprogramming to have your
efficiency, and flexibility too.

Acknowledgements
Thanks to Lars T. Kyllingstad, bearophile and Timon Gehr for their
suggestions.

References
[1] http://dlang.org/phobos/std_variant.html

An electronic version of this article is available at http://semitwist.com/
articles/EfficientAndFlexible/PartTwo/
JUL 2012 | | 15{cvu}

http://dlang.org/phobos/std_variant.html
http://semitwist.com/articles/EfficientAndFlexible/PartTwo/
http://semitwist.com/articles/EfficientAndFlexible/PartTwo/

ACCU Conference 2012
Chris Oldwood recalls his experiences of the

ACCU 2012 conference.

nother year had flown by and all of a sudden the annual ACCU
Conference was upon me once more. This being my fifth year I was
pretty comfortable that I knew roughly what to expect. However, a

change in hands of both the conference chair (now Jon Jagger) and the hotel
owner (whilst we were staying there!) meant that there was always going
to be something new to delight us.

Tuesday
The main conference is preceded by a tutorial day that I didn’t attend this
year. For those trying to digest as much about C++11 as possible this would
have been a fine start as Nico was back in the fold with an update to his
fine book on the C++ Standard Library. Not that the other two options –
Java garbage collector tuning and IT design/architecture – should be
glossed over, but C++ 11 definitely appeared to be the primary focus.

I arrived early that evening with the intended goal of checking out my
presentation on a projector, but after checking in and walking back towards
the main part of the hotel I bumped into various people who I’ve not seen
since last year. So I decided that a quick pint and catch-up wouldn’t hurt
as there was plenty of time before tomorrow. I guess
some of us just never learn…

Wednesday
Tim Lister got to kick-off this year’s conference
keynotes with a talk on Project Patterns, on which he
and his colleagues have written a new book. He
suggested that Project Habits would have been a more
suitable name as it was not about defining best practices
but documenting common behaviours. Although he
courted controversy with LESSONS UNLEARNED, the one that generated the
most interest was DEAD FISH – a project that smells rotten but nobody’s
willing to speak up about it. This was a delightful start to the conference
that set the tone in more ways than one.

As someone who does little C++ these days, I wasn’t there to soak up all
the C++ 11 goodies, but I still wanted to keep my eye in. C++ has its share
of warts and Nico Josuttis put together a talk on the ‘Best & Worst New
Features’ that nicely illustrated how to get the most out of the recent
changes, but more importantly identified some of the new traps you may
fall into. And there are a few peaches! I think overall Nico had more Best
than Worst features to discuss so it’s clearly a net gain.

The lunchtime routine changed slightly this year and it felt as though the
bottleneck of past years was now behind us – I certainly got served more
quickly each day. So I had ample time to chat before spending my early
afternoon listening to Detlef Vollmnan describe ‘Parallel Architectures’.
This session was a nice spot of revision on the changes in CPU
architectures over the last decade and a look forward to what we can expect
in the near future. He briefly covered the classic problem with the DOUBLE-
CHECKED LOCK pattern to illustrate how re-ordering under the covers

affects us and also the costs associated with NUMA configurations. This
provided a pleasant prelude to a talk I would attend the following morning.

Last year I gave my first ever talk and so I was hoping that by this year I’d
have learned some new tricks and would give a slightly more polished
show. I think the slides were a little more colourful and I felt brave enough
to do a little live coding that I hope added to the experience. With a strong
C++11 track I wasn’t expecting to get many interested in TDD based
database development, but there were more than enough still awake at the
end to make me feel pleased with my efforts.

The lightning talks are now a staple part of the conference and provide a
forum at the tale end of the day to either add a poignant finale to a keynote
or allow the more disgruntled among us to let off steam with a good old
rant. There is generally more of the latter which was perfectly illustrated
by Pete Goodliffe with some choice examples from his current codebase.
On the more constructive side Jonathan Wakely reminded us about the
virtues of shared_ptr and make_shared in particular. Aaron Ridout
got to reply to a talk from Seb Rose last year suggesting that not taking up
new employee references can be detrimental to your company too. With

eight talks on the first night there were clearly no
problem finding willing volunteers.

Thursday
It was business as usual Thursday morning as I bolted
down my fry-up to get to the keynote after a late night
in the bar chewing various programming ‘fats’. Phil
Nash had the honour of representing ACCU’s home-
grown talent with a piece titled ‘The Congruent
Programmer’. Given that he could barely speak a week
before due to a nasty cold, he did an excellent job of

trying to answer that tricky question about what it is that drives us and what
introspection might help us to develop ourselves in the future. I thought
the analogy to the Alexander Technique was a little tenuous but his point
was well made.

After the morning coffee break I decided I needed to feed my concurrency
habit further and so embraced Russel Winder’s talk on the multi-core
revolution. Russel is not shy of telling us how wrong the shared memory
approach is and that the Actor, DataFlow and CSP models are the way
forward. To him shared memory multi-threading is technique for OS
implementers, not application programmers. He decided to cement these
ideas by implementing the various forms in Go, D and C++ to show how
they might look; with an eye on whether the new C++ threading additions
are too little too late as it doesn’t have the high-level constructs, yet. Given
what I had planned to see in the afternoon this was a fine bit of middle
ground.

The vast majority of the sessions after lunch were 45 minutes long so I
decided to pick two opposite views on the state of the C language – Dirk
Haun’s ‘Is C going the Way of the Dodo’ and Andrew Stitcher’s ‘When
Only C Will Do’. The former was part-musing from the speaker and part-
workshop to allow the audience to provide some thoughts on why there
are still so many C programmers and whether that will continue. It was
interesting listening to the various opinions and small doses of nostalgia
always goes down well. I felt a little less satisfied by the follow-up talk
because I didn’t find the argument for pure C to be at all compelling (as
opposed to using a subset of C++). Andrew’s example did reinforce the
notion that C is the common ground between all languages due to its ABI,

A

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood

 DEAD FISH – a
project that

smells rotten but
nobody’s willing to
speak up about it
16 | | JUL 2012{cvu}

but perhaps sometimes it’s only the C ABI that will do, not necessarily the
entire language…

More coffee was required before my final concurrency session, this time
with Anthony Williams. I wondered if I had entered a parallel universe
with Russel talking earlier about C++ and Anthony using Groovy for his
examples! This was a great companion to that earlier session because
Anthony added in the ACTIVE OBJECT pattern and LOOP PARALLELISM too.
He also used his own Just Thread library to show how you can build on
the C++11 standard library to give the higher-order mechanisms for the
actor and dataflow models.

The second round of lightning talks gave Phil Nash a chance to extend his
keynote further by providing a heart-warming tale about one particular
user of his C++ unit testing framework Catch. Matt Turner vented anger
on fluent style interfaces whilst Charles Bailey tackled the classic ‘Law of
Three’. It wouldn’t be an ACCU conference without Didier Verna pointing
out the superiority of LISP and he kindly obliged.

The Xbox Connect Challenge provided an amusing backdrop to the
evening’s proceedings in the hotel bar as grown men (and women) were
flinging themselves around in an attempt to outdo one another. Pete
Goodliffe set a good early pace, but his crown was soon taken and the high-
score rose to the heights of the more hardened gamers. There were
definitely a few sore limbs the following morning for those who let the
alcohol fuel their competitiveness.

Friday
Uncle Bob had the pleasure of entertaining us on the Friday morning with
a ‘Requiem for C’. After going to two sessions the previous day on the
topic it was interesting to see what spin he would put on its demise. There
was a fair amount of personal background to start with that finally lead up
to his eventual inauguration to C. Then we had the downward slope as he
tried to convince us that we are getting further and further away from the
metal with technologies such as the JVM and so consequently C’s value
is diminishing rapidly. Some may have bought this, but from the lightning
talks to follow others weren’t so easily taken in. He also wore a head-cam
during the keynote which should make for interesting viewing by others
later.

‘Devops, Infrastructure-as-code’ by Gavin Heavyside was my first choice
of the day. This was one of those thoroughly practical talks that gives you
insight into how others teams do stuff; the stuff in question being
continuous deployment and other devops related activities such as
monitoring. He took a deeper look at Chef, which is used to manage
deployments, and the DSL used in configuring/testing it and explained
how they perform zero-downtime deployments. The use of tweets from
DevOps Borat as a backdrop made this all the more enjoyable.

I find that I need to limit myself on the number of sessions by Kevlin
Henney as he makes me think too damn hard by questioning the status quo,
and with a title like SOLID Deconstruction you new this was going to do
just that. Last year he turned SOLID into just SID and this year it became
FLUID, although serious artistic licence was required for the D! The
discussion of cohesion was particularly useful as it’s a term that’s often
banded about but not well defined. One thing I found most interesting, but
which was never highlighted, was the way that he named the test fixture
and test methods in one of his examples.

Sadly I spent too long chatting over coffee to get into John Lakos’ talk and
so I had to go find another, and I’m really glad I did as Jurgen Appelo was
a pleasure to listen to. He took us through the murky waters of ‘Complexity
Thinking and Systems Thinking’ to look at its failed application to social
systems such as software development. I thought this was going to be way

out of my league as I had no idea who any of the ‘experts’ were, but
fortunately he translated the concepts into something us mere mortals
could understand and added a large dash of humour to keep the session
from drying up. It’s sessions like these that help break down the divide
between programmers and managers.

The final round of 11 lightning talks opened with Tom Gilb following up
last years attempt to quantify love by showing that music can be quantified.
Diomidis Spinellis tried to convince us that we should alias the entire C++
library so that it follows Java naming conventions. Ed Sykes and Raj Singh
explained how they had pushed pair programming to the next level with

Posse Programming and Bernhard Merkle responded to Uncle Bob’s
keynote by showing that C, albeit in a more modern non-standard
form, still matters.

Friday night plays host to the speakers’ dinner where delegates get
the chance to wine and dine with those that have preached to them
during the last few days. Each course is met with a change of table
to ensure there is a constant stream of new faces to chat with, and a

new random element this year meant speakers could be forced to move too.
Once again coffee was served whilst an auction raised money for Bletchley
Park and the boat race made a welcome return too in the bar afterwards to
battle out once and for all whether C was really dead or not…

Saturday
Even though the disruption caused by the volcano was well and truly
behind us the conference has maintained the format of the lightning
keynotes on the Saturday morning. These are 4 shorter keynotes hosted by
a variety of speakers. Naturally, over indulgence from the previous night
meant I missed the first two and so I started the day listening to Emily
Bache’s ‘Geek Feminism’. Emily took a look into what differs between
men and women to see what it might be about the way software
development teams work that might be off putting to women. She made a
particularly poignant observation that the Wisdom of Crowds is amplified
by diversity and so being a minority is actually highly beneficial. The final
keynote was from Jurgen Appelo that looked into what motivates us. He
took various established sets of core values and munged them together to
come up with his own variant that goes by the rather long-winded acronym
CHAMPFROGS!

Giovanni Asproni has always been the conference chair when I’ve
attended and so unshackled from these duties he had the opportunity to host
a session instead. This was on API Usability and looked into what it means
to design an API, whether that is for public or private consumption. His
example of how the Single Responsibility Principle had been taken to the
extreme was amusing but also enlightening. He is never one to pass up the
opportunity to berate the SINGLETON pattern, and this occasion was no
exception. Giovanni pulled together lots of little threads to provide one of
those bread-and-butter talks that reminds you of all the little things you
have to remember every day.

My final session of the conference was to be with Diomidis Spinellis about
UML Graph, a tool to enable the generation of small UML diagrams using
annotated source code. The premise of generating model diagrams from
source code versus manual drawings was compelling and something I’ve
been recently looking into with Doxygen. He then went on to discuss other
tools for generating different sorts of diagrams and charts to give you
plenty of options on how to programmatically create them; a very
informative end to the conference.

Epilogue
The hardest part about coming home from four days at the ACCU
conference is integrating oneself back into society. It’s an intense few days
where you can literally eat, drink and sleep all things about programming.
Depending on the kind of organisation you’re going back to you might be
bursting with energy just waiting to pass on all that valuable knowledge,
or perhaps you’re a small cog in a very big wheel with disinterested co-
workers. Either way your participation means that you’ll be a better
programmer for having gone and ultimately that’s what it’s all about.

 The discussion of cohesion was
particularly useful as it’s a term that’s
often banded about but not well defined
JUL 2012 | | 17{cvu}

18 | | JUL 2012{cvu}

The Art of Software Development
Pete Goodliffe vents the modern developer angst.

Becoming a Better Programmer #75

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

JUL 2012 | | 19{cvu}

Introducing Some Order # 1
Patterns and Anti-patterns – Factorisation
Richard Polton shows how redundant code can be removed by

factoring to a functional style.

hen I came to it, my inherited codebase was very procedural and
imperative and contained a lot of classic bugs, by which I mean
commonly-occurring types of bugs, which often occurred

multiply because of the temptations of the Evil Demon Cut-And-Paste.
This prompted a thorough trawl through the codebase looking for certain
patterns. The plan, such as it was, was to factorise the patterns (having
corrected them where necessary) and to migrate the bulk of the imperative
code to a declarative style. Factorisation also has the pleasant benefit of
reducing wordcount, albeit sometimes at the expense of an increase in
density. This article describes one of the patterns.

First, however, let me briefly comment on declarative programming. I
suppose I mean that declarative style indicates intent, ie ‘this’ is defined
to take ‘that’ value, where ‘that’ is probably, but not necessarily, the results
of a function call, unless of course you live in a world where everything
is a function, in which case ‘that’ is a function too!

Phew!

The declarative style is a Good Thing (tm) because it reduces side-effects,
although in my code I should point out that it directly led to one side-effect,
namely far fewer overnight support calls! I call that a Good Thing (tm) too.
Anyway, reduction of side-effects is a Good Thing (tm) because that means
that the code exhibits reproducible behaviour. That’s nice to have because

it is easier to reason about reproducible behaviour than seemingly-random
behaviour. Being able to reason about behaviour is good because it implies
structure.

Structure implies order. Order opposes chaos. QED ;-)

... and I am a definite and fully signed-up fan of ‘immutability’ too. I should
have mentioned that :-D

And so to the meat of the matter

One construct that I have stumbled across frequently in my current
inherited codebase is the long, and sometimes complex, if statement.
Invariably, in its simpler form, it is structured as a sequence of predicates
joined by either a logical ‘and’ or a logical ‘or’. Oftimes these predicates
all take the same argument as each other. For example, one pattern which
was seen to occur frequently is given by

W

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to
LISP. He likes ‘making it better’ and enjoys riding
his bike when he can’t. He can be contacted at
richard.polton@shaftesbury.me
20 | | JUL 2012{cvu}

The Art of Software Development (continued)

 ComplexObject a = ComplexObject.CreateInstance();
 //do something with a
 if(a.GetParameter().Contains("A") ||
 a.GetParameter().Contains("B") ||
 a.GetParameter().Contains("C") ||
 a.GetParameter().Contains("D"))
 ; // do something positive
 else
 ; // do something else

which suggests to me that, at the very least, a.GetParameter() is a
prime candidate for factorisation. Possibly, Contains could be factorised
as well. Additionally, it can be seen that the logical ‘or’ is also a potential
candidate for factorisation.

But back to the code. As presented the above snippet is a fair example of
what could be seen throughout. The first question to be considered is
whether GetParameter() or Contains() have side-effects. If not,
then the call to one or both of GetParameter and Contains can be
factorised. On the other hand, if there are side-effects, then we have a
design problem as well as a code problem. I intend to deal with only the
code problem here.

So, after a first pass of factorisation, we have

 ComplexObject a = ComplexObject.CreateInstance();
 // do something with a
 string p = a.GetParameter();
 if(p.Contains("A") || p.Contains("B") ||
 p.Contains("C") || p.Contains("D"))
 ; // do something positive
 else
 ; // do something else

Well, so far so good, but this is pretty standard stuff.

At this point, however, we conclude that there is at least one more feature
that can be factorised; the Contains function call. This is where things
can become interesting.

Factorising Contains out of the expression leaves us with, conceptually,
this:

 if(p.Contains ("A" || "B" || "C" || "D"))

Okay, so I admit that this is not valid C# code but it is heading in the right
direction. With more recent versions of the .NET Framework, certainly in
3.5, it is possible to write

 if(new[]{"A","B",
 "C","D"}.Any(str=>p.Contains(str)))

which has the extra benefit of factorising the logical ‘or’ operators as well,
replacing them with Any. The equivalent replacement for logical ‘and’ is
All, both of which are defined in the System.Linq namespace. For
those who are unfamiliar with the syntax, the => operator denotes a lambda
function, the LHS of which being the local variables and the RHS being
the function body. The Any function is an Extension method – why did
Microsoft create Extension methods instead of using static functions?
– which operates on IEnumerable<T> and applies the lambda predicate
until its return value is true, ie proper short-circuit evaluation. Similarly,
All operates on IEnumerable<T> and applies the lambda predicate
while its return value is true, terminating early (short-circuit, again) if
any of the predicates return false.

Similarly, if the array of strings being searched is not composed of constant
strings, we can still use this pattern. For example,

 new[]{"A",GetB(),
 "C",GetD()}.Any(str=>p.Contains(str))

However, this has the downside of constructing the array before evaluating
the lambda function, and this means that GetB and GetD will be evaluated
even if the p.Contains("A") is true. This is the case because C# is
an immediate language. That is to say that values are evaluated at their
point of definition. The converse is a lazy language in which values are
evaluated at their point of use. Therefore, each of the elements of the array
will have been created before the Any function is applied to the array.

This can be avoided by delaying the construction of the individual
elements of the array until they are required, although this has the
disadvantage of further complicating the code. This is both disappointing
and to be demonstrated later.

So, at this point it looks as if we have completely factorised our expression
and can move on to other pieces of code, remembering to return so that
we can ‘deal with’ the array.

Next, another frequent construct in my codebase that is similar to the above
example, except that the complex object is now the function parameter
instead of the calling object, something like this.

 ComplexObject a = ComplexObject.CreateInstance();
 // do something with a
 if(Utils.Prepare(a) && Utils.CalcWith(a) &&
 Utils.OutputResultsFrom(a))
 ; // do something positive
 else
 ; // do something else

There is still factorisation to be done here, except this time the common
component is the ComplexObject a. Factorising a out of the expression
leaves us with an array of predicates, which we can use as follows

 if(new Predicate<ComplexObject>[]{
 c=>Utils.Prepare(c),
 c=>Utils.CalcWith(c),
 c=>Utils.OutputResultsFrom(c)}.All(f=>f(a)))

where Predicate<T> is defined in the .NET Framework as equivalent
to Func<T,bool>. Even though the compiler can deduce the type of non-
function types, for some reason known only to themselves, the C# team
have required us to specify the type of the lambda functions, at least in v3.5.
We can, however, make use of so-called Method Groups to reduce the
typing, and thus comprehension, burden. And so we have

 if(new Predicate<ComplexObject>[]{
 Utils.Prepare,
 Utils.CalcWith,
 Utils.OutputResultsFrom}.All(f=>f(a)))

public bool Equals(ChangeObject x,
 ChangeObject y)
{
 // Check whether the compared objects reference
 // the same data.
 if (Object.ReferenceEquals(x, y)) return true;
 // Check whether any of the compared objects
 // is null.
 if (Object.ReferenceEquals(x, null) ||
 Object.ReferenceEquals(y, null))
 return false;
 // Check whether the products' properties
 // are equal.
 return x.Quantity == y.Quantity
 && x.Price == y.Price
 && x.Identifier == y.Identifier
 && x.FXFixing == y.FXFixing
 && x.Fixing == y.Fixing
 && x.Spread == y.Spread
 && x.TradeDate == y.TradeDate
 && x.TradeCurrency == y.TradeCurrency
 && x.ValueDate == y.ValueDate
 && x.UnderlyingIdentifier ==
 y.UnderlyingIdentifier
 && x.BuySell == y.BuySell
 && x.Client == y.Client
 && x.ClientBroker == y.ClientBroker
 && x.Spread == y.Spread
 && x.Book == y.Book
 && x.Name == y.Name;
}

Listing 1
JUL 2012 | | 21{cvu}

I think you will agree that we have achieved brevity here and I hope that
you will agree that writing only the code we need, without repetition,
makes it easier to comprehend. This is as far as we can take this particular
direction.

Should we wish to proceed with the removal of the type specifier from the
definition of the anonymous array, it is necessary to split this code across
multiple lines, which is somewhat contrary to the spirit of the exercise.
This is a shame, and someone should mention it to the C# team the next
time they pop over for a cup of a tea and a biscuit. The compiler ought to
be able to deduce function types as well as non-function types; after all,
we can ;-) So, we will temporarily disregard our desire for brevity and
(visual) simplicity, and divert along a different path. So, in long, we have

Predicate<ComplexObject> prepare = Utils.Prepare;
Predicate<ComplexObject> calcWith = Utils.CalcWith;
Predicate<ComplexObject> output =
 Utils.OutputResultsFrom;
if(new []{prepare,calcWith,output}.All(f=>f(a)))

Recall to mind the comment made about ‘immediate’ versus ‘lazy’
languages and the fact that C# falls into the former camp. This means that
prepare, for example, has been defined to be Utils.Prepare. Had our
definition been

 var prepare = Utils.Prepare(something);

then prepare would hold the return value of the Utils.Prepare
function. But here, prepare is defined as the function itself.

Armed with the above, we observe that we can delay the construction of
our earlier array, remember the one which contained GetB and GetD?
comme ca:

 Action<string> getA = () => "A";
 Action<string> getB = () => GetB();
 Action<string> getC = () => "C";
 Action<string> get/8D = () => GetD();
 if(new []{getA,getB,
 getC,getD}.Any(str=>p.Contains(str()))

This time, GetB and GetD are not evaluated when we create the
anonymous array because the array is an array of functions to be evaluated
instead of an array of results of functions which have been evaluated. It’s
all in the tense :-)

And so now we do not evaluate GetB and GetD unless they are actually
required because of the short-circuit evaluation behaviour of Any.

At this point, having seen that we can factorise functions as well as data,
it would be reasonable to ask whether we can improve on this.

Again, in our codebase, we have a number of IEqualityComparer<T>
classes and, invariably, their Equals and GetHashCode functions are
remarkably similar. Additionally the Equals function is almost always a
boiler-plate piece of code which compares all the relevant properties of the
T. For example, see Listing 1.

This is actually snipped directly from the codebase and one source of error
may be immediately apparent – this code was constucted using the tried-
and-tested cut-and-paste operation and, as a result, Spread occurs twice!
The code for GetHashCode uses the same set of properties, even down
to the duplication of Spread. There are a number of observations that can
be made about the final return statement. It is composed from a number
of equality-testing predicates each of which is constructed by repeating the
function on the LHS and RHS of the equality. Also, the results of the
predicates are combined in a logical and, which we have already seen is
equivalent to the Extension method All. Finally, although not shown
here, GetHashCode uses the same set of functions. All of this duplication
is a possible source of error as demonstrated in the example code.

Unfortunately, it is at this point that things become difficult. This is
because the functions need to have the same type in order to hold them all
in the same container. This is a feature of the .NET generic containers
which accept only values of a given type, or possibly related type.

In our case, some functions return a string, some return an integer and the
remaining return a double. One approach is to group them into three arrays
(see Listing 2).

Recalling x and y are ChangeObjects, we can combine these three
arrays using the Extension method.

 return i1.All(f=>f(x)==f(y)) &&
 i2.All(f=>f(x)==f(y)) &&
 i3.All(f=>f(x)==f(y));

This has the advantage that i1, i2 and i3 can be re-used in the
GetHashCode implementation if they are moved into class scope.
However, this implementation is not ideal. I would like to be able to ignore
the intermediate return value type of the properties and factorise the equals
method too, but presently the equals operators, although appearing similar,
are three different functions: int.Equals, double.Equals and
string.Equals.

At this juncture, I have not solved this problem.

Next time...
Next time we will investigate ...

var i1 = new Func<ChangeObject,int>[]
 {c=>c.Quantity};
var i2 = new Func<ChangeObject,string>[]
 {c=>c.Identifier,c=>c.TradeDate,
 c=>c.TradeCurrency,c=>c.ValueDate,
 c=>c.UnderlyingIdentifier,c=>c.BuySell,
 c=>c.Client,c=>c.ClientBroker,
 c=>c.Book,c=>c.Name};
var i3 = new Func<ChangeObject,double>[]
 {c=>c.Price,c=>c.FXFixing,
 c=>c.Fixing,c=>c.Spread};

Li
st

in
g

2

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain
surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
22 | | JUL 2012{cvu}

JUL 2012 | | 23{cvu}

Desert Island Books
Mick Brooks shares what he will take to the island.

 haven’t met up with Mick half as often as I would have liked too, but we've
often exchanged emails. I first encountered Mick on one of the early
Mentored Developers projects. He’s one of the quiet men of the ACCU,

but he’s there, often in the background doing a solid job as membership
secretary.

Mick Brooks
So, my colleagues finally formed an ostracism committee
and arranged for me to be left on an island? I can’t say I
blame them: it’s probably for my own good, and it’s very
nice of them to let me take some books.

Choosing the first book to pack is easy: I have unfinished
business with Structure and Interpretation of Computer
Programs by Harold Ableson and Gerald Jay Sussman.
Our reading group at work took this on recently, and we
made good progress through the first couple of chapters.
By chapter three I’d had to accept that I had no hope of doing all of the
exercises and keeping up with our modest pace, but by the middle of
chapter four we’d all run out of steam. Each section took only minutes to
read, but seemed to require more and more time wrestling with the
exercises before I could claim to get it. There are so many important ideas
in this book, and the exercises and footnotes provide so many jumping off
points. Time alone on the island to tackle it all would be a good thing, but
I’m worried that a lack of reference material might drive me insane. I’ll
have to take my chances.

Next I’d grab Working Effectively with Legacy Code by
Michael Feathers. I raced through this when I first picked
it up – it was a very reassuring read. I’d been bitten by the
automated testing bug while I was a student, but was
finding it difficult to apply in my first programming job.
This book seemed to be written by a friendly uncle who’d

seen the same frustrations (proving I
wasn’t an idiot!), and even better, knew
what to do about them. In hindsight, I don’t think I made
the best of his advice. The aspiration for testable code
stuck, and I think improved the new code I wrote, but I
never really put the techniques for working with not-new
code into practice. I definitely owe it a revisit.

Third comes Software Requirements & Specifications –
a lexicon of practice, principles and prejudices by

Michael Jackson.
This is a lovely little book
that I’d never have found but for
a recommendation by Kevlin
Henney. It really is a lexicon – an
alphabetical list of phrases related to analysis, specification and design,
each followed by a short explanation or example of the concept. It’s a book
to dip into, so I can’t tell you what proportion of it I’ve read: definitely not
all of it, but I’ve read some parts many times. It’s not a tutorial, in fact I’m
not sure what it is, or how it’s useful. It is entertaining though, and it would
be perfect for idle island pondering.

Last of the techie stuff is a new book that I’ve been
planning to read soon: Database Design & Relational
Theory by C.J. Date. I’ve had quite a bit of practice with
databases, but I’ve a yearning to fill in the theoretical
foundations. The bits of theory that I’ve picked up tend
to come with an ‘aha’-moment as the formalism helps
clear up some woolly thinking. I also nod along
whenever I hear how SQL and most database
technologies don’t live up to the relational ideal. I’ve a suspicion that the
NoSQL movement is at least partially a reaction to the limitations of
existing implementations, rather than of the theory, and that the theory will
be an important tool for finding our way around all the new products and
approaches.

Well, looking at what I’ve packed so far, I’ve given myself
a pretty hard time on the tech side. I don’t see why my
choice of novel should be any different. I’m not a big
reader of fiction: I’ve never trusted my own judgement of
what’s good, and so I tend to stick to classics. I read a few
Dostoyevsky novels and really enjoyed them, but got
horribly stuck on his The Brothers Karamazov .
Supposedly his best work, I’ve read the first third to a half

twice now, but both times had to abandon it until I stopped feeling so
morose. I quite like being miserable, but it wasn’t fair on my family and
friends. No worries about that on the island, so I should be able to wallow
in it. And if it all gets too grim, I’ll have the weekly design review sessions
with my team of coconut-for-a-head developers to look forward to. Will
they have index cards on the island, or should I try and smuggle some with
me?

Finally some music. Here I will try and lighten the
mood. My first choice is Mirrored by Battles. An
amazing ‘math-rock’ album that always makes me
smile, and usually has me doing strange hand-
dancing. Then 69 Love Songs by The Magnetic
Fields. This is a compendium of short songs in a
variety of styles. There are some properly catchy
tunes in there, and the lyrics have a combination of
cleverness and silliness that I really love.

Right, they’re here, so it must be time to go. Do I
have to wear that jacket? Okay. And the sleeves go
this way? Oh right, I see. Can you just get that bit
at the back...

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email us: cvu@accu.org.

What’s it all about?

After four years, Paul Grenyer is stepping aside from Desert Island
Books. Thanks Paul! We want to continue introducing ACCU members,
so if there’s someone you think would make a good candidate for
marooning on the island, let us know at cvu@accu.org. Or even better,
introduce them yourself!

Code Critique Competition 76
Set and collated by Roger Orr. A book prize is awarded

for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I ’ve got a C component that generates call-backs (in a header
callback.h). I am trying to use it from C++ so I’ve wrapped it in a class,
but it doesn’t quite work. I’ve put together a test harness using a dummy
implementation of the call-back and a counter class. I expected to see
this output:

 Counter: 1
 Counter: 2
 Counter: 3
 Counter: 4

But what I actually got is something like

 Counter: 1
 Counter: 2619565
 Counter: 2619566
 Counter: 2619567

Please help me work out what’s going wrong.

The listings are:

 Listing 1: callback.h

 Listing 2: cb.h

 Listing 3: counter.h

 Listing 4: callbackTest.cpp

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 3

#ifndef cb_h_
#define cb_h_
template <typename T>
class CB
{
public:
 CB() : registered(true) {
 ::registerCB(&fn, this);
 }
 static void fn(void* arg)
 {
 static_cast<T*>(arg)->callback();
 }
 ~CB() {
 if (registered) {
 unregisterCB(&fn, this);
 }
 }
 // ...
private:
 bool registered;};
#endif // cb_h_

Listing 2

#ifdef __cplusplus
extern "C" {
#endif

// Register a callback
// fn - the function to call back
// arg - the argument to pass back
void registerCB(
 void (*fn)(void* arg),
 void *arg);

// Unregister a callback
void unregisterCB(
 void (*fn)(void* arg),
 void *arg);

#ifdef __cplusplus
}
#endif

Li
st

in
g

1

#ifndef counter_h_
#define counter_h_
#include "cb.h"
class Counter : CB<Counter>
{
public:
 Counter() : counter(0) {}
 void callback() {
 std::cout << "Counter: "
 << ++counter << std::endl;
 }
 virtual ~Counter() {}
private:
 int counter;
};
#endif // counter_h_

Listing 3

#include <iostream>

#include "callback.h"
#include "counter.h"

// dummy callback
void (*fn)(void* arg);
void *arg;
void registerCB(
 void (*fn)(void* arg),
 void *arg)
{
 ::fn = fn;
 ::arg = arg;
}

Listing 4
24 | | JUL 2012{cvu}

Critiques

Brook <jingyu_chen@hotmail.com>

In invoking registerCB:

 CB() : registered(true) {
 ::registerCB(&fn, this);
 }

the second this argument logically should point to a Counter object,
but it’s actually the pointer to a CB object; so we get the parents, giving
this modified class CB:

 template <typename T>
 class CB
 {
 public:
 CB() : registered(true) {
 regist(fn); // << change >>
 }
 static void fn(void* arg)
 {
 static_cast<T*>(arg)->callback();
 //(T*)(arg)->callback();
 }
 virtual ~CB() {
 if (registered) {
 unregisterCB(&fn, this);
 }
 }
 private:
 // << add >>
 virtual void regist(void (*fn)(void *)) {
 ::registerCB(fn, this);
 }
 // ...
 };

Paul Floyd < Paul_Floyd@mentor.com>

Just glancing at the code and one thing jumps out

 static_cast<T*>(arg)->callback();

Without even compiling the code, this looks suspicious. The other thing
that I spotted was the semicolon after the closing curly brace of main.

Lastly, I didn’t like the use of difficult pointer to function syntax without
using a typedef, which would have made things much easier.

When I do compile the code, I get a lot of warnings.

CC -library=stlport4 +w2 callbackTest.cpp
"callbackTest.cpp", line 13: Warning: function
 void(void(*)(void*),void*) overloads extern
 "C" void(extern "C" void(*)(void*),void*)
because of different language linkages.
"callbackTest.cpp", line 11: Warning: fn hides
 the same name in an outer scope.
"callbackTest.cpp", line 12: Warning: arg hides
 the same name in an outer scope.
"callbackTest.cpp", line 21: Warning: function
 void(void(*)(void*),void*) overloads extern
 "C" void(extern "C" void(*)(void*),void*)
 because of different language linkages.
"callbackTest.cpp", line 19: Warning: fn hides
 the same name in an outer scope.
"callbackTest.cpp", line 20: Warning: arg
 hides the same name in an outer scope.
"cb.h", line 12: Warning: arg hides the same
 name in an outer scope. 7 Warning(s) detected.

I get as output

 Counter: 1
 Counter: 1
 Counter: 2
 Counter: 3

Looks a bit more reasonable than the junk numbers in the original Critique,
but still wrong.

Next, let’s try some debugging. The first thing that I notice is that if I watch
the global arg, it doesn’t have the same value as this in the first call to
callback. It is the same when I step through exercise. The global arg
is being assigned the this pointer of type CB<Counter> not that of type
Counter.

Now for the fixes. Firstly, lets clean up the warnings and add a typedef.

 typedef void (*fn_t)(void*);

then it’s possible to write

 extern "C"
 void unregisterCB(fn_t fn_, void *arg_)

and avoid the ‘hiding’ warnings by adding an underscore _ to the argument
names, e.g.

 static void fn(void* arg_)

Now to the crux of the matter. Changing the CB constructor to

 explicit CB(T *pthis) : registered(true) {
 ::registerCB(&fn, pthis);
 }

and Counter’s to

 Counter() : CB<Counter>(this), counter(0) {}

looks like it sets the global arg counter to the correct this.

From a design perspective, it’s not pretty (global variables are rarely
elegant, void* ones even less so). However, as I’ve done things like this
in the past, I won’t get all sanctimonious. If you are forced to use C, then
either you can only use a very limited subset of C++, or you have to resort
to dirty hacks like this. Personally I’d prefer to get rid of the C code, but
that isn’t always possible.

Helmut Wais <helmut.wais@gmx.net>

The main problem in the code I see is an invalid cast from pointer-to-object
to pointer-to-void and then back to a different pointer-to-object.

The C++ standard (98 version) says in 5.2.9/10 (it’s 5.2.9/13 in the C++11
standard):

void unregisterCB(
 void (*fn)(void* arg),
 void *arg)
{
 fn = 0;
 arg = 0;
}
void exercise()
{
 if (fn) fn(arg);
}

// test program
int main()
{
 Counter test;
 // call it myself
 test.callback();

 // use the (dummy) callback mechanism
 exercise();
 exercise();
 exercise();
};

Li
st

in
g

4
(c

on
t’d

)

JUL 2012 | | 25{cvu}

An rvalue of type "pointer to cv void" can be explicitly converted to a
pointer to object type. A value of type pointer to object converted to
"pointer to cv void" and back to the original pointer type will have its
original value.

The ‘back to the original pointer type’ condition is not satisfied here. In
the CB constructor, this is of type pointer-to-CB. It is implicitly
converted to pointer-to-void in the call to ::registerCB(). Later, in
CB::fn() that pointer-to-void is cast to pointer-to-Counter, which is not
the ‘original pointer type’.

My first suggestion is to drop that C-library. In case you absolutely have
to do that cast from void* to Counter*, then my second suggestion is
to do it via an intermediate CB cast (CB has to be a public base for that):

 static void fn(void * arg) {
 static_cast<T*>(static_cast<CB*>(arg))
 ->callback();
 }

Another problem is the use of a pointer to a static member where a pointer
to an extern ‘C’ is expected. My compiler (gcc47) allows that, but others
may not.

Implementation details:

gcc puts the vtable at the beginning of the object. Since the base
CB<Counter> has no vtable, but the derived Counter does, the
CB-subobject is not at the same address as the Counter object. The
cast to pointer-to-void erases all type information: the compiler
cannot adjust the pointer in the cast to pointer-to-Counter.

Simplified code to demonstrate the problem:

 #include <iostream>

 struct A {
 int i; // prevent empty-base optimization
 };
 struct B : A { virtual ~B() {} };

 // vtable A.i
 // |.......|....| // 8+4 byte on my 64bit machine
 // ^ ^
 // | |
 // | |
 // | +------ A-subobject at: 0x7fff5fbff608
 // +-------------- B-object at: 0x7fff5fbff600

 int main()
 {
 using namespace std;
 B b;
 cout << &b << endl;
 // 0x7fff5fbff600 on my machine

 A * pa = &b;
 // 0x7fff5fbff608, ok: pointer adjusted
 void * pv = pa;
 // 0x7fff5fbff608, ok

 cout << static_cast<B*>(pv) << endl;
 // 0x7fff5fbff608, nok: void->derived
 cout << static_cast<B*>(pa) << endl;
 // 0x7fff5fbff600, ok: base->derived
 }

Balog Pál <pasa@lib.hu>

This is a very good sample. I imagine the scenario, someone presenting it
as ‘See, I have this callback-registry. I wrote some unit tests, and it works
fine. I know it has some issues, but do you see any actual problem rather
than cosmetic issue? I really want to check it in right now, we’ll deal with
beautifying later...’ I think it is pretty easy to dismiss the problem, and let
it go.

Certainly here we see the misbehaviour, but it’s all too easy to use some
different class in a test that ‘works fine’.

Knowing that there is a problem made me read the code differently, and
spot the root right on. Mostly because I had to deal with other
manifestations of the same root cause in production. Hunting actual
crashes after slight and apparently unrelated changes in the system...

First I tried the code in the compiler: clean compile and the result produces
similar bug effect. Great. (I mean it. We have a 99.9% clue for undefined
behaviour, and for those chance is pretty high to observe some good
behaviour that hardly helps.) I change the odd ‘virtual’ that was the only
dark-red flag on the superficial reading – I mean making ~CB() virtual –
and presto, the behavior now meets the original expectations.

Certainly it is not the root cause of our problems. Destructor of a class
meant as base class should better be virtual, I enforce it in guidelines except
for corner cases like COM classes, but it is not mandatory. And using such
class as base must work fine, unless we use delete improperly. It this
example nothing wrong is done in that respect. As a matter of fact, this
change should not have any visible impact on this code at all. Or any other
code aware of the just mentioned problem, unless it queries sizeof() of
the classes.

This change can (and in practice likely does) have an effect on the layout
of the classes. We can see it in MSVC using some undocumented magic,
the switches /d1reportSingleClassLayout<classname> or
/d1reportAllClassLayout. I’ve set packing to zero to get rid of
confusing alignments...

Originally it is:

 class ?$CB@VCounter@@ size(1):
 +---
 0 | registered
 +---

 class Countersize(9):
 +---
 0 | {vfptr}
 | +--- (base class ?$CB@VCounter@@)
 4 | | registered
 | +---
 5 | counter
 +---

After adding virtual to dtor:

 class ?$CB@VCounter@@ size(5):
 +---
 0 | {vfptr}
 4 | registered
 +---

 class Counter size(9):
 +---
 | +--- (base class ?$CB@VCounter@@)
 0 | | {vfptr}
 4 | | registered
 | +---
 5 | counter
 +---

The important thing to look at is the placement of the base class within the
derived. After the change they start at the same place. A pointer to the
virtual method table (VMT) is at the start – it is present in any class with
at least one virtual function. This part is never duplicated. In the derived
class the new data member (counter) is just put at the next location. Before
it we see the base embedded.

In the original version the compiler wants the VMT pointer at the start, but
as the base class didn’t have it, so it is placed at offset 4. We can say ‘in
the middle’ of the layout.

Knowing all that it shall not be hard to find the problem place. We just
need to follow conversions between pointers to those structures. One of
them shouts at us loudly as static_cast<> in CB::fn(). It’s
26 | | JUL 2012{cvu}

counterpart lives in CB’s ctor (and dtor). It’s not so visible, as
conversion toward void* is implicit.

So let’s see the types in conversions:

 in CB::CB we have this, that has type CB<T>*, and convert it to
void* and store that.

 in CB::fn() we have that void* and cast it to T*.

We use static_cast that is supposedly safe and sound, but in reality
an X* void* Y* cha in i s i den t i ca l t o a
reinterpret_cast<Y*>(X*). For the supposedly obvious reason that
void* carries no type info. It’s a common question on forums whether in
this case we should spell static or reinterpret_cast, and have all
kinds of answers, some say use static, as it works, and we’re supposed to
use the weakest thing possible. Others say use reinterpret, as that is what
happens, and it better be visible. This case probably supports the second
camp.

Well, having reinterpret_cast in the code is not the end of the world,
we just must be sure to obey the round-rules: we can use whatever many
reinterprets on the pointer, but the last one, where we intend to use the
pointer, must have the first type we started. In other words we must get
back to the pointer’s original type. And here that is not happening. To
correct the situation, in CB::fn() we shall use reinterpret_cast (or
static_cast) to CB*, and only then static_cast further to T*. Like

 static_cast<T*>(static_cast<CB*>(arg))
 ->callback();

As soon as we do that, we get the desired behaviour, no matter how we
juggle with the virtuals, or use other ways to challenge the layout. The
situations where both static_cast and reinterpret_cast
between two pointers both work but produce different results are pretty
rare in real life, I’m aware of only two cases, one is the late-VMT as here
and the other is multiple inheritance. No wonder it may catch programmers
by surprise. But the consequence is undefined behaviour that in practice
manifests in corrupting memory, as we writing through a pointer that
missed an offset-correction.

Before going for other issues with the example, let’s look at the big picture.
On a code review the first questions are normally ‘what is this class’ or
‘how does it work’, or even jumping right to some detail. The better first
question is to ask ‘why did you write this class (package, library, ...)?’ As
we (should) know, the best code is the one you don’t write. Think you need
to implement another vector, string, smart pointer, quicksort, logger, ... ?
Think again. Really. And explain why the zillion of existing ones is not
good enough, or how yours will be better. The question applies here too.
Why we need another homegrown, buggy, half-thought attempt at a
callback wrapper? What is wrong with using Boost::function and
bind, or those in the g* world the sigc++ library, or something else?
Callbacks are pretty common, and I’d bet any framework would come with
some support. And if it’s a very special project forbidden to include a
component it’s still more productive to import sources.

Having said that, let’s look for other problems, without ordering:

 We see include guards in some headers, that is good, but not all of
them!

 The include guard uses lowercase. #define symbols are supposed
to be all-uppercase almost anywhere. Also the symbols should be
more unique.

 Headers shall be self-contained. Here counter.h includes cb.h,
good, but cb.h just hopes registerCB is declared somehow
before its inclusion. Similar problem that counter.h uses
iostream.

 In callback.h functions take pointer-to-function as argument.
For such beasts we should use a typedef, both for better
readability and avoiding duplication.

 Documentation in callback.h is insufficient: for a
registry/database operation we shall document the primary key! Can
I register the same function with multiple different args and have

them all? Can I register the same pair multiple times? If so,
unregister removes all of them or keeps count?

 I expected to see functions of callback.h implemented in
callback.cpp or some other file, that belongs to the library itself.
Not in the unit test. (though it might be the ‘mock’ and that was just
omitted as irrelevant.)

 The callback registry looks ‘too global’, and too generic. The
callback systems I worked with normally had either more
collections to observe or provided extra info used as event filter.

 With CB/Counter using CRTP I see what is happening, but not
really get the point that why it is good, and what is the benefit.
Unfortunately the documentation here is completely missing, and
having just cb.h should I guess the intended use is to derive from
CB<T> and have a member function called callback()?

 The already mentioned lack of virtual dtor in CB that is intended to
serve as base class.

 CB has a member registered that has no usage. It can be
scrapped until there is interface to fiddle with registration explicitly
(or the registerCB function gains return value).

 Name hiding throughout, mitigated by use of ::. It’s good we can
use qualified names when name clash happens out of our control. It
does not mean we shall fight to invent ways to use it. It’s not that
hard to find another identifier for our arguments.

 The test code is not very impressive, though the ones I write also
have a tendency to look awful, yet they do the job well. Without
specification of the tested module we can’t evaluate the goodness of
the test anyway.

 There’s an excess semicolon at end of main().

Commentary
The critique was inspired by some code of mine that broke when the class
hierarchy changed by the removal of a virtual method. The problem turned
out to be an incorrect cast – as in this case – but it took a while to track it
down. The trouble comes from the way C++ builds up an object and the
different addresses involved. In this case the most derived object, test, is
an instance of the Counter class which is derived from CB<Counter>.
In the base class constructor the object’s this pointer is passed as the 2nd
argument to the registerCB function, implicitly casting it to void*.
When the callback fires, the argument arg is turned back into an object
pointer in the function fn using a static_cast to a pointer to the
Counter class. Unfortunately this cast, while it compiles, does not do the
right thing.

One way to demonstrate this is to add code to print out the address of this
into both the constructors. When I do this I get the following output:

 CB: 0018FEB8
 Counter: 0018FEB4
 Counter: 1
 Counter: 1638153
 Counter: 1638154
 Counter: 1638155

We can see that the two addresses are different. In this case the base class,
CB, portion of Counter is based 4 bytes into the overall object. It is this
address which is passed to the C API, and casting this address to a Counter
results in an address out by 4 bytes.

Figure 1 is a diagram of the memory layout in this particular example. The
overall Counter class contains within itself the CB sub-object at an offset
of 4 bytes and the counter value at an offset of 8 bytes. When we cast the
address of the CB sub-object to a Counter pointer we have the wrong base
address, and so when we reference the counter value at offset 8 we are
reading the first integer beyond the end of the object.

One solution is to ensure we do a static cast that is the exact opposite of
the implicit cast we first used, to get back the address of the CB sub-object,
and then cast this pointer to a Counter pointer.
JUL 2012 | | 27{cvu}

 static void fn(void* arg)
 {
 CB *self = static_cast<CB*>(arg);
 static_cast<T*>(self)->callback();
 }

Unfortunately, performing this static cast via CB requires that T is publicly
derived from CB<T>. At this point I’d make the dtor of CB protected to
avoid trying to delete via pointer-to-base.

The Winner of CC 75
All four critiques identified that the problem was with the casting. The
danger with this sort of example is that the bug is caused by undefined
behaviour, so simply making the bug go away without understanding why
the problem occurs runs the risk of the program still invoking undefined
behaviour – but apparently working fine.

So Brook’s proposed change, calling a (virtual) helper function in the ctor,
and adding virtual to the dtor, does result in code that works on many
compilers – but sadly it still invokes undefined behaviour. The change
works because the layouts of the two classes now overlap (on most
implementations, anyway).

Paul’s solution, passing a pointer to the full derived class to the base class
constructor, does fix the problem as the implicit cast to void* does now
exactly mirror the static_cast to T*. However I am a little unhappy
with the unnecessary extra argument begin passed to the ctor.

Both Helmut and Pál gave similar solutions. Helmut provided the link to
where in the standard it defines what is and is not defined behaviour when
using static_cast with void* and both provided explanations of the
actual memory layout in a specific implementation (and thank you to Pal
for the information about the undocumented MSVC compile switches!)
Helmut also noted that the proposed solution requires that the inheritance
from CB<T> becomes public – sadly MSVC accepts the code without
this (even with extensions disabled).

The resultant code, as Helmut noted, still has one piece of undefined
behaviour: using the address of a static member function where a pointer
to an extern ‘C’ function is required. This is in practice rarely an issue, but
would be worth fixing for a truly portable solution.

I found it a difficult call to pick a winner (as Pál provided additional
critiques of the code), but I liked the definitive nature of Helmut’s solution
so I have awarded Helmut this issue’s prize.

Code Critique 76
(Submissions to scc@accu.org by Aug 1st)

I’ve written an exception class that can throws itself, can collect a context
stack and also can’t be ignored as it re-throws itself unless it has been
printed at least once. My idea works with Visual Studio but doesn’t work
reliably with gcc – the exception doesn’t always get rethrown – any idea
why?

The code:

 Listing 5 is exception.h

 Listing 6 is test_exception.cpp

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <iostream>
#include <vector>

// exception class that stacks up context and
// re-throws itself until it is printed by a
// top-level handler.
//
// use the function operator to add context in
// a catch clause
class exception
{
public:
 exception() {}
 exception(const char *cause)
 : stack(1, cause) {}
 exception(const exception &rhs)
 {
 stack.swap(rhs.stack);
 }
 // throw a copy of myself,
 // if I've not been printed yet.
 ~exception()
 {
 if (rethrow) throw *this;
 }
 // Add context to the exception
 void operator()(const char *context)
 {
 stack.push_back(context);
 }
 // print (and dismiss) the exception
 void print()
 {
 std::copy(stack.begin(), stack.end(),
 std::ostream_iterator<const char *>
 (std::cout, "\n"));
 std::cout << std::flush;
 rethrow = false;
 }
 // like std::exception
 virtual const char *what() const
 {
 return stack[0];
 }
protected:
 mutable std::vector<const char *> stack;
 bool rethrow;
};

Listing 5

#include <iostream>
#include <iterator>
#include "exception.h"

int func(int i)
{
 try
 {
 if (i <= 0)
 {
 throw exception("i must be positive");
 }
 int result(i*i);
 if (result < i)
 {
 throw exception("overflow");
 }
 return result;
 }

Listing 6
Fi

gu
re

 1
28 | | JUL 2012{cvu}

http://www.accu.org/journals/

Standards Report
Mark Radford reports on the latest developments

for the C++ standard.

ou may notice a change of name on the standards report this time
around. I’ve now taken over the role of Standards Officer, Lois
Goldthwaite having now stepped down after several years in the role.

Therefore, it seems appropriate to say a bit about what qualifies me to take
over this role. I have been a member of the C++ Standards Committee for
thirteen years. I have participated at ISO level and I regularly attend BSI
Panel meetings. Although my interest has historically been in C++
standardisation, I have no intention of limiting the scope of my reports.
Therefore, would anyone reading this, who is involved in a relevant
standards’ process, please make themselves known to me?

Before I go any further, there are two people I would like to say thank you
to. Firstly, I would like to say a huge thank you to Lois, for all her work
as standards officer. Happily, this is not a complete exit from the standards
arena for Lois, as she remains convenor of the BSI C++ Panel. Secondly,
I would like to thank Roger Orr for filling in when Lois was unable to write
these reports, and also for his encouragement in getting me started.

UK To Host April 2013 C++ Standards Meeting
You may already have heard that the UK will be hosting the ISO C++
Standards Committee in the week following the ACCU conference,
specifically 15th – 20th April 2013. The location is still to be decided, but
will be the same as the ACCU conference, either in Oxford or Bristol. At
the time of writing, this still needs £8,000 worth of sponsorship. If any
readers have contacts that could help with this, please can you get in touch?
Feel free to contact me initially.

Towards C++ 2017
The next update to the C++ Standard (nicknamed C++1y) is planned for
2017. C++ software developers have been kept waiting thirteen years

between the original standard (1998) and C++2011 (the 2003 release was
an interim release to fix various issues, but did not present an update to
the standard). There is a strong desire in the standards committee that
future updates should be much more frequent – about every five years.

So, what might be in C++2017? Well, one topic that has been discussed
recently at BSI Panel meetings, is that of scheduling pieces of work for
processing. Typically this involves scheduling the work onto a thread pool
for concurrent execution, but it might also involve scheduling for
sequential execution on a particular thread. This all started with a proposal
from Google, which can be read in full in full [1].

This is just one example of a proposal that has been put forward. Sorry,
but because of space and time limitations, I can’t go into this any more at
this point. However, it is something to look at again in a future column.

One last thing before I finish: the call for C++2017 library proposals is very
much still out there. If you want to know more, there is a paper containing
more information [2].

References
[1] http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2012/n3378.pdf
[2] http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html

Y

Code Critique Competition (continued)

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
 catch (exception & ex)
 {
 ex("in func");
 }
 std::cout << "Shouldn't get here"
 << std::endl;
}
int mid(int i)
{
 try
 {
 return func(1) * func(i);
 }
 catch (exception & ex)
 {
 ex("in mid");
 }
 std::cout << "Shouldn't get here"
 << std::endl;
}

Li
st

in
g

6
(c

on
t’d

)

void test(int i)
{
 try
 {
 std::cout << "mid() => " << mid(i)
 << std::endl;
 }
 catch (exception & ex)
 {
 std::cout << "Caught exception"
 << std::endl;
 ex.print();
 }
}

int main()
{
 test(0); // should fail first test
 test(0x7fffffff); // should fail second
}

Listing 6 (cont’d)
JUL 2012 | | 29{cvu}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3378.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3378.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3370.html

The Geek Manifesto : Why
Science Matters
By Mark Henderson, published by
Bantam Press, ISBN:978-
0593068236

Reviewed by Ian Bruntlett

This is a good book. Unfortunately it is a
hardback and I’m trying not to buy hardbacks
any more due to lack of shelf space and one of
my book cases is on its way out. I bought it from
Amazon UK where it was reasonably priced so
I bought it anyway :)

In the past I, and probably other I.T. workers,
have taken the stance that ‘I don’t want to get
involved with politics – I just want to get things
done’. This book takes the position that science
belongs throughout our culture instead of being
isolated in a ghetto. A manifesto is ‘a public
declaration of policy and aims, especially one
issued before an election by a political party or
candidate’.

Previously when asked to explain science and
how it reacts to change I’ve referred people to
The Structure of Scientific Revolutions by
Thomas S. Kuhn. This book is making me more
politically aware. It describs the use of the
Office for Budget Responsibility to ‘scrutinise
the state of the public finances and the
Treasury’s economic forecasts’ and suggests
that a similar body be established – ‘An Office
for Scientific Responsibility could scrutinise the
data advanced in support of every new
government policy and report on whether it
really passes muster’.

An OSR would be well placed to prevent the
abuse of scientific evidence in politics. In fact,
there are so many ways to abuse scientific
evidence that the Henderson categorises some of
them: Evidence shopping, Imaginary evidence,
Fixing the evidence, Clairvoyant evidence,
Mishandling the evidence and Secret evidence.

After nearly 250 pages of discussion, the book
concludes with the chapter ‘Geeks of the World
unite’. It is a very short chapter and suggests the
establishment of a geek movement and how
geeks should be political animals. Fitting for a

book advocating an evidence based approach to
matters, after the final chapter there are roughly
60 pages of references, 4 pages of
acknowledgements and a 10 page index.

GNU Make
By Richard M. Stallman, Roland
McGrath, Paul D. Smith, published
by GNU Press, ISBN:1-882114-83-3

Reviewed by Ian Bruntlett

What is Make? It’s a special
language to build software applications. A file,
typically "makefile" or "Makefile" lists the
related modules that go into the making of an
application using timestamps so it knows which
modules are up to date and do not need to be
recompiled. Sometimes an IDE will provide a
GUI that sits on top of a Makefile. Users of old
Linux applications will be familiar with the 3
commands to install an app –
./configure; make; make install but that is less
common these days.

Some years ago I bought some stuff from the
GNU people. One of those things was the
manual for GNU Make. As well as being
available in paper format, the most up to date
version can be downloaded free and printed
from http://www.gnu.org/software/make/
manual/

My exposure to Make started when I got hold of
C68 on the Sinclair QL. Then I got a job at
LiBRiS which, at that time, was moving from
Borland Turbo C++ to Watcom C. I was given
a disk of source code and told to get it running.
To cut a long story short – I got it running, I
created Makefiles for families of LiBRiS

products using Watcom’s own Make – wmake
supported by a basic source code control system
called SCHOLAR.

This book is very detailed. Its authors
recommend that first time readers concentrate
on the first chapter and just read the initial pages
of the remaining chapters. While it provides
plenty of example snippets while describing
various commands, I feel that more example
makefiles would have been helpful.

The C++ Standard Library
2nd Edition
By Nicolai Josuttis, published by
Addison Wesley Longman, ISBN:
978-0-321-62321-8

Reviewed by Francis Glassborow

There are very few programming books that
remain in the top ten for as long as the first
edition of this book. For over a decade the first
edition of this book has remained as one of the
essential reference books for any serious C++
programmer.

During that time the C++ Standard Library has
undergone considerable change. The most
important of these was when the first Library
Technical Report was published. At that time the
author was deeply involved in other
programming languages and I suspect, rebuffed
any overtures from his publishers to update his
book. Nonetheless the first edition continued to
sell and continued to be the first point of
reference for programmers trying to get to grips
with the C++ Standard Library,

However C++ has now moved on. Not only has
its library been massively increased in size, but
the original has undergone substantial revision
to leverage on the changes made to the core of
the C++ Language. The author has been seduced
by these changes into renewing his acquaintance
with C++. This is much to the benefit of the rest
of us.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
30 | | JUL 2012{cvu}

The author has brought his clear understanding
of C++ to the latest version and written a second
edition that will be an essential reference for the
new, enhanced and completely revised C++
Library.

After a couple of unusually short chapters
(‘About this Book’, and ‘Introduction to C++
and the Standard Library’) chapter 3 gives the
reader a brief but very valuable overview of the
new C++ language features. This chapter is
important reading for anyone who is already
familiar with C++ as it was prior to the new
Standard.

Chapter 4 covers general concepts and should be
read by everyone using this book as a reference
(which, in this reviewer’s opinion, is its most
important and enduring use).

The rest of the book is an invaluable reference
to much of the library. Unfortunately the C++
library has grown to a size where the kind of
comprehensive tutorial/reference that the first
edition provided is no longer possible. The
author has had to be rather more selective and
focus on the things that are important to the vast
majority of C++ programmers whilst bypassing
some of the more specialist parts. Even so the
page count has now gone past 1000. I suspect
that a truly comprehensive reference/tutorial
would need over 2000 pages.

The text has been thoroughly checked by a large
number of C++ library experts. How do I know
that? Well I know most of the reviewers and
have faith in their pride in doing such review
work correctly. Perhaps one or two things may
have crept past all the eagle eyes but none that I
have noticed.

Now I must touch on the one negative aspect of
this book. It has clearly not been copy edited by
a native English speaker. The English syntax
jars me far too often. This is a great pity because
it spoils what is otherwise an outstanding work.
The author’s English is more than competent
(and orders of magnitude better than my
German) but it is the English of someone
thinking in German and then making an
excellent translation. Were it spoken you would
probably not notice, but when written down it
shows. I hope that when the author gets to
produce a third edition he employs someone to
copy edit the English.

If you are serious about writing C++ you need
this book. If you already have the first edition
you will know the quality of the author’s writing
and ability to provide that essential explanation
that will assist you in getting the best from the
C++ Standard Library. Those people will, if they
are sensible, update their bookshelf by getting a
copy of the 2nd edition. The rest of you should
hurry quickly to
your book
supplier and
purchase this
edition it will save
you a great deal of
time.

C++ Primer 5th Edition
By Stanley Lippman, Josée Lajoie
and Barbara Moo, published by
Addison Wesley, ISBN:978-
0321714114

Reviewed by Francis Glassborow

About 20 years ago Stan Lippman wrote the first
edition of this book. At the time of writing it was
among the best introductions to C++ published.
A few years later the author produced a 2nd
edition which tracked changes that were
happening to the C++ language as it was being
standardised. Soon after the C++ Standard was
finalised the 3rd edition was published with a
surprise second author, Josée Lajoie (well it was
a surprise to me). Josée is a gifted teacher who
at that time was working for IBM. She is a
French Canadian but her English fluency would
shame many for whom it is their first language.
I know this from personal experience because
she effectively mentored me during my first five
years of active participation in WG21, giving
freely of her insights and being very patient with
this jumped up amateur. Her skills took a good
book and turned it into an authoritative one.

Soon after the TC that updated C++ in 2003 a 4th
edition appeared. This had acquired yet another
new author, Barbara Moo, who has many years
of programming experience and a real gift for
writing about the most obtuse technical points
with great clarity. She co-authored Ruminations
on C++ with Andy Koenig (her husband, and
author of what must be the longest running
programming book without amendments, C
Traps and Pitfalls, as relevant today as it was
when it was first published in 1989).
Ruminations on C++ is still a delight to read and
is a model of how to write about technical things
in a readable style. (If you have never read
Ruminations on C++, get a copy and enjoy it.)

Barbara completely rewrote The C++ Primer (I
do not know how much input came from Stan
Lippman, and I guess none from Josée as she
had moved on to academia and, as far as I know,
was no longer programming in C++). I guess
that Andy Koenig could not resist reading over
her shoulder and making the odd suggestion
now and again. The resulting book was even
better than the 3rd edition (much better in my
opinion, but that is not to belittle the previous
editions).

And now C++ has undergone a major overhaul
with ‘making it easier to teach’ being one of the
criteria and so it is clearly time for yet another
edition.

This time two things have been done, the text has
been revised. However well you write the first
time you think of better ways to express yourself
when you come back to it after a few years.
Comparing the 4th and 5th edition side by side
shows that the authors (again I suspect that is
mostly Barbara) have taken the text of the 4th
edition and reworked it. The second thing is that
the code and content has been completely
revised to make use of the changes that C++11
introduced.

C++ is a vast language and any author writing
an introduction must select what they intend to
cover. I believe that the authors have made
sensible decisions as to what to cover and what
to omit. The only area that I cannot find (I am
working from a draft without an index) that I
think I would have covered is lambda functions.
Those are at least as useful, and arguably
simpler, as parameter packs and variadic
templates which are covered.

There is the additional problem with writing a
book so soon after the release of the new
standard; many compilers have not fully caught
up with all the new bits but this is rapidly
changing.

The authors write on the assumption that readers
would be better off using a command line. That
is a point with which I disagree. I much prefer
to have novices use an IDE (such as
Code::Blocks) with as up-to-date a version of
g++ as I can get (currently I am using 4.7).
However this does not really matter, just use
whatever you are comfortable with.

If you are in the target readership, those with
either a talent for programming or with some
prior programming experience in another
language (or possible C++ some years ago), then
I can confidently say that this book will
introduce you to C++ and set your feet firmly on
the road to mastering the language.

This is not a book for those who are already
relatively fluent in C++ as it was and wanting to
update themselves to the latest version. Those
people will need to look elsewhere. But if
friends, colleagues or relatives want to learn
heavy duty C++ and have some prior
programming experience point them at this book
and warn them that they need this edition and not
an earlier one.

C++ Concurrency in
Action
By Anthony Williams, published by
Manning, ISBN:978-1-933-98877-1

Reviewed by Francis Glassborow

The author will be familiar to members of
ACCU and those attending ACCU Conferences.
Indeed anyone who attended his talk at the
recent ACCU 2012 conference will probably
already have bought a copy of this book.

C++11 (AKA C++0x) introduces a new
memory model for C++ along with substantial
support for concurrent programming. Some
programmers (indeed originally quite a few
members of WG21) think that multi-threaded
programming is just a matter of using pthreads
or some derivative of it. This is not the case.
Many of our multi-threaded programs only
scrape by because they have been running on a
single processor. Indeed a great deal of 1990s
thinking about multiple threads was based on
that situation. We did not have to concern
ourselves with the problems that arise when two
processors simultaneously want access to the
same data. It didn’t happen, one or other got
there first. Of course the indeterminacy of the
JUL 2012 | | 31{cvu}

32 | | JUL 2012

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From the Chair
Alan Griffiths
chair@accu.org

I wrote my last ‘From the Chair’ in
March 2003 – nine years ago! I really expected
it to be my last – but now there will be at least
six more starting with this one. Looking for
inspiration for this report I looked back at that
one and was struck by how much is still relevant:

This will be last ‘From the Chair’ and seems like
a good opportunity for reflecting on where ACCU
is going. It is my belief that the age-old imperative
‘grow or die’ applies and that what we need to
seek is growth. What form that growth might take
is up to all of us, but there are some lessons from
the past.

When I first became involved with the ‘C Users
Group (UK)’ (as ACCU was then known) I was
one of a few mavericks that were interested in an
obscure C based dialect called ‘C++’ – and that
interest largely because of the cross-platform
promises made by the ‘CommonView’ class
library.

Well, CommonView probably pre-dates many of
you, but the lesson that I want to draw is that this
was accepted as a valid area of interest – and not

outside the area interest of the C Users Group
(UK). The area of interest grew to such an extent
that C++ is now the lingua-franca of the
organisation.

The areas of interest accepted within ACCU keep
expanding: my current responsibilities at work
have almost no connection with C or C++ (very
occasionally I get involved in resolving problems
with JNI – an interface between our Java and C++
components). They have little to do with any
specific programming language: they are to do
with development processes and system design.
But there doesn’t seem to be any reason to seek
out another organisation to discuss them: ACCU
members are just as interested in change control
strategies, Extreme Programming and testing as
they are in the C programming language.

In the journals and mailing lists there is a very
healthy diversity of subject matter covered:
design, version control, C++, XML, SQL, Java,
Python, interview (and interviewing) techniques,
C and probably more that don’t spring to mind
immediate ly. This ref lects the range of
knowledge that professional software developer
comes into contact with during the course of his
or her career.

I take the fact that the membership of ACCU has
been rising slowly during my term as an
indication that we have been doing something
right. And the strategy has been simple: if there
are members willing to do something that sounds
reasonable then give them the authority to do it.
(Actually, I apply the same strategy in software
development teams too.)

What happens next will not be up to me, it will be
up to you. If there is something that you think the
ACCU should be doing, then do something about
it...

Well, we haven’t grown and we haven’t died.
One thing that has changed is that my current
responsibilities are very much to do with C++
(in addition to development processes, system
design and TDD). But I still see ACCU as a
community interested in a wide spectrum of
development topics. While I’m going back to
C++ for a while that isn’t the only thing that
interests me and the ACCU members I know.

I’ve said it before, but it bears repeating: What
happens next will not be up to me, it will be up
to you. If there is something that you think the
ACCU should be doing, then do something
about it.

Bookcase (continued)

order might cause problems but that is not the
same as genuine concurrency. Over the last few
years we have moved on to a world where even
our mobile phones have multiple cores (I can
still remember the shock of discovering that
C++ on the Symbian OS back in 2004 had to
handle at least dual core processors in mobiles).
Our programs need to be able to make use of the
hardware. There is no point in running a
program that needs good performance on a 16-
core processor if our code has a single thread of
execution.

So many of us know that we need to write
concurrent code. Up until now the problem has
been that doing so has meant using proprietary
libraries and extensions. As of C++11 that has
changed. It is now possible to write portable
multi-threaded code.

Being able to do so is not the same as doing it.
In addition there are various considerations that
guide us to the most effective code for our
purposes.

We need to consider issues of sharing data,
synchronising operations, lock based versus
lock-free and how to debug concurrent code.

Anthony covers all these and more in his book.

I found this book a pleasure to read and surprised
myself with how quickly it helped me to
progress in an area that I had previously avoided
like the plague.

If you already use multiple threads you may
think that you can simply dive straight into
C++11. Well you may be right but my guess is
that, in doing so, you will miss many of the tools
that those who spent 8 long years working on
concurrency for C++11 have provided. The
library largely masks all the hard work by hiding
its use in the internals of various classes but
knowing these classes exist and what they offer
will be a great help both to the newcomer to
programming for concurrency and for the old
hand.

Unless you have been as involved with the
development of concurrency in C++ as the
author has been, you will find this book a great
help in bringing you up to speed on this

important area of C++11. It is written in clear
English and neither patronises nor assumes
knowledge that some readers will not have. This
is a book that you owe it to yourself to read, and
read diligently and thoughtfully. Not to be read
in the bath (well a few bits can be) but to be read
alongside a computer running an up-to-date C++
implementation. In order to write this review I
had to find a copy of MinGW with g++ 4.7 and
discover how to use it from Code::Blocks. That
in itself was an excellent piece of learning and
sent me away with a warm fuzzy feeling of still
being able to learn new things despite being in
sight of my biblical three score years and ten. I
felt even better as I worked through the text and
discovered that I could actually manage it. Very
timely as my publishers are showing interest in
a new edition of my book, You Can Do It!, for
inquisitive lay people (i.e. those who want to
know what programming is about without
intending to make a living from it).

Thank you Anthony for writing this book, I hope
that many others choose to benefit from it as I
have.

	Flesh on Bones
	Development Fuel: Software Testing in the Large
	Metaprogramming Plus: The Flexibility Enhancements
	ACCU Conference 2012
	The Art of Software Development
	Patterns and Anti-patterns – Factorisation
	Desert Island Books
	Code Critique Competition 76
	Standards Report
	Bookcase
	View From the Chair

