WWW.accu.org

r \

Y y
1 "
4

[¥

f

d FIeX|b|I|t Too]
ick Sabalausky /
Our D‘i‘ff*erenc‘eS ake Us Stronger
sl i 3 4 Pete Goodliffe
\

ientific Application
“ Joanna Simoes

')chu‘bxford
Davgl Mansergh

i‘(/x\

Code Crlt?qtle N\

Desert IsIand Bo‘oks
B’ook Rewe‘ws .

-
-

#ltmq a Sc
P

b |
\

,*-1‘)
o 3
i

A

WLs

..‘ -

i‘ ' B

\

{cvu

Volume 24 Issue 2
May 2012

ISSN 1394-3164
Www.accu.org

Steve Love
cvu@accu.org

Jez Higgins
jez@jezuk.co.uk

Lisa Crispin, Pete Goodliffe,
Paul Grenyer, David Mansergh,
Roger Orr, Nick Sabalausky,

Joanna Simoes

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary

Alan Bellingham
secretary @accu.org

ACCU Membership
Mick Brooks

accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Ilesign
Pete Goodliffe

acCu

{cvu}

} Dedicated Follower of Fashion

developing software systems? Not just languages,
really, because I’m sure similar forces apply to
the decision to deploy any new technology, from
platforms to embedded databases.

w hat informs our choice of programming language when

Perhaps the choice is taken from us: ‘We’ll do it in C, as
we don’t have time to develop a compiler from scratch.’
More generally, this gets the vote because it’s too difficult
to get Python deployed to the server farm, or the latest
version of the .Net runtime installed on all the users’ desktops.

Where there is choice to be had, fashion plays an important part
in the decision. Fashionable technologies have many advocates
and practitioners, meaning that hiring good people should be
easy. Well, possible, then. Of course, following such
fashions means that whoever is doing the hiring is in
competition with lots of other people hiring for the same or
similar skills, so this cuts two ways. Being at the cutting
edge here can be a lonely spot.

Fashion is sometimes dressed up into rational, logical
argument: ‘Java is less dangerous than C++’. The trouble with

such arguments is that new ones come along: ‘C# is less simplistic than Java’, or
‘C++ is much faster than either Java or C#’. It’s not always a bad thing to make
technological advances this way, though; I’'m not saying that COBOL is a bad
thing, but I sure am glad I don’t have to do it...

Sometimes a choice is based on just wanting to learn a new skill. “We should
rewrite it in F# so we can take advantage of new shiny Functional /and/ re-use
parts of the existing codebase.” This urge shouldn’t be ignored out of hand, either,
because it can really motivate a team to learn something new together. Re-writing
a large server application from scratch might not be the best way to do it, however.

But if you’re stuck working in a language you hate in your job, try finding one you
really like outside of work. Maybe if you get good enough, it’ll become
fashionable enough to get traction in your job.

The Amateur Programmer is still the technological pioneer.

STEVE LOVE
FEATURES EDITOR

The official magazine of ACGU

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers — and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
WWW.accu.org.

Membership costs are very low as this is a non-profit
organisation.

MAY 2012 | {cvu} | 1

{cvu}

DIALOGUE

18 Desertisland Books
Paul Grenyer introduces
Lisa Crispin.

19 ACCU Oxford
News from the Oxford
region.

20 Code Critigue Competition
Competition 75 and the
answers to 74.

26 Where is ACCU going?
Steve Love invites you to
exert some influence.

26 Bookcase
The latest roundup of
book reviews.

28 ACCU Members Zone
Membership news.

FEATURES

3 Some Thoughts on Writing a Scientific Application
Joana Simoes reflects on the challenges in writing

software for scientists.

6 OurDifferences Make Us Stronger
Pete Goodliffe works with QA to produce great software.

9 Have Your Efficiency, and Flexibility Too
Nick Sabalausky writes no-compromise code by

metaprogramming with D.

SUBMISSION DATES

CWu243: 15 June 2012
CWu244: 15! August 2012

Overload 11015 July 2012
Overload 111: 15! September 2012

WRITEFORG VU

Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!

Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

ADVERTISE WITH US

The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

2 [{cvu} [MAY 2012

COPYRIGHTS AND TRADE MARKS

Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.

By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

sSome Thoughts on Writing
a Scientific Application

Joana Simoes reflects on the challenges in
writing software for scientists.

applications or a compendium of useful techniques, this article is

a reflection about what is involved in writing a scientific
application in a non-ideal (and often realistic) situation, based on my
personal experience.

M ore than an extensive list of tools available for writing scientific

I repeat: It does not pretend to be a manual on ‘how-to’ write scientific
applications, but I hope it may present some of the challenges that
developers may encounter in this context, and hopefully will be useful for

someone. And before I continue: writing scientific applications is a lot of

fun, although often it can become ‘messy’! (I’ll develop the ‘messy’ side
further in the section called ‘Ooops’).

Scientists are in great need of software, and although they don’t always
realise this, they need ‘good’ software. It is fairly easy to imagine why they
need software: it may automate tasks that are boring or simply impossible
to do manually (like revealing patterns in data), it allows cross referencing
between different types of data, it speeds up the most difficult calculations,
and so on. Software (and hardware) has had a big impact in most scientific

fields, and this stimulated the development of a huge community of

programmers within the scientific community. Often programming is not
their main activity and they only adopt software engineering practices that
they consider to be ‘important’.

Often what they consider to be important is to have a piece of software that
runs. Coupled with tight deadlines and a certain degree of illiteracy from
managers (often themselves scientists with little knowledge of software
engineering), this results in presenting a functional piece of software.
Unfortunately this approach leaves aside many of the non functional
characteristics of code such as expressiveness, modularity, etc, making
later tasks such as upgrades or even maintenance more difficult. Similarly,
practices such as versioning, automated documentation and unit tests are
often disregarded, which may also prevent the development of a solid
software product.

This, more than choosing a language or a framework, is what I mean when
I say that scientists ‘need good software’. It is our task as developers to
explain that, and present them with structured and solid software projects.

Like many people in ACCU I am a C++ developer, and I like to use C++
as much as I can. Is C++ adequate for writing scientific applications? [
would say it really depends on the application.

Often scientists want a piece of software up and running as soon as
possible, so I would say C++ is not good for that. On the other hand, often

IE X pans

1!

THE PROGRAMMER'S NIGHTMARE: A SCENTST WHO WANTS
00 MANY THNGS AND CANNOT EXPRESS HMSELF

they also want applications to be memory efficient, and to be able to run
on many platforms: in that case C++ could be quite a good choice. The
initial time trade-off could be easily forgiven if the application is going to
be widely used, adapted and improved, having a long life. On the other
hand, I would say if you want to do something quickly just to use once,
maybe it is not really worth the effort.

As C++ is a language that does not come with a standard framework such
as NET or JAVA Swing, it is generally a good idea to search for libraries
that provide the extra functionality we may need for the application.

In my case I went for Nokia’s QT framework, which is free, open source,
and cross platform [1].

Qt is easily downloaded and installed from the web, and most of the
important functionality is already in the compiled version. If you want
some extra stuff you may compile it yourself, which is only slightly more
complicated; maybe I could write an article about that, if people are
interested!

If you use MS Visual Studio on Windows, Qt has a really neat integration,
with intellisense and a designer launched inside Visual Studio.

Apart from a lot of other functionality, Qt provides classes for three
important components of scientific applications, from my perspective:
User Interface, Databases and XML (the last one is more questionable, but
in my experience, scientists like XML a lot!). Unless you are programming
numerical routines for a nuclear reactor, your application is going to be
used by people (scientists) and the user interface is going to be the “visible
face’ of the software: it is a very important, and often disregarded, part of

Joana is an AGILE software developer for the Food and
Agriculture Organisation (UN), who dreams of
becoming a comic artist one day. Contact her by email
at doublebyte @ gmail.com, or in person in Park Guell
(Barcelona) at lunchtime

MAY 2012 |{cvu}| 3

{cvu}

B M=cifisis1-alpha

Az Wew Tools Help

=l&lx]

INesfH>@mdso & O

Him [Geagraphic Frame] e [Inchoak | | rersmmare pemancat
This i a frama that groups the Landing Sitss, be their geographic locatiors, issing

Descrptiar] emmart]

I | cure from Frevios Frems Chried Frame i []
haame [omscrption 7 [uewel Comments [tn Jressons Jonon [sumacl Veshmcords [=]
B WiReer iFrameRec i -1 \famn_Pe)ees prg

2 B Rt L5 frioem L Mavth 1 iging + -1 stepn ek o
B B esdbr Colecor z missig 4 - o _rewb.ang
= paremo 3 Pareto 13 -1 +fann_rewjvessel ang Falze
- I paphael 3 Raphael 3 -1 shann_rewvessal.ong Falsa
B u Dewastater Collecto 2 missng 3 -1 +japn_ressl.png
= [ponGuiccs Colector z missing z -1 sfaon_rewk.ong
= B kot Port z missing 14] apn_rewdk.ong
A Paupeias Fort 2 mmissing [k} -1 +fapn_rew]ls.ong
&- B vancehou Fuet 2 misging 5] -1 a0 _rews.ong
= B wamingie Fot z miising n -1 siapn_ressb.png
- [Ureria Pt 2 missing a - +fapa_rewlk.ang
= B4 prcebarg Fuet H missig 0 -1 ifapn_pe s ang
B B st L5 from the South 1 missing 5 -1 “fapn_rew)ch-pra
= B cenire nissing 1 nissing 3 -1 dapn_relok o
B- ﬁ En Rock Recyde Rn n M =1 +apn_peswbrashean.pg -
ot Wurcen Fart 2 missing 2 -1 +fpn_rewlled prg =
Epandel | colosenl | @ Legend | Bk |

e C0 @€ B @5 e~ 4]

scientific software. In my opinion, the popularity of Visual Basic among
scientists (and many others) to a great extent is due to how easy it is to
setup a Ul and link it to code. Qt offers a native-looking UI and, in my
opinion, is much easier to implement than Microsoft Foundation Classes
(MFC). See Figure 1, which shows a tree-like widget used to help in
designing a sampling frame.

I could probably mention many other libraries that could be useful to
support the development of a scientific application, but one that I cannot
avoid mentioning is Boost [2]. In fact it provides really useful classes for
numerical calculations, and became so important that some parts of it have
been incorporated in the C++ Standard [3]. As a side note, | would like to
emphasise how the Boost ‘Smart Pointers’ [4] ease the task of memory
management: one of the big ‘monsters’ of C++, which often keeps people
away from the language (probably not the people of ACCU, but many
scientists at least).

Concerning the implementation, I like to keep AGILE [5], especially in
scientific fields where requirements are so dynamic. Often the writing of
the software is itself part of the research process, and since we are dealing
with the unknown, it is basically impossible to define all requirements at
the beginning of the project (if that is ever possible).

If we add to this the problem that scientists are not software engineers, and
they may not express themselves correctly nor appreciate the trouble

N of Stages [3 A

Method | Random Sampling ||

Description This was a random sampling
method

Comments Mo comments.

4 |{cvu}| MAY 2012

AEE D o W

Often the writing of the software is
itself part of the research process

involved in frequently rewriting parts of the code, we may have a difficult
situation here.

C++ is not the best language for prototyping, especially when we do it in
many iterations. Since the prototyping often involves the UI, I would
strongly advise not to touch any code until ideas about the user interface
have settled down (and even so, experience tells me there will be changes).
For this, I find it very useful to use mockup tools such as Balsamiq [6] (see
Figure 2).

This is a user-friendly and very ‘fun’ tool, that is almost 100% functional
even after the trial period expired (except that you cannot save your work).
If you want to go for a free and open source alternative, you can try pencil
[7], which even runs on a browser (see Figure 3).

Producing mockups — as complete as possible — and discussing them
widely before implementation revealed a really useful strategy for me that
saved me many hours of (inglorious) work. Also encouraging the scientists
to change (or build) the mockups themselves seems like an involving and
recommendable practice to make the project more AGILE.

[Sampling SchemaY|Tdentify PsUY Generate SFILngboolts\anghook\lLogshuT\lC_ul;:\lView\

Sampling Schema 1 Iv

m | Choose Sampling Schema |

Sampling Schema 2
Sampling Schema 3

m Create Sampling Schema

Opens new form for generating PSU,
Use a grid with the sampling frame
and days,

and do a restricted random sampling
(within a week)

A one man (or one woman) software team seems quite unrealistic to me.
Unfortunately, this seems to be extremely common in the scientific
community. Often one developer has the role of database manager/
developer, analyst, project manager, tester, designer, usability specialist,
technical writer, and (almost forgot!) developer!

This should not be an excuse to disregard some aspects of the software
project, but unfortunately time is limited so it often is. From my practical
experience the most useful advice I can give is: don’t overlook the ‘project
manager’ role. Split the project into small tasks and try to explain clearly
everything you do (difficulties you face, etc). Since you are likely to be
the only software engineer in the team, you will probably do the job
carefully (I mean, well). Establishing good communication with the
scientists and involving them in the project (granting them responsibility
for the successes and failures) is probably one of the most important
components for building a scientific application; if it is well established it
will save you a lot of time (and frustration) and it may well be the difference
between success or failure.

See you soon with some articles about installing and using the Qt
framework. You can email me to suggest specific parts of Qt you would
like to see covered, or to beg me to stop writing more articles! ®

References

[1] http://qt.nokia.com/

[2] http://www.boost.org/

[3] https://en.wikipedia.org/wiki/Boost_%28C%2B%2B_libraries%29
[4] http://www.boost.org/doc/libs/1_49 0/libs/smart_ptr/smart_ptr.htm
[5] http://en.wikipedia.org/wiki/Agile software development

[6] http://www.balsamiq.com/

[7] http://pencil.evolus.vn/en-US/Home.aspx

Join the
ACC

visit
WWW.acCcu.org
for details

THE TLLUMINATED' DEVELOPER

—

CERTIFICATE IN
QUANTITATIVE
FINANCE

CQF

Expand Your
Mind and Career

Designed by quant expert Dr Paul Wilmott,
the CQF is a practical six month-part time
course that covers every gamut of quantitative
finance, including derivatives, development,
quantitative trading and risk management.

Find out more at cqf.com.

MAY 2012 | {cvu} |

http://qt.nokia.com/
http://www.boost.org/
https://en.wikipedia.org/wiki/Boost_%28C%2B%2B_libraries%29
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/smart_ptr.htm
http://en.wikipedia.org/wiki/Agile_software_development
http://www.balsamiq.com/
http://pencil.evolus.vn/en-US/Home.aspx

Becoming a Better Programmer # 74

Pete Goodliffe works with QA to produce great software.

Whenever you 're in conflict with someone,
there is one factor that can make the difference
between damaging your relationship and
deepening it. That factor is attitude.

~ William James (Philosopher and Psychologist)

n the previous instalment of this column [1] the Beatles told us to
I increase the love in our teams, and we learnt to stop shovelling manure

onthe QA department. Let’s now look at the practical ways we can work
better with the inhabitants of the QA kingdom. We’ll do this by looking
at the major places that developers interact with QA.

We know that the development process isn’t a straight line; it’s not a simple
pipeline. We develop iteratively and release incremental improvements;
either a new feature that needs validation or a fixed bug that should be
validated. It’s a cycle that we go round many times. Over the course of the
construction process we will create numerous builds that will be sent to
QA.

So we need a smooth build and handoff process.

This is a vital; the handoff of our code must be flawless: the code must be
responsibly created and thoughtfully distributed. Anything less is an insult
to our QA colleagues.

We must build with the right attitude: giving
something to QA is not the act of throwing some
dog-eared code, built on any-old machine, over
the fence for them. It’s not a slapdash or slipshod

Also, remember that this is not a battle: we don’t
aim to s/ip arelease past QA, deftly avoiding their
defence. Our work must be high quality, and our
fixes correct. Don’t cover over the symptoms of
the more obvious bugs and hope they’ll not have
time to notice the underlying evils in the
software.

Rather, we must do everything we can to ensure that we provide QA with
something worthy of their time and effort. We must avoid any silly errors,
or frustrating side-tracks. Not to do so shows a lack of respect to them.

Not creating a QA build thoughtfully and carefully shows a
lack of respect to the testers.

This means:

B Prior to creating a release build, the developers should have done as
good a job as possible to prove that it is correct. They should have
tested the work they’ve done beforehand. Naturally, this is best
achieved with a comprehensive suite of regularly run unit tests. This
helps catch any behavioural regressions (reoccurrences of previous
errors). Automated tests can weed out silly mistakes and

PETE GOODLIFFE

Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete @goodliffe.net

6 I{cvu}| MAY 2012

Be very clear exactly
what new functionality
isandisnt
implemented: exactly
what is known to work

and what is not

embarrassing errors that would waste the tester’s time and prevent
them finding more important issues.

With or without unit tests, the developers must have actually tried
the new functionality, and satisfied themselves that it works as well
as is required. This sounds obvious, but all too often changes or fixes
that should ‘just work’ get released, and cause embarrassing
problems. Or a developer sees their code working in a simple case,
considers it adequate for release, and doesn’t even think about the
myriad ways it could fail or be mis-used.

® Of course, running a suite of unit tests is only as effective as the
quality of those tests. Developers take full responsibility for this.
The test set should be thorough and representative. Whenever a fault
is reported from QA, demonstrative unit tests should be added to
ensure those faults don’t reappear after repair.

B When a build is being made, the developer must know exactly iow
a build is expected to work. We don’t produce a build and just say
‘see how this one works’.

Be very clear exactly what new functionality is and isn’t
implemented: exactly what is known to work and what is not.
Without this information you cannot direct what testing is required.
You will waste the testers’ time. You communicate this in release
notes.

B So: it’s important to draw up a set of good,
clear release notes. Bundle them with the
build in an unambiguous way (for example:
in the deployment file, or with a filename
that matches the installer). The build must
be given a (unique) version number
(perhaps with an incrementing build
number for each release). The release notes
should be versioned with this same number.

For each release, the release notes should
clearly state what has changed, and what
areas require greater testing effort.

m Never rush out a build, no matter how compelling it seems. The
pressure to do this is greatest as a deadline looms, but it’s also
tempting to sneak a build out before leaving the office for the
evening. Rushing work like this encourages you to cut corners, not
check everything thoroughly, or pay careful attention to what you’re
doing. It’s just too easy. And it’s not the right way to give a release
to QA. Don’t do it.

Never rush the creation of a build. You will make
mistakes.

If you feel like a school kid desperately trying to rush their
homework and get ‘something’ in on time, in the full knowledge that
the teacher will be annoyed and make you do it again, then
something it wrong! Stop. And think.

B Some products have a more complex testing requirements than
others. Only kick off an expensive test run across platforms/OSes if
you think it’s worthwhile; when an agreed number of features/fixes
have been implemented.

B Automation of manual steps always removes the potential for
human error. So automated your build/release process as much as

{cvu}

possible. If you can create a single script that automatically checks
out the code, builds it, runs all unit tests, creates installers/deploys
on a testing server and uploads the build with its release notes, then
you remove the potential for human error for a number of steps.
Avoiding human error with automation helps to create release that
install properly each time and do not contain any regressions. The
QA guys will love you for that.

The delivery of code into QA is the act of producing something stable and
worthy of potential release, not the act of chucking the latest untested build
at QA. Don’t throw a code grenade over the fence, or pump raw software
sewage at them.

We give the test guys a build. It’s our best effort yet, and we’re proud of
it. They play with it. Then they find faults. Don’t act surprised. You knew
it was going to happen.

Testing will only reveal problems that software developers
added to the system (by omission or commission). If they
find a fault, it was your fault!

On finding a bug, they lodge a fault report: a trackable report of the
problem. This report can be prioritised, managed and, once fixed, checked
for later regression.

It is their responsibility to provide accurate, reliable fault reports, and to
send them through in a structured and orderly way — using a good bug
tracking system, for example. But faults can be maintained in a
spreadsheet, or even by placing stories in a work backlog. (I’ve seen all
these work.) As long as there’s a clear system in place that records and
announces changes to the state of a fault report.

So how do we respond to a fault report?

First, remember that QA aren 't there to prove that you’re an idiot and make
you look bad. The fault report isn’t a personal slight. So don’t take it
personally.

Don’t take fault reports personally. They are not a personal
insult!

Our ‘professional’ response is ‘thanks, I’ll look into it’. Just be glad it was
QA who they found it, and not a customer. You are allowed to feel
disappointed that a bug slipped through your net.

You should be worried if you are swamped by so many fault reports that
you don’t know where to start — this is a sign that something very
fundamental is wrong and needs addressing. If you’re in this kind of
situation, it’s easy to resent each new report that comes in.

We are conscientious coders. We want to make rock-solid software. We
want to craft great lines of code with a coherent design, that contribute
to an awesome product.

That's what we do.

So we employ development practices that ensure our code is as good
as possible. We review, we pair, we inspect. And we test. We write
automated unit tests.

We have tests! And they pass! The software must be good. Mustn't it?
Even with unit tests coming out of our ears, we still can’t guarantee that
our software is perfect. The code might operate as the developers
intended, with green test lights all the way. But that may not reflect what
the software is supposed to do.

The tests may show that all input the developers envisioned are handled
correctly. But that may not be what the user will actually do. Not all of the
use cases (and abuse cases) of the software have been considered up-
front. It is hard to consider all such cases — software is a mightily
complex thing. Thinking about this is exactly what the QA people are
great at.

Because of this, a rigorous testing and QA process are still a vital part
of a software development process, even if we have comprehensive unit
tests in place. Unit tests act as our responsible actions to prove that the
code is good enough before we hand it on to the testers to work on.

Of course, we don’t leap onto every single fault as soon as it is reported.
Unless it is a trivial problem with a super-simple fix, there are almost
certainly more important problems to address first. We must work in
collaboration with all the project stakeholders (managers, product
specialists, customers, and so on) to agree which are the most pressing
issues to spend our time on.

Perhaps the fault report is ambiguous, unclear, or needs more information.
If this is the case work with the reporter to clarify the issues so you can
both understand the problem fully, can reproduce it reliably, and know
when it has been closed.

QA can only uncover bugs from development, even if it’s not a fault that
you were the direct author of. Perhaps it stems from a design decision that
you had no control over. Or perhaps it lurks in a section of code that you
didn’t write. But it is a healthy and professional attitude to take
responsibility for the whole product, not just your little part of the
codebase.

Our differences make us stronger

Effective working relationships stem from the right developer attitudes.
When we’re working with a QA team we must understand and exploit our
differences:

B Testers are very different from developers. Developers often lack
the correct mindset to test effectively. It requires a particular way of

YOUWVE BEEN WORKING IN
QA FOR JUST ONE WEEK
\

YOU'VE FOUND SO MANY
BUGS THAT YOUW'RE MAKING
US ALL LOOK BAD

S0.. YOU'RE FIRED

Oaq

S——

7
0

[RESULT BUG COUNT REDUCED
b | — £

MAY 2012 | {cvu}| 7

{cvu}

looking at software, particular skills and peccadilloes to do well.
We must respect the QA team for these skills — skills that are
essential if we want to produce high-quality software.

B A tester is inclined to think more like a user than a computer; they
can give valuable feedback on perceived product quality, not just
on correctness. Listen to their opinions and value them.

B When a developer works on a feature, their natural instinct is to
focus on the happy path — on how the code works when everything
goes well (when all input is valid, when the system is working fully
with maximum CPU, no memory/disk space issues, and every
system call works perfectly).

It’s easy to overlook the many ways that software can be used
incorrectly, or to overlook whole classes of invalid input. We are
wired to consider our code through these natural cognitive biases.
Testers tend not to be straight jacked by such biases.

B Never succumb to the fallacy that QA are just ‘failed devs’. There is
a common misconception that they are somehow less intelligent, or
less able. This is a damaging point of view and must be avoided.

Cultivate a healthy respect for the QA team. Enjoy working
with them to craft excellent software.

We need to see testing not as the ‘last activity’ in a classic waterfall model,;
development just doesn’t work like that. Once you get 90% of the way
through a waterfall development process into testing, you will likely
discover another 90% of effort is required to complete the project. You
cannot predict how long testing will take, especially when you start it far
too late in the process.

Just as code benefits from a test-first approach, so does the entire
development process. Work with the QA department and get their input

Atesteris inclined to think more
like a user than a computer; they
can give valuabie feedback on
nerceived product quality

surgery.
‘What do you have to contribute?
B What are you doing right now?
What technology are you using?

8 |{cvu}| MAY 2012

You cannot predict how long testing

early on to help make your specifications verifiable, ensure their expertise
feeds into product design, and that they will agree that the software is
maximally testable before you even write a line of code.

QA are not the owners of, nor the gatekeepers of ‘quality’. It
is everyone’s responsibility.

To build quality into our software and to ensure we work well together,
all developers should understand the full QA process and appreciate its
intricate details. That process will not work without healthy relationships.
All we need is love. B

1. How healthy are your release procedures? How can you improve
them? Ask the QA team what would help them most.

2. Who is responsible for the ‘quality’ of your software? Who gets the
‘blame’ when things go wrong? How healthy is this?

3. How good do you think your testing skills are? How methodically
do you test a piece of code you’re working on before you check in/
hand off?

4. How many silly faults have you let slip through your coding net
recently?

5. What could you add to your development regimen in addition to unit
tests to ensure the quality of the software you hand to QA?

Many thanks to Lisa Crispin and Jon Moore for their comments on a draft
of these articles.

References
[1] ‘Getting One Past the Goalpost’. Pete Goodliffe, In: CVu 24.1

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain

|
B What did you just explain to someone?
B What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

{cvu}

Have Your Efficiency, and Flexibility Too

Nick Sabalausky writes no-compromise code by

metaprogramming with D.

fficiency and flexibility are programming’s classic odd couple. Both

are undeniably useful, but they never seem to get along. You try to

improve one, and the other just balks and storms off. Prima donna!
That might be fine for some scenes, but often you can"t get by with only
one: It breaks the whole dynamic!

Just look how the efficiency and flexibility knuckleheads bicker in even
the simplest situations. Listing 1 (from ex1 original.d) is written in
the D programming language [1], but it’s the same sad old story in any
language.

Ok, so I guess the fighting between efficiency and flexibility isn’t so
obvious at a glance. They’re making some ordinary-looking Gizmos and
nothing seems immediately wrong. There are no fists flying, no colourful
primetime-banned language, no headlocks or piledrivers. But you have to
look closer: it’s passive-aggression. And experts say that’s
psychologically damaging, right?

Normally, code like that would be fine, so what’s the problem? Well, we
don’t just have two or three Gizmos collecting dust until a rare special
occasion when we decide to pull one out to use it. Oh, no. Gizmos are the
main component in the real product: the UltraGiz. The UltraGiz is made
of thousands of Gizmos of all different types, and it really gives those

struct Gizmo
{
this (int numPorts, bool isSpinnable)
{
if (numPorts < 1)
throw new Exception
("A portless Gizmo is useless!");
ports.length = numPorts;
_isSpinnable = isSpinnable;
}
private OutputPort[] ports;
@property int numPorts ()
{
return ports.length;
}
void doStuff ()
{
foreach (port; ports)
port.zap() ;
}

private bool _isSpinnable;
@property int isSpinnable()
{
return _isSpinnable;
}
int spinCount;
void spin()
{
// Trying to spin a non-spinnable Gizmo is OK.
// Like insulting a fishtank,
// it merely has no effect.
if (isSpinnable)

spinCount++; // Spinning! Wheeee!

Full source code for this article is available on GitHub at:
http://github.com/Abscissa/efficientAndFlexible

Gizmos a big workout. Plus, each port-zapping is fairly quick. The real
expense comes from how many port-zaps occur.

So even a small improvement to the Gizmo’s size and speed will add up
to a big improvement in the UltraGiz. And since many different types of
Gizmos are needed, we know we need both efficiency and flexibility.

What flexibility is needed? For one, some Gizmos need to spin, and some
don’t. But every Gizmo is paying the price for that flexibility: There’s
always that spinCount variable, even for ones that don’t spin. And they
all have to take the time to check the isSpinnable variable. Heck, each
Gizmo even has to use storage space just to know whether it’s spinnable
or not. They’re not just stamped on the side with ‘spinny’ or ‘no spinny’.

And then there’s the output ports. Every time any Gizmo is called upon to
do its stuff, it has to check how many ports there are, zap the first one,
increment some internal value, check if it’s done, zap the next one, etc.
That’s necessary for a few of the Gizmos, but most Gizmos only have one
or two ports. Why can’t they just zap their one or two ports and be done
with it? Most Gizmos have no need for that extra overhead.

Ultimately, the problem boils down to all that flexibility coming from
runtime variables. Since the flexibility happens at runtime, the compiler
can’t usually optimize away the speed issues. And since all the Gizmos
are the same type, struct Gizmo, the compiler can’t optimize the space
issues either.

Let’s see how the Gizmos currently perform. I’ll use this test program to
simulate an UltraGiz and time it in Listing 2 (taken from
exl original.d).

On my 1.7 Ghz Celeron (Yes, I know that’s old, please don’t flame me?!),
compiling with DMD v2.053 in release mode with optimizations and
inlining on, my result is 21 seconds. My system’s task manager tells me
itused 10.4 MB of RAM. Hmm, even on my old hardware, that could really
be better.

Flexibility is really starting to push his co-star’s buttons. Efficiency is even
getting ready to take a swing at Flexibility. Uh, oh! At this point, many
people just decide to prioritize either efficiency or flexibility. Often, this
comes with reasons like ‘Hardware just keeps getting faster’ or ‘This is
built for speed, those who need flexibility can use a slower alternative’.
I’ve never liked to compromise, and I think we can do better. So let’s see
if we can diffuse this odd couple’s situation before it turns into an all-out
brawl (and they consequently lose their lucrative time-slot due to prime-
time decency standards).

NICK SABALRUSKY

Nick Sabalausky has been programming most of his life
(low-power embedded systems, videogames and web
development). His latest interests are training, computer
language processing, and all aspects of software design.
Nick can be contacted via http://semitwist.com/contact

MAY 2012 |{cvu}| 9

http://github.com/Abscissa/efficientAndFlexible

{cvu}

First attempt: send Efficiency and Flexibility to
Dr. Oop’s couples therapy

Dr. Oop has had much success helping many couples overcome their
differences. He’s often the go-to guy for many programming difficulties,
and for very good reason. After listening to our protagonists’ story, he
prescribes interfaces and subclassing. To avoid any need for multiple

struct OutputPort
{
int numZaps;
void zap()
{
numZaps++;

}

struct UltraGiz
{
Gizmo[] gizmos;
int numTimesUsedSpinny;
int numTimesUsedTwoPort;
private void useGizmo (ref Gizmo gizmo)
{
gizmo.doStuff () ;
gizmo.spin() ;
if (gizmo.isSpinnable)
numTimesUsedSpinny++;
if (gizmo.numPorts == 2)
numTimesUsedTwoPort++;
}
void run()
{
StopWatch stopWatch;
stopWatch.start() ;

// Create gizmos
gizmos.length = 50_000;

foreach (i; 0..10_000)
gizmos[i] = Gizmo (1, false);
foreach(i; 10_000..20_000)
gizmos[i] = Gizmo(l, true);
foreach(i; 20_000..30_000)
gizmos[i] = Gizmo (2, false);
foreach(i; 30_000..40_000)
gizmos[i] = Gizmo (2, true);
foreach(i; 40_000..45 000)
gizmos[i] = Gizmo (5, false);
foreach(i; 45_000..50_000)
gizmos[i] = Gizmo (5, true);

// Use gizmos
foreach(i; 0..10_000)
foreach (ref gizmo; gizmos)
useGizmo (gizmo) ;

writeln (stopWatch.peek.msecs, "ms");
assert (numTimesUsedSpinny

== 25 _000 * 10_000) ;
assert (numTimesUsedTwoPort

== 20_000 * 10_000) ;

void main ()
{
UltraGiz ultra;
ultra.run() ;
// Runtime error: A portless Gizmo is useless!
//auto g = Gizmo (0, true);

10 I{evu} | MAY 2012

interface ISpinner

{
@property bool isSpinnable() ;
void spin() ;

}

final class SpinnerStub :
{
@property bool isSpinnable ()
{
return false;
}
void spin()
{
// Do nothing

ISpinner

final class Spinner :
{
@property bool isSpinnable ()
{
return true;
}
int spinCount;
void spin()
{
spinCount++; // Spinning! Wheeee!
}

ISpinner

abstract class Gizmo
{
this ()
{
spinner = createSpinner() ;

}

@property int numPorts() ;
void doStuff () ;

ISpinner spinner;
ISpinner createSpinner() ;

class OnePortGizmo Gizmo

{

override ISpinner createSpinner ()

{

return new SpinnerStub() ;

}

private OutputPort[l] ports;
override (@property int numPorts ()
{
return 1;
}
override void doStuff ()
{
ports[0].zap() ;
}

class TwoPortGizmo Gizmo

{
override ISpinner createSpinner ()
{

return new SpinnerStub() ;

}

{cvu}

private OutputPort[2] ports;
override @property int numPorts ()
{
return 2;
}
override void doStuff ()
{
ports[0] .zap() ;
ports[l].zap();
}

class MultiPortGizmo Gizmo

{

this (int numPorts)

{
if (numPorts < 1)

throw new Exception("A portless Gizmo

is useless!");

if (numPorts == I

numPorts == 2)

throw new Exception ("Wrong type of

Gizmo!") ;

ports.length = numPorts;

}

override ISpinner createSpinner ()

{

return new SpinnerStub() ;

}
private OutputPort[] ports;
override Q@property int numPorts ()

{

return ports.length;

}

override void doStuff ()

{
foreach (port; ports)
port.zap() ;

final class SpinnyOnePortGizmo

{

override ISpinner createSpinner ()

{

return new Spinner() ;

}

final class SpinnyTwoPortGizmo

{

override ISpinner createSpinner ()

{

return new Spinner() ;

}

final class SpinnyMultiPortGizmo

{

this (int numPorts)

{

super (numPorts) ;

}

override ISpinner createSpinner ()

{

return new Spinner() ;

}

: OnePortGizmo

TwoPortGizmo

: MultiPortGizmo

inheritance or code duplication (both are known to have problems), he’ll
also add in a touch of composition. See Listing 3 (from
ex2 objectOriented.d).

Oh dear God, what have we done?! Blech!

Ok, calm down...Deep breaths now...Stay with
me...Breathe...Breathe...Maybe it’s not as bad as it seems. Maybe it’ll be
worth it. After all, it’s technically flexible. Not pretty, but flexible. Maybe
the efficiency will be good enough to make it a worthwhile compromise.
Let’s see...

The code to test this version is almost the same as before so I won’t show
it here. But you can view itin ex2 objectOriented.d ifyou’d like.

On my system, this takes 40 seconds and 11.3 MB. That’s nearly twice the
time and 10% more memory as before. Hmm, uhh...nope, no good. Well,
that was a bust.

So what went wrong? The problem is, object orientation involves some
overhead. Polymorphism requires each instance of any Gizmo type to store
some extra hidden data, which not only increases memory usage but also
allows fewer Gizmos to fit into the cache. Polymorphism also means an
extra indirection when calling a member function. This extra indirection
can only sometimes be optimized away. Each Gizmo needs to be
individually allocated (although it’s possible to get around that in certain
languages, including D, but it’s still yet another thing to do). The by-
reference nature of objects means the Gizmo arrays only contain pointers.
Not only does that mean greater memory usage, but it can also decrease
data locality (how ‘close together’ related data is in memory) which leads
to more cache misses. Using composition for the spin capability also
decreased data locality, increased indirection, and increased memory
usage. All things considered, we wound up doing the exact opposite of
what we tried to do: Our attempts to decrease time and memory increased
them instead, and also gave us less maintainable code.

In many cases, the overhead of object orientation isn’t really a big problem,
so object orientation can be a very useful tool (although perhaps not so
much in this case). But in highly performance-sensitive sections, the
overhead can definitely add up and cause trouble.

So for all the successes Dr. Oop has had, efficiency and flexibility are just
too strongly opposed. Flexibility is left unhappy with the complexity
required, and poor efficiency nearly had a heart attack! This time, Dr.
Oop’s solution just isn’t quite what the patients has been hoping for. Oops,
indeed.

Programmers familiar with templated classes might be annoyed at this
point that I’ve rejected the object oriented approach without considering
the use of template classes. Those familiar with D are likely screaming at
me, ‘Mixins! Mixins!” And then there’s C++’s preprocessor, too. Well,
frankly, I agree. Such things can certainly improve an object oriented
design. But those are all forms of metaprogramming, which I haven’t
gotten to just yet. Besides, the main point I want to get across is this: Object
orientation isn’t a general substitute for metaprogramming and does have
limitations in how well it can marry efficiency with flexibility.

Respecting the classics: old-school handcrafting

Object orientation may not have worked out well for efficiency, but
efficient code has been around since long before objects became popular.
How did they do it back then? With good old-fashioned handcrafting, of
course. Time for Efficiency and Flexibility to pay a visit to the town elder...

After the elder introduces himself, Efficiency and Flexibility ask him to
have a look at their problem.
‘Eh? You want | should look at your problem?’
‘Yes, we’d like you to help us out.’
‘Help on your problem right? You want | should look at?’
‘Umm...yes...
‘Ok...Hi! I'm the town elder!’

Clearly this guy has a problem repeating himself. But eventually he pulls
out his trusty oak-finished toolchain and gets to work. After what seems

MAY 2012 | {cvu}| 11

{cvu}

struct OnePortGizmo

{
static immutable isSpinnable = false;
static immutable numPorts 1;

private OutputPort[numPorts] ports;
void doStuff ()
{
ports[0] .zap() ;
}
void spin()
{
// Do nothing

struct TwoPortGizmo
{
static immutable isSpinnable = false;
static immutable numPorts 2;
private OutputPort[numPorts] ports;
void doStuff ()
{
ports[0] .zap() ;
ports[l].zap();
}

void spin()
{
// Do nothing

struct MultiPortGizmo

{

this (int numPorts)

{
if (numPorts < 1)

throw new Exception("A portless Gizmo is

useless!") ;

if (numPorts == | | numPorts == 2)
throw new Exception ("Wrong type of
Gizmo!") ;

ports.length = numPorts;

}

static immutable isSpinnable = false;

private OutputPort[] ports;
@property int numPorts ()
{
return ports.length;
}
void doStuff ()
{
foreach (port; ports)
port.zap() ;

void spin()
{
// Do nothing

struct SpinnyOnePortGizmo

{

static immutable isSpinnable true;

static immutable numPorts

1l
[y

12 I{evu} | MAY 2012

private OutputPort[numPorts] ports;
void doStuff ()
{
ports[0].zap() ;
}

int spinCount;
void spin()
{
spinCount++; // Spinning! Wheeee!
}

struct SpinnyTwoPortGizmo

{
static immutable isSpinnable
static immutable numPorts

true;
2;

private OutputPort[numPorts] ports;
void doStuff ()
{
ports[0] .zap() ;
ports[1l].zap() ;
}

int spinCount;
void spin()
{
spinCount++; // Spinning! Wheeee!
}

struct SpinnyMultiPortGizmo
{
this (int numPorts)
{
if (numPorts < 1)
throw new Exception("A portless Gizmo is
useless!") ;

if (numPorts == | | numPorts == 2)
throw new Exception ("Wrong type of
Gizmo!") ;

ports.length = numPorts;

}
static immutable isSpinnable = true;

private OutputPort[] ports;
@property int numPorts ()
{

return ports.length;

}

void doStuff ()
{
foreach (port; ports)
port.zap() ;

int spinCount;
void spin()
{
spinCount++; // Spinning! Wheeee!
}

struct UltraGiz

{

OnePortGizmo[] gizmosA;
SpinnyOnePortGizmo[] gizmosB;
TwoPortGizmo[] gizmosC;
SpinnyTwoPortGizmo[] gizmosD;
MultiPortGizmol[] gizmosE;

SpinnyMultiPortGizmo[] gizmosF;

int numTimesUsedSpinny;
int numTimesUsedTwoPort;

!/
//
//
/7
//

Ok, technically this is a simple form of
metaprogramming, so I'm cheating slightly.
But I just can't bring myself to copy/paste
the exact same function six times even for
the sake of an example.

void useGizmo (T) (ref T gizmo)

{

gizmo.doStuff () ;

gizmo.spin() ;

if (gizmo.isSpinnable)
numTimesUsedSpinny++;

if (gizmo.numPorts == 2)
numTimesUsedTwoPort++;

void run()

{

StopWatch stopWatch;
stopWatch.start() ;

// Create gizmos

gizmosA.length = 10 _000;
gizmosB.length = 10 _000;
gizmosC.length = 10_000;
gizmosD.length = 10 _000;
gizmosE.length = 5 000;
gizmosF.length = 5 000;

foreach(i; 0..gizmosE.length)
gizmosE[i] = MultiPortGizmo (5) ;
foreach(i; 0..gizmosF.length)
gizmosF[i] = SpinnyMultiPortGizmo (5) ;
// Use gizmos

foreach(i; 0..10_000)

{
foreach (ref gizmo; gizmosA)
useGizmo (gizmo) ;
foreach (ref gizmo; gizmosB)
useGizmo (gizmo) ;
foreach (ref gizmo; gizmosC)
useGizmo (gizmo) ;
foreach (ref gizmo; gizmosD)
useGizmo (gizmo) ;
foreach (ref gizmo; gizmosE)
useGizmo (gizmo) ;
foreach (ref gizmo; gizmosF)
useGizmo (gizmo) ;
}
writeln (stopWatch.peek.msecs, "ms");
assert
(numTimesUsedSpinny == 25 000 * 10_000) ;
assert

(numTimesUsedTwoPort == 20_000 * 10_000) ;

{cvu}

like an eternity later, he’s done with Listing 4 (which is from
ex3 _handcrafted.d).

It certainly matches the old man’s speech patterns, but just look at the
careful attention to detail and workmanship! Two handmade single-port
Gizmos, one spinny and one not. Two handmade double-port Gizmos. And
even a couple general-purpose multi-port jobs. Let’s take ’er for
a...ahem...a spin...

On my system, that clocks in at 10.5 seconds and 9.4 MB. Hey, not bad!
That’s definitely an improvement over the original. It’s twice as fast, and
uses about 10% less memory. Those memory savings are even better than
they sound because the measurements include process and runtime
overhead. If we had 10x or 100x as many Gizmos, the memory savings
would be more than 10%.

Note that these Gizmos never spend time checking whether or not they’re
spinny. They just spin or they don’t. For the one and two porters, there’s
no for loop when port-zapping, so no time is spent updating and checking
an iteration variable. Additionally, the variables spinCount and ports
only exist for Gizmos that actually need them — they don’t take up space
in other Gizmos. The isSpinny variable was even eliminated outright.
All these tweaks add up to some real savings.

The old guy’s a bit eccentric, and his methods may be a bit out of date, but
he really knows his stuff. Too bad the approach is too meticulous and error-
prone to be useful for the rest of us mere mortals. Or for those of us working
on modern large-scale high-complexity software.

I should point out that since the Gizmos are now separate types, with no
common base type, they can no longer be stored all in one array. But that’s
not a big problem, we can just keep a separate array for each type. No big
deal. And if we wanted, we could create a struct GizmoGroup that kept
arrays of all the different gizmo types in a convenient little package. The
town elder didn’t actually make such a struct, but in any case, Listing 5
has the updated UltraGiz (from ex3 handcrafted.d).

In reality, specially handcrafting only-slightly-different versions is such a
meticulous, repetitive maintenance nightmare that you’d normally only
make one or two specially-tweaked versions, and leave the rest of the cases
up to a general-purpose version. And even that can be a pain. So as happy
as efficiency may be, flexibility is storming out of the room. We’re getting
close, but haven’t succeeded yet. What we need is a better twist on this
handcrafting approach...

Success at Dr. Metaprogramming's Clinic

Dr. Metaprogramming listens to the story, pauses for a second, and replies,
‘“Turn your runtime options into compile-time options.” Say what? The
metaprogramming doc takes the original problem, moves numPorts and
isSpinnable up to the struct Gizmo line, makes just a few small
changes, resulting in Listing 6 (from ex4 metaprogramming.d).
Dr. Metaprogramming points out, ‘As an added bonus, trying to make a
portless Gizmo is now caught at compile-time instead of runtime’.

Efficiency whines, ‘Look at all those ifs!” The doc explains that those
aren’t real i fs, they’re static i£. They only run at compile-time.

Efficiency responds, ‘Oh, ok. So you’re really making many different
types, right? Isn’t there an overhead for that, like with polymorphism?’ The
doc says it does make many different types, but there’s no runtime
polymorphism (just compile-time) and no overhead. Efficiency smiles.

Seeing Efficiency happy makes Flexibility concerned. Flexibility balks,
‘We occasionally require some logic to determine a Gizmo’s number of
ports and spinnability, so I doubt we can do this.” The doc assures him that
D can run many ordinary functions at compile-time. And in other
languages, code can just be generated as a separate step before compiling,
or a preprocessor can be used. He adds that even if runtime logic really is
needed, there are ways to do that, too. This will all be demonstrated in
detail in part 2. Flexibility smiles.

The code to test this is still very similar to the other versions. But since
this is the first metaprogramming version, I’ll show the new Gizmo-testing
code in Listing 7 (from ex4 metaprogramming.d).

MAY 2012 | {cvu}| 13

{cvu}

struct Gizmo(int _numPorts, bool _isSpinnable) if (gizmo.numPorts == 2)
{ numTimesUsedTwoPort++;
// So other generic code can determine the }
// number of ports and spinnability:
static immutable numPorts = _numPorts; void run()
static immutable isSpinnable = _isSpinnable; {
StopWatch stopWatch;
static if (numPorts < 1) stopWatch.start() ;
static assert(false,
"A portless Gizmo is useless!"); // Create gizmos
gizmos! (1, false).length = 10_000;
private OutputPort[numPorts] ports; gizmos! (1, true).length = 10_000;
void doStuff () gizmos! (2, false).length = 10_000;
{ gizmos! (2, true).length = 10_000;
static if (numPorts == 1) gizmos! (5, false).length = 5 000;
ports[0].zap() ; gizmos! (5, true).length = 5 000;
else static if (numPorts == 2)
{ // Use gizmos
ports[0].zap() ; foreach(i; 0..10_000)
ports[l].zap() ; {
} foreach (ref gizmo;
else gizmos! (1, false)) useGizmo (gizmo) ;
{ foreach (ref gizmo;
foreach (port; ports) gizmos! (1, true)) useGizmo (gizmo) ;
port.zap() ; foreach (ref gizmo;
} gizmos! (2, false)) useGizmo (gizmo) ;
} foreach (ref gizmo;
gizmos! (2, true)) useGizmo (gizmo) ;
static if (isSpinnable) foreach (ref gizmo;
int spinCount; gizmos! (5, false)) useGizmo (gizmo) ;
foreach (ref gizmo;
void spin() gizmos! (5, true)) useGizmo (gizmo) ;
}
{ static if (isSpinnable) writeln (stopWatch.peek.msecs, "ms") ;
spinCount++; // Spinning! Wheeee! assert (numTimesUsedSpinny
} == 25 000 * 10_000) ;
} assert (numTimesUsedTwoPort
== 20_000 * 10_000);
}
}
struct OutputPort
{ void main ()
int numZaps; {
void zap() UltraGiz ultra;
{ ultra.run();
numZaps++; // Compile time error: A portless Gizmo is
} // useless! auto g = Gizmo! (0, true);
} }
struct UltraGiz
{ One of the important things to note here is that the function useGizmo ()
// We could still use gizmosA, gizmosB, etc. is templated to accept any type. This is necessary since there are multiple
// just like before, but templating them will Gizmo types instead of just one. So effectively, there is now a separate
// make things a little easier: useGizmo () function for each Gizmo type (although a smart linker might
template gizmos(int numPorts, bool isSpinnable) combine identical versions of useGizmo () behind-the-scenes). In the
{ next section, I’ll get back to the matter of this function being templated,
Gizmo! (numPorts, isSpinnable)[] gizmos; but for now, just take note of it

}

Also, the arrays gizmosA, gizmosB, ctc. were replaced by a templated
array. This is just like the separate arrays from the handcrafted version, but
it gives us a better way to refer to them. For example, we now say
gizmos! (2, false) instead of gizmosC. This may seem to be of
questionable benefit, especially since we could have just named it

int numTimesUsedSpinny;
int numTimesUsedTwoPort;

void useGizmo (T) (ref T gizmo)

{ gizmos2NoSpinny. But it will come in handy in the later
gizmo.doStuff () ; metaprogramming versions since it lets us use arbitrary compile-time
gizmo.spin () ; values to specify the two parameters. That gives us more

metaprogramming power. But that will come later.
if (gizmo.isSpinnable) This version gives me 10.1 seconds and 9.2 MB. That’s just as sleek and

R T S S SR slim as the handcrafted version and...wait no...huh? It’s slightly better?

Granted, it’s not by much, but what’s going on?

14 |{cvu} | MAY 2012

{cvu}

It may seem strange that generic code could be more efficient than a
specially handcrafted non-generic version. But at least part of what’s
happening is that with metaprogramming, the compiler is essentially doing
your handcrafting automatically as needed.

Remember, in the real handcrafted version, the town elder only
handcrafted one-port and two-port versions. For everything else, he had
to fallback to the original strategy of dealing with a variable number of
ports at runtime. With the metaprogramming version on the other hand,
the compiler automatically ‘handcrafted’ a special five-port version when
we asked for five ports. If we had also asked for three-port and seven-port
versions, it would have automatically ‘handcrafted’ those as well. It’s
possible to create and maintain all those special version manually, but it
would be very impractical.

If you really do want a single type for general multi-port Gizmos just like
the town elder’s handcrafted version, that’s certainly possible with
metaprogramming, too. In fact, we’ll get to that later.

Of course, I don’t mean to imply that handcrafted optimization is obsolete.
There are always optimizations a compiler can’t do. But when your
optimization involves creating alternate versions of the same thing,
metaprogramming makes it quick and easy to apply the same technique
on as many different versions as you want without significantly hindering
maintainability.

I’ve alluded to a number of flexibility enhancements that can be made to
this metaprogramming version. I’ll explain these next time in part 2, as
promised. But there’s one enhancement I’d like to cover before I leave:

Itwalks like a duck and quacks like a duck..kill it!

Duck typing is a topic that divides programmers almost as much as ‘tabs
vs spaces’ or ‘vi vs emacs’. While I admit I’m personally on the anti-duck
side of the pond, I’m not going to preach it here. I only bring it up because
there are other anti-duckers out there, and for them, there’s something
about the metaprogramming example they may not be happy with — but
there is a solution. If you are a duck fan, please pardon this section’s title
and feel free to skip ahead. I promise not to say anything about you behind
your back...

Remember in the last section I pointed out the useGizmo () function was
templated so it could accept all the various Gizmo types? Well, what
happens when we pass it something that isn’t a Gizmo? For most types,
the compiler will just complain that doStuff (), spin, isSpinnable,
and numPorts don’t exist for the type. But what if it’s a type that just
happens to look like a Gizmo? (See Listing 8, from
snippet notAGizmo.d).

struct BoatDock NotAGizmo
{
// Places to park your boat
int numPorts;
void doStuff ()
{
manageBoatTraffic() ;

}

// Due to past troubles with local salt-
// stealing porcupines swimming around and
// clogging up the hydraulics, some boat docks
// feature a special safety mechanism:
// "Salty-Porcupines in the Intake are
// Nullified", affectionately called
// "spin" by the locals.
bool isSpinnable;
void spin()
{
blastTheCrittersAway() ;

| don’t mean to imply
that handcrafted optimization
IS ohsolete

template isIGizmo (T)
{
immutable bool isIGizmo = __ traits(compiles,
// This is just an anonymous function. We won't
// actually run it, though. We're just making
// sure all of this compiles for T.
(OR
T t;
static assert
(T._this implements_interface IGizmo) ;
int n = t.numPorts;
static if(T.isSpinnable)
int s = t.spinCount;
t.doStuff () ;
t.spin() ;
}
)

// Almost identical to the original

// metaprogramming Gizmo in

// 'ex4 metaprogramming.d', but with two

// little things added:

struct Gizmo(int _numPorts, bool _isSpinnable)

{
// So other generic code can determine the
// number of ports and spinnability:
static immutable numPorts = _numPorts;
static immutable isSpinnable = _isSpinnable;

// Announce that this is a Gizmo.

// An enum takes up no space.

static enum _this implements_interface IGizmo_
= true;

// Verify this actually does implement the
// interface
static assert(
isIGizmo! (Gizmo! (numPorts, isSpinnable)),
"This type fails to implement IGizmo"

)

static if (numPorts < 1)
static assert(false,
"A portless Gizmo is useless!");

private OutputPort[numPorts] ports;
void doStuff ()
{
static if (numPorts == 1)
ports[0] .zap() ;
else static if (numPorts == 2)
{
ports[0] .zap() ;
ports[1l] .zap();
}
else
{
foreach (port; ports)
port.zap() ;

MAY 2012 | {cvu}| 15

}

{cvu}

static if (isSpinnable)
int spinCount;
void spin()
{
static if (isSpinnable)
spinCount++; // Spinning! Wheeee!

struct OutputPort

{

}

int numZaps;
void zap ()
{

numZaps++;

}

struct UltraGiz

{

template gizmos(int numPorts, bool isSpinnable)
{
Gizmo! (numPorts, isSpinnable) [] gizmos;
}
int numTimesUsedSpinny;
int numTimesUsedTwoPort;
void useGizmo (T) (ref T gizmo) if(isIGizmo!T)
{
gizmo.doStuff () ;
gizmo.spin() ;
if (gizmo.isSpinnable)
numTimesUsedSpinny++;
if (gizmo.numPorts == 2)
numTimesUsedTwoPort++;
}
void run()
{
StopWatch stopWatch;
stopWatch.start() ;

// Create gizmos
gizmos! (1, false).length = 10_000;
gizmos! (1, true).length = 10_000;

gizmos! (2, false).length = 10_000;
gizmos! (2, true).length = 10_000;
gizmos! (5, false).length = 5 000;
gizmos! (5, true).length = 5 000;

// Use gizmos
foreach(i; 0..10_000)
{
foreach (ref gizmo;
gizmos! (1, false)) useGizmo (gizmo) ;
foreach (ref gizmo;
gizmos! (1, true)) useGizmo (gizmo) ;
foreach (ref gizmo;
gizmos! (2, false)) useGizmo (gizmo) ;
foreach (ref gizmo;
gizmos! (2, true)) useGizmo (gizmo) ;
foreach (ref gizmo;
gizmos! (5, false)) useGizmo (gizmo) ;
foreach (ref gizmo;
gizmos! (5, true)) useGizmo (gizmo) ;
}
writeln (stopWatch.peek.msecs,
assert (numTimesUsedSpinny
== 25 _000 * 10_000) ;
assert (numTimesUsedTwoPort
== 20_000 * 10_000) ;

"ms") ;

16 I{cvu} | MAY 2012

The templated useGizmo () function will happily accept that. Hmm,
accepting a type based on its members rather than its declared name, what
does that remind you of...? Yup, duck typing.

Granted, it’s not exactly the same as the usual duck typing popularized by
dynamic languages. It’s more like a compile-time variation of it. But it still
has the same basic effect: If something looks like a Gizmo, it will be treated
as a Gizmo whether it was intended to be or not. Whether or not that’s
acceptable is a matter for The Great Duck Debate, but for those who dislike
duck typing, it’s possible to kill the duck with metaprogramming and
constraints. Listing 9 (from ex5 meta deadDuckl.d) is almost
identical to the metaprogramming code, but with a few changes and
additions that I’ve highlighted.

Those experienced with the D programming language may notice this is
very similar to the way D’s ranges are created and used, but with the added
twist that a type must actually declare itself to be compatible with a certain
interface.

Now, if you try to pass a boat dock to useGizmo (), it won’t work because
the boat dock hasn’t been declared to implement the IGizmo interface.
Instead, you’ll just get a compiler error saying there’s no useGizmo ()
overload that can accept a boat dock. As an extra bonus, if you change
Gizmo and accidentally break its IGizmo interface (for instance, by
deleting the doStuff () function), you’ll get a better error message than
before. Best of all, these changes have no impact on speed or memory since
it all happens at compile-time.

Under the latest version of DMD at the time of this writing (DMD v2.053),
if you break Gizmo’s IGizmo interface, Figure 1 shows the error message
you’ll get:

So it plainly tells you what type failed to implement what interface. In a
language like D that supports compile-time reflection, it’s also possible to
design the IGizmo interface so the error message will state which part of
the interface wasn’t implemented. But the specifics of that are beyond the
scope of this article (That’s author-speak for ‘I ain’t gonna write it.”)

This is great, but announcing and verifying these dead-duck interfaces can
be better generalized as in Listing 10 (taken from
ex5 meta deadDuck2.d). Changes from Listing 9 are highlighted.

If you ever want to create another type that also counts as an IGizmo, all
you have to do is add the declaration line:

From snippet anotherGizmo.d:

struct AnotherGizmo // A class would work, too!

{
mixin (declareInterface ("IGizmo",
"AnotherGizmo")) ;
// Implement all the required members of
// IGizmo here...

Now isIGizmo will acceptany AnotherGizmo, too. And just like a real
class-based interface, if you forget to implement part of IGizmo, the
compiler will tell you.

There are many further improvements that can be made to
declareInterface (). For instance, although it’s currently using a
string mixin, it could be improved by taking advantage of D’s template
mixin feature. It could also be made to detect the name of your type so you
only have to specify "IGizmo", and not "AnotherGizmo". But this at
least demonstrates the basic principle.

{cvu}

ex5 meta_deadDuckl.d(44):
ex5_meta_deadDuck1.d(92):

ex5 meta_deadDuckl.d(116):

Error: static assert "This type fails to implement IGizmo"
instantiated from here: Gizmo! (numPorts,isSpinnable)

instantiated from here: gizmos! (1, false)

string declarelInterface(string interfaceName,

string thisType)

{

return

// Announce what interface this implements.
// An enum takes up no space.

static enum

_this implements interface "~interfaceName~'

= true;
// Verify this actually does implement the
// interface
static assert
(is ' ~interfaceName~ ! (" ~thisType~"),
"This type fails to implement
‘~interfaceName~ "
)

’

For the sake of simplicity, the examples in this article’s upcoming second
half will forgo the anti-duck typing techniques covered in this section.

Of course, none of this is needed if you’re only using classes, which can
truly inherit from one another. In that case, you can just use real
inheritance-based interfaces. But if you want to avoid the overhead of
classes, you can use these metaprogramming tricks to achieve much of the
same flexibility.

So far, we’ve examined the ‘efficiency vs flexibility’ conflict and
identified limitations of a couple traditional approaches for reconciliation.
We have also seen that metaprogramming offers ways around those
limitations and promises fewer tradeoffs between efficiency and
flexibility.

Next time will be a little more technical as we delve deeper into
metaprogramming to see how it offers more flexibility than one might

} expect.

illi ion! m
J) Adwest Sdeniiesl o bie erilsiaal Stay tuned for the thrilling conclusion
// metaprogramming Gizmo in
// 'ex4 metaprogramming.d', but with Bl}iﬂrenﬂes
// *one* little thing added: [1] http://dlang.org

struct Gizmo(int _numPorts, bool _isSpinnable)

{

// So other generic code can determine the
// number of ports and spinnability:

static immutable numPorts = _numPorts;
static immutable isSpinnable = _isSpinnable;

// Announce and Verify that this is a Gizmo.
mixin (declareInterface ("IGizmo",
"Gizmo! (numPorts, isSpinnable)"));
static if (numPorts < 1)
static assert(false,
"A portless Gizmo is useless!");
private OutputPort[numPorts] ports;
void doStuff()
{

static if (numPorts == 1) di Kill =

ports[0] .zap() ; COME BRI :-;:. = :
else static if (numPorts == 2) ACCU is a worldwide non-profit |
{ organisation run by —— /

ports[0] .zap() ;
ports[1l] .zap() ;

} monthly publications C Vu and
else Overload. You'll also get How to join
{ massive discounts at the ACCU Go to www.accu.org and

foreach (port; ports)
port.zap() ;

}
static if (isSpinnable)
int spinCount;
void spin()
{
static if (isSpinnable)
spinCount++; // Spinning! Wheeee!

JOIN ACCU

You've read the magazine, [== P
Now join the association B e stihied
dedicated to improving your

programmers for programmers.

Join ACCU to receive our bi-

developers' conference, access
to mentored developers
projects, discussion forums,

and the chance to participate
in the organisation.

click on Join ACCU

Membership types

Basic personal membership
Full personal membership
Corporate membership

What are you waiting for? Student membership

professionalism in programming
www.accu.org

)

MAY 2012 | {cvu}| 17

http://dlang.org

{cvu}

Lisa Crispin is marooned on the island.

so when the opportunity to review Lisa Crispin and Janet Gregory’s Agile

Testing: A Practical Guide for Testers and Agile Teams presented itself
| was very pleased. As usual | posted my reivew [1] to my blog, sent it off to
Jez for CVu and then thought no more about it.
A few months later, completely out of the blue, | received an email from Lisa
thanking me for the review and asking if | would be in London the following
November as they were presenting at Skillsmatter. Unfortunately | couldn’t
make it, but | took the opportunity to mention the ACCU conference for
which, another few months later, Lisa submitted and had accepted a
session.
Unfortunately | missed that conference and so | have yet to meet Lisa in
person. However, she expects to be over in the UK in 2013 and I’'m hoping
that’'s something | can put right.

I have been a huge fan of Agile and testing in general for a very long time,

Lisa Crispin

Disclaimer: I'm not actually a programmer, though ey

I started out my software life as one. I do some

coding of test scripts, but I’m a tester. That said... ik i

......
A o

One book I’d bring on the desert island is Everyday
Scripting with Ruby: For Teams, Testers and You by
Brian Marick. I learned Ruby (at least, enough Ruby
to competently write test scripts that drive Ul tests
with Watir) working through this book. It would
provide me many happy hours of learning and practice on the desert island.

Specification by Example: How successful teams
deliver the right software by Gojko Adzic is another
book I’d want along, because I love reading the
stories of how other teams succeeded in delivering
what customers want, and I’d learn from the
examples, and could imagine more examples for
myself. I don’t want to get bored on this island! It
seems a bit recursive to talk about learning about
examples through examples, but I think we all learn
best by examples, and we also succeed with understanding what our
business experts want by asking them for their examples.

SPECIFICATION
BY EXAMPLE_

Since this is a desert island, I guess there is nobody else for me to try to
influence. Nevertheless, I think I’d bring along Fearless Change: Patterns

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@ gmail.com.

18 I{cvu} | MAY 2012

for
Introducing
New Ideas by
Linda Rising and
Mary Lynn Manns. A
decade ago when I was a T x|
Kool-aid-drinking XPer, I joined a company that
talked a lot about XP but really only did chaos.
Fearless Change taught me why ESS
evangelizing about how great XP values, principles AURNMCE
and practices are doesn’t change anyone. I learned GE',I
MARE LN MRS e o

to try different patterns to try to influence people.
More importantly, I understood patterns better, and
patterns help with everything! I’d like to write some |
testing patterns, so if I have this book with me as an
example, that will also keep me entertained on the desert island.

There are so many good books and apparently the
carry-on limit to this island is small, so to get some
variety in inspirational reading, I’d take Beautiful
| Testing: Leading Professionals Reveal How They
Improve Software. What’s better than reading about
the beauty of testing, as written by 27 of my peers?
And each bears reading several times, with new
nuggets of learning each go-round. I contributed a
chapter to this book, so choosing it seems a bit self-
promotional, but I’d choose it even if I weren’t in it.

It’s even harder to choose just one novel to bring along, because reading
is one of my favourite activities, has been all my life, and I have a house
full of books. I’ve actually made some tough decisions and given some to
the local library, because we hope to move to a horse property, and it’s
crazy to lug so many books around in the age of eBooks.

So to just pick ONE — I"d go with Angle of Repose
by Wallace Stegner. It appeals to my love of history, |
and my love of the West (of the U.S.), since I live in
the Rocky Mountains. (OK, right in the foothills of
the Rocky Mountains, not the actual mountains).
This book earned a well-deserved Pulitzer prize, and
nobody knew or loved the Western U.S. as well as
Stegner. He’s one of my heroes. Plus, you get to feel
smart afterward when you know what an ‘angle of |
repose’ is. I can read it over and over on my island

and never get tired of it.

TWO albums — again, there’s an impossible
choice. I love music, too. But I will pick John
Prine’s Souvenirs, because it has many of my
favorite John Prine tunes on it, and I’m limited
here, I can’t take John Prine, Sweet Revenge
and Jesus: The Missing Years with me. Plus, |
do like Prine’s acoustic versions of some of my
very favourites, such as Far From Me, Angle
From Montgomery, Christmas in Prison, and

{cvu}

An evening of lightning talks,

evening of ‘Lightning talks’ on a variety of software and process

topics. Lightning talks last only a few minutes and allow several
speakers to deliver presentations in a single meeting. The chosen format
on this occasion was 10-minute talks, each followed by time for a few
questions. There were no restrictions on the topic, only on the time for
presenting.

Arnaud Desitter gave the first talk on ‘Not-A-Number (NaN) and floating
point exceptions as defined by IEEE754°. The quote that ‘This standard is
arguably the most important in the industry’ (Michael L Overton) helped to
grab everyone’s attention. He went on to explain the difference between
‘quiet’ and ‘signaling’ NaNs and how signaling NaNs can be used to detect
uninitialized floating point variables without impacting performance.

Bibek Bhattacharya followed with a talk about using ‘Native C++ with the
new Microsoft PPL’. This started with a discussion of hardware trends and
the latest parallel gizmos available to Windows software developers. The
benefits of PPL were then powerfully demonstrated using the example of
parallelizing millions of runs of Fibonacci number calculations.

0n 29th February ACCU Oxford held an interesting and enjoyable

Malcolm Noyes then presented ‘Enforcing Code Feature Requirements in
C++, revisited’. After lulling us into false sense of security with pictures
of some famous C++ faces he then bent our minds with talk of templates,
covariance and contravariance. After reading the C++ standard and some
other books, a few iterations of code and some head scratching, Malcolm
had been able to achieve what had been claimed to be impossible.

reviewed by David Mansergh.

Robin Williams followed that with ‘So what’s the fuss about Lua?’ He
suggested that those seeking to learn a new scripting language might do
well to choose Lua given that it can be learnt in a reasonably short time.
Both the benefits and short comings of Lua were covered in what was a
lightning speed lightning talk.

Jesus Bouzada described his experience of ‘Using Visual Control to avoid
broken build problems’. This emphasized the benefits of visually
displaying build results when using a continuous integration process. We
are bombarded with emails and overloaded with web pages so need the
build status to be simply and clearly displayed on a screen for it to get our
attention. He explained how he had been inspired by some Lean principles
to use this solution. This led to a culture change in his team, reducing
broken build times and increasing productivity.

Nigel Lester finished the evening with ‘Retrospective: Timeline game’, an
insight into one way of running effective retrospective meetings as part of
the software development process. This included many important and
helpful practical details that enable a retrospective to run smoothly. The
slides showed how a project timeline can be assembled on the wall with
happy/surprised/sad/angry items. These are then grouped into clusters,
discussed, the findings reviewed and possibly even acted upon!

The evening was well attended and well received by both ACCU members
and others. The variety of talks meant that whatever your specialty there
was much of interest and plenty to learn. The talks were of a high quality
and provided a great opportunity to practice presentation skills. The slides
will be available on the ACCU Oxford website (www.lunch.org.uk/wiki/
accuoxford) if you would like to learn more.

If you read something in C Vu that you particularly enjoyed, you
disagreed with or that has just made you think, why not put pen to
paper (or finger to keyboard) and tell us about it?

Deserts Island BookS (continued)

Blue Umbrella. 1 heard my first John Prine tunes when I worked at the
coolest little bistro called the Grapevine in College Station, Texas while I
was in university. At this bistro, each employee was free to work at the
job he or she preferred: waiting tables, cash register, preparing food,
recommending wine, washing dishes. Leland, a hippie who preferred
running the dishwasher, also provided all the music, and he was a John
Prine fan. When I listen to John Prine, I’'m back at the Grapevine. One
night, Leland asked me if I would run away to Hawaii with him. It turned
out his parents were extremely wealthy, and lived in Hawaii. I was
tempted, but I had a boyfriend already so I turned him down. My boyfriend
turned out to be a loser, and I often wonder what my life might have been
like if I had run off to Hawaii with a hippie. Seriously, that ‘sliding doors’
thing! I do love Hawaii, too!

The other album I choose is Nat King Cole’s The Christmas Song. Though
I’m a humanist, I love Christmas, and this is the album my family played

first thing on Christmas morning when I was
growing up. I’ve continued that tradition
throughout my life. I’'m so happy when I sing
along with Nat!

Gosh, this was really fun! Sorry to ramble on
so about my choices, but I’ve been thinking
about them a lot.

[1] http://paulgrenyer.blogspot.co.uk/2009/05/agile-testing-practical-
guide-for.html

Next issue: Mick Brooks

MAY 2012 | {cvu}| 19

http://paulgrenyer.blogspot.co.uk/2009/05/agile-testing-practical-guide-for.html
http://paulgrenyer.blogspot.co.uk/2009/05/agile-testing-practical-guide-for.html

{cvu}

Code Critigue Gompetition 79

Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc @accu.org.

Lastissue’s code

A classic little problem here: can you explain what might be problematic
about the class in Listing 1, recently found in an actual production code
base...

Critiques

Peter Sommerlad <petersommerlad@hsr.ch>
0. Singletons are at least as had as global variables. DO NOT USE THEM!
I could go on for pages on that, but that is actually not the question.

Even if we would consider the SINGLETON design pattern OK today, the
code given is very problematic.

1. First things first: naming

Naming is important. The first name introduced is the namespace
utility. Thatis already a code smell. If something gets a generic name
it is always a signal of bad structure and too little thought on where to put

/**k
Singleton template definition
=/
#ifndef _SINGLETON H
#define _SINGLETON H

namespace utilities
{
/** Singleton template */
template<class T> class Singleton
{
public:
static T* getInstance()
{ return theInstance; }
static void setInstance (T *instance)
{ theInstance = instance; }

protected:
Singleton() ;
~Singleton() ;

static T* thelInstance;
};

} // namespace utility

#endif // SINGLETON H

Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in ’
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

20 |{cvu} | MAY 2012

things or on what it is. I know the C++ ISO standard is guilty of that as
well :-)

But if you have a project where you have a directory/namespace called
‘utils’, “utilities’, or similar, have a close look. It should be (nearly) empty.
Try to classify its contents accordingly to what it does, even if that needs
inventing more and better names.

The class template is named Singleton presuming to implement the
SINGLETON design pattern, but it doesn’t. SINGLETON’s intent is ‘Ensure
a class only has one instance, and provide a global point of access to it.’
The class template Singleton provides neither!

2. Singleton template design - CRTP?

The SINGLETON design pattern’s properties are that of a class. So the first
intuitive usage of the template (especially since it has protected members)
is

struct aclass:utilities::Singleton<aclass>
{
}i
This doesn’t give you anything useful. It will fail to compile, because there
are no implementations of Singleton’s default ctor and dtor. Well,
we could fix that by providing them (and there is no one except the ODR)
to let us do so:
namespace utilities{
template<class T>
Singleton<T>: :Singleton() {}
template<class T>
Singleton<T>::~Singleton() {}
}
I consider that a failed attempt in usage.
3. Singleton template design - retrofit
Let us try to retrofit Singleton property to a class belass:

struct bclass

{

};

using utilities::Singleton;
typedef Singleton<bclass> theB;

bclass bce=*theB: :getInstance() ;

When we use theB to access our single instance of belass as if it were
a SINGLETON, we end up in interesting linker error message that
utilities::Singleton<bclass>::theInstance is not defined.
This is a major deficiency of the approach, since we need to provide a
definition for the declaration of a static member variable in a class. And
for a template we need to make sure that such a definition is instantiated
exactly once for every template instantiation.

We can ‘fix’ that by providing that definition in namespace scope:
template<> bclass *theB::theInstance=nullptr;

But wait, that will give us another problem in that we do not have an
instance yet.

Well, if we want a global one and do not need to get the lazy initialization
that the SINGLETON pattern provides, we can write

namespace {
bclass ourB;

}

{cvu}

template<>
bclass *theB: :theInstance=&ourB;

but with such a global ourB, what is the need for Singleton<bclass>
anyway?
4. Singleton<T> design generals

In the context of multi-threading, setting and retrieving a global (pointer)
value is dangerous. getInstance () happening concurrently with
setInstance () is introducing a data race, which means the code could
go out and fetch you a hot dog, or worse.

There are several broken attempts to fix that with the SINGLETON Design
Pattern, e.g., POSA 2’s DOUBLE-CHECKED LOCKING idiom. But it’s best
just to not go there.

-> DELETE class template Singleton and fix all compile errors
resulting from that, if you have any?

Iamnotsure if I have hitall problems, but I believe it is irrelevant to discuss
it further.

Since globals have been considered REALLY BAD since the passing of
BASIC and the introduction of languages with scoped variables and
function/subroutine parameters, there is one problem remaining that the
original SINGLETON design pattern addresses: ‘limit the number of
instances’. I’d like to share one of my solutions to that problem that I
created to demonstrate the usefulness of non-type template for my
students:

#ifndef LIMITNUMBEROFINSTANCES H
#define LIMITNUMBEROFINSTANCES_H_

#include <stdexcept>

namespace limitit ({

// meant to be used via CRTP, like class

// mySingleOne:LimitNofInstances<mySingleOne, 1>
V2R AR

template <typename TOBELIMITED,
unsigned int maxNumberOfInstances>
class LimitNofInstances {
static unsigned int counter;
protected:
void checkNofInstances () {
if (counter == maxNumberOfInstances)
throw std::logic_error(
"too many instances");
}
LimitNofInstances () {
checkNofInstances () ;
++counter;
}
~LimitNofInstances () {
--counter;
}
LimitNofInstances (
const LimitNofInstances &other) {
checkNofInstances () ;
++counter;
}
LimitNofInstances &operator=(
LimitNofInstances const &other)=delete;
}i
template <typename TOBELIMITED,
unsigned int maxNumberOfInstances>
unsigned int LimitNofInstances<TOBELIMITED,
maxNumberOfInstances>: :counter (0) ;
} // namespace limitit
#endif /* LIMITNUMBEROFINSTANCES H */

The definition of the static counting member in the header is guaranteeing
its instantiation.

Here are some test cases demonstrating its uses:

struct highlander: private
limitit::LimitNofInstances<highlander, 1>{
highlander () {
std: :cout << "the one"<< std::endl;
}
~highlander () {
std::cout << "head off"<< std::endl;
}

};

int main() {
{
highlander theOne;
try {
highlander theother (theOne) ;
} catch (...){
std::cout << "no other one" << std::endl;
}
}

highlander otherscope;
}

You can get one highlander at a time, but when you try to construct
another one while one persists, you get an exception. That even works with
two or more and it becomes the feature of a class, but you do not have to
provide global access. Note, passing by reference to functions called is still
OK.

Herman Pijl <herman.piji@telenet.he>

The original class template seems to be quite useless. It contains a getter
and a setter. The static member is only a straight translation of a global
variable into something ‘object-oriented’. Let’s see whether we can
transform this into something more suiting the purpose.

The first problematic feature of the Singleton implementation is that the
user has no clue whether Singleton<T>: : theInstance contains
something useful. Therefore it needs to be initialized, e.g. by NULL.

// Singleton.cpp

T* Singleton<T>::theInstance = NULL;
Now we have a static method Singleton<T>:: getInstance () that
returns NULL. This is still useless. The user would have to check the result
each time and then decide to throw an exception or create an instance and
call setInstance ().

/7

if (!Singleton<MyType>::getInstance())

{
throwOrCreateAndSetInstance() ;

}
It would be better if the getInstance method itself could decide to
create and set a new instance of T. We don’t really need the setter in that
case, so I will drop it.

//

public:
static T * getInstance()

{

if (!'theInstance)

{

theInstance = new T();

}

return thelnstance;
}
This works fine in a single threaded application, but in a multi threaded
application, we could use a std: :mutex and std: : lock_guard. This
can then be optimized with the DOUBLE-CHECKED LOCKING pattern.

MAY 2012 | {cvu}| 21

{cvu}

//
public:
static T * getInstance()

{
if (!'theInstance)
{
std: :lock_guard guard(theMutex) ;
if (!thelInstance)
{

theInstance = new T();

}

return theInstance;

}
protected:
static std::mutex theMutex;

Unfortunately, the static member theMutex suffers from the
initialisation-order-problem.

Therefore I would opt to write
//

protected:
static std::mutex & getMutex() {
static std::mutex theMutex;
return theMutex;

}

which guarantees that the mutex is effectively initialized before it is
referenced.

After this step, most authors start moaning about the fact that the
Singleton<T> is not guaranteed to have one instance, so that you have
to declare a default constructor, a copy constructor and an assignment
operator that have no implementation and thus preventing the
Singleton<T> class from having more than one instance.

The problem I have with this is that a SINGLETON should force you to have
one instance of T. I don’t care that there are a million instances of
Singleton<T>. I remember well the case of a new team member who
managed to write

//

MyType myType;

myType .doSomeStuff () ;
whereas MyType was supposed to be used only as
Singleton<MyType>: :theInstance (). But the code was not
preventing him from having multiple instances of MyType.

In object-oriented software development, the class design is led by
decisions based on relationships like is-a or has-a. Therefore I thought it
would be useful to express the relationship that a certain class is-a
SINGLETON.

I would express it as with an inheritance relationship
//

class MyType: public Singleton<MyType>

{

bi
I wanted to check in the Singleton<T> constructor that the the instance
being created was Singleton<T>: : theInstance. This way the user
is prevented from instantiating T on the stack or elsewhere on the heap.

//

template<typename T>
Singleton<T>::Singleton()
{
if (this
{

throw std::runtime_error("This object can"

22 |{cvu} | MAY 2012

!'= getInstance())

" only exist in one location");

}

That was rather naive because the call to Singleton<T>::
getInstance () calls new T, which calls the Singleton constructor,
which calls Singleton<T>: :getInstance () and the lock guard is
not recursive and thus waits forever...

What I really want is to check the memory address. So I decided to separate
the allocation of the memory for T and the construction of T.

/7

template<typename T>
void * Singleton<T>::getInstanceAddress ()
{
static void * theInstanceAddress =
new char[sizeof (T)]:;
return theInstanceAddress;

Now the check in the Singleton<T> constructor becomes

//
if (this !'= getInstanceAddress())
{
throw std::runtime error("This object can"
" only exist in one location");
}

and the code in Singleton<T>: :getInstance
/7

if (!'theInstanceSet)

{
std: :lock_guard<std: :mutex>
guard (getMutex ()) ;
if (!'thelInstanceSet)

{
new (getInstanceAddress()) T();
theInstanceSet = true;

}
I think we are nearly at the end of the story.

What happens at the end of the program? The Singleton doesn’t get
destroyed. To avoid resource leaks, like network connections, it is best to
properly clean up. With static locals, this should be achieved by the code
that is inserted by the compiler. The object T is destroyed in place. This
can be accomplished by creating a static function destroyObject and
by registering this function after the constructor call with the atexit
function.

The whole sixth chapter of Alexandrescu’s Modern C++ Design is
devoted to the implementation of a SingletonHolder class using
several creation, lifetime and threading model policies. It is recommended
literature when introducing or updating a SINGLETON implementation.

Seweryn Habdank-Wojewodzki <habdank@gmail.com>

The question in CC 74 was: ‘... what might be problematic about the class
in Listing 2°.

Short answer: Almost everything :-).

Detailed review:

Let’s start with code review, as code review may help find many problems.
The code consists of one header file, which contains proper header guard
and comment. Comment states that file shall contain Singleton
definition. After header guard there is namespace utilities. However,
closing of the namespace that has comment closing namespace utility,
a bit inconsistent, but that is only a comment.

{cvu}

Then we reach the class code. It is a template with one parameter. The class
has the name Singleton.

And here the true story begins. The class contains static accessors and one
static pointer member. The class has protected ctor and d-ctor. That
is not enough to be a SINGLETON. According to the literature [1], [2] there
are certainly more requirements for SINGLETON. Even so, the
implementation is not correct. We can enumerate the following
requirements:

1. Existence of the instance — the object must exist and have global
access,

2. The instance is unique in the proper scope,

Singleton class owns the object instance (lifetime management)
and guarantees managing proper access (e.g. in multithreaded
environment),

4. There are no resource leaks (general requirement for SW).

Let’s collect some remarks about those requirements and how they will be
tested. Existence will be tested in the way that getInstance () function
always returns valid and usable object.

Uniqueness is tested by checking if getInstance is always giving the
same object. Here equality of the object (the term ‘objects are the same’)
can be defined in some ways. Very strong equality requires that pointer is
always the same, but in fact good SW shall not rely on pointers, so we can
relax that requirement to be able to access objects that have the same or
continued state. Also uniqueness comes with clear question in what scope
the class shall be unique. Is it thread scope, is it process scope, is it machine
scope or SW system scope (when e.g. SW system may work on many
machines). An interesting example of system wide singleton with
continuous state can be ‘transaction ID generator’ in a distributed system.

Ownership is a weak requirement; however, if the singleton class does
not own instance of the object, it may be very easy to break 1 and 2. Also
if we dig into 2 we can see how important is managing of the lifetime for
Singleton class.

The last requirement is general purpose, but we should keep it as most
SINGLETON implementations are falling foul of it, which is causing
problems. In particular, the template does not say anything about resources
managed by T, which could be connections to a database.

There is a little problem that a static member is not defined, but it is easy
to fix.

Let’s imagine a bit about how the code works. The sequence of commands:
getInstance, setInstance, getInstance in simple program
immediately breaks requirement about existence and is different than
setInstance, getInstance, getInstance. The sequence
setInstance, setInstance, getInstance breaks requirement 2,
when setInstance will bring two different pointers, also it will be a lot
of fun if pointer will hold object that creates e.g. a thread that prints
something on the console output. Also we can see by code review, that
object access management requirement is broken with respect to the scope
of the process (with many possible threads). The class does not offer any
locking mechanism, so the user implements it on top of the class.

Let’s follow next problems, if we consider sequence of the commands:
ptr = new T, setInstance(ptr), getInstance, delete ptr,
getInstance we will see that ownership or lifetime will be violated. The
sequence setInstance, setInstance will also cause leaks especially
when resources will be e.g. DB connections that are not destroyed
automatically at the end of process (thread) existence. I would like to avoid
rewriting items in the earlier mentioned literature such as other details
related to re-creation of the singleton, when it gets destroyed, and the issues
where one singleton is used by another singleton at the end of application
life (atexit + SINGLETON long lifetime) as well as problems with
multithreaded access (possible usage of DOUBLE CHECKED LOCKING
pattern or directly use : :boost: :call_once).

Generic SINGLETON implementation is very complex so I will not write up
all the fixes needed by the code, but I think it is worth highlighting a couple
more problems that may happen. Usually I prefer to say: try to avoid

Singletons as much as you can. However, sometimes it is possible to have
singletons, depending on the design of the system (separate single process
that offers some services, or separate single instance of some app in
distributed system).

If we have more Singletons to use in the system, we should consider
writing a single Master-Singleton that will manage the lifetime of the rest
and also tries to mediate communication between them. As it is stated in
C++ FAQ [3], it is quite a big problem to synchronize two statically
initialized variables (singletons as well). So if one singleton uses another
one we can end up in big trouble.

Finally I would recommend not using singletons at all. If they are
absolutely necessary, I would suggest writing clear requirements for them,
and try to design them in the system (not only implement them). Finally
if an implementation is needed I would follow remarks from literature e.g.
mentioned here [2], [3].

References

[11 GoF, Design Patterns — Elements of reusable Object-Oriented
Software

[2] A. Alexandrescu, Modern C++ design — Generic Programming and
Design Patterns Applied

[3] http://www.parashift.com/c++-faqg-lite/ctors.html#faq-10.14

Commentary

The most important problem with the code presented is that the class is
not a singleton. As Peter and Seweryn both point out explicitly, and
Herman implicitly, the singleton design pattern is to ensure only a single
instance of a class is created and to provide access to it. This class does
neither — it is effectively just way of writing a global pointer acessed via
Singleton<T>: :getInstance and setInstance.

Pattern languages are useful when they provide a way of describing
something consistently. Abusing the name of a pattern, even for a similar
usage, is misleading. To quote from Lewis Carroll’s Alice in Wonderland:
‘When | use a word,” Humpty Dumpty said in rather a scornful tone, ‘it
means just what | choose it to mean — neither more nor less.” Unfortunately
this does not aid communication.

The singleton pattern itself does have a number of problems — as shown
above by the various attempts to fix the singleton class by turning it
into an actual implementation of the SINGLETON pattern. This gets more
complicated for multi-threaded programs as it can be hard to ensure
initialisation happens correctly. [As a side note on this, the C++11 standard
guarantees that ‘If control enters the declaration concurrently while the
variable is being initialized, the concurrent execution shall wait for
completion of the initialization.” This means Herman’s static variable
theMutex will be initialized just once even in a multi-threaded program
that is fully C++11 compliant. However, note that MSVC (even the recent
VS11 beta) does not provide this guarantee.]

The second problem with the example code is that, since the class makes
no attempt to resolve the issue of ownership the pointed-to object may be
leaked. In the case I was looking at this class was used in a dynamic link
library plug-in and so one instance of the pointed to object was leaked each
time the plug-in was unloaded.

In the event, I followed Peter’s advice and simply deleted the class and then
resolved the compilation errors — I manged to replace usage of the class
with a couple of class-scope static data members.

One final note on Seweryn’s mention of boost: :call_once: the new
standard contains a standardised version std: :call_once in the
<mutex> header (and this is available in both MSVC 11 and gcc 4.7.)

The Winner of CC 74

All three critiques gave a good explanation of what was wrong with the
code supplied, and recommended not using singleton where possible. [was
interested by Peter’s Limi tNumberOfInstances class as this removes
some of the ‘global variable’ nature of the SINGLETON pattern, although I
was unclear how it would work in a multi-threaded program.

MAY 2012 |{cvu}| 23

http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.14

{cvu}

I found it hard to decide between the three critiques but eventually picked
on Seweryn’s as I felt his description (via various use cases) of what was
wrong with the singleton template as supplied was the best and so I have
awarded him this issue’s prize.

Code Critique 79

(Submissions to scc@accu.org by Jun 1st)

I’'ve got a C component that generates call-backs (in a header
callback.h). l amtrying to use it from C++ so I've wrapped it in a class,
but it doesn’t quite work. I've put together a test harness using a dummy
implementation of the call-back and a counter class. | expected to see
this output:
Counter:
Counter:
Counter:
Counter:

[NV SR)

But what | actually got is something like
Counter: 1

Counter: 2619565
Counter: 2619566
Counter: 2619567

Please help me work out what’s going wrong.
The listings are:

B Listing 2: callback.h

B Listing3:cb.h

B Listing 4: counter.h

B Listing 5: callbackTest.cpp

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from

the ACCU website (http://www.accu.org/journals/).

This particularly helps overseas members who

typically get the magazine much later than members in

the UK and Europe.

#ifdef _ cplusplus
extern "C" {
#endif

// Register a callback
// fn - the function to call back
// arg - the argument to pass back
void registerCB (

void (*£fn) (void* arg),

void *argqg) ;

// Unregister a callback
void unregisterCB (
void (*£fn) (void* arg),
void *arg) ;

#ifdef _ cplusplus

}
#endif

24 |{cvu} | MAY 2012

#ifndef cb h
#define cb h

template <typename T>
class CB
{
public:
CB() : registered(true) ({
::registerCB(&fn, this);

static void fn(void* arg)
{

static_cast<T*> (arg) ->callback() ;
}

~CB() {
if (registered) {
unregisterCB(&fn, this);
}
}

//
private:
bool registered;};

#endif // cb_h_

#ifndef counter h
#define counter h
#include "cb.h"
class Counter CB<Counter>
{
public:
Counter () counter (0) {}
void callback() {
std: :cout << "Counter: "
<< ++counter << std::endl;
}
virtual ~Counter() {}
private:
int counter;

};

#endif // counter h

#include <iostream>

#include "callback.h"
#include "counter.h"

// dummy callback
void (*£fn) (void* arg) ;
void *arg;

void registerCsB (
void (*£fn) (void* arg),
void *arg)
{
::fn = £n;
::arg = arg;

http://www.accu.org/journals/

{cvu}

Steve Love invites you to exert some influence.

hose of you who follow the mailing list on Accu-General will not

have failed to notice the recent threads about what ACCU is all about.

In particular, there was quite a lot of discussion about the contents of
the magazines — although mostly focusing on Overload — and what the
purpose and focus of ACCU is.

Although we certainly have a large core of members whose main attention
is drawn by C++ and C, I think a large proportion of us use different
technologies and languages, whether instead of C and C++, or in addition
to them. It’s probably fair to say that in recent times, C++ has not made
much of a showing in either Overload or C Vu. It is even longer, I think,
since we’ve seen an article on C. For some this seems to be an indication
that interest in it has waned in recent times, for others it is evidence that
ACCU has been somehow ‘taken over’ by people with differing interests.

My feeling is that it is neither — and both. Perhaps I should explain.

I know of many programmers who come from a background of writing
C++ who now do less of it, in the main because they now write code in
other languages: Java, C# and Python are the main ones in my experience.
It doesn’t mean that they are no longer interested in reading about C++
(although that might be true of some), but it does mean they find material
about their ‘other’ languages useful, as well. I also know many
programmers who do still count C++ as their core language, who also find
interest in material not specifically about C++, but for whom it is of less
direct relevance.

There is no big conspiracy among the ACCU committees or magazine
editors to push C++ or C out. If ACCU has been taken over by anyone, it

is the members. The conference has sessions presented largely by people
who’ve submitted a proposal for something they’re interested in. A tiny
minority of the sessions are ‘invited’ by the conference committee or chair.
Similarly, the vast majority of articles in the magazines are those submitted
by members.

This doesn’t mean that we have a problem with no resolution. It presents
us with an opportunity to satisfy most people most of the time. My message
here is really this: if you feel disenfranchised by ACCU, or you don’t find
the material you see of direct relevance to you, do something about it: write
an article on a topic you do find interesting. I guarantee — whatever that
topic is — there will be someone else who also finds it interesting.

We actively encourage articles in C Vu from first-time authors (there have
in fact been several of those over the last few editions), and articles on
pretty much any broadly technical topic. If you want to see more of a
particular topic — whatever it is — then it’s up to you to submit an article
on it.

STEVE LOVE

Steve Love is an independent developer constantly
searching for new ways to be more productive without
endangering his inherent laziness. He is also currently the
Features Editor for C Vu, and in this capacity can be contacted
at cvu@accu.org | =

Code Critique Competition (continued)

void unregisterCB (
void (*£fn) (void* arg),
void *arg)

}

void exercise ()
{

if (fn) fn(arg);
}

// test program
int main()
{

Counter test;

// call it myself
test.callback() ;
// use the callback mechanism
exercise() ;

exercise() ;

exercise () ;

}i

(dummy)

WWW ACCY.DRE

MAY 2012 |{cvu} | 25

{cvu}

The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

APl design for C++

By Martin Reddy, published
by Morgan Kaufmann, ISBN:
978-0-12-385003-4

Reviewed hy Paul Floyd
Highly Recommended

When I first got this book I
flicked through the pages and my first
impression was ‘a lot of effort has gone
into making this’. There’s a decent
cover photo, the book feels solidly
bound and is printed on quality paper
and the text is well balanced (not too many bullet
lists, a reasonable number of diagrams and code
examples). As soon as I started reading it, my
impressions were confirmed. Reddy doesn’tjust
cover the act of designing an API, rather he
covers most of the field of C++ software
development such as design, testing,
performance and documentation, but at each
stage presents the activity with respect to APIs.
Occasionally I felt that he’d wandered a little too
far from the API subject, but I can forgive such
short digressions.

So what does the book cover? It starts with the
basics of what an API consists of. Then it delves
into design and different types of API (like OO
and template). There’s a chapter devoted to C++
aspects of APIs. The end part of the book covers
libraries, versioning and extensibility (through
plugins and scripting).

The text is well thought out and contains many
references (the bibliography runs to four pages,
always a good sign). If you read this book, not
only will you learn a lot about APIs but you’ll
also learn a lot about C++ software
development.

Business Patterns
for Software
Developers

By Allan Kelly, published by
Wiley, ISBN: 978-1119999249

Nat Pryce, one of the
authors of Growing Object
Oriented Software Guided by Tests, is quoted as

26 |{cvu} | MAY 2012

)
1)

Jez Higgins (jez@jezuk.co.uk)

saying that pattern books generally have two
sections. First is the is a highly interesting
preamble, then come the patterns. Allan Kelly
has certainly written a patterns book in the
traditional two parts, the difference is that both
parts are very interesting indeed. The
description of software company lifecycles was
both informative and sensational to read and is
by far my favourite part of the book.

I had genuine trouble putting the book down.
Gone is the often dry pattern descriptions
common among other patterns authors. What
give this book the edge for me is that I'm
learning about something other than software
and I am easily able to relate the patterns to my
own experiences. This is the first time I’ve really
understood what a pattern language is and, like
all good patterns books, it taught me names for,
and gave me a greater understanding of, the
patterns I see around me. It helped me
understand the forces and the solutions in
greater detail.

Exploratory Software
Testing

By James A. Whittaker,
published by Addison
Wesley, ISBN: 978-
0321636416

Reviewed by Guiseppe
Vacanti x
This is a book about testing large software

systems with complex user interfaces. By large
I mean as large as the entire Windows operating
sy~‘em The a rthoris Test Engineering Director
at Google, and was formerly at Microsoft, and

EXPLDHATDF&:(
SOFTWARE
TESTING

he has been developing his ideas about testing
first in academia and then industry.

The central tenet of this book is that more
manual testing, more sophisticated and more
repeatable, is required in order to improve the
quality of software systems, especially large
software systems.

We are all familiar with the fact that testing even
a small function by providing the complete set
of possible inputs it might one day see is not
always possible, because in most cases that set
is at best very very large, and often infinite. Put
a complex GUI in front of a complex system,
and hand this over to a user, and you need a
special mindset to even begin imagining what
kind of key combinations might be presented to
your software.

We need a new approach, says Whittaker.
Software techniques have significantly evolved
over the last couple of decades, but testing
techniques have not. While automatic testing
can help, automatic testing alone cannot help
improve the quality of software. In passing, the
author remarks that he believes too much
reliance on automatic testing is what made
Windows Vista a less successful product than it
might otherwise have been.

The solution is to give testers more autonomy in
their work, give them a broad description of
what parts of the software they are supposed to
explore, but not prescribe exactly what inputs
they are supposed to use and in which order.
This the author calls exploratory testing.

How to go about this? By introducing a
metaphor: the tester is like a tourist visiting a
large city, with a lot of attractions, cultural and
otherwise. Should (s)he take a guided tour of the
must-not-miss venues, or take the tube to a
random station and start walking through the
less known neighbourhoods? These are two of
the many tourist metaphors Whittaker
introduces. The list is long, but the test team is

be added to the list

m Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

blackwells.extra@blackwell.co.uk

The following bookshops actively support ACCU (offering a post free service to UK members
—if you ever have a problem with this, please let me know — I can only act on problems that you
tell me about). We hope that you will give preference to them. If abookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can

m Blackwell’s Bookshop, Oxford (01865 792792)

{cvu}

invited to select the approaches that best fit the
system they are working on.

For instance, the Money Tour. In the Money
Tour the tester identifies the features of a
software package that are key to a user. Many of
these features are those used by the sales people,
who give demos to potential new clients. They
will know what the ‘money’ features are, and
they will also use a number of shortcuts to make
their demos run smoothly. These are the features
the tester targets in this tour. Or the Back Alley
Tour, where the least used features are targeted,
exactly because they are less used and therefore
less tested.

In order to make his story more concrete,
Whittaker asked some of his (ex-)colleagues to
describe some of the tours they took, explaining
why they thought a certain approach was
warranted, and what they discovered that they
might otherwise not have. This is an important
contribution to the book, as otherwise the
metaphor approach would have risked coming
across as too abstract, more like a caricature of
what testers do than a concrete technical
solution.

The appendix (that accounts for almost half of
the book) reproduces large sections of the
author’s blog, with commentary. This is
interesting to understand how some of the ideas
behind exploratory testing came about and
evolved.

All in all an interesting book, and although the
examples all cover large software systems, some
of'the ideas presented could be fruitfully applied
to the testing of smaller systems too.

How We Test =

HOW WE TEST

SQﬂware at
Microsoft

By Alan Page, Ken Johnston
and Bj Rollison, published by
Microsoft Press, ISBN: 978-
0735624252

Reviewed hy Paul Floyd
Recommended.

With such a provocative title, I can’t resist
taking one cheap shot. In chapter 1, all the boxes
around the text boxes are shifted to the right, and
in some cases the text is covered by the ‘bright
idea’ lightbulb. I did wonder if this was
intentional, and that on page two hundred and
something there would be ‘and that was how we
found the shifted text box bug’. But no, it looks
like it was just some ordinary error (human,
Word, or typesetting).

[was expecting more in the way of war stories.
There are some, mostly adding a bit of humour.
The main themes that are covered are the testing
organization within Microsoft (which can be a
bit strong in the positive attitude department at
times), testing techniques and testing of

services. The parts covering testing techniques
are reasonably technical, going into the details
of equivalence partitioning (i.e., don’t run tests
that add nothing new to the testing) and

boundary value analysis. However, it is fairly
theoretical. The authors point out that Microsoft
is a huge organization and that many different
methods and tools are used within the company.
They also mention that there are thousands of in-
house developed tools used for testing, which is
nice if you work for Microsoft, but not much use
to the rest of us.

If there’s one thing from this book that I should
apply to my work, it would be to have something
like the ‘Customer Experience Improvement
Program’. This is the little dialog that pops up
when you run some new software for the first
time and asks if you would be so kind as to allow
anonymous information about how you use the
application to be sent back to Microsoft. This
can then be used to see what features customers
use and to garner comments about usability.

The Art of Readable
Code

By Dustin Boswell and Trevor i
Foucher, published by0'Reilly, |
ISBN: 978-0596802295 '
Reviewed by Rlexander
Demin

There are plenty of books
about how to write code.
So, I was quite skeptical when a friend of mine
forwarded me a fragment of yet another one.
Surprisingly, without long introduction it went
straight to the point and coined the following in
the first chapter:

The Art of
Readable Code

® Code should be easy to understand.

® What makes code ‘better’?

B The fundamental theorem of readability.
[

Code should be written to minimize the
time it would take for someone else to
understand it.

Is smaller always better?

It is better to clean and precise that to be
cute.

The style was precise and concrete. I felt it quite
ambitious to cover ‘the art’ in less than two
hundred pages, and decided to order the book to
find out the approach.

A few hours of reading on weekend turned out
to be worthwhile. Though an experienced
programmer will not find any too startling in the
book, but this is a compact, concise and solid
handout for more juniors programmers. Without
too much theory, always based on real
examples, the authors go through many key
points of writing code: how to name variables,
functions and classes, how to structure the code,
how deal with the efficiency/readability trade
off, how to comment, where to compromise and
where to remain being the perfectionist. Again,
it is all in less then two hundred pages. Plus they
briefly touch on unit testing.

The authors not only tell you what is good and
bad, they always show why through the
examples by making ‘regular’ code better. At
the end they put a real example of a class

counting network traffic and returning a number
of bytes transferred in the last hour and the last
day.

They begin with a naive implementation and
work through two more versions to find that
sensitive balance between efficiency and
readability. I think even experienced developers
may find this example interesting to tackle.

To sum up, this book can fit perfectly onto your
team book shelf and be used as a quick reference
ofhowtos. Buying for yourselfis perhaps of less
benefit, because at home you’d probably prefer
something more fundamental.

By David C. Black, Jack Donovan,
Bill Bunton, Anna Keist, published
by Springer, ISBN: 978-0-387-
69957-8

Reviewed by Paul Floyd
Recommended

SystemC: From
the Ground Up

Tooed Fon

I wouldn’t normally submit reviews of books
that are in the domain of microelectronics, but
this is sufficiently ‘C++’ to warrant it. SystemC
is intended for electronics system design, at a
somewhat higher level than Verilog or VHDL.
Whereas with Verilog or VHDL, you have no
choice but to use tools like a simulator if you
want to do anything with them, you can play
with SystemC with just a C++ compiler.
SystemC is implemented as a C++ library; all
you need to do is to download the source (from
www.accellera.org, registration and login
required), build it and then you can write your
code much as you would with any third party
C++ library. The big advantage compared to
other hardware description languages is that you
can link existing functions and libraries to your
models easily. The classic example would be
something like an MPEG decoder. Basically the
SystemC library gives you three things: an
event-driven system, additional types and a
framework for connecting components together.

On the whole, I was quite impressed with the
level of the C++ presented. Many of the
scientific or engineering C++ books I’ve read
show arudimentary knowledge of C++. Here we
have pure virtual functions and fairly
sophisticated use of templates. There’s even
C++-style variable initialization. The
explanations of the simulation aspects are clear,
like how signal assignment differs from
ordinary assignment to variables in C++. There
are some good tips on how to make simulations
run faster.

Like most Springer books, this one is not cheap
(90UKP at the time of writing). My biggest
complaint is that some of the diagrams are a bit
cheesy with jagged bitmap egdes, and the code
examples use bold font for typenames, and for
some reason sometimes the space is missing
between the typenames and the identifiers.

Disclaimer: my employer does produce tools
that include SystemC capabilities.

MAY 2012 | {cvu}| 27

Membership news and committee reports

View From The Chair

Hubert Matthews
chair@accu.ory

Software development: a game of
people played with source code. P
It is interesting how software is
usually thought of as intellectual property. For
a lot of developers it has a strong emotional
content, particularly if they've had to sweat to
create it. Jerry Weinberg's notion of "egoless"
programming seems far far away when people
are wrestling with difficult problems. After all,
it is those sorts of problems that are part of the
attraction of programming. Some software is
just plumbing that pushes data around; it is
almost formulaic and with little satisfaction to be
had other than from getting something working
and finished. I suspect that ACCU members
much prefer the thorny-problem type of
software and that writing yet another end-of-
month MIS report just doesn't do it for them -
they invest a lot of themselves in what they do.
I was reminded of this difference recently when
working in Turkey. There, as in Japan I'm told,
programming is just a stepping stone to
becoming a manager; programming is
something you learn at college and do as your
first job afterwards but not as a career. The idea
that anyone could have started programming
before going to college and for fun was a totally
strange notion to them, let alone that anyone as
old and wizened as me would choose to continue
programming beyond the age of thirty. Since it
takes ten years at least to become good at
programming these people will probably never

learn to master their craft and subsequently will
never experience the deep aesthetic satisfaction
that skilled programming and design brings.
How cultures affect views is forever fascinating
and a culture that doesn't encourage people to
engage and develop misses out on their
commitment and their ability to achieve greater
things over time.

One of the other aspects of the emotional side of
software development is how we relate not to the
code but to each other in teams. Humans form
teams because we can achieve more together
than we can as individuals. Nowhere is this
more evident than in sport. I was reminded of
this recently after watching the Oxford and
Cambridge Boat Race. I have been involved in
coaching rowing for thirty years and one thing it
makes you acutely aware of is human
motivation. Getting people voluntarily to put
themselves in extreme physical pain on a regular
basis for no tangible reward is a great (and
humbling) learning experience. Duress of this
magnitude focuses the spotlight strongly on
team issues such as trust, loyalty and
commitment, and without these a crew will most
likely tear itself apart, act as a bunch of
individuals and consequently underperform.
However, when present, the bonds of trust and
good fellowship run deep and are often the
things that are remembered fondly in later years.
In such an environment there is room for - and
for peak performance it is necessary to have -
differing opinions. These can be discussed
openly and any differences ironed out and
resolved without breaking these bonds.
Strangely, doing so can actually strengthen the

team spirit by overcoming hurdles together. One
thing that is poisonous, however, is blame.
Rowing, like most amateur sports, is a gift
culture: people's status is based on what they
give. Negativity is a sure way of stopping this
dead in its tracks, as is disloyalty.

Voluntary organisations such as the ACCU are
also gift cultures: we value people by what they
contribute. If we descend into negativity and
blame we defeat the whole purpose of coming
together as an organisation. We break the bonds
of trust and loyalty that make our community
what it is. People will stop contributing and we
will fall back to being individuals with no
common purpose. It is so much easier to
criticise than to do, to destroy rather than to
create. We forget this at our peril.

Advertise in C Vu & Overload

807 of readers make purchasing®
decjsions, or recommend products
for their organisations.

Reasonable rates, Flexible options.
Discounts available to corporate
members.

Contact ads@accu.org for info.

learnto write hetter cote

Release your talents

ACGGU JOIN : i

	CVu24-2.pdf
	Dedicated Follower of Fashion
	Some Thoughts on Writing a Scientific Application
	Our Differences Make Us Stronger
	Have Your Efficiency, and Flexibility Too
	Desert Island Books
	ACCU Oxford
	Code Critique Competition 75
	Where is ACCU going?
	View From The Chair

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

