

MAR 2012 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Too Clever By Half
t is almost certainly the result of watching too
much, often bad, Science Fiction, but I was
recently wondering about the phenomenon of

computers having personalities.

I’ll confess, I’ve been rediscovering Blake’s 7 of late,
in which a computer called Orac appears frequently.
It is a powerful super computer, and often proclaims
itself far too busy with important matters to worry
about the well- being of its human colleagues. It even
occasionally refuses to answer direct questions if it
considers them beneath its capabilities – especially if it
thinks the humans could figure it out for themselves if they
tried harder. Will computers of the future develop such
characteristics?

I sometimes wonder if they already haven’t. I quite
often speak to my computers (Ok, shout is perhaps
more accurate) but don’t really get a response. Not an
actual voice, in any case. The computers of today do,
however, ‘answer back’ in some ways: "Syntax error at line

40: ; expected" isn’t exactly a wise-crack, but I’m sure the
sentiment is similar....

Compilers are prepared to do so much on our behalf. In C++, C#, and I’m sure
others, the compiler will write an entire class for you, if you just type a lambda
expression. So whycan’t it just put the missing semi-colon in? It’s clever enough
to tell you – sarcastically – that it’s missing.

The future is here, I tell you. Keep a close eye on the next generation of
compilers for your favourite language, in case it’s got cleverer than you. Of
course, if it has, it might be clever enough to prevent you from being able to tell.

I
Volume 24 Issue 1
March 2012

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Omar Bashir, Alexander Demin,
Frances Glassborow, Pete
Goodliffe,Derek Jones, Ric
Parkin, Steven Schveighoffer

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAR 2012

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
20 Code Critique Competition

Competition 74 and the
answers to 73.

28 Time For A Change?
Ric Parkin feels some
‘new blood’ is needed to
help keep Overload at the
top.

29 Desert Island Books
Francis Glassborow
introduces Derek Jones.

REGULARS
30 Bookcase

The latest roundup of
book reviews.

32 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 24.2: 1st April 2012
C Vu 24.3: 1st June 2012

Overload 109:1st May 2012
Overload 110:1st July 2012

FEATURES
3 A Book Turned Me Into A Programmer

Alexander Demin shares his relationship with the book that
got him started.

4 Getting One Past The Goalpost
Pete Goodliffe explains why the QA team are your friends.

6 Effect of Risk Attitudes on Recall of Assignment Statements
(Part 2)
Derek Jones concludes his report of the ACCU 2011
Conference Developer Experiments.

10 Using D Slices
Steven Schveighoffer looks at slices in D and shows why
they’re not arrays.

14 Holiday Rules
Omar Bashir provides an implementation of calendars and
holiday rules in Java.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

MAR 2012 | | 3{cvu}

A Book Turned Me Into A Programmer
Alexander Demin shares his relationship

with the book that got him started.

n the career of any programmer, quite often there is something, like a
spark or lightning, which gets you on a hook, kicks off your internal
motor, and you have been drawn into software engineering, exploring

this new universe nonstop. You just cannot stop.

For me it was a book. I know, it is very difficult to believe that one book
can influence an entire career, but I’ll try to convince you that it can.

Back in 1978, a book was published, called Etudes for programmers by
Charles Wetherell. I couldn’t read it that time because I was only one year
old, so I eventually read it in 1990. It was an edition in Russian published
in 1982.

As you probably figured out from the title, the book contains a list of
problems, called etudes, to teach programming in real situations.

I’ll stop bothering you with my memories and simply list topics covered
by the etudes:

 Machine simulation (a game of ‘Life’, a business management game
and a highway traffic simulation)

 Graphs and computer graphics (map
colouring, puzzle construction and creation
of mazes)

 Automatic text formatting and a format
scanner

 Quine, a program printing its own sources

 Financial calculations (a home accounting
system and calculations of investment
yields)

 Turing machine simulator

 Data compression

 Optimal game strategies (Kalah and Mastermind)

 Searching for patterns among primes

 Solitaire statistics analysis

 Symbolic algebra package

 Numbers (errors using floating point and high-precision routines)

 Cryptanalysis (cracking a Vigenere cipher)

 Simulation of a large computer

 A linking loader

 A compiler for an algebraic language

 An interpreter or an interactive symbolic language

If we step back and review this list again, does it look very good as a CS
course? Indeed.

When I read it for the first time, I was able to understand absolutely
nothing. But the book described different aspects of programming so
attractively, that it had inspired a vast interest in me to implement all the
etudes, some time. I was stuck with the book and with programming for
years.

Each etude has an introduction where the author places you in a situation.
For example, you as a team leader have found a piece of paper on your
desk with weird text. You realise that this is encrypted text. Is someone
from your team stealing from you and trying to reveal all the killer features
of your brand new secret compiler, and this is a message? To prove it and

save the project you must crack the cipher.
Off you go, welcome to the Vigenere
cipher cracking problem.

After such intros you just jump on a
problem ready to play the etude.

The e t udes a re de s igne d t o be
implemented from scratch (except maybe
the compiler of an algebraic language).
The author gives you an idea to attack an
etude, recommendations, orchestration (in
fact, a language) and play time. When the
author recommends a programming
language for a particular etude, options
look quite awkward today, for example,
SNOBOL, XPL, BLISS, COBOL or FORTRAN. But surprisingly, all
these modern fast and furious animals like C++, Java, Python, Ruby etc.
don’t really help to solve the problems faster. The problems still stand!

At the end of the book, there are two author
solutions: map colouring and data compression.
They were implemented in FORTRAN and XPL.
These sources are proof of a statement, that a bad
language is not an excuse to write bad code. These
two were clean and easy to understand.

There was an interesting story about the Russian
edition of this book. The etude about cracking a
cipher had an encrypted text. Obviously, it was in

English. Russian editors wanted to publish a purely localized version, so
they had to decrypt the text first (in fact, to solve the problem) for
translation. Unfortunately, they were set up twice. First, an original method
to crack the cipher suggested by the author didn’t really work. It required
some improvements. Second, the encrypted text had a ‘minor’ typo – one
line in the middle of the text was missing! Just an annoying printing
artifact. But eventually, the Russian editors had solved both the issues and
the Russian printing had a few extra chapters of their commentaries and
solutions.

Well, back to the original printing in English. Throughout the book the
author repeats his main guideline – only by working on real problems can
you develop as a programmer. Well, to be honest, it is obvious, but creating
or finding such problems is a challenge. This book is a fantastic source of
real and interesting problems covering a wide field of computer science,
and is peppered with fascinating and inspiring introductions.

Over all these years I’ve been still trying to solve some etudes from the
book, with varying degrees of success, and I’m still fascinated.

A few years ago, I bought an original printing of the book. It was a bit pricy
because the book had only one printing back in 1978 and I obtained my
copy from Wingate University library, complete with fascinating librarian
stamps and markers. I was thrilled.

I hope now you’ve got yet another book in your check list. 

I

ALEXANDER DEMIN
Alexander is a software engineer holding a Ph.D. in Computer Science.
He is constantly exploring new technologies and is always ready to drill
down into the code with a disassembler to prove that the bug is there.
He can be contacted at alexander@demin.ws

only by working on real
problems can you

develop as a
programmer

Becoming a Better Programmer # 73
Getting One Past The Goalpost
Pete Goodliffe explains why the QA team are your friends.

Fights would not last if only one side was wrong

~ François de la Rochefoucauld

he early 20th century philosophers and purveyors of jaunty tuneful
hair, The Beatles, told us all you need is love. They emphasised the
point: love is all you need. Love; that’s it. Literally. Nothing else.

It’s incredible how long a career they had given that they didn’t need to
eat or drink [1].

In our working relationships with other inhabitants of the software factory,
we would definitely benefit from more of that sentiment. A little more love
might lead to a lot better code! Programming in the Real World is a inter-
personal endeavour, and so is inevitably bound up in relationship issues,
politics, and friction from our development processes.

We work closely with many people. Sometimes in stressful scenarios.

It is not healthy for our working relationships, nor for the consequent
quality of our software, if our teams are not working smoothly together.
But many teams suffer these kinds of problem.

As a tribe of developers, one of our rockier relationships is with the QA
enclave; largely because we interact with them very closely, often at the
most stressful points in the development process. In the rush to ship
software before a deadline, we try to kick the software soccer ball past the
testing goal-keepers.

So let’s look at that relationship now. We’ll see why it’s fraught, and why
it must not be.

Software development: shovelling manure
In unenlightened workplaces the development process is modelled as a
huge pipe: conveying raw materials pumped in the top, through various
processes, until perfectly formed software gushes (well, perhaps dribbles)
out the end:

 Someone (perhaps a business analyst or product manager) pours
some requirements into the mouth of the pipe.

 They flow through architects and designers, where they turn into
specifications and pretty diagrams (or good intentions, and smoke
and mirrors).

 This flows through the programmers (where the real work gets
done, naturally), and turns into executable code.

 Then it flows into QA. Where it hits a blockage as the ‘perfectly
formed’ software magically turns into a non-functioning disaster.
These people break the code!

 Eventually the developers push hard enough down the pipe to break
this blockage, and the software finally flows out of the far end of the
pipe.

In the fouler development environments, this pipe resembles more a sewer.
QA feel like the developers are pumping raw sewage down to them, rather
than handing them a thoughtfully gift-wrapped present. They feel they are
being dumped on, rather than worked with.

Is software development really this linear? Do our processes really work
like this simple pipeline (regardless of how pure the contents)?

No. They don’t.

The pipe is an interesting first approximation (after all, you cant test code
that hasn’t been written yet), but far too simplistic a model for real
development. The linear pipeline view is a logical corollary of our
industry’s long fascination with the flawed waterfall development
methodology.

It is wrong to view software development as a linear process.

However, this view of the development process does explain why the
development team’s interaction with the QA team isn’t as smooth as it
should be. Our processes and models of interaction are too often shaped
by the flawed sewage-based development metaphor. We should be in
constant communication, rather that just throwing them software towards
the end of the development effort.

T

To some it’s obvious what they do. To others it’s a mystery. The ‘QA’
department (that is, Quality Assurance) exist to ensure that your project
ships a software product of sufficient quality. They are a necessary and
vital part of the construction process.

What does this entail? The most obvious and practical answer is: they
have to test the living daylights out of whatever the developers create in
order to ensure:
 that it matches the specification and requirements – that every

feature that should be implemented has been implemented,
 that the software works correctly on all platforms – that is, it works

on all OSes, on all versions of those OSes, on all hardware
platforms, and on all supported configurations (e.g. meeting
minimum memory requirements, minimum processor speeds,
network bandwidth, etc), and

 that no faults have been introduced in the latest build – the new
features don’t break any other behaviour, and no regressions (the
reintroduction of previous bad behaviour) have been introduced.

Their name is ‘QA’, not just ‘the testing department’, and for a reason.
Their role is not just pushing buttons like robots; it’s baking quality into
the product.

To do this QA must be deeply involved throughout, not just a final
adjunct to the development process.
 They have a hand in the specification of the software, to understand

– and shape – what will be built.
 They contribute to design and construction, to ensure that what’s

built will be testable.
 They are involved heavily in the testing phase, naturally.
 And also in the final physical release: they ensure that what was

tested is what is actually released and deployed.

What is QA good for?

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net
4 | | MAR 2012{cvu}

A false dichotomy
Our inter-team interactions are hindered because they are just that:
interactions between separate teams. QA people are considered a different
tribe, distinct from the ‘important’ developers. This bogus, partitioned
vision of the development organisation inevitably leads to problems.

When QA and development are seen as separate steps, as separate
activities, and therefore as very separate teams, an artificial rivalry and
disconnect can too easily grow. This is reinforced physically by our
building artificial silos between testers and developers. For example:

 The two teams have different managers, and different reporting lines
of responsibility.

 The teams are not co-located, and have very different desk locations
(I’ve seem QA in separate desk clusters, on different floors, in
different buildings, and even – in an extremely silly case – on
another continent).

 There are different team structures, recruiting policies, and expected
turnover of staff. Developers are valued resources, whereas testers
are seen as replaceable cheap mercenaries.

 And most pernicious: the teams have very different incentives to
complete task. For example: the developers are working with the
promise of bonus pay if they complete a job quickly, but the testers
are not. In this case, the developers rush to write the code (probably
badly, since they’re hurrying). They then get very cross when the
QA guys won’t sanction it for a timely release.

We reinforce this chasm with stereotypes: developers create, testers break.

There is an element of truth there. There are different activities and
different skills required in both camps. But they are not logically separate,
silo-ed activities. Testers don’t find software faults to just break things and
cause merry hell for developers. They do it to improve the final product.

They are there to bake in quality. That’s the Q in QA. And they can only
do this effectively in tandem with developers.

Beware of fostering an artificial separation between development
and testing efforts.

By separating these activities we breed rivalry and discord. Often
development processes pit QA as the bad guy against the developer hero.
Testers are pictured standing in the doorway, blocking a plucky software
release getting out. It’s as if they are unreasonably finding faults in our
software. They are nit-picking over minutiae.

It’s almost as if they’re running into the forests, catching wild bugs, and
then injecting them into our otherwise perfect code.

Does that sound silly?

Of course it does when you read it here, but it’s easy to start thinking that
way:The code is fine; those guys just don’t know how to use it. Or: They’ve
been working far too long to find such a basic bug; they really don’t know
what they’re doing.

Software development is not a battle. (Well, it shouldn’t be.) We’re all on
the same side.

Fix the team to fix the code
Conway’s famous law describes how team structure dictates software
structure [2]. It is popularly paraphrased as ‘if you have fours teams writing
a compiler, it'll be a four-pass compiler’. Experience shows this to be pretty
accurate. In the same way that team structure affects the code, so does the
health of the interactions within the software.

Unhealthy team interactions result in unhealthy code.

We can improve the quality of our software, and the likelihood of
producing a great release, by addressing these health issues: by improving
the relationship between developers and QA. Working together rather than
waging war. Love, remember, is all you need.

This comes down to the way we interact and work with QA. We should
not treat them as puppets whose strings we pull, or to whom we throw and
ropey software to test. Instead, we treat them as co-workers. Developers
must have good rapport with QA: a friendship and camaraderie.

Next time
In the next instalment, we’ll look at the practical ways we can work better
with these inhabitants of the QA kingdom. We’ll look at the major ways
that developers interact with QA, and how we can improve. 

Questions
1. How linearly do you view your software development pipeline?

Does each stage flow down in a tidy waterfall, or do you iterate
through staged software revisions?

2. How separate is the testing/QA team from you as a developer? Are
they closely integrated with the development effort, or held off at
arms length? Is this appropriate?

3. How close do you think your working relationship with your QA
colleagues is? Should it be better? If so, what steps can you take to
improve it?

4. What is the biggest impediment to software quality in your
development organisation? What is required to fix this?

Notes
[1] Well, Shakespeare’s Orsino did claim that music was the food of

love, so perhaps this is possible.
[2] Conway, Melvin E. (April 1986), ‘How do Committees Invest?’

Datamation 14(5):28–31
MAR 2012 | | 5{cvu}

Effect of Risk Attitudes on Recall of
Assignment Statements (Part 2)

Derek Jones concludes his report of the ACCU 2011
Conference Developer Experiments.

his is the second of a two part article describing an experiment carried
out during the 2011 ACCU conference. The first part was published
in the previous issue of C Vu.[1] This second part discusses the

remember/recall assignment statement component of the experiment; see
part 1 for a discussion of the experimental setup. Coding guidelines
sometimes recommend that words rather than non-words be used in
identifiers and sometimes recommend that prefixes be added to identifiers
to denote some property (e.g., E_ to denote a member of an enumerated
type). The identifiers used in the assignment problem had letter sequences
designed to investigate subject performance differences caused by these
two factors.

The format of the task subjects’ were asked to perform in this part of the
experiment is identical to the memory for assignment statements portion
of the experiment performed at the 2006 ACCU conference,[2] with the
one difference that four assignment statements rather than three were used
as the information to be remembered. See the write-up of that experiment
for more details that are omitted here.

One of the results from the 2006 experiment (and earlier experiments
measuring memory performance) was that subjects did not make enough
mistakes to find any statistically significant correlations between identifier
attributes and recall performance. It was hoped that increasing the number
of assignment statements from three to four would increase the load on
short term memory and result in more mistakes being made.

Characteristics of human memory
The human short term memory subsystems are a gateway through which
all conscious input data must pass. They have a very limited capacity and
because new information is constantly streaming through them the
accuracy of a particular piece of information rarely is rarely maintained
for very long. Information in short term memory is either quickly lost or
stored in another, longer term, memory subsystem.

The following are some of the factors that studies have been found to effect
subject recall performance of recently seen lists of information. These
factors are expected to have some impact on subject performance in this
experiment.

 People pay particular attention to the initial part of a word[3, 4] (this
enables them to start looking up a word in the mental lexicon while
its remaining sounds are being heard).

 A decrease in word list recall performance for similar sounding
words.[5, 6] It is believed that the similarity causes confusion
between the various word sound sequences and a subsequent failure
to correctly retrieve the original information.

 The extent to which the information to be remembered is already
stored in longer term memory subsystems (i.e., known letter
sequences such as words).

 The time delay between seeing the information and having to recall
it (because the remembered information degrades over time),

 A capacity limit on the total amount of information that can be
remembered and shortly afterwards recalled or recognized,

The above findings suggest that subject performance could exhibit one or
more of the following patterns (some of which drive performance in
different directions):

 performance will be better on problems where the identifiers have
different initial letters, compared to problems where the initial
identifier letters are the same.

This could occur both because people have been found to pay more
attention to the start of a word and if subjects attempt to optimise
performance by remembering just the first letter there is often a
STM capacity advantage; while both the spoken form of single
letters are represented by a single syllable (except w which contains
two) and each of the letter sequences used was pronounceable as a
single syllable the sound duration of the word syllable is longer.

 performance will be worse on problems where the identifiers have
similar spoken forms, compared to problems where the identifier
have dissimilar spoken forms,

 performance will be better on problems where the identifiers are
known words, compared to problems where the identifiers are non-
words.

Source code identifiers contain a variety of different kinds of character
sequences. Some are recognizable words or phrases, some abbreviated
forms of words or phrases, while others have no obvious association with
any language known tot he reader (e.g., they may be acronyms that are
unknown to the reader). Reading involves converting these character
sequences to sounds and it is to be expected that subjects’ memories of an
identifier will be sound based, rather than vision based.

Part of the problem subjects are asked to answer involved indicating the
identifier that did not appear in a previously seen list of assignment
statements. This is a recognition problem, while remembering the value
assigned in a recall problem. Studies have found that recognition and recall
memory have different characteristics.[7]

The assignment problems
The problems and associated page layout were automatically generated
using a C program and various awk scripts to generate troff, which in turn
generated postscript. The identifier and constant used in each assignment
statement was randomly chosen from the appropriate set and the order of
the assignment statements (for each problem) was also randomised. The
source code of the C program and scripts is available from the experiments
web page.[8]

Due to a fault in the generation script the first 10 problems for each subject
all used sets of identifiers where the last two letters of each set of identifiers
were the same. The intent was that the randomisation algorithm be applied
to the choice of identifiers used for all problems.

Selecting identifiers and integer constants

A sufficient number of letter sequences were created so that most subjects
would not encounter the same sequence more than once. In all 50 different
words and 50 different non-words were used (see the following list). Given

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try to work out what they intended to write. Derek
can be contacted at derek@knosof.co.uk
6 | | MAR 2012{cvu}

this list the same identifier sequence will repeat after every set of 20
problems seen by a subject. The identifier letter sequences were designed
to investigate differences in subject performance caused by two factors:

 all identifiers in the assignment list being words or all
pronounceable English non-words (no checks were made for
English non-words that were words in other languages and possible
known to subjects),

 all identifiers in the assignment list starting with or not starting with
the same letter (with all corresponding subsequent letters being the
same and so they rhymed).

For simplicity identifiers consisted of a sequence of three letters having
the pattern CVC. The following lists the sets of five identifiers used in the
assignment problem. Assignment problems were created in groups of 20.
Each group of 20 used all of the identifiers appearing in one row. The
identifiers used in each assignment problem were selected by randomly
choosing a row previously unused for a given subject. Four of the
identifiers in the row were randomly selected to be used in the list of the
four assignment statements to be remembered. The fifth identifier was
used as the not seen identifier.

 cat mat hat pat bat
 hen pen men ben yen
 hop pop top mop cop
 din pin sin kin tin
 cub rub tub hub pub
 dat lat wat gat tat
 gen ren sen ven nen
 dop gop vop rop pop
 nin rin zin cin lin
 fub lub wub mub bub
 dig dog dad den dot
 lot lip led lap lid
 pin pat pod peg pen
 sat sir sum sod sad
 wag wit won web wig
 fot fis fup fep fik
 kam kig kus kos kuk
 ras rit rus roz ral
 tid tol tep tul teb
 vib vok vup vek vot

The word pop accidently appeared in both a word and non-word sequence.
The answers to problems where pop appeared in a non-word list were not
included in the analysis described below.

The non-words have a variety of characteristics, including: the non-word
cin sounding like the word sin, fot could be remembered as foot + CVC
pattern, roz rozzer slang for policeman (at least in British English) or
abbreviation for the name Rosalyn.

Selecting integer constants

The experimental factor under investigation involves attributes of
identifiers and the impact of other kinds of information (mostly involving
integer constants) on subject performance needs to be minimized. A good
approximation to short term memory requirements is the number of
syllables contained in the spoken form of the information. Choosing single
digit integer constants containing a single syllable minimises their impact
on short term memory load.

The integer constants chosen were 4, 5, 6, 8, and 9 (the digit 7 was not used
because its English spoken form has two syllables). To within an order of
magnitude they all have the same frequency of occurrence in source
code.[9]

Threats to validity
Experience shows that software developers are continually on the look out
for ways to reduce the effort needed to solve the problems they are faced
with. Because each of the experimental problems seen by subjects has the
same format it is possible that some subjects will detect what they believe

to be a pattern in the problems which they then attempt to use to improve
their performance.

While the general format of the problem used commonly occurs during
program comprehension, the mode of working (i.e., paper and pencil) is
rarely used these days; source code is invariably read within an editor and
viewing is controlled via a keyboard or mouse. Referring back to
previously seen information (e.g., assignment statements) requires
pressing keys (or using a mouse) and having located the sought
information additional hand movements (i.e., key pressing or mouse
movements) are needed to return to the original source location. In this
study subjects were only required to tick a box to indicate that they would
refer back to locate the information. The cognitive effort needed to tick a
box is probably a lot less than would be needed to actually refer back.
Studies have found[10] that subjects make cost/benefit decisions when
deciding whether to use the existing contents of memory (which may be
unreliable) or to invest effort in relocating information in the physical
world. It is possible that in some cases subjects ticked the would refer back
option when in a real life situation they would have used the contents of
their memory rather than expending the effort to actually refer back.

Each identifier appeared once per set of 100 assignment statements. Based
on expected subject performance, it was anticipated that most identifiers
would be seen once, with only a few identifiers being seem twice by the
faster subjects. Thus any learning of individual problem identifier sets by
the faster subjects was not expected to have a significant impact on the
results.

While subjects were told they are not in a race and that they should work
at the rate at which they would normally process code, it is possible that
some subjects ignored this request. A consequence of this is that the
distribution in the number of problems answered, and perhaps the accuracy
of the results, may be different than would occur if all subjects followed
the instructions given to them.

If subjects randomly guess answers to questions that they cannot recall
answers to, then (given that only five possible numeric values were used
and no value occurred more than once in the same problem):

 if a subject knew no answers and randomly guessed the four
answers, then an average of 0.88 of a question would be guessed
correctly (total 0.88 correct per problem),

 if a subject knew one answer and randomly guessed the other three
answers, then an average of 0.875 of a question would be guessed
correctly (plus one known answered correctly; total 1.875 correct
per problem),

 if a subject knew two answers and randomly guessed the other two
answers, then an average of 0.67 of a question would be guessed
correctly (plus two known answered correctly; total 2.67 correct per
problem),

 if a subject knew three answers and randomly guessed the other one
answers, then an average of 0.5 of a question would be guessed
correctly (plus three known answered correctly; total 3.5 correct per
problem).

Ecological validity

For the results of this experiment to be applicable to professional developer
performance it is important that subjects work through problems at a rate
similar to that which they would process source code in a work
environment. Subjects were told that they are not in a race and that they
should work at the rate at which they would normally process code.
Experience from previous experiments has shown that the competitive
instinct in some developers causes them to ignore the work rate instruction
and attempt to answer all of the problems in the time available. To deter
such behaviour during this experiment the problem pack contained
significantly more problems (28 in total) than subjects were likely to be
able to answer in the available time (one subject answered all problems
and two subjects all but one).

The structure of the problem follows a pattern that is often encountered
when trying to comprehend source code: see information (and try to
MAR 2012 | | 7{cvu}

remember some of it), perform some other task and then perform a task
that requires making use of the previously seen information.

Considering the experimental context as a whole, the constant repetition
of exactly the same kind of activity rarely occurs in program development.
The constant repetition provides an opportunity for learning to occur, e.g.,
subjects have the opportunity to tune their performance for a particular
kind of problem. The issue of learning and problem solving strategies used
by subjects is discussed below.

Results
It was estimated that each subject (20 expected, on the day 30) would be
able to answer 20 problem sets (on the day 20.0, sd= 7.7) in 20-30 minutes
(on the day 20 minutes). Based on these estimates the experiment would
produce 2000 (on the day 2980) individual answers. Table 1 gives a
summary of the kinds of the results.

The average amount of time taken to answer a complete problem was 60
seconds. The format of the experiment means that no information is
available on the amount of time invested in trying to remember
information, answering the questionnaire sub-problem, and then thinking
about the answer to the recall sub-problem (i.e., the effort break down for
individual components of the problem). While STM recall performance
drops very quickly after the information is no longer visible (studies have
found below 10% correct within around 8 seconds in many situations[5]).
Even the fastest subject took over 25 seconds per complete problem and
so recency effects are likely to be minimal.

Subject strategies

Feedback from subjects who took part in the previous experiments
highlighted the use of a variety of strategies to remember information for
each assignment problem. The analysis of the threats to validity in some
of those experiments has discussed the question of whether subjects traded
off effort on the filler task in order to perform better on the assignment
problem, or carried out some other conscious combination of effort
allocation between the subproblems. To learn about strategies used during
this experiment, after ‘time’ was called on problem answering, subjects
were asked to list any strategies they had used (a sheet inside the back page
of the handout had been formatted for this purpose).

The responses to the strategies question generally contained a few
sentences. Only a few responses involved the questionnaire part of the
problem, with subjects saying they answered honestly.

The strategies listed consisted of a variety of the techniques people often
use for remembering lists of names or numbers. For instance, number word
associations, continuous repetition of information, creating memorable
sentences merging words, reordering the sequence presented into a regular
pattern (e.g., alphabetical), inventing short stories involving the words and
numbers and associating the information with musical sound patterns. One
subject gave remembering the first letter as a strategy.

From the replies given it was not possible to work out if subjects give equal
weight to answering both parts of the problem, or had a preference to
answering one part of the problem.

No subject listed a strategy that was based on the visual appearance of the
identifiers or numbers, although several subjects said they tried to
associate images with the identifiers and numbers.

Recall/would refer back performance

This subsection treats the value recall and would refer back answers as a
single subproblem for the purpose of analysis. The not seen answers are
treated as a different subproblem and is discussed in the following
subsection.

Figure 1 is a scatter plot of the percentage of correct/incorrect recall and
would refer back answers given by subjects for each of the four kinds of
identifiers. The straight line is the set of points along which the values on
the two axis sum to 100%.

The ideal subject behaviour is for all points in the correct recall vs. would
refer back scatter plot to lie along the straight line, i.e., subjects would
either give the correct answer or they would refer back; see left of Figure 1.

The scatter plot of correct vs. incorrect recall answers shows some points
along the 100% line, i.e., in some cases subjects were either right or wrong
and never gave a would refer back answer (perhaps these subjects are
willing to take more risks); see middle of Figure 1.

The scatter plot of incorrect recall against would refer back answers shows
some points along the 100% line, i.e., in some cases subjects either give
incorrect or would refer back answers (perhaps these subjects are willing
to take more risks); see right of Figure 1.

Self-knowledge, metacognition, is something that enables a person to
evaluate the accuracy of the memories they have. Subjects who give many
incorrect answers do not accurately evaluate the state of their own
memories of previously seen information (i.e., they overestimated the
accuracy of their memories). It is also possible that subjects who gave
many would refer back answers also showed poor metacognitive
performance (i.e., they underestimated the accuracy of their memories and
would have mostly given correct answers had they risked a numeric
answer). However, it is not possible to evaluate this possibility based on
the available data.

Not seen performance

This subsection treats the not seen answers as a single subproblem for
analyse. There were 570 not seen answers of which 9.5% were incorrect.
Subjects who randomly chose an answer would achieve a 80% failure rate.

Figure 2 is a scatter plot of the percentage of correct/incorrect recall and
not seen answers given by subjects for each of the four kinds of identifiers.
The results are dominated by the high percentage of correct answers.

Effects of different identifier naming patterns

This experiment has a two factorial design with two levels. The factors are
‘is word’ and ‘same first’ and the levels are TRUE/FALSE. All four
combinations of identifiers were used, enabling the interaction between
them to be investigated.

The statistical technique used to analyse the results is ANOVA (analysis
of variance). For details of the analysis see the source code of the R
program used to analyse the data available for download[8] along with the
(anonymous) data extracted from subject answers.

The subject data was split into two groups of response variables, with ‘is
word’ and ‘same first’ used as the predictor variables in both cases. One
group of response variables was percentage of recall correctness and
percentage of would refer back answers and the other response variable
was percentage of incorrect not seen answers.

For some combinations of identifier attributes some subjects gave a small
number of answers. Answer counts were converted to percentages and to
prevent a small number of answers potentially giving a nonrepresentative
value any subject data set containing less than five (recall + would refer
back) answers or less than three not seen answers were excluded from the
analysis.

Summary of results for this and the 2006 experiment. The ‘Total’ column is
summed over all answers while the ‘By subject’ column gives the subject mean
(standard deviation in brackets) values. The ‘Correct recalls’, ‘Incorrect recalls’
and ‘Would refer back’ percentages are calculated using the total number of
answers in those three cases. The ‘Not seen (incorrect)’ values are calculated
using the total number of the not seen answers.

Total By subject
2006
Total

2006
By subject

Correct recalls 1379 (57.2%) 59.5% (29) 685 (52.2%) 60.8% (26)

Incorrect recalls 397 (16.5%) 15.5% (15) 122 (10.6%) 9.0% (9)

Would refer back 634 (26.3%) 25.0% (28) 349 (30.2%) 30.2% (27)

Not seen (incorrect) 54 (9.5%) 8.4% (10) 20 (5.5%) 5.1% (8)

Ta
bl

e
1

8 | | MAR 2012{cvu}

Recall and would refer back

Analysis of the data found that differences in the identifier attributes ‘is
word’ or ‘same first’ were not good predictors of the percentage of correct,
or incorrect, recall answers or percentage of would refer back answers
(p-values for correct recall were ‘is word’ 0.34 and ‘same first’ 0.80).

Not seen

Analysis of the data found that differences in the identifier attribute ‘same
first’ was a good predictor of subject not seen performance; ANOVA
p-value=0.038, below the widely used maximum of 0.05 for level of
significance.

For not seen answers the mean percentage of incorrect answers was over
twice as high when all of the assignment identifiers started with the same
letter compared to when they all started with different letters; 5.9% (sd

6.8%) and 2.6% (sd 4.5%) error rates respectively. This was difference
statistically significant.

Analysis of the data found that differences in the identifier attribute ‘is
word’ was not a good predictor of not seen subject performance; ANOVA
p-value=0.90. The interaction between the two predictor variables had a
p-value of 0.62.

The mean subject percentage of incorrect not seen answers was slightly
higher when all assignment identifiers contained words compared to all
non-words (4.8% vs. 3.6%, with sd of 7.3% and 5.5% respectively), but
this difference was not statistically significant.

Comparison of 2011 results with 2006

How do the results of the 2006 and 2011 experiment compare? Both ran
for 20 minutes and subjects completed subjects completed almost the same
number of problems.

The summary in Table 1 shows that recall and would refer back
percentages are similar. There is a higher percentage of incorrect recalls
in 2011, as might be expected with the increased amount of information
that has to be remembered.

An analysis of the 2011 and 2006 subject answers finds a statistically
significant difference in the mean percentage of ‘incorrect recall’ answers
(Student’s t-test gives p-value=0.012; the 95% confidence interval for the
2011 mean percentage is between 1.3 and 10.1 greater than the 2006 value)
but not for ‘correct recall’ or would refer back (p-values of 0.55 and 0.30
respectively).

If subjects’ percentage of incorrect recall answers increases, the
percentage for correct recall and/or would refer back must decrease. The

fact that the increase is statistically significant implies that it occurred over
a large fraction of subjects, while the non-significant finding for the
answers that should have decreased implies that there was a lot of
variability in subject performance for these two kinds of answer.

Repeating the ANOVA analysis on the 2006 answers fails to find any
significant predictors for any of the responses of interest, i.e., the factor
‘same first’ was not a good predictor of not seen performance (which it
was for the 2011 answers).

The 2004 ACCU experiment had the same remember/recall format as
2006/2011 but compared different assignment identifier attributes (i.e.,
number of syllables and word/non-word). The results for 2004 were:
correct recall around 60%, incorrect recalls around 10% and would refer
back 30%.

The filler problems used in the 2006/2011 experiments both involved
providing answer to a short list if questions, i.e., making use of existing
knowledge to solve a problem that only required a small amount of
information to be held in STM.

Conclusion
The 2011 results suggest that when developers have to recall information
about a recently seen list of identifiers they make more misidentification
mistakes when those identifiers all start with the same letter compared to
when they start with different letters; the 2006 results do not replicate this
finding. If authors of coding guidelines practice feel it is worthwhile
adding a fix sequence of letters to an identifier to denote some attribute,
the number of mistakes made when reading these identifiers might be
reduced if these characters were added somewhere other than at the start
of the identifier (e.g., at the end).

No significant performance difference was found between assignment lists
using identifiers that were all words or all non-words.

The results were consistent with the finding of two previous experiments
where the breakdown of subjects answers was approximately: would refer
back 25%, recall correct 60% and recall incorrect 15% (see Table 1).
Increasing the number of to-be remembered assignment statements from
three to four results the number of incorrect recall answers increasing.

Future experiments might confirm and extend these findings to identifiers
containing more than three letters and investigate subject performance
when handling identifiers having other attributes. 

Further reading
Statistics Explained by Perry R. Hinton provides a
very good introduction to statistics, including
ANOVA. For a readable introduction to human
memory see Essentials of Human Memory by Alan
D. Baddeley. A more advanced introduction is given
in Learning and Memory by John R. Anderson. An
excellent introduction to many of the cognitive
issues that software developers encounter is given in
Thinking, Problem Solving, Cognition by Richard
E. Mayer.

Acknowledgments
The author wishes to thank everybody who
volunteered their time to take part in the experiment
and those involved in organising the ACCU
conference for making a conference slot available in
which to run it.

Fi
gu

re
 1

Scatter plots of various combinations of percentage correct recall, incorrect recall and would refer back answers plotted against each other.
The straight lines are the set of points along which the values on the two axis sum to 100%.

Fi
gu

re
 2

●

●●● ●●● ●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●● ●●●●●●
●

● ●

●
●

●
● ●●

●
●

●

●●

●
●

●
●

●
●

● ●

●
●

●
●

0 20 40 60 80 100

0

20

40

60

80

100

Correct recall

w
ou

ld
 re

fe
r b

ac
k

●

●● ●● ● ●●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●● ●

●

● ●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

● ●

●

● ●●●● ●●●
●

●●

●
●

●
●● ●

●
●
●

●●

●
●

●
●

●
●

●●

●
●

●
●

0 20 40 60 80 100

0

20

40

60

80

100

Incorrect recall
w

ou
ld

 re
fe

r b
ac

k

●
●

●

●

●

●

●

●●

●

●●

●

●

●

● ●●
●

●

● ●
●

●
●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

● ●

●
●●●

●
●

●
●

●● ●
●

●

●
●

●
●

●●●

●●●

●

●

●
●

● ●

●

●

●
●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

0 20 40 60 80 100

0

20

40

60

80

100

Correct recall

In
co

rr
ec

t r
ec

al
l

Scatter plots of various combinations of percentage correct recall, incorrect recall and would refer
back answers plotted against each other. The straight lines are the set of points along which the
values on the two axis sum to 100%.

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●●●

●

●

●

●
●

●●

●

●● ● ●●

●

●

●

●

●●● ●

●

● ●●● ●●●●●●●●●● ●●

●

●

●●●●●● ●●● ●

●●

●●●

●

● ●●● ●●● ● ●

●

●●

●

●●

●

●●

0 20 40 60 80 100

0

20

40

60

80

100

Incorrect recall

In
co

rr
ec

t n
ot

 s
ee

n

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●●●

●

●

●

●
●

● ●

●

● ●●● ●

●

●

●

●

● ●●●

●

●●●●● ● ●●●●●●● ●●●

●

●

● ●● ●●●●●●●

● ●

● ● ●

●

●●●● ●● ●●●

●

●●

●

● ●

●

● ●

0 20 40 60 80 100

0

20

40

60

80

100

Correct recall

C
or

re
ct

 n
ot

 s
ee

n

MAR 2012 | | 9{cvu}

Effect of Risk Attitudes on Recall of Assignment Statements (continued)
References
[1] D. M. Jones. ‘Effects of risk attitude on recall of assignment

statements’ C Vu, 23(6):19–22, Jan. 2012.
[2] D. M. Jones. ‘Developer beliefs about binary operator precedence’ C

Vu, 18(4):14–21, Aug. 2006.
[3] H.-F. Chitiri and D. M. Willows. ‘Word recognition in two languages

and orthographies: English and Greek’ Memory & Cognition,
22(3):313–325, 1994.

[4] M. Taft and K. I. Foster. ‘Lexical storage and retrieval of
polymorphemic and polysyllabic words’ Journal of Verbal Learning
and Verbal Behavior, 15:607–620, 1976.

[5] A. D. Baddeley. ‘How does acoustic similarity influence short-term
memory?’ Quarterly Journal of Experimental Psychology, 20:249–
264, 1968.

[6] V. Coltheart. ‘Effects of phonological similarity and concurrent
irrelevant articulation on short-term-memory recall of repeated and
novel word lists’ Memory & Cognition, 21(4):539–545, 1993.

[7] J. R. Anderson. Learning and Memory: An Integrated Approach
John Wiley & Sons, Inc, second edition, 2000.

[8] D. M. Jones. Experimental data and scripts for effects of risk attitude
on recall of assignment statements study. http://www.knosof.co.uk/
dev-experiment/accu11.html, 2011

[9] D. M. Jones. The new C Standard: An economic and cultural
commentary Knowledge Software, Ltd, 2005.

[10] W.-T. Fu and W. D. Gray. ‘Memory versus perceptual-motor
tradeoffs in a blocks world task’ in Proceedings of the Twenty-
second Annual Conference of the Cognitive Science Society, pages
154–159, Hillsdale, NJ, 2000. Erlbaum.
Using D Slices
Steven Schveighoffer looks at slices in

D and shows why they’re not arrays.

ne of the most pleasant features of the D language is its
implementation of slices. Every time I use a programming language
that isn’t D, I find myself lamenting for D’s slice syntax. Not only

is it concise and efficient, but things ‘just work’ when you are dealing with
slices.

I’ll go over some of the background and internals of D slices and arrays,
and hopefully after reading this, you will have a clearer understanding of
the proper ways to use D slices, as well as an idea of how fundamentally
different they are than normal arrays!

An overflowing problem
In most languages, an array is a built-in type which manages its own data,
and is passed around by reference. One refers to the entire thing as an
‘Array’, and associates all the operations for the array (such as setting
values, appending data for dynamic arrays, obtaining the length) to that
type.

However, D takes its lineage from C, where an array is simply a chunk of
contiguous data. In C, a reference to an array or array segment is as simple
as a pointer (an explicit reference). C’s arrays are distinctly unmanaged
by the type that refers to them – the pointer. The only operations supported
are to retrieve and set data using an offset from the pointer.

I know most of you are probably familiar with array syntax in C, but there
are some languages out there which use different syntax. So for their
benefit, here are some examples of array usage in C:

 arr[0] = 4; /* sets the first element
 of the array 'arr' to 4 */
 x = arr[1]; /* retrieves the second element
 of the array 'arr' into x */

Everything else (length, appending, allocation, destruction) is left up to
library functions and assumption/documentation. So what is so wrong with
this concept? One of the largest problems with C arrays is the ability to
access any data via the pointer, even data that doesn’t belong to the array.
You can even use negative indexes! Not to mention that the array uses the
exact same type as a pointer to a single item. When you get a pointer as a
parameter to a function, that could be an array, or it could be just a pointer
to a single item. Cue buffer overflow attacks. You can read more about
this in Walter Bright’s article[1].

O

STEVEN SCHVEIGHOFFER
Steven graduated with a bachelor’s degree in CS from
Worcester Polytechnic Institute. He’s worked as a C++,
C#, and web developer for the last 12 years, has largely
rewritten the array runtime library for D, and has his own D
side project, dcollections.
10 | | MAR 2012{cvu}

http://www.knosof.co.uk/dev-experiment/accu11.html
http://www.knosof.co.uk/dev-experiment/accu11.html

Introducing slices
So how does D improve things? In many ways, D’s arrays are similar to
C’s arrays. In fact, D supports C’s array syntax using pointers. However,
D provides a new type that builds on C array syntax called a slice. A slice
is a segment of an array (dynamic or otherwise) that tracks both the pointer
and the length of the segment. With the combined protection of having the
length of the data, and the garbage collector to manage the memory
backing the data, slices are an extremely powerful, dynamic concept that
is safe from most memory corruption issues. In addition, D slices support
extending with simple functions which take a slice as the first parameter.
This allows one to add any functionality you want to a built-in type via
properties or methods. With D slices, one can write high-performance code
with elegant and concise syntax that is awkward or inefficient in almost
any other language.

So let’s see some D slices in action (Listing 1).

You may notice something puzzling about the description of the allocation
of the array: ‘allocate a dynamic array of integers that has at least 5
elements, and give me a slice to the first 5’. Why isn’t it just ‘allocate a
dynamic array of 5 elements’? Even experienced D coders have trouble
with D’s array concepts sometimes, and for quite good reason. D’s slices
are not proper dynamic array types (at least not under the hood) even
though they appear to be. What they do is provide a safe and easy interface
to arrays of any type (dynamic or otherwise). So let’s discuss probably the
most common misconception of D slices.

Who’s responsible?
A slice in D seems like a dynamic array in almost all aspects of the concept
– when passed without adornments, the data referred to is passed by
reference, and it supports all the properties and functions one would expect
a dynamic array type to support. But there is one very important difference.
A slice does not own the array, it references the array. That is, the slice is
not responsible for allocation or deallocation of its data. The responsible
party for managing a dynamic array’s memory is the D runtime.

So where is the true dynamic array type in D? It’s hidden by the runtime,
and in fact, has no formal type. Slices are good enough, and as it turns out,
the runtime is smart enough about what you want to do with the data, that
you almost never notice dynamic arrays are missing as a full-fledged type.
In fact, most D coders consider the D slice to be the dynamic array type –
it’s even listed as a dynamic array type in the spec! The lack of ownership
is very subtle and easy to miss.

Another consequence of this is that the length is not an array property, it’s
a slice property. This means the length field is not necessarily the length
of the array, it’s the length of the slice. This can be confusing to newcomers
to the language. For instance, this code has a large flaw in it (Listing 2).

This might look like you changed the passed arr’s length to 2, but it
actually did not affect anything (as is proven by the output from
writeln). This is because even though the data is passed by reference,
the actual pointer and length are passed by value. Many languages have
an array type whose properties are all passed by reference. Notably, C#
and Java arrays are actually fully referenced Objects. C++’s vector either
passes both its data and properties by reference or by value.

To fix this problem, you can do one of two things. Either you explicitly
pass the slice by reference via the ref keyword, or you return the resulting
slice to be reassigned. For example, here is how the signature would look
if the slice is passed by reference:

 void shrinkTo2(ref int[] arr)

Let’s say you make this change, what happens to the data beyond the
second element? In D, since slices don’t own the data, it’s still there,
managed by the nebulous dynamic array type. The reason is fundamental:
some other slice may still be referencing that data! The fact that no single
slice is the true owner of the data means no single slice can make any
assumptions about what else references the array data.

What happens when no slices reference that data? Enter D’s garbage
collector. The garbage collector is responsible for cleaning up dynamic
arrays that no longer are referenced by any slices. In fact, it is the garbage
collector that makes much of D’s slice usage possible. You can slice and
serve up segments of dynamic arrays, and never have to worry that you
are leaking memory, clobbering other slices, or worry about managing the
lifetime of the array.

A slice you can append on
D’s slices support appending more data to the end of the slice, much like
a true dynamic array type. The language has a specific operator used for

import std.stdio;
void main()
{
 int[] a; // a is a slice

 a = new int[5]; // allocate a dynamic array of
 // integers that has at least 5
 // elements, and give me a
 // slice to the first 5. Note
 // that all data in D is
 // default assigned, int's are
 // defaulted to 0, so this
 // array contains five 0's

 int[] b = a[0..2]; // This is a 'slicing'
 // operation. b now refers
 // to the first two elements
 // of a. Note that D uses
 // open interval for the
 // upper limit, so a[2] is
 // not included in b.

 int[] c = a[$-2..$]; // c refers to the last
 // two elements of a ($
 // stands for length
 // inside a slice or index
 // operation).

 c[0] = 4; // this also assigns a[3]
 c[1] = 5; // this also assigns a[4]

 b[] = c[]; // assign the first two elements of
 // a[] to the value from the last
 // two elements (4, 5).

 writeln(a); // prints "[4, 5, 0, 4, 5]"

 int[5] d; // d is a fixed sized array,
 //allocated on the stack
 // b = d[0..2]; slices can point at
 // fixed sized arrays too!
}

Li
st

in
g

1

import std.stdio;

void shrinkTo2(int[] arr)
{
 if(arr.length > 2)
 arr.length = 2;
}

void main()
{
 int[] arr = new int[5];
 arr.shrinkTo2(); // note the ability to call
 // shrinkTo2 as a method
 writeln(arr.length); // outputs 5
}

Listing 2
MAR 2012 | | 11{cvu}

concatenation and appending, the tilde (~). Listing 3 contains some
operations that append and concatenate arrays.

Anyone who cares about performance will wonder what happens when you
append the four elements. The slice does not own its data, so how does one
avoid reallocating a new array on each append operation? One of the main
requirements of D slices are that they are efficient. Otherwise, coders
would not use them. D has solved this problem in a way that is virtually
transparent to the programmer, and this is one of the reasons slices seem
more like true dynamic arrays.

How it works
Remember before when we allocated a new array, I said allocate a dynamic
array of at least n elements and give me a slice? Here is where the runtime
earns its keep. The allocator only allocates blocks in powers of 2 up to a
page of data (in 32-bit x86, a page of data is 4096 bytes), or in multiples
of pages. So when you allocate an array, you can easily get a block that's
larger than requested. For instance, allocating a block of five 32 bit integers
(which consumes 20 bytes) provides you a block of 32 bytes. This leaves
space for 3 more integers.

It’s clearly possible to append more integers into the array without
reallocating, but the trick is to prevent ‘stomping’ on data that is valid and
in use. Remember, the slice doesn’t know what other slices refer to that
data, or really where it is in the array (it could be a segment at the beginning
or the middle). To make the whole thing work, the runtime stores the
number of used bytes inside the block itself (a minor drawback is that the
usable space in the block is not as big as it could be. In our example, for
instance, we can truly only store 7 integers before needing to reallocate
into another block).

When we request the runtime to append to a slice, it first checks to see that
both the block is appendable (which means the used field is valid), and
the slice ends at the same point valid data ends (it is not important where
the slice begins). The runtime then checks to see if the new data will fit
into the unused block space. If all of these checks pass, the data is written
into the array block, and the stored used field is updated to include the
new data. If any of these checks fail, a new array block is allocated that
will hold the existing and new data, which is then populated with all the
data. What happens to the old block? If there were other slices referencing
it, it stays in place without being changed. If nothing else is referencing it,
it becomes garbage and is reclaimed on the next collection cycle. This
allows you to safely reallocate one slice without invalidating any others.
This is a huge departure from C/C++, where reallocating an array, or
appending to a vector can invalidate other references to that data (pointers
or iterators).

The result is an append operation which is not only efficient, but
universally handy. Whenever you want to append a slice, you can, without
worry about performance or corruption issues. You don’t even have to
worry about whether a slice’s data is heap allocated, stack allocated, in

ROM, or even if it’s null. The append operation always succeeds (given
you have enough memory), and the runtime takes care of all the dirty work
in the background.

Determinism
There is one caveat with slice appending that can bite inexperienced, and
even experienced D coders: the apparent non-deterministic behaviour of
appending.

Let’s say we have a function which is passed a buffer, and writes some
number of A’s to the buffer (appending if necessary), returning the filled
buffer (see Listing 4).

What’s wrong with the fillAs function? Nothing really, but what
happens if increasing the length forces the buffer to be reallocated? In that
case, the buffer passed in is not overwritten with A’s, only the reallocated
buffer is. This can be surprising if you were expecting to continue to use
the same buffer in further operations, or if you expected the original buffer
to be filled with A’s. The end result, depending on whether the block
referenced by buf[] can be appended in place, is the caller’s slice might
be overwritten with A’s, or it might not be. (See Listing 5, which continues
the example begun in Listing 4.)

If you give this some thought, you should come to the conclusion that such
a situation is unavoidable without costly copy-on-append semantics – the
system cannot keep track of every slice that references the data, and you
have to put the new data somewhere. However, there are a couple of
options we have to mitigate the problem:

1. Re-assign the slice to the return value of the function. Note that the
most important result of this function is the return value, not whether
the buffer was used or not.

2. Don’t use the passed in buffer again. If you don’t use the source slice
again, then you can’t experience any issues with it.

As the function author, there are some things we can do to avoid causing
these problems. It’s important to note that the only time this situation can
occur is when the function appends to, or increases the length of, a passed
in slice and then writes data to the original portion of the slice. Avoiding
this specific situation where possible can reduce the perception of non-
determinism. Later we will discuss some properties you can use to predict

int[] a; // an empty slice references no data,
 // but still can be appended to
a ~= 1; // append some integers (this
 // automatically allocates a new
a ~= 2; // array to hold the elements).

a ~= [3, 4]; // append another array (this time,
 // an array literal)
a = a ~ a; // concatenate a with itself, a is
 // now [1, 2, 3, 4, 1, 2, 3, 4]

int[5] b; // a fixed-size array on the stack
a = b[1..$]; // a is a slice of b
a ~= 5; // since a was pointing to stack
 // data, appending always
 // reallocates, but works!

Li
st

in
g

3 import std.stdio;

char[] fillAs(char[] buf, size_t num)
{
 if(buf.length < num)
 buf.length = num; // increase buffer length
 // to be able to hold
 // the A's
 buf[0..num] = 'A'; // assign A to all
 // the elements
 return buf[0..num]; // return the result
}

Listing 4

void main()
{
 char[] str = new char[10]; // Note, the block
 //capacity allocated for this is 15 elements

 str[] = 'B';
 fillAs(str, 20); // buffer must be reallocated
 // (20 > 15)
 writeln(str); // "BBBBBBBBBB"
 fillAs(str, 12); // buffer can be extended in
 // place (12 <= 15)!
 writeln(str); // "AAAAAAAAAA";
}

Listing 5
12 | | MAR 2012{cvu}

how the runtime will affect your slice. It is a good idea to note in the
documentation how the passed in slice might or might not be overwritten.

A final option is to use ref to make sure the source slice is updated. This
is sometimes not an option as a slice can easily be an rvalue (input only).
However, this does not fix the problem for any aliases to the same data
elsewhere.

Caching
One of the issues with appending to a slice is that the operation is quick,
but not quick enough. Every time we append, we need to fetch the metadata
for the block (its starting address, size, and used data). Doing this means
an O(lg(n)) lookup in the GC’s memory pool for every append (not to
mention acquiring the global GC lock). However, what we want is
amortized constant appending. To achieve this lofty goal, we employ a
caching technique that is, as far as I know, unique to D.

Since D2 has introduced the concept of default thread local storage, the
type system can tell us whether heap data is local to the thread (and most
data is), or shared amongst all threads. Using this knowledge, we can
achieve lock-free caching of this metadata, with one cache per thread. The
cache stores the most recent n lookups of metadata, giving us quick access
to whether a slice can be appended.

This cached lock-free lookup has made array appending even faster than
D1’s append operation, which suffers from the possibility of data
stomping.

Slice members and the appender
With D slices having such interesting behaviour, there is a need sometimes
to be able to predict the behaviour of slices and appending. To that end,
several properties and methods have been added to the slice.

 size_t reserve(size_t n): Reserves n elements for
appending to a slice. If a slice can already be appended in place, and
there is already space in the array for at least n elements (n
represents both existing slice elements and appendable space),
nothing is modified. It returns the resulting capacity. See Listing 6.

 size_t capacity: A property which gives you the number of
elements the slice can hold via appending. If the slice cannot be
appended in place, this returns 0. Note that capacity (if non-zero)
includes the current slice elements. See Listing 7.

 assumeSafeAppend(): This method forces the runtime to
assume it is safe to append a slice. Essentially this adjusts the used
field of the array to end at the same spot the slice ends. See Listing 8.

If D slices’ append performance just isn’t up to snuff for your performance
requirements, there is another alternative. The std.array.Appender
type will append data to an array as fast as possible, without any need to
look up metadata from the runtime. Appender also supports the output
range idiom via an append operation (normal slices only support the output

range by overwriting their own data). For more information on ranges and
the Appender type, see the D online documentation[2].

Conclusion
Whether you are a seasoned programmer or a novice, the array and slice
concepts in D provide an extremely rich feature set that allows for almost
anything you would want to do with an array type. With a large focus on
performance and usability, the D slice type is one of those things that you
don’t notice how great it is until you work with another language that
doesn’t have it. I highly recommend to anyone who is not familiar with D
to at least play around with some of the D slice syntax, and discover how
straightforward array programming can be. 

Acknowledgements
Thanks to David Gileadi, Andrej Mitrovic, Jesse Phillips, Alex Dovhal,
Johann MacDonagh, and Jonathan Davis for their reviews and suggestions
for this article.

References
[1] http://drdobbs.com/blogs/cpp/228701625
[2] http://d-programming-language.org/

int[] slice;
slice.reserve(50);
foreach(int i; 0..50)
 slice ~= i; // does not reallocate

Listing 6

int[] slice = new int[5];
assert(slice.capacity == 7); // includes the 5
 // pre-allocated elements
int[] slice2 = slice;
slice.length = 6;
assert(slice.capacity == 7); // appending in
 // place doesn't change the capacity.
assert(slice2.capacity == 0); // cannot append
 // slice2 because it would stomp
 // on slice's 6th element

Listing 7

int[] slice = new int[5];
slice = slice[0..2];
assert(slice.capacity == 0); // not safe to
 // append, there is other valid data
 // in the block.
slice.assumeSafeAppend();
assert(slice.capacity == 7); // force the used
 // data to 2 elements

Listing 8

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain
surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
MAR 2012 | | 13{cvu}

http://drdobbs.com/blogs/cpp/228701625
http://d-programming-language.org/

OMAR BASHIR
A programmable calculator with 0.5 kB of user memory
and a very basic version of BASIC inspired Omar into
computing in 1986. His interests include distributed
systems and interesting applications of design
patterns. He can be contacted at obashir@yahoo.com

Holiday Rules
Omar Bashir provides an implementation of

calendars and holiday rules in Java.

ost business applications depend upon calendars. These calendars
define various events in a particular calendar year. Many of these
events are specific to the business domain. Events that are common

across all domains are holidays. Various business tasks require the
knowledge of holidays during their processing, for example, financial
transactions are settled on business days and not on holidays. In several
implementations, these calendars are partitioned based on the types of
events. For example, an application may have a separate calendar
specifying holidays (i.e., holiday calendar) and a separate calendar
specifying production schedules of a plant, etc. While specification of
holidays in an application may have little significance as compared to the
overall business logic, failure of holiday calendars can cause a much
greater nuisance and in certain circumstances, even result in a financial
loss.

In their simplest form, calendars are implemented in software applications
as lists of events and their corresponding dates stored in databases or files
for many years in advance. Most global businesses need to maintain a set
of calendars for each theatre of operation. This can easily lead to a
considerable amount of calendar data, acquiring and maintaining which
can be costly. There are also risks related to errors and omissions in these
data and these risks grow substantially with the amount of data.

While this may be necessary for certain calendars, it is possible to generate
holiday calendars from a smaller (mostly fixed or rarely changing) set of
rules. These rules can be interpreted as required to generate holidays for a
given year. If the rules and the code interpreting these rules are
comprehensively tested, risks related to errors and omissions can be
significantly reduced. Storage and acquisition costs in rule-based
calendars are small and mostly constant as compared to maintaining
individual dates of holiday calendars.

It may not always be possible to entirely automate a holiday calendar for
a specific region. For example, Islamic holidays follow a lunar calendar
and are traditionally subject to the sighting of the moon in many countries.
Therefore, any implementation of a holiday calendar based on rules must
allow exceptions to be specified manually for particular days to be
included into as well as excluded from the holiday calendar of a specified
year. An interesting example is moving the UK’s Spring Bank Holiday in
2012 from 28 May 2012 to 4 June 2012 to create a long weekend for
Queen’s Diamond Jubilee. While 4 June 2012 and 5 June 2012 have to be
added manually as holidays in such a calendar generator, holiday rules for
UK will indicate 28 May 2012 as a holiday, which will have to be ignored
as an exception.

This article illustrates rules for determining holidays. Instances of these
rules are combined into rule sets for determining holidays for a given year.
As several variations (e.g., regional, organisational, religious etc.) of
holiday rules may exist, it is not possible to describe all the different
holiday rules and rule sets. An object oriented implementation in Java of
the English holiday calendar using rules to determine holidays for a given
year is then described.

Holiday calendar rules
Holidays are of two types, fixed and floating. Fixed holidays occur either
on a particular date or a particular day of a particular month every year
whether that day is a weekend or another holiday. Floating holidays can
fall on different days in different years. A typical example of a floating
holiday is the Easter weekend, which falls on different dates every year.
Additionally, in some countries, certain holidays may be rolled forward
or backward if they coincide with weekend or any other holiday.

Therefore, the simplest holiday rule for fixed holidays would contain three
attributes, the day of the month, the month and the year. If values exist for
all these attributes in an instance of this rule, the rule interpreter should
interpret it as a single holiday on that particular date. If the value for the
year is omitted (i.e., the year is null), it should be interpreted as a holiday
on the specified day of the month and the specified month every year. Thus,
by extension, if only the value for day exists, it should be interpreted as a
holiday on the specified day of the month for every month and in every
year.

The fixed holiday rule can be extended to a floating holiday rule by
including one more parameter. This parameter determines whether the
holiday is to be rolled forward, rolled back or not rolled. Rolling is the
process of changing the date to the next (roll forward) or the previous (roll
back) working day. Thus, the floating holiday rule requires the knowledge
to the weekend convention as well as whether the date rolled to is a holiday
or not. Weekend convention in most of the world is Saturday and Sunday.
A holiday falling on any of these days may have to be rolled forward or
back to the next or previous working day.

Certain holidays are dependant on the lunar calendar. These include the
Easter. Easter Day is the first Sunday after the full moon that occurs on or
after the vernal equinox. This full moon is not the astronomical full moon
but the ecclesiastical moon. It is determined using astronomical rules and
tables and usually is in synchronisation with the astronomical full moon.
According to these rules, the vernal equinox is fixed to 21 March and the
ecclesiastical full moon is the 14th day of a tabular lunation (new moon).
The Astronomical Applications Department of the US Naval Observatory
has produced an algorithm that provides the date of Easter for the given
year [1]. An implementation of this algorithm to provide dates for Good
Friday and Easter Monday is given in the following section.

Instances of holiday rules are organised in a holiday rule set. Rules in a
rule set are interpreted for a given year considering the weekend
convention and a list of exceptions. Exceptions are dates that the holiday
calendar may determine as holidays but are to be ignored as they have been
declared as working days for that particular year for a specific reason.
Fixed holiday rules have precedence in interpretation over floating holiday
rules. For example, consider that a fixed holiday rule and a floating holiday
rule return the same date and the fixed holiday rule is interpreted earlier.
Later, when the floating holiday rule is interpreted to get the same date,
that date is rolled forward or backward depending on the floating rule
thereby correctly resulting in two holidays. On the contrary, if the floating
holiday rule is interpreted earlier, only one holiday will exist for both the
rules. This is because the fixed holiday, which cannot be rolled, is
determined after the floating holiday occurring on the same date.
Therefore, rules for fixed holidays should be interpreted before rules for
floating holidays.

For instance, a fixed holiday rule states that first Monday of May every
year is a fixed holiday. A floating holiday is also specified for 2nd of May

M

14 | | MAR 2011{cvu}

every year to be rolled forward if 2nd May is a holiday. 2 May 2011 is the
first Monday of May. If the floating holiday rule is interpreted first, it will
return 2 May 2011. Because it has not been determined as a holiday earlier,
it is added to the collection of holidays. When the fixed holiday rule is now
interpreted, it also returns 2 May 2011 as a holiday. This date is ignored
as 2 May 2011 has already been determined as a holiday. However, if the
order of interpretation of these rules is revered, the fixed holiday rule
returns 2 May 2011 as a holiday first. Next, when the floating holiday rule
is interpreted it determines that 2 May 2011 is already a holiday. Because
the rule allows rolling the holiday forward, the rule returns 3 May 2011 as
a holiday (see Figure 1).

Implementing the English holiday calendar
The UK holiday calendar is relatively simple as compared to many other
holiday calendars. It contains eight holidays that are floating. If any of
these holidays falls on the weekend or any other holiday, it is rolled
forward to the next business day. Rules for these holidays and results of
the interpretation of these rules for three years are listed in table 1. The
last three rows of the table specify additional exceptional holidays for
specific years.

Holiday rules for UK can thus further be classified into the following:

1. Easter Rule to provide dates for Good Friday and Easter Monday.

2. Date Rule to specify holidays as day of month and month. These
holidays recur on the specified days of the month for the specified
months every year. Optionally the year may be specified for
holidays that occur only once. Date Rules can be specified to roll
holidays forward to the next business day if they fall on a weekend
or any other holiday.

3. Day of Week Rule to specify
holidays that occur on a
particular day of the week for
a given month, for example,
3rd Monday in July or the
last Thursday in February.
As with the Date Rule, these
rules can also be specified to
roll holidays forward to the
next business day if they fall
on a weekend or any other
holiday.

Table 2 is a representation of
Table 1 using the above mentioned
holiday rules for the UK holiday
calendar.

In addition to the rules specified in
Table 2, a list of exclusion dates
must also be included. Once the
rule interpreter has determined the
holidays for a given year, if one of

these holidays exists in the list of exclusion dates, it is omitted from the
list of holidays to be returned.

Figure 2 (overleaf) shows an object oriented implementation of these rules
based on the STRATEGY design pattern [2].

A class providing functionality of a holiday rule implements the
HolidayRule interface (Listing 1).

The interpret method is used to interpret the rule. It requires a list
containing holidays already determined by interpreting other rules.
Holiday that the interpret method determines is appended to this list.
It also requires the year for which this rule is to be interpreted and the list
of exclusion dates. If the rule is interpreted to a date contained in the list
of exclusion dates, that date is ignored and not added to the list of holidays.

The abstract class AbstractHolidayRule (Listing 2) implements the
HolidayRule interface. It provides the common functionality for the
DateRule (Listing 3) and DayOfWeekRule (Listing 4) classes
implementing the Date Rule and Day of Week Rule respectively. These
three classes employ the TEMPLATE METHOD design pattern [2].

Fi
gu

re
 1 Rule

Processor
for 2011

May 2 Every Year Floating
Holiday ‐ Roll Forward

First Monday in May Every
Year ‐ Fixed Holiday

R1

R2

2 May 2011

R1

R2

Rule List

Rule
Processor
for 2011May 2 Every Year Floating

Holiday ‐ Roll Forward

R1

R2

2 May 2011
R1

R2

Rule List

First Monday in May Every
Year ‐ Fixed Holiday

3 May 2011

Ta
bl

e
1

Rules 2011 2012 2013

New Years Day, Jan 1 3 Jan 2 Jan 1 Jan

Good Friday 22 Apr 6 Apr 29 Mar

Easter Monday 25 Apr 9 Apr 1 Apr

Early May Holiday, First Monday of May 2 May 7 May 6 May

Spring Holiday, Last Monday of May 30 May 27 May

Summer Holiday, Last Monday of August 29 Aug 27 Aug 26 Aug

Christmas, Dec 25 26 Dec 25 Dec 25 Dec

Boxing Day, Dec 26 27 Dec 26 Dec 26 Dec

Royal Wedding (2011) 29 Apr

Alternative Spring Break (2012) 4 Jun

Diamond Jubilee (2012) 5 Jun

Rule
Day of
Month

Month Year
Day of
Week

Day of
Week Count

Day of Week
Direction

Roll

Date 1 1 True

Easter False

Day of
Week

5 Mon 1 Forward True

Day of
Week

5 Mon 1 Reverse True

Day of
Week

8 Mon 1 Reverse True

Date 25 12 True

Date 26 12 True

Date 29 4 2011 False

Date 4 6 2012 False

Date 5 6 2012 False

Table 2

public interface HolidayRule {
 void interpret(List<Date> holidays,
 int calcYear,
 List<Date> exclusionDates);
 boolean isRollOver();
}

Listing 1
MAR 2011 | | 15{cvu}

The interpret method in the AbstractHolidayRule calls a
protected abstract method calculateHoliday which is implemented in
the two subclasses of AbstractHolidayRule class. This method takes
as argument the year for which the holiday is to be determined. If the
holiday returned is not a working day, i.e., it is a weekend or it already
exists in the list of holidays populated by interpreting preceding rules, and
the rollOver flag is set, it rolls the day over to the next working day. If
the rollOver flag is not set, then the date returned by the
calculateHoliday method is accepted. Finally, this date is added to
the list of holidays if it does not already exist in that list.

Implementation of calculateHoliday in the DateRule class creates
the an object of the Date class with its month, day and year attributes
set to the values of the respective attributes in the object of the DateRule
class if the holidayYear attribute in that object of the DateRule class
is not null and is equal to the calcYear argument to the method. If the
holidayYear attribute in the object of the DateRule class is null, then
an object of the Date class is returned with the month and the day
attribute values set to the holidayMonth and holidayDay attribute
values of the object of the DateRule class and the year attribute set to
the calcYear argument to the method.

+interpret(inout holidays : List, in calcYear : int, in exclusionDates : List)
+isRollOver() : bool

«interface»
HolidayRule

+isRollOver() : bool
#calculateHoliday(in calcYear : int) : Date
+interpret(inout holidays : List, in calcYear : int, in exclusionDates : List)
‐isWorkingDay(in holiday : Date, in holidays : List) : bool

AbstractHolidayRule

#weekends : List
#rollOver : bool+isRollOver() : bool

+interpret(inout holidays : List, in calcYear : int, in exclusionDates : List)
‐getEasterSunday(in calcYear : int) : Date
‐getEasterMonday(in easterSunday : Date) : Date
‐getGoodFriday(in easterSunday : Date) : Date

EasterRule

#calculateHoliday(in calcYear : int) : Date

DateRule

‐holidayDay : int
‐holidayMonth : int
‐holidayYear : int

#calculateHoliday(in calcYear : int) : Date
‐getFirstOccurrence(in calcYear : int, in increment : int) : Date

DayOfWeekRule

‐day : int
‐month : int
‐dayOfWeekCount : int
‐searchForward : bool

Fi
gu

re
 2

public abstract class AbstractHolidayRule
 implements HolidayRule {
 protected boolean rollOver;
 private List<Integer> weekends;

 public AbstractHolidayRule(
 List<Integer> weekends, boolean rollOver){
 this.weekends = weekends;
 this.rollOver = rollOver;
 }

 @Override
 public boolean isRollOver(){
 return this.rollOver;
 }

 protected abstract Date calculateHoliday
 (int calcYear);

 @Override
 public void interpret(List<Date> holidays,
 int calcYear, List<Date> exclusionDates) {
 Date holiday =
 this.calculateHoliday(calcYear);
 if (null != holiday){
 if (this.rollOver){
 while (!isWorkingDay(holiday, holidays)){
 holiday.add(Calendar.DAY_OF_MONTH, 1);
 }
 }

 if ((!holidays.contains(holiday)) &&
 (!exclusionDates.contains(holiday))){
 holidays.add(holiday);
 }
 }
 }

 private boolean isWorkingDay(Date holiday,
 List<Date> holidays) {
 boolean reply = true;
 if (holidays.contains(holiday)){
 reply = false;
 else {
 if (this.weekends.contains
 (holiday.getDayOfWeek())){
 reply = false;
 }
 }
 return reply;
 }
}

Li
st

in
g

2 Listing 2 (cont’d)
16 | | MAR 2011{cvu}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T W T F S S M M M M

2nd Friday in
November 2011

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

T W T F S S M M M M

2nd Last Friday in
November 2011

Search Forward Mode

Search Reverse Mode

Implementation of calculateHoliday in the DayOfWeekRule class
attempts to provide a date corresponding to the day of the week and the
week of the month. Attributes of this class include the day of week for
w h i c h t h e h o l i d a y i s t o b e d e t e rm i n e d (e . g . , M o n da y =
java.util.Calendar.MONDAY), the month within which this holiday
lies and the dayOfWeekCount signifying the number of weeks from the
beginning (if the searchForward flag is true) or the end (if the
searchForward flag is false) of the month. Thus, 2nd Monday from
beginning of May will be represented by an object of this class with the
day attribute set to java.util.Calendar.MONDAY, month attribute
set to 5, dayOfWeekCount set to 2 and searchForward flag set to true.
Similarly, the last Thursday of July is represented by an object of this class
with the day attribute set to java.util.Calendar.THRUSDAY,
month a t t r ibu te se t to 7 , dayOfWeekCount se t to 1 and
searchForward flag set to false.

Therefore, calculateHoliday implementation in DayOfWeekRule
class has two modes of operation. In the search forward mode, starting

from the first day of the specified month it increments date till it finds, for
that month, the first day of the week that is specified by the day attribute
of the object. Then the increment size increases to 7 and it increments till
it finds that day of the week for the week of the month specified by the
dayOfWeekCount attribute. In the search reverse mode, it starts from the
last day of the month and decrements date by 1 till it finds, for the specified
month, the last occurrence of the day of the week that matches the value
of the day attribute of this object. The decrement size is then set to -7. The
method then decrements the date till it finds that day of the week for week
of the month in reverse specified by the dayOfWeekCount attribute. This
operation, with examples, is shown in Figure 3.

public class DateRule extends AbstractHolidayRule
{
 private Integer holidayDay;
 private Integer holidayMonth;
 private Integer holidayYear;
 public DateRule(List<Integer> weekends,
 Integer holidayDay, Integer holidayMonth,
 Integer holidayYear, boolean rollOver) {
 super(weekends, rollOver);
 this.holidayDay = holidayDay;
 this.holidayMonth = holidayMonth;
 this.holidayYear = holidayYear;
 }
 @Override
 protected Date calculateHoliday(int calcYear) {
 Date date = null;
 if (null != holidayYear){
 if (calcYear ==
 this.holidayYear.intValue()){
 date =
 new Date(this.holidayYear.intValue(),
 this.holidayMonth.intValue(),
 this.holidayDay.intValue());
 }
 } else {
 date = new Date(calcYear,
 this.holidayMonth.intValue(),
 this.holidayDay.intValue());
 }
 return date;
 }
}

Li
st

in
g

3 public class DayOfWeekRule
 extends AbstractHolidayRule {
 private boolean searchForward;
 private int dayOfWeekCount;
 private int day;
 private int month;
 public DayOfWeekRule(List<Integer> weekends,
 boolean rollOver, int day, int month,
 boolean searchForward, int dayOfWeekCount){
 super(weekends, rollOver);
 this.day = day;
 this.month = month;
 this.searchForward = searchForward;
 this.dayOfWeekCount = dayOfWeekCount;
 }
 @Override
 protected Date calculateHoliday(int calcYear) {
 int increment = this.searchForward ? 1 : -1;
 Date date = getFirstOccurrence(calcYear,
 increment);
 increment *= 7;
 for (int i = 1;
 i < this.dayOfWeekCount; i++){
 date.add(Calendar.DAY_OF_MONTH, increment);
 }
 return date;
 }
 private Date getFirstOccurrence(int calcYear,
 int increment) {
 Date date= new Date(calcYear, this.month, 1);
 if (!this.searchForward){
 date.add(Calendar.MONTH, 1);
 date.add(Calendar.DAY_OF_MONTH, -1);
 }
 while(date.getDayOfWeek() != this.day){
 date.add(Calendar.DAY_OF_MONTH, increment);
 }
 return date;
 }
}

Listing 4
Fi

gu
re

 3
MAR 2011 | | 17{cvu}

The final class implementing the HolidayRule interface is the
EasterRule class that is used to determine Good Friday and Easter
Monday for a given year (Listing 5).

Good Friday and Easter Monday are not rolled over, therefore, the
isRollOver method always returns false. EasterRule’s
implementation of the interpret method calls the getEasterSunday
m eth od t o de t e r mi ne Eas t e r Sund ay fo r t he g iven yea r .
getEasterSunday is the implementation of the Easter Sunday
calculation algorithm of the Astronomical Applications Department of the
US Naval Observatory and is taken from their website [1]. Once Easter
Sunday is determined, it is incremented to obtain Easter Monday and
decremented twice to obtain Good Friday. Both these dates are added to
the list of holidays passed to the interpret method as an argument.

The Date class (Listing 6) used in this application is not the
java.util.Date class but a simple wrapper over three integers
representing day of the month, month of the year (January = 1, February
= 2, . . . December = 12) and the year. It , however, does use
java.util.Calendar to perform date arithmetic and uses its
representation of the days of week. The primary reason for not using
java.util.Date was to have a very simple representation of date

without time and time zone information but includes the necessary date
operations not provided by java.util.Date.

The storage and access of holiday rules is beyond the scope of this article.
These could be performed in a number of ways ranging from databases,

public class EasterRule implements HolidayRule {
 @Override
 public boolean isRollOver(){
 return false;
 }
 @Override
 public void interpret(List<Date> holidays,
 int calcYear, List<Date> exclusionDates) {
 Date easterSunday =
 getEasterSunday(calcYear);
 holidays.add(getGoodFriday(easterSunday));
 holidays.add(getEasterMonday(easterSunday));
 }
 private Date getEasterMonday(Date easterSunday)
 {
 Date easterMonday =
 new Date(easterSunday.getYear(),
 easterSunday.getMonth(),
 easterSunday.getDay());
 easterMonday.add(Calendar.DAY_OF_MONTH, 1);
 return easterMonday;
 }
 private Date getGoodFriday(Date easterSunday) {
 Date goodFriday =
 new Date(easterSunday.getYear(),
 easterSunday.getMonth(),
 easterSunday.getDay());
 goodFriday.add(Calendar.DAY_OF_MONTH, -2);
 return goodFriday;
 }
 private Date getEasterSunday(int calcYear) {
 int c, n, k, i, j, l, month, day;
 c = calcYear / 100;
 n = calcYear - 19 * (calcYear / 19);
 k = (c - 17) / 25;
 i = c - c/4 - (c-k)/3 + 19*n + 15;
 i = i - 30 * (i/30);
 i = i - (i/28) * (1-(i/28)
 (29/(i+1))((21-n)/11));
 j = calcYear + calcYear/4 + i + 2 - c + c/4;
 j = j - 7 * (j/7);
 l = i - j;
 month = 3 + (l + 40)/44;
 day = l + 28 - 31*(month/4);
 return new Date(calcYear, month, day);
 }
}

Li
st

in
g

5 public class Date {
 private int year;
 private int month;
 private int day;
 public Date(int year, int month, int day){
 set(year, month, day);
 }
 public Date(Calendar calendar){
 this(calendar.get(Calendar.YEAR),
 calendar.get(Calendar.MONTH) + 1,
 calendar.get(Calendar.DAY_OF_MONTH));
 }
 private void set(int year, int month, int day){
 this.year = year;
 this.month = month;
 this.day = day;
 }
 public void add(int field, int value){
 Calendar cal = Calendar.getInstance();
 cal.set(this.year, this.month - 1,
 this.day, 0,0,0);
 cal.add(field, value);
 set(cal.get(Calendar.YEAR),
 cal.get(Calendar.MONTH) + 1,
 cal.get(Calendar.DAY_OF_MONTH));
 }
 public int getDayOfWeek(){
 Calendar cal = Calendar.getInstance();
 cal.set(this.year, this.month - 1,
 this.day, 0,0,0);
 return cal.get(Calendar.DAY_OF_WEEK);
 }
 public int getYear(){
 return this.year;
 }
 public int getMonth(){
 return this.month;
 }
 public int getDay(){
 return this.day;
 }
 @Override
 public String toString(){
 return this.day + "-" + this.month
 + "-" + this.year;
 }
 @Override
 public int hashCode(){
 return new Integer(this.year).hashCode() ^
 new Integer(this.month).hashCode() ^
 new Integer(this.day).hashCode();
 }
 @Override
 public boolean equals(Object o){
 boolean reply = false;
 if ((null != o) && (o instanceof Date)){
 Date tmp = (Date) o;
 reply = (this.year == tmp.year);
 reply = reply && (this.month == tmp.month);
 reply = reply && (this.day == tmp.day);
 }
 return reply;
 }
}

Listing 6
18 | | MAR 2011{cvu}

files or via web services. The access mechanism should return a list of
objects each implementing the HolidayRule interface. Objects that
specify rules for holidays that do not roll over need to be at the top of this
list for reasons discussed earlier. Additionally, the access mechanism
should also return a list of objects of the Date class representing the
exclusion dates. The application should iterate over these rules calling the
interpret method of each rule for a given year. In the end, the
application has a list of holidays for the given year that it can use. Output
of an example program using the rules in Table 2 (and their implementation
discussed above) for 2011, 2012 and 2013 is shown in Table 3.

The dates returned are not in order because the holiday rules that generate
them are not processed in the date order but ones for which the holidays

do not roll over are interpreted before the others. Ordering can easily be
achieved by creating a comparator for the Date class, assigning an
instance of that comparator to a java.util.TreeSet instance and
loading into it the list of holidays returned. DateComparator (Listing
7) is a comparator to compare two instances of the Date class. It converts
the Date instances being compared into their string representations in the
yyyymmdd format and then returns the result of string comparison. Table 4
shows the dates from Table 3 sorted using a java.util.TreeSet
instance and a DateComparator object.

Concluding Remarks
Depending on the business requirements, calendar data can be of a
considerable size and can have risks associated with errors and omissions
in case of manual entry and maintenance. Holiday calendars are a type of
calendars that can be dynamically generated from a smaller set of fixed or
rarely changing rules, thereby mitigating such risks.

Using the English holiday calendar, this article discusses an
implementation of such rules. Implementation of a comprehensive holiday
calendar generator is a significant undertaking as these rules and their
interpretation can have regional, social and cultural variations. However,
a carefully designed hierarchy of representation of these rules can capture
most of such variations. Exceptions include rules based on celestial or
astronomical events and holidays based on these may have to be explicitly
defined. 

References
[1]The Date of Easter, http://aa.usno.navy.mil/faq/docs/easter.php

[2] Gamma E., Helm R., Johnson R., Vlissides J, (1994), Design
Patterns: Elements of Reusable Object Oriented Architecture,
Addison Wesley

Ta
bl

e
3

Ta
bl

e
3

package data;

import java.util.Comparator;

public class DateComparator implements
Comparator<Date> {

 @Override
 public int compare(Date o1, Date o2) {
 String date1 = String.format("%04d%02d%02d",
 o1.getYear(),
 o1.getMonth(),
 o1.getDay());
 String date2 = String.format("%04d%02d%02d",
 o2.getYear(),
 o2.getMonth(),
 o2.getDay());
 return date1.compareTo(date2);
 }
}

Li
st

in
g

7

2011 2012 2013 2011 2012 2013

29-4-2011 4-6-2012 29-3-2013 3-1-2011 2-1-2012 1-1-2013

22-4-2011 5-6-2012 1-4-2013 22-4-2011 6-4-2012 29-3-2013

25-4-2011 6-4-2012 1-1-2013 25-4-2011 9-4-2012 1-4-2013

3-1-2011 9-4-2012 27-5-2013 29-4-2011 7-5-2012 6-5-2013

30-5-2011 2-1-2012 6-5-2013 2-5-2011 4-6-2012 27-5-2013

2-5-2011 7-5-2012 26-8-2013 30-5-2011 5-6-2012 26-8-2013

29-8-2011 27-8-2012 25-12-2013 29-8-2011 27-8-2012 25-12-2013

26-12-2011 25-12-2012 26-12-2013 26-12-2011 25-12-2012 26-12-2013

27-12-2011 26-12-2012 27-12-2011 26-12-2012

Table 4
MAR 2011 | | 19{cvu}

http://aa.usno.navy.mil/faq/docs/easter.php

Code Critique Competition 74
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’ve tried to write a simply program to split up a single text file into separate
files. The idea is each line starting with "--- " and ending with " ---" contains
the filename for the lines following it. It doesn’t work on my old machine:
gives me a ‘bad allocation’ error. It works on my new machine – although it
seems a little slow – but the filenames don’t get the trailing minus signs
removed. Can you help me find my bug?

The example code (unpack.cpp) is in Listing 1 and a sample input file is:

 --- file1.txt ---
 This is file 1
 --- file2.txt ---
 This is file 2
 Line 2
 Line 3

Critiques

Paul Floyd <Paul_Floyd@mentor.com>

First, let’s try to compile it.

 "test.cpp", line 17: Warning: Conversion of 64
 bit type value to "unsigned" causes truncation.

That’s with Oracle Solaris Studio 12 update 3 beta. GCC 4.5.1 compiles
it without a peep.

Give it a quick run. It is ‘slow’. Considering what the warning is, I have
an idea what is going wrong. Let’s fix the warning

 std::size_t len(lbufr.find(4, ' ') - 4);

Now I get an exception.

 Error: invalid string size parameter in function:
 basic_string(const _charT*,size_type,const
 _Allocator&) size: -5 is greater than maximum
 size: -1

(without a terminating newline).

Let’s go back to the original. I think that the warning is due to the
std::string::find 'not found' value being truncated to 32bit
unsigned, and the string then being resized to that (4Gbytes). Let’s
confirm:

 valgrind --tool=massif ./test < in.txt

 ms_print massif.out.5706 > ms.out

It’s a long file, so I’ll just show the pretty picture.
 GB
4.000^ : :
 |::::::::::::::#:::::::::::::@@@:
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 |: # @ @ @ :
 0 +--->Gi
 1.877

X axis is ‘giga-instructions’. Peak memory is shown by #s, and we see
4Gbytes being allocated.

Revert back to size_t, add a couple of debugging cout statements, and
read the std::string doc. The char and the pos arguments are
reversed. The prototype is

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 3

#include <fstream>
#include <iostream>
#include <string>

int main()
{
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 std::string lbufr;
 while (std::getline(std::cin, lbufr))
 {
 if (lbufr.find("--- ") == 0 &&
 lbufr.find(" ---") > 0)
 {
 unsigned len(lbufr.find(4, ' ') - 4);
 lbufr.erase(0, 4);
 lbufr.resize(len);
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(lbufr.c_str());
 continue;
 }
 ofs << lbufr << std::endl;
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what();
 }
}

Li
st

in
g

1

20 | | MAR 2011{cvu}

 size_t find (char c, size_t pos = 0) const;

Make that change, and the testcase seems to work.

There are still quite a lot of things that I don’t like. The magic numbers 4.
Change that.

 const char * const prefix = "--- ";
 const char * const suffix = " ---";
 const size_t prefixLength = std::strlen(prefix);
 const size_t suffixLength = std::strlen(suffix);

Looking for " ---" without checking that it is at the end. I’ll use rfind
instead and check that it is at the end.

 if ((lbufr.find(prefix) == 0) &&
 (lbufr.rfind(suffix) ==
 lbufr.length() - suffixLength))

Using a find for ' ' starting after the prefix won’t work if the filename
contains spaces. In fact, why do we need to do another find? We’ve
already done two for the prefix and suffix.

 std::size_t len(lbufr.length() - prefixLength
 - suffixLength);
 lbufr.erase(0, prefixLength);
 lbufr.resize(len);

The case where the filename is zero length isn’t handled correctly (that is,
"--- ---" in the input stream. Since I’ve added two calls to
std::string::length(), I can factor that out at the same time.

 size_t length(lbufr.length());
 if (length > prefixLength + suffixLength &&
 lbufr.find(prefix) == 0 &&
 (lbufr.rfind(suffix) ==
 length - suffixLength))

There are a couple more things that I’d change. I don’t like short names
like lbufr. I’d change that to lineBuffer. The specification of the
problem doesn’t state what to do in case of an error. In this case, there’s a
catch all at the top level. Depending on what is really required, it may be
better to handle some errors. For instance, if there is a file permission
problem, it might be preferable to skip the file and continue. At least some
clear message should be printed. As it stands I get "Error: iostream
object has failbit set". It’s also not specified what to do in the
case of a zero length filename. Should a warning be printed? In my code
below, I just ignore it, and the text is treated as though it were content.

I d i d t h i n k o f do i n g t he e ra se / r e s i z e i n o ne g o w i t h
std::string::substr(). I doubt that would gain anything, but it is
perhaps a little clearer.

From a design point of view, I think I’d almost certainly have chosen XML
for the markup rather than "--- " and " ---".

So here’s my final version.

#include <fstream>
#include <iostream>
#include <string>
#include <cstring>

int main()
{
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 const char * const prefix("--- ");
 const char * const suffix(" ---");
 const size_t prefixLength(
 std::strlen(prefix));
 const size_t suffixLength(
 std::strlen(suffix));
 try
 {
 std::string lbufr;
 while (std::getline(std::cin, lbufr))
 {

 size_t length(lbufr.length());
 if ((length > prefixLength + suffixLength)
 &&
 (lbufr.find(prefix) == 0) &&
 (lbufr.rfind(suffix) ==
 length - suffixLength))
 {
 lbufr.erase(0, prefixLength);
 lbufr.resize(length - prefixLength -
 suffixLength);
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(lbufr.c_str());
 continue;
 }
 ofs << lbufr << std::endl;
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what() << "\n";
 }
}

And here is my modified input containing some harder tests: a file called
"---", zero length file and empty content.

 --- file1.txt ---
 This is file 1
 --- file2.txt ---
 This is file 2
 Line 2
 Line 3
 --- --- ---
 This is file ---
 --- Still file '---'
 Last line in file ---.
 --- file with blank ---
 just one line
 --- ---
 null filename
 --- empty_content ---
 --- not_empty ---
 not empty

Alan Bellingham <AlanB@episys.com>

Let’s look at what might cause an issue.

> if (lbufr.find("--- ") == 0 &&
> lbufr.find(" ---") > 0)
> {

At first sight, this is the line that is most likely to be causing a problem.
After all, if this condition fails, then the content of the condition block
won’t happen.

On examination, the second part of this condition turns out to be
unnecessary – it is impossible for it to fail when the first part passes. This
is because find() returns a size_t, an unsigned value which can
therefore only be either equal to or greater than zero. We already know by
inspection that it’s not zero (or the first part of the condition would have
failed), so it must be always true when tested.

So what happens should we encounter a line that starts with "--- ", but
does not contain the terminating sequence as well, and that in fact has no
space later on the line?

Well, in those circumstances, this following line gets interesting. It returns
size_t(-1) to mark failure, but that’s a very large unsigned value.
Subtracting 4 from it makes it only very slightly less enormous.

> unsigned len(lbufr.find(4, ' ') - 4);
MAR 2011 | | 21{cvu}

> lbufr.erase(0, 4);

And now it attempts to change the size of the string. Unfortunately, we’re
now asking the system to allocate almost all of addressable memory into
it, assuming common implementations.

But the complaint isn’t about the code misbehaving with malformed data,
but misbehaving with data as per the example file. So, given that we’re
already suspicious about the call to lbufr.find() where it’s looking for
a character, perhaps we ought to check that function.

What does the documentation say?

 size_type find(charT c, size_type pos=0) const;

So, the item to find goes first, and then the optional starting position
follows. And the actual call:

 lbufr.find(4, ' ')

Oh dear. Whoops.

This is one of the cases where C++ allows programming errors that other
languages would warn about. The first argument is the value 4, also known
as CTRL-D in ASCII, and the starting value is ASCII character 32, which
is used for the starting position.

So the code ends up looking for CTRL-D (which is almost certainly never
within the string it’s looking at), starting at position 32, which is quite
frequently beyond the end of the string. No wonder the code takes so long:
the algorithm is probably optimised on the assumption that it should stop
either when the character is found, or when the remaining string size
reaches zero. Here, it’s starting at less than zero and decrementing each
time. It’s only going to hit zero when it’s wrapped all the way round
through the address space and come up to the end of the string from the
far side.

Before that happens, there’s a pretty good chance that it’ll hit some form
of access violation and blow up. Modern operating systems are much more
likely to enforce this, but older machines without protected memory access
were more tolerant.

Of course, when it fails, back comes that size_t(-1) value, which blows
up the memory manager.

The moral is: be careful to check functions that you call.

Simon Farnsworth <simon@farnz.org.uk>

The big clue from the student is ‘it doesn’t work...gives me a "bad allocation"
error’. Something in this code allocates memory far in excess of what you
would expect.

The code compiles without error or warning (from gcc -Wall), so the
bug is going to be subtle. So, first target is the allocation of memory that’s
implicit in lbufr.resize – if len is completely crazy, that could lead
to the bug. We could simply print len, and see if that exposes the bug, but
I’m going to take us down a different route that leads to the compiler
finding the bug for us.

As a first step, let’s stop manipulating the same buffer – we’ll treat it as a
constant throughout the loop. Some discipline is required here, but we’ll
get the compiler to help. As a side-effect of doing this, we will need to pull
the filename out into its own variable. We also spot that len is never
deliberately changed, so should be const to get the compiler to inform
us if we’re wrong. Change the body of the loop to:

 const std::string &line(lbufr);
 if (line.find("--- ") == 0 &&
 line.find(" ---") > 0)
 {
 const unsigned len(line.find(4, ' ') - 4);
 std::string filename(line);
 filename.erase(0, 4);
 filename.resize(len);
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(filename.c_str());

 continue;
 }
 ofs << line << std::endl;

We no longer refer to lbufr inside the loop, instead referring to our new
const reference line. There’s no change to behaviour, yet, but there’s now
an obvious silly thing – why are we copying the string, only to delete its
beginning and end? If we can make filename a copy of a substring of
the line, we are able to make it const, too. While we’re at it, len is a
size, and would more normally be a size_t in library functions. This gets
us:

 const std::string &line(lbufr);
 if (line.find("--- ") == 0 &&
 line.find(" ---") > 0)
 {
 const size_t len(line.find(4, ' ') - 4);
 const std::string filename(
 line.substr(4, len);
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(filename.c_str());
 continue;
 }
 ofs << line << std::endl;

Now we see a behaviour change; the program runs much faster, but it still
puts the text in files without the trailing " ---" removed. Looking at the
documentation for substr, this is what happens if we ask for a substring
bigger than the entire source string, telling us that len is definitely too
large.

Let’s continue down the path of moving things to clearly named const
variables; we introduce constants for the filename prefix and suffix, and
use them instead of the literals. It’s obvious that the literal 4s are meant to
be the lengths of the prefix and suffix, and that len is meant to be the length
of the filename. Less obvious (but still true) is that the literal space is meant
to be the filename suffix. We rename len to filename_length, for
clarity, and use our new constants for the prefix and suffix:

 const std::string &line(lbufr);
 const std::string filename_begin("--- ");
 const std::string filename_end(" ---");

 if (line.find(filename_begin) == 0 &&
 line.find(filename_end) > 0)
 {
 const size_t filename_length(line.find(
 filename_begin.length(), filename_end) -
 filename_begin.length());
 const std::string filename(line.substr(
 filename_begin.length(), filename_length));
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(filename.c_str());
 continue;
 }
 ofs << line << std::endl;

This stops compiling – we’ve found the bug. The arguments to find()
are swapped; this explains the symptoms, as find() is specified to return
std::numeric_limits<size_t>::max() if the string is not found,
resulting in length being insanely large.

It also explains why the behaviour is different on different systems; on my
64-bit system, unsigned is 32 bits large, while size_t is 64 bits large.
Integer coercion drops the top 32 bits of the result of find(), resulting
in my machine trying to allocate a shade under 4GB for each filename,
which takes a while. On a 32-bit system, where size_t is 32 bits, it would
22 | | MAR 2011{cvu}

still try and allocate just under 4GB, but this time it would fail with a bad
allocation error.

We swap them to the correct order, and the program now works for the
sample input. There’s still a lurking bug, though; we have assumed that
no filename contains the substring " ---", despite this not being in the
student’s spec. This is trivial to fix – changing find to rfind results in
the last match being found, and we then just need to compare this to the
length of the input line to be confident we’ve found a match. At the same
time, we no longer need two arguments to rfind, so let’s just remove the
start position argument completely:

 const std::string &line(lbufr);
 const std::string filename_begin("--- ");
 const std::string filename_end(" ---");

 if (line.find(filename_begin) == 0 &&
 line.rfind(filename_end) ==
 (line.length() - filename_end.length()))
 {
 const size_t filename_length(line.rfind(
 filename_end) - filename_begin.length());
 const std::string filename(line.substr(
 filename_begin.length(), filename_length));
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(filename.c_str());
 continue;
 }
 ofs << line << std::endl;

We now have code that meets the specification given, but it’s ugly, and
therefore going to be tricky to maintain. There are two problems, in my
view; firstly, there’s a continue buried deep in the if statement. As a
rule of thumb, continue and break from loops should only be used
when checking preconditions at the beginning of a loop; they cause
surprises if they come after the loop has done significant amounts of
processing. In this case, it’s easy to remove it – just change it for an else.

Secondly, we have two large lumps of code whose purpose is not
completely obvious, and in which we’ve already found bugs; one is the
code to determine if this is a filename, the other is the code to extract the
filename from a line. These should be extracted into clearly named
functions; it’s generally a good rule to optimize source code for readability
first, performance second, only breaking this rule where a profiler or
similar measuring tool tells you that the clear code is unacceptably slow.

My final code becomes:

 #include <fstream>
 #include <iostream>
 #include <string>
 #include <cassert>

 namespace
 {
 const std::string filename_begin("--- ");
 const std::string filename_end(" ---");

 const bool isFilename(const std::string &line)
 {
 return line.find(filename_begin) == 0 &&
 line.rfind(filename_end) ==
 (line.length() - filename_end.length());
 }

 const std::string extractFilename(const
 std::string &line)
 {
 assert(isFilename(line));

 const size_t filename_length(line.rfind(

 filename_end) - filename_begin.length());
 return line.substr(filename_begin.length(),
 filename_length);
 }
 }

 int main()
 {
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 std::string lbufr;
 while (std::getline(std::cin, lbufr))
 {
 if (isFilename(lbufr))
 {
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(
 extractFilename(lbufr).c_str());
 }
 else
 {
 ofs << lbufr << std::endl;
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what() <<
 std::endl;
 }
 }

You will notice that I’ve made a few small changes not discussed above.
The assertion in extractFilename is simply because that’s previously
been buggy code; if nothing else, the assert draws your attention to a
precondition that’s not otherwise documented. I’ve put std::endl on the
exception handler, to make the output easier to read.

Finally, I’ve put my utility functions and constants into an anonymous
namespace; this is intended to help any future maintainer, by indicating
that I only intended these constants and functions to be used within this
file. As a general rule, it’s worth getting into the habit of using namespaces
whenever appropriate; they stop symbol collisions, and provide useful
information to the maintainer.

Matthew Wilson <stlsoft@gmail.com>
Superficial Inspection

Before investigating the semantics in detail, I gave the code a superficial
inspection and made the following observations on the code as presented:

 turning on IOStreams’ exceptions is a place where dragons lie –
something to check on later?

 why call the variable lbufr and not simply (and more clearly)
line?

 the return type of basic_string<>::find() is an unsigned
integer, and the ‘not-found’ sentinel basic_string<>::npos is
-1 of that type, which is equivalent to
std::limits<size_type>::max(), so it’s always going to be
non-negative. Given the second string cannot be found at index 0 if
the first is, the second conditional subexpression lbufr.find("
---") > 0 is effectively always true, so the conditional expression
depends only on whether the line begins with "--- ". This opens
the possibility of a horrible fault – of which more later;

 use of constructor syntax for initialisation of len seems a bit obtuse;
MAR 2011 | | 23{cvu}

 the nature of the evaluation of len precludes use of paths with
spaces, and will fail in such cases. Furthermore, there are
possibilities of two faults. The first is similar to the earlier one, with
the same awful unintended consequences. The second could be the
explanation of your memory issue – of which more later;

 the manipulation of lbufr is baroque. Why not declare and
initialise a new (immutable) std::string instance via a single
call to substr()?

 why continue, rather than just else?

 why use std::endl? Is it necessary to ensure that each line of each
output file is written wholly in the case where the total file is not
written wholly? If not necessary, then it is a needless performance
cost, since it effectively circumvents the buffering of the Standard
C++ IOStreams library (and the presumable underlying Standard C
Streams) file layer;

 catching std::exception is an appropriate last-resort exception-
handler, but I suspect this will be inadequate to issue an appropriate
contingent report in the case of file-system failures;

 the program does not have any explicit return value, so will always
(implicitly) return 0, indicating success in all cases. Given that a
catch-clause exists, and its form implies non-normative behaviour,
EXIT_FAILURE should be returned here.

Furthermore, in terms of functionality I make the following further
observations:

 I think the program should, by default, refuse to expand/decompress
into a file that already exists. A program option should be available
to effect overwrites only under explicit user direction;

 I think the program should be able to take its input either from the
standard input stream or from a named file;

 the (regex) format of /^--- (.+) ---$/ of the sentinel line is only
moderately unique. False positives (even without the defects) are
not very unlikely. Of course, if this is the publicly documented
behaviour of the program, then no user has cause to complain. But
they may have cause to not use it, if its bad design causes it to be
unusable.

Let’s deal with the defects first. In reverse order (because they are
dependent):

3. memory exhaustion;

2. match to non-sentinel lines;

1. obtain wrong output file path (and potentially overwrite unintended file).

Smoke test(s)

Next, I ran some smoke tests. I created the file file1.txt, whose
contents are as follows (with \t indicating a TAB character and \n
indicating a line ending):

 --- file1-a.txt ---\n
 abc\t\n
 --- abc\n
 def \n
 \n
 --- file1 b.txt ---\n
 ghi\n
 jklm \n
 \n
 nop

When I run with the original program with this input the process throws
an exception in the call to resize(). This is a consequence of a defect I
hadn’t spotted during visual inspection: the arguments presented to the
find()method are in the wrong order: the first parameter is the character;
the second the start position. What’s actually requested is the index of the
character '\4', which doesn’t occur anywhere in the input file (and is not
likely to occur, as it’s the End-Of-Transmission character in ASCII), from
position 32 (the value of the space-character code). In pretty much every
line it’ll encounter, the find() will fail, and will return npos (e.g.

0xffffffff, 0xffffffffffffffff), from which 4 is subtracted to evaluate len.
Consequently, the call to resize() fails.

Fix-1

Obviously, this is defect must be fixed, yielding the second version of the
program (program0.fix1), as in:

 /* file: program0.fix1 */
 ...
 unsigned len(lbufr.find(' ', 4) - 4);
 ...

Running this program immediately yields another failure. When the third
line, "--- abc", is encountered, the problem with the second sub-
expression manifests. The non-sentinel sline is matched as a sentinel
line, but since it does not contain a space after index 4, the find() fails
and len is again a very large number, and resize() fails.

Fix-2

The second fix is to correct the second sub-expression, yielding the third
version of the program (program0.fix2), as in:

 /* file: program0.fix2 */
 ...
 lbufr.find(" ---") == lbufr.size() - 4)
 ...

Running the program passes the previous defect, but fails on the second
proper sentinel line, the one with the space in the path. It produces a file
with the name "file1", rather than the required "file1 b.txt".

Fix-3

The fix is to simplify the evaluation of len, dispensing with the
unnecessary search for something we’ve already (correctly, as of the
second fix) evaluated, namely the start of the trailing sentinel sequence.
This yields the third version of the program (program0.fix3), as in:

 /* file: program0.fix3 */
 ...
 unsigned const len = lbufr.size() - 8;
 ...

This version works for the full input test case file file1.txt. Of course, that’s
hardly exhaustive, but at least we’ve exercised all the defects I spotted (and
the one I didn’t!); in a ‘proper’ development, I’d have extracted the parsing
code to a function and subjected it to extensive unit-tests.

However, I think we can simplify the evaluation of the file name, and
dispense with len altogether, using substr(). Along with the other
minor nits from my first inspection, I would instead rework the program
(program0.fix4) as follows, with the changed parts darker:

 /* file: program0.fix4 */
 #include <fstream>
 #include <iostream>
 #include <string>
 #include <cstdlib>

 int main()
 {
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 std::string line;
 while (std::getline(std::cin, line))
 {
 if (line.find("--- ") == 0 &&
 line.find(" ---") == line.size() - 4)
 {
 std::string const path =
 line.substr(4, line.size() - 8);
 if (ofs.is_open())
 {
 ofs.close();
 }
24 | | MAR 2011{cvu}

 ofs.open(path.c_str());
 }
 else
 {
 ofs << line << "\n";
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what();

 return EXIT_FAILURE;
 }

 return EXIT_SUCCESS;
 }

Inadequate failure-handling

Consider now a second input file, file2.txt, which has a slight addition, the
line "--- ---":

 --- file1-a.txt ---\n
 abc\t\n
 --- abc\n
 def \n
 \n
 --- file1 b.txt ---\n
 ghi\n
 jklm \n
 --- ---\n
 \n
 nop

When run with program0.fix4, we find that the new line precipitates an
exception, thrown during the call to ofs.open(). However, one of the
lacklustre areas of the standard library – failure handling – is brought to
light here: with Visual C++ (various versions), the catch-clause causes the
almost-completely-useless contingent report "Error: ios::failbit
set"; with GCC (3.4, on Windows) it gives the even less useful "Error:
basic_ios::clear".

This issue is part of a much larger set of issues that I’ll be dealing with in
the next few instalments of my reinvigorated ‘Quality Matters’ column,
as of next month’s Overload, so I won’t go into it any further here beyond
saying that a pre-emptive check should be made on the path; in this
particular case it would be easy to specify a useful contingent report as in:

 ...
 if (ofs.is_open())
 {
 ofs.close();
 }
 if(path.empty())
 {
 std::cerr << "Error: missing file"
 "name/path\n";
 }
 ofs.open(path.c_str());
 ...

In fact, given the scope of the program, I would prefer to implement it in
C, because that makes the failure-handling much more clear and
straightforward! I’ll discuss that further in the next QM, wherein I’ll
present several alternatives, including the C version.

(Pre-emptive thanks to Roger for being kind enough to agree to my re-
using this example program later.)

Barry Nichols <barrydavidnichols@gmail.com>

The main problem with this code is at the line:

 unsigned len(lbufr.find(4, ' ') - 4);

The first parameter of the string::find() function is the string to find
and the optional second parameter is the position to start searching at.
However, in the example code the parameters are the wrong way round.
But as the example code used a char ' ' it was converted to an int and
used as the starting location.

The corrected code would be:

 unsigned len(lbufr.find(' ', 4) - 4);

But this is only part of the problem as the there may be a space in the file
name at which the above will return the position of the space rather than
the end of the file name, this can be remedied by using the string we want
to match as the first parameter to find() which is " ---":

 unsigned len(lbufr.find(" ---", 4) - 4);

Another problem is that lbufr.find(" ---") > 0 will always be true
as find returns an unsigned value, this will result in the program
interpreting any line containing "--- " as a file name, regardless of
whether or not it contains " ---". The correct way to check if the string
w a s n ’ t fo u nd i s t o c om pa r e t he r e s u l t i n g po s i t i o n t o
std::string::npos, which is the value returned by find when the
search string is not found:

 lbufr.find(" ---") != std::string::npos

Also much of this code is unnecessary as the substr() member of the
string class can be used to get the filename e.g.:

 lbufr.substr(4, lbufr.find(" ---", 4) - 4);

By using the c_str() member to convert the returned value to a cstring
this can be used directly as an argument to ofs.open():

 ofs.open(lbufr.substr(4, lbufr.find(" ---",
 4) - 4).c_str());

Which would remove a few lines of code. The continue statement can
also be removed if the line ofs << lbufr << std::endl; is placed
inside an else which will make the code clearer as it will be obvious that
the code is either opening a new file IF a filename is given ELSE writing
to the open file.

Also, the files are only closed when a new file name is found so the last
file doesn’t get closed. It would be better to close the last file at the end of
the program, by simply repeating:

 if (ofs.is_open())
 ofs.close();

after the catch block.

The resulting code after these alterations would therefore be:

 #include <fstream>
 #include <iostream>
 #include <string>

 int main()
 {
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 std::string lbufr;
 while (std::getline(std::cin, lbufr))
 {
 if (lbufr.find("--- ") == 0 &&
 lbufr.find(" ---") != std::string::npos)
 {
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(lbufr.substr(4,
 lbufr.find(" ---", 4) - 4).c_str());
 }
 else
 {
MAR 2011 | | 25{cvu}

 ofs << lbufr << std::endl;
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what()
 << std::endl;
 }
 if (ofs.is_open())
 {
 ofs.close();
 }

 return 0;
 }

Graham Patterson <grahamp@berkeley.edu>

If I was faced with this sort of problem in my normal work, I would
consider the Unix utilities split or csplit. However both of these are
intended to split the input into predefined named files without extracting
any lines. The problem, as gleaned from the example code, is to remove
the filename marker lines and separate the remaining text into the provided
file names.

I will also preface the following comments with the observation that I do
not work in C++. The general algorithm seems reasonable:

1. Read the input from stdin

2. If the line is a file name marker, extract the name. If there is an
existing output file stream active, close it before opening the new
file for output.

3. Write non-marker lines to the current output stream.

There are a couple of issues with the design as implemented. First, the final
output file is not closed. This would be a problem if the code was used as
a frequently called routine, as most environments have an upper bound on
active file streams. Secondly, the code assumes that the first line of input
is a valid file marker line. This is a little risky in the general case, though
if the input is machine generated it might be considered reliable. Without
knowing the design parameters it is difficult to assess the risk in this
instance.

On to the code provided. The marker line test is weak. It is possible that
it would match a line without a valid file name. '--- ---' meets the
criteria, for example. The second clause should be

 lbufr.rfind(" ---") > 6

to ensure that the tail of the marker allows space for a filename of at least
one character. Since the marker strings are both four characters, the code
would be more robust with the strings assigned to variables, and the magic
4s converted to the length of these strings.

The removal of the marker text needs to be re-thought. The test for the
marker start and end is more reliable than just stepping over the presumed
filename because it is anchored at the start and end of the line. They both
have to be present for a valid marker line. The leading and trailing markers
can be removed with variants of the .erase() method. Since there are
no specific notes on the file name format, the possibility of spaces in the
file name should be considered when using the .find() method, and the
residual filename should be at least one non-space character. A robust
approach would rule out pure path separators as well, but this goes back
to the parameters governing the generation of the source file. Tightening
up the file name extraction should remove the run-time errors which are
probably due to this string processing.

This is one of those tasks that I would probably give to AWK or Python
to handle. These languages have the benefit of simple regular expression
pattern matching and easy removal of unneeded fields.

Here is an AWK solution:

 function closefile(f) {
 if(f != "") {

 close(f)
 }
}
 BEGIN {
 outfile =""
 }

 $1 ~ /---/ && $NF ~ /---/ && NF >= 3 {
 gsub(/^--- +/, "")
 gsub(/ +---$/, "")
 closefile(outfile)
 outfile = $0
 next
 }

 outfile != "" {
 print $0 > outfile
 }

 END {
 closefile(outfile)
 }
 #

and here is a Python one:

 import sys
 import re

 pattern = re.compile(r"^--- (.+) ---$")
 f = False
 for l in sys.stdin:
 fn = re.match(pattern, l)
 if fn:
 if f and not f.closed:
 f.close()
 f = open(fn.group(1),'w')
 continue

 f.write(l)
 else:
 if f and not f.closed:
 f.close()

Huw Lewis <huw.lewis2409@gmail.com>

My laptop reports the bad_alloc exception when running the program
as is. This suggests either a huge amount of memory is being requested or
some kind of infinite loop that exhausts the memory available to the
process. The error occurs very quickly so I expect it is the former.

The main function has no return statement. Most compilers let us get away
with that and provide a zero return code for us. But in our case wouldn’t
we want to return a non-zero (error) code on failing to execute
successfully? Our exception handler represents the failure case so why not
set an error code here?

 catch (std::exception const& ex)
 {
 std::cerr << "Error: " << ex.what();
 return -1;
 }

 return 0;

The getline function is declared in <string> as a helper method and
extracts data from an istream up to (but not including) an end of line
character. The getline function returns a reference to the istream
object and this is being used as the while loop condition. The stream
(ios) base class provides an overloaded operator void* () which
returns a NULL pointer if any of the error status flags are set. Once we get
26 | | MAR 2011{cvu}

to the end of the file and do another getline operation this will become the
case and loop will terminate.

The two string::find operations tell us that the line begins with
"--- " and also has another " ---" marker later on in the line and
therefore this is a file boundary marker line. Therefore we should close any
existing output file data and start a new one.

A third string::find operation is performed on the line buffer in order
to calculate the length of the filename portion. The bug is here – the
parameters are the wrong way around. The author meant to tell the operator
to start the search for a space character (value = 32) from index 4. Instead
we have a search for the value 4 from the 32nd character – which clearly
doesn’t exist and will instead return the std::string::npos constant
to indicate failure. This constant is of type size_t (unsigned) but is
defined as -1 to result in the maximum value for size_t i.e. very, very
large.

Crucially the code does not check the success of this find operation and
uses the result in deriving the len value. The lbufr string is modified to
erase the characters leading up to the file name, then resized to the file
name length. However, the error in calculating the file name length results
in a request to allocate a gigantic string and this is the source of the
bad_alloc exception.

One solution is to all this is to use the result of the 2nd find to eliminate
the need for the 3rd. This result could be used to create a new string
representing the file name without the need for the erase and resize
operations. I’ve re-written this into a helper function as follows:

 bool isFileBoundaryLine(const string& line,
 string& fileName)
 {
 bool isBoundaryLine(false);
 if (line.find("--- ") == 0)
 {
 // check for the end marker
 const size_t endIndex = line.rfind(" ---");
 if (endIndex != string::npos)
 {
 isBoundaryLine = true;
 const size_t startIndex(4);
 fileName.assign(&line[startIndex],
 endIndex - startIndex);
 }
 }
 return isBoundaryLine;
 }

There are still a couple of things I’m not so keen on. The fixed format of
the file name line is a little fragile. Maybe the use of the formatting stream
operations could help handle erroneous whitespace.

The continue statement is only one step away from goto. It isn’t a good
way to structure logic and can be eliminated with a simple else statement.
After a little more tidying, my final version is:

 #include <fstream>
 #include <iostream>
 #include <string>
 #include <sstream>

 using namespace std;

 bool isFileBoundaryLine(const string& line,
 string& fileName)
 {
 bool isBoundaryLine(false);
 if (line.find("--- ") == 0)
 {
 // check for the end marker
 const size_t endIndex = line.rfind(" ---");
 if (endIndex != string::npos)
 {

 isBoundaryLine = true;
 const size_t startIndex(4);
 fileName.assign(&line[startIndex],
 endIndex - startIndex);
 }
 }
 return isBoundaryLine;
 }

 int main() {

 ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 string lbufr;
 while (getline(std::cin, lbufr))
 {
 string fileName;
 if (isFileBoundaryLine(lbufr, fileName))
 {
 if (ofs.is_open())
 ofs.close();
 ofs.open(fileName.c_str());
 }
 else
 {
 ofs << lbufr << std::endl;
 }
 }
 }
 catch (exception const& ex)
 {
 cerr << "Error: " << ex.what();
 return -1;
 }

 return 0;
 }

Finally, I believe in choosing the best tool for the job at hand, and in this
case I’m inclined to suggest Python as a better candidate for this job. The
same program can be expressed in just a few easy (and customisable) lines
as shown below:

 #!/usr/bin/python
 import sys

 if __name__ == '__main__':
 f = None
 for line in sys.stdin:
 if line.startswith('--- ') and line.
 endswith(' ---\n'):
 filename = line.strip('- \n')
 f = open(filename, 'w')
 elif f is not None:
 f.write(line)

Commentary
The original code demonstrates some of the problems that can be caused
when the size of integer data types are different on different platforms.
Many people are very used to coding on a single platform and may become
unaware of differences between the various sorts of integers.
Unfortunately they are not interchangeable as this example demonstrates.

The second problem is the failure to detect the arguments being passed in
the wrong order. This is surprisingly hard to spot because of the silent
conversion between integer and char data types. However, the same
problem occurs in other languages whenever both arguments are of the
same type and you just get the order wrong.
MAR 2011 | | 27{cvu}

Code Critique Competition (continued)

Time For A Change?
Ric Parkin feels some ‘new blood’ is needed to help keep

Overload at the top.

ver four years ago I was asked, along with a few others, to guest edit
an issue of Overload while Alan Griffiths took a well-earned break.
I did Overload 81 [1].

Helped by the team, it was a fun time and a great experience, and a few
months later I took over as the permanent editor. I’ve enjoyed it immensely
since and have got a lot out of it, but think it’s time to start looking for a
new editor.

So what’s involved? Most important is coordinating between the various
parties. It all starts very early in the process, as you’re the point of contact
for authors – they submit an article or just suggest an idea. After giving
some early feedback and getting a good solid revision, you then send the
article to the review team and collate their suggestions (as well as
reviewing it yourself) ready to return to the author. Occasionally an article
needs some more hands-on-changes – perhaps a non-native speaker needs
language help – and you get someone to work closely with the author. Once
the articles are ready, they go to the production editor, who sets them in
our house style and returns the proofs. At this stage minor corrections can
be done, subtitles and pullquotes chosen, and tweaks to layout performed
to make it look good. Your biggest job happens around this time – writing
the editorial. I can sometimes find this a little daunting if I haven’t thought
of a good subject, but in reality you can easily adjust the content as you

see fit. Once it’s gone to the publishers you can have a rest, until it’s time
to start looking at the articles for the next issue.

This whole cycle is spread over two months so it’s not an onerous amount
of time – if you’re organised and prompt it only usually takes a few minutes
here and there. And you really do get something special out of it – it looks
great on your CV, and you get to talk to some really great authors.

Interested, or just want more details? Just ask me or any other committee
member – a chat over a beer at the conference would be great opportunity.
Being a guest editor for an issue would also be a great introduction to
what’s involved and can be easily arranged – why not find out?

Reference
[1] http://accu.org/index.php/journals/c232/

O

RIC PARKIN
Ric has been programming professionally for around 20
years, mostly in C++, for a range of companies from tiny
startups to international corporations. Since joining ACCU
in 2000, he’s left a trail of new members behind him. He
can be contacted at ric.parkin@gmail.com.
Checking the return code from the function would have detected the
problem earlier. I won’t add any more as the entrants covered a lot of
ground between them!

The Winner of CC 73
It was a hard choice this time – partly because of having a good number
of entries. I decided, after some musing, that Paul Floyd’s answer was the
best one this time because of the combination of use of a tool, the
commentary and his test cases.

Code Critique 74
(Submissions to scc@accu.org by Apr 1st)

A classic little problem here: can you explain what might be problematic
about the class in Listing 2, recently found in an actual production code
base…

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from
the ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who
typically get the magazine much later than members in
the UK and Europe.

/**
 Singleton template definition
*/
#ifndef _SINGLETON_H
#define _SINGLETON_H

namespace utilities
{
 /** Singleton template */
 template<class T> class Singleton
 {
 public:
 static T* getInstance()
 { return theInstance; }
 static void setInstance(T *instance)
 { theInstance = instance; }

 protected:
 Singleton();
 ~Singleton();

 static T* theInstance;
 };
} // namespace utility

#endif // _SINGLETON_H

Listing 2
28 | | MAR 2011{cvu}

http://accu.org/index.php/journals/c232/

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Desert Island Books
Francis Glassborow maroons Derek Jones

on our desert island.

have been asked to write a few words introducing Derek. First let me warn
you to be careful if you google for him. Try 'Derek Jones C programming'
and you will discover two people meet these criteria and both are on the

academic side. Our Derek is the one whose company is Knosoft. He is also
the author of arguably the most comprehensive book on C that has ever
been written. Titled The New C Standard: An Economic and Cultural
Commentary, this tour de force was eventually rejected by his publisher and
is now available for free as an ebook (pdf format).

I can remember him taking time to explain to me why programming language
standards are important in ways that are unlike standards for electric wiring
(mainly concerned with safety issues).

Derek is very different from your average programmer in that he extends his
interests into many aspects of code writing that are usually ignored by
others. He certainly has a strong academic bent and has a high reputation
in the world of programming Standards. He is also concerned with what
causes errors in code. He has spent time and effort trying to determine the
causes of coding errors.

Some of you may have met him at one of our conferences where he has
taken the opportunity to do various pieces of research into the psychology
of programming and programmers. If you do not already follow his blog, I
think you will find it worth surfing to www.knosof.co.uk and then follow the
link to ‘The Shape of Code'.

Finally, I think that Derek is one of those people who might enjoy the peace
of a desert island sitting in the sun away from distraction and thinking about
the many things that influence the quality of code.

Derek M Jones
Why would I want to take books to a desert island? Two reasons that spring
to mind are because I get pleasure reading them and because they contain
information that is not in my head.

I am a plot oriented reader and having enjoyed reading a book have to wait
a good number of years before there is a chance I will enjoy it as much on
a second reading. Taking books for pleasure that I have not yet read is a
risky business, there is a high probability I will not enjoy them and besides
reading them once every few years is an inefficient use of resources.

The one of the few kinds of book that both pleasureable to leaf through
and contain lots of information are dictionaries. With the economic and
cultural center of gravity moving to China it would be useful to be able to

re ad
Ch in ese .
NTC’s New Japanese-
Engl i sh Charac ter
Dictionary is an excellent
dictionary packed with useful
informat ion tha t makes i t an
interesting read. This dictionary choice is based on
ignorance about good Chinese dictionaries (I have not
looked for any) and because I know that Japanese Kanji
characters are mostly taken directly from Chinese and
Japanese people I know tell me they can read a lot of
Chinese text.

I could spend time on the beach drawing and learning a
couple of characters a day.

So what other information would I like to acquire and what are the good
books on those subjects?

If my island includes a computer (and the necessary solar or hydroelectric
power) I could write some software. I stopped being at the sharp end of
compiler writing at about the time that commonly available processor
hardware started to do lots of very weird and wonderful stuff internally
(e.g., chopping instructions up into smaller micro operations that executed
in who-knows-what order and shadow register units). It would be fun to
write an optimizing code generator that took these features into account.
So I would need a copy of the processor reference manual for the cpu in
the computer I had (for once I would be happy for this to be Intel because
their processors invariable have strange quirks and I have time on my
hands rather than having to ship to customers yesterday).

If I was stuck with a computer and no processor reference manual (or the
wrong one) I could always work on a compiler front end. Minimalism and
C++ are two topics that rarely appear together and if I expected to spend
many years on my island a minimalist C++ compiler front end would soak
up the time. Ok, yes, the C++ Standard is a hastely written bloated sprawl
of a language, but compiler writers are hired guns who would rarely work
if they limited themselves to languages they thought worthy of their time.
I need a challenge and writing a minimalist C++ front end is certainly that,
Java would not take that many years, the world needs me to invent a new
language like I need a hole in the head and just think of the press coverage
‘Man rescued from desert island wrote C++ front end in 100,000 lines of

code’.

There will be lots of grains of sand to count on my desert
island and one book that I would like to have the time
to complete is Analytic Combinatorics by Philippe
Flajolet and Robert Sedgewick. Combinatorics is the
science of combinations and finding a structure to the
patterns and sequences of trees, leaves, sand and other
things I see everyday would allow me to delude myself
into thinking that I understand the world I live in. This

book is at the upper end of my mathematical abilities and so will also help
me stay on my toes mentally.

Building items for my island will require tieing things together in such a
way that they don’t slip and slide. The Japanese have developed a
sophisticated art of rope binding (Kinbaku, in the west Shibari is the
commonly used term). However, books associated with this art are more
likely to target readers interested in Japanese bondage and BDSM than

I

MAR 2012 | | 29{cvu}

www.knosof.co.uk
http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml

The Art of Readable
Code
By Custin Boswell and Trevor
Foucher, published by
O'Reilly, ISBN 0596802293

Reviewed by Paul Floyd

This is a short book.
Amazon count 204 pages,
but I reckon that if you only count pages with
stuff to read on, there aren’t much over 100
pages. So I was a little amused when the authors
stated that they expected you to read the book in
a week or two. 3 days at a push more like it.

So, it’s clearly not a subject that is amenable to
inspire a 1000 page tome. There are quite a few
cartoons which, depending on your point of
view, pad out the pages or add some levity.

I felt that the authors were struggling to stretch
the idea to fill a book. The advice on ‘plain
English’ for comments and variable names is
sound. I wasn’t sure sometimes whether the

ideas about refactoring were ‘readability’ issues
or just simply better code.

The example code leans towards Google
Javascript. That made me think a bit about
Spinellis’ Code Reading which, though coming
at the problem from the other direction (how to
read code rather than how to write code that can
be read), does have fairly broad coverage. I don’t
think that you can have a checklist for the
creativity required for readability, but perhaps

this book would have benefited from a few
pearls of wisdom from a few revered
programming gurus.

The Boost C++
Libraries
By Boris Schäling, published
by XML Press, ISBN 0982219199

Reviewed by Paul Floyd

On the whole I enjoyed
reading this, and found the
coverage quite broad. Several of the Boost
libraries that are described I’ve never used and
so I was interested to see what they can do. The
thing that I found frustrating was the lack of
depth. The examples are fairly minimal, as are
the explanations. If you don’t understand

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members – if
you ever have a problem with this, please let me know – I can only act on problems that you tell
me about). We hope that you will give preference to them. If a bookshop in your area is willing to
display ACCU publicity material or otherwise support ACCU, please let us know so they can be
added to the list
 Holborn Books Ltd (020 7831 0022)

www.holbornbooks.co.uk
 Blackwell’s Bookshop, Oxford (01865 792792)

blackwells.extra@blackwell.co.uk

Bookshops
30 | | MAR 2012{cvu}

Bookshops

people wanting to bind tree branches together. These days, if I knew which
title to order, I can buy through Amazon; before computers were widely
available newsagents would give me strange looks when I asked for a copy

of Byte magazine and was once told by a shop assistant
‘We don’t sell those kinds of books’ when inquiring
after a copy of a book about LaTeX (yes, I did use the
correct technical pronounciation). I will have to leave
it to those readers of CVu who know about Kinbaku to
suggest which book I should take with me.

When my Man Friday turns up I will need a board game
for the evenings. The game of Go is by far and away the
best choice and probably the best
book I have on the subject (not that I

have many) is 38 Basic Joseki (Elementary Go Series,
Vol. 2) by Kosugi Kiyoshi and James Davies. The most
expensive Go sets use pieces (small black or white
ovaloids known as stones) made from shell, a material I
will have ready access to.

I have been asked to list at least one work of fiction, a
classification to which many books on software

engineering belong. The last non-technical book
that I thought wonderful was Motley Crue: The
Dirt – Confessions of the World’s Most Notorious
Rock Band by Tommy Lee, Vince Neil, Mick
Mars and Nikki Sixx. Not a salacious book at all
but a gripping, clear eyed and apparently brutally
honest narative and self-analysis of the lives of
members of a rock band.

If I had to chose a piece of music it would of
course be Bach’s The Well-Tempered Clavier. I
prefer Glenn Gould’s interpretation and have had
the Sony remastered versions (using 20 bits, where
did the other bits go or did they add to the original
16?) of book I and II (2 CDs in each of the two
packages) as the only CDs in my car for the last
five years.

Next issue: Lisa Crispin.

Desert Island Books (continued)

everything from the code and the short
explanation, then you have to resort to digging
around the Boost documentation, which
somewhat defeats the purpose of reading a book.
One thing that I must commend is the quality of
the translation, better than some books written in
the mother tongue.

Leading a Software
Development Team: A
developer’s guide to
successfully leading
people & projects
By Richard Whitehead,
published by Addison-Wesley,
ISBN 978-0201675269

Reviewed by Paul Floyd

The target audience is the newly promoted 1st
level manager. Whitehead’s advice seems to be
mostly anecdotal. The advantage to this is that
his observations often cut to the quick, certainly
more so than the more blurry observations made
by larger statistical studies or theoretical
methodologists. As an example, I thought the
the remarks about ‘Code-centred approach’
(part 3 of Chapter 38) hit the mark very well.
There are other occasions where I didn’t agree
with his views. His advice is more oriented
towards achieving short-term goals. I would
have liked to have seen more balance between
that and the long term. Whitehead doesn’t see
much point in Non-Functional Requirements,
whereas I feel that if you want long term quality
goals like maintainability, then you’re best
specifying those objectives up front.

Another point that didn’t match my experience
is the idea that people get promoted to be
managers because they are the best technically,
and thus leading from a designer/architect role.
From what I’ve seen, it’s usually length of
service and saying the right things to the level 2+
managers.

One last little quirk. A couple of times there is
mention of subordinates wanting to play with
the latest technology in order to pad out their
CVs. That seems a strange consideration for
deciding on how people should do their work.

A Self-Improvement
Process for Software
Engineers
By Watts S. Humphrey,
published by Addison-
Wesley, ISBN 0321305493

Reviewed by Paul Floyd

This is a book that I’m
going to love to hate. On
the one hand the cowboy coder in me just wants
to shoot from the hip. And on the other hand I
really would like to have some of that 1 defect
per 1000 lines of code delivered on time stuff.
Having read the book, I wonder if ‘DRFS’ might
not have been an alternative title – Development
Reduced to Following Scripts. As far as I can

tell, this is all about ‘getting it right’. Whose
right though? If you’re trying to do things that
have never been done before, then I’m not sure
that a mechanistic approach is the answer. Such
a method would help with implementing the
solution, but finding it? If you are far from the
bleeding edge and your ‘getting it right’ is
synonymous with ‘not getting it wrong’ then
this may well be for you.

The other big problem that I had was with the
examples. Clearly to get the best out of this book
you need to do the examples. They seem to be
designed to fit in with a 1-week course, lectures
in the mornings and lab sessions in the
afternoons. This means 3–4 hours for each
example. I found that hard to fit into ‘spare
time’, (which for me is usually in ½ hour to 1
hour chunks). That all assumes that you can even
get to use the examples. You can download them
from the Carnegie-Mellon SEI site. They are all
based on Windows and Access. If you don’t use
Windows or don’t have Access, then forget it. I
didn’t have Access when I started reading the
book, but then I got a cheap copy through my
employer. Not being familiar with it (and there
are no explanations for complete neophytes) it
was a bit of a struggle. No problem if you have
an instructor at hand.

Where Good Ideas
Come From – The Seven
Patterns of Innovation
By Steven Johnson,
published by Penguin,
ISBN 978-0-141-03340-
2

Reviewerd by Ian
Bruntlett

Highly Recommended

I am not a creativity expert. But I do like to
dabble :) For me this book has proved to be just
as important as Edward de Bono’s Lateral
Thinking book. The core of this book is
dedicated to 7 chapters discussing 7 patterns of
innovation. Personally I have spent some time in
a small R&D department and from what I have
seen there, the 7 patterns of innovation are spot
on. I’ll review this book, part by part.

Introduction: Reef, City, Web. Examines
extreme levels of creativity in these
environments.

1 The Adjacent Possible discusses how
innovation more often than not comes in small
steps & rarely in great leaps.

2 Liquid Networks. How environment needa to
be stable to support creativity – it must not be too
volatile or too rigid.

3 The Slow Hunch again talks about the reality
that leaps of imagination take place over a
lengthy period of time.

4 Serendipity. This chapter suggests knowledge
in one field of endeavour can lead to innovation
in an unrelated field.

5 Error discusses how the role of heredity and
changing environment shape a creature’s
evolution. For instance cloning requires less
effort and resources than sexual reproduction.
Sexual reproduction includes errors etc which
allows a creature’s offspring to vary and some
of the variants will be rewarded by evolution.

6 Exaptation (the process by which features
acquire functions for which they were not
originally adapted or selected).

Borrowing a mature technology from an entirely
different field and putting it into use solving a
problem in another field.

7 Platforms. A Platform is a space that
encourages innovation (e.g. 18th Century
Coffee Houses, Home Brew Computing Club).

This leads to acts of creation that instead of
opening a door to the ‘adjacent possible’ but
results in the building of a new floor (GPS,
Internet).

Conclusion – ‘The Fourth Quadrant’, studies
innovations from 1400–2000 using a 4 quadrant
classification system for innovations.

These innovations are described in detail in the
Appendix . The categories are: ‘Market’ or
‘Non-Market’, ‘Individual’ or ‘Networked’.

The numbered quadrants are:

1. Market/Individual – an innovator either
alone or part of a small group that wants to
profit directly from their innovations – e.g.
Nylon, Revolver, Programmable
Computer

2. Market/Networked – an unrelated
collection of groups that wish to profit
from a combined innovation – e.g.
Aircraft, Personal Computer.

3. Non-market/Individual – an innovator
either alone or part of a small group that
shares the innovation without intending to
profit from the innovation – e.g. Atomic
Theory, World Wide Web.

4. Non-market/Networked. An unrelated
collection of groups that collaborate on an
innovation for a common cause – Modern
Computer, Quantum Mechanics.

The chapter is called ‘The Fourth Quadrant’
because in our time – with the free transmission
of ideas over the internet – the fourth quadrant
work flourishes – and we all benefit.

Finally, in an attempt to encourage you to read
this book, I must quote the final paragraph:

The patterns are simple, but followed together,
they make for a whole that is wiser than the sum
of its parts. Go for a walk; cultivate hunches; write
everything down, but keep your folders messy;
embrace serendipity; make generative mistakes;
take on multiple hobbies; frequent coffee-houses
and other liquid networks; follow the links; let
others build on your ideas; borrow, recycle,
reinvent.
MAR 2012 | | 31{cvu}

32 | | MAR 2012

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

Education, education, education.
It’s a political catchphrase that
was popular in 1997 but never
really achieved what it might have done.
Perhaps 2012 will be the year when it will mean
something in the programming community.
There are a number of constellations in the world
of code that are aligned auspiciously so it will be
interesting to see what happens. One such
movement is Code Year [1] that is attempting to
get people to learn to program using JavaScript.
Their web site claims 392,473 people have
signed up so far, including Michael Bloomberg
[2]. I very much look forward to seeing our
friend, bon viveur and purveyor of high-speed
slides Mr John Lakos discuss value semantics
with his uber-boss in the bar at the upcoming
conference. Perhaps that might solve our
sponsorship problems (then again, maybe not).

Another celestial indicator is the publishing of
the Next Gen report [3] and the Royal Society’s
report on computing in schools [4]. The Next
Gen report is looking to turn the UK into ‘the
world’s leading talent hub for video games and visual
effects’ and the Royal Society is looking at ‘the
way forward for computing in UK schools’. Both
bemoan the lack of programming talent and say
that this starts in schools where ‘ICT’ focuses on
office skills and not rigorous computer science,
and that this is compounded by poor university
courses. Something is obviously awry in the
local water supply.

One more piece of this astronomical jigsaw is
the ‘ready real soon now’ Raspberry Pi [5], a
credit-card sized ARM-based computer with
high quality graphics for $25 or $35. This is a
fantastic idea and perhaps this will be the
successor to the BBC Micro and the ZX
Spectrum, machines that spawned a whole
generation of programmers. Lots of members
have told me they want to get their hands on one
of these little beasties so we won’t be short of
people to help others with relevant knowledge.

The point here is that the pendulum seems to be
swinging back. Programming as an activity is
coming back into fashion after a number of years
in the educational wilderness. The question for
us in the ACCU is how we can help. I’ve spoken
to a number of members who are very keen to
get involved in such a project as they see this as
a key aspect of what we should be doing. Should
we offer programming advice via something
like our existing members-only accu-prog-
questions mailing list? Should we get involved
with other similar organisations that want to
support these initiatives? The range of
possibilities for what to do is huge and we have
limited time and resources (both at a member
level and the ACCU as an organisation) so we
need to be careful not to overstretch ourselves
and also not to think (and talk) big but not
deliver. However, I believe it is important that
we catch this wave of enthusiasm and that we get
involved in some way in this. I would therefore
be eager to hear from members who wanted to
volunteer some time for this as well as those with
ideas of what we could and should do. Let’s get

our teeth into this, do something useful, help
enthusiastic newcomers and make a difference.

References
[1] http://codeyear.com/
[2] http://www.bbc.co.uk/news/

technology-16440126
[3] http://www.nesta.org.uk/events/

assets/features/next_gen
[4] http://royalsociety.org/education/

policy/computing-in-schools/
[5] http://www.raspberrypi.org/

If you read something in C Vu that you
particularly enjoyed, you disagreed with or
that has just made you think, why not put pen
to paper (or finger to keyboard) and tell us
about it?

http://codeyear.com/
http://www.bbc.co.uk/news/technology-16440126
http://www.bbc.co.uk/news/technology-16440126
http://www.nesta.org.uk/events/assets/features/next_gen
http://www.nesta.org.uk/events/assets/features/next_gen
http://royalsociety.org/education/policy/computing-in-schools/
http://royalsociety.org/education/policy/computing-in-schools/
http://www.raspberrypi.org/

	CVu24-1.pdf
	Too Clever By Half
	A Book Turned Me Into A Programmer
	Getting One Past The Goalpost
	Effect of Risk Attitudes on Recall of Assignment Statements (Part 2)
	Using D Slices
	Holiday Rules
	Code Critique Competition 74
	Time For A Change?
	Desert Island Books
	View From The Chair

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

