

JAN 2012 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Resolution
s I look for the umpteenth time at the
Raspberry Pi website I see I can still buy a
keyboard sticker for it but as yet, no actual

hardware. By the time you read this, it may well
be available (and you may even have managed to get
your hands on one!), promised as it is for early 2012.

For those who’ve not yet heard of it, the Raspberry Pi
is a personal computer the size of a credit card. It plugs
into a TV, has ports for network, USB, HDMI (amongst
other things) and comes in two flavours – the Model A
and Model B. See http://www.raspberrypi.org/faqs. The
model names are – apparently – quite intentional! Possibly
unsurprising with David Braben closely involved...

Personally I began with a Sinclair ZX81, and regarded
those few of my friends who had a BBC Micro
Computer with a strong sense of envy (Oooh! Proper
keyboard!). So it was that affordable home computing
grabbed my imaginationand launched me on a path of
discovery and wonder. And yes, I’m still on it.

The Raspberry Pi’s stated purpose is to make computer
programming fun and cheap, and is being targeted at
youngsters. The key to making that work will be the quality and accessibility of
the APIs to the various bits of hardware. Given that it's essentially a Linux-based
PC, it’ll need something ‘extra’ to set it apart, notwithstanding the cost, of
course.

I hope it becomes the platform that inspires a whole new generation of schoolkids
to be the hackers and geeks of tomorrow, and to find fun and exciting things to
do with it.

A
Volume 23 Issue 6
January 2012

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo, Robert
Clipsham, Pete Goodliffe, Paul
Grenyer, Peter Hammond,
Richard Harris, Derek Jones,
Roger Orr, Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JAN 2012

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
33 Desert Island Books

Roger Orr introduces Ola
Mierzejewska.

34 Inspirational (P)articles
Frances Love shares her
recent inspiration.

34 Regional Meetings
Frances Buontempo
reports on a recent
London gathering.

35 Code Critique Competition
Competition 73 and the
answers to 72.

REGULARS
40 ACCU Members Zone

Reports and membership
news, including notice of
the AGM.

SUBMISSION DATES
C Vu 24.1: 1st February 2012
C Vu 24.2: 1st April 2012

Overload 108:1st March 2012
Overload 109:1st May 2012

FEATURES
3 Coping with Complexity

Pete Goodliffe helps us to pick our battles.

5 On a Game of Lucky Sevens
Our student looks at the puzzle from the last issue.

6 Getting More Fiber In Your Diet
Robert Clipsham shows the benefits of fibers in D.

10 Using the Windows Debugging API on Windows 64
Roger Orr finds smoke and mirrors inside 64-bit Windows.

14 How To Be Dispensable
Frances Buontempo considers the virtue of being non-
essential.

15 Writing a Bazaar Plugin
Peter Hammond makes Bazaar do more than version
control.

19 Effect of Risk Attitudes on Recall of Assignment Statements
(Part 1)
Derek Jones reveals the results of the ACCU 2011
Conference developer experiments.

23 An Introduction to CLASP, part 1: C
Matthew Wilson presents a cure for his command line
blues.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Professionalism in Programming # 72
Coping with Complexity
Pete Goodliffe helps us to pick our battles.

Simplicity is a great virtue but it requires hard work
to achieve it and education to appreciate it. And to

make matters worse: complexity sells better.
~ Edsger Wybe Dijkstra

ode is complex. It’s a battle that we all have to fight daily.

Of course, your code is great, isn’t it? It’s other people’s code that is
complex.

Well, no. Not always. Admit it. It’s all too easy to write something
complicated. It happens when you’re not paying attention. It happens when
you don’t plan ahead sufficiently. It happens when you start working on
a ‘simple’ problem, but soon you’ve discovered so many corner cases that
your simple algorithm has grown to reflect a labyrinth, ready to entrap an
unwary programmer.

My observation is that software complexity stems from three main sources.
Blobs. And lines.

And what you get when you combine them: people:

In this article, we’ll take a look at each of these and see what we can learn
about writing better software.

Blobs
The first part of software complexity we should consider relates to blobs:
the components we write. The size and number of those blobs determine
complexity.

Some software complexity is a natural consequence of size; the larger a
project becomes, the more blobs we need, the harder it is to comprehend,
and the harder it is to work with. This is necessary complexity.

But there is plenty of unnecessary complexity that causes hassle. I’ve lost
count of the times I have opened a C++ header file, and balked at thousands
of lines in a single class declaration. How is a mere mortal supposed to be
able to understand what such a beast does? This is surely unnecessary
complexity.

Sometimes these large monsters come auto-generated, from ‘wizard’
systems, for example in GUI construction. However, serious code
hooligans can produce these code monsters without a second thought. (In
fact, the lack of thought is often the cause of such abominations.)

So we need to manage our necessary complexity. And educate – or shoot
– our unnecessary programmers.

It’s important to realise that size itself is not the enemy. If you have a
software system that has to do three things, then you need to code in there
to do those three things. If you remove some of that code in order to reduce
complexity, then you’ll have different problems. (That’s being simplistic
rather than simple, and it’s not a good thing.)

No, size itself is not the problem. We need a enough code to meet
requirements. The problem is how we structure that code. It’s how that size
is distributed.

Imagine you start working on a vast system. And you discover the class
structure of the beast is like this:

Three whole classes! Now: is that a complex system or not?

On one level, it doesn’t seem complicated at all. There are only three parts!
How could that be hard to understand? And the software design has the
added benefit of looking like Mickey Mouse, so it must be good.

In fact, this appears to be a beautifully simple design. You could describe
it to someone in seconds.

But, of course, each of those parts will be so large and dense, presumably
with so much interconnection and spaghetti logic that they are likely to be
practically impossible to work with. So this is almost certainly a very
complex system, hidden behind a simplistic design.

Clearly, a better structure – one that is simpler to understand, and simpler
to maintain – would consider those three sections as ‘modules’ and further
sub-divide them into other parts: packages, components, classes, or
whatever abstraction makes sense. Something more like this:

Immediately, this feels better. It looks like a lot of small (so
understandable, and likely simpler) components connected into a larger
whole. Our brains are suited to dividing problems into hierarchies like this
and reasoning about the problems when thus abstracted.

The consequences of such a design are increased comprehension, and
greater modifiability (you can work on a part of the system’s functionality
by identifying the smaller part that relates to it, rather than having to roll
your sleeves up and dive into a single behemoth class).

Of course, the trick to making this work, the trick that enables a design like
this to actually be simple rather than just look simple, is to ensure that each
of the blobs has the correct roles and responsibilities. That is, a single

 C

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net
JAN 2012 | | 3{cvu}

responsibility resides in a single part of the system rather than smeared
across it.

A case study: Reducing blob complexity
One of my favourite recent reductions in software complexity was a
section of code with two very large objects that we so inter-related they
were practically one-and-the-same class.

I started chipping away at one of the objects, realising that it contained
hundreds of unused ‘helper’ methods. I mercilessly removed them; an
enjoyable experience not unlike deflating a helium balloon. And so for
effect, I started speaking in an excitable high voice. This was code
becoming simpler:

Now that I could see the remainder of the object, it was clear that the
majority of its methods simply forwarded to the partner. So I removed
those methods and made all calling code just use the object. There were
just two remaining methods, one of which belonged on the partner anyway,
and one which should have been a simple non-member function.

The result?

A far simpler class design, I think you’ll agree.

Of course, the next step was to decompose the remaining blob. But that’s
another story. (And nowhere near as interesting.)

Lines
We’ve considered blobs: the components and objects that we create. To
paraphrase John Donne: No code is an island. Complexity is not borne
solely from the blobs, but from the way they connect:

In general, software designs are simpler when there are fewer lines. The
more connections between blobs (this is known as greater coupling if
you’re talking proper grown-up talk), the more rigid a design is, and the
more inter-operation you have to comprehend (and fight) as you work on
a system.

At the most basic level, a system comprised of many objects, none of which
are connected at all would appear the simplest. But it is not a single system
at all. It’s a number of separate systems.

As we add connections, we create actual software systems. As we add more
blobs and, crucially, lines between them, the more complex our systems
become.

The structure of our software interconnections dramatically affects our
ease of working with it. Consider the following structures, which are based
on real examples I have been working on:

What’s your reaction to them? Which looks simpler? I’ll admit that
working on the last one almost caused my head to explode.

When we map out connections, we see complexity often springs from
cycles in our graph. These are generally complex relationships to consider.
When objects are co-dependent their structure is rigid, not easy to change,
and often very hard to work with. A change to one object usually requires
a change to the other. The objects effectively become one entity; one that's
harder to maintain.

These kinds of relationship can be simplified by breaking the links.
Perhaps by introducing new abstract interfaces to reduce the coupling
between objects:

This kind of structure enhanced composability, introduces flexibility and
fosters testability (you can write testing versions of components behind
those abstract interfaces). We can use well-named interfaces to make those
relationships descriptive.

One of the nastiest systems I’ve had to work on in a long time looked like
this:

It seems a superficially simple model: one parent object represents ‘the
system’ and creates all of the child objects. However, each of those objects
was given a back-reference to the parent, so they could access each other.
This design effectively allowed every child-object to rely on (and become
closely coupled with) every sibling, locking the entire system down into
one rigid shape.

Michael Feathers described this to me as the known-anti pattern distributed
self. I had another name for it, but it’s not polite enough to print.

And finally: People
So software complexity depends on the structure of our blobs and lines.

But it’s important to observe that blobs and lines don’t create themselves.
Those structures are not intrinsically to blame. It is the people writing the
code who are responsible (yes, that’s you, gentle reader). It is programmer
4 | | JAN 2012{cvu}

A Student’s Analysis # 14

On a Game of Lucky Sevens
A student performs his analysis.

he Baron’s most recent game consisted of a race to complete a trick
of four sevens, with the Baron dealing cards from a pristine deck,
running from Ace to King once in each suit, and Sir R----- dealing

from a well shuffled deck. As soon as either player held such a trick the
game concluded and a prize was taken, eleven coins for the Baron if he
should have four sevens and nine for Sir R----- otherwise.

The key to reckoning the equity of the wager is to note that it is unchanged
should the Baron and Sir R----- take turns dealing out the rest of their cards
one by one after the prize has been taken.

If Sir R----- had lost the game then he would most assuredly deal a seven
after the Baron and, since the Baron’s last seven is seven cards from the
end of the deck, there consequently should have been at least one seven in
the last seven cards of Sir R------’s deck.

The fairness of the wager is therefore identical to one in which Sir R-----
draws first and in which the first player to deal a seven from the bottom
of the deck loses. Indeed, I made this observation to the Baron, but am not
sure that he grasped its significance.

Now, we can say with full confidence that there are either one or more
sevens in Sir R-----’s last seven cards or that there are none and that the
chance of the former is therefore one minus the chance of the latter.

That probability is the product of the chance that each card drawn is any
but one of the four sevens which, given that each draw reduces the number
of cards in the deck by one, is given by

We can cancel out the 48, 47 and 46 that appear in the top and bottom of
the fractions, but the calculation still appears somewhat daunting

Fortunately, we can simplify our work still further if we factorise each term
into a product of primes

Sir R-----’s expected winnings are therefore

and, given that they are slightly biased in his favour, I should have happily
suggested that he take up the Baron’s wager.

 T

p
48

52

47

51

46

50

45

49

44

48

43

47

42

46

p
1

52

1

51

1

50

45

49
44 43 42

p

1

2 13

1

3 17

1

2 5

3 5

7
2 11 43 2 3 7

2 3 5 7 1

2 2

2

2
2

3 3 11 43

2 3 5 7 13 17

3 11 43

5 7 13 17
4257

7735

3 2 2

2

p p

9 1 11
4257

7735
9 1

4257

7735
11

4257

7735
20 11

4257 4

7735 5
11

17028

1547
11

17028 1547 11

1547
17028 170117

1547
11

1547

Coping with Complexity (continued)
has the power to introduce incredible complexity, or to reduce a nasty
problem down to a elegant and simple solution.

How often do people set out to write nasty, complex code? Despite your
opinion about how your corrupt co-workers are planning to introduce more
stress in your life with their machiavellian code, in general complexity is
accidental, rarely something some adds wilfully.

It’s often the product of history: programmers extend and extend and
extend system, with no time allowed for refactoring, or the ‘prototype to
throw away’ turns into a production system. By the time it’s being used
there no change to take it apart and start again.

Software complexity is caused by humans working in real-world
situations. The only way we can reduce complexity is by taking charge of
it, and trying to prevent work systems from forcing out code into
unworkable structures.

Conclusion
In this little saunter through software complexity territory we’ve seen that
complexity arises from blobs (our software components), lines (the

connections between those components), but mostly from people (the
muppets who construct these software disasters).

Oh, and of course, it comes from the Singleton design pattern. But no one
uses that any more, do they?

Questions
1. Why is simplicity in code design better? Is there a difference

between simplicity in design and in code implementation?

2. How do you strive for simplicity in your code? How do you know
you’ve achieved it?

3. Do the nature of connections matter as much as the number of
connections? What connections are ‘better’ than others?

4. If software complexity stems from social problems, how can we
address it?

5. How can you tell the difference between necessary and unnecessary
complexity?

6. If it’s true that many programmers do know that their software
designs should be simpler, how can we encourage them to craft
simpler code?
JAN 2012 | | 5{cvu}

Getting More Fiber In Your Diet
Robert Clipsham shows the benefits of fibers in D.

ontrary to what you may be thinking this is about, it isn’t about food
or dieting or anything of the sort. In this article I will introduce
fibers[1], also known as coroutines, and how to start using them in D.

Doing two things at once
So, what are these mysterious fibers, and, for that matter, why would you
want to use them? Like threads, fibers allow you to work on two tasks at
once. Take, for example, the following pseudo-code:

 function breathe()
 {
 // We have to breathe to survive
 }
 function walk()
 {
 // I need to get somewhere
 }

We’re going for a walk, so we’ll need to run both of the above at once:

 // Create a thread for both tasks so they can
 // execute at once
 breathingThread = new Thread(breathe);
 walkingThread = new Thread(walk);

 // Start doing both of the tasks at the same time
 breathingThread.start();
 walkingThread.start();

This is simple enough, for each thing we want to do at the same time we
define a task, create a thread for it, then run it. Of course, for those of you
reasonably familiar with threading, you’ll know that it is anything but
simple in the real world – it’s very easy to create bugs which are very
difficult to track down. Let’s adapt the functions from above to see this
(see Listing 1).

At first glance this seems fair enough – as we walk we need to breathe
more, once we’ve taken a breath we need don’t need to breathe again until
we have a reason to (for simplicity's sake, we only need to breathe while
walking here, and we’ll also be walking indefinitely). But there’s a
problem. We’re breathing and walking at the same time. What if walk()
tries to increase amountOfBreathToTake at the same time as
breathe() sets it to zero? Does amountOfBreathToTake end up as
zero? Then we won’t take enough breath next time we walk. Does it end
up as an increased version of what it was before? Then we’ll breathe more
a i r t h a n o u r l un g s c a n h o l d . F o r t h a t m a t t e r , wh y c a n ’ t
amountOfBreathToTake be a random value which is a mixture of the
current value, the increased value, and zero? They are both happening at
once after all.

How do we avoid this?
The typical way to solve this problem is to introduce a lock. Each time we
want to read or write to amountOfBreathToTake, we attempt to lock
the lock. If the lock is already locked, we wait until it is

unlocked. If it is not locked, we lock it and continue. When we are done
reading or writing, we unlock the lock, and someone else is free to lock it.
Of course, this has its own problems. What if we introduce a run()
function, and forget about the lock? Then we have the same problem again.
And how about all the time spent locking, unlocking and waiting, rather
than actually walking and breathing?

So let’s take a step back. We now have a way to breathe and walk without
taking too much or too little breath. We’re doing both of these things at
the same time. But are we really? We’ve introduced a lock, so only one of
them is actually happening at once! This is where fibers come in. We want
to appear to be doing two things at once, but don’t actually need to do them
at the same time. So, let’s modify the code (Listing 2).

There are three main differences to the original code here. First, we only
call walk() now, no creating and starting threads. Second, walk() now
creates a breathing fiber. Finally, two new method calls have been
introduced, one in breathe() and one in walk().

The first we’ll look at is breathingFiber.call(); in walk(). If we
call breathe() directly, it would enter an infinite loop, where we
breathed until we died. We wouldn’t continue walking, and our
multitasking would be non-existent. Of course, we could call walk()
from within breathe(), but then every time we breathe we start walking!

 C

ROBERT CLIPSHAM
Robert Clipsham began programming as teenager, and
hasn’t stopped since. He is now a student at the University of
Glasgow, and enjoys science fiction, breaking things, and
making things fast.

variable amountOfBreathToTake;
function breathe()
{
 do
 breathe amountOfBreathToTake;
 amountOfBreathToTake = 0;
 Fiber.yield();
 while alive;
}
function walk()
{
 breathingFiber = new Fiber(breathe);
 do
 for every second we walk
 increase amountOfBreathToTake;
 breathingFiber.call();
 while alive;
}

walk();

Listing 2

variable amountOfBreathToTake;
function breathe()
{
 do
 breathe amountOfBreathToTake;
 amountOfBreathToTake = 0;
 while alive;
}
function walk()
{
 do
 for every second we walk
 increase amountOfBreathToTake;
 while alive;

}

Listing 1
6 | | JAN 2012{cvu}

By using breathingFiber.call(), we call the method in a fiber, so
we will still be able to multitask.

The final method call, and the most important, is Fiber.yield(); in
the breathe() function. Calling Fiber.yield() causes the currently
running fiber to yield to its caller. You can think of it like a return
statement, but rather than returning from the function or method, you’re
returning to the previous state of the program. This does exactly what we
want, as breathing doesn’t force us to walk, it is still happening at the same
time as walking, and we don’t have to spend lots of time locking and
unlocking.

Let’s see some real code
Now for a slightly more involved example. This is done using the D
programming language [2], you should be able to follow along regardless
of whether you know it or not, providing you have some experience with
object-oriented programming [3], and a C/Java style language [4].

In this example, I’ve filled a room full of malnourished people – somehow
they’ve ended up with no iron, no calcium, and no fiber! Of course, this
is going to have very serious health impacts if we don’t act quickly. So
much so, that if we help them one at a time they probably won’t make it.
So we’ll have to feed them all at the same time. First let’s define one of
our people. (Listing 3)

The constructor should be called with the number of nutrients required
before the person is healthy. satisfied() will return true when the
mNutrients member is equal to a struct containing the required level of
nutrients.

We now have to decide how we are going to feed them. We could use either
threads or fibers. For the sake of having some pretty graphs and thus some
more data to compare and contrast with later, I’ve implemented both
(neither of which are very sophisticated). I’ll show the Fiber
implementation here, see the Links section for how to get the Threads
implementation. In D, fibers can either be derived from the Fiber class
[7], or composed, by calling Fiber’s constructor with the function or
method you want it to execute. As we will have a fiber per person, we will
use derivation so we can associate the fiber with its person. (Listing 4)

A FeedFiber will be created for each person, we will then use the
.call() method of Fiber, which will call the run() method within that
fiber. The code for this could easily be improved; you’ll notice it’s quite
different from how we use fibers above. Rather than using foreach
below, you could make each fiber yield to the next until they are all
satisfied, however I wrote the threaded version first, and I’m lazy. You

could adapt the code and see what difference it makes performance wise
and how much nicer the code is. (Listing 5).

Here we create a fiber for each person, then loop over the fibers, calling
each until the given fiber terminates – at which point the fiber’s function

 D is a typed language, that is, you can’t assign a variable a string,
then decide you want to put an integer in it. You can infer types using
auto, but if you are declaring them without assigning a value to
them, you must specify the type. int is a 32 bit integer type, bool
is boolean.

 A struct works the same way as in C, it's plain old data. For those
of you coming from higher level languages, you can think of a struct
as a class without inheritance, it's just a wrapper for some variables
and methods.

 All variables are initialised by default to Type.init, see http://
digitalmars.com/d/2.0/type.html [5] for a list.

 const, pure, nothrow and @property are attributes, you can
find out more about them at http://digitalmars.com/d/2.0/
attribute.html.[6] They can be ignored for the sake of this tutorial.

 You can initialise a struct using StructName(firstValue,
secondValue, etc).

 this() is the constructor function

 this-> (or this. as it is in D) is not required to access member
variables

 A colon, :, is equivalent to extends in Java.

 super() calls the constructor of the parent class.

 The ampersand, &, takes the address of a variable, method or
function. It is used when you want to pass one method or function to
another (among other things).

 A period, ., is used to access members of a class or struct, much
like -> in C++ and PHP.

 void means 'no type'

 size_t is the type used to represent the length of an array. Its
length varies depending on the arcitecture of the computer you are
using, it is unsigned in all cases.

 auto is used to infer type.

 new MyClass[number] results in an empty dynamic (number of
elements can vary) array of MyClass with number number of
elements.

 foreach is used to iterate over elements in an array, it is in form
foreach(index, element; array){}, index is optional
and the type of each is infered (although can be stated explicitly)

 If ref is placed before the element name in foreach, you will
receive a reference to the value in the array, allowing you to mutate
the array.

 All arrays have the property length, which returns the length of the
array.

Some notes for people who don’t know Dclass Person
{
 struct Nutrients
 {
 int Fiber;
 int Calcium;
 int Iron;
 }
 int mNumNutrients;
 Nutrients mNutrients;

 this(int numNutrients)
 {
 mNumNutrients = numNutrients;
 }

 bool satisfied() const nothrow @property
 {
 return mNutrients == Nutrients(mNumNutrients,
 mNumNutrients, mNumNutrients);
 }

}

Li
st

in
g

3

class FeedFiber : Fiber
{
 Person mPerson;
 this(Person p)
 {
 mPerson = p;
 super(&run);
 }

 void run()
 {
 while(!mPerson.satisfied)
 {
 mPerson.mNutrients.Fiber++;
 mPerson.mNutrients.Calcium++;
 mPerson.mNutrients.Iron++;
 Fiber.yield();
 }
 }

}

Listing 4
JAN 2012 | | 7{cvu}

returns rather than yielding. When it does, we increment a counter and set
the fiber to null, then move onto the next fiber until there are no fibers left
to operate on, that is, we’ve fed all the people and they’re no longer
malnourished. The final thing to do is actually call this method (Listing 6).

Like C, D uses the main() method for program entry, but with an array
of strings as the arguments. The program will accept two arguments, the
number of people, and the number of nutrients each person needs. We first
check for the correct number of arguments – this is three as the first
argument is always the path to the application. We then convert the strings
to integers so we can use them as such – to!() will throw an exception
if a valid integer isn’t passed. Strictly speaking we should be using size_t
throughout the application – arrays have a length of type size_t, and we
are using these numbers to specify the length of the array. If you use a
negative number as the first parameter it will cause an error, and a negative
for the second will lead to an incredibly long runtime – the integer will have
to overflow [8] before the correct number of nutrients is hit. Once this is

fixed, a nicer error could be given – look at the beautiful stack traces you
get if you don’t use enough parameters or try and pass a non-integer for
the arguments.

The next two chunks of code do two things – start and stop a stopwatch
so we can time how long each takes, and feed people using both threads
and fibers (see the ‘Links’ section at the end of this article for complete
implementations of both). The output is written in csv format to allow
output to easily be plotted.

So which is faster then?
Let’s look at some graphs of the output. Each graph is created using the
output of this command, using the number of nutrients given in the graph’s
title, and a number of people from 1 through 2048. The application was
compiled as follows:

 $ dmd -O -release -inline main.d

using dmd v2.052 on OS X 32bit. The machine in question has a 2.2Ghz
Core 2 Duo CPU (dual core) and 2GB ram.

As you can see, with ten nutrients (Figure 1) there is a huge difference
between threads and fibers – the time taken to feed the masses with fibers
scales linearly with the number of people. When using threads it is fairly
linear until about one thousand threads, where the time taken per each
additional person is far greater.

If we increase the number of nutrients by an order of magnitude (Figure 2),
we see a similar trend, however threads now have a lower gradient, leading
to a more curve like shape – they are still far slower, however.

With another order of magnitude we see some more interesting results
(Figure 3). Threads have overtaken fibers in performance. There are also
some more noticable spikes in the graph at this point. This is entirely my
fault, as I generated these statistics on my laptop which I was using for
other things. This resulted in additional context switches being required,
which had a dramatic effect on some of the numbers, particularly when
using threads. I’ve ironed out the more anomalous results, there are still a
few which need fixing though. Ideally I would rerun the benchmarks on a
computer which isn’t doing anything else.

The final step up in magnitude (Figure 4) leads to both threads and fibers
appearing to scale linearly, but now fibers use up a lot more time.

void main(string[] args)
{
 // Check for valid arguments
 enforce(args.length == 3);
 int numPeople = to!int(args[1]);
 int numNutrients = to!int(args[2]);
 StopWatch sw;

 // Time feeding with threads
 sw.start();
 feedWithThreads(numPeople, numNutrients);
 sw.stop();
 writef("%s, ", sw.peek().usecs);
 sw.reset();

 // Time feeding with fibers
 sw.start();
 feedWithFibers(numPeople, numNutrients);
 sw.stop();
 writefln("%s", sw.peek().usecs);

}

Li
st

in
g

6

void feedWithFibers(int numPeople, int
numNutrients)
{
 size_t terminated;
 auto fibers = new FeedFiber[numPeople];
 foreach (ref f; fibers)
 {
 f = new FeedFiber(new Person(numNutrients));
 }

 while (terminated != fibers.length)
 {
 foreach (ref f; fibers)
 {
 if (f)
 {
 // The fiber has run to completion
 if (f.state == Fiber.State.TERM)
 {
 terminated++;
 f = null;
 continue;
 }
 f.call();
 }
 }
 }

}

Li
st

in
g

5

8 | | JAN 2012{cvu}

What does this data actually mean?
Let’s start with the obvious. The overhead of using fibers scales (fairly)
linearly under all the tested workloads, and it’d be a fair bet to say this trend
continues. This is an excellent thing – no matter what you’re doing, you
can keep adding tasks and scale the hardware with it. Threads on the other
hand tend to be anything but linear until you have a certain workload – each
time you add a task, the next task will need twice as many resources (or
thereabouts) as the last task. This is definitely not a good thing.

The next thing to notice is that as the workload increases, threads become
far more appealing. They become closer and closer to scaling linearly, and
use less time. Fibers, on the other hand, take up a lot more time – after all,
there’s only so much work one processor core can do. Let’s not forget
however, that you can have multiple fibers per thread – you could take a
hybrid approach and get the best of both worlds.

So how do I decide on the best approach?
The first thing you should look at is what you are trying to do. How many
tasks will you have to do? How processor intensive are these tasks, and
how does this compare to anything else your application is doing? Clearly
if you’re doing a few expensive tasks, threads are the way to go. If you’re
doing lots of cheap tasks fibers are the way to go – the overhead of creating
threads will likely outweigh the tasks themselves. In the middle ground
you can take the hybrid approach, both threads and fibers. Or, even better,
processes and fibers. By using processes instead of threads you remove the
need to worry about synchronisation, and if one process crashes, the others
are still intact.

There is also the issue of deciding what is expensive and what isn’t. The
chances are if you’re doing any kind of IO, whatever processing you’re
doing is negligible in comparison. Rather than using blocking,
synchronous IO, you could switch to non-blocking and asynchronous IO,
allowing you to process data for other IO sources while you wait. In the
case of networking, this is what the fastest webservers (nginx, lighttpd, etc)
do, in combination with epoll, kqueue and similar.

If you still aren’t sure which you should be using (or even if you are!) try
benchmarking and profiling each to see which performs better with
whatever task you happen to be doing.

Links
Complete source code listing for the malnourished people example,
including implementation for threads – https://gist.github.com/902318

Raw data and chart for 10 nutrients – https://spreadsheets.google.com/
ccc?key=0AqnbEz4qka4ddEJZZnJRZFpMNGVUYUhKRXQ0Sk5YckE&hl
=en&authkey=CNLR9rkC

Raw data and chart for 100 nutrients – https://spreadsheets.google.com/
ccc?key=0AqnbEz4qka4ddHJzVzlmVExkbkQyTkVNcGFJSG0yNFE&hl=e
n&authkey=CM2GsMME

Raw data and chart for 1,000 nutrients – https://spreadsheets.google.com/
ccc?key=0AqnbEz4qka4ddGtRSlFLejNpWDhvNFU5MWRYWWREa3c&h
l=en&authkey=CILtgvIH

Raw data and chart for 10,000 nutrients– https://spreadsheets.google.com/
ccc?key=0AqnbEz4qka4ddHRtaW9kVV9XN3Q5dWx5elpUQi1iSXc&hl=e
n&authkey=CL_K9Fc

References and notes
ib1] http://en.wikipedia.org/wiki/Fiber_%28computer_science%29
[2] http://www.d-programming-language.org/
[3] http://en.wikipedia.org/wiki/Object_oriented_programming
[4] http://en.wikipedia.org/wiki/List_of_C-

based_programming_languages
[5] http://www.d-programming-language.org/type.html
[6] http://www.d-programming-language.org/attribute.html
[7] http://www.d-programming-language.org/phobos/

core_thread.html#Fiber
[8] http://en.wikipedia.org/wiki/Integer_overflow
JAN 2012 | | 9{cvu}

http://en.wikipedia.org/wiki/Fiber_%28computer_science%29
http://www.d-programming-language.org/
http://en.wikipedia.org/wiki/Object_oriented_programming
http://en.wikipedia.org/wiki/List_of_C-based_programming_languages
http://en.wikipedia.org/wiki/List_of_C-based_programming_languages
http://www.d-programming-language.org/type.html
http://www.d-programming-language.org/attribute.html
http://www.d-programming-language.org/phobos/core_thread.html#Fiber
http://www.d-programming-language.org/phobos/core_thread.html#Fiber
http://en.wikipedia.org/wiki/Integer_overflow
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddGtRSlFLejNpWDhvNFU5MWRYWWREa3c&hl=en&authkey=CILtgvIH
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddGtRSlFLejNpWDhvNFU5MWRYWWREa3c&hl=en&authkey=CILtgvIH
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddHRtaW9kVV9XN3Q5dWx5elpUQi1iSXc&hl=en&authkey=CL_K9Fc
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddHRtaW9kVV9XN3Q5dWx5elpUQi1iSXc&hl=en&authkey=CL_K9Fc
https://gist.github.com/902318
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddEJZZnJRZFpMNGVUYUhKRXQ0Sk5YckE&hl=en&authkey=CNLR9rkC
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddEJZZnJRZFpMNGVUYUhKRXQ0Sk5YckE&hl=en&authkey=CNLR9rkC
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddHJzVzlmVExkbkQyTkVNcGFJSG0yNFE&hl=en&authkey=CM2GsMME
https://spreadsheets.google.com/ccc?key=0AqnbEz4qka4ddHJzVzlmVExkbkQyTkVNcGFJSG0yNFE&hl=en&authkey=CM2GsMME

Using the Windows Debugging API
on Windows 64

Roger Orr finds smoke and mirrors inside 64-bit Windows.

n March 2010 I wrote an article in CVu about the Windows application
debugging API and I illustrated the basic operation of the API with a
simple process tracing application. This showed such events as the

loading of DLLs, the starting and ending of threads and any exceptions.

This article uses the experience of porting the program to 64-bit Windows
to provide a brief introduction to some of the issues of migrating
applications from 32-bit Windows to 64-bits.

Note that there are two main flavours of 64-bit hardware that supports
Windows. One is the Itanium architecture from Intel and the other is the
AMD/64 architecture from AMD but now also supported (with minor
modifications) by Intel.

However, the Itanium architecture has not been a great success and
Microsoft announced last year that they are not supporting Itanium beyond
Windows Server 2008 R2 and Visual Studio 2010. So I am ignoring
Itanium in this article. (Interested readers can Google for articles such as
‘How the Itanium Killed the Computer Industry’ by John C. Dvorak.)

A very quick refresher on ProcessTracer
ProcessTracer works by creating a target process using the
CreateProcess() f unc t i on i n con j unc t ion w i th t he
DEBUG_ONLY_THIS_PROCESS flag. The flag results in Windows
creating a channel between the parent and child process allowing the parent
to receive notification of key events in the child process’ lifecycle.

ProcessTracer then enters the main debugging loop which consists of:

 get the next debug event by calling WaitForDebugEvent()

 display details of the event as required

 acknowledge it with ContinueDebugEvent().

The main loop ends when the child process exits.

Some of the debug events provide virtual addresses, such as the instruction
pointer, and ProcessTracer maps these to symbolic addresses. This
functionality is provided by the SimpleSymbolEngine class, which
wraps the Microsoft DbgHelp API (and was originally written about in
Overload 67: http://accu.org/index.php/journals/276)

Compiling ProcessTracer for 64-bit Windows
I found porting the code to 64-bit Windows was very easy: I set up a
command prompt for x64 development using vcvarsall x64 (in the
VC subdirectory of the Visual Studio 2010 installation) and modified the
makefile to write output to the x64 directory.

I then ran nmake – everything compiled except the stack walking code in
SimpleSymbolEngine.cpp.

The error is that the code setting up the StackFrame64 structure was
written for 32-bit code and referred to the Esp, Ebp and Eip fields of the
CONTEXT structure. The equivalent fields for the 64-bit code are Rsp, Rbp
and Rip. Additionally the machine type in the call to StackWalk64 must

be changed to IMAGE_FILE_MACHINE_AMD64 from IMAGE_FILE_
MACHINE_I386.

Listing 1 is a code fragment with the changes emboldened.

The rest of the code compiled (and worked) without problem, which is I
think indicative that Microsoft has done a good job of making the current
version of the API portable between 32-bit and 64-bit. However, this was
not achieved without some changes: the older functions in the DbgHelp
library were not portable, hence the introduction over the years of the
various Xxxx64 structures and types which are portable between 32-bit
and 64-bit Windows.

The same thing has been done with much of the Windows API: parameters
and data structures are defined using typedefs to the appropriately sized
underlying values. The same techniques can be used in application code
that needs to compile in both environments.

There are two slightly different approaches taken with making the API
portable between 32- and 64-bit windows. In general the Windows API
has made use of typedefs for data types which map to the appropriate sized
underlying type for each platform. So for example the ULONG_PTR type
is defined in the Microsoft documentation as ‘an unsigned long type used
for pointer precision. It is used when casting a pointer to a long type to
perform pointer arithmetic.’ So the actual type is 32-bit when compiled for
32-bit Windows and 64 when compiling for 64-bit applications. However,
the DbgHelp API has simply widened everything to 64-bits so the code
produced for the previous article, targetting 32-bit Windows, was using
types like STACKFRAME64 and calling methods like StackTrace64.

Comparing 32-bit and 64-bit in action
I used a ‘minimal’ program for testing ProcessTracer. There are various
ways to write this using MSVC, here is one way:

 --- TrivialProgram.cpp ---
 #pragma comment(linker, "/nodefaultlib")
 int main() {return 0;}
 int mainCRTStartup() {return 0;}

 I

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

context.ContextFlags = CONTEXT_FULL;
GetThreadContext(hThread, &context);

stackFrame.AddrPC.Offset = context.Rip;
stackFrame.AddrPC.Mode = AddrModeFlat;

stackFrame.AddrFrame.Offset = context.Rbp;
stackFrame.AddrFrame.Mode = AddrModeFlat;

stackFrame.AddrStack.Offset = context.Rsp;
stackFrame.AddrStack.Mode = AddrModeFlat;

while (::StackWalk64(IMAGE_FILE_MACHINE_AMD64,
 hProcess, hThread, &stackFrame, pContext,
 0, ::SymFunctionTableAccess64,
 ::SymGetModuleBase64, 0))
{
 // ...
}

Listing 1
10 | | JAN 2012{cvu}

When compiled and linked this produces a very small executable with no
dependencies.

Listing 2 is the output from running the 32-bit version of ProcessTracer
from the previous article on 32-bit Windows 7.

The obvious change we will see when running the 64-bit program is that
the addresses are now 64-bit numbers rather than 32-bit ones. The output
for the equivalent 64-bit program is shown in Listing 3.

There are a few changes in the call stack on process exit caused by
implementation differences between the 32-bit and 64-bit Win32
subsystem.

Next step – running the 32-bit code on 64-bit
One of the main reasons why the AMD approach to a 64-bit architecture
has been more successful than the Intel one is to do with running existing
32-bit programs. The AMD processor can be run in 64-bit and 32-bit mode
and in the latter case it runs the existing 32-bit x86 instruction set. Hence,
at least in theory, you should be able to run existing 32-bit code on the new
chip without requiring changes and without any reduction in performance.

Of course, most programs require support from an operating system, so in
order to run an existing 32-bit program the OS needs to provide an
environment that is as close as possible to the 32-bit version of the OS.
64-bit Windows provides such an environment ‘out of the box’ and
supports 32-bit applications using the ‘Windows on Windows 64’

subsystem, abbreviated to WOW64, which runs in user
mode and maps the 32-bit calls to the operating system
kernel into an equivalent 64-bit call. This is normally
almost invisible to the calling program, but the
debugging API exposes some of the scaffolding as shall
see.

Windows prov ides a se t o f 64-b i t DLLs in
%windir%\system32 and an equivalent set of 32-
bit DLLs in %windir%\syswow64. In fact the bulk
of the binary images in this directory are identical to the
same files in the system32 directory on a 32-bit
Windows installation. (It seems to me an unfortunate
naming issue that the 64-bit DLLs live in system32
and the 32-bit ones live in syswow64, but there it is!)

Listing 4 is the output when we run the 32-bit program
on 64-bit Windows 7.

The two main differences (apart from minor changes in
virtual addresses) are firstly the presence of a few
UNLOAD DLL messages with no corresponding LOAD
DLL (we shall return to these later on) and secondly the
subdirectory used for system DLLs is syswow64
rather than system32.

The WOW64 subsystem maps all attempts by 32-bit
programs to access f i les in the system32
subdirectory to requests for the equivalent file in the
syswow64 s ubd i r ec to ry . Hence when
trivialProgram.exe loads ntdll, kernel32
and kernelbase, the WOW64 layer transparently
loads these files from the syswow64 directory (even
though the PATH does not include it).

This mapping can be turned off, per thread, using two
functions designed for this specific purpose:
Wow64DisableWow64FsRedirection and
Wow64RevertWow64FsRedirection. Note,
however, that since the redirection was designed to
make existing 32-bit applications load the right DLL,
use of these functions with code that loads system
DLLs (implicitly or explicitly) can lead to strange
failures. Alternatively the application can use the
virtual subdirectory name sysnative, which the
WOW64 subsystem maps to system32.

This can be somewhat confusing in practice when you use a mix of 32-bit
and 64-bit programs on the same machine. As a simple example, consider
this sequence of operations:

1. Start a command prompt.

2. Type notepad and press Enter.

Windows starts the 64-bit notepad program from
C:\Windows\system32.

3. Type C:\Windows\SysWow64\cmd.exe and press Enter to
run a 32-bit command shell.

4. Type notepad and press Enter.

Windows now starts the 32-bit notepad program simply because the
current shell is a 32-bit process and WOW modifies the target directories
used when searching the PATH for the notepad program. I defy you to
identify which notepad is which: but the same sequence of key strokes in
two different command shells has executed two different programs
because of the special treatment of the system32 directory by the WOW
subsystem.

The other main translation that the WOW64 layer provides is for access
to the Windows registry. The 32-bit specific parts of the registry are held
underneath the Wow6432Node key in various places in the registry, such
as HKEY_LOCAL_MACHINE, and so a request from a 32-bit program to
HKLM\Software\Test is transparently mapped by WOW64 to a
request for HKLM\Software\Wow6432Node\Test. Note that the

C:> x86\ProcessTracer x86\TrivialProgram.exe
CREATE PROCESS 3896 at 0x001D1010
LOAD DLL 77340000 ntdll.dll
LOAD DLL 75900000 C:\Windows\system32\kernel32.dll
LOAD DLL 75670000 C:\Windows\system32\KERNELBASE.dll
EXIT PROCESS 0
 Frame Code address
 0x003EF994 0x773870B4 KiFastSystemCallRet
 0x003EF9A8 0x7736F652 RtlExitUserThread + 65
 0x003EF9B8 0x7594ED73 BaseThreadInitThunk + 25
 0x003EF9F8 0x773A37F5 RtlInitializeExceptionChain + 239
 0x003EFA10 0x773A37C8 RtlInitializeExceptionChain + 194

Li
st

in
g

2

C:> x64\ProcessTracer x64\TrivialProgram.exe
CREATE PROCESS 4692 at 0x000000013FE91010
LOAD DLL 0000000077C90000 ntdll.dll
LOAD DLL 0000000077700000 C:\Windows\system32\kernel32.dll
LOAD DLL 000007FEFE3D0000 C:\Windows\system32\KERNELBASE.dll
EXIT PROCESS 0
 Frame Code address
 0x00000000001DF720 0x0000000077CE15DA NtTerminateProcess + 10
 0x00000000001DF750 0x0000000077CB418B RtlExitUserProcess + 155
 0x00000000001DF790 0x0000000077CD697F RtlExitUserThread + 79
 0x00000000001DF7C0 0x0000000077716535 BaseThreadInitThunk + 21
 0x00000000001DF810 0x0000000077CBC521 RtlUserThreadStart + 33

Li
st

in
g

3

C:> x86\ProcessTracer x86\TrivialProgram.exe
CREATE PROCESS 4844 at 0x00A21010
LOAD DLL 77E70000 ntdll.dll
UNLOAD DLL 77700000
UNLOAD DLL 77080000
UNLOAD DLL 77700000
UNLOAD DLL 77820000
LOAD DLL 77080000 C:\Windows\syswow64\kernel32.dll
LOAD DLL 76920000 C:\Windows\syswow64\KERNELBASE.dll
EXIT PROCESS 0
 Frame Code address
 0x001EFC04 0x77E8FCB2 ZwTerminateProcess + 18
 0x001EFC18 0x77ECD5D9 RtlExitUserThread + 65
 0x001EFC28 0x770933A1 BaseThreadInitThunk + 25
 0x001EFC68 0x77EA9ED2 RtlInitializeExceptionChain + 99
 0x001EFC80 0x77EA9EA5 RtlInitializeExceptionChain + 54

Li
st

in
g

4

JAN 2012 | | 11{cvu}

Wow6432Node key name is reserved and applications should not program
against this value – the registry functions have been enhanced to allow a
32-bit process to see 64-bit registry keys (and vice versa).

I am not going to cover more of this mapping in this article. I refer
interested readers to the Microsoft web site: for example ‘Running 32-bit
Appl ica t ions’ a t h t tp : / /msdn.microsof t .com/en-us / l ibrary /
aa384249%28v=VS.85%29.aspx

Mixing it up
We have so far tried running a pair of 64-bit programs and a pair of 32-bit
programs on 64-bit Windows. What happens if we mix and match?

First off, we try to execute the 32-bit ProcessTracer with a 64-bit target:

C:> x86\ProcessTracer x64\TrivialProgram.exe
Unexpected exception: Unable to start
x64\TrivialProgram.exe: 50

This failing error code (50) is "ERROR_NOT_SUPPORTED" – Windows
does not allow a 32-bit program to debug a 64-bit program. This makes
some sort of sense: an existing 32-bit debugging program would be
unlikely to be able to interpret the 64-bit values correctly for addresses,
register values, etc. As far as I know there is no way to work around this.

This is one place where an approach like that taken by the DbgHelp API,of
widening everything to 64-bits, might have enabled cross boundary
debugging in this direction.

We have more success if we try it the other way round (Listing 5).
However, some of the output produced is a little unexpected! After all, we

are debugging exactly the same
process that we debugged earlier
under ‘Next step – running the
32-bit code on 64-bit’ but we are
getting much more output and a
very different call stack on
program exit. What is going on?

The first change when using the
64-bit debug API is that the
debugger is not i f ied about
additional DLLs loaded into the
process address space. The first
DLL loaded, ntdll.dll, is in
fact the 64-bit version of the DLL
and it is followed by the 32-bit
ntdll32.dll. Note that the
32-bit mode debugger doesn’t
see the 64-bit DLL, only the 32-
bit one.

The next few DLLs are the
WOW64 implementation – these
are 64-bit DLLs loaded into the
target process. Again, the 32-bit
mode debugger does not receive
any notification when these
DLLs are loaded into the process.
Notice however that, probably
through an oversight in the
implementation of the 32-bit
debug in ter face , the 32bi t
debugger sees the UNLOAD DLL
messages fo r t he spec i a l
WOW64 DLLs.

We then receive an unexpected
exception – code 0x4000001f –
which turns out to be a new value,
STATUS_WX86_BREAKPOINT.
This exception code is barely
documented but it appears to be a

‘start up’ breakpoint much like the initial breakpoint that the debugger
always receives. On older versions of Windows the default processing for
this exception code terminates the process, on Windows 7 it is ignored.

So I enhanced the exception handling in ProcessTracer::run() to
cater for this new breakpoint (Listing 6).

The last issue with the output from the debugger is that the call stack shown
on process exit has almost nothing in common with the call stack from the
32-bit version of ProcessTracer.

This is because the 64-bit debugger is displaying the call stack in the 64-
bit context of the WOW64 call to terminate the process. In the 32-bit
debugger we see the other half of the picture – the call stack in the 32-bit
part of the call stack above the WOW64 emulation layer.

Reading 32-bit context from 64-bit debugger
Windows provides a way for 64-bit debuggers to access the same data the
32-bit debug interface gives. The debugger can use IsWow64Process()
to determine if the target process is a 32-bit process or a 64-bit one, and
in t he fo rmer ca se i t c a n r e ad t he 32 -b i t con t ex t u s ing
Wow64GetThreadContext() . (Note: this API was added in
Windows 7. The information can be obtained on earlier versions of 64-bit
Windows but the mechanism is a little more complicated).

Once the 32-bit context has been obtained it can be used to populate the
StackFrame64 structure and passed into to the StackWalk64()
function together with the IMAGE_FILE_MACHINE_I386 machine type
to print out the 32-bit call stack.

C:> x64\ProcessTracer x86\TrivialProgram.exe
CREATE PROCESS 3004 at 0x0000000000121010
LOAD DLL 0000000077C90000 ntdll.dll
LOAD DLL 0000000077E70000 ntdll32.dll
LOAD DLL 0000000073EF0000 C:\Windows\SYSTEM32\wow64.dll
LOAD DLL 0000000073E90000 C:\Windows\SYSTEM32\wow64win.dll
LOAD DLL 0000000073E80000 C:\Windows\SYSTEM32\wow64cpu.dll
LOAD DLL 0000000077700000 WOW64_IMAGE_SECTION
UNLOAD DLL 0000000077700000
LOAD DLL 0000000077080000 WOW64_IMAGE_SECTION
UNLOAD DLL 0000000077080000
LOAD DLL 0000000077700000 NOT_AN_IMAGE
UNLOAD DLL 0000000077700000
LOAD DLL 0000000077820000 NOT_AN_IMAGE
UNLOAD DLL 0000000077820000
LOAD DLL 0000000077080000 C:\Windows\syswow64\kernel32.dll
LOAD DLL 0000000076920000 C:\Windows\syswow64\KERNELBASE.dll
EXCEPTION 0x4000001f at 0x0000000077F10F3B LdrVerifyImageMatchesChecksum + 2412
 Parameters: 0
 Frame Code address
 0x000000000046F414 0x0000000077F10F3C LdrVerifyImageMatchesChecksum + 2413
 0x000000000046F41C 0x000000007716936D WakeConditionVariable + 127125
 0x000000000046F424 0x7EFDE00000000000
 0x000000000046F42C 0x0046F41C00000000
 0x000000000046F434 0x0046F60477EE1ECD
 0x000000000046F43C 0x00B9DABD77EE1ECD
 0x000000000046F444 0x0046F5C400000000
 0x000000000046F44C 0x7EFDD00077EF1323
 0x000000000046F454 0x77F7206C7EFDE000
EXIT PROCESS 0
 Frame Code address
 0x000000000029E190 0x0000000077CE15DA NtTerminateProcess + 10
 0x000000000029E1C0 0x0000000073F0601A Wow64EmulateAtlThunk + 34490
 0x000000000029EA80 0x0000000073EFCF87 Wow64SystemServiceEx + 215
 0x000000000029EB40 0x0000000073E82776 TurboDispatchJumpAddressEnd + 45
 0x000000000029EB90 0x0000000073EFD07E Wow64SystemServiceEx + 462
 0x000000000029F0E0 0x0000000073EFC549 Wow64LdrpInitialize + 1065
 0x000000000029F5D0 0x0000000077CD4956 RtlUniform + 1766
 0x000000000029F640 0x0000000077CD1A17 RtlCreateTagHeap + 167
 0x000000000029F670 0x0000000077CBC32E LdrInitializeThunk + 14

Li
st

in
g

5

12 | | JAN 2012{cvu}

Listing 7 is the final version of the stack walking code, which compiles on
both 32-bit and 64-bit builds and handles 32-bit targets in 64-bit mode.

The reading of the 32-bit context from 64-bit mode also works where the
program is currently executing in 32-bit mode (such as when a breakpoint
occurs).

The transition between 32-bit and 64-bit mode occurs when the 32-bit
program calls into the operating system. In the case we’ve looked at when
our 32-bit program exits it calls ZwTerminateProcess in the 32-bit
world. This function sets up parameters in exactly the same way as it does
on 32-bit Windows but then jumps to X86SwitchTo64BitMode in the
WOW64 subsystem. This jump switches the CPU from 32-bit mode back
into 64-bit mode. The target function saves away the 32-bit register state
and (after some further processing) calls into the operating system in 64-
bit mode. The reverse process occurs on return from 64-bit mode when the
function completes.

The Wow64GetThreadContext() function retrieves the 32-bit context
by reading it from the memory location where the WOW64 process has
saved it, when the target thread is in 64-bit mode, or by mapping the current

void SimpleSymbolEngine::stackTrace(
 HANDLE hThread, std::ostream & os)
{
 CONTEXT context = {0};
 PVOID pContext = &context;
 STACKFRAME64 stackFrame = {0};

#ifdef _M_IX86
 DWORD const machineType =
 IMAGE_FILE_MACHINE_I386;
 context.ContextFlags = CONTEXT_FULL;
 GetThreadContext(hThread, &context);
 stackFrame.AddrPC.Offset = context.Eip;
 stackFrame.AddrPC.Mode = AddrModeFlat;

 stackFrame.AddrFrame.Offset = context.Ebp;
 stackFrame.AddrFrame.Mode = AddrModeFlat;

 stackFrame.AddrStack.Offset = context.Esp;
 stackFrame.AddrStack.Mode = AddrModeFlat;
#elif _M_X64
 DWORD machineType;
 BOOL bWow64(false);
 WOW64_CONTEXT wow64_context = {0};
 IsWow64Process(hProcess, &bWow64);
 if (bWow64)
 {
 machineType = IMAGE_FILE_MACHINE_I386;
 wow64_context.ContextFlags =
 WOW64_CONTEXT_FULL;
 Wow64GetThreadContext(hThread,
 &wow64_context);
 pContext = &wow64_context;
 stackFrame.AddrPC.Offset = wow64_context.Eip;
 stackFrame.AddrPC.Mode = AddrModeFlat;

 stackFrame.AddrFrame.Offset =
 wow64_context.Ebp;
 stackFrame.AddrFrame.Mode = AddrModeFlat;

 stackFrame.AddrStack.Offset =
 wow64_context.Esp;
 stackFrame.AddrStack.Mode = AddrModeFlat;
 }

Li
st

in
g

7

 else
 {
 machineType = IMAGE_FILE_MACHINE_AMD64;
 context.ContextFlags = CONTEXT_FULL;
 GetThreadContext(hThread, &context);
 stackFrame.AddrPC.Offset = context.Rip;
 stackFrame.AddrPC.Mode = AddrModeFlat;

 stackFrame.AddrFrame.Offset = context.Rbp;
 stackFrame.AddrFrame.Mode = AddrModeFlat;

 stackFrame.AddrStack.Offset = context.Rsp;
 stackFrame.AddrStack.Mode = AddrModeFlat;
 }
#else
#error Unsupported target platform
#endif // _M_IX86
 DWORD64 lastBp = 0; // Prevent loops with
 // optimised stackframes
 os << " Frame Code address\n";
 while (::StackWalk64(machineType,
 hProcess, hThread,
 &stackFrame, pContext,
 0, ::SymFunctionTableAccess64,
 ::SymGetModuleBase64, 0))
 {
 if (stackFrame.AddrPC.Offset == 0)
 {
 os << "Null address\n";
 break;
 }
 PVOID frame =
 reinterpret_cast<PVOID>(
 stackFrame.AddrFrame.Offset);
 PVOID pc =
 reinterpret_cast<PVOID>(
 stackFrame.AddrPC.Offset);
 os << " 0x" << frame << " " <<
 addressToString(pc) << "\n";
 if (lastBp >= stackFrame.AddrFrame.Offset)
 {
 os << "Stack frame out of sequence...\n";
 break;
 }
 lastBp = stackFrame.AddrFrame.Offset;
 }

 os.flush();
}

Listing 7 (cont’d)

 case EXCEPTION_DEBUG_EVENT:
 if (!attached)
 {
 // First exception is special
 attached = true;
 }
#ifdef _M_X64
 else if
(DebugEvent.u.Exception.ExceptionRecord.Exception
Code == STATUS_WX86_BREAKPOINT)
 {
 std::cout << "WOW64 initialised"
 << std::endl;
 }
#endif // _M_X64
 else
 {
 OnException(DebugEvent.dwThreadId,
 DebugEvent.u.Exception.dwFirstChance,
 DebugEvent.u.Exception.ExceptionRecord);
 continueFlag =
 (DWORD)DBG_EXCEPTION_NOT_HANDLED;
 }
 break;

Li
st

in
g

6

JAN 2012 | | 13{cvu}

Using the Windows Debugging API on Windows 64 (continued)
context back into the 32-bit structure when the target thread is in 32-bit
mode.

Conclusion

Microsoft have done a reasonably good job of allowing application to be
ported to 64-bit operation and also support transparently running 32-bit
applications on 64-bit Windows. For many users whether a particular
application is 32-bit or 64-bit is simply not relevant, nor obvious.

However, as programmers, it is useful to have understanding of how the
process operates and what issues there can be; especially when running
existing 32-bit applications on 64-bit.

The debugging API provides one way of looking at some of the
implementation details of supporting the Windows-on-Windows
subsystem and I hope this understanding will help inform those migrating
from 32-bit to 64-bit Windows.

Source code
The full source code for this article can be found at:
http://www.howzatt.demon.co.uk/articles/ProcessTracer.zip
How To Be Dispensable
Frances Buontempo considers the virtue of

being non-essential.

uppose you make a fortune overnight and don’t have to go to work
tomorrow. How will they manage without you? The company will
either collapse in a heap because you were a vital, indispensable

member of the team or they will carry on regardless. Which will it be?
Which would you prefer?

Let us first consider how to make the company fall to pieces. Each ploy
depends in essence on ensuring that no-one else you work with, or who
ever gets hired, can do what you do. Clearly, you can use tools you have
written yourself, rather than standard tools. Standard tools mean other
people know how they work. This should be avoided at all costs. Cover
yourself by explaining that yours will run much quicker in this company’s
environment. To compound this, you can have several different versions
of your home grown apps in different places, making it hard for people to
figure out which version should be used for what. If they can find them in
the first place. So, first top tip

1. Avoid putting your work in version control.

This gives corollary.

2. Hack straight into production, so no one knows which version is out
there, even if a bloody-minded colleague managed to get your work
in version control.

Regardless of whether your team can find your code or not, you must now
consider which approach to take to documentation. You have two options,
though the outcome will be the same in both cases.

3a) Never, ever, document anything.

or

3b) Any documentation you write will be at least 1,000 pages long, so
that no-one can face reading it all. (You can verify it is unread by
placing the sentence ‘Donkeys are aliens’[1] in a couple of
paragraphs. This is fool-proof. Someone will speak up if they find
this sentence. Other sentences can be tried. But this phrase has been
shown to work.)

Now we must look at the specifics of what you are writing and how you
write it. An obvious choice is utilising a language no-one else knows, or
as few people as possible. A more subtle choice is something everyone
knows, for example VBA: Even your cat can programme in that. History
has shown how easy it is to create a strategic spreadsheet that is such a
memory hog, requiring dedicated hardware to run it. This allows the
possibility of writing an xll, which uses C++ extensions you can write

yourself, once you’ve implemented your own compiler. Let us summarise
this as

4. Choose the right language.

Having decided where to hide your code and what language to write it in,
the last technical point concerns how to test your code.

5. Make sure no-one, including you, can test your code.

This can be achieved in several ways. For example [2] gives several hints
and tips on how to write difficult-to-test code. This suggests it is
theoretically possible. Though I can find no documented example of
untestable code, you should aim for the best. That’s why they can’t do
without you. Don’t forget to remind them of this as frequently as possible.
For example

6. Use obscure language corners and rely on specifics of your chosen
compiler version or interpreter.

This allows you to show off your detailed knowledge and show up the rest
of your team. Management will then realise how much cleverer you are
than anyone else and how vital you are to the company.

Finally, remember management are in charge, so they must realise you are
irreplaceable. An easy way to convey this is our final point.

7. Ensure that your name is on every Gantt chart and project plan,
forming a major bottleneck to everything.

This is the only way to be sure that the team cannot cope without you. You
are now indispensable. Congratulations.

Before considering the alternative (they manage without you), be aware
of the warning, ‘If a programmer is indispensable, get rid of him as quickly
as possible. .’ [3] Outrageous though this may seem at first sight, more
worrying thoughts have been expressed, in particular, ‘If you can’t be
replaced, you can’t be promoted.’ [4] Clearly, not everyone is entering into
the spirit of things here. If being indispensable is bad, how can you be
dispensable?

Taking an opposing approach to the steps required for indispensability is
a good starting place.

 S

FRANCES BUONTEMPO
Frances Buontempo has a BA in Maths and Philosophy, an MSc in Pure
Maths and a PhD in AI and data mining. She has been a programmer for
over 10 years and learnt by reading the manual for her Dad’s BBC Micro.
She can be reached at frances.buontempo@gmail.com
14 | | JAN 2012{cvu}

http://www.howzatt.demon.co.uk/articles/ProcessTracer.zip

How to be Dispensable (continued)
1. Put your work in version control.

This also has a corollary

2. Set up continuous integration. Consider doing this just for yourself,
even at home [5]. This will obviously mean the code is testable and
has tests.

Broadening out the observation on documentation, the point is to
communicate with the team. If you make some form of notes, you will be
able to pick up a previous project years, months, weeks or days, say after
the weekend, with minimal hassle. If you can do this, anyone will be able
to. How many times have you got in on Monday morning to realise you
have no idea what you were in the middle of?

3. Make notes on a Wiki page. Have daily standup meetings, so
everyone knows who is up to what. Then your team mates can remind
you what you are doing if you ever forget.

Each of the ideas so far are rooted in communication. Tools such as version
control, CI and Wiki pages facilitate communication, even for one person
to themselves in the future. Be part of a team. Talk to each other. Share
problems and triumphs.

4. Pair programme, or at least have code reviews.

A collaborative approach can help avoid bugs, encourages knowledge to
be shared and means no one person is indispensable for a project, since at
least one other team member knows about the code.

A dispensable team member is likely to enjoy working with the rest of the
t eam, s t ay ing
pos i t i ve and
constantly learning
from those around.
E ven i f t he
d i spensab l e
p rog ra mme r

suspects she is becoming indispensable, use she will use her awesome
powers to immediately make herself dispensable. She will find and train
understudies. [6]

We have discovered you should aim for the company to carry on regardless
when you leave. At very least, you might be able to carry on where you
left off when you return on Monday morning. If you’re dispensable your
team can do without you, but they’d rather not.

References
[1] Bill Bailey
[2] Working with legacy code
[3] Gerald Weinberg in The Psychology Of Computer Programming
[4] http://programmers.stackexchange.com/questions/48697/should-a-

programmer-be-indispensable
[5] Advised by Jez Higgins at his Jenkins lightning talk, ACCU London

Nov 2011
[6] http://c2.com/cgi/wiki?GetRidOfIndispensableProgrammerAs

QuicklyAsPossible

your team mates can
remind you what you are
doing if you ever forget
Writing a Bazaar Plugin
Peter Hammond makes Bazaar do more than version control.

azaar is a popular open source Distributed Version Control System
(DVCS). The tool itself is fairly easy to use, and well documented.
As with many modern applications, it has a plugin model for

extending its functionality, by intercepting published hooks, creating new
commands or decorating existing commands. Unfortunately, the
developer documentation leaves something to be desired. For example, all
that the official plugin development guide [1] says about ‘Extending an
existing command’ is ‘TO BE DOCUMENTED’. This article describes
some of my experiences in writing a rudimentary plugin to meet our needs.

Our problem was integrating with the Jira project tracking tool, and in
particular how to enforce commit messages that match issue numbers. Jira
is a commercial issue tracking tool, which also has a plugin architecture
with a lively marketplace of plugins, both free and commercial. Its support
for Bazaar is limited, but it does have good support for Subversion, and
using Subversion as a central repository is well supported in Bazaar (using
a plugin, naturally) [2]. We are using a Jira plugin that enforces the rule
that messages on commits to the central Subversion repository must refer

to an issue number, for tracking. However, since we are using Bazaar for
local version control, it is easy to forget to put these messages on, leading
to much frustration when a batch of changes cannot be pushed back up to
the server. This was the problem that the plugin described here was
intended to fix.

The plugin has three parts, which fortuitously correspond to the three
extension approaches for Bazaar:

 A hook on the creation of the commit message, to put the branch
name at the start of the message

 A new command to set an option for the Jira repository location

 B

PETER HAMMOND
Peter Hammond is a senior software engineer with BAE
Systems, with particular interests in open and component
architectures and agile methods. Previously he developed
embedded systems for non-destructive testing applications.
JAN 2012 | | 15{cvu}

http://programmers.stackexchange.com/questions/48697/should-a-programmer-be-indispensable
http://programmers.stackexchange.com/questions/48697/should-a-programmer-be-indispensable
http://c2.com/cgi/wiki?GetRidOfIndispensableProgrammerAs QuicklyAsPossible
http://c2.com/cgi/wiki?GetRidOfIndispensableProgrammerAs QuicklyAsPossible

 An extension to the branch command to enforce making a branch
name correspond to an issue ID.

I will go through the steps involved in creating each one of these,
describing the Bazaar APIs that are used. I will focus on the parts that were
not obvious from the documentation I found, and not go into too much
detail about the actual implementation of the logic.

First steps
A Bazaar plugin at its simplest is just a python module that can be found
by Bazaar. A deployed plugin lives in the plugins folder under the bazaar
installation, but for development and testing you can put the plugin
anywhere, and point the BZR_PLUGIN_PATH environment variable at it.

It is customary to use a python module for a plugin, even if the plugin only
needs one file, although a single .py file on the plugin path will be found
and loaded cor rec t ly . In th i s example , I c rea ted a fo lde r
D:\Projects\bzr_plugin\jira, set BZR_PLUGIN_PATH=
d:\Projects\bzr_plugin, and created __init__.py in the jira
directory:

 """Hooks to help prevent common mistakes when
 working with Jira"""
 version_info=(0,0,1)

Now typing bzr plugins at the command line will show the new plugin
in the list, with the version number and the description given. Note how
the docstring is used to provide help text; this simple idea is reused a
few times. The version__info attribute is described as ‘a tuple defining
the current version number of your plugin’ [3] . The documentation does
not specify any constraints, and empirically it appears that the tuple is
simply passed through to be displayed. However, it is noted in the bzrlib
source [4] that it should be ‘the same format as sys.version_info’.

All plugins are loaded on every invocation of bzr. To see this in action,
put a print statement in the module: the output will be seen before the
actual bzr output.

Now we have a basic skeleton in place, we just need to make it do
something.

Writing a hook
The easiest way to extend Bazaar’s behaviour is to use one of the
predefined hooks. The full list of available hooks can be found in the bazaar
documentation [5], although at the time of writing some dead links makes
this page a little more tricky to find than it might be. A summary is available
by using the bzr hooks command. In this case, I browsed the list in [5]
t o f i n d s o me t h i ng th a t m ig h t m ee t o u r n eed s ;
commit_message_template in the section MessageEditorHooks
looks like the one I need. The documentation states that

The class that contains each hook is given before the hooks it supplies.
For instance, BranchHooks as the class is the hooks class for
bzrlib.branch.Branch.hooks.

This makes more sense when read in conjunction with the bzrlib
documentation [6] to explain what the various classes and namespaces are.
MessageEditorHooks refers to a class that can be found in the
bzrlib.msgeditor package, after a little searching. However, the
bzrlib documentation misses out a crucial piece of information: the
msgeditor package has an instance of that class, called hooks, that can
be used to register the new hook. The bzrlib.branch module used in
the documentation’s example does not have a hooks attribute, but the
bzrlib.branch.Branch class does. Finding where a particular Hooks
class is instantiated appears to be something of a matter of trial and error.
Using print to test various candidates seems to be the easiest approach.

Having located the Hooks instance to register with, creating and
registering a hook is a fairly painless task. An outline of the hook is given
in listing 1. The install_named_hook method is called with three
arguments: the name of the hook to install, the hook function, and a string
that will appear in the output of the bzr hooks command to describe
installed hooks. The implementation of the hook also introduces another
interesting concept: how to get at the ‘current’ branch. The branch is not
passed to the hook. The static method bzrlib.branch.Branch.open
_containing can be used to get the branch that contains a given path.
Here we are assuming that the command will be run in a directory that is
part of the branch. Since the commit command does not take an argument
to specify the branch to work on, this seems like a fair assumption.

Writing a command
Writing a command involves a little more code. A command in Bazaar is
an instance of a class that specialises the Command class, and has certain
expected properties. The important parts of the command structure are
shown in listing 2. Going through this listing, we see that

 The class name is cmd_jira_host, this will automatically create
a command ‘jira-host’ in bzr when it is registered.

from bzrlib import msgeditor
from bzrlib.branch import Branch

def commit_message_template(commit, msg):
 root = Branch.open_containing(".")[0].base
 if root[-1]=="/":
 root=root[:-1]
 branch = os.path.split(root)[1]

 if not msg:
 msg = ""
 return branch + ": " + msg

msgeditor.hooks.install_named_hook(
 "commit_message_template",
 commit_message_template,
 "Provide default issue id")

Li
st

in
g

1

from bzrlib.commands import Command,
register_command
from bzrlib.config import BranchConfig
from bzrlib.ui import ui_factory

class cmd_jira_host (Command):
 """Sets the jira-host option for branch
 checking.

 The option is stored as a branch option.
 With no arguments, reports the current
 setting. The host value should be the network
 location part of the URL."""
 takes_args=['host?']

 def run (self, **kwargs):
 if 'host' in kwargs:
 host = kwargs['host']
 ...
 config = BranchConfig(
 Branch.open_containing(".")[0])
 config.set_user_option("jira-host", host)
 else:
 config = BranchConfig(
 Branch.open_containing(".")[0])
 host = config.get_user_option("jira-host")
 if(host):
 ui_factory.show_message (host)
 else:
 ui_factory.show_message (
 "Jira host is not set")
register_command (cmd_jira_host)

Listing 2
16 | | JAN 2012{cvu}

 The class has a docstring, which is used as help for bzr help
commands and bzr help jira-host. In the former case, the
first line is used for a summary. In the latter case, the whole
docstring is used. Listing 3 shows the help that is generated for free.

 The class has a takes_args attribute, which is used to
automatically handle option parsing and passing. The ? indicates it
is an optional positional parameter. This command has no options,
otherwise it would also declare a takes_options attribute. These
attributes are also used to generate help for bzr help
jira_host.

 The run method is called to do the command. It receives keyword
arguments including the optional "host" argument, corresponding
to the argument declared in takes_args. Here we use the presence
or absence of that argument to decide whether to set or display the
current setting.

 Error checking on the provided host has been elided.

 The BranchConfig class handles configuration options for a
specified branch. Configuration can also be stored per user or per
system.

 bzrlib.ui.ui_factory provides an object that can do text-
based user interaction, within the framework. Using a specialisation
of bzrlib.ui.UIFactory is preferred over direct interaction
with the terminal, because it can enforce the application’s
conventions. The documentation for bzrlib.ui does not mention
this object [7], but does describe the various types that it may be.
One might expect from this that it is necessary to instantiate one,
perhaps using make_ui_for_terminal, but actually the
ui_factory instance is provided by the framework and should be
used directly.

Extending an existing command
I want to extend the branch command to enforce the new branch name
being a valid Jira issue ID, so that the message template can use that name.
Extending a command is similar to creating a new command, with a few
extra traps, as shown in listing 4.

 I did not wish to re-create the original docstring, so I used the
__doc__ attribute directly to set it.

 Similarly, the takes_options and takes_args attributes are
inherited and extended by the class.

 The run method must remove our arguments from the kwargs list
otherwise the base command throws out what it sees as an invalid
argument list.

 The register_command function has to be told that this is an
extension, otherwise it will reject a duplicate command name.

Testing
Testing a plugin presents some issues, as its dependencies in the
framework must be set up in a test environment. Fortunately Bazaar has
fairly comprehensive support for testing, built on top of the standard
unittest package. The first step is to create a function called
test_suite within the plugin’s package that exports a test suite. I
created a new module in the package to hold the tests, and delegated to
this module in my test_suite function. Listing 5 shows the outline of
the bzrlib.plugins.jira.jira_plugin_tests module.

Bazaar provides a number of specialisations of unittest.TestCase
that provide the necessary context for a plugin to be tested.
TestCaseWithMemoryTransport should be used as a default.

bzr help jira-host
Purpose: Sets the jira-host option for branch
checking.
Usage: bzr jira-host [HOST]

Options:
 --usage Show usage message and options.
 -v, --verbose Display more information.
 -q, --quiet Only display errors and warnings.
 -h, --help Show help message.

Description:
 The option is stored as a branch option.
 With no arguments, reports the current setting.
 The host value should be the network location
part of the URL.

From: plugin "jira"

Li
st

in
g

3 from bzrlib import builtins
from bzrlib.option import Option

class cmd_branch (builtins.cmd_branch):
 __doc__=builtins.cmd_branch.__doc__
 takes_options=[Option("nojira",
 help="Suppress Jira checks")]+
 builtins.cmd_branch.takes_options
 takes_args=builtins.cmd_branch.takes_args

...

 def run(self, *args, **kwargs):
 to_loc = kwargs["to_location"]
 from_loc = kwargs["from_location"]
 if ("nojira" in kwargs):
 nojira = kwargs["nojira"]
 del kwargs["nojira"]
 else:
 nojira=False

 if nojira or self._branch_is_ok(from_loc,
 to_loc) or self.confirm(to_loc):
 return builtins.cmd_branch.run(self,
 *args, **kwargs)

register_command (cmd_branch, True)

Listing 4

from bzrlib.tests import (
 TestCaseWithMemoryTransport,
 TestCaseInTempDir,
)

from unittest import TestLoader, TestSuite
from bzrlib.plugins import jira

class message_tests (
 TestCaseWithMemoryTransport):
 def test_MessagPrependsBranch(self):
 branch_dir = os.path.split(self.TEST_ROOT)[1]
 self.assertTrue(
 jira.commit_message_template(
 None, "Foo").
 startswith(branch_dir))

class jira_location_tests(TestCaseInTempDir):
...

def test_suite():
 ldr = TestLoader()
 return TestSuite([ldr.loadTestsFromTestCase(
 message_tests),
 ldr.loadTestsFromTestCase(
 jira_location_tests)])

Listing 5
JAN 2012 | | 17{cvu}

TestCaseInTempDir should be used where an actual tree has to be
created on disk. It is not clear from the documentation why the latter is
required for a test that uses branch configuration, but it worked where the
former did not. A plugin exercised in the context of one of these will see
a repository that is created for the duration of the test. The test case can
see the name of the repository through the TEST_ROOT attribute on the
test case instance. Listing 6 shows how I used that facility to test that the
commit message template function uses the repository name.

Testing a plugin’s interaction with the console demonstrates why one
should use ui_factory for output, as described above. Replacing
ui.ui_factory with a TestUIFactory instance, based on a
StringIO, allows the test to see what was output. This of course relies
on the code under test always using ui.ui_factory for output, and not
importing ui_factory into its own namespace. Listing 6 shows a test
that makes use of this facility. Points to note here are:

 TestUIFactory does not work with StringIO directly, you
must use bzrlib.tests.StringIOWrapper.

 Bzrlib.test.TestCase comes with some extra assertions,
including assertContainsRe to find a string within a target
string.

Closing remarks
The documentation of the process for creating a Bazaar plugin poses a
higher barrier to entry than might be expected, given how easy the tool is
from a user’s perspective and how pleasant Python usually is to work in.

This article should hopefully save some of the early frustrations to getting
a basic plugin working.

There are many aspects that are not covered here, mainly because the
plugin I wrote worked perfectly well without. For example, the plugin does
everything in its __init__.py, which is not recommended as it can pose
performance issues. Bazaar provides a lazy loading facility to avoid the
performance penalty of loading unused modules on every invocation, but
I found performance to be acceptable without having to go into those
complexities.

References
[1] http://doc.bazaar.canonical.com/plugins/en/plugin-

development.html

[2] http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-svn-
projects.html

[3] http://doc.bazaar.canonical.com/latest/en/user-guide/
writing_a_plugin.html

[4] http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/view/head:/
bzrlib/__init__.py

[5] http://doc.bazaar.canonical.com/development/en/user-reference/
hooks-help.html

[6] http://people.canonical.com/~mwh/bzrlibapi/bzrlib.html

[7] http://people.canonical.com/~mwh/bzrlibapi/bzrlib.ui.html

class jira_location_tests(TestCaseInTempDir):
 def test_option_command_shows_setting_for_
 location(self):
 stdout = StringIOWrapper()
 ui.ui_factory = TestUIFactory(stdout=stdout)
 cmd = jira.cmd_jira_host()
 cmd.run(location="bm:foo")
 self.assertEqual (stdout.getvalue(),
 "Jira host is not set\n")

 cmd.run (location="bm:foo",
 host="company.com:8080")
 cmd.run(location="bm:foo")
 self.assertContainsRe (stdout.getvalue(),
 "company.com\:8080\n")
 self.assertContainsRe (self.request_url,
 "http://company.com:8080/rest/api/
 2.0.alpha1")

Li
st

in
g

6

18 | | JAN 2012{cvu}

http://doc.bazaar.canonical.com/plugins/en/plugin-development.html
http://doc.bazaar.canonical.com/plugins/en/plugin-development.html
http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-svn-projects.html
http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-svn-projects.html
http://doc.bazaar.canonical.com/latest/en/user-guide/writing_a_plugin.html
http://doc.bazaar.canonical.com/latest/en/user-guide/writing_a_plugin.html
http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/view/head:/bzrlib/__init__.py
http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/view/head:/bzrlib/__init__.py
http://doc.bazaar.canonical.com/development/en/user-reference/hooks-help.html
http://doc.bazaar.canonical.com/development/en/user-reference/hooks-help.html
http://people.canonical.com/~mwh/bzrlibapi/bzrlib.html
http://people.canonical.com/~mwh/bzrlibapi/bzrlib.ui.html

Effect of Risk Attitudes on Recall of
Assignment Statements (Part 1)

Derek Jones reveals the results of his ACCU 2011
Conference developer experiments.

ne of the first major discoveries in experimental psychology was a
feature of human memory that has become generally known as short
term memory. People are able to temporarily retain a small amount

of information in memory whose accuracy quickly degrades unless an
effort is made to ‘refresh’ it, and the information is easily overwritten by
new information.

The capacity of short term memory (STM) has been found to correspond
to approximately two seconds worth of sound, with some people have less
capacity and some more.

There have been a huge number of experiments investigating the
characteristics of STM and its impact on human cognitive performance.
Since 2004 I have been trying to experimentally [7, 8] measure the impact
of STM on developer performance when recalling information about
previously seen source code (usually a sequence of assignment
statements). In these experiments subjects have always been given the
option to answer ‘I would refer back’, i.e., if they have to recall this
information in a work environment they would refer back to the previously
read code rather than use whatever information they currently recall. In all
experiments there have been subjects giving a much higher percentage of
‘would refer back’ answers than average.

The immediate explanation that comes to mind for a subject giving a high
percentage of ‘would refer back’ answers is that they have a lower capacity
STM than other subjects; an alternative explanation is that these high
‘would refer back’ subjects are risk averse (they may or may not also have
a lower capacity STM).

This is the first of a two part article that reports on an experiment carried
out during the 2011 ACCU conference investigating and analysing their
performance on a memory task and measuring their risk attitude.

This first article provides general background on the experiment and
discusses the ‘risk’ related results, while part two discusses subject
performance on recall of recently seem assignment statements.

The hypothesis
When people recall information from memory they get a feeling for the
confidence level associated with the recalled information. A person who
is comfortable taking risks is more likely to make use of information for
which they have a low confidence level than a person who is risk averse.

Risk attitude is hypothesized to effect subject performance in a memory
recall task in the following three ways:

1. a risk averse subject works more slowly through the experiment
questions than a subject who is less risk averse,

2. a risk averse subject works through questions at a similar rate to
other subjects but gives a higher percentage of ‘would refer back’
answers than less risk averse subjects,

3. a risk taking subject will work through the questions at a rate that is
faster than their cognitive abilities can reliably support; such
behaviour would be expected to generate a higher percentage of
incorrect answers than somebody working within the bounds of their
cognitive abilities.

Risk
Living in an uncertain world we are all used to taking risks and human risk
behaviour has been found to be influenced by many different factors.
People vary in their willingness to take risks and an individual’s approach
to risk may vary across different domains (e.g., play vs. work). [11]
People’s willingness to take risks within a given domain may depend on
their interaction with that domain (e.g., athletes taking greater risks during
recreational activities, gamblers more gambling risks, smokers more
health risks, etc). [6]

Risks might be taken for the thrill of it, because the risk taker believes the
outcome will produce a benefit rather than a cost or because a person is
unaware that the outcome of their actions is uncertain.

When making cost/benefit decisions people have been found to give
answers that do not agree with the mathematically optimum answer. For
instance, people are risk adverse for gains (e.g., given an 85% chance of
winning £1,000 or unconditionally winning £800, the majority of subjects
have opted for the unconditional option) and risk seeking for losses (e.g.,
given an 85% chance of loosing £1,000 or unconditionally losing £800,
the majority of subjects have opted for the 85% option). [9]

When working on source code what perception of risk [10] do developers
have and is any risk analysis they perform correct or misconceived [2]?
Your author is not aware of any research investigating risk taking by
developers while they are working on source code and so this experiment
is something of a jump in the dark.

Measuring risk attitude

In 2002 Weber, Blais and Betz [11] created a questionnaire intended to
measure people’s risk attitude in six domains: Investing (e.g., money),
Health/safety, Recreational, Gambling, Ethical and Social decisions; this
set of statements has become widely used and was updated in 2006. [3]
The questionnaire consists of various statements each specifying some
action; subjects are asked to rate the likelihood they would perform the
action, if they found themselves in that situation, on a scale of 1 to 7
(extremely unlikely to extremely likely). The answers are combined to
create a measure of risk attitudes.

The 30 statements are:

 Approaching your boss for a raise (S)

 Swimming far out from shore on an unguarded lake or ocean (R)

 Betting a day’s income at the horse races (G)

 Investing 10% of your annual income in a moderate growth mutual
fund (I)

 Drinking heavily at a social function (H)

 Taking some questionable deductions on your income tax return (E)

 Disagreeing with an authority figure on a major issue (S)

 Betting a day’s income at a highstake poker game (G)

 O

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try to work out what they intended to write. Derek
can be contacted at derek@knosof.co.uk
JAN 2012 | | 19{cvu}

 Having an affair with a married
man/woman (E)

 Passing off somebody else’s work as your own (E)

 Going down a ski run that is beyond your ability (R)

 Investing 5% of your annual income in a very speculative stock (I)

 Going whitewater rafting at high water in the spring (R)

 Betting a day’s income on the outcome of a sporting event (G)

 Engaging in unprotected sex (H)

 Revealing a friend’s secret to someone else (E)

 Driving a car without wearing a seat belt (H)

 Investing 10% of your annual income in a new business venture (I)

 Taking a skydiving class (R)

 Choosing a career that you truly enjoy over a more secure one (S)

 Riding a motorcycle without a helmet (H)

 Speaking your mind about an unpopular issue in a meeting at work
(S)

 Driving while taking medication that may make you drowsy (H)

 Bungee jumping off a tall bridge (R)

 Piloting a small plane (R)

 Walking home alone at night in an unsafe area of town (H)

 Moving to a city far away from your extended family (S)

 Starting a new career in your midthirties (S)

 Leaving your young children alone at home while running an errand
(E)

 Keeping a wallet you found that contains £150 (E)

Risk domains are not limited to the six domains addressed by the
DOSPERT questionnaire. People have been shown to exhibit other
recognizable risk attitudes when operating in different domains, e.g.,
driving a car. [1]

The DOSPERT questionnaire has been used in a variety of domains (see
www.dospert.org), continues to be used and researched and provides a
starting point for the empirical investigation of developer risk attitude
during software development.

Experimental setup
The experiment was run by your author during a 40 minute lunch time
session at the 2011 ACCU conference (www.accu.org) held in Oxford,
UK. Approximately 370 people attended the conference, 30 (8.1%; 3
joined 7 minutes after the experiment started) of whom took part in the
experiment. Subjects were given a brief introduction to the experiment,
during which they filled in background information about themselves, and
then spent 20 minutes answering problems. All subjects volunteered their
time and were anonymous.

The problem to be solved

The problem to be solved followed the same format as an experiment
performed at a previous ACCU conference and the details can be found
elsewhere. [7]

Figure 1 is an excerpt of the text instructions given to subjects.

Figures 2 and 3 are an example of one of the problems seen by subjects.
One side of a sheet of paper (Figure 2) contained three assignment
statements while the second side of the same sheet (Figure 3) contained
the five expressions and a table to hold the recalled information. A series
of X’s were written on the second side to ensure that subjects could not
see through to identifiers and values appearing on the other side of the
sheet. Each subject received a stapled set of sheets containing the
instructions and 40 problems (one per sheet of paper).

The question answering task acts as both a time filler for the assignment
remember/recall problem and as a method of gathering as much
information as possible in the limited time available.

Soe notes for people who don’t know D

p = 7 ;

q = 4 ;

r = 9 ;

t = 8 ;

Figure 1
Figure 2

The task consists of remembering the value of four different variables
and recalling these values later. The variables and their
corresponding values appear on one side of the sheet of paper and
your response needs to be given on the other side of the same sheet
of paper.

1. Read the variables and the values assigned to them as you
might when carefully reading lines of code in a function
definition.

2. Turn the sheet of paper over. Please do NOT look at the
assignment statements you have just read again, i.e., once a
page has been turned it stays turned.

3. For each of the following two statements, please indicate the
likelihood that you would engage in the described activity or
behaviour if you were to find yourself in that situation.

4. You are now asked to recall the value of the variables read on
the previous page. There is an additional variable listed that did
not appear in the original list.

 if you remember the value of a variable write the value
down next to the corresponding variable,

 if you feel that, in a real life code comprehension situation,
you would reread the original assignment, tick the ‘would
refer back’ column of the corresponding variable,

 if you don’t recall having seen the variable in the list
appearing on the previous page, tick the ‘not seen’ column
of the corresponding variable.

For each of the following two statements, please indicate the
likelihood that you would engage in the described activity or
behaviour if you were to find yourself in that situation.

Provide a rating from Extremely Unlikely to Extremely Likely, using
the following scale:

1. Extremely Unlikely

2. Moderately Unlikely

3. Somewhat Unlikely

4. Not Sure

5. Somewhat Likely

6. Moderately Likely

7. Extremely Likely

Swimming far out from shore on an unguarded lake or ocean :

Approaching your boss for a raise :

remember would refer back not seen

q =

t =

p =

s =

r =

Figure 3
20 | | JAN 2012{cvu}

Results
All subjects answered questions for the same amount of time (20 minutes)
and were requested to perform at the rate they would use during normal
work. In the past some subjects ignored this request and attempted to
answer all questions in the booklet they were given. To try to prevent this
behaviour occurring the booklet contained many more questions than it
was thought subjects could complete and they were told during the
introduction about this rationale.

The 30 subjects had a mean of 14.3 years (sd 8.2) experience writing
software professionally and answered 582 complete questions (average of
38.8 risk ratings and 96.7 individual assignment answers).

Subject performance will depend on a spectrum of cognitive abilities, one
of which is risk attitude. The Spearman rank correlation coefficient was
the statistical test used to measure the correlation between the six risk
domains in the DOSPERT questionnaire and the various performance
measurements described below.

The source code of R program written to analyse the data is available on
the web page www.knosof.co.uk/devexperiment/accu11.html along with
the (anonymous) data extracted from subject answers.

There are 30 statements in the risk questionnaire and two were randomly
chosen, without replacement, to appear in each complete experimental

question. Subjects who answered fewer than 15 complete experimental
questions will not have given ratings to all risk statements, while subjects
answering more than 15 will have rated some risk statements twice (the
last answer given was used). Each subject’s risk rating answers were
averaged within each of the six risk domains.

Working more slowly

Figure 4 is a scatter plot of the total number of answers given for the
assignment/recall component of the experiment (i.e., all correct, incorrect,
‘would refer back’ and ‘not seen’ answers) against the six risk attitudes
(each dot represents one subject).

There is no obvious pattern to the subject responses and the Spearman
correlation coefficients don’t stray too far from zero and have a p-value
that is not statistically significant (values not given here to save space and
can be obtained by running the R source available on the experiments web
page).

Higher percentage of ‘would refer back’

Figure 5 is a scatter plot of the percentage of ‘would refer back’ answers
against the six risk attitudes.

There is no obvious pattern to the subject responses and the Spearman
correlation coefficients don’t stray too far from zero and have a p-value

that is not statistically significant. Treating the three subjects having a
significantly higher percentage of ‘would refer back’ answers than other
subjects as outliers and not including them in the correlation analysis does
not change the analysis (values not given here to save space and can be
obtained by running the R source available on the experiments web page).

Higher percentage of incorrect answers

Figure 6 is a scatter plot of the percentage of incorrect answers given for
the assignment/recall component of the experiment against the six risk
attitudes.

There is no obvious pattern to the subject responses and the Spearman
correlation coefficients don’t stray too far from zero and have a p-value
that is not statistically significant (values not given here to save space and
can be obtained by running the R source available on the experiments web
page).

The gambling risk correlation p-value (0.039) was less than the often used
significance level of 0.05. However, if enough correlation tests are
performed one will eventually be found that has a p-value below 0.05. The

Bonferroni correction adjusts for multiple tests by dividing the
significance level by the number of tests, in this case 0.05/6 gives 0.003
as the level below which a p-value will be considered significant. The
gambling risk correlation is not significant at the level adjusted for the
number of tests.

Summary of risk attitude

Table 1 gives the mean and standard deviation of risk attitudes, over all
subjects, for each of the six domains, along with Cronbach’s reliability
coefficient alpha. Also included are values obtained by Blais[4] from 382
subjects from a variety of backgrounds.

●

● ●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

3.0 4.5 6.0

0.0

0.2

0.4

0.6

0.8 social

●

●●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

1 3 5

0.0

0.2

0.4

0.6

0.8 recreation

●

●●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

1.0 2.5 4.0

0.0

0.2

0.4

0.6

0.8
gambling

●

●●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

1.5 3.0

0.0

0.2

0.4

0.6

0.8 health

●

● ●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

1 3 5

0.0

0.2

0.4

0.6

0.8
investing

●

●●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

1.0 2.5 4.0

0.0

0.2

0.4

0.6

0.8 ethics

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●
●

3.0 4.5 6.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6 social

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

1 3 5
0.0
0.1
0.2
0.3
0.4
0.5
0.6 recreation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

1.0 2.5 4.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6 gambling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

1.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6 health

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●
●

1 3 5
0.0
0.1
0.2
0.3
0.4
0.5
0.6 investing

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

1.0 2.5 4.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6 ethics

Figure 5
Figure 6

Fi
gu

re
 4

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

3.0 4.5 6.0

40

60

80

100

120

140 social

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

1 3 5

40

60

80

100

120

140 recreation

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

1.0 2.5 4.0

40

60

80

100

120

140 gambling

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

1.5 3.0

40

60

80

100

120

140 health

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

1 3 5

40

60

80

100

120

140 investing

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

1.0 2.5 4.0

40

60

80

100

120

140 ethics
JAN 2012 | | 21{cvu}

The mean value in all risk domains for the ACCU subjects is less than the
corresponding Internet subject means, but still within one standard
deviation of the Internet mean values. For six cases there is a 1 in 64 chance
of this pattern occurring through random selection.

The standard deviation of the mean in all risk domains for the ACCU
subjects is less than the corresponding Internet standard deviations.

For the gambling domain the ACCU subject mean and standard deviation
is a lot less than for the Internet subjects.

Cronbach’s reliability coefficient alpha is a measure of the internal
reliability (or intercorrelation among items) of a set of test scores that are
combined to create a single score. The third colum of values in Table .1 is
the Cronbach alpha for the ACCU subjects. In those cases where a subject
did not rate all of the DOSPERT statements missing ratings were treated
as having a value that was the mean of the rating given for that domain by
the subject.

A Cronbach alpha less than 0.5 is considered unacceptable (by
statisticians), between 0.5 and 0.6 poor, between 0.6 and 0.7 questionable
and between 0.7 and 0.8 acceptable. Only one risk domain had an
acceptable value, one questionable and two poor, with two being
unacceptable. The domain values derived from the Internet subjects all had
a Cronbach alpha above 0.77.

It is possible that having to remember assignment information affected
subject risk ratings. Like the ACCU subjects the Internet subjects spanned
a wide range of ages.

Threats to validity

The structure of the experiment is such that giving a ‘would refer back’
answer has a much lower cost than would have to be paid in real life, i.e.,
ticking the appropriate answer row vs. spending time searching back
through code. A study by Fu and Gray[5] showed that this difference can
be significant. They asked subjects to copy a pattern of colored blocks (on
a computer-generated display). To carry out the task subjects had to
remember the color of the block to be copied and its position in the target
pattern, a memory effort. An effort cost was introduced by graying out the
various areas of the display where the colored blocks were visible.

These grayed out areas could be made temporarily visible using various
combinations of keystrokes and mouse movements. When performing the
task, subjects had the choice of expending memory effort (learning the
locations of different colored blocks) or perceptual-motor effort (using
keystrokes and mouse movements to uncover different areas of the
display).

The subjects were split into three groups: one group had to expend a low
effort to uncover the grayed out areas, the second acted as a control, and
the third had to expend a high effort to uncover the grayed out areas.

The results showed that the subjects who had to expend a high perceptual-
motor effort, uncovered grayed out areas fewer times than the other two
groups. These subjects also spent longer looking at the areas uncovered,
and moved more colored blocks between uncoverings. The subjects faced
with a high perceptual-motor effort reduced their total effort by investing
in memory effort.

DOSPERT was originally developed and tested using university students
as subjects. Based on an average of 14.3 years of professional software
development the average age of the ACCU subjects is likely to be in the
mid-thirties. Answers to some of the questions may change as people get
older (e.g., older people are more likely to be in a stable relationship and
having unprotected sex); the effect of age on the reliability of the
measurement is not known. The average age of the Internet subjects was
probably late twenties (82 were 21 years or younger, 223 between 22 and
35, and 71 were 36 or older).

Conclusion
This experiment failed to find any statistically significant correlation
between subject risk attitude in six domains, as measured using the
DOSPERT questionnaire, and subject performance in recalling
information about a previously seen sequence of assignment statements.
Either risk attitude is not a significant factor in recalling information about
assignment statements or the attitudes measured by the DOSPERT
questionnaire are not applicable.

The ACCU subject risk attitudes were more risk averse than those from
the Internet survey, the ACCU subjects were also more self consistent (i.e.,
the standard deviation in their scores was lower). However, Cronbach
alpha values suggest that in some risk domains the single value obtained
from combining all subjects ratings is not reliable.

Further reading
Statistics Explained by Perry R. Hinton provides a very good introduction
to statistics.

The Art of R Programming by Norman Matloff teaches the R language as
a language rather than as a tool to use for statistical analysis.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making a conference slot
available in which to run it.

References
[1] J. Adams. Risk and Freedom: The record of road safety regulation.

Transport Publishing Projects, 1985.
[2] T. Aven. Misconceptions of Risk. Wiley, 2010.
[3] A.-R. Blais and E. U. Weber. ‘A domain-specific risk-taking

(DOSPERT) scale for adult populations.’ Judgment and Decision
Making, 1(1):33–47, Apr 2006.

[4] A.-R. Blais and E. U. Weber. ‘The domain-specific risk taking scale
for adult populations: Item selection and preliminary psychometric
properties’. Technical Report TR 2009-203, Defence R&D Canada,
Dec 2009.

[5] W.-T. Fu and W. D. Gray. ‘Memory versus perceptual-motor
tradeoffs in a blocks world task.’ In Proceedings of the Twenty-
second Annual Conference of the Cognitive Science Society, pages
154–159, Hillsdale, NJ, 2000. Erlbaum.

[6] Y. Hanoch, J. G. Johnson, and A. Wilke. ‘Domain specificity in
experimental measures and participant recruitment.’ Psychological
Science, 17(4):300–304, Apr 2006.

[7] D. M. Jones. ‘Experimental data and scripts for short sequence of
assignment statements study.’ http://www.knosof.co.uk/cbook/
accu04.html, 2004.

[8] D. M. Jones. ‘Developer beliefs about binary operator precedence.’
C Vu, 18(4):14–21, Aug 2006.

[9] D. Kahneman and A. Tversky. ‘Choices, values, and frames.’ In D.
Kahneman and A. Tversky, editors, Choices, Values, and Frames,
chapter 1, pages 1–16. Cambridge University Press, 1999.

[10] P. Slovic. The Perception of Risk. Earcthscan Publications Ltd, 2000.
[11] E. U. Weber, A.-R. Blais, and N. E. Betz. ‘A domain-specific risk

attitude scale: Measuring risk perceptions and risk behaviors.’
Journal of Behavior and Decision Making, 15(4):263–290, Apr 2002.

Mean and standard deviation for subject responses in each risk domain
and Cronbach’s alpha for the mean score. Last two columns are reported
by Blais [4] based on responses from 382 subjects (after filtering to meet
various criteria) recruited via the internet and paid for their time

Domain Mean
Standard
deviation

Cronbach
alpha

Internet
mean

Internet
SD

Social 4.84 0.95 0.58 5.27 1.09

Recreation 3.57 1.22 0.60 3.78 1.57

Gambling 1.6 0.96 0.73 2.85 1.92

Investing 3.44 1.24 0.58 4.12 1.53

Health 2.96 0.89 0.29 3.65 1.41

Ethical 2.42 0.82 0.34 3.14 1.31

Ta
bl

e
1

22 | | JAN 2012{cvu}

http://www.knosof.co.uk/cbook/accu04.html
http://www.knosof.co.uk/cbook/accu04.html

An Introduction to CLASP, Part 1: C
Matthew Wilson presents a cure for his command line blues.

his article introduces the CLASP command-line handling library. It
covers the major requirements and design parameters, along with
brief discussion of important implementation features of the variant

for C, CLASP/C. Also presented are example usages, and discussion of
possible future enhancements. Implementations for other languages will
be covered in future articles.

Introduction
CLASP stands for Command-Line Argument Sorting and Parsing. It is a
library to assist with the handling of command-line arguments. (Actually
CLASP is a suite of libraries, covering different languages and different
command-line-related tasks, of which more, later; the one I’m going to
discuss in this article is for use by (and written in) C. In future articles I’ll
discuss other facilities and languages.)

CLASP exists in part to provide facilities missing in the C standard library,
which offers the busy programmer nothing more than an array of string
pointers (argv) of a given length (argc) as parameters to main().
Furthermore, it also attempts (and largely succeeds in) the homogenisation
of the stark differences in utility between the UNIX and Windows shells.
Simply, the UNIX shell(s) expand wildcards passed on the command-line
before invoking a given program; the Windows shell does not.

History

Like anyone who has written command-line programs, I have had to write
far too many hand-coded command-line argument processing loops over
the years. And, like many, I presume, I’ve written the occasional
command-line argument processing library to ameliorate the tedium, and
the subtle complexities, of command-line processing. None of these efforts
have left me with much satisfaction, until now.

A few years ago I started yet-another-open-source-project, systemtools
(http://www.sourceforge.net/projects/systemtools). I was (and still am,
though more for academic than commercial reasons) interested in
exploring the differences between programming techniques when solving
the same problems in different languages (e.g. C++ vs C# vs Ruby), or with
different libraries (e.g. Boost vs. FastFormat vs. POCO vs. …). Since I was
at the time still spending most of my time on Windows I thought I could
kill two birds with one stone by (re-)writing many missing standard (i.e.
present on UNIX) and several proprietary tools along these lines. I also
thought there was a book (or several) in it, and still hope to explore that in
the future.

The first project tackled was cat, in C. For the first version I wrote
absolutely everything from scratch – nothing other than the C standard
library – as a pedagogical exercise. I then started about refining and
refactoring, and pushing it towards a standard I would be happy to write
commercially. With each subsequent project – tee, ws, etc. – I allowed
more use of third-party libraries, and explored different languages. The
dominant common theme to all was that the handling of command-line
arguments was a giant, verbose, tedious, repetitive, pain in the neck. Thus,
CLASP was born.

Since that time, I have been too busy with commercial things to advance
my systemtools project (and its associated book idea(s)). However, I have
needed to write a multitude of non-trivial command-line applications (in
C, C++, C#, and Ruby), and so the nascent CLASP has had quite the
workout. Although it’s not yet at a 1.x stage – part of the reason for writing
this article is to solicit opinion and help to take it to that level – it is now
at a level where I am willing to let it be seen and discussed and (hopefully)
used by others.

Example program
In order to talk meaningfully about the issues involved in command-line
handling, I will posit a hypothetical program prg, which behaves like a
classic UNIX filter, with the following usage that has just enough
complexity to shed light on most of the issues of concern (Listing 1).

 T
Synopsis:
 prg [... options ...] [<in-file> | -]
 [<out-file> | -]

Options:

 filtering:

 -a
 --all
 equivalent to -bclt

 -b => --strip-blanks=all
 -B => --strip-blanks=no
 --strip-blanks=<value> as one of
 {all|multiple|no}; default value=multiple
 causes blank lines in the input to be stripped

 -c => --strip-comments=yes
 -C => --strip-comments=no
 --strip-comments=<value> as one of {yes|no};
 default value=yes
 causes comments in the input to be stripped

 -l => --trim-leading-whitespace=yes
 -L => --trim-leading-whitespace=no
 --trim-leading-whitespace=<value> as one of
 {yes|no}; default value=yes
 causes leading whitespace to be trimmed

 -t => --trim-trailing-whitespace=yes
 -T => --trim-trailing-whitespace=no
 --trim-trailing-whitespace=<value> as one of
 {yes|no}; default value=yes
 causes trailing whitespace to be trimmed

 history:

 -h <value>
 --history-file=<value>
 specifies a file into which will be written
 the history of each modification made to the
 input stream that will cause the output to
 differ

 -e
 --relative
 use relative paths in history

Listing 1

MATTHEW WILSON
Matthew is a software development consultant and trainer for
Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au.
JAN 2012 | | 23{cvu}

Standard UNIX flags --help, --version, and -- and the standard flag/
value - are also to be supported. (See following discussions for - and --.)

Some example usages might be:

 $ prg --version
 $ prg src.cpp stripped.cpp
 $ prg --all src.cpp stripped.cpp
 $ prg -aL -h actions.log src.cpp stripped.cpp
 $ prg -aL --history-file=actions.log src.cpp
 stripped.cpp
 $ prg --trim-leading-whitespace:yes
 --strip-blanks:yes src.cpp stripped.cpp

Manually writing command-line handling even for a relatively-simple
program such as this involves a number of non-trivial challenges,
including:

 processing arguments array argv in range [1 .. argc);

 detecting arguments with one or two hyphens;

 detecting -a, --all, -b, -B, -c, -C, -l, -L, -t, -T, -e,
--relative, --help, and --version arguments, and adjusting
program behaviour-controlling state accordingly;

 detecting two-hyphen arguments --strip-blanks, --strip-
comments, --trim-leading-spaces, --trim-trailing-
spaces, and --history-file, by search for the equals sign (or
a colon, if that is preferred/allowed) coupled with strncmp(), and
then ascertaining following value, if present, and recording;

 looking ahead to next argument, if present, when processing -h;

 detecting --, and changing remaining parsing behaviour
accordingly;

 detecting -;

 detecting arguments with zero hyphens (for <in-file> and
<out-file>);

 dealing with unrecognised one/two-hyphen-prefixed arguments;

 dealing with insufficient/surplus zero-hyphen-prefixed arguments;

 writing out usage (in form similar to above), keeping consistent with
parsing.

Most likely you’ll have a for-loop with nested
switch-statements, along with several parsing state
variables indicating whether the next argument will be
a value (for the -h option) and whether the --
argument has been specified (and so all subsequent
arguments are to be treated as if they have no hyphen
prefixes). There may be similar/identical sections in
separate switch statement for dealing with one- and
two-hyphen-prefixed arguments that have the same/
similar roles.

As well as the considerable challenge in getting and
keeping the logic correct, you will also have the
onerous task of keeping the usage information
printing code consistent with the evolving set of arguments. I am sure you
can imagine the boring and error-prone nature of this kind of coding.
Something better is required.

CLASP is intended to help you permanently eschew this kind of effort, as
well as to offer other important features and characteristics as outlined in
the following sections.

Design principles
There are a number of design principles that inform the characteristics of
CLASP and why (I believe) it is worth creating another such library (rather
than, say, using getopt and Windows-ports thereof). In no particular
order:

 Support Multiple Languages.

 Support Multiple Platforms, to the degree that is possible.

 100% Pure Language Implementations. The variant for each
language should be written entirely in that language, except where
there's a persuasive reason to the contrary.

 Expand Wildcards on Windows, and do so implicitly.

 Never Fail to Parse a Command-line, excepting memory exhaustion
or programmer error.

 Distinguish between Flags, Options, and Values.

 Define Flags and Options in Declarative Form, within the bounds of
the given language.

 Support Short-form Flags and Options.

 Support Long-form Flags and Options.

 Support (short-form) Flags as aliases for (long-form) Flags.

 Support Flags as aliases for value’d Options.

 Support Grouped (Single-letter) Flags.

 Handle the - (Single-hyphen) Special Argument.

 Handle the -- (Double-hyphen) Special Argument.

 Support default Values for Options.

 Group and order the Flags, Options, and Values.

 Render Argument Order (Almost) Irrelevant.

 Retain Original Command-Line Context Information.

 ‘Reuse’ aliases for Generating Usage Information.

 Validate Arguments Under Programmatic Control.

 Detect Whether Flags and Options are ‘Recognised’.

 Detect Whether Flags, Options, and Values are ‘Used’.

 Combine Flags into Programmatic Bitmasks.

 Follow library good practice, in implementation, including being
highly testable.

Support multiple languages
As I mentioned above, the original systemtools research/writing project

was intended to cover multiple languages, so CLASP
was always required to do so. Furthermore, since
using CLASP, heavily, in C, C++, and C# in recent
years, each time I go to Python or Ruby I miss it
tremendously.

While not getting beyond myself – I do not suggest
that CLASP is the ultimate in command-line
processing – I do now find that some of its facilities
are invaluable in simplifying both the writing of a
command-line program and, by dint of its flexibility
in detecting and assigning flags, options, and values,
how flexible, and therefore how usable, resulting
programs can be. This is pretty subjective, however,
and I look forward to feedback (especially the
negative) from you, gentle readers.

Support multiple platforms.
This is pretty much a given, except to say that if you’re writing C or C++
exclusively on UNIX it may be preferable to stick with getopt (or its
slightly more powerful derivative library getopt_long), despite its
limitations (discussed below).

Furthermore, several other languages (including D, Perl, Python, and
Ruby) have their own cross-platform getopt/getopt_long-analogues
and other (non-getopt-like) facilities, so if you’re comfortable with the
getopt paradigm (and I don’t persuade you otherwise in this series of
articles) you may be sufficiently well-served already.

100% pure language implementations
The principle is simple. For a variety of reasons, if it’s possible to write
the implementation of a library in the language that it’s going to express,

some of its
facilities are
invaluable in

simplifying both
the writing of a
command-line

program
24 | | JAN 2012{cvu}

then we should do so. Reasons include: willingness to use it by others;
simplifying build; simplifying change; reduced dependencies on other
third-party libraries; reduced need to ship binaries. Only in the minority
of cases is it preferable to have the library implementation in a language
different to that it is expressing.

So, the CLASP/C variant is written in C. The CLASP/.NET variant is
written in C#. The only exception so far is that the CLASP/C++ variant is
a thin (header-only) wrapper over C.

Expand wildcards on Windows.
The biggest difference between command-line processing on UNIX and
Windows is that, by default, the UNIX shell expands any wildcard
arguments (in terms of the relative and absolute current extant file-system
contents) before invoking the given command, whereas the Windows shell
does no expansion. In general, UNIX applications need not concern
themselves about wildcard arguments. Conversely, every Windows
program that receives file paths as command-line arguments must do its
own expansion. Obviously, this is a huge impost on Windows program
functionality.

Consider a directory containing the files list.c, vector.c,
containers.h, program.c. If you type "cc *.c" in, say, bash on
UNIX, cc will be invoked with the command-line "cc list.c
program.c vector.c". On Windows you’ll just get "cc *.c".

It seemed almost pointless to write a cross-platform command-line
processing library without tackling this biggest of failings (for Windows).
So, when building CLASP on Windows, the recls library (http://
www.recls.org/) facilities are used inside the library to expand any
wildcard arguments. If this is not required, there are two mechanisms.

You can define the preprocessor symbol CLASP_CMDLINE_ARGS_NO_
RECLS_ON_WINDOWS during the library compilation, in which case a
variant of CLASP is built entirely independent of recls, and will never
expand wildcards. Alternatively, you can specify the runtime parsing flag
CLASP_F_DONT_EXPAND_WILDCARDS_ON_WINDOWS to suppress
expansion for a given program; in this case, you will still have to link to
the recls library, even though it’s not used.

On UNIX, wildcard expansion is suppressed by enclosing a wildcard
argument within single quotes, as in "cc '*.c'", in which case the
command will be "cc *.c". Thankfully, the Windows shell passes
single-quoted arguments through to the program without stripping the
single-quotes, so CLASP detects this and emulates UNIX by not
expanding any such quoted arguments. Again, this can be altered (at
r un t i m e) i f r e q u i r e d by s p e c i f y i n g t h e p a r s i n g f l a g
CLASP_F_DO_EXPAND_WILDCARDS_IN_APOSQUOTES_ON_
WINDOWS, in which case the single quotes will be ignored and any
wildcards expanded regardless.

Never fail to parse a command-line.
In another article in a loosely-related series – of which this is the first – in
the coming instalments of CVu I will be looking at anatomies of programs,
including command-line programs. I will be considering the ‘levels’ at
which it’s appropriate to invoke different infrastructure services common
to programs. Command-line parsing is one of the more fundamental, and,
as such, it should have as few failure modes as possible.

Consequently, CLASP (the C variant, at least) can fail only as a result of
(i) memory exhaustion, or (ii) programmer error in the specification of
aliases. In every other circumstance a meaningful form of the program’s
command-line will be obtained (albeit the partition of flags, options, and
values may be a surprise if you’ve mis-specified the aliases).

Considering our prg example, if the short-form alias for option --history-
file was -L rather than -h (as it was during its development while
preparing this article!), then the call to parse the command-line would fail,
and a message reporting the programmer error would be issued.

Distinguish between Flags, Options and Values
In my reckoning, there are three types of command-line arguments, which
I define as follows:

 Flags, which are arguments that act like Boolean switches. Flags
begin with one or more hyphens, and are always comprised of only
a single argument. For example: --help, -e, -a.

 Options, which are arguments that can represent a range of options.
Options begin with one or more hyphens, and can take three forms.
Two of these forms are comprised of only a single argument, as in
--history-file=abc or --history-file:abc (or -h=abc
or -h:abc), and -habc. The third form is comprised of an
argument pair, as in -h abc or --history-file abc.

 Values, which are arguments that do not begin with hyphens, such
as the input file path and output file path values to be specified to
prg.

(For the remainder of the article I will capitalise and italicise them, to avoid
ambiguity with other uses of the words.)

Flags have only a name. Values have only a value. Options have both a
name and a value (although the value may be defaulted).

Note that CLASP treats the prefixing hyphen(s) as part of the name of a
Flag or Option.

Currently, CLASP support Flags and Values completely, and supports the
first (--history-file=abc) and last (-h abc) form of Options; it does
not currently support the second (-habc) form.

Depending on requirements and sophistication of implementation, a given
program may have any combination of Flags and/or Options and/or
Values, including none at all.

Furthermore: some of these may be optional, others mandatory; some may
have aliases, others not; some may be specified only once, others multiple
times; some may have a specific ordering, others not. These permutations
are all supported by CLASP, as discussed in the following sections.

With respect to prg, we would delineate its arguments as follows:

 Flags: -a, --all, -b, -B, -c, -C, -l, -L, -t, -T, -e,
--relative, --help, and --version;

 Options: --strip-blanks, --strip-comments, --trim-
leading-spaces, --trim-trailing-spaces, and --
history-file;

 Values: <in-file> (or -), and <out-file> (or -)

Define Flags and Options in declarative form
In all languages, the intention is to have the Flags and Options be defined
as declaratively as possible. Listing 2 shows a complete sample
implementation of the prg program, including the declaration of the
‘aliases array’ ALIASES in which its Flags and Options are defined.

#include <systemtools/clasp/clasp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static clasp_alias_t const ALIASES[] =
{
 /* Filtering behaviour flags/options */
 CLASP_GAP_SECTION("filtering:"),

 CLASP_FLAG("-a", "--all",
 "equivalent to -bclt"),

 CLASP_OPTION(NULL, "--strip-blanks=multiple",
 "causes blank lines in the input to be
 stripped", "|all|multiple|no"),
 CLASP_OPTION_ALIAS("-b", "--strip-blanks=all"),
 CLASP_OPTION_ALIAS("-B", "--strip-blanks=no"),

Listing 2
JAN 2012 | | 25{cvu}

26 | | JAN 2012{cvu}

 CLASP_OPTION(NULL, "--strip-comments=yes",
 "causes comments in the input to be
 stripped", "|yes|no"),
 CLASP_OPTION_ALIAS("-c",
 "--strip-comments=yes"),
 CLASP_OPTION_ALIAS("-C",
 "--strip-comments=no"),

 CLASP_OPTION(NULL,
 "--trim-leading-whitespace=yes",
 "causes leading whitespace to be trimmed",
 "|yes|no"),
 CLASP_OPTION_ALIAS("-l",
 "--trim-leading-whitespace=yes"),
 CLASP_OPTION_ALIAS("-L",
 "--trim-leading-whitespace=no"),

 CLASP_OPTION(NULL,
 "--trim-trailing-whitespace=yes",
 "causes trailing whitespace to be trimmed",
 "|yes|no"),
 CLASP_OPTION_ALIAS("-t",
 "--trim-trailing-whitespace=yes"),
 CLASP_OPTION_ALIAS("-T",
 "--trim-trailing-whitespace=no"),

 /* History flags/options */

 CLASP_GAP_SECTION("history:"),

 CLASP_OPTION("-h", "--history-file", "specifies
 a file into which will be written the
 history of each modification made to the
 input stream that will cause the output to
 differ", ""),
 CLASP_FLAG("-e", "--relative",
 "use relative paths in history"),

 /* Standard flags */

 CLASP_GAP_SECTION("standard flags:"),

 CLASP_FLAG(NULL, "--help",
 "show this help and quit"),
 CLASP_FLAG(NULL, "--version",
 "show version and quit"),

 CLASP_ALIAS_ARRAY_TERMINATOR
};
int main(int argc, char** argv)
{
 clasp_arguments_t const* args;
 unsigned const cflags = 0;
 int const cr = clasp_parseArguments(cflags,
 argc, argv, ALIASES, NULL, &args);

 if(cr != 0)
 {
 fprintf(stderr,
 "failed to initialise : %s (%d)\n",
 strerror(cr), cr);
 return EXIT_FAILURE;
 }
 else
 {
 if(clasp_flagIsSpecified(args, "--help"))
 {
 clasp_show_usage(
 NULL
 , ALIASES

 , "prg"
 , "SystemTools
 (http://systemtools.sourceforge.net/)"
 , "Copyright Matt Wilson"
 , "Exercises CLASP for CVu"
 , "prg [... options ...] [<infile> | -]
 [<outfile> | -]"
 , 1, 0, 1 /* version: maj, min, rev */
 , clasp_show_header_by_FILE,
 clasp_show_body_by_FILE, stdout
 , 0
 , 76 /* console-width */
 , -2 /* indent size */
 , 1 /* blank line between args? */
);
 }
 else
 {
 /* Dump out the arguments, in groups */
 puts("");
 printf("flags:\t%lu\n", args->numFlags);
 { size_t i; for(i = 0; i != args->numFlags;
 ++i)
 {
 clasp_argument_t const* const flag =
 args->flags + i;

 /* Treat strings as slices {len+ptr} */
 printf("flag-%02d:\t%.*s\t%.*s\n", i,
 (int)flag->givenName.len,
 flag->givenName.ptr,
 (int)flag->resolvedName.len,
 flag->resolvedName.ptr);
 }}

 puts("");
 printf("options:\t%lu\n",
 args->numOptions);
 { size_t i; for(i = 0;
 i != args->numOptions; ++i)
 {
 clasp_argument_t const* const option =
 args->options + i;

 /* Treat strings as C-style strings */
 printf("option-%02d:\t%s\t%s\t=\t%s\n",
 i, option->givenName.ptr,
 option->resolvedName.ptr,
 option->value.ptr);
 }}

 puts("");
 printf("values:\t%lu\n", args->numValues);
 { size_t i;
 for(i = 0; i != args->numValues; ++i)
 {
 clasp_argument_t const* const value =
 args->values + i;

 /* Treat strings as slices {len+ptr} */
 printf("value-%02d:\t%.*s\n", i,
 (int)value->value.len,
 value->value.ptr);
 }}
 }
 clasp_releaseArguments(args);

 return EXIT_SUCCESS;
 }
}

Listing 2 (cont’d)Li
st

in
g

2
(c

on
t’d

)

With the use of macros such as CLASP_FLAG(), CLASP_OPTION(), and
so on, it is a straightforward matter to define a constant static non-local
(file/namespace-scope) alias array, in which the short- and/or long-form
names, possible values, default values, and help-text can be specified for
all Flags and Options.

The general intention of focusing on a declarative form is twofold: to make
as clear as is possible (within the bounds of a given language) the Flags
and Options while minimising the risks of programming mistakes; to be
able to reuse this information in the generation of usage (--help)
information. I’ll discuss the latter more below.

Currently, CLASP/C++ uses the same declarative form as CLASP/C. The
CLASP/C# library currently supports syntax such as Listing 3.

Note that this is subject to change before I release the C# library and write
an article about it early next year: in particular, I hope to use C# attributes
to effect a significant reduction in ‘code’, maximising the declarative
information.

Support short-form Flags and Options
Some program(mer)s prefer short-form Flags and Options – such as -B,
-e, -h – which have only single letter names and, by convention, a single
prefixing hyphen. CLASP supports this form.

Support long-form Flags and Options
Sophisticated programs can have many Flags and Options, in which case
26 (or 52, if mixing case) names may be insufficient. Consequently, some
program(mer)s prefer long-form Flags and Options – such as
--relative, --history-file – which have one or more (usually
non-contracted) word names and, by convention, two prefixing hyphens.
CLASP supports this form.

Support (short-form) Flags as
aliases for (long-form) Flags
It’s very common for programs to support both short- and long-form Flags,
and for some/all of the short-form Flags to act as aliases for some/all of
the more frequently-used long-form Flags as a convenience to ‘power
users’, as in prg’s -e alias for --relative. CLASP supports Flag
Flag aliasing.

Support Flags as aliases for value’d Options
Though less common, it’s still widely seen practice to use a (usually short-
form) Flag as an alias for a value’d Option, as in prg’s -b and -B Flags,
which are aliases for --strip-blanks=all and --strip-
blanks=no, respectively. CLASP supports Flag Value’d-Option
aliasing.

Support grouped (single-letter) Flags
As a further convenience to lazy power users, some program(mer)s allow
grouping of single-letter Flags (and Options, in rare cases), in a single
argument, e.g. "tar -cvf …". CLASP partially supports this: it supports
the grouping of single-letter Flags; it does not support grouping of
Options.

Handle the - (single-hyphen) special argument
Many filters read from an input stream and write to an output stream, and
these often support reading from and write to files, as well as reading from
standard input and writing to standard output, the latter behaviour often
being selected implicitly in the case where input and output paths are not
given as arguments. Consider the following three commands:

 $ prg src.cpp stripped.cpp
 $ prg src.cpp
 $ prg

Sensible behaviour is available in all three cases, respectively: read from
src.cpp and write to stripped.cpp; read from src.cpp and write
to standard output; read from standard input and write to standard output.
However, the case that is not easily catered for by this scheme is to read
from standard input and write to a named file. Thus, by convention, an
argument consisting of a solitary hyphen is treated as an instruction to read
from standard input, as in:

 $ prg - stripped.cpp

which is a request to read from standard input and write to
stripped.cpp.

Sometimes, a second occurrence of the solitary hyphen argument is treated
as an explicit instruction to write to standard output, as in:

 $ prg - -

CLASP supports the special single-hyphen argument, and also supports
the occurrence of multiple instances. By default, it is treated as a flag (with
the name "-"), but will be treated as a value (and uniquely distinguishable
as such by having both the name "-" and the value "-") if the parsing
flag CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE is specified at
runtime.

Handle the -- (double-hyphen) special argument
Sometimes filenames (and other names) that are to be submitted as Values
may begin with a hyphen, and so would, by default, be interpreted as Flags
(or known Options), with unwanted consequences. By convention a
solitary double-hyphen argument "--" is interpreted as a directive to treat
all following arguments as Values regardless of any prefixing hyphens.
CLASP supports this by default (and ‘swallows’ the argument in the
process); specifying the parsing flag CLASP_F_DONT_RECOGNISE_
DOUBLEHYPHEN_TO_ START_VALUES at runtime will suppress this
behaviour, in which case it will be interpreted and available to the program
as a flag with the name "--". (In most cases, it’s better to allow the default
treatment, and have the user specify the double-hyphen sequence twice –
the first to change interpretation mode, the second as the actual value "--"
– since this is the convention on UNIX.)

Support default values for Options
Another common practice is to support default values for Options, as seen
above with four of prg’s Options, such as --strip-blanks, whose
default values is yes.

In many instances of the application of this technique, it is used for
controlling a Boolean behaviour, and is simply an alternative to having a
default behaviour coupled with a Flag to select the non-default behaviour:
prg’s --relative Flag is an example of this, where (we may reasonably
presume) the application uses absolute paths by default. I’m not keen on
this form, although I note in my own work that I do tend to use it in more
complex applications, usually those with many Flags/Options.

In cases where there are more than two options, it is less common to see,
but arguably makes sense. Consider a program that issues progress
information (whether by diagnostic logging or contingent reporting),
according to a ‘verbosity’ setting. Let us assume four settings: verbose,
chatty, terse, silent. Let us further assume that the application default is
terse.

One option is to have a --verbosity Option, without defaults. Unless
you specify --verbosity=<some-level-other-than-terse>

static void Main(string[] args)
{
 Alias[] aliases =
 {
 new Alias(ArgumentType.Flag, null,
 "--help", "displays this help"),
 new Alias(ArgumentType.Flag, null,
 "--version", "show version and quit"),
 . . .
 };
 Arguments.InvokeMain(args, aliases, ToolMain);
}

Li
st

in
g

3

JAN 2012 | | 27{cvu}

you will get the application default terse. Getting something other than
what you want requires quite a long argument.

Another alternative is to have a --verbose Option, which defaults to
verbose. Thus, you can specify --verbose to get verbose, or
--verbose=silent to get silent, and so forth.

I’m not sure there’s a whole lot to choose between them. Being the pedantic
soul I am, I would probably use the --verbosity Option, and have a
Flag --verbose that acts as an alias for the Value’d-Option
--verbosity=verbose.

The good news is that I don’t have to decide which way you should do it.
CLASP supports all the variations just discussed.

Group and order the Flags, Options and Values
Even with command-line parsing facilities that don’t allow interleaving of
Values with Flags and Options, programs must, in general, be able to work
with arbitrary ordering of Flags and Options. But it is often convenient to
process separately the Flags, the Options, and the Values. This is where
the Sorting part of CLASP comes in: after all the arguments have been
parsed and placed in an array, the array is sorted according to argument
type.

Thus, the CLASP/C clasp_arguments_t (see Listing 6) type has field
pairs {numFlags and flags}, {numOptions and options}, and
{numValues and values}, representing the slices of the overall
arguments array in which the Flags, Options, and Values reside. As can
be seen in Listing 2, the three argument groups – Flags, Options, and
Values – can be easily processed separately.

Furthermore, since it’s occasionally convenient to treat Flags and Options
together, the two arrays are adjacent, so there is also the field pair
{numFlagAndOptions and flagsAndOptions}. And to round it out,
there is a field pair {numArguments and arguments} that represents
all parsed arguments.

Thus, as we’ll see later in this article – and in subsequent articles covering
other languages – you can process the requisite aspects of interest of your
command-line without having to concern yourself with the precise
ordering presented on the command-line. Unless, that is, you deem it of
interest.

Render argument order (almost) irrelevant
In some programs, having a prescribed argument order is meaningful. Both
Subversion’s svn and Bazaar’s bzr programs take a first argument to
specify what ‘service’ is being invoked, as in "bzr log --forward".
In such cases, the service-specific argument(s) cannot occur before the
service name – "bzr --forward log " – for what are clearly sound
reasons.

However, in other cases, argument order can be pointlessly restrictive.
Certainly, now that I understand some of the complexities involved in
command-line argument processing, I see why implementers have opted
to place that restriction. But it makes some programs harder to use than
they need be.

Furthermore, I have occasionally found that the ability to use Flags in the
midst of Values can be very useful, as in the following example featuring
one of my source-analysis tools:

 $ vdd -e src '*.h' '*.c' -X src/3pty '*.c'

Here, vdd is instructed to report (according to -e, a mode flag that means
ignore comments and space) source statistics on every .h and .c file
under the directory src, excluding (-X) all .c files under src/3pty.

CLASP provides access to the original ordering in two ways. The simple
way is that each parsed argument structure includes an integer field
representing the index of the original, unparsed argument in the program
command-line. Since the arguments structure includes a copy of the
original argc and argv it is possible to access the precise original
argument corresponding to any translated argument. The most common
use of this facility is for providing targeted contingent reports in the case
of invalid (combinations of) grouped flags. We can test for (the first of)
any un recogn i sed a rgum en t s , u s i ng t h e A P I f u nc t io n
clasp_reportUnrecognisedFlagsAndOptions() (Listing 4).

The code in Listing 5 determines whether any Flags or Options are
unrecognised, and displays the original command-line argument
corresponding to the first unrecognised argument.

The following command-line:

 $ prg -bcd

would produce the following

 invalid arg: -bcd

The complex way is to speci fy the pars ing f lag
CLASP_F_PRESERVE_ORIGINAL_ARGUMENT_ORDER,
which prevents the sorting, thereby preserving the original
argument order. (Note that two-argument options are still
presented a single translated Option). In this case, the values
of the field pairs {numFlags and flags}, {numOptions

and options} , {numValues a nd values} , and
{numFlagAndOptions and flagsAndOptions} are all {0, NULL};
only {numArguments and arguments} are useful.

Retain original command-line context information
Any given parsed argument can differ from its source argument in several
respects, depending on the language. First, in C (and C++) the zeroth string
always contains the program path; in C# and other languages it does not.
Consider the command-line:

 $ prg src.cpp stripped.cpp

In C and C++, the indexes of the arguments src.cpp and
stripped.cpp will be 1 and 2, respectively.

Second, due to aliasing, the parsed name of an argument may differ from
that specified on the command-line. For example, in:

 $ prg -e src.cpp stripped.cpp

the flag -e will actually be parsed into the --relative name.

Third, with grouped Flags and two-argument Options, the actual source
argument will be shared by several translated arguments. For example, in:

/* file: systemtools/clasp/clasp.h */
CLASP_CALL(size_t)
clasp_reportUnrecognisedFlagsAndOptions(
 clasp_arguments_t const* args
, clasp_alias_t const* aliases
, clasp_argument_t const** nextUnrecognisedArg
, unsigned nSkip /* = 0 */
);

Listing 4

clasp_argument_t const* arg;
size_t const n =
clasp_reportUnrecognisedFlagsAndOptions(args,
 ALIASES, &arg, 0);
if(0 != n)
{
 fprintf(stderr, "invalid arg: %s\n",
 args->argv[arg->cmdLineIndex]);
}

Listing 5

you can process the requisite aspects of
interest of your command-line without
having to concern yourself with the precise
ordering presented on the command-line
28 | | JAN 2012{cvu}

 $ prg -eb src.cpp stripped.cpp

the composite flag -lt will be parsed into the Flag --relative and
the Option --strip-blanks=all.

Information about the transformations carried out by CLASP’s parsing is
captured in the members of the clasp_argument_t structure (see
Listing 6). Consider the third example given above. After parsing, there
will be four arguments, with fields as shown in Table 1.

The information provided allows the programmer to reconstruct part/all of
the original command-line, should that be necessary, e.g. for displaying
precise contingent reports to the user in the case of unrecognised/
inappropriate command-line options.

‘Reuse’ aliases for generating usage information
Probably the most tedious aspect of dealing with command-line processing
is creating ‘usage’ information – usually in response to the --help flag.
In particular, the customary lack-of-DRY-SPOT redundancy is hair-
tearingly onerous to get right and keep right.

One of the major aims with CLASP is to ensure that the information used
to specify what Flags and Options are recognised by a program is also
used, in a largely automatic fashion, in producing usage information.

Although this aspect of the library is less polished, and probably more
amenable to refinement in response to your feedback, there already exist
powerfu l faci l i t ies for doing th is , as shown in the cal l to
clasp_show_usage() in Listing 2. This call produces a usage list
similar to that shown in the section introducing prg.

Validate arguments under programmatic control
There are several ways in which a program’s command-line arguments can
be mismatched with the program’s expectations:

1. One or more Missing Required Arguments;

2. One or more Unrecognised Arguments;

3. One or more Duplicate Recognised Arguments;

4. Invalid Combinations of Arguments; and

5. Invalid Details of Arguments.

In my opinion, it is too hard and/or too restrictive – at least in C/C++ – to
have a command-line parsing library detect and police all these invalid
command-line arguments. While it may be easy to consider how the
arguments for any single program might be validated, a general solution
is too hard (for me at least) to contemplate.

Consequently, I have focused on having CLASP make it simple for each
program to detect and police them under programmatic control.

Missing Required Arguments may be detected either by directly
examining the contents of the various field pairs discussed above, or by
invoking API functions, such as clasp_findFlagOrOption().

Field arguments[0] arguments[1] arguments[2] arguments[3]

type FLAG OPTION VALUE VALUE

givenName -eb -eb

resolvedName --relative --strip-blanks

value all src.cpp stripped.cpp

cmdLineIndex 1 1 2 3

numGivenHyphens 1 1 0 0

aliasIndex 16 3 -1 -1

struct clasp_slice_t
{
 size_t len;
 clasp_char_t const* ptr;
};
enum clasp_argtype_t
{
 CLASP_ARGTYPE_INVALID = 0
 , CLASP_ARGTYPE_FLAG
 , CLASP_ARGTYPE_OPTION
 , CLASP_ARGTYPE_VALUE
};
struct clasp_argument_t
{
 clasp_slice_t resolvedName;
 clasp_slice_t givenName;
 clasp_slice_t value;
 clasp_argtype_t type;
 int cmdLineIndex;
 int numGivenHyphens;
 int aliasIndex;
 int reserved0;
};
struct clasp_arguments_t
{
 size_t numArguments;
 clasp_argument_t const* arguments;
 size_t numFlagsAndOptions;
 clasp_argument_t const* flagsAndOptions;
 size_t numFlags;
 clasp_argument_t const* flags;
 size_t numOptions;
 clasp_argument_t const* options;
 size_t numValues;
 clasp_argument_t const* values;
 int argc;
 clasp_char_t const* const* argv;
};
struct clasp_alias_t
{
 clasp_argtype_t type;
 clasp_char_t const* name;
 clasp_char_t const* mappedArgument;
 clasp_char_t const* help;
 clasp_char_t const* valueSet;
 int bitFlags;
};
#define
CLASP_F_DONT_RECOGNISE_DOUBLEHYPHEN_TO_START_VALU
ES
#define CLASP_F_TREAT_SINGLEHYPHEN_AS_VALUE
#define CLASP_F_DONT_EXPAND_WILDCARDS_ON_WINDOWS
#define
CLASP_F_DO_EXPAND_WILDCARDS_IN_APOSQUOTES_ON_WIND
OWS
#define CLASP_F_PRESERVE_ORIGINAL_ARGUMENT_ORDER

Li
st

in
g

6

clasp_argument_t const* arg;
size_t nSkip = 0;
size_t const n =
clasp_reportUnrecognisedFlagsAndOptions(args,
 ALIASES, &arg, nSkip);
if(0 != n)
{
 fprintf(stderr,
 "%lu unrecognised argument(s):\n", n);
 do
 {
 fprintf(stderr,
 "\tunrecognised argument: %s\n",
 args->argv[arg->cmdLineIndex]);
 }
 while(0 !=
 clasp_reportUnrecognisedFlagsAndOptions(
 args, ALIASES, &arg, ++nSkip));
}

Listing 7
Table 1
JAN 2012 | | 29{cvu}

Invalid Combinations of Arguments and Invalid Details of Arguments
are so highly application-specific that they seem self-evidently (to me, at
least) to be best handled by the program code.

The other two ways are examined in the following two sections, levering
specific API functions for these purposes.

Detect whether Flags and Options are ‘recognised’
Since Flags and Options may be declared in an aliases array (see Listing
2), it is useful to be able to determine whether a Flag/Option argument is
not one of those declared. This is achieved using the API function
clasp_reportUnrecognisedFlagsAndOptions() . The
following code shows how to report all unrecognised Flag/Option
arguments (Listing 7).

Detect whether Flags, Options and Values are ‘used’
CLASP/C has a notion of whether an argument has been ‘used’ by the
application. When the command-line is parsed, all arguments are marked
not-used.

When any of the following functions are called, one or more arguments
are marked as used:

 clasp_checkAllFlags() – checks all given Flag arguments
and combines their bitmasks into a caller-supplied variable, and
marks them all as used. See following section for explanation;

 clasp_checkFlag() – if the Flag is in the command-line, add its
bitmask to a caller-supplied variable and mark it as used;

 clasp_findFlagOrOption() – looks for the named Flag or
Option, and mark it used;

 clasp_flagIsSpecified() – determines whether the given
Flag is in the command-line, and mark it used.

Furthermore, the programmer can explicitly mark an argument as used by
calling clasp_useArgument().

The program may then issue a warning and continue, or issue a contingent
report and fail, if one or more arguments are unused, to detect if the user
specified invalid (combinations of) arguments.

There are several functions for reporting unused Flags, Options, Flags and
Options, Values, and all Arguments. Listing 8 shows how to report all
unused Value arguments.

In CLASP/C++, there are several inline functions that call the requisite C-
API functions to determine whether any (of a particular class of) arguments
are unused and, if so, elicit the first argument and throw an exception with
this information, as in:

 int tool_main(clasp::arguments_t const* args)
 {
 . . . arguments processing …
 clasp::verify_all_flags_and_options_used(args);
 }

Combine Flags into programmatic bitmasks
The getopt_long library provides the facility for associating a Flag
with an integer variable, such that the variable is automatically set (to a
programmer-supplied value) to reflect the presence/absence of the Flag on
the command-line.

This is useful, but it doesn’t suit all programming styles. There are two
problems with the way getopt_long assigns to flag variables. First, the
variable is assigned, rather than OR’d. Therefore, it is impossible to use
the library to build up a flags bit-pattern into an integer flags variable (see
Listing 9).

With respect to the above getopt_long options, if the user specifies the
flag --relative, then flags will be set to 0x01. If the user specifies the
flag --recursive, then flags will be set to 0x02. If the user specifies
both flags, then flags will be set to 0x01 or to 0x02 (depending on the
order of the command-line flags), but it will not be set to 0x03, as intended.

The second problem is that the variable must exist in order that its address
may be specified in the array. If the array is declared in non-local scope,
then the variable must also be non-local (or the address of a local variable
poked into the non-local struct option array prior to calling
getopt_long(), which is horrible). If the variable must be local, then
the array must be local (and mutable), which means it’s all but impossible
to reuse it for writing out usage information.

Consequently, CLASP/C provides the ability to specify, for each Flag, an
associated bitmask that will be OR’d under programmatic control, via the
function clasp_checkAllFlags(), into a caller-supplied flags
variable.

Consider that prg has an additional flag --truncated, whose meaning
we don’t have to care too much about. We can then declare the two flags
declaratively, in terms of bit-flag enumerators, as shown in Listing 10. We
may then used this in combination with the clasp_checkAllFlags()
function, as follows:

clasp_argument_t const* arg;
size_t nSkip = 0;
size_t const n = clasp_reportUnusedValues(args,
 &arg, nSkip);
if(0 != n)
{
 fprintf(stderr,
 "%lu unused argument(s):\n", n);
 do
 {
 fprintf(stderr, "\tunused argument: %s\n",
 args->argv[arg->cmdLineIndex]);
 } while(0 != clasp_reportUnusedValues(args,
 &arg, ++nSkip));
}

Li
st

in
g

8 static int flags;

static struct options const OPTIONS[] =
{
 { "relative", no_argument, &flags, 0x01 },
 { "recursive", no_argument, &flags, 0x02 },

 . . .

 { 0, 0, 0, 0 }
};

Listing 9

enum PRG_FLAGS
{
 PRG_F_RELATIVE = 0x0001,
 PRG_F_TRUNCATED = 0x0002,
};

static clasp_alias_t const PRG_ALIASES[] =
{
 . . . // as before

 /* History flags/options */

 CLASP_OPTION("-h", "--history-file", . . .,
 CLASP_BIT_FLAG("-e", "--relative",
PRG_R_RELATIVE, "use relative paths in history"),
 CLASP_BIT_FLAG("-u", "--truncated",
PRG_R_TRUNCATED, ". . ."),

 /* Standard flags */

 . . . // as before

Listing 10
30 | | JAN 2012{cvu}

 int flags = 0;
 clasp_checkAllFlags(args, PRG_ALIASES, &flags);
 . . . more work on flags

or:

 int const flags = clasp_checkAllFlags(args,
 PRG_ALIASES, NULL);

This function marks all Flag arguments (that match entries within the alias
array and that have not already been used) as used.

Follow library good practice
I have attempted to follow good programming principles in the
implementation of the library, in particular:

Wide-string compatibility

The typedef clasp_char_t is used throughout CLASP/C. By default it
resolves to char. If you explicitly define the preprocessor symbol
CLASP_USE_WIDE_STRINGS, or if it is defined implicitly on Windows
by the presence of definitions of Windows’ preprocessor symbols
UNICODE and _UNICODE, then the typedef resolves to wchar_t.

At the moment, there is one small part of the CLASP/C++ library that has
an issue with wide-string compilation, but that’ll be addressed very soon.
CLASP/C# uses System.String throughout, so encoding is not an issue
per se.

Everything is immutable

There is copious use of const throughout, including the copied argv
pointer (which is of type clasp_char_t const* const*), to prevent
accidental overwrites. When an argument is to be marked ‘used’, it must
be passed to the API function clasp_useArgument() (which overrides
const internally).

No globals

One of the problems with getopt/getopt_long is the use of global
variables. Now, it’s certainly unlikely that one would wish to use a
command-line handling library multiple times (possible in multiple
threads) in a real application, but having no global state simplifies
automated testing tremendously. (As well as just fitting in with all good
programmers’ sensibilities.)

Clean (un)initialisation

A command-l ine is parsed into an arguments s tructure via
clasp_parseArguments(), and the state is destroyed via a call to
clasp_releaseArguments(). Again, this aids testing, is in keeping
with good practice, and is amenable to encapsulation within RAII types in
C++.

Diagnostics
CLASP/C supports the specification and use of custom diagnostic
facilities for memory (de)allocation and diagnostic logging, via the fifth
parameter to clasp_parseArguments(), which is a (non-mutating)
pointer to an instance of clasp_diagnostic_context_t. For
brevity, I will leave discussion of these facilities to a future article in which
CLASP/C is used in building programs.

The CLASP/C API
The CLASP/C API consists of numerous types (typedefs, structures,
enumerations), functions, constants, and preprocessor symbols. I will now
briefly list the ones you need to be aware of in order to use CLASP/C.

Types

There are five main types that you must be aware of to use CLASP/C, as
shown in Listing 6. clasp_slice_t is a string slice structure,

comprising of a length of the string and a (non-mutating) pointer to the first
character. Furthermore, in CLASP/C all the string slices actually point to
nul-terminated C-style strings. Consequently, you can use them as either
len+ptr or as C-style strings, depending on your preference, as
illustrated in the various calls to printf()-statements for Flags and
Options in Listing 2.

clasp_argtype_t is an enumeration, defining the range of argument
types.

clasp_argument_t is a structure representing a parsed argument,
capturing the name (givenName as specified on the command-line;
resolvedName representing the translated form), the value, the type,
the original command-line index, the number of hyphens in the name, and
the index of the alias to which it’s matched.

clasp_arguments_t is a structure representing all parsed arguments,
partitioned into the groups previously discussed. The program accesses the
parsed argument information via a non-mutating pointer to this structure.

clasp_alias_t is a structure used to define an alias, representing the
type, the alias name, the mapped argument, a help string, a set of accepted
values for Options, and a bit-mask for use by Flags.

Functions

The API functions are split into three groups: parsing, validation, and
usage. Several of these feature in Listing 2, and in previous code snippets.

P a r s i n g i s d on e v i a clasp_parseArguments() and
clasp_releaseArguments().

Validation is done via a group of functions including:

 clasp_reportUnrecognisedFlagsAndOptions()

 clasp_reportUnused[Flags|Options|FlagsAndOptions|
Values|Arguments]()

 clasp_useArgument()

 clasp_flagIsSpecified()

 clasp_checkFlag()

 clasp_checkAllFlags()

 clasp_findFlagOrOption()

These functions are quite mature, but thegroup will be expanded in future.

Usage is performed via a group of functions including:

 clasp_show_usage()

 clasp_show_header()

 clasp_show_body()

 clasp_show_version()

all of which take are implemented in terms of other output functions for
output to a specific stream. CLASP/C currently comes with stock specific
stream output functions clasp_show_version_by_FILE(),
clasp_show_header_by_FILE(), and clasp_show_body_by_
FILE(). This group of functions is likely to be refactored and improved
in the near future.

Constants

Parsing behaviour may be changed at runtime by passing flags to
clasp_parseArguments(). Each of the five CLASP_F_* constants
currently defined has been discussed earlier in the text.

CLASP::Main/C
There’s an additional facil i ty, ostensibly a separate l ibrary
CLASP::Main, that is able to significantly reduce the amount of CLASP
boilerplate that you have to write, as shown in Listing 11. The calls to
clasp_parseArguments() and clasp_releaseArguments(),
along with the requisite contingent reporting if parsing fails, are
encapsulated within this thin, header-only, library, in the guise of the
function clasp_main_invoke().
JAN 2012 | | 31{cvu}

Summary

What CLASP does not (yet) do

There are four limitations of CLASP (C) that stand out to me. (You may
have more, of course).

First, the one functional gap is the inability to work with the second form
of Options, as in -habc. My guess is that it would be feasible to make this
work, requiring the following logic:

1. Attempt to match the argument name (in this case 'oabc') against
known flags (aliases or full-names) declared in the aliases. If that
fails, then

2. attempt to split the argument name into letters and match all (in this
case 'o', 'a', 'b', 'c') against known flags (aliases or full-
names) declared in the aliases. If that fails, then

3. attempt to match the first letter (in this case 'o') against a known
option (alias or full-name). If that succeeds, interpret the argument

4. interpret the argument as an unknown flag (in this case '-habc')

I have not done this mainly because I don’t like, and don’t use, that form
of Options. I have the feeling that there’s just too much possibility for
inscrutability in the output. However, that might be my (willing) ignorance
on the matter. I’m keen to hear contrasting opinions.

Second, the (Windows-only) dependency on recls (and its dependency on
STLSoft) makes CLASP/C that bit more of a hassle than a standalone
library, and will inevitably cause the library to be that bit less desirable. A
possible improvement would be to write the globbing facility in terms of
the Windows API, but that’s a lot of work (and it’s harder to get right than
you might imagine). For me, as the author of recls (and STLSoft), there
is no motivation to spend the time required. But if some suitably motivated
future user wishes to do the necessary work then we can perhaps remove
the dependency at such time.

Third, there is nothing ‘automatic’ in terms of using arguments. In CLASP/
C (and in the other language variants written thus far) the programmer must
always issue calls to check for all arguments they wish to use. In my
opinion, implicit use of arguments could only ever be done in a subset of
all cases, and it’s subtle. The opportunity for confusion seemed a greater
evil than having to explicitly use arguments. (And CLASP/C++ does a
reasonably good job of having very succinct use-statements.) But others
may demur, and even have clear and compelling ideas on how it can be
done.

Finally, the ‘print usage’ side of the library has had much less focus than
the parsing side. Although it works, it’s verbose and inelegant to use, and
it’s very much tailored to how I have come to format/display program
usage. Since I use a lot of program-generating wizards, the verbosity tends
not to hit me, so I have as yet been unmotivated to make it more succinct.
Again, I’m keen to hear from others on this.

There are, of course, limitations in both the C++ layer and the C#
implementation, but there’s a reasonable chance that I’ll address them
before writing the next article on those, so I will hold my fire on them. Just
be aware if you use them that they’re a work in progress.

Obtaining CLASP

For the foreseeable future, CLASP will be available as a package from the
systemtools project on SourceForge (at http://www.sourceforge.net/
projects/systemtools). The first publicly distributed version will likely
contain basic makefile(s) for GCC for building on UNIX, and project files
for various Visual C++ versions for building on Windows. Other compilers
and platforms will be available as the project matures.

Next steps

In terms of the libraries, I need to update the C++ layer in line with latest
changes to the core C library, make some updates to the C# layer to keep
it conceptually identical with the C/C++ ones before releasing it too, and
then sit back for the constructive criticism.

I also want to do a CLASP for Ruby, but I need to work out if/how I can
override ARGF to ignore Flags and Options and only work with the
remaining Values: if any Ruby gurus want to help me out (or disabuse me
of my ambitions), please get in contact.

In terms of writing, the next few articles I hope to submit to CVu will tackle
the subject of program anatomies, starting with C (and C++) programs,
referring to this article on CLASP/C where necessary. As my explorations
of program anatomies move to other languages, I may write further CLASP
articles in preparation for them.

Acknowledgements
Customarily, I want to thank Chris Oldwood and Garth Lancaster for
helpful review comments – what blither remains is all mine – and the
inhumanly patient Steve Love, whose deadlines I have stretched to
bursting yet again.

#include <systemtools/clasp/main.h>

. . . // other includes as before

static clasp_alias_t const ALIASES[] =
{
 . . . // aliases as before
};

static
int main1(clasp_arguments_t const* args)
{
 if(clasp_flagIsSpecified(args, "--help"))
 {
 . . . // clasp_show_usage() as before
 }
 else
 {
 /* Dump out the arguments, in groups */

 . . . // for-loops as before
 }

 return EXIT_SUCCESS;
}

int main(int argc, char** argv)
{
 unsigned const cflags = 0;

 return clasp_main_invoke(argc, argv, main1,
 "prg.main", ALIASES, cflags, NULL);
}

Li
st

in
g

11

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?
32 | | JAN 2012{cvu}

JAN 2012 | | 33{cvu}

Desert Island Books
In this issue, Roger Orr kindly introduces Ola

Mierzejewska on my behalf.

first met Ola briefly at an ACCU conference but I’ve got to know her better
since then as last year she joined the team I’m working in (and also started
coming along to some of the monthly Canary Wharf lunches). She is an

active attender of the London Region meetings so some of you will know
her from there.

We were both at the 2011 conference and, on our return, Ola had the
impossible task of reporting back on the whole conference to interested
members of the wider team – all in about an hour and a half. Wisely she
chose to give a top level summary of the topics to give a feel for the
conference as a whole and then talked in more detail about a very small
selection of the presentations she attended.

One of Ola’s hobbies is mountain climbing so I hope the desert island she
is stranded on contains a volcano or something similar to keep her in
condition!

Ola Mierzejewska
There are three books that have been sitting on my
bookshelf already for quite a while waiting for the
unlikely event of me having a bit of time to go through
them. The first one is the Introduction to Algorithms
by Thomas H. Cormen, Charles E.Leiserson, Ronald
L. Rivest and Clifford Stein. It covers lots of basics, but
I have the feeling that the big volume still contains
quite a few topics new to me, or topics that I have heard
about, but wished to understand in more detail.

The second one is on a very similar subject: The Algorithm
Design Manual by Steven S. Skiena. Got it recommended
at some point and after reading the first few chapters I
think it’s written in a nice, light style. So the two
algorithms books could well complement each other – the
Introduction to Algorithms is a very
solid classic, but gets a bit dry at times.

I found the third one randomly in a charity shop with
second-hand books. And think it was one of my best
buys of a book I haven’t heard of before. It’s Hacking,
The art of Exploitation by Jon Erickson. The contents
look very interesting (if you’re interested in application

securi ty, of
course). The first
chap te r exp la i n s
programming
in C. The explanation is quite good, but as you can imagine, extremely
dense. Assuming that the pace will be kept – and as I don’t feel that familiar
with the following topics, in spite of a lot of enthusiasm I put down the
book. Felt like it requires a bit more focus and time to check out some of
the examples or to look for some additional references. Which, I realise,
could be not doable on the Desert Island...

The fourth book is a bit harder choice. one volume I have
queued up to read is Large-Scale C++ Software Design by
John Lakos, but think I can manage this one from home,
and planning to do it shortly (will see if I’m wrong on
that...). Another great book, which is a bit of a lengthy read

is The C++ Standard Library: A Tutorial
and Reference by Nicolai M. Josuttis. I wouldn’t bring it
just because I have read it all, so now would rather have it
as reference.

I think I might take the Design patterns: elements of
reusable object-oriented software by Erich Gamma,
Richard Helm, Ralph Johnson and John

Vlissides. The last time I tried to read it I thought it was
rather dry, but as it is a classic, and a topic I’d like to read
on – would give it another go.

For a novel it’s a tough choice. Probably choosing by
author it would be Fyodor Dostoevsky. But I wouldn’t be
able to choose which of his works to pick. So probably
would bring another Russian novel: The Master And

Margarita by Mikhail Bulgakov. I have enjoyed reading it a
lot, but only after we discussed fragments of the novel on one
of my Russian classes I realised how much content I have
missed due to lack of background and historical knowledge,
it’s full of second and hidden meanings! So, no access to
references could be a problem again. But hopefully I could
get an edition with lots of comments and background
information.

As for music, I’d be very cautious about bringing any of my favorite
albums, as it seems easy to get bored of whatever you listened to over and
over again. I think I would take some of Wladimir Wysotsky’s albums. I
do like the music, and also could try to improve on my Russian :).

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Derek Jones

34 | | JAN 2012{cvu}

Inspirational (P)articles
Doctor Love finds inspiration in the simple things.

It was a delight to read Daniel Higgins’ book review of Invent your own
computer games with python, 2nd edition in the last CVu. Daniel’s delight
and enthusiasm was contagious. This made me start reading the book,
which is available online at http://inventwithpython.com/chapters. I
haven’t finished yet, but intend to. I got diverted by extending the games
and recalling the excitement at writing simple things, such as guess the

number, when I first learned to programme. Starting with a simple task and
finding ways to extend it is a great way to practise and learn the basics of
which ever language you have chosen. Finding an excuse to use Python
for a bit has been great. I am looking forward to the chapter on Reversi. I
tried to write a Reversi game years ago and never got anywhere. This time
I might achieve something. Thanks again to Daniel (and his Dad).

ACCU London – November 2011
Frances Buontempo reports on a recent meeting.

ince we’d run out of speakers and ideas we held a session of lightning
talks in November. Instead of one person talking for an hour or so,
several people talked for five or ten minutes each. I suspect this

encouraged some unusual suspects to volunteer (myself included). A
selection of the slides (self-selected by the speakers) have been uploaded
to h t tp : / / accu .o rg / index .php /accu_br an ch es / accu _ londo n
accu_london_nov2011.

The topics included a Hudson CI with an almost live demo (‘If this were
working you’d see a button here’ etc – catastrophic 3g #fail but only when
stood by the projector), a retrospective of the magic that happens and
continues to happen in the ACCU, various spontaneous common themes
about monte-carlo simulation in Python and R and multi-processing, an
endorsement of make_shared which several of us had forgotten about,
a brief description of what counts as a model with particular reference to
what certainly doesn’t, a light-hearted view of how to be dispensable. and
a decision assistant, which among other things solves the perennial tabs
versus spaces debate.

It was great to see common themes cropping up, such as Python and multi-
processing, and I do wonder if Herb Sutter listened to the smart pointers
talk, since he recently blogged about make_unique on http://
herbsutter.com/2011/12/02/gotw-102-exception-safe-function-calls-
difficulty-710/.

Many thanks to everyone who attended and spoke. We hope to have
another go in the not too distant future.

 S

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain
surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Code Critique Competition 73
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’ve written a function that escapes a string of UTF-8 characters using the
html entity format and I’m trying to use it with different compilers. One
compiler fails to find std::runtime_error – don’t know why – and
another compiles it but produces unexpected output. Please help!

I wrote a test program using the four example UTF-8 sequences from
http://en.wikipedia.org/wiki/UTF-8#Description

Here is what I want:

 > test_escape_utf8
 U+0024 \x24 = $
 U+00A2 \xc2\xa2 = ¢
 U+20AC \xe2\x82\xac = €
 U+024B62 \xF0\xA4\xAD\xA2 = 𤭢

Here is the unexpected output:

 > test_escape_utf8
 U+0024 \x24 = $
 U+00A2 \xc2\xa2 = �
 U+20AC \xe2\x82\xac = �
 U+024B62 \xF0\xA4\xAD\xA2 = �
(See Listing 1 for test_escape_utf8.cpp, Listing 2 for escape_utf8.h and
Listing 3 for escape_utf8.cpp)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 3

#include <iostream>
#include <string>
#include "escape_utf8.h"
//U+0000 to U+007F
//Example: code point U+0024 ("Dollar sign")
//UTF-8 hex: 24
char test1[] = "U+0024 \\x24 = \x24";
//U+0080 to U+07FF
//Example: code point U+00A2 ("Cent sign")
//UTF-8 hex: C2 A2
char test2[] = "U+00A2 \\xc2\\xa2 = \xc2\xa2";
//U+0800 to U+FFFF
//Example: code point U+20AC ("Euro sign")
//UTF-8 hex: E2 82 AC
char test3[] = "U+20AC \\xe2\\x82\\xac"
 " = \xe2\x82\xac";
//U+010000 to U+10FFFF
//Example: code point U+024B62 (A CJK Unified
//Ideograph)
//UTF-8 hex: F0 A4 AD A2
char test4[] = "U+024B62 \\xF0\\xA4\\xAD\\xA2"
 " = \xF0\xA4\xAD\xA2";
int main()
{
 try
 {
 std::cout
 << escape_utf8(test1) << std::endl
 << escape_utf8(test2) << std::endl
 << escape_utf8(test3) << std::endl
 << escape_utf8(test4) << std::endl;
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Exception: " << ex.what();
 }
}

Li
st

in
g

1

#ifndef escape_utf8
#define escape_uft8
std::string escape_utf8(char const * utf8);
#endif

Listing 2

#include <string>
#include "escape_utf8.h"
std::string escape_utf8(char const * utf8)
{
 std::string result;
 long value;
 int multibyte(0);
 while (char const ch = *utf8++)
 {
 if (multibyte-- > 0)
 {
 if ((ch & 0xc0) != 0x80)
 throw std::runtime_error(
 "Bad multibyte continuation");
 value <<= 6;
 value += ch - 0x80;
 if (!multibyte)
 {
 result += "&#x";
 char buff[7];
 sprintf(buff, "%lx", value);
 result += buff;
 result += ';';
 }
 }
 else if ((ch & 0xC0) == 0xc0)
 {
 value = ch & 0x1f;
 multibyte = 1;
 if (ch & 0x20)
 {
 multibyte++;
 if (ch & 0x10)
 {
 value -= 0x10;
 multibyte++;

Listing 3
JAN 2011 | | 35{cvu}

Critiques

Peter Sommerlad <peter.sommerlad@hsr.ch>

This time, I will give two answers, one quick and dirty and one elaborate.

1. Quick and Dirty Fix

One of the most obvious things in the program is that bit-operations are
used on (potentially) signed values and they are mixed with regular
arithmetic, e.g.,

 value <<= 6;
 value += ch - 0x80;

While left shifting a signed variable is not really a problem, using
subtraction from a char variable to clear a bit is a doubtful practice. Since
the literal 0x80 is not of type char, the value of the variable ch is
automatically promoted to int, before the subtraction is done. On many
current processors a char is 8 bits large and often it is signed and
represented in twos-complement. The if-check before guarantees that ch
has its high bit set and thus is negative. As a result we add an even more
negative number to value (e.g., ch=0x80=-128, ch-0x80=-256),
eventually making it negative itself. Since value as a 4 byte
representation can become negative, when printed as hex, then it can result
in the many f’s in the output.

The quick fix is to make ch an unsigned char:

 while (unsigned char const ch = *utf8++)

In addition to make escape_utf8.cpp compile on most systems one
needs to

 #include <stdexcept>

to obtain std::runtime_error’s definition.

With those minimal changes the code compiles and delivers the following
output:

 U+0024 \x24 = $
 U+00A2 \xc2\xa2 = ¢
 U+20AC \xe2\x82\xac = €
 U+024B62 \xF0\xA4\xAD\xA2 = 𤭢

If we would be a non-caring programmer that would be sufficient, but that
is not a good feedback to our student, since the code has many more
problems to deal with.

2. Elaborate additional feedback and refactoring

First a subtle observation, while Linticator recognizes the left shift of the
signed variable value, it doesn’t tell us the problem of using bitmasks and
arithmetic on the potentially signed char variable ch (Figure 1).

Now, first things first and let us start with the simplest file in the problem:

 #ifndef escape_utf8
 #define escape_uft8
 std::string escape_utf8(char const * utf8);
 #endif

A brief look shows, that the include guard macro is spelled lower case. That
is bad practice, especially when the guard is spelled exactly like the
function it exports. However, fortunately or by design the #define uses
a different spelling, did you see that. Fixing that first, results in interesting
compile errors of the header. Even without that fix the header is still non-
problematic, since it only declares a function and defines nothing. So
multiple inclusions will not violate C++’s ODR (one-definition-rule) and
thus create compile errors.

Even Linticator indicates there might be a slight problem (Figure 2).

One could argue that the escape_utf8 function could also use a
std::string const & as input instead of the C legacy char const
*, but that is not really a problem. A bigger problem is that the header file
itself is not self-contained. An easy test is to always use the own header
file as the first #include in its implementation file. Changing the code
accordingly will show the missing definition of std::string:

In file included from ../escape_utf8.cpp:1:0:
 ../escape_utf8.h:4:1: error: 'string' in namespace
'std' does not name a type

So we move the #include <string> into escape_utf8.h. That
makes the fixed header file look like:

 #ifndef ESCAPE_UTF8_H_
 #define ESCAPE_UTF8_H_
 #include <string>
 std::string escape_utf8(char const * utf8);
 #endif

OK, now let us look for the beef in escape_utf8.cpp. The file now
starts as follows:

 #include "escape_utf8.h"
 #include <stdexcept>
 std::string escape_utf8(char const * utf8)
 {

that is OK so far. In best C-manner our code defines (most of) the local
variables at the beginning of the function. Two of the variables get
initialized (result and multibyte), however, close inspection and
Linticator shows that value is uninitialized. While the control flow seems
to guarantee that it is never used before it is initialized, it is bad practice
to not initialize a variable, especially one that is local (globals will be zero
initialized, at least). In addition we adapt value to be of unsigned type

In C++11, we should use the new universal initialization syntax:

 unsigned long value{};
 int multibyte{0};

This new syntax will help to avoid problems with unintentionally declaring
a function instead of a local variable, as would have been the case when
we would have written

 unsigned long value();

With those changes we get another warning from Linticator, indicating the
underlying problem (see Figure 3).

Now applying our previous quick fix we remove that problem but resurrect
a similar one, on initializing ch:

 while (unsigned char const ch = *utf8++)

but at least the code seems to work now. But the complexity of the function
is overwhelming and the control flow non-intuitive. There is a need to
simplify. Before that, we should write some unit tests to actually execute

Li
st

in
g

3
(c

on
t’d

)
Li

st
in

g
2

(c
on

t’d
) if (ch & 0x8)

 throw std::runtime_error(
 "Bad multibyte start");
 }
 }
 }
 else if (ch & 0x80)
 throw std::runtime_error(
 "Bad multibyte start");
 else
 {
 result += ch;
 }
 }
 return result;
}

Li
st

in
g

3
(c

on
t’d

)
Fi

gu
re

 1
Figure 2
36 | | JAN 2011{cvu}

all of the branches (I refrain from that this time, because I also have other
things to do, but it would be a better practice!)

Now let us start with making all bit-mask operations using really the bit
operations intended for it:

 value += ch - 0x80;

becomes:

 value |= ch & 0x3f; // lower 6 bits are used

Another issue is to use the C-ish sprintf for hex conversion. I would
suggest to use an std::ostringstream to collect the result and return
its underlying std::string this allows to use hex conversion of the
stream instead of a fixed size buffer that in the end might be too small for
a long value (8 hex characters + '\0' termination character), even though
with the corrected code this shouldn’t happen. So instead of using += on
a string, we use << on an ostringstream and return the underlying
result string in the end with .str().

We replace the code that is wrong in respect to errors

 char buff[7];
 sprintf(buff, "%lx", value);
 result += buff;
 result += ';';

with

 result << "&#x" << hex << value << dec << ';';

instead.

A big thing is the complicated logic of the while loop. And the only
reason seems to be to have a single place to obtain the next character from
the input string. Also selecting the number of bytes to read is a bit
obfuscated with respect to the rules given on Wikipedia. I read it the
following way: If the high nibble is hex C or D one additional character
must be consumed and 5 low bits of the current character are used, if it is
E, two more characters follow and 4 low bits of the current character are
used, and if it is F, three more characters follow and the 3 low bits are used.
However, there is room for ‘optimization’, since in the last case the 4th bit
must be zero. That is something we should check in addition to the bad
continuation if we want to ensure correct input. On the other hand, we
could also remove all sanity checks and assume the input is correct. Also
it should be checked if multibyte is zero on leaving the loop, otherwise
the encoding prematurely got to the end.

Another problem is the C-ish parameter definition. Changing that from
char const * to use std::string will open a multitude of interesting
options. One thing is that it will allow us to use a standard algorithm:
transform. Nevertheless this will require a functor with some memory,
since transform will provide individual chars like the overall loop is doing
now.

But first let us deal with the unintuitive logic. Close observation of the
UTF-8 definition shows that instead of using bit-masking to figure out how
to dissect a lead-in byte of a multi-byte code point representation one could
use a range discrimination to distinguish between the 1 to 3 following
bytes. If the byte under consideration is greater than 0xf0 we know 3 bytes
must follow and only the lower 3 bits are significant. If it is greater than
0xf8 the byte is invalid. Otherwise, if it is greater than 0xe0, 2
continuation bytes follow, if it is greater than 0xc0, 1 continuation byte

is needed. A continuation byte must be between 0x80 and 0xbf. I hope
with that insight the code can become simpler, let us see:

 else if (ch >=0xf8) {
 throw std::runtime_error(
 "Bad multibyte lead in");
 } else if (ch >= 0xf0) {
 multibyte = 3;
 value = ch & 0x07;
 } else if (ch >= 0xe0) {
 multibyte = 2;
 value = ch & 0x0f;
 } else if (ch >= 0xc0) {
 multibyte = 1;
 value = ch & 0x3f;
 } else if (ch >= 0x80) {
 throw std::runtime_error(
 "Bad multibyte lead in");
 } else {
 result << ch;
 }

Ok, looks a bit more symmetrical. Now how can we deal with the
multibyte continuations in a similar way:

 if (multibyte-- > 0)
 {
 if (ch > 0xbf || ch < 0x80)
 throw std::runtime_error(
 "Bad multibyte continuation");
 value <<= 6;
 value |= ch & 0x3f; // lower 6 bits are used
 if (!multibyte)
 {
 result << "&#x" <<
 std::hex << value << std::dec << ';';
 }
 }

still ugly, but at least we now cover all values. Before we return, we check
that multibyte is actually zero:

 if (multibyte) throw std::runtime_error(
 "Missing multibyte continuation at end");
 return result.str();
 }

Now for the transformation to transform resulting in the following code
in escape_utf8.cpp:

 #include "escape_utf8.h"
 #include <sstream>
 #include <stdexcept>
 #include <iterator>
 #include <algorithm>
 struct utf8_to_html {
 utf8_to_html() :
 value(0), multibyte(0) {
 }
 std::string operator()(unsigned char ch) {
 if (multibyte-- > 0) {
 if (ch > 0xbf || ch < 0x80)
 throw std::runtime_error(
 "Bad multibyte continuation");
 value <<= 6;
 // lower 6 bits are used
 value |= ch & 0x3f;
 if (!multibyte) {
 std::ostringstream result;
 result << "&#x" << std::hex
 << value << std::dec << ';';
 return result.str();
 }
 } else if (ch >= 0xf8) {
 throw std::runtime_error(

Fi
gu

re
 3
JAN 2011 | | 37{cvu}

 "Bad multibyte lead in");
 } else if (ch >= 0xf0) {
 multibyte = 3;
 value = ch & 0x07;
 } else if (ch >= 0xe0) {
 multibyte = 2;
 value = ch & 0x0f;
 } else if (ch >= 0xc0) {
 multibyte = 1;
 value = ch & 0x3f;
 } else if (ch >= 0x80) {
 throw std::runtime_error(
 "Bad multibyte lead in");
 } else {
 return std::string(size_t(1), char(ch));
 }
 return std::string();
 }
 unsigned long value;
 int multibyte;
 };
 std::string escape_utf8(
 std::string const & utf8) {
 std::ostringstream result;
 utf8_to_html converter;
 transform(utf8.begin(), utf8.end(),
 std::ostream_iterator
 <std::string>(result), converter);
 if (converter.multibyte)
 throw std::runtime_error(
 "Missing multibyte continuation at end");
 return result.str();
 }

One can see, no more loop needed. OK, the functor is still a bit ugly, but
it works.

I forgot to provide the corresponding changed header:

 #ifndef ESCAPE_UTF8_H_
 #define ESCAPE_UTF8_H_
 #include <string>
 std::string escape_utf8(
 std::string const& utf8);
 #endif

We are left with the test program with its main function. I do not want to
spend more time on that, since my wife already got impatient. However,
I suggest defining the test data arrays to be

 char const test1[]=....

A minor glitch that might result not getting any output at all in case of an
exception is that the output to std::cerr is not flushed. Adding a
<< std::endl should help:

 int main()
 {
 try
 {
 std::cout
 << escape_utf8(test1) << std::endl
 << escape_utf8(test2) << std::endl
 << escape_utf8(test3) << std::endl
 << escape_utf8(test4) << std::endl;
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Exception: " << ex.what()
 << std::endl;
 }
 }

A bad thing is that all calls to escpe_utf8 occur in a single statement,
this might be hard to diagnose which call actually threw an exception. But

I refrain from fixing that. My time is over. Nevertheless, I hope you learned
something.

Huw Lewis <huw.lewis2409@gmail.com>

Wow! Unreadable code for a reviewer not familiar with UTF-8 encoding.
I needed a little revision to understand this one.

To address the question’s comment about some compilers failing to find
std::runtime_error - <stdexcept> is the correct standard library
header to include from escape_utf8.cpp. While we’re on this subject,
the header file should also include <string> as it is required as the
escape_utf8 function’s return type.

The results of the test harness show that test 1 comes out ok (the single
byte character), but the other values are prepended with one or more 0xff
bytes. It looks like there is a signing problem where the resultant integer
has become negative. This is down to the line:

 value += ch - 0x80;

The value (int) variable adds to itself (ch - 0x80) which seems
reasonable given that we know from the previous check that (ch & 0x80)
is true. The problem is that ch is a variable (const) of type char which is
a signed char. For test 2, this is going to be (-94 - 128). This makes value
negative and explains the presence of the 0xff.

I have a choice of easy fixes. Either make ch an unsigned char:

 while (const unsigned char ch =
 static_cast<unsigned char>(*(utf8++)))

or change the method of obtaining the relevant 6 bits from the subtract
operation into a bitwise ‘and’:

 value += (ch & 0x3f);

So, now the results are as expected. Job done? Yes, but being a pedantic
so-and-so I will carry on picking;-)

The array buff of characters has a suspicious length: 7. This buffer is used
with sprintf to accept the converted hex string. For 64 bit systems this
could be 8 characters in length – buffer overflow!

As we’re working with C++, I would prefer to use ostringstream to
perform the conversion. I admit that sprintf is probably more
performant, but this eliminates the need for the fixed length buff array and
makes for less verbose code. I have still kept a std::string variable
for the return value so as to encourage the ‘Named Return Value
Optimisation’ in the compiler which eliminates the construction (and
destruction) of the return value, placing it directly in the client’s object.
I’m not sure, but I’ve a feeling that the presence of exceptions in this
function might ruin the chances of the optimisation being applied (some
experimentation required).

The code that detects the start of the multi-byte sequence is quite complex
and could quite easily hide a bug or two (although I don’t think it does). I
have re-written this section for clarity – hopefully less bugs will be
introduced by well meaning maintainers in future. The final version is
given below:

 std::string escape_utf8(const char* utf8)
 {
 // the result string to be returned
 std::ostringstream result;
 long value;
 int multibyte(0);
 // loop through each byte in the string
 while (const char ch = *(utf8++))
 {
 if (multibyte-- > 0)
 {
 // A multibyte continuation
 // This must start with 10xx xxxx
 if ((ch & 0xc0) != 0x80)
 throw std::runtime_error(
 "Bad multibyte continuation");
 value <<= 6;
38 | | JAN 2011{cvu}

 value += (ch & 0x3f); // 6 bits
 if (!multibyte)
 {
 result << "&#x" << std::hex
 << value << ';';
 }
 }
 else if ((ch & 0xE0) == 0xc0) // 110x xxxx
 {
 // A multi-byte start
 value = (ch & 0x1f); // 5 least sig bits
 multibyte = 1; // one byte continuation
 }
 else if ((ch & 0xF0) == 0xE0) // 1110 xxxx
 {
 // a multi-byte start
 value = (ch & 0x0F); // 4 least sig bits
 multibyte = 2; // 2 byte continuation
 }
 else if ((ch & 0xF8) == 0xF0) // 1111 0xxx
 {
 // a multi-byte start
 value = (ch & 0x07); // 3 least sig bits
 multibyte = 3; // 3 byte continuation
 }
 else if (ch & 0x80)
 {
 // invalid continuation byte
 throw std::runtime_error(
 "Bad multibyte continuation");
 }
 else
 {
 // not a multibyte start
 // or continuation.
 result << ch;
 }
 } // end loop through input string

 // Declare the return variable to encourage

 // the named-value return optimisation

 std::string resultString(result.str());
 return resultString;
 }

Commentary
The original code had one obvious bug – the leading f’s caused by the use
of char which can be either signed or unsigned depending on the
implementation. The distinction is not important for ASCII characters but
becomes very important for everything else. As it happens I had another
problem today in completely unrelated code where the handling of a
character value greater than 128 as negative caused a program to abort.

Many compilers – including both g++ and MSVC – provide command line
options to allow the programmer to specify the type of char. This can be
useful when porting existing programs from one environment to another
but it is better to write the code correctly in the first place!

One note about char buff[7]; This fixed size buffer is completely
correct (as Peter mentioned) provided the rest of the code is correct. In the
problem case above more than 7 characters were actually written to buff
and we are perhaps fortunate that we didn’t have some harder to solve
symptoms such as memory corruption or an access violation. I think in
general it is good to avoid such brittle solutions because of the potential
difficulty when debugging. One safer solution might be to use snprintf
instead of sprintf but unfortunately, despite having been standardized
in C99, implementations still seem to provide a variety of semantics so it
must be used with care!

I don’t think I’ve otherwise got much to add to Peter’s and Huw’s critiques
above which between them seem to cover pretty well all the bases

The winner of CC 72
Both entries identified the root cause of the problem and then carried on
to refactor the code to make it clearer. In Peter’s case this was done using
comparisons to split into the correct range, in Huw’s case this was done
by anding with various bit patterns. I do wonder slightly whether Peter’s
clever solution with std::transform might be a little too much for the
likely ability of the original writer: I’m sure opinions over this will differ!
It was hard to decide to whom to give the prize, but I have eventually
decided that this time Huw was the winner.

Those who follow this column regularly will notice that the same names
keep turning up. I’d like to remind you, dear reader, that there’s nothing
to stop you also sending in a critique!

Code Critique 73
(Submissions to scc@accu.org by Feb 1st)

I’ve tried to write a simply program to split up a single text file into separate
files. The idea is each line starting with "--- " and ending with " ---"
contains the filename for the lines following it. It doesn’t work on my old
machine: gives me a ‘bad allocation’ error. It works on my new
machine – although it seems a little slow – but the filenames don’t get the
trailing minus signs removed. Can you help me find my bug?

The example code (unpack.cpp) is in Listing 4 and a sample input file is:

 --- file1.txt ---
 This is file 1
 --- file2.txt ---
 This is file 2
 Line 2
 Line 3

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <fstream>
#include <iostream>
#include <string>

int main()
{
 std::ofstream ofs;
 ofs.exceptions(std::ios::failbit);
 try
 {
 std::string lbufr;
 while (std::getline(std::cin, lbufr))
 {
 if (lbufr.find("--- ") == 0 &&
 lbufr.find(" ---") > 0)
 {
 unsigned len(lbufr.find(4, ' ') - 4);
 lbufr.erase(0, 4);
 lbufr.resize(len);
 if (ofs.is_open())
 {
 ofs.close();
 }
 ofs.open(lbufr.c_str());
 continue;
 }
 ofs << lbufr << std::endl;
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Error: " << ex.what();
 }
}

Listing 4
JAN 2011 | | 39{cvu}

40 | | JAN 2012

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org Members.fm

I have been doing a lot of C++
training work recently and, as
ever, I have been explaining the
ACCU and its value to delegates. What surprises
me is that so few of them seem to want to find
out more about the world of programming
outside of their own work environments.
Perhaps ACCU members are a special and select
few. Perhaps we are all collectively mad in our
own quiet kind of a way. (Modesty insists that I
skip over the possibility that I’m a poor
salesman.) It seems to me that until people have
experienced what it’s like to be part of a broader
programming community and interact with
other individuals who are knowledgeable,
interested (and often interesting) and keen they
don’t seem to ‘get it’ at all. Their own
programming community is purely their peers
and for them programming is an interesting job
but not more. They haven’t been bitten by the
bug (well, not that particular bug, anyway).

What is it that makes a programmer change from
accepting the status quo and a small-world view
to being someone who wants to improve, who
wants to learn and share? I think it comes down
to examples, role models and leadership. In my
local Oxford ACCU group there are a number of
non-members who have come to the meetings
because some high-ranking officer of their
company has encouraged the developers to
come along. I can only hope that these new
visitors find what we do appealing and
interesting and will therefore continue to attend
under their own steam. Some of them have seen
our magazines left lying around in prominent
places and have gently perused them. This is
where paper copies are still a far better
alternative than electronic versions – it is hard to
flick through an electronic version in the
corporate kitchen whilst waiting for the kettle to
boil.

So, what does this all mean for ACCU
members? We are a self-selecting bunch; not
everyone wants to be a member and maybe they
shouldn’t be. Ours is a fragmented and young
industry with little centralised control or

leadership. In my travels and interactions with
developers I am continually reminded of how
insular are the worlds in which they work. Some
of them do want to explore and find out more but
there are a good number that are happy to
bumble along without ever grasping the self-
improvement nettle by the horns. Should we try
to show them another way or should we leave
them to their own devices? Should we
evangelise more or be content to offer support
and camaraderie to those of a similar ilk?

Committing to improving one’s own
programming and helping others to do so too is
an important jump as it requires effort, the desire
to change well-ingrained habits and to choose
the right way and not just the easy way. It also
takes time and that’s one thing that ACCU
members often seem to run short of (probably
because work migrates to the competent and the
willing). As chairman, I am, as ever, grateful to
those members that do make time to help the
organisation and I hope that others will join in
and ‘do their bit’ over time, in whatever way
they feel able to contribute.

Notice is hereby given that the 24th Annual General Meeting of ACCU
will be held at 13:00 on Saturday 28th April 2012 at the Oxford
Barceló Hotel, (formerly the Oxford Paramount Hotel), Godstow
Road, Oxford OX2 8AL, United Kingdom.

Current Agenda

1 Apologies for absence

2 Minutes of the 23rd Annual General Meeting

3 Annual reports of the officers

4 Accounts for the year ending 31st December 2011

5 Election of Auditor

6 Election of Officers and Committee

7 Other motions for which notice has been given.

8 Any other Annual General Meeting Business (To be notified
to the Chair prior to the commencement of the Meeting).

The attention of attendees under a Corporate Membership is drawn to
Rule 7.8 of the Constitution:

... Voting by Corporate bodies is limited to a maximum of four
individuals from that body. The identities of Corporate voting and
non-voting individuals must be made known to the Chair before
commencing the business of the Meeting. All individuals present
under a Corporate Membership have speaking rights.

Also, all members should note rules 7.5:

Notices of Motion, duly proposed and seconded, must be lodged
with the Secretary at least 14 days prior to the General Meeting.

and 7.6:

Nominations for Officers and Committee members, duly proposed,
seconded and accepted, shall be lodged with the Secretary at least
14 days prior to the General Meeting.

and 7.7:

In addition to written nominations for a position, nominations may
be taken from the floor at the General Meeting. In the event of there
being more nominations than there are positions to fill, candidates
shall be elected by simple majority of those Members present and
voting. The presiding Member shall have a casting vote.

For historical and logistical reasons, the date and venue is that of the
last day of the ACCU Spring Conference. Please note that you do not
need to be attending the conference to attend the AGM.

(For more information about the conference, please see the web page
at http://accu.org/conference.)

More details, including any more motions, will be announced later. A
full list of motions and electoral candidates will be supplied at the
meeting itself.

Please also note we are looking to appoint a new Secretary, and if
anyone considers that they could stand for this position, please let
either me (as secretary@accu.org) or Hubert Matthews
(chair@accu.org) know.

Roger Orr
Acting Secretary, ACCU

The 24th ACCU AGM

	Resolution
	On a Game of Lucky Sevens
	Coping with Complexity
	Getting More Fiber In Your Diet
	Using the Windows Debugging API on Windows 64
	How To Be Dispensable
	Writing a Bazaar Plugin
	Effect of Risk Attitudes on Recall of Assignment Statements (Part 1)
	An Introduction to CLASP, Part 1: C
	Desert Island Books
	Inspirational (P)articles
	ACCU London – November 2011
	Code Critique Competition 73
	View From The Chair
	The 24th ACCU AGM

