

NOV 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Language Barrier
reckon I’m pretty safe in the assumption that most
readers of this magazine already knew the name
and reputation of Dennis Ritchie, who died in

October 2011. He is probably best known as co-
inventor of C and co-author of The C Programming
Language, a text widely regarded as a pinnacle in
technical authorship for its clarity and accessibility.
One of the reasons that ‘K&R’ (as it’s affectionately
known by many) is so short is that its subject is, in
concept, very simple; the C language imposes only a few
reserved words on the programmer. And yet, for all its
apparent simplicity, it is expressive enough to model
hugely complex ideas – the Unix operating system being a
prime example. ANSI C89 added 5 keywords to the list
defined in ‘K&R’ C, to make 32 keywords, increased
by another 5 for the 1999 standard.

This was brought to mind recently at a talk given for
the ACCU London event by Jon Skeet. The topic of
the talk (which was excellent, by the way!) was the new
asynchronous programming features of the up-coming
C# 5. These features look most interesting, and have been
given a great deal of thought by the designers to make them
easy to use correctly, and be able to express complex ideas as simply as possible.
With one small wart – the new features introduce (at least) two new keywords to
C# – a language that already requires the concept of ‘Contextual Keywords’ to
manage its reserved list.

I recall Bjarne Stroustrup at the outset of the process which has recently resulted
in C++11 being ratified by ISO, exhorting the committee to prefer new libraries
instead of language features where feasible. C++11 has 83 keywords, an increase
of 10 over C++98.

C# has 98 keywords as at version 4.0 (including contextual keywords), C# 5 will
have at least 100.

I wonder if we will ever again see a language that can be entirely described in a
book as truly succinct as K&R.

I
Volume 23 Issue 5
November 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Jonathan Davis, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Daniel James, Roger Orr, Simon
Salter, Anthony Williams

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | NOV 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 C++ Standards Report 11

Roger Orr reports on the
new C++ standard.

18 Inspirational (P)articles
Frances Love introduces
Paul Grenyer.

19 Desert Island Books
Roger Orr shares the
contents of his suitcase.

20 Memories of Learning C
Anthony Williams recalls
his first experiences of C.

21 Code Critique Competition
Competition 72 and the
answers to 71.

REGULARS
27 Book Reviews

The latest roundup of
book reviews.

28 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.6: 1st December 2011
C Vu 24.1: 1st February 2012

Overload 107:1st January 2012
Overload 108:1st March 2012

FEATURES
3 How to Pick Your Programming Language

Pete Goodliffe helps us make an important decision.

4 Introduction to std.datetime in D
Jonathan M Davis describes his contribution to Phobos,
the D Standard Lib.

10 A Game of Lucky Sevens
Baron Muncharris invites us to solve a new puzzle.

11 On a Game of Pathfinding
Our student analyses the Baron’s last challenge.

12 Review of Effective C# Item 15: Utilize using and try-finally for
Resource Clean-up
Paul Grenyer gets to grips with the Dispose pattern.

14 Enum – a Misnomer
Daniel James exposes enum as unsuitable for
enumeration.

17 Intelligent Software Design
Simon Salter receives divine inspiration for a satirical view
of the design process.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

NOV 2011 | | 3{cvu}

How To Pick Your Programming Language
Pete Goodliffe helps us make an important decision.

You just died. As
your life flashes
before you, you

see…

Objects! They're
everywhere.They

are…

A closing brace

Your OS.
Name and shame.

A runaway train
comes steaming
closer. Are you...

Strapped
 to the
 railway
 line

In a
 carriage

Driving

 For people who
 don't understand
function pointers

Cool

A tool

C

Assembly

BASIC

Do you have any
shame?

No

Perl

Admit it, you've
implemented your
own object model,

haven't you?

Linux

Yup

Objective-C

Like you had a
choice, anyway.

Mac

What's the OO way
to deal with wealth?

Inheritance

You have a hammer.
What are you looking

for?

Eh?

How much do
you like your

users?
Who cares?

Tk/TCL

 Deep
loathing

Java

 Mild
distain

You're peering over a cliff
edge. Do you jump?

Windows

C++

C#

 You only
live once

 Sounds like fun.
Where's the parachute?

START HERE

Really? Wow!

A richly
fulfilled person

Life is too
 shortI used to

Nails!

The on switch

Of course not, I'm
a programmer

Probably

Are you
 mad?

No. As if.

I catch programming
mistakes with…#define BEGIN {

Acceptable

Give yourself
a slap

Cool idea! The
compiler

Animal,
vegetable, or

mineral?

Unit tests

A thorough
proof

Z

Delegate the job
to someone else

 What
mistakes?

Fortran
Criminal offense

Smalltalk

Yeah!

The bits I
remember,

anyway

The QA
 department

Python
Ruby

Animal
Mineral

Vegetable

D Salvation

LISP

(punctuation)

Professionalism in Programming # 71

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net

Introduction to std.datetime in D
Jonathan M Davis describes his contribution

to Phobos, the D Standard Lib.

n dmd 2.052, the module std.datetime was introduced. It will be
replacing std.date entirely. As such, std.date is currently
scheduled for deprecation. At a later date it will be deprecated (at which

point, you’ll have to compile with -d for it to work rather than simply
having the compiler complain when you use it), and eventually it will be
fully removed from Phobos. What this means is that all new code should
be written to use std.datetime and that any code which currently uses
std.date is going to need to be refactored to use std.datetime
(unless you want to copy std.date to your own code and continue to
use it as a non-Phobos module). This article attempts to familiarize you
with std.datetime as well as give some advice on how to migrate code
from std.date to std.datetime for those who have been using
std.date.

std.date is essentially a C-based solution for dates and times. It uses
d_time to hold time where d_time is a 64-bit integral value holding the
number of milliseconds which have passed since midnight, January 1st
1970 A.D. in UTC. C, on the other hand, uses time_t to hold time where
time_t is an integral value holding the number of seconds which have
passed since midnight, January 1st, 1970 A.D. in UTC. Its size varies from
architecture to architecture (typically 32 bits on a 32-bit machine and 64
bits on a 64-bit machine, but it varies with the OS and compiler). The exact
set of functions that std.date provides for using with d_time aren’t the
same as what C provides for using with time_t, but their representation
of time is virtually the same.

std.datetime, on the other hand, is very much an object-oriented
solution, and it’s not C-based at all. Rather, its API is based on Boost’s
types for handling dates and times (though they’re far from identical). So,
it’s a bit of a paradigm shift to move from std.date to std.datetime.
Don’t expect much to be the same between the two. However,
std.datetime is not plagued with the same bugs that std.date is
plagued with (std.date being quite buggy in general), and it provides
much more functionality than std.date does. So, in the long run at least,
dealing with std.datetime should be much more pleasant – though
migration is likely to present a bit of a hurdle in the short term.

Basic Concepts of std.datetime
Most things in std.datetime are based on and/or use three concepts:

 Duration: A duration of time with units. e.g. 4 days or 72 seconds.

 Time Point: A specific point in time. e.g. 21:00 or May 7th, 2013.

 Time Interval: A fixed period of time. e.g. [02:44 – 12:22) or
[February 4th, 1922 – January 17th, 1955).

Durations

The duration types can actually be found in core.time. They are
Duration and TickDuration. TickDuration is intended for
precision timing and is used primarily with StopWatch and the
benchmarking functions found in std.datetime – such as benchmark

– and you’re unlikely to use it outside of using them. Duration, on the
other hand, you’re likely to use quite a bit.

Duration holds its time internally as hecto-nanoseconds (100 ns), so
that’s its maximum precision. It has property functions for both returning
the duration of time truncated to a particular unit (such as the days and
seconds property functions) as well as a function for returning the total
number of a particular unit in that Duration (the total function).

Generally, a Duration is created in one of two ways: by subtracting two
time points or with the core.time.dur function. So, for instance, if you
subtracted a time point which represented 17:02 from a time point which
represented 6:07, you’d get a Duration which represented 10 hours and
55 minutes. Or, if you wanted to create a Duration directly, then you’d
use the dur function and make a call like dur!"hours"(17) or
dur!"seconds"(234)(see Listing 1).

Like any number, Durations can be added together or subtracted from.
However, unlike a naked number, they have units associated with them and
will handle the appropriate conversions. Also, it should be noted that the
various functions in druntime and Phobos which take a duration of time
take an actual Duration rather than a naked number (most currently take
both, though the versions which take a naked number are going to be
deprecated). For instance, core.thread.sleep takes a Duration, as
does std.concurrency.receiveTimeout. So, durations are used
outside of just interacting with core.time and std.datetime.

One particular thing to note here is how both dur and total take a string
representing the units of time to be used. This is an idiom used throughout
core.time and std.datetime. The possible units are "years",
"months", "weeks", "days", "hours", "minutes", "seconds",
"msecs", "usecs", "hnsecs", and "nsecs". It should be noted
however that very few functions take "nsecs", because nothing in
std.datetime, and very little in core.time, has precision greater than
hnsecs (100 ns). Also, a number of functions (such as core.time.dur)
do not take "years" or "months", because it is not possible to convert
between years or months and smaller units without a specific date. So,
while you can add a Duration to a time point, if you want to add years
or months to one, you must use a separate function (such as add) to do
that – and those will take "years" and "months".

Time Points

std.datetime has 4 types which represent time points.

 Date

 TimeOfDay

 DateTime

 SysTime

 I auto duration = TimeOfDay(17, 2) - TimeOfDay(6,
7);
assert(duration ==
 dur!"hours"(10) + dur!"minutes"(55));
assert(duration.hours == 10);
assert(duration.minutes == 55);
assert(duration.total!"hours"() == 10);
assert(duration.total!"minutes"() == 655);
assert(duration.total!"hnsecs"() ==
 393_000_000_000);

Listing 1

JONATHAN M DAVIS
Jonathan M Davis is a bit of a programming language geek
and loves programming languages. Professionally, he has
programmed in both C++ and Java. In his free time, he’s one
of the developers for D’s standard library, Phobos. He can
be contacted at jmdavisProg@gmx.com.
4 | | NOV 2011{cvu}

A Date represents a date and holds its year, month, and day as separate
values internally. A TimeOfDay represents a time of day, 00:00:00 -
23:59:59, and holds its hour, minute, and second as separate values
internally. A DateTime represents a date and time and holds its values as
a Date and TimeOfDay internally. None of these types have any concept
of time zone. They represent generic dates and/or times and are best-suited
for cases where you need a date and/or time but don’t care about time zone.
Also, because they hold their values separated internally, those values
don’t have to be calculated every time that you ask for them. (See
Listing 2.)

A SysTime, however, is an entirely different beast. It represents a date
and time – similar to DateTime – but it goes to hnsec precision instead
of only second precision, and it incorporates the concept of time zone. Its
time is held internally as a 64-bit integral value which holds the number
of hnsecs which have passed since midnight, January 1st, 1 A.D. in UTC.
It also has a TimeZone object which it uses to polymorphically adjust its
UTC value to the appropriate time zone when querying for values such as
its year or hour.

SysTime is the type which is used to interface with the system’s clock.
When you ask for the current time, you get a SysTime. And because it
always holds its internal value in UTC, it never has problems with DST
or time zone changes. It has most of the functions that DateTime has as
well as a number of functions specific to it. It can be cast to the other 3
time point types as well as be constructed from them, but you do risk
problems with DST when creating a SysTime from the other 3 time points
unless you specifically create the SysTime with a TimeZone which
doesn’t have DST (such as std.datetime.UTC), since when a time
zone has DST, one hour of the year does not exist, and another exists twice.
You can also convert to and from unix time, which is what you’re dealing
with in C with time_t.

The one other related type which I should mention at this point is
core.time.FracSec. It holds fractional seconds, and it is what you get
from a Duration or SysTime when you specifically ask for the
fractional portion of the time. (Listing 3)

Time Intervals

std.date has nothing to correspond to time intervals, so I won’t go over
them in great detail. Essentially, they’re constructed from either two time
points or a time point and a duration. Interval is a finite time interval
with two end points, whereas PosInfInterval is an infinite time
interval starting at a specific time point and going to positive infinity, and
NegInfInterval is an infinite time interval starting at negative infinity
and going to a specific time point. They have various operations for dealing
with intersections and the like. It is also possible to create ranges over them

if you want to operate on a range of time points. Take a look at the
documentation [1] for more details.

Interfacing with C
Hopefully, you can do everything that you need to do using the types in
core.time and std.datetime, but if you do need to interface with C
code, then you can. C’s time_t uses ‘unix time’ (seconds since midnight,
January 1st, 1970 A.D. in UTC), whereas SysTime uses what it calls ‘std
time’ (hnsecs since midnight January 1st, 1 A.D. in UTC). Translating
between the two is fairly straightforward. To get a time_t from a
SysTime, simply call toUnixTime on the SysTime. To convert the
other way around, you first need to convert a time_t to std time, then pass
that value to SysTime’s constructor. And if you ever simply need a
SysTime’s std time for any reason, then use its stdTime property.

Hecto-nanoseconds were chosen as the internal representation of
Duration and SysTime, because that is the highest precision that you
can use with a 64-bit integer and still cover a reasonable amount of time
(SysTime covers from around 29,000 B.C. to around 29,000 A.D.). It also
happens to be the same internal representation that C# uses, so if you need
to interface with C# for any reason, converting between its representation
of time and std.datetime’s representation is extremely easy, since no
conversion is necessary. C#’s DateTime uses both the same units and
epoch for its internal representation (which it calls Ticks) as SysTime,
though unlike SysTime, it doesn’t work with negative values (which
would be B.C.) and doesn’t go past the end of 9,999 A.D. Most programs
are unlikely to care about values outside that range however. Regardless,
hnsecs make the most sense for std.datetime, which tries to have the
highest precision that it reasonably can, so that’s why they were picked.

Recommendations on Using std.datetime
Whether Date , TimeOfDay, DateTime, or SysTime is more
appropriate in a particular situation depends very much on that situation.
Date, TimeOfDay, and DateTime generally make the most sense when
you’re dealing with generic dates and times that have nothing to do with
time zones, but if you’re dealing with time zones at all or are dealing with
anything which needs to worry about DST, you should use SysTime.
Because it keeps its time internally in UTC, it avoids problems with DST.
And while it does have a time zone component, it defaults to
std.datetime.LocalTime (which is the time zone type for the local
time of the system), so you don’t generally have to deal directly with time
zones if you don’t want to.

If you do want to deal with time zones, then the time zone types in
std.datetime are LocalTime , UTC , SimpleTimeZone ,
PosixTimeZone, and WindowsTimeZone – or if for some reason, they
don’t do what you need, you can always create your own time zone class
derived from TimeZone. That’s unlikely to be necessary, however (and
if you think that you have come up with such a class which would be
generally useful, please bring it up in the digitalmars.D newsgroup, since
if it’s truly generally useful, we may want some version of it in
std.datetime). Read their documentation for more details. Most
applications shouldn’t have to worry about time zones though, beyond
perhaps using UTC instead of LocalTime in some cases.

When it comes to saving a time point to disk or a database or something
similar, I would generally recommend using the toISOString or
toISOExtString functions, since both are standard ISO formats for
date-time strings (toISOExtString is likely better in the general case,
since it’s more humanly readable, but they’re both standard). You can then
use fromISOString or fromISOExtString to recreate the
appropriate time type later. toString uses the toSimpleString

auto date = Date(1992, 12, 27);
auto tod = TimeOfDay(7, 0, 22);
auto dateTime = DateTime(1992, 12, 27, 7, 0, 22);
assert(date == dateTime.date);
assert(tod == dateTime.timeOfDay);Li

st
in

g
2

auto st1 = Clock.currTime();
//Current time in local time.

auto st2 = Clock.currTime(UTC());
//Current time in UTC.

auto st3 = SysTime(DateTime(1992, 12, 27, 7,
 0, 22), FracSec.from!"usecs"(5));
assert((cast(Date)st3) == Date(1992, 12, 27));
assert((cast(TimeOfDay)st3) ==
 TimeOfDay(7, 0, 22));
assert((cast(DateTime)st3) ==
 DateTime(1992, 12, 27, 7, 0, 22));
assert(st3.fracSec == FracSec.from!"hnsecs"(50));

Li
st

in
g

3

time_t unixTime = core.stdc.time.time(null);
auto stdTime = unixTimeToStdTime(unixTime);
auto st = SysTime(stdTime);
assert(unixTime == st.toUnixTime());
assert(stdTime == st.stdTime);

Listing 4
NOV 2011 | | 5{cvu}

function, which is an invention of Boost and is somewhat more humanly
readable, but it isn’t standard, so you probably shouldn’t use it for saving
time point values. (Listing 5)

One area with saving times as strings which gets a bit awkward is time
zones. The time zone is included in the string as part of the ISO standard,
but all it contains is the total offset from UTC at that particular date and
time, so you can’t generally use an ISO string (extended or otherwise) to
get the exact time zone which the SysTime originally had. Rather, it will
be restored with a SimpleTimeZone with the given offset from UTC
(except in the case of UTC, where it can restore UTC). On the other hand,
if you’re using LocalTime, then the time zone is not part of the string
(per the ISO standard), and restoring the SysTime will restore it to
whatever the current time zone is on the box, regardless of what the original
time zone was. However, because in all cases, except for LocalTime, the
UTC offset is included in the string, it is generally possible to get the exact
UTC time that the SysTime was for. But you can’t usually restore the
original time zone from just the ISO string. (Listing 6)

To summarize, UTC and SimpleTimeZone can be restored exactly using
an ISO or ISO extended string. However, none of the other TimeZones
can be. LocalTime is restored with the same date and time but in the local
time zone of the computer it’s restored on, so its std time may differ. Other
time zones end up with the restored SysTime having the same std time
as the original, but the new time zone is a SimpleTimeZone with the
same total UTC offset which the original time zone had at the given std
time, but you don’t get the original time zone back. That works just fine
if you don’t ever need to change the value of that SysTime or need to know
the name of the original time zone, but it is inadequate if you need to do
either of those, since the rules for the new time zone won’t match those of
the original.

So, if you don’t care about the time zone or if the restored SysTime has
the same std time as the original, then LocalTime is fine. However, if
you want the std time to be consistent, then avoid LocalTime. In most
cases, I’d advise simply using UTC as the time zone when saving the time.
And if you want to restore the time zone such that it’s the same time zone
with the same rules as it was prior to saving the time, then you’re going to
need to save that information yourself. With a PosixTimeZone or a
WindowsTimeZone, all you have to do is save the time zone’s name
(which for them is the TZ database name and the Windows time zone name
of that time zone respectively). That can be used to restore the time zone.
If it’s a SimpleTimeZone or UTC, then you don’t have to do anything,
because the ISO string will be enough. If you’re using LocalTime,
however, you’re in a bit of a bind.

The restored time zone will be LocalTime, so if you want it to be
whatever the local time of the computer you’re doing the restoring on is,
then you’re fine. But if you want to be able to have the same actual time
zone restored regardless of the local time of the computer restoring the
time, you’ll need to figure out what the time zone’s TZ database name or
Windows time zone name is on the original computer so that you can use
it to get its corresponding PosixTimeZone or WindowsTimeZone on
the computer that’s doing the restoring. But it’s actually really hard to
accurately determine the TZ database name or Windows time zone name
of the local time zone on any OS other than on Windows, so
std.datetime doesn’t currently provide a way to do that. I expect that
such a requirement would be quite rare however. In most cases, you’ll care
about LocalTime and /or UTC, and even i f you’ re us ing
PosixTimeZone or WindowsTimeZone, odds are that restoring the
time with the correct std time value and correct UTC offset will be enough
(and if it’s not, you can always save the time zone’s name to restore the
correct PosixTimeZone or WindowsTimeZone). It’s just LocalTime
that has the problem. However, if a function to accurately determine the
TZ database name of the local time zone on Posix systems is ever devised,
then it will be added to std.datetime.

The other, more compact, option for saving a SysTime is to just save its
std time as a 64-bit integer. It’s not really humanly readable like an ISO
or ISO extended string would be, but it takes up less space if saved as an
actual number rather than a string. However, you do then have to worry
about the time zone yourself entirely if you wish to be able to restore it.
But if you save the current UTC offset (meaning the UTC offset with the
DST offset applied – such as an ISO string would include), that would be
enough to correctly give what the time would have been in the original time
zone even if you can’t restore that time zone.

Well, that’s probably more than enough on time zones. In most cases, you
shouldn’t need to care about them (SysTime is designed to make it so that
you shouldn’t have to worry about them if you don’t want to), but
std.datetime strives to give the best tools possible for handling time
zones when you actually want to. Regardless, by far the biggest gain that
SysTime gives you is that its internal time is always in UTC, so regardless
of whether you try and do anything with time zones explicitly, you won’t
have any problems with DST changes when dealing with SysTime.

One last suggestion on using SysTime would be that if you need to query
it for more than one of its properties (e.g. day or hour), or if you need to
do it many times in a row, and the SysTime isn’t going to change, then
you should probably cast it to another time point type (probably

auto dateTime = DateTime(1997, 5, 4, 12, 22, 3);
assert(dateTime.toISOString() ==
 "19970504T122203");
assert(dateTime.toISOExtString() ==
 "1997-05-04T12:22:03");
assert(dateTime.toSimpleString() ==
 "1997-May-04 12:22:03");
auto restored = DateTime.fromISOExtString(
 dateTime.toISOExtString());
assert(dateTime == restored);

Li
st

in
g

5

auto local = SysTime(629_983_705_230_000_035);
auto utc = local.toUTC();
auto other =
local.toOtherTZ(TimeZone.getTimeZone("America/
New_York"));

//This assumes that you're in "America/
Los_Angeles". You'd get a different
//time if you're in a different time zone.
assert(local.toISOExtString() == "1997-05-
04T12:22:03.0000035");

assert(utc.toISOExtString() == "1997-05-
04T19:22:03.0000035Z");
assert(other.toISOExtString() == "1997-05-
04T15:22:03.0000035-04:00");

auto restLocal =
SysTime.fromISOExtString(local.toISOExtString());
auto restUTC =
SysTime.fromISOExtString(utc.toISOExtString());
auto restOther =
SysTime.fromISOExtString(other.toISOExtString());

//Only guaranteed because it's on the same
machine.
assert(restLocal == local);

//Guaranteed regardless of machine. Their
internal values could differ however.
assert(cast(DateTime)restLocal ==
cast(DateTime)local);

//Time zone is UTC for both.
assert(restUTC == utc);

//Time zone for restOther is SimpleTimeZone(-4 *
60), not "America/New_York".
assert(restOther == other);

Li
st

in
g

6

6 | | NOV 2011{cvu}

DateTime) and query it for those values. The reason for this is that every
time that you call a property function on a SysTime, it has to convert its
internal std time to the value of the property that you’re asking for, whereas
if you convert it to a DateTime, the DateTime holds those values
separately, and you only have to do the calculations once – when you do
the conversion from the SysTime to a DateTime. If what you’re doing
doesn’t need that extra boost of efficiency, then you might as well not
bother, but it is good to be aware that it’s less efficient to query each of
SysTime’s properties individually rather than converting it to a
DateTime and then querying it.

Migrating to std.datetime
Okay, hopefully you have a fair idea of the basics of std.datetime at
this point (though there’s plenty more which is covered in the
documentation), but the big question for many is how best to handle
converting your code from using std.date to using std.datetime.
When using std.date, you would have been using d_time, and if you
had to worry about time zones, you were probably either using C functions
to deal with conversions or just doing them yourself, since the functionality
in std.date which relates to time zones is rather broken. As a result, most
of what you would have done would likely be in UTC.

SysTime holds its time internally in UTC in a manner similar to d_time
(albeit with different units and a different epoch), and it is the type intended
for dealing with the time from the system’s clock, so SysTime is generally
what d_time should be replaced with. Functions in Phobos which
previously took or returned a d_time now take or return a SysTime or
are scheduled to be deprecated and have replacement functions which take
or return a SysTime. Generally, in the case where a function took a

d_time, that function is now overloaded with a version which takes a
SysTime, but in cases where a function could not be overloaded (such as
when it simply returned a d_time), a new function has been added to
replace the old one (so as to avoid breaking existing code). The module
that this impacts the most is std.file. For an example, see Listing 8.

With all such functions, it’s simply a matter of changing the type of the
argument that you’re passing to the function or assigning its return value
to and possibly changing the function name that you’re calling so that it's
the version that returns a SysTime . Those changes are quite
straightforward and not particularly disruptive. Of greater concern are the
formats that times are printed or saved in and how time zones are dealt
with.

If you were saving the integral d_time value anywhere, then you’re either
going to have to switch to saving a value that SysTime would use as
discussed previously (such as its std time or its ISO string), or you’re going
to have be converting between d_time and SysTime.

At present, the functions std.datetime.sysTimeToDTime and
std.datetime.dTimeToSysTime will do those conversions for you.
So, converting between the two formats is easy. However, because
d_time is going away, those functions will be going away. That means
that you either need to refactor your code so that those functions aren’t
necessary, or you need to copy them to your own code to continue to use
them.

As for formatted strings, std.datetime currently only supports ISO
strings, ISO extended strings, and Boost’s simple string. Eventually, it
should have functions for custom strings, but a well-designed function for
creating custom strings based on format strings is not easy to design, and
it hasn’t been done for std.datetime yet (it’s on my todo list, but it
could be a while before I get to it). So, in general, you’re either going to
have to switch to using one of the string formats that std.datetime
supports, or you’re going to have to generate and parse the string format
that you want yourself. In some cases, you should be able to adjust the
string that core.stdc.time.ctime gives you, and in others, you may
be able to use toISOExtString and adjust what it gives you, but there’s
a decent chance that you’re going to have to just create and parse the strings
yourself using the various properties on SysTime. One major difference
between the string functions in std.date and those in std.datetime
to note is that unlike std.date, aside from Boost’s simple strings,
nothing in std.datetime prints the names of months or weekdays,
because that poses a localization issue. So, unless you’re using ctime to
get those values, you’re going to have to create the names yourself.

Now, if you were doing anything with time zones with std.date, odds
are that you were doing all of those conversions yourself (since that’s one
of the areas where std.date is buggy). That being the case, you probably
have the offset from UTC and the offset adjustment for DST for whatever
time zone you’re dealing with. What is likely the best way to handle that
is to create a SimpleTimeZone using those values. Simply calculate the
total UTC offset (so add in the DST offset if it applies for the date in
question) in minutes and create a SimpleTimeZone with that. Note that
std.datetime treats west of UTC as negative (for some reason, some
systems – particularly Posix stuff – use a positive offset from UTC when
west of UTC, in spite of the fact that when talking about time zones,
negative is always used for west of UTC, and that’s what the ISO standard
strings do). So, you may have to adjust your values accordingly.
Regardless, be very careful to make sure that you understand what the

auto st = Clock.currTime();

//Each value must be individually calculated.
{
 auto year = st.year;
 auto month = st.month;
 auto day = st.day;
 auto hour = st.hour;
 auto minute = st.minute;
 auto second = st.second;
 auto fracSec = st.fracSec;
 }

/+
 You do the calculations only twice if you
 convert to a DateTime (twice instead of once,
 because you're still asking for FracSec
 separately, though that particular calculation
 is fairly cheap).
+/
auto dateTime = cast(DateTime)st;
{
 auto year = dateTime.year;
 auto month = dateTime.month;
 auto day = dateTime.day;
 auto hour = dateTime.hour;
 auto minute = dateTime.minute;
 auto second = dateTime.second;
 auto fracSec = st.fracSec;
}

Li
st

in
g

7

d_time dTime = "myfile.txt".lastModified();

SysTime sysTime = "myfile.txt".timeLastModified();

setTimes("yourfile.txt", dTime, dTime + 5);

setTimes("yourfile.txt", sysTime,
 sysTime + dur!"msecs"(5));

Li
st

in
g

8

//These are the same offsets as
// America/Los_Angeles.
auto utcOffset = -8 * 60;
auto dstOffset = 60;

immutable tzWithDST =
 new SimpleTimeZone(utcOffset + dstOffset);
immutable tzWithoutDST =
 new SimpleTimeZone(utcOffset);

Listing 9
NOV 2011 | | 7{cvu}

values you’ve been using represent in units of time and whether you need
to be adding or subt rac t ing them to conver t them to what
SimpleTimeZone expects for its offset from UTC: the minutes to add
to the time in UTC to get the time in the target time zone. (Listing 9)

The last thing that I have to note is some differences in numerical values
between std.date and std.datetime . std.date.Date’s
weekday property gives Sunday a value of 1, but std.date.weekDay
gives Sunday a value of 0. std.datetime.DayOfWeek gives Sunday
a value of 0. So, depending on which part of std.date you’re dealing
with it, it may or may not match what std.datetime is doing for the
numerical values of weekdays. Months have a similar problem.
std.date.Date’s month property gives January a value of 1 – which
m a tch es w ha t std.datetime.Month d o e s – bu t
std.date.monthFromTime gives January a value of 0. So, just as with

the days of the week, you have to be careful with the numerical values of
the months. Whether std.datetime matches what std.date is doing
depends on which part of std.date you’re using. And as you’ll notice,
it’s not even consistent as to whether std.date.Date or the free
function in std.date is the one which matches std.datetime. So, you
should be very careful when converting code which uses numerical values
for either the days of the week or the months of the year.

std.date symbols and their std.datetime counterparts

A table giving std.date symbols and their std.datetime
counterparts can be found below.

std.date std.datetime

std.date std.datetime Equivalent

d_time The closest would be SysTime

d_time_nan There is no equivalent. SysTime.init, which has a null TimeZone object, would be the closest, but once
CTFE (Compile-Time Function Execution [2] advances to the point that you can new up class objects with it,
SysTime.init’s timezone will be LocalTime, so don’t rely on SysTime.init being invalid. std.datetime
in general tries to avoid having any invalid states for any of its types. It’s intended that creating such values be
impossible

Date SysTime

Date.year SysTime.year

Date.month SysTime.month

Date.day SysTime.day

Date.hour SysTime.hour

Date.minute SysTime.minute

Date.second SysTime.second

Date.ms SysTime.fracSec.msecs

Date.weekday SysTime.dayOfWeek – but note that the values are off by 1.

Date.tzcorrection immutable tz = sysTime.timezone;
auto diff = tz.utcToTZ(sysTime.stdTime) - sysTime.stdTime;
auto tzcorrection = convert!("hnsecs", "minutes")(diff);
However, it looks like tzcorrection is broken, so you’re probably not using it in your code anyway.

Date.parse SysTime.fromISOString, SysTime.fromISOExtString, and SysTime.fromSimpleString, but
the formats of the strings differ from what std.date.Date.parse accepts.

ticksPerSecond There is no equivalent. It’s only relevant to d_time.

toISO8601YearWeek SysTime.isoWeek

hourFromTime SysTime.hour

minFromTime SysTime.minute

secFromTime SysTime.second

daysInYear sysTime.isLeapYear ? 366 : 365

dayFromYear (sysTime - SysTime(Date(1970, 1, 1), UTC())).total!"days"()

yearFromTime SysTime.year

inLeapYear SysTime.isLeapYear

monthFromTime SysTime.month – but note that the values are off by 1.

dateFromTime SysTime.day

weekDay SysTime.dayOfWeek

UTCtoLocalTime SysTime.toUTC

dateFromNthWeekdayOfMonth There is no equivalent. Listing 10 (below) is a possible implementation.

daysInMonth SysTime.endOfMonthDay; Actually, this name is overly easy to confuse with endOfMonth – which returns a
SysTime of the last day of the month. I will probably rename this to daysInMonth. But if I do, it won’t be until the
next release (2.054), and this name will be around until it’s gone through the full deprecation cycle.

UTCtoString There is no equivalent. You could probably parse and recombine core.stdc.time.ctime and
SysTime.toISOExtString to create it though. However, this function appears to be fairly buggy in the first
place, so odds are that your code isn’t using it anyway.

toUTCString There is no equivalent. You could probably parse and recombine core.stdc.time.ctime and
SysTime.toISOExtString to create it though.
8 | | NOV 2011{cvu}

int dateFromNthWeekdayOfMonth(int year,
 Month month,DayOfWeek dow, int n)
{
 auto first = Date(year, month, 1);
 auto target = first;
 immutable targetDOTW = target.dayOfWeek;
 if(targetDOTW != dow)
 {
 if(targetDOTW < dow)
 target += dur!"days"(dow - targetDOTW);
 else
 {
 target += dur!"days"(
 (DayOfWeek.sat - targetDOTW) +
 dow + 1);
 }
 }
 target += dur!"weeks"(n - 1);
 if(target.month != first.month)
 target -= dur!"weeks"(1);
 return cast(int)(
 (target - first).total!"days"()) + 1;
}

Li
st

in
g

10

Note that I’m not an expert on what does and doesn’t work in std.date,
so while I have noted some of the functions that I know to be broken, just
because a function isn’t labeled as broken in the above table does not mean
that it works correctly. And any function which doesn’t work correctly is
obviously not going to give the same results as the std.datetime
equivalent, since it’s almost certain that the std.datetime version isn’t
buggy, let alone buggy in the same way (if it is buggy, the bug is almost
certainly going to be far more subtle than any bug in std.date, since
std.datetime is quite thoroughly unit tested).

Conclusion
Hopefully this ar t ic le has improved your understanding of
std.datetime and will get you well on your way to being able to
migrate your code from std.date to std.datetime. If you have any
further questions, please ask them on the digitalmars.D.learn newsgroup.
And if there’s a major use case of std.date which is not easy to convert
over to std.datetime which I missed in this article and you think should
be in it, please feel free to bring it up on the digitalmars.D newsgroup, and
if need be, I’ll update the online version of this article with the relevant
information. 

References
[1] http://www.d-programming-language.org/phobos/std_datetime.html
[2] http://d-programming-language.org/function.html

toDateString There is no equivalent. You could probably parse and recombine core.stdc.time.ctime and
SysTime.toISOExtString to create it though. However, this function appears to be fairly buggy in the first
place, so odds are that your code isn’t using it anyway.

toTimeString There is no equivalent. You could probably parse and recombine core.stdc.time.ctime and
SysTime.toISOExtString to create it though. However, this function appears to be fairly buggy in the first
place, so odds are that your code isn’t using it anyway.

parse.parse SysTime.fromISOString, SysTime.fromISOExtString, and SysTime.fromSimpleString, but
the formats of the strings differ from what std.date.parse accepts.

getUTCtime Clock.currTime(UTC()) if you want the SysTime to have its time zone be UTC. More likely though, you’ll
just use Clock.currTime(). Its internal time is in UTC regardless.

DosFileTime DosFileTime

toDtime DosFileTimeToSysTime

toDosFileTime SysTimeToDosFileTime

benchmark benchmark

std.date std.datetime
NOV 2011 | | 9{cvu}

10 | | NOV 2011{cvu}

A Game of Lucky Sevens
Baron Muncharris invites us to solve a new puzzle.

reetings Sir R-----! This evening’s chill wind might be forgiven some
of its injurious assault upon me by delivering me some good company
as I warm my bones. Come, shed your coat and join me in a glass of

this rather delightful mulled cyder!

Might you be interested in a little sport whilst we recover?

Excellent!

This foul zephyr puts me in mind of the infantile conflict between King
Oberon and Queen Titania that was in full force during my first visit to the
faerie kingdom. I had arrived there quite by accident but fortunately my
reputation was sufficient to earn me an invitation to dine at the King’s
table. That the fare was sumptuous beyond the dreams of mortal man goes
without saying, but the conflict between the King and his consort cast
something of a shadow upon the evening.

I resolved that I might ease the tension, and improve the terrible weather
that was its consequence, by arranging some diversion that might afford
the royal couple an opportunity to resolve their dispute. I therefore made
my way back to the Earthly realm and employed a troupe of actors to put
on a play for the faerie court. To my very great shame they revealed
themselves to be utterly inadequate upon the night; the lead actor, one Nick
Bottom, faring so badly that he made a comedy of Pyramus and Thisbe.

My reconciliatory efforts having been so thoroughly unsuccessful I retired
to a faerie tavern and whiled my hours away at a game most popular in
that realm.

But I must tell you of its rules!

Here I have a pair of fresh decks running from Ace to King, each suit in
its turn. I shall set one deck unmolested before me and the other thoroughly
shuffled before you. I shall then take my top card and, if it be a seven keep
it for my hand, if not discard it. You shall then do likewise and we shall
continue taking turns in such manner until one of us holds a trick of four
sevens. If it is my good fortune to have it, you shall give me a bounty of
eleven coins. If, on the other hand, you prevail, I shall give you nine.

When I described the game to that odious student whose company I am
cursed to endure, he became somewhat agitated regarding the mention of
that oafish Mr Bottom, perhaps unsurprisingly given his own oafish nature.

But let us not put a tarnish upon this night with talk of that feebleminded
fellow; take another glass and consider your chances! 

Listing 1 shows a C++ implementation of the game.

G

Baron Muncharris # 14

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

typedef std::vector<unsigned char> deck_type;

deck_type
deck()
{
 deck_type cards(52);
 for(size_t suit=0;suit!=4;++suit)
 {
 for(size_t face=0;face!=13;++face)
 {
 cards[suit*13+face] = face;
 }
 }
 return cards;

}

void
play()
{
 const char names[13][10] = {"an Ace\0",
 "a Deuce\0", "a three\0", "a four\0",
 "a five\0", "a six\0", "a seven\0",
 "an eight\0", "a nine\0", "a ten\0",
 "a Jack\0", "a Queen\0", "a King\0"};

 deck_type b_deck = deck();
 deck_type r_deck = deck();

 std::reverse(b_deck.begin(), b_deck.end());
 std::random_shuffle(r_deck.begin(),
 r_deck.end());

 size_t b_hand = 0;
 size_t r_hand = 0;

 deck_type::const_iterator b_card =
 b_deck.begin();
 deck_type::const_iterator r_card =
 r_deck.begin();

 while(b_hand!=4 && r_hand!=4)
 {
 if(*b_card==6) ++b_hand;

 std::cout << "The Baron drew "
 << names[*b_card];
 std::cout << " and has a hand of " << b_hand
 << " seven";
 if(b_hand!=1) std::cout << 's';
 if(*b_card==6) std::cout << '!';
 else std::cout << '.';
 std::cout << std::endl;

 if(*r_card==6) ++r_hand;

 std::cout << "You drew " << names[*r_card];
 std::cout << " and have a hand of
 " << r_hand << " seven";
 if(r_hand!=1) std::cout << 's';
 if(*r_card==6) std::cout << '!';
 else std::cout << '.';
 std::cout << std::endl;

 ++b_card;
 ++r_card;
 }

 if(b_hand==4) std::cout << "The Baron wins!"
 << std::endl;
 else std::cout << "You win!" << std::endl;
}

Li
st

in
g

1
Listing 1 (cont’d)

NOV 2011 | | 11{cvu}

On a Game of Path Finding
Our student analyses the Baron’s last challenge.

ou will recall that the Baron’s latest game consists of seeking to build
a path of counters across a board chalked out upon the tavern’s
hearth. The Baron was to place the first counter and strive to

construct a path from the left to the right and Sir R----- was to follow and
strive for one from top to bottom. They would continue to take turns in
this fashion until a path had been forged, whereupon the victor would have
a coin from the loser’s purse. Figure 1 shows a path for the Baron.

The first thing to note is that since each tile on the hearth is adjacent to six
others, they are topologically identical to hexagons and the playing area
is consequently equivalent to that of the board game Hex [1]. I said as much
to the Baron, but I fear I may not have done so with sufficient clarity. The
Hex board is shown in Figure 2.

Now, this game cannot end in a draw since the only means by which either
player can block all of the other’s paths across the board is to make one of
his own.

Noting this property, it was proven by one Mr Nash that the second player
cannot force victory if the first player keeps his wits about him. He did so
by first proposing that the second player had in mind a strategy that would
ensure a win and then suggesting that the first player steal it. That is to say,
he should place his first counter at random and thereafter use the second
player’s strategy, or again at random if that strategy demands he places a
counter on his random spare. The first player could thusly steal the
second’s guaranteed win.

That mathematics abhors a contradiction is sufficient to demonstrate that
the second player can have no such strategy, although it provides no hint
as to how the first player might prevail.

I should therefore have advised Sir R----- not to take up the Baron’s
challenge, unless of course, he believed he had the wits to overcome this
disadvantage.

An interesting consequence of Mr Nash’s proof is that for any symmetric
game in which the first player may elect to pass it is impossible for the
second to guarantee success. 

References
[1] Gardner, Martin (1959). Hexaflexagons and other Mathematical

Diversions – The First Scientific American Book of Puzzles and
Games. Simon and Schuster.

 Y

A Student’s Analysis # 13

Figure 1
Figure 2

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Review of Effective C# Item 15: Utilize using
and try-finally for Resource Clean-up

Paul Grenyer gets to grips with the Dispose pattern.

he original Effective C++ series from Scott Meyers was a real
revelation for C++ programmers. It grouped together many idioms
from the wildly diverse and complex language and made them

understandable. It identified many of the pitfalls and made them avoidable.
It was a must read for every serious C++ programmer.

Since then all the major language seems to have an effective series. You
would think this was a good idea, but most languages are not as wildly
complex as C++, with fewer idioms and pitfalls. They’re still there, but
the languages have been designed with the idioms in mind, and the
introductory texts teach them, and with a lot of the pitfalls already avoided.
Consequently most effective series for modern languages are smaller and
contain a lot of patterns as well. For example, Effective Java starts off with
the builder pattern. To my mind that belongs in a patterns book and it
certainly should not be the first Java idiom described.

I am currently reading Effective C# by Bill Wagner. I’ve got as far as
chapter 18 and so far it is full of good advice, but, in my opinion, is
extremely poorly explained. Items 6 and 7 cover equality and
GetHashCode. These are complex concepts in predominantly reference
based languages, like C#, and after I’d finished reading the items I didn’t
feel I understood them much better.

Items 12 to 20 cover resource management. This is a real passion of mine,
so naturally I’m quite critical of what’s written here, as well as how it’s
actually written. Luckily most of what’s written is sound, but part of Item
15 gives, in my opinion, some just plain bad advice. The following item,16,
is another exceptionally badly written item, all though the advice is sound,
but I’ll leave that for another time.

Item 15: Utilize using and try-finally for Resource
Clean-up
Resource management is probably the biggest Achilles heal of garbage
collected languages. As such, it should probably be the subject of the first
section of any effective series, but item 15 out of 50 isn’t too bad.

How and why resources need to be managed in C# is explained
satisfactorily by the item, so I won’t go over it again. However I was highly
amused by one paragraph: ‘Luckily for you, the C# language designers knew
that explicitly releasing resources would be a common task. They added
keywords to the language to make it easy.’ Surely this is treating a
symptom, not solving the problem and they should have found a way to
encapsulate resource management within types.

My real issue with this item is what the author describes as an ugly
construct. There is an example of using with both a SqlConnection
and a SqlCommand (see Listing 1).

Alternatively, as Steve Love pointed out to me, it could be written as in
Listing 2, but I feel this does not express the scope of the open connection
as clearly.

The author points out that you’ve effectively written the construct in
Listing 3.

 T

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com

public void ExecuteCommand(string connString,
 string commandString)
{
 using (var myConnection =
 new SqlConnection(connString))
 {
 using(var myCommand =
 new SqlCommand(commandString, myConnection))
 {
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }
 }

}

Listing 1

public void ExecuteCommand(string connString,
 string commandString)
{
 using (var myConnection =
 new SqlConnection(connString))
 using(var myCommand =
 new SqlCommand(commandString, myConnection))
 {
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }

}

Listing 2

public void ExecuteCommand(string connString,
 string commandString)
{
 SqlConnection myConnection = null;
 SqlCommand myCommand = null;
 try
 {
 myConnection = new SqlConnection(connString);
 try
 {
 myCommand = new SqlCommand(commandString,
 myConnection);
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }
 finally
 {
 if (myCommand != null)
 myCommand.Dispose();
 }
 }
 finally
 {
 if (myConnection != null)
 myConnection.Dispose();
 }

}

Listing 3
12 | | NOV 2011{cvu}

As he finds it ugly, when allocating multiple objects that implement
IDispose, he prefers to write his own try/finally blocks (Listing 4).

I have two problems with this. The first is that if the FINALLY FOR EACH

RELEASE pattern, as described by Kevlin Henney in Another Tale of Two
Patterns [1], is correctly implemented, the null checks, which are a terrible
code smell and often the cause of bugs if they get forgotten, would be
completely unnecessary (see Listing 5).

If the nested try blocks are a problem for you, another method can be
introduced, shown in Listing 6.

However, the real problem is that you are only effectively implementing
this construct. If you stick with the original nested using blocks, the
compiler creates the construct for you and you don’t see it. Which means
that it really doesn’t matter how ugly it might be and ditching the using
blocks and writing your own construct just creates the ugliness. Maybe the
root of the author’s aesthetic objection is the nesting. Again, this is easily
overcome by introducing another function, shown in Listing 7.

Finally
In conclusion, the final part of the summary advice given in the chapter
which states, ‘Whenever you allocate one disposable object in a method,
the using statement is the best way to ensure that the resources you allocate
are freed in all cases. When you allocate multiple objects in the same
method, create multiple using blocks or write your own single try/finally
block.’ should be ignored in favour of ‘... When you allocate multiple objects
in the same method, create multiple using blocks.’ 

References
[1]‘Another Tale of Two Patterns’: http://www.two-sdg.demon.co.uk/
curbralan/papers/AnotherTaleOfTwoPatterns.pdf

public void ExecuteCommand(string connString,
 string commandString)
{
 SqlConnection myConnection = null;
 SqlCommand myCommand = null;
 try
 {
 myConnection = new SqlConnection(connString);
 myCommand = new SqlCommand(commandString,
 myConnection);
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }
 finally
 {
 if (myConnection != null)
 myConnection.Dispose();
 if (myCommand != null)
 myCommand.Dispose();
 }
}

public void ExecuteCommand(string connString,
 string commandString)
{
 var myConnection =
 new SqlConnection(connString);
 try
 {
 var myCommand = new SqlCommand(commandString,
 myConnection);
 try
 {
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }
 finally
 {
 myCommand.Dispose();
 }
 }
 finally
 {
 myConnection.Dispose();
 }
}

public void ExecuteCommand(string connString,
 string commandString)
{
 var myConnection = newqlConnection(connString);
 try
 {
 ExecuteCommand(myConnection, commandString);
 }
 finally
 {
 myConnection.Dispose();
 }
}
private void ExecuteCommand(
 SqlConnection myConnection,
 string commandString)
{
 var myCommand = new SqlCommand(commandString,
 myConnection);
 try
 {
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }
 finally
 {
 myCommand.Dispose();
 }

}

public void ExecuteCommand(string connString,
 string commandString)
{
 using (var myConnection =
 new SqlConnection(connString))
 {
 ExecuteCommand(myConnection, commandString);
 }
}
private void ExecuteCommand(
 SqlConnection myConnection,
 string commandString)
{
 using (var myCommand =
 new SqlCommand(commandString, myConnection))
 {
 myConnection.Open();
 myCommand.ExecuteNonQuery();
 }

}

Listing 7
Li

st
in

g
4

Li
st

in
g

5
Listing 6
NOV 2011 | | 13{cvu}

http://www.two-sdg.demon.co.uk/curbralan/papers/AnotherTaleOfTwoPatterns.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/AnotherTaleOfTwoPatterns.pdf

MODULE etest;
FROM StrIO IMPORT WriteLn, WriteString;
FROM NumberIO IMPORT WriteCard;
TYPE Fruit = (apple, orange, banana);
VAR f : Fruit;
BEGIN
 (* Because the language knows the range of
 values in the type this code will not need
 to be changed if new values are added
 to the definition of Fruit *)
 FOR f := MIN(Fruit) TO MAX(Fruit) DO
 WriteString("Fruit value is ");
 WriteCard(ORD(f), 0);
 WriteLn;
 END;
END etest.

Enum – a Misnomer
Daniel James exposes enum as unsuitable for enumeration.

read Matthew Wilson’s recent article on enums in C and C++ [1] with
some interest. Wilson gives a good overview of the capabilities of enum
types in these languages and some helpful tips on their use, especially

on their use as enumerations.

As I read, though, I found myself asking why such an article was necessary
at all. Isn’t an enum just about as simple as any datatype you can have …
apart maybe from int? Shouldn’t all of this be obvious? Clearly it isn’t
obvious – or there would be no need for such an article – and I would
suggest that the reason we need do articles like this is that the C++ enum
type is not an enumeration type. That’s quite a claim: The C++ standard
uses the word enumeration to describe an enum type – so why do I say
that it isn’t one?

My dictionary [2] says that the verb ‘enumerate’ is connected with census
taking, and means to ‘specify as in a list (a number of things) one by one’
or to ‘ascertain the number of’, and that ‘enumeration’ means ‘The action
of enumerating’ or ‘A list, a catalogue’. The concept embodied in this
definition is that of a fixed set of entities with distinct values that can be
examined in turn.

In programming, the notion of an enumerated type in programming was
first introduced by Niklaus Wirth in the Pascal programming language [3].
Enumerated types in Pascal have very similar semantics to subranges of
integral types (which Pascal also supports) with the additional feature of
defining a named constant for each value in the range. Pascal’s enums
therefore implicitly represent ordered sequences of consecutive integer
values. Pascal’s enums are never implicitly converted to or from integer
types, but Pascal provides a full set of comparison operations between
enum values and the PRED and SUCC functions which return the
predecessor and successor values within the type, to enable iteration over
the set of values. There are also ORD and VAL functions which are
effectively casts to convert between enumeration values and their ordinal
positions within the type. Listing 1 shows a Pascal enum definition for the
same Fruit type as in Wilson’s C++ example.

I’d say that Pascal’s enum is pretty-much what a programmer with no
preconceptions would expect an ‘enumeration’ to be, based on the
dictionary definition. There is no way to ask Pascal for the number of
values in the type, nor any way to ask for the minimum or the maximum
value, but it is the nature of Pascal that you generally have to know these
things to be able to use the type at all. Listing 2 shows a typical snippet of
Pascal code that defines an enum representing days of the week, a subrange
of that enum representing weekdays, and an array of integers that can be
subscripted by weekday values. Listing 3 shows a procedure that initializes
a value of the array type. Note that the original Pascal is so strongly typed
that only an array of that exact type can be passed, so having to hard-code
Monday to Friday is not as limiting as it seems (though it could be a
maintenance headache if the number of days in a week were to change).
More modern Pascal dialects – especially those based on Borland’s Object
Pascal (aka the Delphi language) – offer much richer functionality.

Pascal’s definition of enumerated types was the first, and it was refined
and extended in the other ‘Wirth’ languages that followed on from Pascal,
and further still in Ada. All these languages add features, but the essential
design of an enumerated type as an ordered set of named integer values is

unchanged. Modula-2 [4] adds functionality to determine the highest and
lowest enumerators of a type, so code can be more robust in the face of
possible changes to the definition of the enum type. Listing 4 shows a
trivial example using the new syntax, which will continue to work correctly
even if new fruit types are added to the enum. Modula-2 also adds new
INC and DEC operators, as shortcuts which modify a variable or an enum
type (or any other scalar type) in situ in very much the same way as
operator++ and operator-- do in C++, and are useful in writing
loops other than the simple FOR to loop over all the values of a type.

Ada provides similar functionality, but in a slightly different way. In Ada
the maximum and minimum values of an enumeration are given by the
'first and 'last attributes of the type, and values have 'succ and
'pred attributes that provide access to their successor and predecessor

I

DANIEL JAMES
Daniel James owns Sonadata Limited, a one-man software
consultancy based in Maidenhead. He has been learning
programming languages for over 30 years, and has yet to
find an entirely satisfying one so continues to use C++ for
most of his work.

type fruit =
(
 apple, (* Implicitly given value zero *)
 banana,
 orange
);

Listing 1

(* Day is an enumeration of all days, implicitly
0..6 *)
Type Day = (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);
(* Weekday is a subrange of day, 1..5 *)
Type WeekDay = Monday..Friday;
(* WeekDayCount is a 1..5 array *)
Type WeekDayCount = ARRAY [WeekDay] of integer;

Listing 2

(* This procedure sets all elements of a
WeekDayCount array to zero *)
Procedure ClearWeekdayCount(x : WeekDayCount);
 Var index : WeekDay;
Begin
 (* Here we have to know that the bounds of
 WeekDayCount are Monday..Friday *)
 For index := Monday to Friday do
 x[index] := 0;
End;

Listing 3
Listing 4
14 | | NOV 2011{cvu}

values, and an 'image attribute to obtain their string representation. The
string representation is taken from the enumerator name in the sourcecode
(converted to upper case, as Ada sourcecode is case insensitive), and is
only really useful for logging and debugging, because it makes no
allowance for internationalization.

Listing 5 shows a simple Ada example based around the familiar Fruit type
that prints out the names of the fruits and their ordinal positions in the type.
To p r in t t he nam es I ’ve u se d t he gene r i c Ada package
Ada.Text_IO.Enumeration_IO which in turn uses the 'image
attribute mentioned above. Note the use of the 'width attribute of the
type, which gives the length of the longest 'image attribute that can be
returned by the type, for aligning output. (Note also that it’s only useful if
you’re using a fixed-pitch font!)

In Pascal and Modula-2 there’s no great magic going on, nor much runtime
calculation to cause overheads. The languages are strongly enough typed
that the actual type of any enum variable is known at compile time and the
MAX and MIN ‘functions’ in Modula-2 are compile-time constants, while
things like the SUCC and PRED functions are simply increments and
decrements (perhaps with a range check, depending on the implementation
and debug level). Converting an enum value to its enumerator name

requires a lookup into a table of enumerator name strings, so that table does
represent a space overhead in implementations that offer it.

In Ada there is an added complication that the programmer can use a
representation clause to specify the actual bit pattern stored in memory for
a given enum value (e.g. for access to memory-mapped hardware ports).
This looks a bit C-like, but really it isn’t – the bit patterns are almost
entirely invisible to the program once they have been set up. Listing 6
shows a variation of the program from Listing 5 that enumerates the items
in a hypothetical Command type whose underlying values might be
command bytes to be sent to a motor controller, where a byte with bit 5
set controls the on/off state of the motor and a byte with bit 6 set controls
the motor speed, and in each case the value of bit 0 indicates on or off.
Although the values used for storage have been changed the program still
behaves as if the enum had values 0..3, and the only way to access the
actual stored bit pattern is by aliasing it with another type.

Listing 7 shows the result of running this program. Note that although
we’ve set the hardware values corresponding to the different enumerators
to non-contiguous values it is still possible to enumerate all the values in
software, and their positions are still reported as 0..3. Clearly there must
be some overhead in implementing the 'pred and 'succ attributes in this
case, as they no longer represent a simple increment or decrement of the
internal enum value.

So how does all this relate to the enum type in C and C++?

I don’t know when the concept of enumerated types was first implemented
in C. They do not appear in the first edition of K&R [5] but are described
in the second edition [6] ten years later, with a note that they had been
implemented by some vendors some years previously. C’s implementation
of enums differs quite noticeably from that of the Wirth languages in two
ways:

 The values of the enumerators can be assigned by the programmer,
and are not constrained to be ordered or consecutive

 There is no mechanism for looping over all the legal values (and
only the legal values) of the type.

The first difference makes the C enum more than an enumerated type, the
second makes it less than one.

To a large extent the second difference is a consequence of the first: if the
values are not ordered and sequential it’s not trivial to loop over them. C
could have been designed to support the same sort of enumeration
mechanism that we have seen with Ada enums that have representation
clauses – but that would be an uncharacteristically high-level construct for
C, and would require some runtime overhead, so the language doesn’t
support it.

The C enum can be used for enumeration so long as the enumerator values
are selected so as to be consecutive, and as C enum variables are simply
integers they can be incremented and decremented using the same
arithmetic operations as any other integers. Listing 8 shows a simple C
program that illustrates that an enum can be used for enumeration in C
about as easily as in Pascal as long as the requirement for the enumerators
to be consecutive is observed.

Stroustrup says [7] that when designing C++ he had no particular desire
to include an enumeration type beyond the need for compatibility with C,
so the C++ enum was basically the same as the C one, but with added type
safety. Type safety is good – Pascal has type safety between enums and
other types – but making the enum type distinct from integer types makes
integer operations, in particular increment and decrement, unavailable to
enums. The simple solution is to cast between enum and int, as seen in
Listing 9 which is the the C++ version of the C program from Listing 8.
Note that this simple example was written to show the awkwardness of the
cast so I have not included any of the refinements that Wilson advocates,
such as Unknown_Fruit and Maximum_Fruit_Value members in the
enum.

Of course, it’s possible to define an operation that wraps up the increment
operator for an enum type in a clean and typesafe way, we can even use a
template to do it for all enum types. If we’re using the new C++11 scoped

-- Enumeration types in Ada
with Ada.Text_IO;
with Ada.Integer_Text_IO;
procedure test_enum is
 type Fruit is (Apple, Orange, Banana);
 package Fruit_IO is
 new Ada.Text_IO.Enumeration_IO(Fruit);
begin
 for f in Fruit'First..Fruit'Last loop
 Ada.Text_IO.Put("This fruit is a ");
 Fruit_IO.Put(f);
 Ada.Text_IO.Put(" with ordinal value ");
 Ada.Integer_Text_IO.Put(Fruit'Pos(f));
 Ada.Text_IO.New_Line;
 end loop;
end test_enum;

Li
st

in
g

5

-- Enumeration types in Ada
with Ada.Text_IO;
with Ada.Integer_Text_IO;
procedure test_enum is
 type Command is (On, Off, Slow, Fast);
 -- This is a representation clause that sets
 -- the values that will be held in memory for
 -- each of the enumerators
 for Command use (On=>16#20#, Off=>16#21#,
 Slow=>16#40#, Fast=>16#41#);
 package Command_IO is
 new Ada.Text_IO.Enumeration_IO(Command);
begin
 for f in Command'First..Command'Last loop
 Ada.Text_IO.Put("Command ");
 Command_IO.Put(f, Command'width);
 Ada.Text_IO.Put(" has position ");
 Ada.Integer_Text_IO.Put(Command'Pos(f),
 0);
 Ada.Text_IO.New_Line;
 end loop;
end test_enum;

Li
st

in
g

6

Command ON has position 0
Command OFF has position 1
Command SLOW has position 2
Command FAST has position 3Li

st
in

g
7

NOV 2011 | | 15{cvu}

enums we can also write generic code to enumerate over the values of any
enum type that has been written to support enumeration as Listing 10
shows. Note that without scoped enums we could not have the same
MaxValue enumerator name in more than one enum type, and there would
be no generic way to write the end() function).

Scoped enums can be made to offer just about all the functionality that one
might expect from a real enumeration type, but only as long as one follows
the conventions that Wilson describes and is prepared to write a little code.
There is no generic way to get the enumerator names as strings as Ada does
– that would require language support that C++ just doesn’t offer – but I
don’t see that as necessary functionality for an enumerated type, as one
would normally want more functionality than the compiler-generated
names would offer (internationalization, different forms of name for
singular and plural (one cherry but two cherries), etc.).

I started by saying that the C++ enum was both less and more than an
enumerated type. So far I’ve talked about the less, but I should say a few
words about the more as well. Because a C or C++ enum isn’t constrained
to contain a sequence of values starting from zero, as is a Pascal enum, it
can be used to define and name any group of compile-time constants.
Because an enum is a proper type, unlike a preprocessor symbol, it follows
the language scoping rules and its visibility can be limited to a given
struct or function (in C) or class or namespace (in C++) – these benefits
are well known. These things are also true of const int values, of course,
but the grouping of related names constants into an enum serves to
document the relationship between them and aids code readability. Also,
older compilers don’t allow initialization of const int values within
class definitions, so it may (still) be necessary to use enum values to define
compile-time constants within the class.

// A template for operator++ for all enum types
// (only)
template <typename T>
typename boost::enable_if< boost::is_enum<T>,
 T>::type
operator++(T & t)
{
 return t = static_cast<T>(
 static_cast<int>(t)+1);
}
// A template function end() to return the
// MaxValue for any enum
template <typename T>
typename boost::enable_if< boost::is_enum<T>,
 T>::type
end()
{
 return static_cast<T>(T::MaxValue);
}
// A template function begin() to return the
// first value for any enum
template <typename T>
typename boost::enable_if< boost::is_enum<T>,
 T>::type
begin()
{
 return static_cast<T>(1);
}
int main(int argc, char** argv)
{
 for(auto f=begin<Fruit>();
 f!=end<Fruit>(); ++f)
 {
 std::cout << "This is fruit " <<
 static_cast<int>(f) << std::endl;
 }
 for(auto f=begin<Vegetable>();
 f!=end<Vegetable>(); ++f)
 {
 std::cout << "This is veggie " <<
 static_cast<int>(f) << std::endl;
 }
 return 0;
}

Listing 10 (cont’d)

/* tenum.c */
#include <stdio.h>
enum Fruit { apple, orange, banana };
int main(int argc, char** argv)
{
 enum Fruit f;
 /* enum Fruit is just an integer, so we can
 increment it */
 for(f=apple; f<=banana; ++f)
 {
 printf("This is fruit %d\n", f);
 }
 return 0;
}

Li
st

in
g

8

// C++ Enumeration example
#include <iostream>
// If we're to enumerate the fruit they must have
// consecutive values
enum Fruit { apple, orange, banana };
int main(int argc, char** argv)
{
 enum Fruit f;
 // We can enumerate the fruit with a cast
 for(f=apple; f<=banana;
 f = static_cast<Fruit>(f+1))
 {
 std::cout << "This is fruit "
 << f << std::endl;
 }
 return 0;
}

Li
st

in
g

9

// tscopedenum.cpp
#include <boost/utility.hpp>
#include <boost/type_traits.hpp>
#include <iostream>
// Our Fruit enum. The convention is
// - the first enumerator is Unknown with value 0
// - all valid values follow with consecutive
// values
// - the last enumerator is MaxValue
enum class Fruit
{
 Unknown=0,
 apple,
 orange,
 banana,
 MaxValue
};
// A different enum to show the scoping works
enum class Vegetable
{
 Unknown=0,
 carrot,
 parsnip,
 pea,
 sprout,
 MaxValue
};

Li
st

in
g

10
16 | | NOV 2011{cvu}

Intelligent Software Design
Simon Salter receives divine inspiration for a

satirical view of the design process.

his was revealed to me the other morning. I was walking the dog and
found myself luminescent in a beam of sunlight which penetrated the
stormy clouds and infused my inner being with a deep, wise and

irrefutably true revelation concerning software architecture. A new
paradigm for creating absolutely correct and inimitable software.

Intelligent software design is the one true path for the righteous
programmer.

Project managers struggling with devilish delivery schedules will be
blessed in the divine knowledge that intelligent software design is
guaranteed to take only six days to create everything. On the seventh day
you can have a rest and contemplate your creation.

Unlike some blasphemous design methodologies objects are not mutable
in any way. They cannot evolve and iteration is a heresy. Objects always
appear fully formed and absolutely correct. They may later get corrupted
by memory overwrites, also known as the greed of man, but this can be
avoided by using the dogmatic interface.

There is only one true singleton which is of irreducible complexity. You
may attempt to make others (the idol pattern) but your program will crash,
the computer will burn and there may be a faint smell of sulphur.

Praying during acceptance testing is not only allowed but actively
encouraged. The debugging prayer is particularly easy to learn and always
works. Guaranteed. Never fails.

Asynchronous messages may originate from any sufficiently old object
and these can always be interpreted in a way that is convenient.

Counting is done two by two, a technique which can handle all things
bright and beautiful up to numbers of truly biblical proportions.

The useful disciple logic function supports arbitrary repeat counts. You
can call this as many times as needed to ensure that it must be true.

Expressions which use a canonical form are prefixed with St.

Objects which consist entirely of pure, virtuous functions are marked with
a halo.

Trinity value types (true, false, spiritual) can be used to map real entities
to virtual functions.

Passing by reference is achieved using the chapter, verse, line notation.

Transcendental functions are used to access higher level objects.

Mistakes never need to be fixed and the confessional exception handler
ensures program execution can continue unhindered by any previous
activity or state.

Collections are managed through the powerful Chalice class, considered
by many to be the holy grail of stl containers.

An acolyte function can be used where an over developed and complex
object has difficult side effects; this is technically referred to as
sublimation (while never documented this is actually an implementation
of the choir boy pattern).

A master of these techniques is revered as a divine architect. 

 T

Enum – a misnomer (continued)
Enumerators of enum types occupy a unique place within the language in
that they are pukka language elements with meaningful values, but they
are strictly compile-time quantities. They occupy no storage and so have
no address, which is why they are so suitable for holding values in template
metaprogramming. One can use static const integers instead of enums
in TMP, but there may be an overhead. Listing 11 shows the well-known
TMP factorial code example. rewritten to use static const unsigned
values instead of enums. The code works as expected, and in this case the
compiler optimizes away the storage allocated for the constants in the two
templates (when built with optimization turned on) so there is no penalty.

Summary
When considering the enum type in C and C++, don’t allow yourself to
be fooled by its name!

It is not an enumeration type (at least not by any sane (and non-recursive)
definition) because it allows the definition of values that are unordered and
non-contiguous, and which therefore do not lend themselves readily to
enumeration. It is nevertheless possible – Wilson has shown us how – to
use an enum as the basis for a datatype that can be enumerated.

The properties that make enum unsuitable for enumeration do have their
uses, however, for defining groups of named compile-time constant values
without allocating any storage. 

References
[1] Matthew Wilson: ‘Enumerating Experiences’ CVu 23.4. September

2011.
[2] Shorter Oxford English Dictionary. Oxford University Press.
[3] Niklaus Wirth: The Programming Language PASCAL – Revised

Report. ETH Zurich, 1973
[4] Niklaus Wirth: Modula-2, ETH Zurich, 1980.
[5] Brian Kernighan & Dennis Ritchie: The C Programming Language.

Prentice Hall, 1978.
[6] Brian Kernighan & Dennis Ritchie: The C Programming Language,

Second Edition. Prentice Hall, 1988.
[7] Bjarne Stroustrup: The Design and Evolution of C++. Addison

Wesley, 1994.

Code samples accompanying this article were compiled and tested with
gcc (v4.4.5), g++, fpc, gnat, or gm2, as appropriate. The scoped enum code
was compiled with the -std=c++0x switch.

template <unsigned N>
struct Factorial
{
 static const unsigned value =
 N * Factorial<N - 1>::value;
};
template <>
struct Factorial<0>
{
 static const unsigned value = 1;
};

Li
st

in
g

11
NOV 2011 | | 17{cvu}

18 | | NOV 2011{cvu}

Listing 3

C++ Standards Report 11
Roger Orr reports on the new C++ standard.

s anticipated in the last CVu we have a new C++ standard (snappily
known as ‘ISO/IEC 14882:2011’) and the PDF can now be purchased
from the ISO website for a ‘mere’ 352 CHF. National bodies will also

make the standard available in due course and we are exploring trying to
get the standard printed in the UK for a somewhat more realistic price (the
2003 standard was published by Wiley this way for £35). Watch this space!

We have also had a blog posting from Microsoft with news of the features
of C++11 that will be in the next version of Visual Studio (http://
blogs.msdn.com/b/vcblog/archive/2011/09/12/10209291.aspx).

While it is good that a number of ‘C++0x’ features are already in VS 2010,
I was rather disappointed with the small number of extra features that will
be added for the next release. I suspect enough customers will have to ask
about the missing features before there is enough commercial pressure to
implement them. Users of g++ have much better coverage (http://
gcc.gnu.org/projects/cxx0x.html).

Call for work items
The August C++ standards committee meeting was a bit more relaxed than
the previous few meetings had been since the ink is barely dry on new
standard.

The main business in the core language working group was with wording
changes, mostly minor, to remove ambiguities or small problems. People
trying to implement the new C++11 features had raised some of these
issues as they uncovered problems (or potential problems) with the new
wording. Work on any more substantial new core language features will
wait for further meetings to decide which (if any) such items should be
considered.

Walter Brown presented a paper describing an ambiguity in the C++
handling of conversion operators – one of his examples was a zero_init
class such that:

zero_init<int> i;
i = 7;
switch(i) { ... } // fails to compile
switch(i+0) { ... } // compiles

Perhaps this code will appear in a future Code Critique column!

There was more new work in the library working group as they discussed
five papers for future library extensions: filesystems, shared_lock,
permutations of partial elements of set, I/O for duration types and date
time. They also issued the following general call for proposals:

The C++ committee Library Working Group welcomes proposals for
library extensions which will be considered starting in the February 2012
meeting. We have not yet set out an overall timeline for future library
extensions, but are ready to consider new proposals at this point.

To increase the chances of your proposal being accepted by the
committee, we strongly recommend that a committee member willing to
champion your proposal (this could be you yourself, or a delegate)
attend upcoming meetings to help shepherd your proposal through the
process.

Please take note of this if you have a C++ library that would be suitable
for standardisation and would be prepared to put in some of the work for
the process. You could contact me (or other members of BSI C++ panel)
in the first instance. As with the C++11 standard, it is likely that many of
the new library features will be implemented in publicly available
repositories, such as boost, to provide experience and feedback from use
in real programs.

 A

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Inspirational (P)articles
Frances Love introduces Paul Grenyer.

This time Paul Grenyer tries to disagree with Steve Freeman and Nat Pryce,
and realising the error of his ways changes his perspective and writes his
database tests in a new way. Engaging with a subject often involves arguing
with people only to realise they are right in the long run. Have you changed
perspective on something recently, or tried arguing only to realise you were
wrong? Then write CVu an inspiration (p)article sharing the details. Contact
frances.buontempo@gmail.com.

So Long and Thanks for all the Transactions
’m a big fan of integration testing data access layers using transactions.
Very simply you start a transaction, clear out put any necessary data into
the database, run the test against it and roll back the transaction putting

the database back to its original state. The advantage is a known database
state every time you run the test.

I was very surprised when I read in Growing Object Orientated Software
Guided by Tests that integration tests should not be run in a transaction.
The database should still be cleaned out and have necessary data inserted,

but it is not rolled back after the tests. The two main advantages are that
the tests run in an environment closer to production and resulting database
state can be used to help solve those awkward bugs.

Another advantage of transactions is that manual and automated system
tests can use the same database as the integration tests without the
integration tests destroying all the data needed for the other tests. I started
discussing why I liked the transaction approach with Steve & Nat. Nat
pointed out that the solution was to have two databases. One for system
and manual testing and one for integration testing. The creation of the
database for your application should be scripted and automated anyway,
so keeping the structure, reference data and test data synchronised should
be easy.

This was clearly the solution and completely changed how I felt about
transactions. Where possible my future projects will have two databases
and fewer integration test transactions.

 I

Desert Island Books
Roger Orr shares the contents of his suitcase.

can’t actually remember the moment I met Roger Orr for the first time. I
thought it was probably at a C++ panel meeting or at an ACCU
conference. Roger thinks it was on the platform at Oxford station on the

way back from one of my first conferences. I’m ashamed to say I cannot
remember this meeting at all, but I was still drinking then and everything
immediately following a conference was usually quite hazy.

Regardless of how we met, I have this feeling that Roger has just always
been there providing the steady hand of common sense. He is the current
organiser of the ACCU Canary Wharf lunch. Most recently, although in
different teams, Roger and I have been working for the same bank. And of
course he also edits CVu’s very own code critique and takes an active role
in the C++ standards committee.

Roger Orr
I like the idea of ‘Desert Island Books’ and it has been fascinating to hear
about the wide range of books people have listed. Inevitably enough there
are a few books that just keep coming up: and so my first book duplicates
one of the ones that Chris O’Dell covered in May’s CVu.

I had a six month job, way back in 1978, as a ‘trainee computer
programmer’ in the gap between finishing at school and starting at Uni and
I worked in a team of ten or so programmers writing programs on a mini
computer. I was assigned to someone in the team to teach me to program
and, looking back, I was incredibly fortunate in having the mentor I got.
Dave Buckle was a good programmer and was a very good example from
whom to learn the craft of programming. In addition to learning from him
in person, over those six months he lent me several books on programming
– I couldn’t now recall the content of them all but I do recall a few: there
was Jackson’s Structured Programming book and a book on writing
structured programs in Fortran using ‘RatFor’ (Rational Fortran: a
preprocessor for Fortran). Although these particular books are now quite
old and technology has moved on a long way, the lessons Dave taught me
about keeping interested in the subject and reading more broadly than just
your current experience of programming have stood me in good stead
since.

He also lent me my first Desert Island choice: The
Mythical Man Month by Fred Brooks, which is still just
as relevant as it was when I first read it as a relatively
new book. I consider this is one of the ‘must read’ books
in the programming world. It is a bit sad to realise that
although it was written in 1975 we still haven’t learned
the lessons. For those of you who haven’t read it ... put
down the magazine now and go and order it! It was re-

i s sued a s an
an n i ve r sa r y
edition in 1995
and is st i l l for
sale.

Fred Brooks was one of the first
people to point out that adding
people to a delayed software
project makes it later and he also coined the term ‘second system
syndrome’ to describe the danger of over-engineering the second version
of a program by trying to fit all the features there wasn’t time to put into

the first version. Both these problems still seem to be
alive and well in today’s world of software
engineering.

My second book comes a few years later when I was
programming in ‘C’ on PCs. I read a book review in
the EXE programming magazine where the actual
text of the review made a shape on the page and the
review ended with something like ‘whatever you do,
buy this book’. I was soon the proud owner of

Obfuscated C and other mysteries by Don Libes – a book unlike any other
I’d come across. The chapters alternated between describing entries in the
annual obfuscated C competition (now defunct, but see www.ioccc.org)
and chapters on general C programming issues such as ‘Keeping Track of
Malloc’ and ‘Byte Ordering’. The book is an entertaining read but also very
informative. It also opened my mind to some of the creative things you
could do with a programming language and how you can abuse the rules
and (sometimes) get away with it.

(Incidentally EXE magazine is the reason I’m a member of ACCU: Francis
Glassborow’s regular column in that magazine kept mentioning this
organisation called ‘ACCU’ and eventually I decided
to investigate further. The rest, as they say, is history.
I wonder how many other members of ACCU arrived
down the same route!)

Programming in C gradua l ly morphed in to
programming in C++ and this leads me on to my third
book, commonly known as the ARM. The Annotated
C++ Reference Manual by Bjarne Stroustrup and
Margaret Ellis was for some years the definitive book
for the C++ programming language. It has now been
superseded by the ISO standard which first appeared in 1998 but for much
of the 1990s this book defined the C++ language.

It was the book I learned the language from. Now I know most normal
people would learn a language from a tutorial book but I was perfectly
happy to read through the reference manual and try to make sense of it.
Little did I suspect that later on I’d be sitting in committees revising the
wording of the ISO C++ standard!

One of the things I enjoy most about programming is finding and fixing
bugs; particularly when the relationship between the
symptom and the cause is obscure. It’s a bit like a
puzzle: you know there must be an explanation for the
behaviour you observe in the program but it just doesn’t
make sense...yet. There are very few good books about
debugging despite the large amount of time that most
programmers spend doing it.

I was delighted to come across my fourth book, simply
titled Debugging by David Agans. He wrote ‘I intended

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
NOV 2011 | | 19{cvu}

Memories of Learning C
Anthony Williams recalls his first experiences of C.

studied Physics at college, and there was very little programming taught
as part of the course. That didn’t bother me though; I’d taught myself
to program up until then, and I wasn’t going to stop now. The big benefit

I got from computing at college was access to the internet, and access to
C and C++ compilers. I could program in BASIC, Pascal and a couple of
forms of assembly language, and I’d eagerly read Stan Lippman’s C++
Primer and written out (on paper!) some C++ code, but I hadn’t yet had a
C++ compiler to try out my programs on.

I wrote several C++ programs before I even considered writing a plain C
program, but I probably typed in and compiled the classic
printf("hello world\n"); C program to check everything was
working before I compiled any C++.

Usenet
My strongest memories about learning C are about learning from usenet.
Though I had access to C compilers at college, access to experts was not
so readily available unless you were studying computing. With access to
the internet, I didn’t need local experts though – usenet provided access
to experts from across the world. I read comp.lang.c and comp.lang.c++
avidly, and taught myself both languages together. The usenet community
was invaluable to me. The wealth of knowledge that people had, and their
willingness to share with newbies was something I really appreciated.

I remember struggling over file handling, and getting the arguments to
scanf right; I remember puzzling over the poor performance of a program
and having someone kindly point out that my code was doing malloc and
free calls in a tight loop. Though I tend to answer more questions than I
ask these days, I still hang out on newgroups such as comp.lang.c++ today.
It seems that for many people StackOverflow has replaced usenet as the
place to go for help, but the old-style newsgroups are still valuable.

Ubiquity
Back then, C++ compilers were in their infancy. Templates didn’t work
on every compiler, there was no STL, and many platforms didn’t have a

working C++ compiler at all. I consequently wrote a lot of C – every
platform had a C compiler, and my C code would work on the college PCs,
my PC (when I saved up enough to buy one), the University’s Unix
machine, and the Physics department workstations. The same could not be
said for C++.

The ubiquity of C is something I still appreciate today, and this is only
possible because Dennis Ritchie designed his language to be portable to
multiple platforms. Though ‘implementation defined’ behaviour can be
frustrating when the implementation defines it a different way to how you
would like, it is this that enables the portability. You want to write code
for a DSP that only handles 32-bit data? Fine: make char, short, int
and long all 32-bits. What if your machine has 9-bit bytes? No problem:
just make char 9 bits, and everything else a convenient multiple of that.

C is the basic lingua-franca of the computing world. It is a ‘portable
assembly language’. These days I use C++ where I can because it allows
a higher level of abstraction, and easier expression of intent without
compromising on the performance you’d get with plain C, but it’s not as
portable, and wouldn’t be possible without C.

The computing world owes a lot to Dennis Ritchie..

 I

Desert Island Books (continued)

Dennis Ritchie 1941–2011
Dennis MacAlistair Ritchie – often known simply as DMR –
died aged 70 on 12 October 2011. His contributions to the
world of computing can hardly be overstated; as the co-
inventor of Unix and C his influence is in nothing less than the
idea of portable operating systems and systems
programming. His achievements attracted many awards
including the ACM Turing Award, the ACM Software Systems
Award and the U.S. National Medal of Technology (all
awarded jointly with Ken Thompson).

His work inspired a generation of programmers, and is the
bedrock of so much that we, as programmers, depend on.
to teach the essential and universal techniques of debugging ... I
demonstrated this by using examples in various disciplines including
hardware and software, cars, houses, and even human bodies.’ His point
was that a lot of debugging comes down to some simple rules that are
applicable to many different kinds of problem solving. I suspect, on this
mythical desert island, I could use the same techniques to solve some of
the problems I would be likely to come across thrown up by daily life.

I thought about what novel I would like to take to my desert island, and
decided that it was too hard to decide: there are so many
I’d like to have with me! So I decided I’d do something
different and take a poetry anthology: Seven Ages:
Poetry for a Lifetime by David Owen. This was the book
I took with me on a trip to Tanzania in 2000 and is a great
book if you can only take one: there are hundreds of
poems in it loosely grouped around the seven ages of man
from Shakespeare’s famous poem starting ‘All the world’s
a stage, And all the men and women merely players, They

have their exits and entrances, And one man in his time plays many parts,
His acts being seven ages.’ What made it, for me, a great book for
travelling with was it could take a very long time to read; you read a poem,
perhaps read it again, and then think about it.

Finally some music. I’m really not sure what to choose. I spent much of
my student years working to various Beatles compilations; that would still
be one option. Alternatively my most recent purchase might be an
interesting one to pick: Tres Tres Fort by Staff
Benda Bilili. This band are a group of paraplegic
musicians living around the Zoo in Kinshasa. Many
of the instruments are made or adapted by
themselves and the music is quite unusual, but full
of life. Perhaps it would inspire me to try and make
some music myself with whatever I could find on
my desert island!?

Next issue: Ola Mierzejewska
20 | | NOV 2011{cvu}

Code Critique Competition 72
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a simple circular list – it is like a std::list but it wraps at
each end just like days of the week do. However, when I try to go on five
days from Wednesday I reach Sunday, not Monday. Please help!

 cc71>circularListTest
 Today is Wed
 Yesterday was Tue
 5 days time will be Sun

circularList.h is in Listing 1 and circularListTest.cpp is in
Listing 2.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 3

#include <list>

template <typename T>
class circular : public std::list<T>
{
 typedef std::list<T> list;
public:
 class iterator;
 circular() {}
 template <typename IT>
 circular(IT beg, IT end) : list(beg, end) {}
 iterator begin() { return iterator(*this); }
 iterator end() { return --begin(); }
 // iterator implementation details
 class iterator : public list::iterator
 {
 list & parent;
 typedef typename list::iterator super;
 public:
 iterator(list & par)
 : parent(par), super(par.begin()) {}
 using super::operator=;
 // modifiers
 iterator& operator++()
 {
 if (*this == parent.end())
 *this = parent.begin();
 else
 this->super::operator++();
 return *this;
 }
 iterator& operator+=(int n)
 {
 while (n-- % parent.size())
 ++*this;
 return *this;
 }

Li
st

in
g

1

 iterator& operator--()
 {
 if (*this == parent.begin())
 *this = parent.end();
 else
 this->super::operator--();
 return *this;
 }
 iterator& operator-=(int n)
 {
 while (n-- % parent.size())
 --*this;
 return *this;
 }
 // derived operators
 iterator operator++(int)
 {
 iterator it(*this);
 ++*this;
 return it;
 }
 iterator operator+(int n)
 {
 iterator result(*this);
 return result += n;
 }
 iterator operator--(int)
 {
 iterator it(*this);
 --*this;
 return it;
 }
 iterator operator-(int n)
 {
 iterator result(*this);
 return result -= n;
 }
 };
};

Listing 1 (cont’d)

#include "circularList.h"
#include <algorithm>
#include <iostream>
#include <string>
using std::string;
void test(circular<string> s)
{
 circular<string>::iterator it =
 std::find(s.begin(), s.end(), "Wed");

Listing 2
NOV 2011 | | 21{cvu}

Critiques

Paul Floyd <Paul_Floyd@mentor.com>

This is an ‘out by one# style error. The problem is with operator++

 iterator& operator++()
 {
 if (*this == parent.end())
 *this = parent.begin();
 else
 this->super::operator++();
 return *this;
 }

which is saying ‘if it’s at the end, wrap to the beginning, otherwise
increment’. When this is called at end()-1, it increments to end() and
returns that. A circular list should have no end! It is only on the next call
to operator++ that the wrapping takes place. So it takes two calls to
operator++ to wrap from end()-1 to begin().

Instead, when this is called at end()-1, it should increment then test
whether it is at end()and if so wrap:

 iterator& operator++()
 {
 this->super::operator++();
 if (*this == parent.end())
 *this = parent.begin();
 return *this;
 }

There is a similar problem with operator-- which should be

 iterator& operator--()
 {
 if (*this == parent.begin()) {
 *this = parent.end();
 this->super::operator--();
 }
 else
 this->super::operator--();
 return *this;
 }

Peter Sommerlad <peter.sommerlad@hsr.ch>

The main problem of our student this time is, that he or she doesn’t
understand the concept of C++’s iterators well enough. Luckily or
unfortunately, STL’s designer(s) did choose a design that mimics the
behaviour of pointers. In contrast to, for example, Java or D, that define a

single object to denote a range of iteration, C++’s STL uses two iterator
objects or two pointers to denote a range representing its beginning and
ending. The interesting part then is that the end is marked by a pointer/
iterator that is one PAST the end of the underlying sequence. This means
accessing a container’s end() iterator is usually undefined behaviour.
And that seems to be the problem of the code on first look. So the own
iterator uses that undefined end() iterator as one of its steps, this then
results in ending one weekday too early. Fortunately, the test program
doesn’t access the *end() element and thus does not format my disk or
rain pink elephants which might be the case in doing such undefined
behaviour.

So the iterator range between begin() and end() actually seems to be
something like:

Sun Mon Tue Wed Thu Fri Sat <<end() place>> Sun Mon Tue

That explains, why adding 5 days to Wednesday results in Sun instead of
the expected Mon.

A bigger problem is that the code inherits from standard library classes that
are not intended to be inherited from. Since the containers and iterators are
not using virtual member functions, such inheritance can be dangerous,
especially if additional member variables are defined, as is the case with
circular::iterator.

Linticator also shows some warning about that:

Also using the super class’ assignment operator is dangerous as well in
such a case, because the new member variable never gets overwritten with
such an assignment.

But now, let us start a more thorough analysis:

A quick observation is, that the header file lacks an #include guard. That
can be an omission to save space in cvu, but shouldn’t be in real header
files to avoid double inclusion and thus violation of the one-definition-rule
of C++. Some compilers support #pragma once instead, but I would
prefer to stick with the standard mechanism of an internal #include
guard. Some ‘classics’ recommend external #include guards, but the
reason for them is no longer valid, since modern compilers automatically
detect multiple includes and will not parse the files with internal
#include guards again.

Now my compiler tells me the following (slightly simplified):

 g++ -O0 -g3 -Wall -c -fmessage-length=0 -MMD
 -MP -MF"scc71.d" -MT"scc71.d" -o "scc71.o"
 "../scc71.cpp"
 In file included from ../scc71.cpp:1:0:
 ../circularList.h: In constructor
 'circular<T>::iterator::iterator(...)':
 ../circularList.h:18:42: instantiated from
 'circular<T>::iterator circular<T>::begin()
 ../scc71.cpp:11:22: instantiated from here
 ../circularList.h:24:11: warning:
 'circular<...>::iterator::parent'
 will be initialized after [-Wreorder]
 ../circularList.h:28:36: warning: base
 'std::_List_iterator<...>' [-Wreorder]
 ../circularList.h:27:4: warning: when
 initialized here [-Wreorder]

This strange message provides the information that the initializer list of
the constructor iterator(list &) is in the wrong order. First all base-
class elements are initialized for a class, then the member variables in the
order of their definition. A further problem of that constructor is that the
list is passed and kept as a reference. This can be problematic, if an iterator
object survives its ‘parent’ list.

Nevertheless, exchanging the order of the initializer list elements cures that
warning:

Li
st

in
g

3
(c

on
t’d

)

 std::cout << "Today is " <<
 *it << std::endl;
 circular<string>::iterator yest = it - 1;
 std::cout << "Yesterday was " <<
 *yest << std::endl;
 int const n = 5;
 it += n;
 std::cout << n << " days time will be "
 << *it << std::endl;
}
int main()
{
 circular<string> s;
 s.push_back("Sun");
 s.push_back("Mon");
 s.push_back("Tue");
 s.push_back("Wed");
 s.push_back("Thu");
 s.push_back("Fri");
 s.push_back("Sat");
 test(s);
}

Li
st

in
g

2
(c

on
t’d

)

22 | | NOV 2011{cvu}

 iterator(list & par)
 : super(par.begin()),parent(par) {}

However, that doesn’t fix the behaviour, just the compilation warning.

The inheriting iterator class is one of the major problems. So let us first
encapsulate the list::iterator as a member instead of inheriting it.
This way we loose the inherited operator*, operator!= and
operator==, but those are trivially to implement. In addition we need
to inherit from std::iterator to obtain the traits required for the
standard algorithms:

 // iterator implementation details
 class iterator : public std::iterator<
 std::bidirectional_iterator_tag,T>
 {
 typename list::iterator iter;
 list & parent;
 typedef typename list::iterator super;
 public:
 iterator(list & par)
 : iter(par.begin()),parent(par) {}

 typedef typename list::value_type
 value_type;
 value_type operator*() const {
 return *iter;
 }
 bool operator==(iterator const &other)const
 {
 return iter == other.iter;
 }
 bool operator!=(iterator const &other) const
 {
 return !(*this == other);
 }

Now, before we fix everything, let us first simplify the code. To write your
own iterators I recommend to my students using boost’s iterator helpers
from boost/operator.hpp.

This will eliminate some of the operator overloads. Inheriting from
boost::bidirectional_iterator_helper<T> will give us the
overloads for != and postfix ++ and --. In addition we can use
boost::addable and boost::subtractable to obtain + and - from
+= and -=.

 class iterator : public
 boost::bidirectional_iterator_helper<
 iterator,typename list::value_type>
 , public boost::addable<iterator,int>
 , public boost::subtractable<iterator,int>
 {
 iterator end() { return --begin();
 }

Now let us use Linticator again to figure out some of the problems:

Further explanations of Linticator shows us that we are using a temporary
for applying operator--(). A better approach and a generically
working one, would be to use a local iterator variable instead and
std::advance to navigate it:

 iterator end() { iterator it(begin());
 std::advance(it,-1); return it;}

Now let us fix the logic. To safely wrap around, we must never reach the
underlying list’s end() iterator. This can be done as follows:

 iterator& operator++()
 {
 ++iter;
 if (iter == parent.end())
 iter = parent.begin();
 return *this;
 }

 iterator& operator--()
 {
 if (iter == parent.begin()) {
 iter = parent.end();
 }
 --iter;
 return *this;
 }

et voilà, the output now is:

 Today is Wed
 Yesterday was Tue
 5 days time will be Mon

Now some further cleanup, e.g., getting rid of the potentially error-prone
loops, especially if n is negative (which might still be an error, but I ignore
that for now):

 iterator& operator+=(int n)
 {
 std::advance(*this, n% parent.size());
 return *this;
 }
 iterator& operator-=(int n)
 {
 std::advance(*this,n % parent.size());
 return *this;
 }

There are further issues, l ike considering making iterator a
const_iterator instead, or providing that in addition. A non-const
overload of operator*() is missing:

 value_type& operator*() {
 return *iter;
 }

And the circular class is still inheriting from std::list. The test()
function is not nearly close to a good set of unit tests, one can write with
CUTE. In addition there are further lint messages one can deal with, but
for the moment I’ve chosen the option to ignore them, because I’ve run
out of time and the deadline is too close for me to further fix that. Maybe
some other submitter explains that to you as well.

Balog Pal <pasa@lib.hu>

This entry won my heart with its first sentence. It so much resembles the
favorite approach from clients, asking for a very simple something, that is
exactly like some existing program or feature, just has a small difference.
And obviously expect me to have one in no time built on top of the
designated candidate.

A software engineer certainly must have experience to call an immediate
red alert, all shields up and slow to impulse. A difference may look small
expressed in English, or drawn in paper, but in software design it may be
breaking a fundamental. Murphy’s rule suggests that it normally does too.
So our first task here is to clear the mind, step back to requirements, find
an implementation candidate using tabula rasa, only then look at the
original proposal on similarity. If we could really use the ‘similar’ thing,
hooray, and if the change is really small, trivial. But it does not happen
very often.

So here we’re suggested that a ‘circular list’ is exactly like a linear list.
You know, a circle is exactly like a line. Just bend it, and join the ends, so
it forms a circle. In geometry you would use that similarity, do you? Or
in topology? Well? We can list similarities? Just the list will not be so
huge.
NOV 2011 | | 23{cvu}

Our patient fell in the trap. Here we indeed have similarities, that can be
expressed as "we want the interface of this collection be like std::list's."
Just as many collections in STL have similar interface. list and vector both
have many matching functions and concepts. Certainly they are not
implemented in terms of each other.

In the presented code we see public derivation from list and
list::iterator to our more specific class. Most STL classes are not
created to act as base classes. They don’t have virtual destructors or virtual
functions. It is not strictly forbidden to use them as such, but we shall be
extremely careful even in cases where we actually have an is-a relation.
In use we may face slicing, Janus-faced behavior and other confusions.
Before going that way we should read up the rationales of the common do-
not suggestions and make sure our case plays as exceptions, or we
mitigated the problems some way. We shall re-visit this question after we
decided that subclassing would be good in theory.

So, first fundamental question is to see whether circular-list IS A
std::list really. std::list is a ‘reversible sequence container’.
Reading the requirements in the standard I set warning flags on begin(),
end(), size(). At reversible container section I have serious doubts our
code took it into consideration. Then I get to section 23.1.1, ‘Sequences’.
Starting ‘A sequence is a kind of container that organizes a finite set of
objects, all of the same type, into a strictly linear arrangement.’

This sounds like a show-stopper unless we can come up with really good
explanation how a circle will look strictly linear. In our circular list, any
closed subrange indeed looks like a list. But what about beginning and
end? A true circle does not have that notation at all.

We may try to force our idea, to chose an arbitrary element to call
beginning. That will designate a matching end too. It would even work fine
with interface using closed ranges. But STL uses half-open ranges, for
end() we shall return a one-past element. Following our design
philosophy we should return begin() here, as that is the element
following closed_end(). Too bad it will break size() and empty().

The submitted code tries to smuggle out end() of the original list, a virtual
element that is not really there. That saves the day for size() and the use
cases like ‘full dump’ of the list content. But it breaks the circularity.

The purpose of the whole thing was to have our iterators wrap around. So
that ++closed_end() returns begin() and we can go ahead; similarly
in other direction. In operator ++ of the iterator we face a dilemma.
What to give from our virtual end element? Go to begin() by the circular
requirement, or fall to list::end() for the sequence container’s.

I see no resolution to this dilemma and that sends the whole
implementation idea down the drain. And really not just the
implementation, but the design too. We certainly can design and
implement a circular container that works fine. But you must go the extra
mile to draw its interface. I suggest removing elements that would make
it look like a STL sequence and cause confusion. Possibly have them by
a different, distinctive name.

I don’t submit a solution, as it would take huge amount of code, and
implementations for circular lists must exist freely accessible. Not even
just a design, as it is an open-ended thing, the patient shall make decisions
on use cases to support and keep stuff in/out accordingly. Just a few hints.

 circular shall not have a public base class from STL. It can still
use std::list as member or a private base class, reusing many
functions through delegation or a using declaration

 if the interface resembles a STL collection, violently advertise it is
not a sequence, possibly not even a ‘standard collection’.

 if a function is kept with the same name as in a collection, it must be
proper semantic equivalent, without any doubt on behavior,
especially no dilemmas

 iterator shall not derive from list::iterator but may
derive from std::iterator that was created for that purpose

 I would not include a function named end() with that name (by
collection requirements). I’d keep begin() only with a compelling
use case.

 if the implementation is done using list, I’d be tempted to provide
seq_begin() and seq_end(). At least for a tamed form,
returning list::const_iterator for ‘special use’ only like
dumping the content, etc. It is a double-edged sword with some pros
and many cons. It breaks encapsulation and locks in the
implementation, but is worth careful consideration.

 do comprehensive tests on rbegin() and company. The original
version just left them as inherited from list, I doubt with sensible
results ;-)

 in the implementation of iterator+= modulo better be done as
first thing.

 I’d probably just drop relation operators (on circular) as useless
baggage, if used, test profoundly to avoid endless loops

 IRL circular lists are often implemented having a sentinel node, that
serves as pre-start and post-end element. The sentinel itself is a big
burden, but may help dealing with end()-related cases if design did
not allow to drop them

Huw Lewis <huw.lewis2409@gmail.com>

Well done to the developer for a good first stab at this. It is a neat idea to
use the list container and its iterator type. It is a good start to base the
implementation on reusing well known code and interfaces.

First I’ll deal with the error seen in the test results. The error is in the
iterator’s increment operator. It considers ‘end’ to be the last item in the
sequence rather than ‘one past the end’ that it really is. The iterator has a
reference to the std::list, not the circular<> concrete type. A
simple re-write of the pre-increment operator puts this right:

 iterator& operator++()
 {
 this->super::operator++();
 if (*this == parent.end())
 *this = parent.begin();
 return *this;
 }

The test results are now as expected. However, this test is only the start.
There is plenty still to do. I aim to find the implementation’s vulnerabilities
through adding more tests.

What about handling an empty list? The code looks like it might be a little
error prone here due to the circular::end method not behaving as a
standard end method. However, my test_empty_list function does
pass. I think that it is not reasonable to perform circular iteration operations
on empty lists or invalid iterators. An exception should be thrown in this
instance.

Ok, another attempt to break the code – what about searching for the last
item in the list, "Sat"? I expected this might be incorrect – again because
the circular end method returns the last item, not the ‘one past the end’ item.
However, this test also works. Why is this? I would have expected the find
algorithm to stop the search at the list end, and also for the ‘it == end’
validation check to be true i.e. the iterator is invalid. It turns out there is a
bug in the operator--() method. When we’re at the beginning of the
sequence, we want to skip to the last item in the sequence, but the code
actually assigns the value to end (one past the end). A simple fix is:

 iterator& operator--()
 {
 if (*this == parent.begin())
 {
 *this = parent.end();
 }
 this->super::operator--();
 return *this;
 }

Now my test fails as I originally expected: the last item == end(), so the
traditional iterator validity check is flawed. Maybe I could add a new
isValid method to return true if the iterator is not parent.end() (one
past the end).
24 | | NOV 2011{cvu}

My next test (searching for a non-existent string) shows that the above isn’t
good enough. The std::find algorithm returns the end iterator given to
it, which is actually the last item, not the ‘one past the end’. So we are
asking something quite unreasonable from the algorithm.

At this point, it is worth thinking about the design. It is a usable interface?
It does the circular iteration just fine, but cannot realistically be used where
there is a chance of the iterator being or becoming invalid e.g. find,
erase etc. It also shows that it is not suitable where we would want to
perform some algorithm on the sequence e.g. std::find.

I think that the standard list interface is what is required for almost all
operations (except the circular iteration). The circular iterator should be
used as exception rather than the rule.

With that in mind, I have re-written the circular iterator arithmetic
operators as simple template functions (see below.) Although this does not
give us the familiar ‘++it’ interface, it provides quite a few other benefits
including:

 Compatibility with any type of iterator, including
const_iterator types.

 Compatibility with any type of std container, not just std::list

 None of the issues (experienced above) with ‘one past the end’ are
a problem.

/**
 * increment circular iterator
 */
template <typename C, typename I>
I& circular_increment(C& container, I& it)
{
 if (it == container.end())
 throw BadCircularIterator(
 "Cannot increment invalid iterator");

 if (++it == container.end())
 {
 it = container.begin();
 }
 return it;
}

/*
 * Add n to the iterator it.
 */
template <typename C, typename I>
I circular_add(C& container, I it,
 std::size_t n)
{
 while (n-- % container.size())
 it = circular_increment<C, I>(container,
 it);
 return it;
}

/*
 * Decrement the circular iterator it
 */
template <typename C, typename I>
I& circular_decrement(C& container, I& it)
{
 if (it == container.end())
 throw BadCircularIterator(
 "Cannot decrement invalid iterator");

 if (it == container.begin())
 {
 it = container.end();
 }
 --it;
 return it;
}

/*
 * Decrease the iterator it by n
 */
template <typename C, typename I>
I circular_minus(C& container, I it,
 std::size_t n)
{
 while (n-- % container.size())
 it = circular_decrement<C, I>(container,
 it);
 return it;
}

Frances Buontempo <frances.buontempo@gmail.com>

I can solve the initial problem with one simple change. Remove the else
from the pre-increment operator.

 iterator& operator++()
 {
 if (*this == parent.end())
 *this = parent.begin();
 else//REMOVE
 this->super::operator++();
 return *this;
 }

Problem solved. I wonder if this means the pre-decrement operator has a
similar problem? Some moments thought, or at least another test, will
reveal more problems.

 circular<string>::iterator it =
 std::find(s.begin(), s.end(), "Wed");
 circular<string>::iterator it_trouble =
 std::find(it, s.end(), "Tue");
 if(it_trouble!=s.end())
 std::cout << *it_trouble << '\n';
 else
 std::cout << "Tue not there \n";

The circular list does not find "Tue". Starting on Wednesday, then I would
expect a circular list to find Tuesday eventually, if it circles. This is the
crux of the matter. If I want to use the container in the standard algorithms,
they expect to have a begin and an end. The code provides end

 iterator end() { return --begin(); }

 iterator& operator--()
 {
 if (*this == parent.begin())
 *this = parent.end();
 else
 this->super::operator--();
 return *this;
 }

So, end is actually the end of the std::list. This means the standard
algorithms won’t circle round the container, unless I do something hacky
to add a guard item one before where we start the algorithm, and try to
remove it when I think you have finished.

We need to step back and decide how we want to use this container. If I
wish to use it in an algorithm like find, I must provide an end. If we want
to circle, we want end to go back to the beginning. If I then try to search
for something that isn’t in the container, any algorithm that tries to walk
from the beginning to the end will never terminate. This gives us two
confl ic t ing requirements . I f the c i rcular buffer provides a
circular_iterator along with the normal iterator this might save the
day. Though any attempt to find or walk the whole container is likely to
end up iterating forever if the user isn’t very careful. Of course, we should
also be providing const_iterator versions too.

Perhaps the best way forward is to provide a member find, which will
do one full sweep from any starting point in the container.
NOV 2011 | | 25{cvu}

 bool find(iterator & first, const T & value)
 {
 size_t count = 0;
 for (; count != contents.size();
 ++count, ++first)
 if (*first == value)
 break;
 return count != contents.size();
 }

This will find Tue if we start at Wed, and will report false if we search
for something that isn’t there. This doesn’t match the usual standard find
algorithm, but a truly circular container doesn’t have an end to compare
against.

Now we have seen the main problems, we should remember Sherlock
Holmes’ advice never to derive from classes without virtual destructors,
including standard containers. (CVu Issue 12 V 5, 2000, http://accu.org/
index.php/journals/c124 or journals/1063). Or maybe it wasn’t Sherlock
Holmes, but the point still stands. It makes more sense to *contain* a
list, or possibly vector if we want to skip to random places say by
using it += 5, rather than derive from a container.

In conclusion, you should try Python’s list slice and look at boost’s
circular_buffer for inspiration and start over.

Commentary
This problem consisted of three separate, but related issues. The first was
the ‘presenting problem’ where the iteration round the circular list
produced the wrong answer. As Paul said, this was an ‘off by one’ error
and relatively easily fixed.

The second problem was that the circular_list class interface was far
too big: using public inheritance from std::list results in too many
functions ‘leaking out’ into the public interface of the derived class. This
problem is clearly seen with rbegin()/rend() as the circular list class
needs a specific version of these functions. As Peter, Pal and Frances all
pointed out, public inheritance from standard library collection classes is
(almost always) a bad sign.

However, the third and biggest problem is, even if we can fix the syntax,
whether or not it makes sense semantically to try and treat a circular list
like a standard container. As Pal points out, there are a number of
requirements for sequences listed in the C++ standard and a circular list
does not comply with all of them.

The STL is a superb abstraction and has produced a large number of very
useful algorithms and extension points for the C++ collection classes.
However it is not a magic panacea for every possible type of data structure,
and it is important to be aware of the assumptions that the STL requires
for collections and iterators.

I think the best solution is to avoid the standard iterators completely, like
Huw’s solution does, since trying to make such circular iterators fit into
the STL model is doomed to failure.

The winner of CC 71
Paul wrote a short and sweet entry that very clearly answered the initial
question, but I think a little hint towards the bigger issues might have been
good. When answering questions like about code like this I think there is
a balance, sometimes hard to find, between just answering the specific
question and pointing to bigger issues. Peter produced a detailed analysis
of the problems (of which there were many!) with the source code
presented, and once again demonstrated how static analysis tools can help
with writing good code. I also liked Frances’ approach of adding a further
test to demonstrate a further problem with the original code. Huw’s critique
provided a very good solution to the problem with the iterators but I think
the public inheritance from std::list needs tackling too. However, in
my opinion Balog Pal’s entry was the best one because he covered more
of the design problems with the student’s code – it was the design choice
of using an STL collection to implement a circular list that led to the off

by one error in the first place and his critique covered slightly more ground
than Frances’ did.

It was encouraging to have five entrants for this issue’s critique; I hope
even more people will be prepared to try the next code critique!

Code Critique 72
(Submissions to scc@accu.org by Dec 1st)

I’ve written a function that escapes a string of UTF-8 characters using the
html entity format and I’m trying to use it with different compilers. One
compiler fails to find std::runtime_error – don’t know why – and
another compiles it but produces unexpected output. Please help! I wrote a
test program using the four example UTF-8 sequences from http://
en.wikipedia.org/wiki/UTF-8#Description.

Here is what I want:

 > test_escape_utf8
 U+0024 \x24 = $
 U+00A2 \xc2\xa2 = ¢
 U+20AC \xe2\x82\xac = €
 U+024B62 \xF0\xA4\xAD\xA2 = 𤭢

Here is the unexpected output:

 > test_escape_utf8
 U+0024 \x24 = $
 U+00A2 \xc2\xa2 = �
 U+20AC \xe2\x82\xac = �
 U+024B62 \xF0\xA4\xAD\xA2 = �

(See Listing 3 for test_escape_utf8.cpp, Listing 4 for escape_utf8.h and
Listing 5 for escape_utf8.cpp)

#include <iostream>
#include <string>
#include "escape_utf8.h"
//U+0000 to U+007F
//Example: code point U+0024 ("Dollar sign")
//UTF-8 hex: 24
char test1[] = "U+0024 \\x24 = \x24";
//U+0080 to U+07FF
//Example: code point U+00A2 ("Cent sign")
//UTF-8 hex: C2 A2
char test2[] = "U+00A2 \\xc2\\xa2 = \xc2\xa2";
//U+0800 to U+FFFF
//Example: code point U+20AC ("Euro sign")
//UTF-8 hex: E2 82 AC
char test3[] = "U+20AC \\xe2\\x82\\xac"
 " = \xe2\x82\xac";
//U+010000 to U+10FFFF
//Example: code point U+024B62 (A CJK Unified
// Ideograph)
//UTF-8 hex: F0 A4 AD A2
char test4[] = "U+024B62 \\xF0\\xA4\\xAD\\xA2"
 " = \xF0\xA4\xAD\xA2";
int main()
{
 try
 {
 std::cout
 << escape_utf8(test1) << std::endl
 << escape_utf8(test2) << std::endl
 << escape_utf8(test3) << std::endl
 << escape_utf8(test4) << std::endl;
 }
 catch (std::exception const & ex)
 {
 std::cerr << "Exception: " << ex.what();
 }
}

Listing 3
26 | | NOV 2011{cvu}

Invent Your Own
Computer Games with
Python 2nd Edition
By Al Sweigart, published by
Sweigart, ISBN: 978-0982106013

Reviewed by Daniel Higgins

This software design book is
an easy to use beginner’s guide to Python. It
varies from the most simple program like just a
conversation to more complicated ones such as
a full game.

You don’t have to have the slightest of
experience of programming to use it either, you
could be a total beginner and in less than a week
you can easily have your own quiz on your hard
drive. Then in less than a month you could be
writing games such as dodger! Invent Your Own
Computer Games with Python can also be used
for children as young as ten or eleven and is an
excellent book to start off with before you get to
the really tough stuff!

Overall I would totally recommend this book no
matter how old you are! Buy this and you can

just program,
p ro g ra m ,
program!

Jez Higgins:
As you may
have
guessed
Daniel is my son. He started using this
book at the start of the year, shortly before
his 11th birthday. He would have said he had no
previous programming experience, but was
thoroughly comfortable using a PC to video and
audio edit, do presentations, and script levels for
games. He found writing his own programs to be
really quite thrilling.

The book is available online or as a PDF from
http://inventwithpython.com/chapters/, although
this review is of the print edition.

Pragmatic Version
Control using Git
By Travis Swicegood, published
by The Pragmatic Programmers,
ISBN: 978-1934356159

Reviewed by Paul Grenyer

I was an early adopter of
Subversion after having used CVS for a little
while. I’ve come rather late to the Git party and
I wanted a book that would give me a quick, yet

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)
NOV 2011 | | 27{cvu}

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#ifndef escape_utf8
#define escape_uft8

std::string escape_utf8(char const * utf8);

#endif

Li
st

in
g

4

#include <string>
#include "escape_utf8.h"

std::string escape_utf8(char const * utf8)
{
 std::string result;
 long value;
 int multibyte(0);
 while (char const ch = *utf8++)
 {
 if (multibyte-- > 0)
 {
 if ((ch & 0xc0) != 0x80)
 throw std::runtime_error(
 "Bad multibyte continuation");
 value <<= 6;
 value += ch - 0x80;
 if (!multibyte)
 {
 result += "&#x";
 char buff[7];
 sprintf(buff, "%lx", value);
 result += buff;
 result += ';';
 }
 }

Li
st

in
g

5

 else if ((ch & 0xC0) == 0xc0)
 {
 value = ch & 0x1f;
 multibyte = 1;
 if (ch & 0x20)
 {
 multibyte++;
 if (ch & 0x10)
 {
 value -= 0x10;
 multibyte++;
 if (ch & 0x8)
 throw std::runtime_error(
 "Bad multibyte start");
 }
 }
 }
 else if (ch & 0x80)
 throw std::runtime_error(
 "Bad multibyte start");
 else
 {
 result += ch;
 }
 }
 return result;
}

Listing 5 (cont’d)

Code Critique Competition (continued)

28 | | NOV 2011

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org Members.fm

The ACCU relies on a number of
hard-working volunteers to run
effectively and I thank them for
the considerable time and effort they put in. Like
the majority of ACCU members, the committee
members are busy people with lives filled with
work, family and other commitments. This
means that they can’t always contribute in the
way and to the degree that they would like or had
aspired to. A case in point is that our recently
elected Secretary, Alan Lenton, has had to stand
down because of a major increase in his work
load. We wish him luck and hope that he will be
able to rejoin us in the future. In the interim,
Roger Orr has kindly stepped in to replace him
until the next AGM. The Secretary’s position is
an elected post so we need to find a suitable
candidate before April. The role is not
particularly onerous in terms of time but it is
important, nonetheless. It involves attendance at

three committee meetings per year plus the
AGM, preparing agendas and writing up
minutes. If you might be interested in the
position please email me at chair@accu.org.

The summer is the peak time for people to renew
their ACCU memberships. This year at the
AGM the members voted to increase
subscriptions to cover the increasing costs of
magazine production and postage. Most
members updated their standing orders to the
new amount (£45 for individuals) – for which I
am grateful – but some members have not done
so yet. Over the next few months we will be
contacting those who have not to remind them!

The membership form has two other fields on it
and a number of members add voluntary
contributions to their subscriptions for the ISDF
and the hardship fund. ISDF stands for the
International Standards Development Fund
whose purpose is to provide support for
members involved with international
programming standards. Traditionally this has
been for UK members of the C and C++

standards panels as well as providing email list
and server facilities for these languages.
However, since the ACCU has been gradually
broadening its interests to encompass languages
such as C# and Java it would seem logical to
extend the ISDF support to these and similar
languages. We would therefore be pleased to
hear from any members involved in these
communities who think that we might be able to
help.

The other voluntary contribution is for the
hardship fund. This has traditionally provided
‘support to those who are unable to pay through
personal financial hardship or national currency
restrictions (largely those in Eastern Europe and
3rd World countries)’. Individual members’
circumstances change over time and we would
not wish to lose a member owing to
unemployment, ill health or similar reasons so,
again, the committee would be pleased to hear
from anyone that thinks that either they or some
other member might be suitable to be offered a
year’s membership.

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

solid, introduction. Pragmatic Version Control
using Git is just such a book. I really like the
Pragmatic Programmer books as they tend to be
short and easy to read. They allow me to absorb
a lot of information in a very short period of
time.

The first thing that struck me was the brilliant
simplicity of the example code. Many books on
version control use Java as a language that is
easily understood by most people. Even with
Java you need a fair bit of code before you’ve got
a program that does anything, even Hello,
World! Swicegood uses HTML as his example
code. This is perfect because everyone can
understand it easily and you only need a little to
do some interesting things. The HTML example
is used throughout the book, in my opinion, very
successfully.

Git itself took me a little by surprise. Having a
local copy of the whole repository felt a little
extravagant at first and it took me a while to get
my head around the idea of having to add a file
every time I want to commit it, even if I’ve
committed a previous revision. However,
Swicegood explains how and why you do both
of these very well and now I see the benefit of
local copies of a repository and having a staging
area.

Branching is key to Git and Swicegood explains
it in a lot of detail. The book closes with a
chapter on Subversion and CVS integration and

migration with Git and a chapter on setting up a
Git server. The only disappointment for me was
the sparse descriptions of GUI clients. I am
totally addicted to TortoiseSVN and would have
liked to have seen a Git equivalent explained in
some detail.

Continuous Delivery
By Jez Humble & David Farley,
published by Addison Wesley,
ISBN: 978-0-321-60191-9

Reviewed by Jez Higgins

The basic premise of
Continuous Delivery is
straightforward – if
continuous integration is a good thing, and it is,
why stop there? If we make the effort to
automate our compile and test cycle so we can
reliably and repeatably build our code whenever

we like, then extending our automation and
tooling right through into packaging,
deployment, smoke/soak/integration testing
brings even greater benefits.

I’ve spent a large part of the past two years
working in exactly the areas this book covers.
My colleagures and I have had some success too
– our releases now take minutes rather than days.
As such this book has served to reassure, but I’d
would have loved to have had when we set out.

Humble and Farley are comprehensive,
covering configuration management,
continuous integration, data versioning, and
different flavours of deployment and rollback –
the end to end of the ‘deployment pipeline’.
You’re unlikely to read from cover to cover, but
the two-thirds you do read will confirm, correct,
comfort, and guide.

Bookcase (continued)

	Language Barrier
	How To Pick Your Programming Language
	Introduction to std.datetime in D
	A Game of Lucky Sevens
	On a Game of Path Finding
	Review of Effective C# Item 15: Utilize using and try-finally for Resource Clean-up
	Enum – a Misnomer
	Intelligent Software Design
	Inspirational (P)articles
	C++ Standards Report 11
	Desert Island Books
	Memories of Learning C
	Code Critique Competition 72
	Bookcase
	View From The Chair

