

SEP 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Forgotten Old Hat
any years ago now I began life as a programmer
working with real-time operating systems
and the embedded systems they control. It

all began as part of my University Degree, where
my ambition was to write my own operating
system. Ok, so the result was very simple, and ran
on a simple 8-bit single-board machine, powered by
an 8086 micro-controller, with serial and parallel
interfaces connected to a switch box and an LCD
display respectively.

The OS itself had to be linked directly with whatever
program was to be run, and then burned to an EPROM on
the board. The program would use the OS API to launch
processes, and the OS in turn would marshall them, and
do the necessary ‘magic’ to run them pseudo-
concurrently – which essentially meant performing a
context-switch by saving the necessary registers
away and loading the register values of another
process. For those interested in this sort of thing, it
used priority-driven pre-emptive scheduling and
provided limited memory managament – enough to allow
processes to allocate and free heap space.

To allow data to be shared between running processes, I used
an Exchange, whereby any process could leave a message addressed for another
to consume at some later stage. A system-level global semaphore protected the
one-and-only exchange.

I had all-but forgotten my first forays into the world of real-time OSs and
Sequential Processes – both Dijkstra and Hoare varieties – until fairly recently,
listening to a talk by Russel Winder on the benefits of message passing instead of
memory sharing in multi-threaded programs. I had thought much of what I’d
learned of real-time OSs no longer relevant. It seems this old hat is being dusted
off for new duties.

M
Volume 23 Issue 4
September 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Richard Harris, Roger Orr,
Adam Petersen, David Simcha,
Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
26 Code Critique Competition

Competition 71 and the
answers to 70.

31 Standards Report C++11
An update from the world
of standards setting.

32 Regional Meetings:
ACCU London
Chris Oldwood reviews
the meeting.

REGULARS
32 ACCU Members Zone

Reports and membership
news.

SUBMISSION DATES
C Vu 23.5: 1st October 2011
C Vu 23.6: 1st December 2011

Overload 106:1st November 2011
Overload 107:1st January 2012

FEATURES
3 Enumerating Experiences

Matthew Wilson uncovers some traps and pitfalls with
enumerations in C and C++.

12 A Game of Path Finding
Baron Muncharris sets a challenge.

13 On a Game of One Against Many
A student performs his analysis.

15 Smarter, Not Harder
Pete Goodliffe helps us to pick our battles.

17 Concurrency, Parallelism and D
David Simcha explains message passing for parallel
programs in D.

20 Code Patterns
Adam Petersen sees value in the visual shape of the code.

21 An Introduction to the Windows Presentation Foundation with
the Model-View-ViewModel (Part 2)
Paul Grenyer wraps up the introduction to WPF.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Enumerating Experiences
Matthew Wilson uncovers some traps and pitfalls with

enumerations in C and C++.

his article considers some aspects of the definition and use of
enumerations that affect the quality and maintainability of C and C++
code. It covers the naming of enumeration elements and the assigning

of values along with suggested good practices for each, and presents some
good and bad ideas for the inter-conversion of enumeration types with
character strings.

Introduction
I’m currently finishing up a very long engagement with one client, and in
the middle of a short arch/design/code review for another. Coincidentally,
both tasks have recently raised the issue of the proper definition and use
of enumerations, most particularly in respect of validity and inter-
conversions with string forms.

Three things in particular stand out. First, the default way in which a
compiler assigns values if the programmer has not done so explicitly can
lead to problems in filtering. Second, some mechanisms for the inter-
conversion of enumerations and strings can be trickier, or more fragile,
than is appropriate. Finally, the notion of whether an enumeration value
is valid or not, and where and how to validate it, appears to be a matter of
confusion. I’ll attempt to cover all of these issues, along with brief
descriptions of the purposes, anatomies, and suggest some good practices
for naming, assigning values, and for making inter-conversion with strings
as safe and DRY [1] as possible.

Purpose

An enumeration introduces a new type that models a concept that can be
represented by named constants, each of which represents a different
possible values/state/aspect of that concept, the so-called enumerated type
[2].

Consider the enumeration shown in Listing 1. Its name is Fruit, and it
contains three constants, known as enumerators, called Apple, Banana,
and Orange.

Use as enumerated types is the primary purpose of enumerations, and
likely the most widely used. But there are other important uses:

 cross-language constants (C&C++)

 (grouped) flags

 member constants

 member flags

 combinations of the above

They’re used for cross-language (C  C++) constants without resorting
to the pre-processor (as #define symbols). A common case is for return
codes, as in the example shown in Listing 2. This allows for overloading
on the type when used from C++, something that’s very handy for
diagnostics.

They used to be commonly used in C++ to define member constants, and
still are for any code that must work for compilers that are non-conformant
with C++-98 in that regard, as shown in Listing 3.

The disadvantage in this case is that it’s limited to the values representable
by int, though that’s very rarely a problem.

We’ll look at flags and combinations shortly, after discussing naming and
values.

Naming

An enumeration definition consists of the enum keyword, an optional tag
(name), and an enumerator list, which is a list of one or more enumerators
specified between curly braces.

In C, the type name of an enumerator X is the phrase enum X. So, to use
Fruit in C, you’d have to write code such as in:

 enum Fruit f1 = Apple;
 enum Fruit f2 = Banana;

This rapidly becomes painful, so it is customary to define a typedef of
the enumeration name to itself, as in:

 typedef enum Fruit Fruit;

If you don’t specify a name, you define what is (self-evidently) called an
anonymous enumeration, as in Listing 4.

In this case, you can’t declare an instance of the enumeration type, since
it’s anonymous, and must instead use the values in a less type-safe manner,
with an integer variable. Anonymous enumerations are seldom used for
enumerated types, but are more common when defining flags, as we’ll see
later, or when defining member constants, as is seen in Listing 4.

 T

enum Fruit
{
 Apple,
 Banana,
 Orange,

};

Li
st

in
g

1

enum MYAPI_RC
{
 MYAPI_RC_OK,
 MYAPI_RC_OUTOFMEMORY,
 MYAPI_RC_BADHANDLE,
 . . .
};
struct MYAPI_XYZ_T;
#ifdef __cplusplus
dump_to_log(MYAPI_XYZ_T const* xyz);
dump_to_log(MYAPI_RC const& rc);
#endif /* C++ */

Listing 2

class MyClass
{
public:
 enum { MAX_GIZMO_DIM = 12 };
 . . .
};

Listing 3

MATTHEW WILSON
Matthew is a software development consultant and trainer for
Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au.
SEP 2011 | | 3{cvu}

One of the most annoying (to me at least) aspects of enumeration naming
is that the enumerators have the same scope as their defining enumeration.
This means that the symbols Apple, Banana, and Orange exist in the
same namespace as the type enum Fruit. This means that if any other
enumeration has defined any enumerators with the same name, they will
clash (see Listing 5). This applies to both C and C++.

One option (and the only reasonable one in C) is to prefix the enumerator
names with the enumeration name, as in Listing 6.

One trick I commonly use when writing enumerations (as enumerated
types) is to enclose them in a namespace with the same name, as in
Listing 7.

This works well to disambiguate the enumerator names. In my opinion, it
also gives a clear look to the use of the enumerators, as in:

 switch(fr)
 {
 case MyFruit::Apple:
 . . .

The downside with it is that you must repeat yourself a little with the type
when defining the variables, as in:

 MyFruit::MyFruit fr = MyFruit::Banana;
 void milkshake(MyFruit::MyFruit fr);

But that seems a pretty small price to pay for the other benefits. Obviously,
this is only suitable for enumerated types that are exclusively for use by
C++ code; if you need to support both languages, you need to use the prefix
form.

Values

If, as in the previous definition of Fruit, the enumerators are not given
explicit values, then the compiler provides them with values, according to
the following rules:

1. If the first enumerator is not given an explicit value, it is given the
value 0.

2. Any other enumerator that is not given an explicit value is given the
value 1 + v, where v is the value (explicit or implicit) of the previous
enumerator in the list.

Hence, we can know at compile-time what the enumerator values are:

 assert(0 == Apple);
 assert(1 == Banana);
 assert(2 == Orange);

If we choose to do so, we can specify some/all of the enumerator values
explicitly, as shown in Listing 8.

The values are still known at compile time, but may no longer be 0-based
or contiguous.

 assert(-1 == Apple);
 assert(2 == Banana);
 assert(3 == Orange);

There are good reasons to beware using 0-based enumerator values.
Enumerations can (and often do) get (un)marshalled to/from binary
formats, and it is not uncommon to find that conversion from a malformed
binary stream appears to convert correctly to a known value simply
because it contained a zero in the right spot. Obviously, any number can
be erroneously converted, but 0 seems to be particularly vulnerable. As a
consequence, I strongly caution clients to avoid defining enumerated types
where the 0 enumerator is a valid state/value, so would start the real fruit
numbering at 1, something like Listing 9.

Conversely, it is possible (i.e. the compiler won’t stop you) in C++ to write
code such as the following, even when the enumerator values are those
specified in Listing 10 (i.e. there is no enumerator with value 0).

 Fruit fr1 = Fruit(); // or
 Fruit fr2 = Fruit(0)

enum
{
 Apple,
 Banana,
 Orange,
};

Li
st

in
g

4

enum MyFruit
{
 MyFruit_Apple,
 MyFruit_Banana,
 MyFruit_Orange,
};
enum YourFruit
{
 YourFruit_Cumquat,
 YourFruit_Lemon,
 YourFruit_Orange,

};

Li
st

in
g

6

enum Fruit
{
 Apple = -1,
 Banana = 2,
 Orange,
};

Listing 8

enum Fruit
{
 Apple = 1,
 Banana,
 Orange,
};

Listing 9

enum MyFruit
{
 Apple,
 Banana,
 Orange,
};
enum YourFruit
{
 Cumquat,
 Lemon,
 Orange, /* COMPILE ERROR HERE */

};

Li
st

in
g

5

namespace MyFruit
{
 enum MyFruit
 {
 Apple,
 Banana,
 Orange,
 };
} // namespace MyFruit
namespace YourFruit
{
 enum YourFruit
 {
 Cumquat,
 Lemon,
 Orange,
 };
} // namespace YourFruit

Listing 7
4 | | SEP 2011{cvu}

As a consequence of these two related factors, I always define enumerated
types with a first enumerator that represents an invalid, unknown, or
otherwise reasonable default value, and have the actual domain values start
at 1, as in Listing 10.

There are other risks in assigning values relying on automatic numbering.
In the Fruit type so far (Listing 10), we have three fruits represented, and
they are given the values 1, 2, and 3 implicitly. Because what’s already
here is in alphabetical order, it is all too human to, say, insert a Melon
before Orange to preserve the apparent consistency of the alphabetical
ordering. The problem is, that changes the value of Orange from 2 to 3.
Any code that relies on the values must be recompiled in order to prevent
it working with a Banana when it thinks it’s working with an Orange.

A similar problem occurs if an enumerator is removed, since all subsequent
enumerators shift down one value.

In any circumstances where you are not 100% sure that all affected source
will be rebuilt – such as when an enumeration is exposed via an API – you
should always add new enumerators at the end, and never remove or
change the values of existing ones. If you need to deprecate one, remove
its name by renaming it, preferably to something unambiguously off-
putting, as in Listing 11.

Alternatively, you can eschew the implicit value assignments, and do them
all manually, as in Listing 12.

This brings us to the last gotcha with values of enumerated types:
duplicates. If you are assigning values manually, it is all too easy to
inadvertently assign a duplicate, as in Listing 13. Be sure to double-check
that your values are unique.

Of course, sometimes a duplicate is desired, as in the (pedagogical)
example given in Listing 14.

If that is intended, it is far better to assign from the original enumerator
(see Listing 15), as it helps any future maintainer of the code to see that it
was intended.

Often it’s helpful to know how many enumerators are in the enumeration.
Unfortunately, neither C nor C++ provide any built-in help in this regard.
A reasonable workaround [3] is to use a last-maximum-value, as shown
in Listing 16. Then when you add a new fruit you always insert it before
the last-maximum-value (which is the only exception to the rule that you
never change the value of an existing enumerator), as shown in Listing 17.

If, as in these two listings, the first enumerator starts at 0, and all the rest
are implicitly valued, the value of MAXIMUM_<my-enum>_VALUE will
be equal to the number of enumerators (excluding itself) in the
enumeration, which can be a handy thing to know, as we’ll see shortly.

Flags and combinations

Because you can specify any value you want to in an enumerator, it is not
uncommon to see them used as flag values, as in the extract from the
unixstl::glob_sequence file-system search sequence class from the
STLSoft libraries [4] shown in Listing 18.

Each enumerator has a value corresponding to a single, unique bit, and
therefore can be specified to the constructor in any combination to
determine what kinds of file-system elements are searched for (directories
and/or files; include the dots directories?), and in what form they are
presented (directories marked with trailing slash; relative or absolute
path?).

enum Fruit
{
 Unknown = 0,
 Apple,
 Banana,
 Orange,

};

Li
st

in
g

10

enum Fruit
{
 Unknown = 0,
 Apple,
 Orange_IS_NO_LONGER_SUPPORTED,
 Banana,

};

Li
st

in
g

11

enum Fruit
{
 Unknown = 0,
 Apple = 1,
 Banana = 3,
 Orange = 2,

};

Li
st

in
g

12

enum Fruit
{
 Unknown = 0,
 Apple = 1,
 Banana = 3,
 Lemon = 4,
 Orange = 2,
 Pomegranate = 3, /* OOPS! */

};

Li
st

in
g

13

enum Fruit
{
 Unknown = 0,
 Apple = 1,
 Banana = 3,
 Orange = 2,
 Nana = 3, /* pour les enfants */
};

Listing 14

enum Fruit
{
 Unknown = 0,
 Apple = 1,
 Banana = 3,
 Orange = 2,
 Nana = Banana, /* pour les enfants */
};

Listing 15

enum Fruit
{
 Unknown = 0,
 Apple,
 Banana,
 Orange,
 MAXIMUM_Fruit_VALUE
};

Listing 16

enum Fruit
{
 Unknown = 0,
 Apple,
 Banana,
 Orange,
 Lemon,
 MAXIMUM_Fruit_VALUE
};

Listing 17
SEP 2011 | | 5{cvu}

It’s also common to have a mask enumerator to help the component’s
author and/or user to clearly delineate different enumerator roles. For
example, glob_sequence might also have defined contentMask
(with value 0x00ff) and styleMask (with value 0x0f00).

There are various schemes for specifying the bit-flags. As well as using
hex, which I strongly prefer and recommend, you can also do it using the
left-shift operator, as in Listing 19.

The advantage of this form is that it’s arguably clearer to ensure that you
don’t have clashes, if you’re not that comfortable in hex. The disadvantage
is that you cannot easily specify particular values, or leave bit-gaps for
future expansion: any of that and the scheme is easily disrupted. And,
personally, I find it harder to digest, but that might just be because I am in
the habit of using the explicit hex form.

Less common, but still prevalent, is to define enumerations as a
combination of enumerated type and flags. Consider the B64_FLAGS

enumeration, from the b64 library [5], shown in Listing 20. The bits 0–3
are interpreted as an enumerated type with which you specify only one of
the B64_F_LINE_LEN_??? flags to determine line lengths, whereas the
enumerator B64_F_LINE_LEN_MASK is a flag enumerator that is used to
mask off other flags when, say, wanting to switch on the length type.

Achieving correct specifications of enumerated type ranges and flags is a
lot more difficult in combination, and this form is generally best avoided
wherever good alternatives are available (which, with hindsight, may have
been the case with b64).

Inter-conversion with strings

Conversion to string

It’s a normal requirement that types be representable as strings, and
enumerations are no exception. In my experience, the most common way
to do this is via a switch statement, such as that shown in Listing 22, to

// file: unixstl/filesystem/glob_sequence.hpp
class glob_sequence
{
public: // Member Types
 . . . value_type, const_iterator, etc.
public: // Member Constants
 enum search_flags
 {
 includeDots = 0x0008
 , directories = 0x0010
 , files = 0x0020
 , noSort = 0x0100
 , markDirs = 0x0200
 , absolutePath = 0x0400
 . . .
 };
public: // Construction
 template <typename S>
 explicit glob_sequence(
 S const& directory
 , int flags = noSort
);
 . . .

};

Li
st

in
g

18

class glob_sequence
{
. . .
 enum search_flags
 {
 includeDots = 1 << 0
 , directories = 1 << 1
 , files = 1 << 2
 , noSort = 1 << 3
 , markDirs = 1 << 4
 , absolutePath = 1 << 5
 . . .
 };
 . . .

};

Li
st

in
g

19

namespace Fruit
{
 enum Fruit
 {
 Unknown = 0,
 Apple,
 Banana,
 Orange,
 Lemon,
 MAXIMUM_Fruit_VALUE
 };
} // namespace Fruit

Listing 21

char const*
FruitToString(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 case Fruit::Apple:
 return "Apple";
 case Fruit::Banana:
 return "Banana";
 case Fruit::Orange:
 return "Orange";
 case Fruit::Lemon:
 return "Lemon";
 // Invalid values
 case Fruit::Unknown:
 return "<unknown-fruit>";
 default:
 return "<invalid-fruit>";
 }
}
int main()
{
 puts(FruitToString(Fruit::Apple));
 puts(FruitToString(Fruit::Banana));
 puts(FruitToString(Fruit::Orange));
 puts(FruitToString(Fruit::Lemon));
 puts(FruitToString(Fruit::Unknown));
 puts(FruitToString(
 Fruit::MAXIMUM_Fruit_VALUE));
 puts(FruitToString(
 Fruit::Fruit(-1010)));
 return 0;
}

Listing 22

enum B64_FLAGS
{
 B64_F_LINE_LEN_USE_PARAM = 0x0000
 , B64_F_LINE_LEN_INFINITE = 0x0001
 , B64_F_LINE_LEN_64 = 0x0002
 , B64_F_LINE_LEN_76 = 0x0003
 , B64_F_LINE_LEN_MASK = 0x000f
 . . .
};

Li
st

in
g

20
6 | | SEP 2011{cvu}

convert to string form the version of Fruit that is presented in Listing 21
(this is the final version that’ll be assumed for the rest of this article).

Where developers appear to differ slightly is in the kind of string they
return, and differ markedly in what they have such functions do when
presented with invalid values.

The issue of the string type is simplest. In the previous case I used a return
type of multibyte C-style string (char const*) because every possible
branch in my switch statement returned a pointer to a literal string. There
are no memory issues, no re-entrancy issues. This form cannot fail, and
may readily be tested correct.

If you need to localise strings, returning a C-style string (in preference to
std::string, or equivalent) is hard to do. If you need to capture the
integer value of unrecognised fruit variables, it is harder still. In such cases
the simplest tack is to return a string class instance, as shown in Listing 23
(with sprintf() failure handling elided).

Where things get more complex is in what happens for the invalid values.
In the second form of FruitToString(), we’re paying the (potential –
small-string optimisation may be in play) cost of allocating memory to
hold the copy of the literal string for all valid values, just so we can capture
any invalid value (except for Fruit::Unknown) for what may be
presumed to be diagnostic purposes.

Some programmers go further, and throw an exception for unrecognised
invalid values, as in Listing 24.

These contingent actions may or may not be appropriate. It depends on
what you are using these conversions for. To shed light on that, we need
to talk about validity of enumeration variables in the next section.

Validity

Because enumerated types that are used to represent domain concepts are
often (un)marshalled to/from binary (or textual) representations, it is quite
common to have to deal with invalid values. They must therefore be
checked. In contract programming terminology, this is known as filtering
[6], whereby potentially invalid values brought in from ‘outside’ are
validated, and subsequently may be assumed correct in ‘inside’ code
elements.

A common approach is to have an IsValidXxxx() function, employing
a simple switch statement, as shown in Listing 25.

In this program design, IsValidFruit() is part of the filtering layer,
and therefore must take account of invalid Fruit values, whereas
UseFruit() is part of internal program logic, and therefore can assume
that it will never be passed a bad apple (or any other type of fruit.) (Ouch,
that was a rotten plum, er, pun!) This is one of the primary essences of
contract programming, and is utterly in opposition to the practice of
checking everything at every level that is advocated by defensive
programming. I am a very strong proponent of contract programming, and
assert that the delineation it requires is profoundly important in (i) making
responsibilities unambiguous, (ii) keeping code as small and clear as it can
be, (iii) improving efficiency, and (iv) relieving programmers of thinking
that they have to do everything, including the impossible. Furthermore, as
we will see in this case, it can avoid nasty programming errors that can
result in hung or crashed programs.

Any function that is in internal logic, and can only receive ‘good’ fruit,
need not take account of invalid values. Hence, the definition of
UseFruit() is entirely appropriate, since it only takes account of
Apple, Banana, Orange, Lemon (which are the only ones it knows how
to deal with). Nonetheless, it is fragile to change: there’s nothing stopping
someone adding a new Fruit. Some compilers are able to offer warnings
if enumerators are missed out of a switch statement, but use of an
‘unknown’ (0) value, such as Fruit::Unknown, renders this impotent.
As a consequence, I would always advise having a default branch when
switch()-ing on an enumeration, but rather than attempting some
contingent action to supply some useful functionality (which cannot even
be achieved in the general case), it should have an active contract
enforcement (to catch the design violation). Hence, I would rather write
UseFruit() as in Listing 26.

Some programmers approach their equivalents of FruitToString() by
making similar assumptions, as shown in Listing 27 or Listing 28. This is
totally righteous, and fully and appropriately in keeping with contract
programming principles. Except that in the case of enumeration to string
conversions it can come back to bite you in a big way.

Consider that your program transfers marshalled fruit (in text form)
between peers by networking, then (i) you’re going to have to be doing

std::string
FruitToString(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 case Fruit::Apple:
 return "Apple";
 case Fruit::Banana:
 return "Banana";
 case Fruit::Orange:
 return "Orange";
 case Fruit::Lemon:
 return "Lemon";
 // Invalid values
 case Fruit::Unknown:
 return "<unknown-fruit>";
 default:
 break;
 }
 char const fmt[] =
 "<invalid-fruit-value:%d>";
 char buff[50]; // can't exceed 43
 sprintf(buff, fmt, fr);
 return std::string(buff);

}

Li
st

in
g

23 std::string
FruitToString(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 case Fruit::Apple:
 return "Apple";
 case Fruit::Banana:
 return "Banana";
 case Fruit::Orange:
 return "Orange";
 case Fruit::Lemon:
 return "Lemon";
 // Invalid values
 case Fruit::Unknown:
 return "<unknown-fruit>";
 default:
 break;
 }
 char const fmt[] =
 "invalid fruit value:%d";
 char buff[50]; // can't exceed 41
 sprintf(buff, fmt, fr);
 throw bad_fruit_exception(buff);
}

Listing 24
SEP 2011 | | 7{cvu}

string inter-conversions, and (ii) you’re going to have to be doing
validation in a filtering layer. If you use (as you should) diagnostic logging
throughout the domain-specific and/or complex parts of your the codebase,
you might see something along the lines of Listing 29.

In this case, FruitToString() is part of contingent action in the
filtering layer, and therefore might be called with an invalid fruit. Indeed,
by the definition of IsValidFruit(), FruitToString() will be
given an invalid fruit in this case. Unfortunately, given its previous

typedef std::vector<byte> flesh_t;
bool
IsValidFruit(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 case Fruit::Apple:
 case Fruit::Banana:
 case Fruit::Orange:
 case Fruit::Lemon:
 return true;
 // Invalid values
 case Fruit::Unknown:
 default:
 return false;
 }
}
Fruit::Fruit
ReadInFruit(
 flesh_t& flesh
);
void
UseFruit(
 Fruit::Fruit const& fr
, flesh_t const& flesh
)
{
 assert(IsValidFruit(fr));
 switch(fr)
 {
 case Fruit::Apple:
 makeApplePie(flesh);
 break;
 case Fruit::Banana:
 makeBananaBread(flesh);
 break;
 case Fruit::Orange:
 makeOrangeJuice(flesh);
 break;
 case Fruit::Lemon:
 makeLemonade(flesh);
 break;
 }
}
int main()
{
 flesh_t flesh;
 Fruit::Fruit fr = ReadInFruit(flesh);
 // Filtering
 if(IsValidFruit(fr))
 {
 // Internal logic
 UseFruit(ff, flesh);
 }
 return 0;

}

Li
st

in
g

25 void
UseFruit(
 Fruit::Fruit const& fr
, flesh_t const& flesh
)
{
 assert(IsValidFruit(fr));

 switch(fr)
 {
 case Fruit::Apple:
 makeApplePie(flesh);
 break;
 case Fruit::Banana:
 makeBananaBread(flesh);
 break;
 case Fruit::Orange:
 makeOrangeJuice(flesh);
 break;
 case Fruit::Lemon:
 makeLemonade(flesh);
 break;
 default:
 ReportAndTerminate("unknown fruit");
 }
}

Listing 26

std::string
FruitToString(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 . . .

 // Invalid values
 case Fruit::Unknown:
 default:
 break;
 }
 log(SEV_EMRG, "invalid fruit value %d", fr);
 ::exit(1);
}

Listing 27

std::string
FruitToString(
 Fruit::Fruit const& fr
)
{
 switch(fr)
 {
 // Valid values
 . . .

 // Invalid values
 case Fruit::Unknown:
 default:
 break;
 }
 log(SEV_EMRG, "invalid fruit value %d", fr);
 char const fmt[] =
 "invalid fruit value:%d";
 char buff[50]; // can't exceed 41
 sprintf(buff, fmt, fr);
 throw bad_fruit_exception(buff);
}

Listing 28
8 | | SEP 2011{cvu}

definition it’ll treat the invalid fruit as a design violation, and kill the
process (or throw an exception), and the user won’t receive the intended
contingent reporting, and other important program logic actions will be
skipped.

Consequently, I recommend always writing enumeration to string
conversions as if they’re intended for the filtering layer. It’s not their
business to do filtering, that’s what IsValidFruit() is for, and they
needn’t be written to catch design violations, since contract enforcements
are always removable.

Conversion from string

The picture when converting from a string to an enumeration is largely the
inverse of what we’ve just seen (without all the contract programming vs.
defensive programming hoopla). Commonly, it’s a series of if-
statements, but it may be a lookup into a table or a hash/dictionary of
names.

For example, we might convert back from string to Fruit as shown in
Listing 30.

It’s not glamorous, and it wouldn’t be efficient if there were a large number
of enumerators, but it is effective. It can be reasonably improved with a
macro, as in Listing 31.

The argument against throwing an exception (or terminating) is less strong
than in the FruitToString() scenario, but I prefer to do neither
because (i) the semantics are simple and clear (and language independent)
and (ii) they’re symmetrical with FruitToString().

There’s an obvious maintenance problem when implementing these
complementary functions: it’s all too easy to forget to update one or the
other in light of new enumerators. (Of course, it’s also easy to forget to
update both!) Worse, it’s possible to update both functions but make a
mistake and have them use different strings (e.g. "Apple" and "App1e",
"Lemon" and "lemon").

One thing to bear in mind is that you might want to be permissive with
case, and maybe even with leading/trailing whitespace. Even though you
control the precise output form (in FruitToString()) it’s conceivable
that out there in the world the case/spacing might change. For example,
an XML file may be manually edited by someone debugging their client
of your server, and inadvertently change the case/spacing in a way that
should (given the flexibility of human-based formats) be permitted.
Obviously, this has to be judged on a case-by-case basis.

Hazardous efficient conversions

If your enumeration is 0-based, and if it has contiguous values, and if it
has no duplicates, and if there’s no chance that it’ll be changed – famous
last words? – and if you do not need to recognise invalid enumerator
values, then you can use simple indexing to access a string literal
corresponding to an enumerator, as shown in Listing 32. Its advantage is
that it has extremely low runtime costs, just a few cycles of pointer
arithmetic.

I’ve seen this advocated, and even used on occasion, but there are serious
problems if any of those ifs become buts. At best, you’ll have a rapid crash
after returning a pointer to Bob-knows-where; at worst, you’ll return the
wrong ‘fruit name’ and carry on in ignorance that your program has
violated its design. I strongly recommend that you ignore any temptation
to use this mechanism.

A robust and flexible compromise

Interestingly, there’s a compromise, which allows for efficient indexing
in the case where it is appropriate without any of the risks attendant with
a pure indexing approach. It involves using a table of value-string pairs,

int main()
{
 flesh_t flesh;
 Fruit::Fruit fr = ReadInFruit(flesh);
 // Filtering
 if(!IsValidFruit(fr))
 {
 log(L_ERROR, FruitToString(fr));
 . . .// do contingent reporting to user, and
 // other important program logic actions
 }
 else
 {
 // Internal logic
 UseFruit(ff, flesh);
 }
 return 0;

}

Li
st

in
g

29

Fruit::Fruit

FruitFromString(
 std::string const& s
)
{
 // Valid values
 if("Apple" == s)
 {
 return case Fruit::Apple;
 }
 else
 if("Banana" == s)
 {
 return se Fruit::Banana;
 }
 else
 if("Orange" == s)
 {
 return se Fruit::Orange;
 }
 else
 if("Lemon" == s)
 {
 return se Fruit::Lemon;
 }
 // Invalid values
 else
 {
 return Fruit::Unknown;
 }

}

Li
st

in
g

30

Fruit::Fruit
FruitFromString(
 std::string const& s
)
{
 if(0)
 {}
 // Valid values
#define VALID_VALUE(nm, val) \
 else if((nm)==s){return(val);}
 VALID_VALUE("Apple", Fruit::Apple)
 VALID_VALUE("Banana", Fruit::Banana)
 VALID_VALUE("Orange", Fruit::Orange)
 VALID_VALUE("Lemon", Fruit::Lemon)
#undef VALID_VALUE
 // Invalid values
 else
 {
 return Fruit::Unknown;
 }
}

Listing 31
SEP 2011 | | 9{cvu}

attempting a checked index into it, otherwise doing a linear search, with a
default response if not found. This same table can be used for
implementing the opposite conversion. For Fruit, it would look like
Listing 33.

Hopefully the advantages of this solution are clear:

 There is only one set of strings, shared by both conversion to and
from string forms.

 The conversion to string is (almost) as fast as the fragile indexed
version for 0-based contiguous enumerations, but will work
correctly regardless.

 Because you’ve got control of the ‘default’ case, you can choose to
return std::string and capture the bad value.

The only issues are that it won’t work for duplicates (because that’s
impossible) and can’t (as it’s written) break apart flag combinations (e.g.
SearchFlagsToString(directories | files |
absolutePath)), so is best suited to enumerated types. (C#
programmers will know that the .NET enumeration class is able to do that;
I’ll leave it as an exercise for the reader to devise a scheme for C++.)

Note, if you have a lot of enumerators and really need speed, consider
ordering them lexicographically (with respect to the label), and use a
binary chop.

C++0x enum class
The type-safety of an enum in C++ is pretty weak (and it’s even weaker
in C). Any enumeration can be implicitly converted to an int, although
that’s not so in reverse. For example, the following code will compile, even
though we doubtless wish it would not:

 abs(Apple);

Nonetheless, the (C++) compiler is still able to do some useful things. We
can overload a function for any number of enumeration types (along with
other types), and get the behaviour we want, as in:

 enum Vegetable { . . . };
 dump_to_log(char const* s);
 dump_to_log(double d);
 dump_to_log(Fruit f);
 dump_to_log(Vegetable v);

The problems arise if, say, we’d provided the int overload, but not one
for the specific enumeration we wanted. Again, the following code will
compile when we likely wish it would not.

 enum Vegetable { . . . };
 dump_to_log(char const* s);
 dump_to_log(double d);
 dump_to_log(Fruit f);
 dump_to_log(int i);
 Vegetable veg = . . .
 dump_to_log(veg);

One way to get around this is to have dump_to_log() be a function
template, and apply the pedantic pointer idiom [7], along the lines of
Listing 34.

char const*
FruitToString(Fruit::Fruit const& fr)
{
 static char const* const strings[] =
 {
 "<unknown-fruit>",
 "Apple",
 "Banana",
 "Orange",
 "Lemon",
 };
 return strings[int(fr)];

}

Li
st

in
g

32 namespace
{
 struct Fruit_pair_t
 {
 Fruit::Fruit fruit;
 char const* label;
 };
 static Fruit_pair_t const Fruit_pairs[] =
 {
 { Fruit::Unknown, "<unknown-fruit>" },
 { Fruit::Apple, "Apple" },
 { Fruit::Banana, "Banana" },
 { Fruit::Orange, "Orange" },
 { Fruit::Lemon, "Lemon" },
 };
} // anonymous namespace
char const*
FruitToString(
 Fruit::Fruit const& fruit
)
{
 size_t const N = (sizeof(Fruit_pairs) /
 sizeof(0[Fruit_pairs]));
 int const ix = static_cast<int>(fruit);
 // Fast lookup with check
 if(ix >= 0 &&
 size_t(ix) < N)
 {
 Fruit_pair_t const& fp = Fruit_pairs[ix];
 if(fp.fruit == fruit)
 {
 return fp.label;
 }
 }
 // Linear search
 { for(size_t i = 0; i != N; ++i)
 {
 Fruit_pair_t const& fp = Fruit_pairs[i];
 if(fp.fruit == fruit)
 {
 return fp.label;
 }
 }}
 // Not found
 return "<invalid-fruit>";
}
Fruit::Fruit
FruitFromString(
 std::string const& s
)
{
 size_t const N = (sizeof(Fruit_pairs) /
 sizeof(0[Fruit_pairs]));
 // Linear search
 { for(size_t i = 0; i != N; ++i)
 {
 Fruit_pair_t const& fp = Fruit_pairs[i];
#ifdef FRUIT_IGNORE_CASE
 if(fp.label == s)
#else /* ? FRUIT_IGNORE_CASE */
 if(fp.label == s)
#endif /* FRUIT_IGNORE_CASE */
 {
 return fp.fruit;
 }
 }}
 // Not found
 return Fruit::Unknown;
}

Listing 33
10 | | SEP 2011{cvu}

That works because even though a Vegetable is implicitly convertible
to an int, a Vegetable const* is not the least convertible to int
const*. I use this technique in the FastFormat formatting library API
to avoid unwanted implicit conversions [7].

Still, it’s more than a little verbose, and a pain to have to go to these lengths.
Thankfully C++0x has taken this on board, and has introduced an
enumeration type that is more strongly typed / less convertible. Simply
apply the class keyword along with enum, as follows, and you have a
type that refuses to play with int unless casts are applied.

 enum class Vegetable
 {
 Unknown
 , Broccoli
 , Carrot
 , Cauliflower
 , Potato
 };
 Vegetable veg = Vegetable::Unknown;
 dump_to_log(veg); // Compile error

(Note: this new enumeration form also has scoped enumerator names: their
names must be qualified by the enumeration, as shown above.)

Summary

Naming

Use a prefix on enumerator names if you are using C, or need to be
compatible with both C and C++; use enum-named namespace if you need
only be compatible with C++.

Values

For enumerated types:

 Make sure the 0 value represents an invalid state/value (except when
defining a return/status code enumeration [8])

 Use a MAX_<myenum>_VALUE sentinel

 Never change/remove/move existing enumerators, except the
MAX_<myenum>_VALUE sentinel

 Always insert at the end of the list (just before the
MAX_<myenum>_VALUE sentinel).

For flag types (and combinations):

 Prefer hexadecimal if you’re comfortable with it. (And maybe get
comfortable with it if you’re not.)

 Consider refactoring to avoid combinations, if it’s not too late. If it
is, use masks to help authors and users alike.

Validity

If your enumeration is exposed to the outside world, validate it in a
dedicated function. Don’t perform validation in conversion functions,
though by all means enforce contracts in other areas of the codebase.

Conversion

Don’t log from within an enumstring conversion function when an
unrecognised enumerator value is found, as it may be being called from a
log statement.

Don’t exit/throw from within an enumstring conversion function when
an unrecognised enumerator value is found, because it may be being called
in the filtering layer. Enumconversion functions are not there for
validation, that’s what an IsValid<MyEnum>() is for. They should, in
this regard, be ‘validity agnostic’.

Never use the raw indexed version: it’s too fragile.

Consider whether to be permissive in stringenum conversions.

Consider using a table-based conversion mechanism, since it supports both
enumstring and stringenum with a single set of labels, can do
indexed lookup when possible, and is otherwise robust. 

References
[1] The Pragmatic Programmer, Andy Hunt and Dave Thomas,

Addison-Wesley, 1999.
[2] http://en.wikipedia.org/wiki/Enumerated_type
[3] Code Complete, 2nd Edition, Steve McConnell, Microsoft Press,

2004.
[4] The design of this class, and general discussions for how to map

various search API paradigms to STL sequence concepts, are given
in Extended STL, volume 1: Collections and Iterators, Matthew
Wilson, Addison-Wesley, 2007.

[5] http://synesis.com.au/software/b64.html
[6] Object-Oriented Software Construction, 2nd Edition, Bertrand

Meyer, Prentice Hall, 1997.
[7] ‘An Introduction to FastFormat (Part 2): Custom Argument and Sink

Types’, Matthew Wilson, Overload 90, April 2009.
[8] When defining an enumeration that is to stand for a status code, it is

usual for the 0-value to be the no-error value and is therefore also
valid.

void do_dump_(char const* s, char const* const*);
void do_dump_(double d, double const*);
void do_dump_(int i, int const*);
void do_dump_(Fruit f, Fruit const*);
template <typename T>
void dump_to_log(T const& v);
{
 do_dump_(v, &v);
}

Listing 34
SEP 2011 | | 11{cvu}

http://en.wikipedia.org/wiki/Enumerated_type
http://synesis.com.au/software/b64.html

12 | | SEP 2011{cvu}

A Game of Path Finding
Baron Muncharris sets a challenge.

elcome Sir R-----! Pray shed your overcoat and come dry yourself
by the fire. I am told that these spring showers are of inestimable
benefit to farming folk, but I fail to grasp why they can't show the

good manners to desist until noblemen have made their way indoors.

Will you join me in a warming measure and perchance a small wager?

I had no doubt sir!

I've a mind for a game oft played by the tribesmen of Borneo upon the
cobbled floors of their homes as a means of practice for their legendary
talent in forging paths through the dense forests in which they dwell.

As you have no doubt heard tell, their arboreal paradise is haunted by the
spirit of a rather cantankerous old fellow with bright orange hair; one who
does not gladly share his territory with the living.

Any unfortunate soul who finds himself in some spot that this flame-haired
shade has chosen for his own is liable to be assaulted with a hailstorm of
the gigantic nuts that grow in those parts. The tribesmen have learned full
well that a pile of those nuts upon the forest floor is a certain indication
that another path should be sought and it is a testament to the improving
quality of their game that they can unerringly do so.

Oh, but I have told you nothing of its rules!

I have chalked out a board upon the tiles of the hearth (Figure 1).

Take this stock of oak counters and I shall have this stock of pine.

I shall begin play by claiming a tile for my own and placing one of my
counters upon it. You shall follow by likewise claiming some other tile for
yourself.

Play shall continue in this fashion with our taking turns laying claim to
untaken tiles.

I shall have the game, and a coin from your purse, if I can weave an
unbroken path of counters from the left edge to the right, made up of
neighbouring tiles, like so (Figure 2).

You shall have the game, and a coin from mine, if you can frustrate my
efforts so that, even after every tile has been claimed, I have no such path
(Figure 3).

When I told that tedious student of this game he mumbled something about
a top quality curse having rendered him bored of his station, although quite
what excitement he found in the musty halls of academe before this
supposed affliction I cannot begin to imagine.

But there is no profit in recounting his ramblings; come, take a fresh glass
and muse upon your strategy! 

Figures
Figure 1: The board

FIgure 2: A path for the Baron

Figure 3: Sir R----- loses!

W

Baron Muncharris # 13

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Figure 2
Figure 3

Figure 1

A Student’s Analysis # 12
On a Game of One Against Many
A student performs his analysis.

ecall that the Baron proposed a pair of dice contests in which Sir R----,
were he to best the Baron’s score, stood to win a bounty of thirteen
coins.

Upon paying his stake Sir R----- was to cast his die but, if unhappy with
its outcome, could pay a further coin to cast it again. Likewise, if he were
not satisfied with the second cast, he could elect to cast a third time for a
further two coins. He could continue in this fashion for as long as he
pleased with the cost rising by one coin for each additional cast of his die.

The Baron was to have but a single cast of his die, with Sir R----- to
determine whether after or before his own play according to his stake;
seven coins for the former and eight for the latter.

In order to figure the fairness of these wagers it is first necessary to
recognise that there will inevitably come a point beyond which it is not in
Sir R-----’s interest to draw out his play, for the cost of doing so rises
inexorably whilst the prize, should he best the Baron, rests in constancy.

Specifically, Sir R----- should refrain from casting his die if he should
expect on the average to be further out of pocket in doing so. If we figure
when this will be we can work backwards from his final cast including the
advantage, if any, he might derive from further casts as we proceed.

I said as much to the Baron, but I do not believe that I had his full attention.

Now, Sir R----- will be most compelled to recast his die if his will assuredly
lose the wager if he does not. Indeed, he should only choose not if his
expected winnings should be less than the cost of casting. Fortunately for
our reckoning we need not consider further casts after this since, given that
their cost shall grow ever the greater, their outcomes for Sir R----- shall
grow ever the worser.

In the first game, the probability that Sir R----- will best the Baron if he
casts a one is zero. If he should cast a two, he has one chance in six of
winning. If a three, then two chances in six, &c.

The probability that he should win on his final cast is therefore simply

His average expected winnings from that cast should consequently be

and he should in no circumstance elect to proceed if the cost of doing so
exceeds five coins.

From this it is readily apparent that Sir R----- can expect, on the average,
a prize of five twelfths of a coin for his sixth cast of the die.

To figure the winnings Sir R----- might expect from his fifth cast, we shall
multiply the formula for his probability of winning by the prize

Now, if Sir R----- were to cast a one, it would be in his interest to cast again
since his expected winnings would be greater than the zero bounty he stood
to take.

If we figure this into our calculation we have instead an expected prize of

Finally, we must subtract the cost of four coins to yield Sir R-----’s net gain
from a fifth cast of one seventy second part of a coin shy of one and a half
coins.

To figure the value of this wager to Sir R----- we must simply continue in
this fashion, replacing expected winnings smaller than can be got from
continuing play, until we reach the first cast of the die.

For the fourth cast we consequently have a net average take of

Likewise, for the third

and for the second

and, finally, for the first

Sir R----- will clearly earn, on average, a bounty greater than his stake and
I would therefore in good conscience have recommended that he take the
first of the Baron’s wagers.

In the second of the Baron’s wagers he was to cast his die before Sir R-----
began his play. Sir R-----’s strategy should therefore have been informed
by the Baron’s score.

For each of the Baron’s possible scores we can figure the final cast that
Sir R----- should countenance in exactly the same fashion as we did for
the first game.

For example, had the Baron cast a six, Sir R----- should have immediately
cut his losses since he should have surely lost the wager no matter how
many casts he took.

If the Baron had instead cast a five, then on each cast Sir R-----’s should
have had one chance in six of besting him. On his final cast he should
therefore have expected an average prize of

and he should have in no event elected to cast his die more than three times.

Given that his third cast would have cost two coins his expected net gain
would have been one sixth part of a coin.

Should he not best the Baron on his second cast he should most certainly
cast again, so his expected winnings are given by

 R

1
6

1
6

1
6

1
6

2
6

1
6

3
6

1
6

4
6

1
6

5
6

15
36

5
120            

5
12

5
1213 5 

1
6

1
6

1
6

1
6

2
6

1
6

3
6

1
6

4
6

1
6

5
6

1
6

1
6

13
6

1
6

26
6

0 13

0

           
           1

6
39
6

1
6

52
6

1
6

65
6

1
6

5
12

1
6

13
6

1
6

26
6

1
6

39
6

1
6

52
6

1
6

65
6

5
72

26
72

52
72

78

          

    772
104
72

130
72

395
72

35
725

 





1
6

107
72

1
6

13
6

1
6

26
6

1
6

39
6

1
6

52
6

1
6

65
6

107
432

156
43

3           

  22
312
432

468
432

624
432

780
432

2447
432

287
432

287
4

3

3

5 3

2

    

 

 

 332

1
6

1151
432

1
6

1151
432

1
6

26
6

1
6

39
6

1
6

52
6

1
6

65
6

1223
1

2

5

           

 2296

1223
1296

2

3





1
6

5111
1296

1
6

5111
1296

1
6

26
6

1
6

39
6

1
6

52
6

1
6

65
6

143

1

6

           

 99
3888

1439
3888

1

5





1
6

20879
3888

1
6

20879
3888

1
6

20879
3888

1
6

39
6

1
6

52
6

1
6

65           66

143
7776

0

7





1
6

1
613 2 

1
6

5
6

1
6

78
36

5
36

36
36

47
36

11
3613 1 1        
SEP 2011 | | 13{cvu}

and, on his first cast by

Now, if the Baron should have cast a four then Sir R----- would have had
two chances in six of winning on each cast and would have consequently
had an average prize of

and should therefore not have cast his die more than five times.

Working backwards from his fifth cast we have

Next, we must consider the case of the Baron casting a three. Sir R-----’s
expected winnings on his final cast will be

and thus his last cast should be his seventh.

Working retrograde once again we have

In the same fashion we can figure that should the Baron cast a two,
Sir R----- should throw his die no more than nine times and his expected
winnings should be

Finally and, given the growing complexity of the figures thus far, most
dauntingly we must reckon the value of the wager should the Baron have
cast a one.

We have one last and most tedious calculation to perform. To figure Sir
R-----’s expected bounty we must average these results.

That figuring the result of this average was a Herculean feat of arithmetic
hardly bears mention!

Have I not erred then Sir R----- should expect from this wager, on the
average, a bounty of

and I could not therefore have recommended it to him for a stake of eight
coins.

That the reckoning of the fairness of the Baron’s second wager was
substantially more difficult than that of his first is all the more curious if
we consider a slight change to these games. Specifically, let us imagine
that the Baron had shaken his die in a cup and upended it upon the table
before Sir R----- began his play.

If he revealed his score after Sir R----- had declared that he was done then
the reckoning of the game would be identical to that of the first of the
Baron’s wagers; if before, then identical to that of the second.

The Baron’s score in both games is determined at the outset; the only
difference being when Sir R----- learns of it.

That the earlier informed Sir R----- is of the state of play, the harder it is
for him to determine the consequences of entering into the Baron’s wager
has caused the more philosophically minded of my fellows some small
consternation.

For my part, I am content; it is so and that is reason enough! 

1
6

5
6

11
36

468
216

235
216

703
216

55
21613 1 0 0 3        

2
6

1
313 4 

5 4 4

4 13 3 1

3 13 1 2 3

2 13

1
3

1
3

2
6

4
6

1
3

5
9

2
6

4
6

5
9

10
27

2
6

:

:

:

:

 

    

    

    

    

4
6

10
27

47
81

2
6

4
6

47
81

13
243

3 1 5

1 13 5 0 8:

3
6

1
213 6 

7 6 6

6 13 5 1

5 13 1 4 3

4 13

1
2

1
2

3
6

3
6

1
2

3
4

3
6

3
6

3
4

3
8

3
6

3

:

:

:

:

 

    

    

  66
3
8

3
16

3
6

3
6

3
16

3
32

3
6

3
6

3
32

3
64

3 3 5

3 13 5 2 7

2 13 7 1 9

1

  

    

    

:

:

:: 3
6

3
6

3
64

3
12813 9 0 11    

9 13 8

8 13 7 1

7 13 1 6 3

6 1

4
6

2
3

4
6

2
6

2
3

8
9

4
6

2
6

8
9

8
27

4
6

:

:

:

:

  

    

    

 33 3 5 4

5 13 4 4 6

4 13 6

2
6

8
27

62
81

4
6

2
6

62
81

62
243

4
6

2
6

62
2

   

    

  

:

: 443
548
729

4
6

2
6

548
729

548
2 187

4
6

2
6

548

3 7

3 13 7 2 9

2 13 9

 

    

  

:

:

,

22 187
4 922
6 561

4
6

2
6

4 922
6 561

4 922
19 6

1 10

1 13 10 0 12

,
,
,

,
,

,
,:

 

     883

11 13 10

10 13 9 1

9 13 1 8 3

5
6

5
6

5
6

1
6

5
6

35
36

5
6

1
6

35
36

35

:

:

:

  

    

     2216

5
6

1
6

35
216

467
1 296

5
6

1
6

467
1 296

4

8 13 3 7 4

7 13 4 6 5

:

:

,

,

    

     ,,
,

,
,

,
,:

:

355
7 776

5
6

1
6

4 355
7 776

35 459
46 656

5
6

1
6

6 13 5 5 6

5 13

    

    

  

6 4 7

4 13 7

35 459
46 656

268 739
279 936

5
6

1
6

268 739
279 93

,
,

,
,

,
,: 66

268 739
1 679 616

5
6

1
6

268 739
1 679 616

3 6

3 9

3 13 9 2 10

 

    

,
, ,

,
, ,

,: 227 971
10 077 696

5
6

1
6

3 627 971
10 077 696

33 82 13 10 1 11

,
, ,

, ,
, ,

,:      661 059
60 466 176

5
6

1
6

33 861 059
60 466 176

2751 13 11 0 12

,
, ,

, ,
, ,:      ,, ,

, ,
725 763

362 797 056

1
6

55
216

13
243

3
128

4 922
19 683

275 725 763
362 70 3 8 11 12 12     ,

,
, ,
, 997 056, 

7 1,937,927,123
2,176,782,336

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
14 | | SEP 2011{cvu}

Becoming a Better Programmer # 70
Smarter, Not Harder
Pete Goodliffe helps us to pick our battles.

Battles are won by slaughter and manoeuvre.
 The greater the general, the more he contributes in

manoeuvre, the less he demands in slaughter.

– Winston Churchill

et me tell you a story. It’s all true. A colleague, working on some UI
code, needed to overlay pretty rounded arrows over his display. After
he struggled to do it programmatically using the drawing primitives

provided, I suggested he just overlay a graphic on the screen. That would
be much easier to implement.

So off he went. He fired up Photoshop. And fiddled. And tweaked. And
fiddled some more. In this, the Rolls-Royce of image composition
applications, there is no quick-and-easy way to draw a rounded arrow that
looks halfway decent. Presumably an experienced graphic artist could
knock one up in two minutes. But after almost an hour of drawing, cutting,
compositing, and rearranging, he still didn’t have a convincing rounded
arrow.

He mentioned it to me in frustration as he went to make a cup of tea.

On his return, tea in hand, he found a shinny new rounded arrow image
sitting on his desktop ready for use.

‘How did you do that so quickly?’ he asked.

‘I just used the right tool.’ I replied, dodging a flying mug of tea.

Photoshop should have been the right tool. It’s what most image design
work is done in. But I knew that Open Office provides a handy
configurable rounded arrow tool. I had drawn one in ten seconds and sent
him a screenshot. It wasn’t elegant. But it worked.

The moral?

There is a constant danger of focusing too closely on one tool, or on a
singular approach to solve a problem. It’s tantalisingly easy to lose hours
of effort exploring its blind alleys when there’s a simpler, more direct route
to your goal.

So how can we do better?

Pick your battles
To be a productive programmer, you need to learn to work smarter rather
than harder. One of the hallmarks of experienced programmers is not just
their technical acumen, but how they solve problems and pick their battles.

Good programmers get things done quickly. Now, they don’t bodge things
like a shoot-from-the-hip cowboy coder. They just work smart. This is not
necessarily because they are more clever; they just know how to solve
problems well. They have an armoury of experience to draw from that will
guide them to use the correct approach. They can see lateral solutions –
the application of an unusual technique that will get the job done with less
hassle. They know how to chart a route around looming obstacles. They
can make informed decisions about where best to invest effort.

Battle tactics
Here are some simple ideas to help you work smarter:

 Don’t write a lump of code yourself when you can use an existing
library, or can repurpose code from elsewhere.

Even if you have to pay for a third-party library, it is often far more
cost effective to take an off-the-shelf implementation than to write
your own. And test your own. And then debug your own...

Overcome ‘not invented here’ syndrome. Many people think that
they can do a much better job themselves, or fashion a more

appropriate version for their
specific application. Is that
really the case? Even if the
other code isn’t designed
exactly how you prefer, just
use it. You don’t necessarily
need to rewrite it if it’s
working already. Make a
facade around it if you must
to integrate into your
system.

 Don’t work out how to do a task yourself if someone already knows
how to do it. You might like to bask in the glory of the
accomplishment. You might like to learn something new. But if
someone else can give you a leg-up, or complete the job much faster
than you, then it may be better to put the task in their work queue
instead.

 Consider sacrilege: Do you need to refactor? Do you need to unit
test? I’m a firm advocate of both practices, but sometimes they
might not be appropriate or a worthwhile investment of your time.
Yes, yes: refactoring and unit testing do both bring great benefits
and should never be tossed aside thoughtlessly. However, if you’re
working on a small prototype, or exploring a possible functional
design with some throw-away code, then you might be better off
saving the theologically correct practices for later.

If you do avoid being tainted by a lack of unit tests, instead consider
exactly which tests to write. A stubborn test-every method approach
is not sensible. (Often you’ll think you have better coverage than
you expect). For example, it’s not high priority to test every single
getter and setter in your API [1]. Instead, focus your testing efforts
on the places you would likely expect brittleness. Pick your testing
battles.

 If you’re presented with multiple design options and you’re not sure
which solution to pick don’t waste hours cogitating about which is
best if a quick ‘spike’ solution (a throw-away prototype) might
generate more useful answers in minutes. To make this work well,
set a specific Pomodoro-like time window within which you will
perform the spike [2]. Stop when the time elapses. (And in true
Pomodoro style, get yourself a nice hard-to-ignore wind-up timer to
force you to stop.) Use tools that will help you backtrack quickly
(e.g. effective version control tools).

 Prioritise your work list. Do the most important things first.

Be rigorous about this. Don’t get caught up on unimportant
minutiae; it’s incredibly easy to do. Especially when one simple job
turns out to depend on another simple job. Which depends on
another simple job, which depends on... After two hours you’ll
surface from a rabbit hole and wonder why on earth you’re
reconfiguring the mail server on your computer when what you
wanted to do was add a method to add an item to a list. In computer
folklore, this is referred to as Yak Shaving [3].

 L

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net
SEP 2011 | | 15{cvu}

 Do one thing at a time. It’s hard to focus on more that one job at once
(especially for men with our uni-tasking brains). If you try to work
concurrently, you’ll do both jobs badly. Finish one job then move on
to another. You’ll get both jobs completed in a shorter space of time.

 When you are given a new task, check what’s really needed now.
What does the customer actually need you to deliver? Don’t
implement the Rolls-Royce full bells-and-whistles version if it’s not
necessary. Even if the work request asks for it, push back and verify
what is genuinely required. To do this, you need to know the context
your code lives in.

This isn’t just laziness. There is a danger in writing too much code
too early. The Pareto Principle [4] implies that 80% of required
benefit could come from just 20% of the full implementation. Do
you really need to write the remainder of that code, or could your
time be better employed elsewhere?

 Keep your code and design as small and as simple as possible.
Otherwise, you’ll just add a lot more code
that will cost you time and effort to
maintain in the future.

You will need to change it; you can never
foretell exactly what the future
requirements are. Predicting the future is
an incredibly inexact science. It is easier
and smarter to make your code malleable
to change now, than it is to build in support
for every possible future feature on day
one.

 Some things that are hard (like code
integration) should not be avoided because
they are hard. Many people do so, to try to minimise the pain. It
sounds like picking your battles, doesn’t it?

In reality, the smarter thing is to do them sooner and face the pain
when it is smaller. It’s easier to integrate small pieces of code early
on, and then to frequently integrate the subsequent changes, than it
is to work on three major features for a year and then try to stitch
them together at the end. The same goes for unit testing: write tests
now, alongside your code. It’ll be far harder and less productive if
you wait until the code is ‘working’ until you write the tests. As the
saying goes: If it hurts, do it more often.

 Remember the classic advice: if you have to do it more than once,
write a script to do it for you. Clearly, automating a common tedious
task could save you many hours of effort. Consider this also for a
single task that has a high degree of repetition. It might be faster to
write a tool and run it once, than to do the job by hand yourself.

This has the added advantage that it helps others to work smarter
too. If you can run a build with one command, rather than a script of
15 complex commands and button presses, then your entire team can
build more easily, quickly, and newcomers can get up-to-speed
faster.

To aid this automation, the experienced programmer will naturally
pick automatable tools, even if they don’t intend to automate
anything right now. Favour workflows that produce plain text, or
XML formatted intermediate files. Select tools that have a
command-line interface as well as (or instead of) an inflexible GUI
panel.

It can be very hard to know ahead of time if it’s worth writing a
script for a task. Obviously, if you are likely to do it again then it’s
a good candidate. But other times, you might end up wasting time
writing the script.

 Find errors sooner, so you don’t spend too long doing the wrong
thing. To achieve this:

 Show your product to customer early and often, so you’ll find
out quickly if you’re building them the wrong thing.

 Discuss your code design with others, so you’ll find out if
there’s a better way to structure your solution earlier. Don’t
invest effort in bad code if you can avoid it.

 Code review small, understandable bits of work often, not large
dense bits of code.

 Unit test code from the outset. Ensure the unit tests are run
frequently to catch errors before they bite you.

 Learn to communicate better. Learn to ask the right questions to
understand unambiguously, so you don’t end up re-working later on
or having to wait for more answers to outstanding questions.

And learn how to run productive meetings so your life is not sucked
out by the demons who sit in the corners of meeting rooms.

 Don’t burn yourself out working silly hours, leading people to
expect unrealistic levels of work from you all the time. Make it clear
if you are moving beyond the call of duty, so people learn not to
expect it too often!

 Beware of the many small tasks you do
that aren’t that important. Email,
paperwork, phone calls; the administrivia.
Instead of doing those little things
throughout the day, interrupting and
distracting you from your flow on
important tasks, batch them together and
do them at one (or a few) set times each
day.

You may find it helps to write these tasks
down on a small ‘to do’ list, and at a set
time start processing them as quickly as
possible. Ticking them off your list – the

sense of accomplishment can be a motivating reward.

 Always look out for new tools that will power-boost your workflow.
But don’t become a slave to finding new software. Often new
software has sharp edges that could cut you. Favour tried-and-tested
tools that many people have used. You can’t put a price on the
collected knowledge of these tools available via Google.

Conclusion
Pick your battles. Work smarter, not harder. They are trite maxims. But
true.

Of course, this doesn’t mean don’t work hard. Unless you want to get fired.
But that’s not smart.

Questions
1. How do you determine the right amount of testing to apply to your

work? Do you rely on experience or guidelines? Look back over
your last month’s work; was it really tested adequately?

2. How good are your at prioritising your workload? How can you
improve?

3. How do you ensure you find issues as soon as possible? How many
errors or re-workings have you had to perform that could have been
avoided?

4. Do you suffer from not invented here syndrome? Is everyone else’s
code rubbish? Could you do better? Can you stomach incorporating
other’s work in your own? 

Notes
[1] It’s another issue whether you should have getters and setters in your

APIs in the first place...
[2] The Pomodoro Technique. http://www.pomodorotechnique.com/
[3] Yak Shaving. http://catb.org/jargon/html/Y/yak-shaving.html
[4] The Pareto Principle. For many events, roughly 80% of the effects

come from 20% of the causes
http://en.wikipedia.org/wiki/Pareto_principle

If someone else can give
you a leg-up, or complete
the job much faster than
you, then it may be better

to put the task in their
work queue instead
16 | | SEP 2011{cvu}

http://www.pomodorotechnique.com/
http://catb.org/jargon/html/Y/yak-shaving.html
http://en.wikipedia.org/wiki/Pareto_principle

Concurrency, Parallelism and D
David Simcha explains message passing

for parallel programs in D.

f you’ve followed advances in computer architecture over the past half-
decade, you’ve probably noticed that more and more cores are showing
up on CPUs. The transistor budgets of CPUs are still increasing

exponentially as Moore’s Law predicts, but CPU designers are finding it
increasingly difficult to translate the increased transistor budgets into
increased single thread performance. Why the sudden change in paradigm?
Under the hood, modern CPUs execute code in parallel. Examine the
following source code:

 i++;
 j++;

This probably compiles down to two assembly instructions on the x86
architecture, assuming i and j live in EAX and EDX respectively:

 inc EAX;
 inc EDX;

Neither instruction depends on the result of the other. They can be executed
in parallel, and this is exactly what the hardware does. This is called
instruction level parallelism, or ILP. The problem with ILP is that it doesn’t
scale past a certain point. There’s only so much parallelism available at
such a low level. Even where ILP exists, the CPU needs to prove on the
fly that the relevant instructions can be executed in parallel, and work
around issues like branching and register sharing to make parallel
execution happen. (For an excellent article that discusses these issues in a
more detailed but still accessible way see [1].) What’s a CPU designer to
do when he/she can’t find any more ways to translate an increased
transistor budget into proportionally increased performance? Punt that task
to the programmer, of course. The responsibility for exploiting parallelism
in your code has shifted from the hardware and by extension the hardware
designer to you, the programmer.

Notice that the word ‘concurrency’ hasn’t been mentioned once yet, except
in the title. Wikipedia defines concurrency as ‘…a property of systems in
which several computations are executing simultaneously, and potentially
interacting with each other.’ [2]. At the lowest levels we definitely have
concurrency. Two increment operations are being executed
simultaneously, yet somehow even assembly language programmers don’t
need to have the slightest clue about deadlocks, race conditions or any of
the other standard concurrency concepts, even if they want to write highly
optimized code that benefits maximally from ILP. Concurrency has been
abstracted away as an implementation detail of parallelism. In its place is
the higher level language of parallelism, which speaks in terms of
dependencies. Two pieces of code that do not depend on each other’s
results, including side effects, may be executed in parallel. See [3] for an
excellent and detailed discussion on why concurrency and parallelism are
not the same thing.

There are other applications of concurrency where abstracting away its
existence is not desirable, let alone practical. If you’re writing a server,
handling multiple requests simultaneously is a fundamental part of the
problem you’re solving, not an implementation detail. If you’re writing a
game, simultaneously processing graphics and sound is not an
implementation detail. If you’re writing an operating system, multitasking
is not an implementation detail. There are two traditional ways to handle
explicit concurrency: Multiple processes and multiple threads. Threads
share an address space. This means that all of the memory in the process
is implicitly shared between threads. Change a value from one thread and
all of the other threads ‘know’ about it. This makes communication
between concurrently executing tasks easy, but makes ensuring

correctness of the code hard, since any memory address may be read or
written to by any thread, in a nondeterministic order. Processes don’t share
an address space and all sharing is explicit. The downsides are that
interprocess communication has substantial overhead and passing
complex object graphs (i.e. the general case of objects that have pointers
to other objects) between address spaces is a non-trivial problem.

D’s approach to the general case of concurrency can be summarized as
isolation via the type system plus message passing and limited, explicit
memory sharing. If you use std.concurrency for all your
multithreading needs and don’t use unsafe casts to subvert the type system,
there can be no implicit sharing of mutable data between threads and no
low-level data races. This is accomplished using several features of D’s
type sys tem and the des ign of std.concurrency . F i rs t ,
std.concurrency’s spawn() function can only take a function
pointer, not a delegate or a class instance. (For those not familiar with D,
a delegate is a ‘fat pointer’ that holds a pointer to a function and a pointer
to a context, such as a class or struct instance, or a closure.) See Listing 1.

Second, the arguments to functions started by spawn and messages passed
between threads must not have unshared aliasing (using the standard
library’s terminology). This means that only data marked immutable or
shared may be transitively reachable via pointers or references passed into
a spawned function or passed as a message. (The immutable and shared
type constructors are transitive, meaning all data reachable via pointer/
reference indirection from immutable/shared data is also immutable/
shared.) See Listing 2.

Third, all global or static variables not explicitly marked as shared or
__gshared are implicitly thread-local. (__gshared variables are
classic C-style global variables, are intentionally ugly looking, are not

 I

DAVID SIMCHA
David Simcha is a Ph.D. student in Biomedical
Engineering at Johns Hopkins University. His research
interests include bioinformatics. This work has led him
towards parallel computing as a secondary research
interest. He can be reached at dsimcha@gmail.com

import std.stdio, std.concurrency;
void fun() {
 writeln("Printing from a regular function.");
}

void main(string[] args) {
 void fun2() {
 writeln("Printing from a closure.");
 }

 auto t1 = spawn(&fun); // Works.
 // Error. Taking the address of a nested
 // function produces a delegate and allows
 // variables declared in the outer function to
 // be accessed from the nested function's body.
 // Therefore, the local variables of main()
 // would be accessible from multiple threads
 // if this were allowed.
 auto t2 = spawn(&fun2);
}

Listing 1
SEP 2011 | | 17{cvu}

allowed in code marked @safe, are easily greppable and are regarded as
a similar to using an unsafe I-know-what-I’m-doing cast. __gshared is
a storage class, not a type constructor, so __gshared variables have the
same type as non-__gshared variables.) Immutable variables are
implicitly shared, since there are no concurrency issues when sharing
immutable data.

Fourth, the compiler guarantees sequential consistency of all access to data
marked shared. Sequential consistency means that all reads and writes
from a given thread happen in the order they were issued, as seen from all
threads. The details of shared for classes
and structs are too complicated to
discuss here. The last chapter of Andrei
Alexandrescu’s book [4], discusses
them in detail. Basically, shared classes
and structs provide shared-memory
concurrency that’s limited, explicit
(because the type must be marked
shared and designed for thread safety) and safe from low-level data races,
though it does not prevent concurrency-related bugs in high-level
invariants.

Such a scheme provides the best of both worlds for concurrency use cases
where the units of concurrency are not tightly coupled and complex state
doesn’t need to be passed frequently. You can do practical concurrent
programming without the complexities of locks, atomic operations or
memory models. You don’t need to give up mutable state, which makes
sense since mutable state isn’t a problem for concurrency as long as it’s
private to a thread. Communication between threads is cheap and even
complex object graphs can be easily, cheaply and safely shared as long as

they’re immutable. Finally, if the rules need to be broken occasionally,
memory can be shared in a limited way that’s guaranteed free from low-
level data races.

What’s this got to do with parallelism? Sometimes loose coupling between
units of concurrency is an unaffordable luxury. One such case is when
implementing fine-grained parallelism. (For the purpose of this article
fine-grained parallelism is defined as parallelism where communication
between units of concurrency happens several times per second.) Unless
the type system becomes so complex that computer science Ph.Ds can’t
wrap their heads around it or major sacrifices are made in efficiency or
expressiveness, this probably can’t be made statically checkable.
Nonetheless, there are safer ways of exploiting parallelism than using
threads directly, while fitting into D’s current type system and preserving
efficiency and expressiveness.

std.parallelism [5] is a module I’ve been prototyping for several
years that was recently accepted into Phobos, the D standard library. To
introduce some terminology before discussing this module in more detail,
std.parallelism is based on the concept of a Task, which is the
fundamental unit of work and may be executed in parallel with any other
Task. A TaskPool encapsulates a task queue and worker threads, which
execute the Task at the front of the task queue. The globally accessible
instance of this class is called taskPool. A task queue is a FIFO queue
where Tasks are submitted for execution. A Task can be used explicitly
for future/promise parallelism, and is used under the hood to implement
higher level primitives.

The fundamental compromise std.parallelism makes is that it’s up
to you the programmer to understand how your program works and
identify pieces of code that have no data dependencies and can be safely
executed in parallel. In the interest of preserving efficiency,
expressiveness and flexibility std.parallelism doesn’t try to hold
your hand here. However, once you’ve correctly identified parallelizable
code, std.parallelism provides primitives that automatically handle
the low-level concurrency issues related to parceling out the work to
worker threads and getting the results back to the thread where they’re
needed. If you need to think about locks, race conditions, atomic
operations, dining philosophers, sleeping barbers, or generally black
magic of low-level concurrency, you’re probably doing it wrong.

One way to think of std.parallelism’s model is that it uses a weaker
version of the isolation principle of std.concurrency. If used

idiomatically, every piece of data is
owned by a single thread at any given
instant or not mutable at that instant. No
two threads may even attempt to update
the same piece of data at the same time.
If a piece of data were protected by a
lock , th i s lock would never be

contested. The twist is that this ownership may change during the life of
the program. A memory fence is automatically inserted anytime data may
change ownership. Unfortunately some discipline is required to write code
in idiomatic std.parallelism form. The concept of all data being
owned by a single thread at any given time is a high level invariant that is
not statically checkable. std.parallelism provides the mechanisms to
make this model easy to implement without using locks or atomic
operations, or generally thinking about concurrency or low level memory
model issues. For example, the following code computes the logarithm of
every number from 1 to 1,000,000 in parallel and stores the results in a
single array (Listing 3).

I occasionally use locks with parallel foreach loops when I want low-level
control over how a reduction is performed, especially with respect to
memory usage. To me this is like using a goto: Usually more
structured, higher level primitives are better but there are occasional
oddball cases. Therefore, like goto, parallel foreach loops with locks
to update shared data structures should be discouraged but not banned.

Locks are still usefulimport std.stdio, std.concurrency;

void fun(string str) {
 writeln(str);
}

void fun2(char[] str) {
 writeln(str);
}

void fun3(int i) {
 writeln(i);
}

void main() {
 string str1 = "foo";
 // string is an alias for immutable(char)[]

 char[] str2 = "foo".dup;
 auto t1 = spawn(&fun, str1);
 // Works. Pointers to immutable data.

 auto t2 = spawn(&fun2, str2);
 // Error: Pointers to mutable data.

 auto t3 = spawn(&fun3, 1);
 // Works. No pointer indirection at all.

 send(t1, str1);
 // Pass a message. Works.
 // Pointers to immutable data.

 send(t1, str2);
 // Error: Pointers to mutable data.

 send(t1, 1);
 // Works. No pointer indirection at all.
}

Li
st

in
g

2

Sometimes loose coupling
between units of concurrency is

an unaffordable luxury
18 | | SEP 2011{cvu}

Let’s look at this code from the perspective of our weak isolation model.
Before the parallel foreach loop is entered, logs is owned by the
program’s main thread. The parallel foreach loop logic sends different
loop iterations to different threads for execution. The loop body is written
such that all iterations are independent. No two iterations write to the same
piece of memory, and no iteration reads any piece of memory that another
writes. If worker thread A performs iteration 0, then worker thread A
‘owns’ logs[0] while this iteration is occurring. Adjacent elements may
be owned by different threads, though in practice the design minimizes
false sharing [6]. Once the loop is complete, ownership of all elements of
logs is transferred back to the main thread. The worker threads hold no
reference to it and either terminate, sleep or execute unrelated work.

Let’s take a look at another example, this time using the parallel reduction
function taskPool.reduce. (Listing 4: thanks to Russel Winder for this
example.)

iota(n) returns a range (basically a pair of iterators for those from a C++
background) that holds all numbers in [0, n). std.algorithm.map
lazily computes getTerm() for each element of iota(n). The data it
contains is sliced up and sent to multiple threads. Each temporarily owns
a summation variable and computes its part of the sum. Then, ownership
of all of these summation variables is transferred to the main thread and
the final reduction of each thread’s result is performed serially. (The fact
that the terms of summation are computed lazily instead of stored is an
implementation detail. Conceptually, the elements of the range are still
parceled out to multiple threads.)

In the reduce example, getTerm() could write to a global variable or do
several other nasty things. std.parallelism could require that the
reduction function be pure, but I made the decision to favour flexibility
over safety. First, a function may have unimportant side effects. It might
allocate and free memory from a custom thread-safe allocator. It might
generate random numbers from a thread-local random number generator
instance. It might really be pure but not marked as such because the

discipline required to recursively mark it and all functions it calls pure
doesn’t scale much better than any other form of discipline in
programming.

Similarly in the case of future/promise parallelism, tasks may have side
effects as long as there’s no dependency. This example writes to two
different files in parallel (Listing 5).

The result of these efforts is a compromise: a library that allows you to
program in parallel, fully utilizing your new-fangled multicore hardware,
if you understand parallelism but not concurrency. Concurrency only leaks
out in that, if you try to parallelize something that can’t be parallelized,
bugs will manifest themselves as erratic, non-deterministic behaviour. An
approach that favoured safety over efficiency and flexibility might try to
determine what could be safely executed in parallel automatically,
avoiding the requirement that the user understand parallelism. In the
extreme it might do away with mutable state entirely, making this problem
trivial. (This is what purely functional languages do.) Such approaches
would always be conservative because proving lack of data dependency
in the general case is equivalent to solving the halting problem and the
compiler doesn’t generally have access to the whole codebase.
Furthermore, I find the concept of writing parallel programs that look
almost the same as their serial counterparts and don’t require a restrictive
language design quite elegant. In the end, D is a systems language and with
great power comes great responsibility. 

References
[1] Modern Microprocessors: A 90-Minute Guide

http://www.lighterra.com/papers/modernmicroprocessors/
[2] http://en.wikipedia.org/wiki/

Concurrency_%28computer_science%29
[3] http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-

concurrency/
[4] The D Programming Language (1 ed.) Andrei Alexandrescu (2010),

Addison-Wesley Professional
[5] http://digitalmars.com/d/2.0/phobos/std_parallelism.html, source at

https://github.com/D-Programming-Language/phobos/blob/master/
std/parallelism.d

[6] http://en.wikipedia.org/wiki/False_sharing

import std.math, std.parallelism;
void main() {
 auto logs = new double[1_000_000];
 // A parallel foreach loop is just like a
 // regular foreach loop, except its body may be
 // executed in parallel.
 foreach(i, ref num; taskPool.parallel(logs)) {
 num = log(i + 1.0);
 }
}

Li
st

in
g

3 import std.parallelism, std.file : write;
void main() {
 auto writeTask = task!write("foo.txt",
 "Writing from a task.");
 writeTask.executeInNewThread();
 write("bar.txt",
 "Writing from the main thread.");
 writeTask.yieldForce();
 // Wait for writeTask to finish.
}

Listing 5

import std.algorithm, std.parallelism, std.range;
void main() {
 immutable n = 1_000_000_000;
 immutable delta = 1.0 / n;

 // Calculate pi by quadrature. getTerm() gets
 // the individual terms in the summation and
 // is evaluated in parallel by taskPool.reduce,
 // by reading from the std.algorithm.map range.
 real getTerm(int i) {
 immutable x = (i - 0.5) * delta;
 return delta / (1.0 + x * x) ;
 }

 // The string "a + b" is a template parameter
 // and is a shorthand way of writing a simple
 // lambda function in D. It's equivalent to a
 // function that takes two arguments named a
 // and b and returns a + b.
 immutable pi = 4.0 * taskPool.reduce!"a + b"(
 std.algorithm.map!getTerm(iota(n))
);
}

Li
st

in
g

4

SEP 2011 | | 19{cvu}

http://www.lighterra.com/papers/modernmicroprocessors/
http://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
http://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://digitalmars.com/d/2.0/phobos/std_parallelism.html
https://github.com/D-Programming-Language/phobos/blob/master/std/parallelism.d
http://en.wikipedia.org/wiki/False_sharing

Code Patterns
Adam Petersen sees value in the visual shape of the code.

his year marks the 10th anniversary of my Test-Driven Development
(TDD) career. It’s sure been a bumpy ride. If a decade of experience
taught me anything, it is that the design context resulting from TDD

is far from trivial. TDD is a high-discipline methodology littered with
pitfalls. In this article I’ll look at the challenges involved in introducing
and teaching TDD. I'm gonna investigate something we programmers
rarely reflect over, the form and physical layout of our code, and illustrate
how it may be used as a teaching-tool.

The human parser
Did you ever think about how fast a decent programmer assesses the
quality of any given piece of code? In most cases it’s a matter of seconds.
But, in that short frame of time, what is it that we actually assess? What
thought-process do we rely on? Do we parse the code at hypersonic speed
in our mind while rapidly calculating the cyclomatic complexity as we go
along and arrive at a formally well-founded decision? Probably not. And
if we don’t, why does it matter?

The good, the bad, the Java
Last year I held a couple of workshops with the aim of introducing unit
tests and TDD in Java. Since I do believe TDD to be a design technique
with a potentially huge payoff (at least for most statically typed OO
languages), I always start with the benefits. After all, it’s like I got
something to sell. In an inspired moment of pedagogical high I even
launched a Common Lisp REPL (Read-Eval-Print-Loop) to demonstrate
the benefits of interactive development that TDD enables. Yet, as reality
hit the fan, without any mentors aboard, the TDD experience of the team
turned out to be far from the rosy development dream my presentation
hinted at.

I’ve seen similar failures of applying TDD before. Not only does TDD
require a tremendous amount of discipline. It also immediately highlights
flaws and insufficient design in the code under test. That immediate
feedback, while praised as the big-win of all lean technologies, at the same
time, it poses part of the main problem with TDD. How come?

Well, a developer starting with TDD always has a history. It probably
ranges from more or less successful projects, but somewhere along the line
we’ve all managed to deliver some code that actually works (at least for
some definition of ‘works’). Put in other words: we all know how to
program. As we start with TDD, the initial response is a lot of problems
slowing development to a crawl. Complicated set-up code, tricky logic not
easily expressed in a test, private data I cannot access from a test, heavy
dependencies towards third-party products like databases and GUI, etc.
Faced with all these obstacles, the testcases quickly degenerate and TDD
is seen as quicksand upon which the team is trying to build a project. Pretty
soon, the testcases are commented away or even shutoff in order to
‘deliver’. More time passes and all that remains of TDD is a collective
memory of a dysfunctional technique. A bridge is burned.

Mentor-driven design
Obviously we all recognize the problems above as symptoms of flawed
designs caused by the neglect of solid design principles. After all, feedback
in any form is good only if acted upon. Perhaps TDD is best seen as a
messenger; if something’s hard to test we don’t have a testing problem but
rather a design problem. Is a team ever going to succeed with TDD, the
design skills of the programmers on the team have to be raised. And this
is the actual point where I deem a mentorship absolutely crucial to success.
I mean, the mechanics themselves behind a unit test are trivial: tag certain
functions as testcases, express the observable behaviour of the system as
assertions and press a button. If the design aspect was as simple as that,
Fred Brooks wouldn’t have written an entire book [1] about it and we
would probably all be writing dry business code in some cobolesque
language by now.

Guidance
Unit tests mirror the quality of the code they’re testing. It’s virtually
impossible to separate unit testing and design. So what methods and
techniques are useful to a mentor in guiding developers towards
maintainable unit tests and thus a sound underlying design?

Some years ago, I had the opportunity to work with a group of mentors.
Our goal was to develop a conceptual framework intended to make the
transition to TDD as smooth as possible for the organization. A key part
of the framework was a set of rules for unit tests. The rules were never an
end in themselves. Rather, their purpose was to stimulate a discussion
between developer and mentor. Each rule reflected one fundamental
design principle concretized and augmented with specific examples from
actual production code. We were deliberately oversimplifying. To give
one example, the rules prohibited the use of explicit conditional logic a la
if-else in the unit tests. The rationale was that an if-else-chain probably
hints at low cohesion; the testcase probably covers multiple
responsibilities and these should be separated. More often than not, it
mixed normal flow of control with exceptional cases.

The rule set basically served as a learning tool and was never intended to live
on. Come the day when we all understand why the rules are there and the
organization has reached a point where it is actually okay to break the rules.

While we did have some success with the idea I continued to look for ways
of further simplifying the rule set. There’s something about enforcing rules
upon my fellow programmers that I never quite liked. Besides, I had the
idea there had to be some common, alternative way of capturing the rules.

Patterns
Let’s return to the original question asked at the beginning of this article:
no, we don’t really parse code with hypersonic speed in our mind when
determining its qualities. Our brain has a much more powerful tool: the
visual system allows us to process a tremendous amount of information at
literally a glance. What we actually do is comparing the physical, visual
shape of the code against our experience. And even if we aren’t
consciously aware of it, years of coding has taught us how ‘good’ code
looks in our beloved Emacs buffers.

Have a look at the following two code layouts. Both of them reflect the
form of a small unit test suite. Which one of them would you prefer to
maintain and extend?

Have you choosen your favourite? Here’s my take on it. Independent of
programming language, the differences in complexity are quite striking

 T

ADAM PETERSEN
Adam Petersen is a programmer and graduate student. His
interests include Lisp, Erlang, parallel programming martial
arts, music and modern history. He can be contacted at:
adam@adampetersen.se
20 | | SEP 2011{cvu}

Code Patterns (continued)
and immediate. And that visual contrast serves as a tool for discussing
design and highlighting basic principles. It’s not limited to the educational
aspect; I’ve found that the patterns work well during code reviews as an
effective way of encouraging discussions about a given solution. If we take
a high-level view, what’s the shape of this very piece of code? Are there
any parts of the design that diverge from the rest? Any signs of growing
complexity? If so, why’s that and is there a better way to attack the
problem?

Obviously there are many valid reasons to design differently and the trade-
offs may indeed motivate and result in radically different visual shapes
than the ones above. The challenge is to make it an active decision rather
than an ad-hoc solution. At the end, it’s all about reflecting upon current

practice, sharing knowledge
wi th in t h e t e a m and
continuously improve. And if
you manage to get a team to
actively discuss different design
aspects on a daily basis, you’re
halfway there.

Summary
Test-Driven Development is a
powerful yet unforgiving
design technique. In order to
address the design flaws that
TDD inevitably highlights, it’s
important to recognise them as
such and to ac t upon the
feedback. As presented above,
visual code patterns serve as a
tool for discussing designs,

perhaps by collecting a small library of patterns for different kinds of code
and programming languages. A first step would be to print out the
examples, tape them to the walls and let them compete for attention with
the obligatory Dilbert strips. Discussing and comparing different code
patterns together with other programmers and mentors provides an
excellent learning opportunity. 

References
[1] The Design of Design by Frederick P. Brooks, 2010, Addison-

Wesley Professional

Figure 2
Fi

gu
re

 1
An Introduction to the Windows
Presentation Foundation with the Model-
View-ViewModel (Part 2)

Paul Grenyer wraps up the introduction to WPF.

n part 1 of ‘An Introduction to the Windows Presentation Foundation
with Model-View-ViewModel’ [1] I introduced the Canon application,
the source doe which can be downloaded from my website [2]. I used

it to introduce you to simple WPF UI development and the MODEL-VIEW-

VIEWMODEL [3] pattern including simple binding and commands.
Figure 1 shows the GUI for Cannon (a successful search).

Part 2 is focused around making the GUI look more aesthetically pleasing
and introducing menus and tool bars and demonstrating system
commands. I’ll start off by introducing images.

Images
Currently the Canon application uses the standard icon in its title bar. It
doesn’t really make Canon stand out from any other Windows application.

 I

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com

Fi
gu

re
 1
SEP 2011 | | 21{cvu}

If you look on your (Windows 7 at least) task
bar you’ll see that all the applications you have
open have an icon. If they all had the standard
icon it would be difficult to tell them apart.

I use free icon libraries, like Silk Icon Set [4],
available on the internet for icons. I usual put
images into an Images folder at the project
level, so create one for the Canon project. Paste
a suitable image (e.g. a 16x16 PNG) for the
Canon icon into it and add the image to the
project in the usual way. Make sure its Build

Action property is set to Resource. Adding the image as an icon to the
main window is done by setting the Icon attribute in the Window element
(see Listing 1).

The format of the Icon attribute value is Microsoft Pack URI [5] and
consists of the following tokens:

 /Canon The name of the resource file, including its path, relative to
the root of the referenced assembly's project folder.

 ;component Specifies that the assembly being referred to is
referenced from the local assembly.

 /images/lightbuilb.png The relative path to the image file.

Menus and tool bar icons
As it stands the Canon application is not very useful as it only allows us
to search for the two preloaded books. What it needs to be able to do next
is save updates to those books and create new ones. Save actions are often
invoked by a menu and/or tool bar button or via a keyboard shortcut. Next
I’ll show you how to add a menu, with menu items bound to commands,
which share an icon with a tool bar button we’ll add to a new tool bar. First
add a menu to the top section of the dock panel (Listing 2).

Menus are declared in their parent component with the Menu element. In
the case of a DockPanel they also inherit the DockPanel.Dock
attribute which is set to Top to put it in the same place as the tool bar tray.

The order of child elements is important. If you
put the menu below the tool bar tray the menu
will appear below the tool bar tray. Add a drop
down menu by adding a MenuItem with the
Header attribute set (Listing 3).

The underscore in front of the F in File
specifies that F is the short cut key for the File
menu. To add an item to the drop down menu,
add a child MenuItem element (Listing 4).

The Header attribute specifies the name of the
item and the command binding is the same as
a button command binding. We also need to
add the command to the view model (Listing 5).

The canSave method just returns true for the
time being. We’ll put it to better use later. Menu
items can also have images and the same image
can be used for a tool bar button too. You could
repeat the location of the image for both the

menu item and the tool bar
button, but a better solution is
to add a resource (Listing 6).

This resource is added to the
dock panel. Resources can be
added to most components
and are in scope within that

component and a l l o f i t s ch i ld ren . Be fo re you add the
DockPanel.Resources element, make sure you add a suitable
image, called something like disk.png, to the images folder the name
must match the name specified in UriSource. You can add all sorts
of resources including the BitmapImage shown above. The x:Key
attribute specifies the name that the resource will be referred to by when

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding AppTitle}"
 MinHeight="230"
 Height="230"
 MinWidth="450"
 Width="450"
 FocusManager.FocusedElement="{Binding ElementName=searchBox}"
 Icon="/Canon;component/images/lightbulb.png">

Li
st

in
g

1

public class MainWindowViewModel : PropertyChangeEventBase
{
 ...
 public ICommand RunSave { get; private set; }
 ...
 public MainWindowViewModel(IBookRepository repo)
 {
 ...
 RunSave = new RelayCommand(o => Save(), o => canSave());
 }
 private bool canSave()
 {
 return true;
 }
 private void Save()
 {}
}

Li
st

in
g

5

<DockPanel>
 <Menu DockPanel.Dock="Top">
 ...
 </Menu>
 <ToolBarTray DockPanel.Dock="Top">
 ..
 </ToolBarTray>
</DockPanel>

Li
st

in
g

2

<Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 ...
 </MenuItem>
</Menu>Li

st
in

g
3

<Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Header="_Save"
 Command="{Binding RunSave}"/>
 </MenuItem>
 </Menu>

Li
st

in
g

4

<DockPanel>
 <DockPanel.Resources>
 <BitmapImage x:Key="SaveImage" UriSource="/Canon;component/images/disk.png" />
 </DockPanel.Resources>
</DockPanel>Li

st
in

g
6

<MenuItem Header="_Save" Command="{Binding RunSave}">
 <MenuItem.Icon>
 <Image Source="{StaticResource SaveImage}"/>
 </MenuItem.Icon>
</MenuItem>Li

st
in

g
7

22 | | SEP 2011{cvu}

public class MainWindowViewModel :
PropertyChangeEventBase
{
 ...
 private Book currentBook;
 ...
 public MainWindowViewModel(IBookRepository repo)
 {
 ...
 currentBook = new Book();
 ...
 }
 private void Search()
 {
 var book = repo.Search(SearchText);
 if (book != null)
 {
 currentBook = book;
 Title = book.Title;
 Author = book.Author;
 Publisher = book.Publisher;
 ISBN = book.ISBN;

 OnPropertyChanged("Title");
 OnPropertyChanged("Author");
 OnPropertyChanged("Publisher");
 OnPropertyChanged("ISBN");
 }
 }
 ...
 private void Save()
 {
 currentBook = repo.Save(new Book
 {
 Id = currentBook.Id,
 Title = Title,
 Author = Author,
 Publisher = Publisher,
 ISBN = ISBN
 });
 }
}

Listing 10

private void Save()
{
 repo.Save(new Book{Title = Title,
 Author = Author,
 Publisher = Publisher,
 ISBN = ISBN});
}

Listing 9
Figure

 2
it’s used by other components. The UriSource attribute is the path to the
resource. It also uses Pack URI.

The MenuItem.Icon and Image child elements are required to add an
image to a menu item (see Listing 7).

The image to use is specified by the Source attribute of the Image
element which maps to the x:Key attribute of the resources. The image
is bound to the resource, so uses curly braces. The resource is static as it
is known at compile time, so uses the StaticResource keyword
followed by the name of the resource. If you run the application now you
will see the image next to the new menu item. The same image can be used
as a tool bar icon. Add a new tool bar under the existing one. Add a button
with a Command binding to the tool bar and an Image element that binds
to the save image. (See Listing 8 and Figure 2.)

The save menu item and button do not currently save. The simplest way
to save a book is to create a new Book instance, initialise it from the UI
fields and pass it to the Save method of the repository (Listing 9).

Can you spot the flaw? The Id is not set, which means every time you save
a new book instance will be created, even if it has exactly the same field
values as an existing one. To get around this, we need to keep a reference
to the loaded book (Listing 10).

To hold the reference we add a book field called currentBook to the
MainWindowViewModel. We default initialise it in the constructor to
make sure it is valid even if a book has not been loaded yet. Then if we
find a book when we search for one we set the currentBook reference
to the new book. Finally when we save the new book we use the Id from
currentBook to create a new book instance. After a successful save we
set currentBook to the new book instance. Try it out and see if you can
spot the further flaw.

The only way to create a new book is to enter values into all the fields and
save before searching for a book and even then you can only do it once.
What we need is a new book menu item, image and tool bar button
(Listing 11) and a new Command like RunSave and RunSearch. The
difference with RunNew is that it does not need a canNew method as it is
always permitted to create a new book:

 RunNew = new RelayCommand(o => New());

You could create a canNew method hard coded to return true for
consistency if you wanted too. The implementation of New looks like
Listing 12.

The Update method is duplication of the code in the Search method, so
the Search method can be refactored to remove the duplication
(Listing 13).

If you run the application now you can create, save and search for new
books.

System commands
WPF supports a range of system commands for operations including
cutting, copying and pasting. This means you can add standard
functionality without having to implement the details. For example you
can add an edit menu (Listing 14).

You can of course add images and a corresponding tool bar in the way
already described. Here we’ve replaced the command bindings with the

<ToolBarTray DockPanel.Dock="Top">
 <ToolBar>
 <StackPanel Orientation="Horizontal">
 ...
 </StackPanel>
 </ToolBar>
 <ToolBar>
 <Button Command="{Binding RunSave}">
 <Image Source="{StaticResource SaveImage}" />
 </Button>
 </ToolBar>
</ToolBarTray>

Li
st

in
g

8

SEP 2011 | | 23{cvu}

system commands for cut, copy and paste. If you run the application you’ll
find cut, copy and paste just work as expected. WPF In Action [6], the book
in Introduced in part 1, goes into the system commands in more detail in
Chapter 10, Commands.

Not all system commands are as straight forward. Unfortunately if you add
the system Close command to the file menu:

 <MenuItem Header="Close"
 Command="ApplicationCommands.Close" />

it is not enabled and does
not close the application.
Wha t i s m i s s ing i s a
command binding and
handler methods (Listing
15).

The CommandBinding
element uses its Command
and Executed attributes
to map the Close system
c o m m a n d t o t h e
CloseCommandHandler
handler, which is defined in
the MainMindow class
(Listing 16).

CloseCommandHandler
j u s t c a l l s t he Close
method on the window to
close it and consequently
the application.

Detecting changes
Do you remember that
earlier on we implemented
a not particularly helpful
binding for the Canon
window title? Do you also
remember the canSave
method that always returns
true? It would be far more

useful for the user to only be able to save when there were changes to be
saved and for the window title to indicate when there are changes to be
saved (Listing 17).

IsDirty is a boolean property the indicates if any changes have been
made. In the case of AppTitle it is used to determine whether an asterisk
should be appended to the title when there are changes and in the case
canSave it is just returned to indicate if the command should be enabled.
(See Listing 18.)

The IsDirty property compares the current book fields against the
equivalent UI fields to determine if there are any changes. Unfortunately
this leads to some more verbose changes to the UI field properties to get
the title and save command to update in real time (Listing 19).

I have only shown the changes for the Title property, but the Author,
Publisher and ISBN properties must be changed in the same way.
Instead of using the default property implementation we have to implement
our own set method so that when the property is updated we can tell WPF
to also update the window title. This means we also need to separately store
the property value, which is initialised to an empty string to match the
default Book instance, and implement a get method too. One advantage
is that we can also move the WPF notification that the property has changed
to the property itself so that we don’t need to remember to call
OnPropertyChanged anywhere else in the code where we assign the
property. So the Update method is reduced to Listing 20.

The window title also needs to be updated when a book is saved as there
are no longer any changes (Listing 21).

Finally
This is where this second article leaves the Canon application. There is
more to do, but that falls outside the scope of an introductory article. In
part 1 I already introduced you to simple WPF UI development and the
Model-View-ViewModel pattern including simple binding and
commands. In this part I explained how to make WPF GUIs more
aesthetically pleasing with the use of images and more user friendly with
the use of menus and toolbars and showed how to implement those menus
and toolbars with custom and system commands.

private void New()
{
 Update(new Book());
}
private void Update(Book book)
{
 currentBook = book;
 Title = book.Title;
 Author = book.Author;
 Publisher = book.Publisher;
 ISBN = book.ISBN;
 OnPropertyChanged("Title");
 OnPropertyChanged("Author");
 OnPropertyChanged("Publisher");
 OnPropertyChanged("ISBN");
}

Li
st

in
g

12

<DockPanel>
 <DockPanel.Resources>
 <BitmapImage x:Key="SaveImage" UriSource="/Canon;component/images/disk.png" />
 <BitmapImage x:Key="NewImage" UriSource="/Canon;component/images/add.png" />
 </DockPanel.Resources>
 <Menu DockPanel.Dock="Top">
 <MenuItem Header="_File">
 <MenuItem Header="_New" Command="{Binding RunNew}">
 <MenuItem.Icon>
 <Image Source="{StaticResource NewImage}"/>
 </MenuItem.Icon>
 </MenuItem>
 <MenuItem Header="_Save" Command="{Binding RunSave}">
 <MenuItem.Icon>
 <Image Source="{StaticResource SaveImage}"/>
 </MenuItem.Icon>
 </MenuItem>
 </MenuItem>
 </Menu>
 <ToolBarTray DockPanel.Dock="Top">
 ...
 <ToolBar>
 <Button Command="{Binding RunNew}">
 <Image Source="{StaticResource NewImage}" />
 </Button>
 <Button Command="{Binding RunSave}">
 <Image Source="{StaticResource SaveImage}" />
 </Button>
 </ToolBar>
 </ToolBarTray>

Li
st

in
g

11

private void Search()
{
 var book = repo.Search(SearchText);
 if (book != null)
 {
 Update(book);
 }
}

Li
st

in
g

13
24 | | SEP 2011{cvu}

<Window>
 <Window.CommandBindings>
 <CommandBinding Command="ApplicationCommands.Close" Executed="CloseCommandHandler"/>
 </Window.CommandBindings>
 ...
</Window>

Li
st

in
g

15

<MenuItem Header="_Edit">
 <MenuItem Header="Cut" Command="ApplicationCommands.Cut" />
 <MenuItem Header="Copy" Command="ApplicationCommands.Copy" />
 <MenuItem Header="Paste" Command="ApplicationCommands.Paste" />
</MenuItem>Li

st
in

g
14

private void CloseCommandHandler(object sender, ExecutedRoutedEventArgs e)
 {
 Close();
 }

Li
st

in
g

16
In future articles I will cover unit testing and patterns for maintaining the
separation between the view model and the view when you want to display
message boxes and child windows or use custom controls. 

References
[1] ‘In Introduction to the Windows Presentation Foundation with

Model-View-ViewModel – Part 1’: http://paulgrenyer.net/
Introduction_to_WPF_with_MVVM_-_Part_1.pdf

[2] Canon 0.0.1 Source Code: http://paulgrenyer.net/dnld/Canon-
0.0.1.zip

[3] ‘WPF Apps With The Model-View-ViewModel Design Pattern’ by
Josh Smith. MSDN Magazine: http://msdn.microsoft.com/en-us/
magazine/dd419663.aspx

[4] Silk Icon Set from Mark James: http://www.famfamfam.com/lab/
icons/silk/

[5] Pack URIs in WPF: http://msdn.microsoft.com/en-us/library/
aa970069.aspx

[6] WPF In Action with Visual Studio 2008 by Arlen Feldman and Maxx
Daymon. Manning. ISBN: 978-1933988221

private void Save()
{
 currentBook = repo.Save(new Book
 {
 Id = currentBook.Id,
 Title = Title,
 Author = Author,
 Publisher = Publisher,
 ISBN = ISBN
 });
 OnChange();
}

Listing 21

private void Update(Book book)
{
 currentBook = book;

 Title = book.Title;
 Author = book.Author;
 Publisher = book.Publisher;
 ISBN = book.ISBN;
}

Listing 20

private string title = string.Empty;
public string Title
{
 get
 {
 return title;
 }
 set
 {
 title = value;
 OnPropertyChanged("Title");
 OnChange();
 }
}
...
private void OnChange()
{
 OnPropertyChanged("AppTitle");
}

Listing 19

public bool IsDirty
{
 get
 {
 return
 !currentBook.Title.Equals(Title) ||
 !currentBook.Author.Equals(Author) ||
 !currentBook.Publisher.Equals(Publisher) ||
 !currentBook.ISBN.Equals(ISBN);
 }
}

Li
st

in
g

18

public string AppTitle
{
 get
 {
 return string.Format("Canon{0}",
 IsDirty ? " *" : "");
 }
}
...
private bool canSave()
{
 return IsDirty;
}

Li
st

in
g

17
SEP 2011 | | 25{cvu}

http://paulgrenyer.net/Introduction_to_WPF_with_MVVM_-_Part_1.pdf
http://paulgrenyer.net/Introduction_to_WPF_with_MVVM_-_Part_1.pdf
http://paulgrenyer.net/dnld/Canon-0.0.1.zip
http://paulgrenyer.net/dnld/Canon-0.0.1.zip
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://www.famfamfam.com/lab/icons/silk/
http://www.famfamfam.com/lab/icons/silk/
http://msdn.microsoft.com/en-us/library/aa970069.aspx
http://msdn.microsoft.com/en-us/library/aa970069.aspx

Code Critique Competition 71
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’ve written a simple arithmetic expression evaluator – it works left to right
but does supports brackets, a bit like old fashioned calculators. But when I
try to test it I get this output:

 cc70>test "1+2" "1/3 * 3"
 "1+2" = 1.78744e-307
 "1/3 * 3" = 1.78744e-307

Can you explain what’s wrong (and also comment generally on the
implementation)?

 The test program is in Listing 1

 The header (expr.h) is in Listing 2

 The implementation (expr.cpp) is in Listing 3.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#include "expr.h"

#include <iostream>
#include <sstream>

// evaluate and print supplied expression
int test(std::string const &s)
{
 try
 {
 expr e(std::istringstream(s).ignore(0));
 std::cout << "\"" << s << "\" = "
 << e.value() << std::endl;
 return 0;
 }
 catch (std::exception & ex)
 {
 std::cerr << "\"" << s << "\" failed: "
 << ex.what() << std::endl;
 return 1;
 }
}int main(int argc, char **argv)
{
 int ret(0);
 for (int idx = 1; idx != argc; ++idx)
 {
 ret += test(argv[idx]);
 }
 return ret;
}

Li
st

in
g

1

#include <istream>
/* Left to right expression parser */
class expr
{
public:
 /* Parse a stream */
 expr(std::istream &is);
 /* Get the value */
 double const & value() const { return val; }
private:
 /* A term in the expression */
 class term
 {
 public:
 term(std::istream &is);
 term(double v);
 operator double() const { return val; }
 void operator+=(term const& rhs);
 void operator-=(term const& rhs);
 void operator*=(term const& rhs);
 void operator/=(term const& rhs);
 void operator%=(term const& rhs);
 private:
 double val;
 };
 term val;
};

Listing 2

#include "expr.h"
#include <functional>
#include <iostream>
#include <stdexcept>
#include <string>
expr::expr(std::istream & is) : val(is)
{
 char op;
 while (is >> op && op != ')')
 {
 if (op == '+') val += is;
 if (op == '-') val -= is;
 if (op == '*') val *= is;
 if (op == '/') val /= is;
 if (op == '%') val %= is;
 }
}
// Read a number or a bracketed sub-expression
expr::term::term(std::istream & is)
{
 char op;
 is >> op;
 if (op == '(')
 val = expr(is).val;
 else if (!(is.unget() >> val))
 {
 std::string error("Bad parse at: ");
 throw std::runtime_error(error + op);
 }
}

Listing 3
26 | | SEP 2011{cvu}

Critiques

Peter Sommerlad <peter.sommerlad@hsr.ch>

The first observation is that the numbers output seem to be very close to
the smallest representable value greater than zero.

This can be checked through #include-ing <limits> and outputting
std::numeric_limits<double>::min(), which seems to be
"2.22507e-308" on my system.

However, on my Mac and the compiler I am using the output of the test
program is ‘correct’ and the value given by the question is never given:

"1+2" = 3

"1/3 * 3" = 1

Now, compiling it gives a more interesting result:

 In file included from ../expr.cpp:1:0:
 ../expr.h: In member function 'const double&
 expr::value() const':
 ../expr.h:12:40: warning: returning reference to
 temporary [enabled by default]

 In file included from ../main.cpp:1:0:
 ../expr.h: In member function 'const double&
 expr::value() const':
 ../expr.h:12:40: warning: returning reference to
 temporary [enabled by default]

that refers to the line

 double const & value() const { return val; }

If val would be a member variable of type double the signature would
be fine. However, it is of type expr::term and this type contains the
underlying double but is not identical. What happens is that the operator
double() of class expr::term is applied automatically by the compiler
resulting in a temporary value of type double, whose reference is passed
out to the caller of expr::value(). When value() returns the
temporary’s lifetime is over and the reference is invalid resulting in
undefined behaviour. Fortunately for me, my compiler is aware of that
problem and seems to cleverly handle that situation for me, without
formatting my hard^h^h^h^hflash-disk.

Now, we can get to the main issue of this program:

It tries to rely on C++’s automatic conversion mechanisms too much.

My typical advice to my students is to declare all single-parameter (aka
conversion) constructors as explicit. With the new C++ standard even
constructors with more than one argument could and sometimes should be
declared explicit, but explaining that is beyond the code critique.

The opposite direction of conversion operators can be a clever way to mix
and match types without the need to overload operators in all mixed type
applications, i.e., if I have type T and type E and both can be combined in
expressions, let’s say by + one would need to provide overloads of
operator+ with all combinations of T and E as input arguments, resulting
in 4 overloads required. Providing automatic conversion from T to E, by
either having a non-explicit conversion constructor of E, or a conversion
operator E() on T, would allow to get away with just one overload of
operator+(E const&, E const&).

Since such conversion operators or constructors are applied automatically
by the C++ compiler, if a single step conversion can make an expression
or function call valid, they can be handy. On the other hand this is a double-
edged sword, in that you can cut yourself easily. First, if there is more than
one way to make your expression valid by applying different conversions
your code becomes invalid again and you need to explicitly state what
conversion you want to apply. That can become tricky and effortful,
especially in the case, when you call template functions. Second, if your
conversion involves elementary types, your class can behave strangely,
when combined with such types indadvertedly, e.g., through a mis-spelled
variable name.

Now, what can we fix about it. First, instead of the clever operator
double() in class expr::term an accessor to the member variable val
could be used, or the member variable be made public, it is in a private
class anyway. But since I will give some discussion about that later, let us
opt to change operator double() to an accessor instead:

 double value() const { return val; }

OOPS, that gives us about half a dozen compile errors... Well those are
exactly the places where the automatic conversion took place. So let us
change those places as well:

 in expr.h:

 double value() const { return val.value(); }

 in expr.cpp:

 val = expr(is).val.value();

aha this is another problem. Well we are in a member function of
class term and try to access a private member of class expr. That is
invalid and Linticator recognized that, but my compiler silently
allowed it. But we corrected expr::value() before, so let us use
that instead:

 val = expr(is).value();

all operators need adjustment too, like with operator+ we need to call
rhs.value() instead of relying on the automatic conversion.

 val += rhs.value();

Now, things look fixed. However, it is bad practice today to write code
without unit tests. It is also hard to test class expr::term, since that is a
private member of class expr. As an example of a better tested expression
evaluator, I’ll attach one that I created in a TDD manner in an ACCU
session led by Hubert Matthews some years ago. During that session an
evaluator including variables was created including a very good test
coverage in C++.

Before we go to that, there are other minor issues within the code that we
can look at as well:

 expr::expr(std::istream & is) : val(is)
 {
 char op;
 while (is >> op && op != ')')
 {
 if (op == '+') val += is;
 if (op == '-') val -= is;
 if (op == '*') val *= is;
 if (op == '/') val /= is;
 if (op == '%') val %= is;
 }
 }

// ctor from double
expr::term::term(double v) : val(v) {}
void expr::term::operator+=(term const& rhs)
{
 val += rhs;
}
void expr::term::operator-=(term const& rhs)
{
 val -= rhs;
}
void expr::term::operator*=(term const& rhs)
{
 val *= rhs;
}
void expr::term::operator/=(term const& rhs)
{
 val /= rhs;
}
void expr::term::operator%=(term const& rhs)
{
 val = std::modulus<long>()(val, rhs);
}

Li
st

in
g

3
(c

on
t’d

)

SEP 2011 | | 27{cvu}

in addition to not being explicit this constructor is a bit obfuscated and
does more than a typical constructor does. It is not only initializing the left-
hand term in the initializer list, but also continues to parse to the end or a
syntax error on the right hand side. Bad practice is, that while
switch(op) could have been used a sequence of if statements is used.
This looks simple, but there is no guard against a syntax error here, so an
operation character op that does not match any of the given 5 or the closing
parentheses is silently ignored without telling the user. At least a final else,
or a switch(op) with a default case should be used. In addition here
again, the code relies on silently applying the non-explicit ctor of
expr::term(istream&) which again can be confusing. So making
that ctor explicit and giving an else case is good practice. Because
the throwing of a ‘bad parse’ exception is already implemented, we extract
that part out of the corresponding function of term into a static member
of expr (static because it does not rely on any member variable).

 expr::expr(std::istream & is) : val(is)
 {
 char op;
 while (is >> op && op != ')')
 {
 if (op == '+') val += term(is);
 else if (op == '-') val -= term(is);
 else if (op == '*') val *= term(is);
 else if (op == '/') val /= term(is);
 else if (op == '%') val %= term(is);
 else throw_bad_parse(op);
 }
 }
 void expr::throw_bad_parse(char op)
 {
 std::string error("Bad parse at: ");
 throw std::runtime_error(error + op);
 }

This also results in adjustment of term’s constructor like the following:

 expr::term::term(std::istream & is)
 {
 char op;
 is >> op;
 if (op == '(')
 val = expr(is).value();
 else if (!(is.unget() >> val))
 {
 expr::throw_bad_parse(op);
 }
 }

While dense, the !(is.unget() >> val) is still a bit obfuscated. What
it does, is resetting the current read pointer just before the read character
op, since it is not a parenthesis it reads it again and parses the ongoing
sequence as a double number. If that fails the underlying stream is is
put into ‘fail mode’ and the operator! of the stream will return true,
which results in throwing an exception.

With all those changes it becomes clear through Linticator that the second
constructor of term is never used (Figure 1). Since it is private to expr
anyway, we can just get rid of it.

A final remark on expr’s design is the use of a modulus operator on
double values. Modulus is usually not defined on doubles and using the
version of long is an interesting implementation option. Just consider the
interesting aspect that 10*PI%PI is not zero in that case!

Now back to the main program:

 expr e(std::istringstream(s).ignore(0));

is also interesting. It has two issues. The bigger one, also recognized by
Lint is shown in Figure 2.

The code passes a temporary object by reference not only to the call of
ignore which is a non-const member function of istream but also to
the constructor of expr. This is bad practice and would be disastrous if
expr would keep the istream reference as a member, because that
would be dangling.

The second issue is calling istream::ignore() which is an
‘unformatted input function’ and can be used to skip over characters.
However, ignoring 0 characters looks like a no-op. Under the hood some
things happen, and if the stream object would throw an exception it might
throw, but I believe it is superfluous, since extracting nothing means
nothing. However, ignore(0) will check for a bad stream, but I can not
think of an istringstream freshly constructed that would be bad, even
if s is empty.

However, the reason for calling ignore(0) becomes more obvious,
when we delete it from the code:

 expr e(std::istringstream(s));

is not a definition of variable e being an expr, but a declaration of function
e taking a istringstream as argument named s and returning an expr.
This is a C++ parsing surprise, many programmers get trouble with,
especially since the following code using e will result in surprising error
messages further on. A rescue would be either using '=' to initialize e or
with the new C++ to use curly braces instead of the function parentheses:

 expr e=std::istringstream(s);
 // doesn't work, because of explicit ctor

or

 expr e{std::istringstream(s)};
 // C++11 aka C++0x, doesn't work, because of
 // reference to temporary

However, as noted in the comments, both versions do not work, because
now the temporary passed as constructor reference parameter becomes
more obvious. The cure is not calling .ignore(0), but to make a separate
istringstream variable and use that. Then we can make sure that the
object lifetime is no longer a potential problem.

Since the original programmer seems to be eager to save source code real
estate we can eliminate a pair of parenthesis and make the function body
a try-catch block instead. In addition we can follow Linticator’s suggestion
to make the reference to the exception object a const-reference, since we
don’t want to change the exception object anyway:

A further ugliness is the function name test that requires a comment to
explain what it does, better we name the function accordingly and thus
remove the need for the comment.

Applying rename and the shown quick fix results in the following code:

 int evaluate_and_print(std::string
 const &expression)
 try {Fi

gu
re

 1
Figure 2

Figure 3
28 | | SEP 2011{cvu}

 std::istringstream is(expression);
 expr e(is);
 std::cout << "\"" << expression << "\" = "
 << e.value() << std::endl;
 return 0;
 } catch (std::exception const & ex) {
 std::cerr << "\"" << expression <<
 "\"failed: " << ex.what() << std::endl;
 return 1;
 }

There is not much to say about main(), except that it plays nicely by
returning a non-zero number when detecting an error. However, since we
do not know about how many arguments are given a too large return code
might be generated that is wrapped around, depending on your operating
system. The only thing the standard provides are two macros with the
values EXIT_SUCCESS and EXIT_FAILURE, so the ‘standard’ way
would be to write

 return ret?EXIT_FAILURE:EXIT_SUCCESS;

to leave main().

Now for the teased, here is the code of the expression evaluator developed
in a TDD way at ACCU 200x:

#include "cute.h"
#include "ide_listener.h"
#include "cute_runner.h"
#include <cctype>
#include <map>
class Parser {
 typedef int value_type;
 typedef std::vector<value_type> valuestack;
 typedef std::vector<char> opstack;
 typedef std::map<std::string,value_type>
 memory;
public:
 memory variables;
 private:
 void evaluateSingleOperator(
 char op, value_type &result,
 value_type operand) {
 switch(op) {
 case '+': result += operand; break;
 case '-': result -= operand; break;
 case '*': result *= operand; break;
 case '/': result /= operand; break;
 default: throw("invalid operand");
 }
 }
 void evaluateStacks(valuestack &values,
 opstack &ops) {
 while(ops.size() && values.size()>1) {
 char op = ops.back(); ops.pop_back();
 value_type operand = values.back();
 values.pop_back();
 evaluateSingleOperator(op,values.back(),
 operand);
 }
 }
 bool higherPrecedenceOrLeftAssociative(
 char last, char current) {
 return (last == current)||(last == '*'
 || last == '/');
 }
 bool shouldEvaluate(char op,
 opstack const &ops) {
 return ops.size() > 0 &&
 higherPrecedenceOrLeftAssociative(
 ops.back(),op);
 }
 std::string parseVariableName(
 std::istream &is) {

 std::string variable;
 char nextchar=0;
 while ((is >> nextchar) &&
 isalpha(nextchar)) {
 variable += nextchar;
 }
 if (variable.size() == 0) throw
 std::string("internal parse error");
 is.unget();
 return variable;
 }
 int peekWithSkipWhiteSpace(std::istream &is) {
 int nextchar = EOF;
 while(isspace(nextchar = is.peek()))
 is.get();
 return nextchar;
 }
 value_type getOperand(std::istream &is) {
 int nextchar = peekWithSkipWhiteSpace(is);
 if (nextchar == EOF) throw std::string
 ("syntax error operand expected");
 if (isdigit(nextchar)){
 value_type operand=0;
 if (!(is >> operand)) throw std::string
 ("syntax error getting number");
 return operand;
 } else if ('(' == nextchar) {
 is.get();
 return parse(is);
 } else if (isalpha(nextchar)) {
 std::string variable=
 parseVariableName(is);
 if(parseAssignmentOperator(is)) {
 variables[variable] = parse(is);
 } else {
 if (!variables.count(variable))
 throw std::string
 ("undefined variable: ")+variable;
 }
 return variables[variable];
 }
 throw std::string("syntax error");
 }
 bool parseAssignmentOperator(
 std::istream &is) {
 int nextchar = peekWithSkipWhiteSpace(is);
 if ('=' != nextchar) {
 return false;
 }
 is.get();
 return true;
 }
 public:
 value_type parse(std::istream &is) {
 is >> std::skipws;
 valuestack values;
 opstack ops;
 values.push_back(getOperand(is));
 char op=')';
 while((is >>op) && op != ')') {
 if (shouldEvaluate(op, ops)) {
 evaluateStacks(values, ops);
 }
 values.push_back(getOperand(is));
 ops.push_back(op);
 }
 evaluateStacks(values,ops);
 return values.back();
 }
 value_type eval(std::string s) {
 std::istringstream is(s);
SEP 2011 | | 29{cvu}

 return parse(is);
 }
};
int eval(std::string s) {
 return Parser().eval(s);
}
void shouldThrowEmptyExpression() {
 ASSERT_THROWS(eval(""),std::string);
}
void shouldThrowSyntaxError() {
 ASSERT_THROWS(eval("()"),std::string);
}
void testSimpleNumber() {
 ASSERT_EQUAL(5,eval("5"));
}
// ... other test definitions elided
void runSuite(){
 cute::suite s;
 s.push_back(CUTE(shouldThrowEmptyExpression));
 s.push_back(CUTE(shouldThrowSyntaxError));
 s.push_back(CUTE(testSimpleNumber));
 s.push_back(CUTE(testSimpleAdd));
 s.push_back(CUTE(testMultiAdd));
 s.push_back(CUTE(testSimpleSubtract));
 s.push_back(CUTE(testTenPlus12Minus100));
 s.push_back(CUTE(testMultiply));
 s.push_back(CUTE(testDivision));
 s.push_back(CUTE(testAddThenMultiply));
 s.push_back(CUTE(testAddSubSub));
 s.push_back(CUTE(testAddThenMultiplyAdd));
 s.push_back(CUTE(testSimpleParenthesis));
 s.push_back(CUTE(testSimpleOperandParenthesis));
 s.push_back(CUTE(testParenthesis));
 s.push_back(CUTE(testNestedParenthesis));
 s.push_back(CUTE(testDeeplyNestedParenthesis));
 s.push_back(CUTE(testSimpleAssignment));
 s.push_back(CUTE(testLongerVariables));
 s.push_back(CUTE(shouldThrowUndefined));
 cute::ide_listener lis;
 cute::makeRunner(lis)(s, "The Suite");
}
int main(){
 runSuite();
}

Commentary
Peter’s critique demonstrates, among other things, some of the benefits of
using tools to perform static checking of your code. In my experience such
tools need ‘training’ to eliminate false positives but once this is done they
can be added to the build process and they will catch a number of problems
at compilation time.

The winner of CC 70
There was only one entrant, so Peter gets the prize. If you haven’t done
one before, why not try writing a critique for the problem below?

Code Critique 71
(Submissions to scc@accu.org by Oct 1st)

I’m trying to write a simple circular list – it is like a std::list but it wraps at
each end just like days of the week do. However, when I try to go on five
days from Wednesday I reach Sunday, not Monday. Please help!

 cc71>circularListTest
 Today is Wed
 Yesterday was Tue
 5 days time will be Sun

circularList.h is in Listing 4 and circularListTest.cpp is in
Listing 5.

You can also get the current problem from the accu-
general mail list (next entry is posted around the last
issue’s deadline) or from the ACCU website (http://
www.accu.org/journals/). This particularly helps
overseas members who typically get the magazine
much later than members in the UK and Europe.

#include <list>

template <typename T>
class circular : public std::list<T>
{
 typedef std::list<T> list;
public:
 class iterator;
 circular() {}
 template <typename IT>
 circular(IT beg, IT end) : list(beg, end) {}
 iterator begin() { return iterator(*this); }
 iterator end() { return --begin(); }
 // iterator implementation details
 class iterator : public list::iterator
 {
 list & parent;
 typedef typename list::iterator super;
 public:
 iterator(list & par)
 : parent(par), super(par.begin()) {}
 using super::operator=;
 // modifiers
 iterator& operator++()
 {
 if (*this == parent.end())
 *this = parent.begin();
 else
 this->super::operator++();
 return *this;
 }
 iterator& operator+=(int n)
 {
 while (n-- % parent.size())
 ++*this;
 return *this;
 }
 iterator& operator--()
 {
 if (*this == parent.begin())
 *this = parent.end();
 else
 this->super::operator--();
 return *this;
 }
 iterator& operator-=(int n)
 {
 while (n-- % parent.size())
 --*this;
 return *this;
 }
 // derived operators
 iterator operator++(int)
 {
 iterator it(*this);
 ++*this;
 return it;
 }
 iterator operator+(int n)
 {
 iterator result(*this);
 return result += n;
 }

Listing 4
30 | | SEP 2011{cvu}

Standards Report C++11
Roger Orr reports on the new C++ standard.

y the time you read this the ballot among national bodies (ANSI, BSI,
DIN, AFNOR, etc) for the new C++ standard will have completed
and we should have a new standard.

So what happens next?

C++ compilers will gradually become available with increasing coverage
of all the C++11 features and there will be books about the new features
(either updates to existing books, or brand new ones).

It will be interesting to see which of the new features will prove to be the
most popular and useful ones. I suspect some of this will depend on the
individual programmer – related to both their level of skill and which other
computer languages they are familiar with.

How quickly this will affect you will also depend on the organisation for
which you work and the client base you are supplying: some projects are,
for example, able to track new releases of gcc whereas developers working
in other environments may still be supporting older compilers and have
no immediate plans to update.

Future committee work
The C++ standards committee continue to meet, with two meetings a year
still scheduled. We are currently looking at the idea of hosting the Spring
2013 meeting in the UK the week after the ACCU conference: we have
done this in the past and it resulted in additional members of the committee
being available to present sessions at the conference. If you have any
contact with possible sponsors for the week please get in touch with me!

Some of the future work will consist of fixing defects in the C++11
standard: work of this size and complexity is bound to contain a number
of problems, many of which will not be uncovered until people start to use
the new features in their own projects. In particular there may well be some
‘integration bugs’ where two or more new features interact with each other

in confusing or ambiguous ways. A number of have already been found
during the latter stages of preparing the C++11 standard but there are
almost certainly more still to find.

However there is new material to work on too, for the next standard
(tentatively called C++1y). There are a number of additions to the C++
standard library, such as filesystem support (based on that in boost), that
were proposed too late for inclusion in the standard and also new proposals,
such as various suggestions for a network library.

Further work in the language is also on the table: including extensions to
the lambda syntax and a ‘modules’ proposal from Daveed Vandevoorde
to support cleaner partitioning of C++ code.

There is also the thorny question of what to do with concepts, which was
initially added to the C++0x standard and then removed when it became
clear that there were enough unresolved issues to significantly delay the
new standard. Should this be worked on for inclusion in the next standard?

Finally there are also some ‘meta’ questions to discuss:

 What is the best mechanism to deliver the next standard?

 Should we separate some of the library into its own standard?

 Do we need to formalise policy regarding inclusion of new features?

 Is the close relationship between C++ and C still relevant?

Initial discussion on these questions will have occurred at the August
meeting in Bloomington, Indiana and the various national bodies, such as
our own BSI panel, have also been discussing this.

 B

Code Critique Competition 71 (continued)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
 std::cout << "Today is " <<
 *it << std::endl;
 circular<string>::iterator yest = it - 1;
 std::cout << "Yesterday was " <<
 *yest << std::endl;
 int const n = 5;
 it += n;
 std::cout << n << " days time will be "
 << *it << std::endl;
}
int main()
{
 circular<string> s;
 s.push_back("Sun");
 s.push_back("Mon");
 s.push_back("Tue");
 s.push_back("Wed");
 s.push_back("Thu");
 s.push_back("Fri");
 s.push_back("Sat");
 test(s);
}

Listing 5 (cont’d)

#include "circularList.h"
#include <algorithm>
#include <iostream>
#include <string>
using std::string;
void test(circular<string> s)
{
 circular<string>::iterator it =
 std::find(s.begin(), s.end(), "Wed");

Li
st

in
g

5

 iterator operator--(int)
 {
 iterator it(*this);
 --*this;
 return it;
 }
 iterator operator-(int n)
 {
 iterator result(*this);
 return result -= n;
 }
 };
};

Li
st

in
g

4
(c

on
t’d

)

SEP 2011 | | 31{cvu}

32 | | SEP 2011

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

It’s done; the long wait is over.
After what seems an interminable
time the new ISO C++ Standard
(usually known as C++0x) has been approved.
C++ may no longer be the hottest language in
town – it is a mature technology – but it is still
important for many companies, developers and
ACCU members.

It is perhaps worthwhile taking some time to
reflect on how the fundamental tools we use are
developed and how their futures are controlled.
Some languages are fleet-of-foot and change
rapidly based on what their communities want,
such as Ruby. Agility is one of the things that the
Ruby communi ty va lues a l ong w i th
expressiveness and so evolution there is rapid.
Other languages are controlled primarily by
vendors and change more slowly (Java and C#
spring to mind). Yet others are controlled by
large, rather slow international standards
committees mostly staffed by volunteers (C++
and Fortran, for instance). C++0x is the product
of a lot of work by a large number of people,
some of them ACCU members and others who
are ACCU friends. They deserve our thanks for

the time and effort they have put in to this
process to bring us new tools, ideas and
techniques whilst protecting our investment in
existing code. Languages that try to evolve
without regard for the existing code base can
back themselves into a tight corner. One merely
has to look at Perl 6 to see what happens if you
try to be too revolutionary with a popular
entrenched language.

One of the things that tends to happen when a
new version of a programming language comes
out is that there is a flurry of interest in the new
features and what you can do with them. After
that comes a period when people start to realise
the full implications of the new features and new
idioms appear. I therefore fully expect there to
be a resurgence in interest in C++ as people get
to grips with key new features such as auto,
lambdas, rvalue references and variadic
templates. Just as the subject of exception safety
caused a wholesale rethink of the way people
programmed in C++, things l ike move
semantics will lead to new ideas. I personally
look forward to learning more about these and I
hope to be able to share and pass that knowledge
on to others. The ACCU has a long tradition of
sharing information and a desire to learn is one
of the key defining characteristics of our
members.

Those ACCU members who don’t program in
C++ may be bemused or disinterested in the new
standard and see it as irrelevant to them.
However, a large proportion of the tools that
they use – compilers, virtual machines,
browsers, image manipulation programs, etc –
are programmed in C++ so they too will benefit,
if only indirectly. The new C++ standard
represents an incremental change in the
foundations of many of the things we rely on; it
will take time to see just how much that affects
and benefits all of our members.

Regional Meetings: ACCU London
Chris Oldwood reflects on a recent London event.

nce again we returned to the location where I first experienced an
ACCU London talk – the offices of 7 City at Moorgate. The July
meet-up saw us listening to Ed Sykes talk about Mocking in C++.

As usual there was a good turnout with a few new faces to try and recruit
in the bar opposite afterwards.

Ed started with a straw poll or two to try and gauge the audience and for
once I fell into the minority as most of them were actively doing C++ and
doing some form of modern unit testing. This allowed him to cut to the
chase and get on with looking into the two mocking frameworks that he
was using in his current position – MockItNow and Hippo Mocks. He
acknowledged later that other frameworks had matured in the meantime,
but that these two were the ones his team had focused on at the time they
had started investigating the use of a 3rd party mocking framework for use
with their C++ code-base.

First up was MockItNow which he clearly saw as a solution most suitable
for those targeting the Microsoft compiler and trying to use mocking with
a legacy code-base. C++ programmers have a natural tendency to want to
look under the hood and fortunately he answered the obvious nagging
question many of us immediately had, which was ‘How does it work?’
Once this minor distraction was resolved we could get on with just
enjoying how the tests were expressed and what features it provided. His
examples were simple enough to touch on the salient points, yet still
managed to show it in action by actually running a set of tests with VS2010.

The second offering Ed explored was Hippo Mocks, which is a newer and
more actively developed framework. Whereas MockItNow provides good
support for legacy code-bases where concrete classes may be the norm,
Hippo Mocks targets a more modern style of C++ code where the use of
Interfaces is more prevalent to separate concerns. The same examples were
carried over from the previous discussion to provide continuity, but with
some minor changes required to allow the mocked type to be passed via
the constructor. Whereas the MockItNow examples had a dash of macro
magic the Hippo Mocks ones seemed a little more conventional.

It’s a brave presenter who does live coding during a talk but Ed rose to the
challenge to try and answer some of the questions from the audience by
adapting his existing tests. Hippo Mocks showed its header-only,
template-based nature nicely by spewing some unpleasant compiler errors
as Ed tried to rework the tests but the speculative questions were never
really going to be answered easily with the small amount of time left. Still,
we did get to look inside this implementation too and Ed explained that
his team had extended it relatively easily.

Those who have worked in other modern, reflection-capable languages
like C# and Java will have been spoilt for years with mature mocking
frameworks. Ed confidently showed us that C++ is finally catching up,
even if some of the tools are platform specific or not quite as flexible as
those available for its curly-brace cousins.

 O

Lack of space means we do not have
room for any book reviews in this
i ssue . They w i l l be back in
November, so keep sending them in.

	Forgotten Old Hat
	Enumerating Experiences
	A Game of Path Finding
	On a Game of One Against Many
	Smarter, Not Harder
	Concurrency, Parallelism and D
	An Introduction to the Windows Presentation Foundation with the Model- View-ViewModel (Part 2)
	Code Patterns
	Code Critique Competition 71
	Standards Report C++11
	View From The Chair
	Regional Meetings: ACCU London

