

JUL 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Screen Test
e’ve seen your CV, and would like to
progress to the next stage of the
recruitment process. Please complete

this on-line test...’ The business of sifting
candidates for technical jobs becomes ever more
automated.

The idea, of course, is to determine the technical
ability of a candidate prior to investing time and
effort in actually meeting them face to face. In this
way, an employer can assess many candidates
apparently simultaneously, but I do question the worth of
such tests.

The test content is often geared towards knowledge of
technical dark corners, or the ability to spot syntax errors
in (usually poorly formatted) code. Such things are
popular because they are simple to test with a
multiple choice question, and again here the answers
from which to choose may differ by a single ; or the
reversal of const and *. I doubt that being able to
compile code in my head is likely to be of real benefit to
any employer. The difference between testing for a
person’s ability, and just trying to catch them out is often
lost (although not exclusive to automated tests, of course).

It’s also clear that such a test is still not enough; without meeting face to face it’s
impossible to determine whether a candidate will be good for a job or a team. It’s
hard enough even then. I do wonder whether the selection of people to interview
‘properly’ on the basis of these tests is merely filtering for people who are good at
the tests. Do enough of them and the

questions become familiar.

What are your experiences with automated aptitude tests? Do you routinely ask
job candidates to do them? If so, how useful do you find them?

‘W
Volume 23 Issue 3
July 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Giovanni Asproni, Alexander
Demin, Katie Friesen, Francis
Glassborow, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Chris O’Dell, Roger Orr,
Simon Sebright

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JUL 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
23 Inspirational (P)articles

Dr Love introduces Katie
Friesen.

23 Goodbye from the
Conference Chair
Giovanni Asproni takes
his last bow.

24 Code Critique #70
Set and collated by Roger
Orr.

27 Desert Island Books
James Byatt shares the
contents of his suitcase.

29 Mentored Developers
Update
Paul Grenyer outlines the
latest projects.

30 Standards Report: C++0x
Roger Orr brings us up to
date with the latest news.

REGULARS
31 Bookcase

The latest roundup of
book reviews.

32 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.4: 1st August 2011
C Vu 23.5: 1st October 2011

Overload 105:1st September 2011
Overload 106:1st November 2011

FEATURES
3 It’s the Thought That Accounts

Pete Goodliffe encourages us to craft great code. Using
other people.

5 An Analysis of a Game of Divisions
The Baron’s student acquaintance analyses the game.

7 A Game of One Against Many
Baron Muncharris is offered a wager.

8 All from a Telephone Call
Francis Glassborow reflects on the origins of ACCU.

10 An Introduction to the Windows Presentation Foundation with
the Model-View-ViewModel (Part 1)
Paul Grenyer introduces core patterns for WPF
development.

19 One Test or Two?
Chris O’Dell and Paul Grenyer debate the best granularity
for units.

20 Perforce Cross-Platform Patcher
Alexander Demin demonstrates a deployment tool for
Perforce.

22 A Software Experience
Simon Sebright shares his frustrations with popular tools.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 69
It’s The Thought That Accounts
Pete Goodliffe encourages us to craft great code.

Using other people.

Thinking well is wise; planning well, wiser; doing
well, wisest and best of all.

– Persian Proverb

run. Every week. It’s my waistline, you see. Perhaps it’s a guilt thing,
but I do feel I need to do something to keep it under control.

Now, let’s be clear: I’m no masochist. Exercise is not my favourite thing
in the world. Far from it. It definitely ranks above hot pokers being stuck
in my eyes. Marginally. But there are plenty of things I’d rather do with
my evenings. Many of them involve sitting down, preferably with a glass
of wine.

But I know that I should run. It’s good for me.

Is that fact alone enough to ensure I go regularly, every week, for the full
distance? With no slacking or slowing of the pace?

It is not.

I dislike exercise and would gladly employ the weakest of excuses to get
out of a run. ‘Oh no, my running shorts have a loose thread.’ ‘Oh no, I have
a runny nose.’ ‘Oh no, I’m a bit tired.’ ‘Oh no, my leg has fallen off.’

(Ok, some excuses are better than others.)

What unseen force coaxes me to continue running regularly when guilt
alone can’t drag me out the door? What magical power leads me on where
willpower fails?

Accountability.

I run with a friend. That person knows when I’m slacking, and encourages
me out of the house even when I don’t fancy it. They turn up at the door,
as we’d arranged before my lethargy set in. I perform the same kind of
service back. I’ve lost count of the times that I wouldn’t have run, or would
have given up half-way round had I not had someone there, watching me
and running alongside me.

And, as a by-product we enjoy the run more for the company and shared
experience.

Sometimes we both don’t feel like going on the run. Even if we admit it
to each other, we won’t let the other person off the hook. We encourage
each other to push through the pain. And, once we’ve run, we’re always
glad we did it, even if it didn’t feel like a great idea at the time.

Stretch the metaphor
Some metaphors are tenuous literary devices, written to entertain, or for
use as contrived segues. Some are so oblique as to be distracting, or form
such a bad parallel as to be downright misleading.

However, I believe this picture of accountability is directly relevant to the
quality of our code.

For all the good it does technical writers, speakers, and code prophets like
myself to talk about producing good, well-crafted code, and as much as
the luminaries like Uncle Bob Martin extol the (genuine) virtues of ‘clean’
code, and Fowler explains why we need well-factored code, it matters not
one jot if, in the heat of the workplace, we can’t put it into practice. If the
harsh realities of the codeface cause us to shed our development morals
and resort to hacking at code like uninformed idiots, what have we
achieved?

We can complain about the poor state of our codebases, but who can we
look at to blame?

We need to bake into
ou r d eve lo pm en t
regimen ways to avoid
the temptat ion for
shortcuts, bodges and
quick-fixes. We need
something to lure us
ou t o f t he t r ap o f
thoughtless design,
sloppy, easy solutions
and ha l f -baked
practices. The kind of
thing that costs us
effort to do, but that in
r e t ro spec t we ’ r e
always glad we have
done.

The spirit is willing,
but when the deadline
looms, all too often the
flesh is weak.

How do you think we’ll achieve this?

Accountability counts
I know that in my career to date, the single most import thing that has
encouraged me to work to the best of my abilities has been accountability,
to a team of great programmers.

It’s the other coders that make me look good. It’s those other coders that
have made me a better programmer.

Being accountable to other programmers for the quality of your
work will dramatically improve the quality of your coding.

That is a single simple, but powerful idea.

Code++
To ensure you’re crafting excellent code, you need people who are
checking it every step of the way. People who will make sure you’re
working to the best of your ability, and are keeping up to the quality
standard of the project/team you’re working on.

This needn’t be some bureaucratic big-brother process, or a regimented
personal development plan that feeds back directly into your salary. In fact,
it had better not be. A lightweight, low-ceremony system of accountability,
involving no forms, lengthy reviewing sessions or formal reviews is far
superior, and will yield much better results.

Most important is to simply recognise the need for such a thing; to realise
that you must be accountable to other people for the quality of your code
to encourage you to work at your best. To realise that actively putting

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
JUL 2011 | | 3{cvu}

yourself into that vulnerable position of accountability is not a sign of
weakness, but a valuable way to gain feedback and improve your skills.

How accountable do you feel that you currently are for the quality of the
code you produce? Is anyone challenging you to produce high quality
work, to prevent you from slipping into bad, lazy practices?

Accountability is worth pursuing not only in the quality of our code output,
but also in the way we learn, and how we plan our personal development.
It’s even beneficial in matters of character and personal life (but that’s a
whole other magazine’s column).

Making it work
There are some simple ways to build accountability for the quality of code
into your development process. In one development team we found it
particularly useful when the all coders agreed on a simple rule: all code
passed two eyes before entering source control. With this as a peer-agreed
rule, it was our choice to be accountable to one another, rather then some
managerial diktat passed down from faceless suits on high. Grass-roots
buy-in was key to this success of the scheme.

To satisfy the rule, we employed pair programming and/or a low-ceremony
one-on-one code review, keeping each checked-in change small to make
the scheme manageable. Knowing another person was going to scrutinise
your work was enough to foster a resistance to sloppy practise and to
improve the general quality of our code.

If you know that someone else will read and comment on your
code, you’re more likely to write good code.

This practice genuinely improved the quality of the team, too. We all learnt
from one another, and shared our knowledge of the system around. It
encouraged a greater responsibility for and understanding of the system.

We also ended up with closer collaboration as a result, enjoyed working
with each other, and had more fun writing the code as a consequence of
this scheme. The accountability lead to a pleasant, more productive
workflow.

Setting the standard
When building developer accountability into your daily routine it is worth
spending a while considering the benchmark that you’re aiming for. Ask
yourself the following questions:

How is the quality of your work judged? How do people currently rate your
performance? What is the yardstick they use to gauge its quality? How do
you think they should rate it?

 The software works, that’s good enough.

 It was written fast, and released on schedule (internal quality is not
paramount).

 It was well-written, and can be maintained easily in the future.

 Some combination of the above.

Which is seen as most important?

Who currently judges your work? Who is the audience for your work? Is
it only seen by yourself? Your peers? Your superiors? Your manager?
Your customer? How are they qualified to judge the quality of your
handiwork?

Who should be the arbiter of your work quality? Who really knows how
well you’ve performed? How can you get them involved? Is it as simple

as asking them? Does their opinion have any bearing on the company’s
current view of your work’s quality?

Which aspects of your work should be placed under accountability?

 The lines of code you produce?

 The design?

 The conduct and process you used to develop it?

 The way you worked with others?

 The clothes you wore when you did it?

Which aspect matters the most to you at the moment? Where do you need
the most accountability and encouragement to keep improving?

The next steps
If you think that this is important, and something you should start adding
to your work:

 Agree that accountability is a good thing. Commit to it.

 Find someone to become accountable to. Consider making it a
reciprocal arrangement; perhaps involve the entire development
team.

 Consider implementing a simple scheme like the one described
above in your team, where every line of code changed, added or
removed must go past two sets of eyes.

 Agree on how you will work out the accountability – small
meetings, end of week reviews, design meetings, pair programming,
code reviews, etc.

 Commit to a certain quality of work, be prepared to be challenged
on it. Don’t be defensive.

 If this happens team-wide, or project-wide then ensure you have
everyone’s buy-in. Draft a set of team standards or group code of
conduct for quality of development.

Also, consider approaching this from the other side: can you help someone
else out with feedback, encouragement, and accountability? Could you
become another programmer’s moral software compass?

Often this kind of accountability works better in pairs of peers, rather than
in a subordinate relationship.

Conclusion
Accountability between programmers requires a degree of bravery; you
have to be willing to accept criticism. And tactful enough to give it well.
But the benefits can be marked and profound in the quality of code you
create.

Questions
 How are you accountable to others for the quality of your work?

 What should you be held accountable for?

 How do you ensure the work you do today is as good as previous
work?

 How is your current work teaching you and helping you to improve?

 When have you been glad you kept quality up, even when you didn't
feel like it?

 Does accountability only work when you chose to enter into an
accountability relationship, or can it effectively be something you
are required to do?
4 | | JUL 2011{cvu}

A Student’s Analysis # 11
JUL 2011 | | 5{cvu}

An Analysis of a Game of Divisions
The Baron’s student acquaintance analyses the game.

he Baron’s most recent game consisted of a series of some six wagers
upon the toss of an unfair coin that turned up one side nine times out
of twenty and the other eleven times out of twenty at a cost of one

fifth part of a coin. Sir R----- was to wager three coins from his purse upon
the outcome of each toss, freely divided between heads and tails, and was
to return to it twice the value he wagered correctly.

Clearly, our first task in reckoning the fairness of this game is to figure Sir
R-----’s optimal strategy for placing his coins. To do this we shall need to
know his expected winnings in any given round for any given placement
of his coins.

Let us suppose that sir R----- knew that there was a probability p that the
coin was biased towards heads. If he wagered a sum x upon heads he should
therefore have expected to win

since the formula in the first pair of square brackets yields his expected
winnings should the coin have been biased for heads and that in the second
his winnings should it have been biased for tails.

Rearranging this yields

If Sir R----- had no evidence as to which way the coin is biased then p is
trivially equal to one half and his expected winnings should have been 3
coins, no matter how he divided his wager.

If, however, he had evidence that it was biased towards, or indeed away
from, heads then p will differ from one half by some quantity, say q, and
his expected winnings should have been

From this it is evident that if Sir R----- believed the coin to be biased
towards heads, and that q was consequently positive, he should have
wagered as much as possible on heads if he desired the greatest possible
expected winnings.

Likewise, if he believed it to be biased towards tails, and that q was
therefore negative, he should have wagered thusly as little as possible.

Now, because of this we need not figure the actual probability that the coin
is biased towards heads, just which side it is more likely biased towards.
This we can do by simply observing which side has come up the more
often.

To figure the expected winnings over the course of the game we should
therefore assume that Sir R----- would have wagered all of his coins on
whichever side had come up the more often.

If we also assume that he divided his coins equally if each side had come
up the same number of times then we are free to declare which side the
coin is biased towards before we perform our calculations for, whichever
side we choose, the strategy and consequently the workings are the same.
We shall therefore assume that the coin is biased towards heads.

The number of ways in which we can observe some specific numbers of
heads and tails in a series of tosses of a coin is governed by Pascal’s triangle

Here we may consider a move down and to the left as representing a toss
of heads and down and to the right as a toss of tails. The values in each
row are equal to the sum of the values to the left and right of it in the
preceding row.

I made these observations known to the Baron when he described to me
the rules of this game, but I fear I may not have done so with sufficient
clarity.

Now, there is a simple formula, known as a combination, that expresses
these values in terms of the row, say n, and the position in that row, say r,
both of which we start counting from zero.

Note that the exclamation marks do not indicate that we should perform
the calculation with exceptional vigour, but rather stand for the product of
every integer from one up to and including that to its left.

For example, consider the second value in the fifth row

From here it is but a small step to figuring the probability of observing r
heads in n tosses; we simply multiply the number of ways we might do so
by the probability of one such example

In the first round, Sir R-----’s expected winnings would trivially have been
zero, for he would have had no knowledge whatsoever of how the coin was
biased.

If Sir R----- had already played an odd number of rounds, let us say 2n-1,
then one side of the coin must surely have had come up the more often and
his expected winnings should consequently be

 T

3 2 2 3

1 2 2 3

11
20

9
20

9
20

11
20

p x x

p x x() ()

 3 39
10

2
10

11
10

2
10p x p x

3 3

3 3

9
10

2
10

1
2

11
10

2
10

1
2

4
10

() () ()q x q x

q x q

q x

6
10

2
5

1
21()

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

n
rC

n

r n r

!

! ()!

5
2

1 2 3 4 5

1 2 1 2 3

4 5

1 2

20

2
10C

()

() ()

p Cr
n n

r
r n r () ()11

20
9
20

E p

p

n r
n

r n

r
n

n r n

2 1
2 1

0 1

9
20

11
20

2 1

2 1

3 3

()

(()11
20

9
20

3
10

2 1

2 1 3
10

0

3 3

 p p

n r n
r

n

r n

1

2 1

r

n

Note that here the capital sigmas stand for the sum of the expressions to
their right over the integer values satisfying the conditions beneath them.

Now, if Sir R----- had played an even number of games, let us say 2n, there
is the possibility that both sides of the coin had turned up an equal number
of times, giving expected winnings of

There is a surprising relationship between these two formulae, which can
be revealed by multiplying the first by unity!

Specifically, we shall consider the result of the expression

On the face of it this might not seem particularly illuminating, but if we
consider the relationship between our expectation formulae and Pascal’s
triangle, all will become clear.

First, we define

We can then arrange these in a triangle whose rows represent our
expectation formulae.

Obviously we can’t figure the value of an element by simply adding those
either side of it in the row above, but we can exploit the relationships
between these elements.

Let us begin by considering those elements of E2n-1 and E2n for which there
are fewer heads than tails. (See Figure 1.)

Note that to figure the value of an element in the second row, we must
multiply those either side of it in the first row by the probability on the line
between it and the element in question before adding them.

It is self-evident that this is equivalent to those terms in our product for
which there are fewer heads than tails.

Through an identical argument we find that the same is true for terms where
the heads outnumber the tails.

All that remains, therefore, is to figure the term in our product which
corresponds to that in E2n for which there are an equal number of heads
and tails.

Now the formula for combinations is symmetric in r about ½n, which is
plain from inspection of either the formula itself or of Pascal’s triangle.
As a consequence we have

which, to our very great fortune, is exactly the expected winnings we
require!

We can hence assert with full confidence that

and Sir R-----’s expected winnings over the entire contest were determined
by

With sufficiently careful arithmetic, we can show this to be equal to

The game is therefore slightly biased in Sir R-----’s favour and I should
consequently have had no compunction whatsoever in recommending that
he take up the Baron’s wager!

E p p

p

n r
n

r n
n

n

r
n

n r

2
2

0 1

9
20

11
20

2

2

1

3 3 0

 () ()

22

11
20

9
20

3
10

1 2

2 3
10

0

3 3
n

n r n
r

n

r

p p

()

nn
r

n

1

2

E n2 1
9
20

11
20

e pr
n

r
n 3

10

0

0

0

0
1

1
1

0
2

2
2

0
3

1
3

2
3

3
3

0
4

1
4

3
4

4
4

0
5

1
5

2
5

e e

e e

e e e e

e e e e

e e e e33
5

4
5

5
5e e

9
20

2 1 11
20 1

2 1

9
20

3
10

2 1 11
20

3
10 1

2 1

e e

p p

n
n

n
n

n
n

n
n

99
20

3
10

2 1 9
20

1 11
20

11
20

3
10

2 1
1

9
20

n
n

n n

n
n

n

C

C 111
20

1

3
10

2 1 9
20

11
20

3
10

2 1 9
20

11
2

n

n
n

n n

n
n

n

C

C 00

0

n

E En n2 1 2

2 21 3 5 E E E

2 23
100

897
20 000

447 009
8 000 000

1 644 609
8 000 000

1 6

,

,
, ,

, ,
, ,

, 000 000
8 000 000

44 609
8 000 000

1
5

44 609
8 000 000

,
, ,

,
, ,

,
, ,

e e e e

e

n n
n

n
n

n

n

0
2 1

1
2 1

2
2 1

1
2 1

9
20

11
20

9
20

11
20

9
20

0
2

...

ee en
n

n
1
2

1
2

Fi
gu

re
 1
6 | | JUL 2011{cvu}

JUL 2011 | | 7{cvu}

A Game of One Against Many
Baron Muncharris is offered a wager.

ir R-----! Might I presume that you are of a mood for a glass and a
wager?

Good fellow! Stout fellow! Come join me in a draught!

I suggest a game oft played in the fair land of Lyonesse which, contrary
to historical record, has not forever sunk beneath the waves, but has rather
through some oversight been quite forgot in all our atlases.

I had been invited to banquet with the King of that fair and fecund realm,
but arrived to find his court in disarray; the Queen had been stolen away
by the foul Lord Maleagant!

Naturally, I immediately put myself at my host’s disposal and set off to
rescue his fair bride.

Being a coward of the lowest order, Maleagant put not his security in the
honest strength of arms but rather in the utter impenetrability of his
fortress, built atop a vertiginous tower of rock off the coast of Kernow by
the most deviously minded Masons in the land.

That he put his faith in stone over flesh and blood ultimately worked to
my advantage; once inside his fortress I had no trouble seeing off his guards
and making my way to his throne room.

To no great surprise he too proved himself an unworthy adversary. In the
work of moments I had scored a deep cut upon his forehead, blinding him
with his blood and denying him the ability to prosecute a duel.

As might be expected from a fellow of such calibre he took his defeat
poorly. As I left with his hostage I heard him crying out ‘curses be upon
you!’ and ‘plague your eyes!’

The celebration of the return of the Queen was lavish beyond measure and
I spent many a contented hour in wine and wager with the good folk of the
court.

Upon my departure I was rewarded with a lavish bowl which, albeit a little
wine stained, has proven a most decorous receptacle for fruits and nuts
upon my dining table.

But here I have not told you of the nature of their sport!

Your goal is to cast a greater score upon your die than I do upon mine. Your
stake will be seven coins and your prize, should you best my score, shall
be thirteen.

You shall cast first and, should you be dissatisfied with your score, may
elect to cast the die again for the price of a further coin. If this neither meets
your satisfaction you may have a third cast for two more coins and so on
and so forth, with each cast costing one coin more than the last, until you
are content.

I shall have but a single cast of my die once you have declared that you
are satisfied with your score and, if I cannot equal or best you, you shall
have your prize.

If you do not relish the prospect of trying to best a die that I have not yet
cast and you are willing to stake one additional coin I shall instead cast
before you commence your play.

Upon learning the rules of this game, that damnable cur of a student of
whose acquaintance I am cursed announced with uncharacteristic candour
that he had come to realise that his work was backward. Now I have long
since recognised that he stands some several leagues behind gentlefolk in
every matter of worth, but I was so struck by his honesty that the notion
to remark on it quite escaped me.

But you can surely have no interest in news of that wretch’s slowly
dawning awareness of his station; recharge your glass and name your
sport!

 S

Baron Muncharris # 12

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

int
roll()
{
 return 1 + int(6.0 * double(rand()) /
 (double(RAND_MAX)+1.0));
}

void
play_first()
{
 static const int stake = 7;
 static const int prize = 13;

 int balance = -stake;
 int cost = 0;
 int r_roll;

 char again = 'Y';
 while(toupper(again)=='Y')
 {
 balance -= cost++;
 r_roll = roll();

 std::cout << "You rolled a "
 << r_roll << "! ";
 std::cout << "Balance = "
 << balance << std::endl;

 again = '\0';
 while(toupper(again)!=
 'Y' && toupper(again)!='N')
 {
 std::cout << "Roll again for "
 << cost << " coins? [Y/N] : ";
 std::cin >> again;
 std::cin.ignore(std::numeric_limits<int>
 ::max(), '\n');
 }
 }

 const int b_roll = roll();
 std::cout << "The Baron rolled a "
 << b_roll << "!" << std::endl;

 if(b_roll<r_roll) balance += prize;

 if(balance>=0.0) std::cout << "You won "
 << balance;
 else if(balance<0.0) std::cout << "You lost "
 << -balance;
 std::cout << " coins!" << std::endl;
}

Listing 1

All from a Telephone Call
Francis Glassborow reflects on the origins of ACCU.

uring my life I have noticed several times when I have done
something that was, at the time, apparently of little importance but
that hindsight shows to have been a critical turning point in my life.

This article is about one such event and some of the consequences.

In early summer of 1988 I was browsing through the small ads column of
PC World when I noticed an advert for the C User Group (UK).
Membership was £10 for six issues of its newsletter, C Vu. I had recently
tried a little programming in C, adding it to various other programming
languages I had already taught myself.

I thought that the user group might be interesting and possibly some of my
more able pupils would be interested. I sent off a cheque for £10 and a few
days later received a copy of issue 4. It was fairly typical of such
publications and included quite a lot of material reprinted from elsewhere.

The Summer term ended, the Summer holidays came and went and my
time as a teacher was clearly coming to an end. Stress related ill health
meant that I was going through the process of being retired early. Some
time in early November I came across the copy of C Vu and wondered why
I had not had another one. I thought that probably the group had folded as
so many enthusiast groups do. However, I noticed that there was a contact
name and telephone number under the editorial and decided to ring. The
telephone call was fortuitous because the organiser, Martin Houston, was
thinking about arranging a meeting of the members to decide what to do
with CUG(UK) (the (UK) part was important to distinguish it from the US
based C Users Group that had a publication called The C Users Journal
which eventually became a commercial publication that took over the
CUG).

I learnt from the phone call that I had not actually missed any issues of
C Vu and that issue 5 was going to press in the next
couple of weeks. More important was that I had a
conversation with Martin Houston and because of
that decided to go to the meeting when it was
arranged.

I am certain if issue 5 had come out a few weeks
earlier or I had delayed the telephone call a couple
of weeks I would not have gone to that meeting.
However, I made the call and learnt of the
meeting, so despite the things happening in my professional life I turned
up.

There were a couple of dozen people at the meeting, which was a pretty
good turnout for a Saturday afternoon. The main topic was what we should
do with CUG(UK). It was clear that there was some enthusiasm. I
suggested that we had about the right number of people to form a
committee and parcel out the various necessary jobs. I finished up as
Membership Secretary.

It was clear to me that C Vu needed original content and a regular
publication schedule. I suggested that we make it a quarterly. That was
agreed as were deadlines and publication dates for the year.

Over the next few months the membership grew quite considerably mainly
because I managed to get free stand space at a number of computer events.
However the second of the scheduled issues of C Vu was late and as we

had arranged an AGM to confirm a constitution, elect officers and a
committee, I did not fancy turning up to the meeting and explaining to the
membership why they had not yet had the summer issue of C Vu (Volume
2 issue 2). I can remember a somewhat acrimonious telephone call to
Martin (who was now the Chairman) the consequence of which was that
he hastily photocopied enough copies give to the attendees. The first AGM
started late because Martin was still stapling the copies when we were
scheduled to start.

I then learnt that the next issue of C Vu would be very late because the
editor would not be in the country at the time it was scheduled to be
published. Rather than complain I made the Committee an offer that they
could hardly refuse. I stuck my neck out and offered to become editor of
C Vu. I guaranteed that there would be at least 32 pages of original material
even if I had to write it all myself. Furthermore I upped the frequency to
bi-monthly.

In fact the smallest issue I ever published was 48 pages in A5 format and
over the following years the font size went down and the line spacing
shrank so that I could get the material into an issue without too high a page
count.

When I learnt something about C++ it seemed clear to me that I should be
publishing articles on that as well. I then learnt of
a recently formed group called the European C++
User Group that intended to run high quality low
cost conferences. In the event only one was ever
held (in Munich). I attended that first conference
as a speaker and gave a truly awful presentation
on the uses of classes with only private
constructors and destructors. The subject was fine,
I just had no experience of presenting a paper at
an academic conference.

When EC++UG clearly could not maintain impetus CUG(UK) absorbed
its membership and soon after re-badged itself as ‘The Association of C
and C++ Users’.

I then learnt that a group of enthusiasts were intending to create a Borland
C++ User Group with a publication called Overload. I saw this as a golden
opportunity to develop the C++ side of ACCU. After some fairly difficult
negotiations we persuaded the Borland enthusiasts to join ACCU and make
Overload a second ACCU publication.

I still had in the back of my mind that EC++UG had intended to run
conferences, so when WG21 (ISO C++ Standards Work Group) were due
to hold their second London meeting (1997) I saw that as an opportunity
to hold a small, low cost conference. It was a two day event in Oxford Town
Hall with several tracks on the first day and a single track on the Saturday.
I do not recall the details of the Friday but the speakers on Saturday were
Bjarne Stroustrup, Dan Saks, Tom Plum and Bill Plauger. The event was
a great success and has steadily grown over the years to become the
wonderful event that it is today.

Now all that, and much more that I have left out, came from a single timely
telephone call. But much more happened to me personally. As a result of
the inaugural meeting I met Neil Martin and learnt about the BSI panels

 D

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.

It was clear to me that
C Vu needed original
content and a regular
publication schedule

A single telephone call directed
my life down paths that I would

not have imagined 23 years ago
8 | | JUL 2011{cvu}

and started attending the C and C++ Panel meetings. That led me to attend
the first London meeting of WG21 where I met Bjarne Stroustrup. From
that grew my involvement with both WG14 (C) and WG21 (C++). I have
met many people and gone to many places as a result of that involvement.

As a result of my being editor of C Vu I was
offered a column in .EXE Magazine for which I
was actually paid. That column expanded from an
original 500 words (and the editor, Will Watts,
insisted that it was 500+/ 3) and eventually grew
to 2000 words. The early days of that column were
a great learning experience. Delivering 500 words
every month was an excellent discipline and
throughout the 100 columns that I wrote, I only
had the editor require a rewrite once. When the
news arrived that .EXE was going out of publication I had just delivered
my 100th column (yes, I take some pride in that, as I was the only columnist
for .EXE that managed 100 columns).

As a result of my writing for .EXE I was asked to present training courses
on C and C++.

I suspect that some of the detail above may be slightly wrong and if any
one likes to correct it I would be very happy for them to do so. I would
also love to know about CUG(UK) before 1988. I know the group was
founded in 1987 and I think that there was a prior group but have never
been able to find out more. Perhaps our new Treasurer knows a little more
than I do about those early days. (It is a sign of the strength of ACCU that

someone from its first year of existence should step forward to take office
24 years later.)

A single telephone call directed my life down paths that I would not have
imagined 23 years ago. I am grateful for all the help over the years from

too many people to mention. I know that
CUG(UK)/ACCU changed my life and has given
me a great deal in my retirement from teaching.
All I can say is that without that phone call my life
over the last two decades would have been very
different.

Finally, I wonder how many other people have had
their lives changed by ACCU. I hope there are
some and that the changes have been positive
ones. If ACCU changed your life please put

fingers to keyboard and share with us.

I wonder how many
other people have had
their lives changed by

ACCU

If you read something in C Vu that you
particularly enjoyed, you disagreed
with or that has just made you think,
why not put pen to paper (or finger to
keyboard) and tell us about it?
JUL 2011 | | 9{cvu}

An Introduction to the Windows
Presentation Foundation with the Model-
View-ViewModel (Part 1)

Paul Grenyer introduces core patterns for WPF development.

fter three wonderful years working with Java I am back in the C#
arena and amazed by how things have changed. When I was working
with C# previously it was with .Net 1.1 and as I return .Net 4 is ready

to go. I started a new contract and my client suggested that to get ahead of
the game I should learn Windows Presentation Foundation (WPF), the
latest Microsoft framework for creating Windows desktop (and web)
applications. It replaces the likes of Windows Forms on the desktop. Two
of the major features of WPF are that it is rendered entirely on a computer’s
graphics card and separates presentation from presentation logic.

Manning is my preferred technical book publisher, so I bought the PDF
version of WPF In Action with Visual Studio 2008 [1] and read it on my
Kindle. It is a great introduction to
producing Graphical User Interfaces
(GUIs) with WPF, but I later discovered
that although MODEL-VIEW-VIEWMODEL

(MVVM) is covered, the detail is not
great. The MVVM pattern is similar to
Martin Fowler’s PRESENTATION MODEL

[2], but where the presentation model is a
means of creat ing a UI platform-
independent abstraction of a view,
MVVM is a standardised way to leverage
core features of WPF to simplify the
creation of user interfaces. Fortunately
there is a great MSDN Magazine article
called ‘WPF Apps With The Model-View-ViewModel Design Pattern’ [3]
that explains it simply and in a fair amount of detail.

Canon
Canon – Any comprehensive list of books within a field.

~ dictionary.com

To demonstrate WPF with MVVM I am going to incrementally develop
a small application which allows the user to search an archive of books.
The application is called Canon and the source code [4] is available for
download from my website. I developed Canon using Visual Studio 2010
and .Net 4, but WPF applications can also be created with Visual Studio
2008 and .Net 3.5. I have assumed that the reader is following along.

Fire up Visual Studio and create a new WPF Application called Canon.
Build and run the application to make sure everything works correctly, and
you should see a very simple window like the one shown in Figure 1.

As with any normal window you should be able to minimise, maximise,
resize and close it.

If you take a look at the project structure in Visual studio you’ll see there
appear to be just two source files, App.xaml and MainWindow.xaml.

Actually there are four source files. If you use the arrow next to each file
to expand it you will see that each .xaml file has a corresponding .cs
file: App.xaml.cs and MainWindow.xaml.cs. I’ll explain the
relationship between all four files shortly, but first I want to put all views
into a View folder and the view namespace. In Visual Studio, create a
project level folder called View and move MainWindow.xaml into it.

MainWindow.xaml.cs will come along with it. Then go into
MainWindow.xaml.cs and change the namespace from Canon to
Canon.View. Then go into MainWindow.xaml and modify the
x:Class attribute of the Window element so that it reads as shown in
Listing 1.

Finally go into App.xaml and modify the StartupUri attribute of the
Application element so that it reads as shown in Listing 2.

If you made all of these modifications correctly you should get the same
window again when you build and run the application. Now is a good time
to add the project to source control as we will only be adding to the
structure from now on, rather than changing it.

 A

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder of the
Mentored Developers. Having worked in industries as diverse as
direct mail, mobile phones and finance, Paul now works for a
small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com

Figure 1

As with most Visual Studio solutions you need to ensure you check in
all source files, and not binaries or other build artefacts. Source file
include the .xaml and .xaml.cs files.

Adding WPF Applications to Source Control

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow"
 Height="350"
 Width="525">

<Application x:Class="Canon.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="View/MainWindow.xaml">

Listing 1
Listing 2
10 | | JUL 2011{cvu}

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/20
 xmlns:x="http://schemas.microsoft.com/winfx/
 Title="MainWindow"
 Height="350"
 Width="525">
 <Grid>

 </Grid>

</Window>

Li
st

in
g

5

<Application x:Class="Canon.App"
 xmlns="http://schemas.microsoft.com/win
 xmlns:x="http://schemas.microsoft.com/w
 StartupUri="View/MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>

</Application>

Li
st

in
g

3

namespace Canon
{
 public partial class App : Application
 {
 }

}

Li
st

in
g

4

namespace Canon.View
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }

}

Li
st

in
g

6

<Application x:Class="Canon.App"
 xmlns="http://schemas.microsoft.com/win
 xmlns:x="http://schemas.microsoft.com/w
...

</Application>

Li
st

in
g

7

public partial class App
{
 public App()
 {
 new MainWindow().Show();
 }

}

Li
st

in
g

8

06/xaml/presentation"
2006/xaml"

WPF project structure
WPF uses XAML (pronounced
zammel) , which s tands for
eXtensible Application Markup
Language , to l ay ou t User
Interfaces (UIs). As we’ve seen all
.xaml files have a corresponding
xml.cs source file file. In most
cases anything that can be defined
in XAML can also be written in

C# and vice-versa. Both files define the same class. It is not required to
have both files, but in most projects there are some things you’ll want to
do in XAML and others in C#.

Let’s start by taking a look at WPF’s equivalent to main, App.xml and
App.xml.cs, starting with App.xml (see Listing 3).

App.xml defines the WPF application with the Application element.
The first attribute, x:Class, specifies the namespace and name of the
corresponding class, which is defined in App.xml.cs. The next two
attributes bring in the necessary namespaces for XAML and the
StartupUri attribute specifies the path to the main window’s XAML
file. The main window is the first window displayed by the application on

s t a r t -up . The
Application.Resource
elements are for declar ing
resources for use within the
application. WPF In Action
contains an explanation and
several examples of how and
when they can be useful. We’ll
have a look at resources later
when we want to load images into
the Canon application. (Listing 4)

App.xaml.cs defines the C#
part of the application class. As you can see the class name and namespace
correspond to the name and namespace defined in the x:Class attribute
of the Application element. The App class is partial. Part of it is defined
in XAML, including the inheritance from the Application class, and
part in C#. The App class does not have any fields or values as it is currently
completely defined in XAML. We’ll want to change this shortly when we
inject a view model.

Now that we understand how a WPF application is defined let’s take a look
at how a window is defined by examining MainWindow.xaml and
MainWindow.xaml.cs. MainWindow.xaml is in the View folder
we created earlier. Its name and location correspond to the value of the
StartupUri attribute in the Application element in App.xaml.
Therefore it is the first window that will be displayed. (Listing 5)

In the Window element the x:Class attribute specifies the name and
namespace of the corresponding C# class and the next two elements bring

in the XAML namespaces. The
Title attribute specifies the title
that is displayed in the window
and the Height and Width
attributes specify the height and
width of the window. The Grid
element declares the type of

layout that the window will use to display its controls. I’ll explain more
about layouts when we create the UI controls later. (Listing 6)

MainWindow.xaml.cs defines the code behind the window. The class
name and namespace correspond to the name and namespace defined in
the x:Class attribute of the Window. The MainWindow class is partial
as part of it is defined in XAML – including inheritance from the Window
class – and part in C#. Inheriting from Window in the source file is
therefore redundant and can be removed. The MainWindow class’s only
member is a constructor which calls InitializeComponents.
InitializeComponents behaves in exactly the same way as it does in

fx/2006/xaml/presentation"
infx/2006/xaml"

fx/2006/xaml/presentation"
infx/2006/xaml">
JUL 2011 | | 11{cvu}

a Windows Forms application and
initialises the components defined in
MainWindow.xaml.

Injecting a viewmodel
Before we can inject a view model into a
view we need an instance of a view to
inject it into. To get the instance of the
main window you can remove the
StartupUri attribute (Listing 7), add a
constructor to the App class and instantiate
an instance of the view there instead. To
actually display the main window you need to call Show on it. (Listing 8)

If you run the application again now (you need to add:

 using Canon.View;

of course), you will see exactly the same window. All we’ve done is move
the creation of the first window from XAML to C#. Now we have an
instance of a window to inject a view model into.

A view model need be nothing more complex than a normal class. It does
not require any special base class, interfaces or members. It’s just about
the data. Create a project level folder called ViewModel and create the
class shown in Listing 9 in it (don’t forget to add it source control).

Every WPF view has a DataContext property of type object. This
property is null unless a view model is injected into the view. When a view
model is injected WPF sees that DataContext is no longer null and uses
it. We’ll cover an example of simple binding shortly. The DataContext
property is also available within the view. This means the view knows
about the view model it has, but the view model continues to know nothing
about the view that's using it. You can Inject the view model into the
view by creating an instance of it and setting the DataContext property
on the view (see Listing 10).

If you run the application again there will be no difference. Something in
the view must be bound to a property in the model to see a difference in
the UI.

A slight case of over binding
Binding is the WPF way of transferring values between a UI component
and a property in a view model. It can be very simple or quite complex.
Binding is explained in quite a lot of detail in WPF in Action1.

I think the best way to demonstrate binding is with a simple example. In
this one we’ll bind the main window’s title to a property in the view model.
Let’s start off by adding the property to the view model, as shown in
Listing 11.

Once the binding is in place the main window will display the string
returned by the AppTitle property. To bind the window title to the
property we have to modify the Title attribute of the Window element
in MainWindow.xml from Listing 12 to Listing 13.

The curly braces tell WPF that we do not want to display the literal value.
The key word Binding tells WPF we want to bind to a property in the
view’s view model and AppTitle is the name of that property. Remember
that the x:Class attribute specifies a C# class and WPF knows it can bind
to that class’s DataContext property. If you run the application again
now, you will see that the main window’s title displays ‘Canon’ instead
of ‘MainWindow’.

The Canon model
Now that we have a view and a view model, we need a book model for
our archive. (See Listing 14)

This simple Book class contains a unique nullable id for each book, its title,
author, publisher and ISBN. If a Book instance is created with a null id it
means that it is a new book. If the id has a value it means that the book has
been saved before. (See Listing 15)

The book repository interface, IBookRepository, contains two simple
persistence methods, Search for searching for books and Save for saving
books. Create a project level folder called Model and add the Book class
and the IBookRepository interface to it. The view model will make use
of the interface so add it as a field and a constructor parameter, as shown
in Listing 16.

This of course will prevent the project from building. To get it building
again we need an implementing instance of IBookRepository to pass

public class MainWindowViewModel
{
 public string AppTitle
 {
 get
 {
 return "Canon";
 }
 }

}

Li
st

in
g

11

public partial class App
{
 public App()
 {
 new MainWindow
 {
 DataContext = new MainWindowViewModel()
 }.Show();
 }

}

Li
st

in
g

10

namespace Canon.ViewModel
{
 public class MainWindowViewModel
 {
 }

}

Li
st

in
g

9

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">

Listing 12

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding AppTitle}" Height="350" Width="525">

Listing 13

The SimpleBookRepository mock object is fairly straight forward.
It persists a list of books in the books list.

If the SearchFields method returns true the Search method
knows it’s found a matching book, stops iterating through the books and
returns the current book. Of course there might be multiple matches, but
the Search method only returns the first match.

The Save method can both update existing books and save new ones.
New books are identified as having a null Id. If the book being saved has
an id and is already in the book list, it is removed. This may seem a little
odd. However, if the existing book is just added to book list it will be in
there twice. Also remember that books are compared for equality by
their ids. By the time the bottom of the Save method is reached the book
has an id and does not exist in the book list, so it can be added without
fear of duplication.

SimpleBookRepository
12 | | JUL 2011{cvu}

JUL 2011 | | 13{cvu}

namespace Canon.Model
{
 public class Book
 {
 public long? Id { get; set; }
 public string Title { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 public string ISBN { get; set; }

 public Book()
 {
 Title = string.Empty;
 Author = string.Empty;
 Publisher = string.Empty;
 ISBN = string.Empty;
 }

 public override bool Equals(object obj)
 {
 if (ReferenceEquals(null, obj))
 return false;
 if (obj.GetType() != typeof(Book))
 return false;
 return Equals((Book)obj);
 }

 public bool Equals(Book other)
 {
 if (ReferenceEquals(null, other))
 return false;
 return Equals(Id, other.Id);
 }

 public override int GetHashCode()
 {
 return Id.GetHashCode();
 }
 }

}

Li
st

in
g

14

namespace Canon.Model
{
 public interface IBookRepository
 {
 Book Search(string searchTest);
 Book Save(Book book);
 }

}

Li
st

in
g

15

public class MainWindowViewModel
{
 private readonly IBookRepository repo;

 public MainWindowViewModel
 (IBookRepository repo)
 {
 this.repo = repo;
 }
 ...

}

Li
st

in
g

16

public class SimpleBookRepository :
IBookRepository
{
 private readonly IList<Book> books
 = new List<Book>();
 public SimpleBookRepository()
 {
 Save(new Book { Title = "Redemption Ark",
 Author = "Alistair Reynolds",
 Publisher = "Gollancz",
 ISBN = "978-0575083103" });
 Save(new Book { Title = "The C++ Standard
 Library",
 Author = "Nico Josuttis",
 Publisher = "Addison Wesley",
 ISBN = "978-0201379266" });
 }
 public Book Search(string searchtext)
 {
 Book foundBook = null;
 foreach (var book in books)
 {
 if (SearchFields(book, searchtext))
 {
 foundBook = book;
 break;
 }
 }
 return foundBook;
 }

 public Book Save(Book book)
 {
 if (!book.Id.HasValue)
 {
 book.Id = getNextId();
 }
 else if (books.Contains(book))
 {
 books.Remove(book);
 }
 books.Add(book);
 return book;
 }

 private long getNextId()
 {
 long id = 0;
 foreach (var book in books)
 {
 id = Math.Max(book.Id.Value, id);
 }
 return id + 1;
 }

 private static bool SearchFields(Book book,
 string searchText)
 {
 searchText = searchText.ToLower();
 return
 book.Title.ToLower().Contains(searchText)
 ||
 book.Author.ToLower().Contains(searchText)
 ||
 book.Publisher.ToLower()
 .Contains(searchText) ||
 book.ISBN.ToLower().Contains(searchText);
 }

}

Listing 17

to MainWindowViewModel’s constructor. For this I knocked up a
memory based mock implementation. (See Listing 17)

A SimpleBookRepository instance can be injected into the main
window view mode as shown in Listing 18, and the project will build again.
However there’s still no change in the main window when the application
is run.

Building the user interface
Next we need a UI to manipulate the model. Figure 2 shows a very simple
UI that can be knocked up with a few lines of XAML.

The first thing you might notice is that the Canon UI is smaller than the
default window pictured in Figure 1. This is because I modified the
Window element in MainWindow.xaml to specify a starting height and
width and a minimum height and width (Listing 19).

The window starts with a height of 200 and a width of 450 and can be
expanded, however it cannot be contracted below 200 high and 450 wide.
You’re probably thinking that I could have just specified the minimums
and you're right, I could have. However, the window would have started
off somewhat bigger to begin with. Play around with different sizes until
you get a feel for it.

WPF uses layouts for arranging controls on a UI. WPF layouts are a little
bit like Java layouts. The window in
Figure 2 consists of a DockPanel
l a y o u t , a Grid l a y o u t a nd a
StackPanel layout. A DockPanel
consists of five sections, top, bottom, left,
right and centre. A section is only visible
if a component is put into it. For example
you could have a window with a tool bar
across the top, a status bar at the bottom,
an explorer view to the left, a help view
to the right and a text editor in the middle.
The Canon UI has a toolbar at the top that
holds a StackPanel (another type of
layout we’ll look at in a minute) which in
turn holds the search box and search
button. The remaining space in the
DockPanel, the centre section which
gets the components added last to the
DockPanel, holds a Grid layout with
the rest of the UI components. To create
a DockPanel simply declare it as a child
element of the Window element (see
Listing 20).

Next we want to add a tool bar and tell the
DockPanel that we want to display it at the top (Listing 21).

Tool bars usually sit within a ToolBarTray which helps give them the
usual Windows look and feel and can host multiple tool bars. To insert the
ToolBarTray into the DockPanel you just make it a child element.
You’ll notice that the ToolBarTray inherits the DockPanel.Dock
attribute from its parent and uses it to specify that the ToolBarTray
should be displayed at the top. Child controls inheriting properties from
their parents is a common occurrence throughout WPF and makes for far
less verbose XAML. WPF In Action discusses this in more detail [2]. The
ToolBar is a child of the ToolBarTray.

If you run the application again now you will see that the toolbar takes over
the whole client area of the window. We only want it to be a thin strip across
the top and we want the rest of the area to be a Grid layout. All we have
to do is add a Grid to the DockPanel (Listing 22).

I’ll discuss the Grid layout in more detail once we’ve completed the
toolbar, but I wanted you to be able to run the application and see the
toolbar across the top of the window and the empty Grid in the remaining
client area. You’ll notice that the dock position is not specified for the
Grid. You can only specify a dock position of Top, Bottom, Left or
Right. Any panel or control that does not have a dock position specified
is placed in the centre section of the DockPanel. Child ordering effects

public partial class App
{
 public App()
 {
 new MainWindow
 {
 DataContext = new MainWindowViewModel(
 new SimpleBookRepository())
 }.Show();
 }

}

Li
st

in
g

18

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding AppTitle}"
 MinHeight="200"
 Height="200"
 MinWidth="450"

 Width="450">

Li
st

in
g

19

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding AppTitle}"
 MinHeight="200"
 Height="200"
 MinWidth="450"
 Width="450">
 <DockPanel>

 </DockPanel>

</Window>

Li
st

in
g

20

<DockPanel>
 <ToolBarTray DockPanel.Dock="Top">
 <ToolBar>

 </ToolBar>
 </ToolBarTray>

</DockPanel>

Li
st

in
g

21

<DockPanel>
 <ToolBarTray DockPanel.Dock="Top">
 <ToolBar>

 </ToolBar>
 </ToolBarTray>
 <Grid>

 </Grid>

</DockPanel>

Li
st

in
g

22
Figure 2
14 | | JUL 2011{cvu}

positioning because the DockPanel iterates through its child elements in
order, setting the position of each element depending on remaining space.

The toolbar consists of a text box that is used to enter a title, author,
publisher or ISBN number to search for and a button to initiate the search.
These can be placed directly into the ToolBar, but using StackPanel
creates a better looking layout (Listing 23).

A StackPanel stacks its children horizontally or vertically. This is ideal
for us as we want to group the text box and button together in the tool bar.
We want them horizontally, so we set the Orientation attribute to
Horizontal. The Vertical orientation could also be used, but that
would look rather odd. To add a TextBox and a Button to the
StackPanel, just declare them as children. Both controls have a Margin
attribute which puts a border around the outside of each control. Each
comma delimited number specifies the spacing around the top, left, bottom
and right of the control in that order. The text box’s Width attribute speaks
for itself. Without it the text box would be very narrow and would grow
as content was typed into it. Setting the width gives it a sensible starting
width and maintains it. The button’s IsDefault attribute is also set to
true as we want the search button to be the default action. The text box’s

label is specified between the open and closing
elements. This is also quite common for WPF
controls. If you run the application you can
enter text into the text box and click the button.
The button does not do anything yet as it does
not have a command associated, I’ll discuss
commands in the next section.

So far we’ve looked at the DockPanel and
StackPanel layouts. These are two of the
most important WPF layouts, but by far the

most useful and therefore the most commonly used layout is the Grid
layout. It has rows and columns like any other grid and allows you to to
put any control in any sell or across many cells. In most cases rows and
columns are defined using RowDefinition and ColumnDefinition
elements (Listing 24).

Rows and columns can be defined just by placing the appropriate empty
element (e.g. <RowDefinition/>) in the appropriate section. This
would give the rows and columns a default height and width and is almost
certainly not what you want.

Setting the RowDefinition Height attribute to auto will adjust the
height of the row to match the controls contained in each cell. This is ideal
as all the rows in the Canon UI contain a label and a text box and are
therefore all the same height.

The first column contains the labels for all of a book’s fields and the second
column holds the text boxes for the values of the fields. The
cells in the first column should all be the same width as the
longest label. To achieve this we set the Grid’s
IsSharedSizeScope attribute to true (the default is
false) and set the first ColumnDefinition’s
SharedSizeGroup attribute. The name given to it is
unimportant. If we had more than one column that we
wanted to be the same width, we’d specify the same name
in all of those columns. Without using shared size scoping
we’d have to set a specific width for the column. We want
the second column to take up the remainder of the UI’s
width, so we set its Width attribute value to an asterisk to
tell it to stretch out as far as it can. All that’s left is to put
the controls into the cells (Listing 25).

As you can see, each Label and TextBox has a
Grid.Column and Grid.Row attribute that specifies its
position in the Grid. As with a Button, the text for the
Labels is specified between the opening and closing
Label elements. Each of the text boxes also has a Margin
set so that there is a reasonable gap between each of them.

Commands
The search text box and search button are closely related

(but not coupled!). A user won’t see the result of their search until they
have typed something into the text box and clicked the button. The button
shouldn’t really be enabled unless there is content in the text box. To
achieve this, we need to bind the text box to a property in the view model
and bind the button to a command. I’ll explain a bit more about WPF
commands in a moment. To bind the search text box to a property in the
view model, we first need the property:

 public class MainWindowViewModel
 {
 public string SearchText { get; set; }
 ...
 }

and then add a bound text attribute:

 <TextBox Margin="5,5,5,5" Width="150"
 Text="{Binding SearchText"/>

As with the AppTitle binding, TextBox binding is a simple case of
using curly braces, the Binding keyword and the name of the property

<ToolBarTray DockPanel.Dock="Top">
 <ToolBar>
 <StackPanel Orientation="Horizontal">
 <TextBox Margin="5,5,5,5" Width="150"/>
 <Button Margin="5,5,5,5" IsDefault="True">Search</Button>
 </StackPanel>
 </ToolBar>

</ToolBarTray>

Li
st

in
g

23

<Grid IsSharedSizeScope="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="A"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

</Grid>

Li
st

in
g

24

<Grid IsSharedSizeScope="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition SharedSizeGroup="A"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Label Grid.Column="0" Grid.Row="0">Title:</Label>
 <TextBox Grid.Column="1" Grid.Row="0" Margin="5,5,5,5"/>
 <Label Grid.Column="0" Grid.Row="1">Author:</Label>
 <TextBox Grid.Column="1" Grid.Row="1" Margin="5,5,5,5"/>
 <Label Grid.Column="0" Grid.Row="2">Publisher:</Label>
 <TextBox Grid.Column="1" Grid.Row="2" Margin="5,5,5,5"/>
 <Label Grid.Column="0" Grid.Row="3">ISBN:</Label>
 <TextBox Grid.Column="1" Grid.Row="3" Margin="5,5,5,5"/>

</Grid>

Li
st

in
g

25
JUL 2011 | | 15{cvu}

to bind too. The one difference is that the SearchText property has both
a getter and setter. This means that as well as the value of SearchText
being displayed in the search TextBox, any change to the search
TextBox by the user is also written to the SearchText property. This
is two way binding and is worked out by WPF automatically.

WPF has a version of the COMMAND PATTERN [5]. WPF In Action
describes WPF’s implementation of the command pattern in detail and
WPF Apps With The Model-View-ViewModel Design Pattern describes
an ICommand based implementation that can be bound when using
MVVM3. What we’re interested in is binding a button to a command so
that we can perform an action when that button is pressed and telling that
button whether it should be enabled or not. Listing 26 is the WPF Apps
With The Model-View-ViewModel Design Pattern implementation.

Showing how it is used should provide enough explanation of it for our
purposes. If you want to understand it in more detail see WPF Apps With
The Model-View-ViewModel Design Pattern. Some people recommend
lazy loading RelayCommand objects (Listing 27) but I really don’t see
the need. It’s a lot of extra code, including a null check and the property
is accessed as soon as the window is displayed and bound anyway. So I
just do this what you can see in Listing 28.

The getter of the RunSearch property is public so that it can be bound
to, but the setter is private so that it can only be set internally. The
RelayCommand object itself is created in the view model constructor:

 RunSearch = new RelayCommand(o => Search(),

 o => canSearch());

Take another look at the RelayCommand’s two parameter constructor:

 public RelayCommand(Action<object> execute,
 Predicate<object> canExecute)

The first parameter is an Action delegate, which encapsulates a method
that has a single parameter and does not return a value. A lambda
expression is used to specify the method to call when the command is
executed. As it’s a delegate you could do all sorts of in-line command
implementations, but I find it clearer to delegate to another method. The
second parameter is a Predicate delegate, which represents a method
that defines a set of criteria and determines whether the specified object
meets those criteria. A lambda expression is used to specify a method that
determines whether the command should be enabled. (The o parameter is
ignored as it is not needed in this scenario). To determine if the command
should be enabled, we look to see if SearchText is not null or is empty:

 private bool canSearch()
 {
 return !string.IsNullOrEmpty(SearchText);
 }

The next stage is to bind the command to the button. This is achieved by
by adding a Command attribute to the search Button element:

 <Button Margin="5,5,5,5" IsDefault="True"
 Command="{Binding RunSearch}">Search</Button>

public class RelayCommand : ICommand
{
 private readonly Action<object> execute;
 private readonly Predicate<object> canExecute;

 public RelayCommand(Action<object> execute)
 : this(execute, null)
 {}

 public RelayCommand(Action<object> execute,
 Predicate<object> canExecute)
 {
 if (execute == null)
 {
 throw new ArgumentNullException("execute");
 }

 this.execute = execute;
 this.canExecute = canExecute;
 }

 [DebuggerStepThrough]
 public bool CanExecute(object parameter)
 {
 return canExecute == null ? true :
 canExecute(parameter);
 }

 public event EventHandler CanExecuteChanged
 {
 add {
 CommandManager.RequerySuggested += value; }
 remove {
 CommandManager.RequerySuggested -= value; }
 }

 public void Execute(object parameter)
 {
 execute(parameter);
 }

}

Li
st

in
g

26

private RelayCommand _saveCommand;
public ICommand SaveCommand
{
 get
 {
 if (_saveCommand == null)
 {
 _saveCommand = new RelayCommand(...);
 }
 return _saveCommand;
 }

}

Listing 27

public class MainWindowViewModel
{
 ...
 public string SearchText { get; set; }
 public ICommand RunSearch{ get; private set; }
 public MainWindowViewModel
 (IBookRepository repo)
 {
 ...
 RunSearch = new RelayCommand(o => Search(),
 o => canSearch());
 }

 private bool canSearch()
 {
 return !string.IsNullOrEmpty(SearchText);
 }

 private void Search()
 {

 }
 ...

}

Listing 28
16 | | JUL 2011{cvu}

If you run the application now you will see that the search button is disabled
and does not enable until you enter something into the search text box and
it loses focus. This is because, as with an edit box in a browser, the event
which indicates that the contents have changed is not fired until the text
box loses focus. To have the event fired every time the contents of the text
box have changed, we need to modify its binding:

 <TextBox Margin="5,5,5,5"
 Width="150"
 Text="{Binding SearchText,
 UpdateSourceTrigger=PropertyChanged}"/>

If you run the application again you will see that the button immediately
enables or disables depending on whether the text box has content.
However, when clicked the button still does nothing. In the next section
we'll look at finishing the binding and getting books from the repository.

Before we move on to finish the binding
there is an irritation about the UI we
should fix. When the application starts, the
focus is not on the search text box (Listing
29).

As you can see, the FocusedElement of
the FocusManager is bound to an
ElementName, which must be specified.
For this to work we have to set the Name
attribute of the search TextBox. When
you run the application the cursor will be
waiting for you in the search text box.

Searching for books
Before we can search for and display
books, we need to bind the Title, Author,
Publisher and ISBN text boxes (Listing

30).

The Title, Author, Publisher and ISBN text boxes use two way binding just
like the search text box. If a book is found it is used to set the view model’s
properties:

 private void Search()
 {
 Book book = repo.Search(SearchText);
 if (book != null)
 {
 Title = book.Title;
 Author = book.Author;
 Publisher = book.Publisher;
 ISBN = book.ISBN;
 }
 }

The above Search method uses the current value of the SearchText
property to call Search on the repository. Remember that the view
model’s private Search method is called by the RunSearch command
and the command can only be executed if the SearchText property is
not null or empty. So by the time the Search method is called,

SearchText is
guaranteed to be
valid. If a book is
found a valid Book
object is returned,
otherwise null is
returned. If a valid
Book ob j ec t i s
r e tu rned , i t s
properties are used
to se t the v i ew
model’s properties.
However, if you
run the application
now you will be
disappointed. Even
i f y ou e n t e r a
matching search
criteria and click
the search button,
you will not see the
T i t l e , Au t ho r ,
Publisher or ISBN
t e x t b o xe s
populated. This is
because we haven’t
told WPF that the
proper t ies have
changed. WPF will
au toma t i c a l l y

<Window x:Class="Canon.View.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="{Binding AppTitle}"
 MinHeight="200"
 Height="200"
 MinWidth="450"
 Width="450"
 FocusManager.FocusedElement="{Binding ElementName=searchBox}">
 ...
 <TextBox Margin="5,5,5,5"
 Width="150"
 Text="{Binding SearchText,
UpdateSourceTrigger=PropertyChanged}"
 Name="searchBox"/>
 ...

</Window>

Li
st

in
g

29

public class MainWindowViewModel
{
 private readonly IBookRepository repo;

 public string SearchText { get; set; }
 public ICommand RunSearch{ get; private set; }

 public string Title { get; set; }
 public string Author { get; set; }
 public string Publisher { get; set; }
 public string ISBN { get; set; }
 ...
}

...
<Label Grid.Column="0" Grid.Row="0">Title:</Label>
<TextBox Grid.Column="1" Grid.Row="0"
 Margin="5,5,5,5" Text="{Binding Title, UpdateSourceTrigger=PropertyChanged}"/>
<Label Grid.Column="0" Grid.Row="1">Author:</Label>
<TextBox Grid.Column="1" Grid.Row="1"
 Margin="5,5,5,5" Text="{Binding Author, UpdateSourceTrigger=PropertyChanged}}"/>
<Label Grid.Column="0" Grid.Row="2">Publisher:</Label>
<TextBox Grid.Column="1" Grid.Row="2"
 Margin="5,5,5,5" Text="{Binding Publisher, UpdateSourceTrigger=PropertyChanged}}"/>
<Label Grid.Column="0" Grid.Row="3">ISBN:</Label>
<TextBox Grid.Column="1" Grid.Row="3"
 Margin="5,5,5,5" Text="{Binding ISBN, UpdateSourceTrigger=PropertyChanged}}"/>

...

Li
st

in
g

30
JUL 2011 | | 17{cvu}

public abstract class PropertyChangeEventBase : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual void OnPropertyChanged(string propertyName)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

}

Li
st

in
g

31

private void Search()
{
 Book book = repo.Search(SearchText);
 if (book != null)
 {
 Title = book.Title;
 Author = book.Author;
 Publisher = book.Publisher;
 ISBN = book.ISBN;

Li
st

in
g

32
Figure 3
Listing 31).

This implementation from WPF Apps With The Model-View-ViewModel
Design Pattern is so useful that it’s worth putting it in an abstract base class
and then inheriting from it in the view model. This makes the
OnPropertyChanged method available to the view model and when
called fires an event with a PropertyChangedEventArgs object
containing the name of the property that has changed. WPF picks this up
and uses the appropriate binding to update the UI. You can see this if you
modify the view model Search method as seen in Listing 32.

Now if you run the application, enter a matching search criteria and click
the search button, you will see that book details are displayed!

Finally
This is where this article leaves the Canon application. Here I have
introduced you to simple WPF UI development and the Model-View-
ViewModel pattern including simple binding and commands.

There is more to come in part two where I look at using images, menus,
tool bars and system commands to make the Canon application more
aesthetic and user friendly.

References
[1] WPF In Action with Visual Studio 2008 by Arlen Feldman and Maxx

Daymon. Manning. ISBN: 978-1933988221
[2] Presentation Model by Martin Fowler: http://martinfowler.com/

eaaDev/PresentationModel.html
[3] WPF Apps With The Model-View-ViewModel Design Pattern by

Josh Smith. MSDN Magazine: http://msdn.microsoft.com/en-us/
magazine/dd419663.aspx

[4] Canon 0.0.1 Source Code: http://paulgrenyer.net/dnld/Canon-
0.0.1.zip

[5] Design patterns : elements of reusable object-oriented software by
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Addison Wesley. ISBN: 978-0201633610

 OnPropertyChanged("Title");
 OnPropertyChanged("Author");
 OnPropertyChanged("Publisher");
 OnPropertyChanged("ISBN");
 }

}

18 | | JUL 2011{cvu}

JUL 2011 | | 19{cvu}

One Test or Two?
Chris O’Dell and Paul Grenyer debate

the best granularity for units.

know what you’re thinking: Is that two tests or only one? Well, to tell
the truth, in all this agility, I’m not sure myself.
But this is Test Driven Development, the most

powerful development technique in the world, and
could give you clean code, you’ve got to ask yourself
one question: Do I feel expressive? Well, do ya,
punk?’

Paul: I have a Windows Presentation Foundation
(WPF) application that loads a list of widget names
from a database and uses them to populate a drop
down box. There is no default widget, so the user must
select one from the list and click the load button to
load it. The behaviour is such that before a widget
name is selected the button is disabled and cannot be clicked.

One pattern often employed in WPF applications is MODEL-VIEW-
VIEWMODEL [1]. The view model can use variations of the COMMAND

PATTERN [2] for processing commands from and giving feedback, such as
the enabled state of a button, to the View. MVVM is intended to give
separation between a view and its logic. Therefore the view model is
usually devoid of User Interface (UI) code and easy to instantiate and run
unit tests against.

I have a unit test that instantiates a view model and checks that the load
command cannot be fired until a widget name is selected. A simplified
version is show in Listing 1, without the view model instantiation.

Recently I have also been involved with the ACCU Mentored Developers
project based around Growing Object Orientated Software Guided By
Tests [3] by Steve Freeman and Nat Pryce. In this book they write a lot
about the naming and granularity of tests. So I posted the above code to
the list and asked what the project members thought: ‘Should the above
test be one test or two?’.

Chris: Without blinking I immediately replied that the above should
definitely be split into two distinct tests so that a failure would be obvious
from the test name. The above test has two asserts and as such either of
these could fail.

Paul: Chris, and all the others who replied are of course right on the money
(no one suggested it should only be one test), but something didn’t sit quite
right with me. In this small example the extra code of two tests is not very
much: the method definition, a pair of curly braces and some spacing. The
problem for me is that test classes should not be treated that much
differently to normal classes and any class with a large number of methods
becomes difficult to maintain and even to navigate, although modern IDEs
do make this easier with regions (C#) and code collapsing (Eclipse).

Chris: I firmly believe that it is worth the extra code – as many others also
remarked, the five minutes now and extra curly braces could easily save
twice that if you need to hunt down a related bug in future.

I went on to explain that in terms of application logic the two scenarios
‘with a name’ and ‘without a name’ are expected to
be mutually exclusive and the two tests will ensure
this by isolating each scenario and addressing them
individually – with explicit test names.

In regards to the large classes this can be tackled by
breaking your tests down into smaller classes,
generally per scenario. For example, group all of the
positive ‘happy path’ tests together into one class and
all the negative, error handling tests into another class
and store both classes in a folder given the name of
the class under test.

Paul: Again, Chris is of course right. Although the
implication that a test method should only have a single assert is a whole
other discussion.

Then Nat Pryce came along with another suggestion altogether:

To really play Devil’s advocate, I think there should be THREE tests!

1.The model initially has no name

2.The model cannot execute when it has no name

3.The model can execute when the name has been set.

You could squeeze that into two:

1.The model initially cannot execute

2.The model can execute when the name has been set

But I think the state transitions and constraints are clearer with three
tests.

Even with there now being the extra code for three functions, rather than
one, this is of course the answer. It even satisfied the idea of one assert per
method. The most difficult idea for me was not testing preconditions
specific to a test if they were already tested in a another test. I have
consequently modified my way of thinking and a lot of my test code.

References
[1] Model-View-ViewModel Pattern: http://msdn.microsoft.com/en-us/

magazine/dd419663.aspx
[2] Design patterns: Elements of reusable object-oriented software by

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Addison Wesley: ISBN: 978-0201633610

[3] Growing Object-Oriented Software, Guided by Tests by Steve
Freeman & Nat Pryce. Addison Wesley. ISBN: 978-0321503626

 ‘I

public void
testThatExecuteIsOnlyPossibleIfNameIsSet()
{
 Assert.IsNull(model.Name);
 Assert.IsFalse(model.CanExecute());
 model.Name = "Something";
 Assert.IsTrue(model.CanExecute());
}

Li
st

in
g

1

Test classes
should not be

treated that much
differently to

normal classes

CHRIS O’DELL
Chris is a C# Web Developer working in London at
7digital who is constantly learning. When not programming
she can be found with her head in a fantasy book or a
manga comic.

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder of the
Mentored Developers. Having worked in industries as diverse as
direct mail, mobile phones and finance, Paul now works for a
small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

Perforce Cross-Platform Patcher
Alexander Demin demonstrates a deployment tool for Perforce.

erforce is a great version control system (VCS). In the world of
centralised systems Perforce does great job and almost all routine
tasks in Perforce are supported easily: checking in and out, diff'ing,

merging and branching.

I want to focus on one particular aspect of Perforce. It becomes an issue
when you have to deal with multiple development machines. For example,
in my current company we release our product on many different
platforms: Linux, Solaris, AIX, HP-UX, Windows and zOS. It means that
every change set must be verified on all platforms before a submit.

Usually the workflow looks like this: you checkout files on main
development machine, for example, Linux, and do your stuff. When it is
ready to submit, you have to also try your changes on other machines. You
analyse what you’ve done via ‘p4 diff ...’, somehow pack the changes and
move it across to other boxes. Then you compile and test on those machines
and likely if everything is fine, submit everything from your original
machine. But often in development, things go wrong
and most likely your changes will fail on other
platforms (in compilation, in tests or somewhere else).
In this case you have to fix it locally, on every machine
where it fails, and then get all the fixes together and
apply them (somehow, probably manually) on the
original machine. Likely, this cycle will be repeated
many times.

When merging branches you may end up in a situation
involving hundreds of source files. You have to do a lot
of manual work: copy files across, checkout, replace
existing files and finally revert it back. What about if
you have to process dozens of files or more and repeat
10 times in a row?

Of course, any more or less experienced UNIX
developer can write a script to diff, pack and move files automatically, but
ideally when a bunch of files are copied from the original machine it is
better to have them properly checked out, rather than simply overwritten.
If the files are not checked out with the ‘p4 edit ...’ command it is difficult
to track and revert changes.

Okay, I hope I’ve scared you enough and you are ready to listen a solution
I propose.

First, Perforce, starting from the version 2010.2 has a very neat feature –
shelving. It solves the problem completely. Shelving allows you to upload
a change set to the Perforce server without submitting, but still making it
available for download from other workspaces, so you can send change
sets from one machine to another. But Perforce is a very robust and stable
system, and sometimes people don’t upgrade because it is a critical part
of their process, and upgrades are an upheaval. So, shelving is not available
for them.

A utility I’d like to talk about does roughly the same as shelving – it
automates the process of managing change sets across different machines.
It is called ‘p4patch’ or ‘p4p’ and is hosted on Google Code [1].

It is implemented as a single source file written in ANSI C. It doesn’t
require any external utilities or interpreters, only a C compiler.

You just need to download its source [2] and one of the scripts to build it
[3], depending on your platform.

On Linux and AIX:

 cc -o p4p p4p.c

On Solaris:

 cc -o p4p -lsocket -lnsl p4p.c

On HP-UX:

 cc -D_XOPEN_SOURCE_EXTENDED -o p4p p4p.c

On Windows:

 cl p4p.c wsock32.lib ws2_32.lib

Once you’ve built it you are ready to try it out. Running p4p without any
parameters will print out all available command line options.

First of all, on every machine where you are going to send change sets from
the main machine, you need to start a server: p4p
server.

The default port is 20050 but you can specify different
one via the -p flag.

Now let’s assume on your main development machine
you have a change set and p4 diff shows what is in
there. Now by executing p4p diff you will create a
TAR archive (patch.tar) containing your change set
and a list of files.

By default, p4p diff includes all checked out files but
you can customize it using the -o option which defines
a list of files included in patch.tar. Such a list can
be created with p4 opened | grep ... where grep
can filter for the required files.

Okay, we are ready to transmit the changes to a remote
machine (for this example, its address is 10.44.5.9) via p4p patch -h
10.44.5.0. The command p4p transmits patch.tar to the remote
host 10.44.5.9, unpacks it there, checks out every individual file from the
list using p4 edit and overwrites it with the corresponding file from
patch.tar. Afterwards you go to the target machine and execute p4
opened, and you’ll see all the files you’ve just moved.

You can also do it from your main machine using the

 p4p exec -h 10.44.5.9 -p4 opened

command. Similarly

 p4p exec -h 10.44.5.9 -p4 opened

prints out all checked out files on 10.44.5.9.

Now you can compile, run and test the change set on 10.44.5.9.

You’ve done your testing and, for example, found some issues. To revert
all the changes on 10.44.5.9 you simply execute: p4p revert -h
10.44.5.9 on the main machine. This command carefully reverts the
changes on 10.44.5.9 via applying p4 revert to every single file.

While the p4p server is running on a remote machine you can fully control
the remote Perforce client: apply or revert your patch, or execute arbitrary
Perforce commands. For example, p4p exec -h 10.44.5.9 -p4 -
V prints out the Perforce version on that remote host.

When p4p applies the file change on the remote machine it always tries
to preserve the current line ending used on the remote platform. It means
you can safely propagate files from a Windows to a UNIX box and vice
versa.

 P

ALEXANDER DEMIN
Alexander Demin is a software engineer with a PhD in
Computer Science. Constantly exploring new
technologies he is always ready to drill down into the
code with a disassembler to prove that the bug is out
there. He may be contacted at alexander@demin.ws.

When merging
branches you

may end up in a
situation
involving

hundreds of
source files
20 | | JUL 2011{cvu}

Corporate sponsorship opportunities are available. Please contact:

Kelsey Griffin, Director of Museum Operations, Bletchley Park Trust,
kgriffin@bletchleypark.org.uk or phone 01908 272655

Perforce Cross-Platform Patcher (continued)

Bletchley Park mansion

Interior of a hut before restoration work

Restored hut, preserved for the future
To recap, this utility helps you transfer active change sets in Perforce from
one machine to others, apply and revert them. If your Perforce is more
recent than version 2010.2, I recommend using the standard Perforce
shelving mechanism.

This utility saves me many hours of dull work when doing massive merges
with hundreds of files and testing them on many different machines. I hope
it will also help you.

References
[1] http://code.google.com/p/p4patch
[2] http://p4patch.googlecode.com/hg/p4p.c
[3] http://code.google.com/p/p4patch/source/browse/
Bletchley Park Climbs to New Heights
Astrid Byro climbs to Everest Base Camp to raise funds

for Bletchley Park.
hat could motivate a self-confessed ‘over-the-hill,
overweight, out-of-shape, 30-a-day smoker’ to attempt an
assault on Everest Base Camp? Independent Bletchley Park

supporter Astrid Byro thinks raising money for Bletchley Park is the
answer to that question. Astrid, who has previously helped Bletchley
Park by organising annual fundraising conferences, is now embarking
on a much more personal campaign. On 16 August she will attempt a
gruelling 8-day trek to Everest Base Camp.

CEO of the Bletchley Park Trust Simon Greenish said, ‘This incredible
challenge Astrid is embarking upon in aid of Bletchley Park is absolutely
wonderful. Over the last few years we have had a great level of public
support by so many committed people who have so generously given
their time and energy in order to help us develop however I think this
particular exploit is possibly the most unusual! We are enormously
grateful to Astrid for her dedication to help Bletchley Park and I very much
look forward to seeing her progress.’

Mount Everest is the highest mountain in the world at 8,848 metres and
the base camp is an amazing 5,545 metres above sea level, which is
more than four times the height of the UK’s tallest mountain Ben Nevis.
As Astrid says, ‘You must understand the context of this endeavour. I’m
afraid of heights and this will challenge my fears on a daily basis with
multiple crossings of rickety bridges across torrential gorges. In addition,
I will be doing this at the end of monsoon season so there is the ever-
present danger of flash floods as well as the menace of leeches. I hate
leeches.’

Astrid has not only set a tough climbing challenge but has also set her
fundraising target at £50,000. She is hoping to achieve this target by
donations as well as corporate sponsorship so if you would like a photo
of your corporate logo flag flying at Base Camp, want her to wear
sponsored logo clothing, or you have a stunt in mind, she’s open to
negotiation. Astrid adds, ‘If Jimmy Choo wants a picture of me wearing
some strappy heels at Base Camp, I'm game. But I get to keep the heels!’

You can follow Astrid’s progress on her blog as she pursues her
training programme, at www.abc-ebc.blogspot.com and you can
support her by making a donation at www.justgiving.com/Astrid-Byro

 W
JUL 2011 | | 21{cvu}

http://code.google.com/p/p4patch
http://p4patch.googlecode.com/hg/p4p.c

22 | | JUL 2011{cvu}

A Software Experience
Simon Sebright shares his frustrations with popular tools.

 write this not as a software development article, but as an observation
on the usage of software. I wish product managers and software
developers alike would take more care and pride in what they do. Above

all, listen to and watch real users.

I am a software developer and as such, like many I expect, I am the IT
support department of our household 24x7 (apart from when I don’t really
feel like it, or when the customers are asleep). My chief customer is my
wife, who is comfortable using her day-to-day applications, but when it
comes to doing anything new or tricky, often needs my help.

And so it came to pass that she acquired a smart phone made by a company
we shall call Banana. The model we shall call fPhone to make sure I am
not pursued in law by the real makers of the said device (and to reflect the
level of frustration it can sometimes bring).

The task was simple enough – load a couple of Apps onto the device from
the AppShop (as we shall call). Great, first fire up fMelodies, the piece of
software you need to do anything with your fPhone. That was painless.
Now what to do? From here on in, I can only say that as a novice user it
was a minefield. Here are some of the points I remember:

 Connecting the fPhone with USB didn’t do anything at first. It
appeared to have too little charge, although didn’t tell us that. OK,
charge it up then we’ll try again later, dear...

 Once charged, connecting the fPhone worked and it appeared as a
device under fMelodies. Great, except that it looked disabled, and
was pretty unresponsive to mouse clicks. Using a touchpad, one is
inclined to ‘click’ a little more often than with a conventional
mouse, and so it was that she managed to click something which
exposed a menu and the menu item to remove the device
within half a second. It was gone! Only the usual unplug, plug
it back in again approach worked.

 Hmm, I am now starting to lose my patience with the Banana
company, feeling that they have slipped up (pun intended of
course!) OK, let’s go to the AppShop. I tell her to click on the
appropriate menu. Nothing happens for several seconds.
‘There,’ I say. ‘I don’t see it,’ she says. Aha, there are not one,
but two menus! One for the main application and one in the ‘Device’
area (which we managed to select, but still looks disabled). Which
one are we supposed to use? It wasn’t clear to me at all.

 Having finally got to the AppShop, we realise that there are at least
two search boxes to be seen, and use trial and error to get the right
one.

 We had to set up an account for her, which actually worked quite
well, although they did want rather a lot of data from us, considering
we were only going to download a couple of free Apps.

 Once we had found what we wanted, the Apps got downloaded to
the fMelodies application and we had to somehow get them on the
phone. We dragged and dropped, synced, did it again, and again.
What should have been intuitive was not working very well. This
was compounded by the fact that in the middle of a sync, she
cancelled it. ‘Aha, that’s your own fault,’ you say. Not so, the phone
looks in that state exactly as it does when in standby. The text is
different of course (‘Slide to cancel’ instead of ‘Slide to unlock’, but
as it is green, you don’t read that, and there was no confirmation.

 To further compound matters, I had previously loaded Apps on there
with my own account. It very nicely asked us if we wanted to
transfer them to fMelodies. Great, except that didn’t seem to work
first time either (that may have been where the sync cancel came in,
if I remember correctly). I think I had to unplug it yet again.

We finally got there, but it was a slog. Remembering James Bach’s
sessions at the ACCU 2010 conference, I realized that I was having to
think like a tester. I needed to form a mental model of how Banana
had written this software. In my case not to test, of course, but simply
to use the darn thing. For a novice user it was really a nightmare, and
for an advanced user, annoying.

And then there is the the other software company whom I shall call Bighard
(hee hee ;^). I created a presentation using their StrengthSpike software at
work, saved it and put the laptop into hibernation. On the train, I restart
the laptop to refresh my memory. I notice a mistake and want to edit the
thing, except I can’t, because it’s in protected view. OK, I click on Enable
Editing (knowing I can trust the source). It then gives me a message box
saying it can’t find the file, and won’t enable editing for me. This is true,
because I am no longer on the network, but I don’t see why that should
stop me. OK, so I now start to think laterally; I know, I’ll save it as another
file for the time being. Saving is disabled in protected mode! And guess
what? Yes, the same silly problem stops me again. The only thing I can
think of is to use the clipboard to copy the whole content to a new file,
which messes up my formatting somehow, as I don’t have the right
template. Aaarrrggghhh.

This user story is ridiculous. A product with so many person years behind
it and designed for everyday use simply should be better. We know from
good books on software development that this kind of ‘error’ is to be
expected and should be catered for in program logic. Some programmer
somewhere made the decision to simply output a message box if something
went wrong. I hope he or she reads this and has a very bad conscience for
a time or two, and more importantly can learn from it. And if you are the
product manager responsible for this, then it is part of your job to work
out what to do! Yes, it’s nitty gritty detail, but it is important to get right.

I am sure there are countless stories like this every day, where millions of
person-hours are squandered. Companies are blissfully unaware that their
users are frustrated, trapped. All you product managers and software
developers out there, please try to raise your standards. Listen to and watch
your users. They are not stupid, they just don’t deal with software for a
living!

 I

SIMON SEBRIGHT
Simon Sebright has been developing software or
managing it for over 15 years, suffering from it even
longer. Currently he is battling with the beast they call
SharePoint.

We dragged and dropped, synced, did it
again, and again. What should have
been intuitive was not working very well

I needed to form a mental model of how
Banana had written this software
. . . simply to use the darn thing

JUL 2011 | | 23{cvu}

Goodbye from the Conference Chair
Giovanni Asproni takes his last bow.

he 2011 event was my last one in the conference committee, after six
years – with the last four spent has the Conference Chair – it was time
for me to step down. In hindsight I couldn’t do it at a better time – in

2011 we, for the first time, sold out a couple of weeks before the event,
allowing me to leave on a high :-)

During the years the conference has changed a lot – it has a bigger
attendance, a wider subject coverage and a greater international visibility.
In the last four years we also experienced an huge increase in the number
of proposals which caused the acceptance rate to drop below 50% and
forcing me and the committee to make some very hard choices. I attribute
this increase to the wider subject coverage and the greater visibility.

There is one thing that hasn’t changed at all. We managed to keep the
quality of the conference intact. In fact, the reputation is so high and the
atmosphere so unique that all the ‘big names’ that have been there once
are always willing to come back – e.g., Robert Martin, who was supposed
to be one of the keynote speakers in 2011, but had to pull out because of
personal reasons, wrote in his blog ‘This is one [is] of the few conferences

I go to just for the fun of it , so I’m kinda bummed’ (http://
cleancoder.posterous.com/the-last-programming-language).

Alas, I cannot take all the credit for all those achievements. The
foundations for them have been built during the years by the previous
committees and conference chairs. During my tenure it has always been a
team effort. We are indebted to all the people who have served on the
conference committee, Julie Archer and her colleagues at Archer Yates
(who took care of all the logistic aspects), my network of unofficial
advisers (in particular Kevlin Henney and Allan Kelly, who were always
available to provide help and suggestions) and, last but not least, the
speakers and the attendees who always made every one a memorable
conference.

The Conference Chair has now been taken by Jon Jagger. I’m sure he will
be able to make the conference even better and I’m looking forward to
ACCU 2012 next April – I will be more relaxed and more willing to stay
late at the bar...

 T

Inspirational (P)articles
Frances Love introduces Katie Friesen from DevChix.

Katie Friesen from DevChix tells us how she got into programming for
another inspiration particle. DevChix is ‘an international group of female
programmers working to make the tech community a better place for
everyone.’ (http://www.devchix.com/)

n 1996 my family got a modem and hooked up to the hot new World
Wide Web. One issue of American Girl Magazine, which I subscribed
to along with most of my friends, contained an article on making web

pages. I was enthralled. I set up a homepage and started learning HTML.

When I was selected for a local science and technology magnet high school
I enrolled in the accelerated programming class offered to freshmen and
got a solid dose of C++. I will never forget the sense of accomplishment
I felt looking at the terminal producing the output of my first program.

Because of the technology sector bubble of the late 1990s I was able to
find an internship working for a local company that allowed me to do bug
fixes on their applications. During the school year I took every
programming class my high school offered, getting brief overviews of
computer graphics, artificial intelligence, and computer architecture. I did
a year-long senior project in PHP.

At the small liberal arts college that I chose for my undergraduate work I
was one of three students in my class to major in computer science and for
two years the only woman in the entire major. I was very glad for the
training I received and the encouragement from peers and professors as I
launched into my career as a software engineer.

 I

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://cleancoder.posterous.com/the-last-programming-language
http://cleancoder.posterous.com/the-last-programming-language
http://www.devchix.com/)

Code Critique Competition 70
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’ve written a streaming helper for dates – seems to work OK – and a
manipulator so I can stream today’s date, plus a convert from string function.
Please can you review my code?

Listing 1 is the code, and Listing 2 is an example of its use.

Critiques
There weren’t any critiques this time … I can only deduce that ACCU
members are not interested in critiquing badly written date routines.

Commentary
Let’s look at this code under three separate headings.

Usability

The header file is described as ‘a streaming helper for dates’ and while it
does provide a function for streaming out time_t values it does not
(directly) help with streaming them in: the function convert creates a
time_t from a char const *. While this may well be a useful function,
the header probably ought to provide an input operator such as:

 std::istream& operator>>(std::istream& os,
 date & input);

This would go along with a constructor taking a non-const reference to the
time_t that would be populated by the input – an example of the usage
pattern would be:

 time_t tv;
 std::cin >> date(tv);

I’m also not persuaded that the class is correctly named: date leads me
(at any rate) to expect a class that has general date functionality rather than
simply an input/output manipulator. Perhaps date_manip or date_io
would be a clearer name?

Implementation

The actual details of the date conversion functions are a little complicated
and I would want to do some checking to verify they are in fact correct. In
my opinion the days of writing your own date manipulation functions are
long past (except in some specialised cases) – it is a classic example of
something that you should look for in a standard library. The C runtime
includes various functions such as mktime and strftime and the C++

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#include <iostream>

#include <time.h>

#pragma once

// date class

class date

{

 time_t const& tv;

public:

 date(time_t const& tv) : tv(tv) {}

 // print self to stream as YYYY-MM-DD

 void printOn(std::ostream& os) const;

 // convert YYYY-MM-DD to time_t

 static time_t convert(char const *);

};

void date::printOn(std::ostream& os) const

{

 int day = tv / 86400;

 // base on Mar 1968 (makes leap years easy)

 day += 365 + 366 - 60;

 int year = day / 365;

 day -= year * 365;

 day -= year/4;

 if (day < 0)

 {

 day += 365;

 year--;

 }

 int month = 0;

 int daycounts[]

 = {31,30,31,30,31,31,30,31,30,31,31,28};

 while (day >= daycounts[month])

 {

 day -= daycounts[month++];

 }

 // base on Jan

 month += 2;

 year += month/12;

 month %= 12;

 os << year+1968 << "-";

 os << (month<9?"0":"") << month+1 << "-";

 os << (day<9?"0":"") << day+1;

}

Listing 1
24 | | JUL 2011{cvu}

runtime contains time_get and time_put. Using either set is likely to
be more robust than writing your own date handling routines: this is an area
that seems to have a large number of pitfalls for the unwary. For an
example of time_get, for instance, see cplusplus.com [1].

The code is not very flexible, especially for input where different users and
different places have a range of conventions for date formats. Again, this
is normally much easier to support when you use standard functions rather
than when you are trying to roll your own solutions.

Additionally the code is assuming that the UTC date is what is required:
I suspect that many users might prefer to handle dates in local time or at
least have that as an option.

Other problems

As it stands the header file can’t be included in more than one compilation
unit since it includes implementation of methods without marking them
as inline. An alternative solution is to move away from a header-only
solution but providing an implementation file containing the method
definitions. While this can be slightly less convenient it can have
significant advantages in build time as the header is much more
lightweight, less code goes into each object file and the linker has less work
to do.

The header includes <iostream> but does not need to: <ostream>
would be enough. Including unnecessary headers is to be avoided as a rule
(and readers of accu-general may recall Peter Sommerlad announcing on
1st June a beta version of a tool ‘Includator’ to help with automating this).
Additionally <iostream> brings a static initialiser into every file that
includes it which can cause various performance problems when executing
the p rog ram – s ee , f o r example , h t t p : / / l l vm.o rg / docs /
CodingStandards.html#ll_iostream where including <iostream> in
library code is actually forbidden!

References
[1] http://www.cplusplus.com/reference/std/locale/time_get/get_date

The winner of CC 68
It could have been you … why not write your critique for this issue now?

Code Critique 70
(Submissions to scc@accu.org by Aug1st)

I’ve written a simple arithmetic expression evaluator – it works left to right
but does supports brackets, a bit like old fashioned calculators. But when I
try to test it I get this output:

 cc70>test "1+2" "1/3 * 3"
 "1+2" = 1.78744e-307
 "1/3 * 3" = 1.78744e-307

Can you explain what’s wrong (and also comment generally on the
implementation)?

 The test program is in Listing 3

 The header (expr.h) is in Listing 4

 The implementation (expr.cpp) is in Listing 5.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later
than members in the UK and Europe.

#include "strdate.h"

int main()

{

 std::cout << date(86400) << std::endl;

 std::cout << date(86400*31) << std::endl;

 std::cout << strdate << std::endl;

 std::cout

 << date(date::convert("2000-01-01"))

 << std::endl;

}

Listing 2

time_t date::convert(char const *date)

{

 int yr,mn,dy;

 if (sscanf(date,"%i-%i-%i",

 &yr, &mn, &dy) < 3)

 return -1;

 // base on Mar 1968

 yr -= 1968;

 mn -= 3;

 if (mn<0)

 {

 yr--;

 mn += 12;

 }

 dy--; // 1-based

 int daycounts[]

 = {31,30,31,30,31,31,30,31,30,31,31,28};

 while (mn)

 dy += daycounts[mn--];

 dy += yr * 365;

 dy += yr / 4;

 // rebase to 1970

 dy -= 365 + 366 - 60;

 return 86400 * dy;

}

// stream date

std::ostream& operator<<(std::ostream& os,

 date const& rhs)

{

 rhs.printOn(os);

 return os;

}

// stream today's date

std::ostream& strdate(std::ostream& os)

{

 return os << date(time(0));

}

Li
st

in
g

1 (
co

nt
’d

)

JUL 2011 | | 25{cvu}

#include "expr.h"

#include <functional>
#include <iostream>
#include <stdexcept>
#include <string>

expr::expr(std::istream & is) : val(is)
{
 char op;
 while (is >> op && op != ')')
 {
 if (op == '+') val += is;
 if (op == '-') val -= is;
 if (op == '*') val *= is;
 if (op == '/') val /= is;
 if (op == '%') val %= is;
 }
}

// Read a number or a bracketed sub-expression
expr::term::term(std::istream & is)
{
 char op;
 is >> op;
 if (op == '(')
 val = expr(is).val;
 else if (!(is.unget() >> val))
 {
 std::string error("Bad parse at: ");
 throw std::runtime_error(error + op);
 }
}

// ctor from double
expr::term::term(double v) : val(v) {}

void expr::term::operator+=(term const& rhs)
{
 val += rhs;
}

void expr::term::operator-=(term const& rhs)
{
 val -= rhs;
}

void expr::term::operator*=(term const& rhs)
{
 val *= rhs;
}

void expr::term::operator/=(term const& rhs)
{
 val /= rhs;
}

void expr::term::operator%=(term const& rhs)
{
 val = std::modulus<long>()(val, rhs);

}

Listing 5

#include "expr.h"

#include <iostream>
#include <sstream>

// evaluate and print supplied expression
int test(std::string const &s)
{
 try
 {
 expr e(std::istringstream(s).ignore(0));
 std::cout << "\"" << s << "\" = "
 << e.value() << std::endl;
 return 0;
 }
 catch (std::exception & ex)
 {
 std::cerr << "\"" << s << "\" failed: "
 << ex.what() << std::endl;
 return 1;
 }
}int main(int argc, char **argv)
{
 int ret(0);
 for (int idx = 1; idx != argc; ++idx)
 {
 ret += test(argv[idx]);
 }
 return ret;
}

Li
st

in
g

3
(c

on
t’d

)

#include <istream>

/* Left to right expression parser */
class expr
{

public:
 /* Parse a stream */
 expr(std::istream &is);
 /* Get the value */
 double const & value() const { return val; }

private:
 /* A term in the expression */
 class term
 {
 public:
 term(std::istream &is);
 term(double v);
 operator double() const { return val; }
 void operator+=(term const& rhs);
 void operator-=(term const& rhs);
 void operator*=(term const& rhs);
 void operator/=(term const& rhs);
 void operator%=(term const& rhs);
 private:
 double val;
 };
 term val;

};

Li
st

in
g

4

26 | | JUL 2011{cvu}

Desert Island Books
James Byatt shares the contents of his suitcase.

he imagination and effort that people are kind enough to put into this
column never ceases to amaze me, along with how keen people are to
write for it. The series has grown further than than I could have imagined

and it has certainly helped me to get to know what makes certain ACCUers
tick. My Subversion repository tells me that I wrote the first column in
January 2008, since then 21 people have described their Desert Island
Books and of all of the people I’ve asked in that time only 2 have declined.
From Kevlin Henney onwards (Kevlin was the first after me) the imagination
has grown and made me see just how flat my original was. Maybe I’ll have
to have another go.

I’ve only really started to get to know James Byatt properly in the last few
months. The only embarrassing story I have involving him was when he
interviewed me, over the phone, and I didn’t even know it was him! Luckily
I did ok. On another occasion, over a very nice Mexican meal one lunchtime,
we managed to completely bore Alan Stokes by talking about music and one
Swedish Progressive Death Metal band in particular. I am exceptionally
happy to present the most in-depth Desert Island Books yet.

James Byatt
I fear that by the time I have packed this chest for my desert island sojourn
much will have been revealed about myself that somewhat hurts my
credentials as a software engineer! I don’t read a great deal of technical
books; I heavily distil the few I finish (apologies to the unopened copy of
Pro Spring that I won in a raffle); one who prefers generality to the point
of endangering important specifics (what’s this ‘standard’ thing I keep
hearing mention of?); one who defers the creation of real content with
mindless semi-colon delimited lists.

My first choice is also the first technical book I read.
It aided my transition into work from idle, drunken
studenthood no end. I t i s The Pragmat ic
Programmer . Until that point, most of the
programming I’d done had been php-based web
applications and, frighteningly, quite a lot of VB
(and VBA!).

The book immediately turned on several lights: the
need for source control and continuous integration,
the near mindless drive for automation needed to keep a project moving
as it grows, the sheer volume of nitpickery required to keep a large software
project in order.

One concept I still have trouble with is ‘wizard code’; drawing the line of
where my knowledge can safely end is very difficult. In different projects

I’ve discovered issues
rooted in everything
from application level to
operating system level code.
There seems almost
no way of holding
together all of that knowledge to avoid the accusation of wizard code
usage; I’ve withdrawn to the nearby fort of being able to look most of it up.

Sadly, much of the book’s message had yet to really sway the majority of
the team I was in, and a swathe of manual process evolved in order to bridge
the gaps. Making changes was frequently programming by coincidence
almost as much as I had done on my own. In hindsight, I can see we were
extremely lucky to have an extremely dedicated (and patient) QA team
holding things together.

I wilfully shoved the book in the general direction of a couple of other
graduate joiners in the hope that they might also glean some of the
knowledge from it and make my life easier. One of them showed dangerous
signs of having digested it utterly, finding several places where I had done
evil () things. I counter-claimed that it was simply wizard code.

My second choice is Herb Sutter’s Exceptional
C++. A copy was pushed at me as I began to
contribute to a large C++ codebase, probably
because I wasn’t showing a suitable amount of fear
given the scale of the task (and the amount of legacy
code) this project would be facing.

Here the lessons were sharper. Three, in particular,
stick out. The first (and probably best) is the example
that asks: ‘how many execution paths are there
through this trivial looking piece of code?’ Answer: a frightening number.
I’d been exposed to ‘modern’ C++, but up until reading that, the motivation
behind it had remained unclear to me. The scope of my ignorance was
(partially!) revealed.

The second was the LSP – a tremendously general tool for reasoning about
object oriented programming. I have used it to rail against the misuse of
concrete inheritance ever since. I already disliked it, but it was extremely
satisfying to find that there was theory to back up my opinion. You can’t
beat research that confirms your own personal prejudices.

The third was the pImpl idiom, and, more generally, the power of terse
header files. A whole new world of encapsulation suddenly appeared; I
became Gollum-like, keeping all but the slightest hint of implementation
hidden away, safe from the prying eyes of hobbits.

A second look at the legacy libraries we’d be relying on now filled me with
dread; exactly as the lender of the book had intended,
I suspect.

My third book steers me safely out of the frying pan
of software, and into the fire of ethology. It is The
Selfish Gene, Richard Dawkins’ introduction to
modern evolutionary theory. Regardless of what you
may think of Dawkins’ more recent publications
working towards the ultimate description of all
religion as bunk, this, his first book, remains a
powerful description of the process of evolution.

If you do happen to sit on the ‘Dawkins is a prannet’
side of the fence, I still highly recommend you read it, as in the preface he

T

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Rachel Davies.
JUL 2011 | | 27{cvu}

reveals a frustration that people still regard this as his best book, where he
prefers The Extended Phenotype. Perhaps you may wish to cause him some
small unknown annoyance by reading this book and preferring it, as I do.

For the phenomenally lazy, reading the first two or three chapters may be
enough. Here, Dawkins constructs the idea of ‘replicators’: simple
molecules that, in the right conditions, can create copies of themselves
from natural resources in their environment. In such a scenario, which
replicators become most prevalent? Those that can copy themselves most
accurately (‘fidelity’), and at the highest rate (‘fecundity’).

It is clear (to me at least) that this process is at the core of evolution. I might
go as far as to say this is evolution, but that’s a dangerous statement to
make! Given this powerful analogy though, we naturally now ask: what is
replicating?

The answer is not the individual, nor the species; it is the gene. There’s an
obvious aside here: what is a gene? Some complain the definition given
in TSG is infuriatingly circular where others laud it as elegant. You’re
going to have to think (Richard Harris), I’m afraid. What does this mean
for us as humans? Do we have free will, or are we merely ‘lumbering
robots’, controlled by our genetic code? If the latter, can we explain the
existence of altruism and co-operation (or are they themselves illusions)?
The book starts down the path to answering some of these questions, and
provides excellent examples of reasoning from a gene centric point of
view.

The preface mentions that many readers find the level of reductionism
advocated by the text frightening; I find the reverse! It is no small comfort
to have an enormous mystery (viz: biodiversity, human behaviour)
reduced to simple, scientific explanations. Why are we here? Book four
puts it better than I ever could...

...Godfrey was, by birthright, a stupendous badass, albeit in the
somewhat narrow technical sense that he could trace his ancestry back
up a long line of slightly less highly evolved stupendous badasses to that
first self-replicating gizmo – which, given the number and variety of its
descendants, might justifiably be described as the most stupendous
badass of all time. Everyone and everything that wasn’t a stupendous
badass was dead.

(Full quote here: http://samuelhansen.com/post/3049394857)

This is Neal Stephenson’s Cryptonomicon. Like #3, I’ve gone through
several copies of it – I think I’ve bought it at least four times, the other
three having been shoved at people foolish enough to: a) ask me about
books, b) be near a copy of Cryptonomicon, c) have not read
Cryptonomicon. I was delighted to find my current
copy in Oxfam for £1!

The book is split across two time periods:

The first, set during the second world war, tracks the
adventures of two main protagonists: Godfrey
Waterhouse (a mathematician) and Bobby Shaftoe,
a U.S marine, both of whom end up involved in
Detachment 2702, an Allied group breaking Axis
crypto systems while simultaneously creating
evidence to persuade the enemy that their codes are
intact.

The second, set in the modern epoch, tracks the progress of a team of
entrepreneurs setting up a data haven in the fictional south east Asian
sultanate of Kinakuta (perhaps I should attempt the same on this desert
island!). Our main protagonist here is Randall Waterhouse (grandson of
aforementioned Godfrey), programmer extraordinaire.

Cryptonomicon is, for me, a big geeky comfort blanket. The two
‘Waterhouse’ protagonists roughly mirror my two halves of
mathematician and hacker, although I wouldn’t claim anything like their
heroic levels in either field, and my claim of being the former grows
weaker by the day. The worlds in which they walk, the ways in which they
talk, even the style of the writing; these all resonate enormously with who
I am. I often end up reading Cryptonomicon when I’m finding life a bit of
a challenge as a result.

There ends of the papery part of the media chest – I struggle to pick a fifth
that has had the same magnitude of effect on me. There are plenty that came
close. Effective Java would probably have made it if I hadn’t read #2
beforehand. Ben Goldacre’s Bad Science has to be near the top of the pile
as well. In fiction I was immensely grateful for the existence of
Cryptonomicon. I would otherwise have faced a torturous choice between
one of the other Stephenson books, probably Quicksilver, or maybe The
Diamond Age, a Pratchett, probably Night Watch, or Thief of Time, or
Charles Stross’s Accelerando. So I will instead cheat, and pick the pair of
talks given by Simon Peyton-Jones at
ACCU ’08, titled ‘Caging the effects
monster’ and ‘A taste of Haskell’.

I’d heard good things about Haskell but knew very little about it, similarly
I hadn’t really grokked the real ideas underpinning Functional
Programming. I was definitely on the immutable data boat, and apparently
everything in Haskell was immutable: ‘what an awesome concept’, I
thought, without really considering the consequences.

It turned out, frighteningly, to be even more awesome than that. The thing
that stays with me is the sheer amount of information contained in each
function signature, because in the absence of IO, the scope of what the
function can access is right there, in the types referenced in that signature!
Sometime later someone showed me the Curry-Howard isomorphism, at
which point my brain exploded.

At the time of the talks I was seriously pining for purity (having just
finished a degree where I had avoided anything including the word
‘applied’ or ‘modelling’ for nearly three years), so I was especially
vulnerable to such ideas; especially when delivered by the charisma
machine that is SPJ, and even when, as was revealed at the end, xMonad’s
entire-window-manager-in-sixty-lines-of-uber-Haskell needed a boatload
of C code in order for the Haskell parts to interface with X.

The media chest is nearly full! Space remains only for one album of music.
For me, this is the hardest choice; I own at least as many CDs as I do books;
just in order to write this section I’ve had to
isolate myself from any possibility of listening to
the shortlist I drew up, because, frankly, they are
all too distracting.

After much rumination, I’m going to impulsively
pick Opeth’s Blackwater Park; my gateway drug
into progressive music. Frighteningly the full
genre of this album, and Opeth in general, is
probably ‘progressive death metal’. However, I
wince whenever I type that, because it’s so
utterly ridiculous. [PG: I think it’s an excellent and descriptive genre title.
Wait until you get into Progressive Black metal!] This album has probably
had more effect on what I listen to now than any other.

It was considerably more technically complex than anything I’d come
across before, the sheer number and quality of musical ideas per song was
mind-blowing, and the variety of places they’d stolen from was again,
huge.

Years later, I struggle to listen to ‘standard’ rock and metal, and popular
music in general, which sticks to a fairly rigid structure of verse, bridge
and chorus, with, if you’re lucky, an instrumental part stuck in where there
was space, it simply doesn’t do enough to hold my interest. This is
Blackwater Park’s fault. There are obvious exceptions here, many bands
to never depart from that structure have recorded some excellent music,
like, um...none of the examples that I thought of, who I only considered
listing because they are less inventive than my average liked album.

Now, Blackwater Park is neither the most progressive nor the most
technical music I now listen to, and it probably isn’t the most expressive
either. This, too, is Blackwater Park’s fault. Even having found albums
that push the boundaries more, I still enjoy Blackwater Park because it
brings together all three of those dimensions so successfully, and it’s
pleasing that it’s standing the test of time. On the island, however, I might
have to wait for a thunderstorm in order to play it in the right atmosphere.
28 | | JUL 2011{cvu}

Desert Island Books (continued)

Mentored Developers Update
Paul Grenyer outlines the latest projects.

t’s an exciting time for the ACCU Mentored Developers! The Growing
Object Orientated Software Guided By Tests (GOOS) project has
completed and we’ve planned and started the next two projects.

Well, that just about wraps it up for GOOS
Sunday 30th May 2011 was officially the last day of one of the most
successful ACCU Mentored Developers projects to date. We didn’t slip
with any of the chapters! I have learned a great deal and it’s always good
to have another completed book under my belt. On behalf of the group,
and personally, I would like to thank Steve Freeman and Nat Pryce for their
contributions. This project would not have been what it was without them.
My personal thanks also go out to Mike Baker who stepped in on a couple
of occasions, most critically when I had an unexpected spell in hospital.
A review of the project will follow in the next CVu. If you would like to
review the project, the email archives are available here:

http://lists.accu.org/mailman/listinfo/accu-mentored-growing

Book reading project
The original list of suggested books for the next project was:

 Clean Code by Uncle Bob

 Refactoring by Martin Fowler

 Working Effectively With Legacy Code by Michael Feathers

 Continuous Delivery by Jez Humble and David Farley

 Domain Driven Design by Eric Evans

Although all received a good number of votes, the most popular two books
were Working Effectively With Legacy Code and Domain Driven Design.

We employed an alternative vote system, where those who originally voted
for Clean Code, Refactoring or Continuous Delivery voted for Working
With Legacy Code or Domain Driven Design. Working With Legacy Code
came out slightly ahead, and I’m delighted too that author Michael
Feathers has agreed to join the project. If you’d like to get involved in the
project, which involves the group reading the book at the pace of about a
chapter a week and each member posting a review in turn, sign up to the
main Mentored Developers list: http://lists.accu.org/mailman/listinfo/
accu-mentored-developers

Grails project
A group has already been put together for another project based around
the Grails framework. Working from Grails In Action, our mentors are
Russel ‘Groovy’ Winder and Grails In Action co-author Peter Ledbrook.
As well as reading, there will be a practical programming element to the
project (you can’t learn a language or framework without programming in
it) and the possibility of a follow on project to develop a real world
application. If you would like to follow the project please sign up to the
list at http://vps.gnomedia.net/mailman/listinfo/accu-mentored-grails

I

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder of the
Mentored Developers. Having worked in industries as diverse as
direct mail, mobile phones and finance, Paul now works for a
small company in Norwich writing Java. He can be contacted at
paul.grenyer@gmail.com
It looks as if there might be room for one more thing
in the chest. Indeed, yes, a little refactoring will
yield the space I need to slot in one further CD; not
an album this time, but the PC Game, Deus Ex. An
unusual choice, perhaps, but I think the mere
existence of Deus Ex destroys several idiotic
conjectures otherwise sensible people have spouted
on the dangers of computer games stupefying
society (I’m looking at you, Susan Greenfield). I
should explain why. I will start at the end.

Three concrete endings confine how you finish the game. Up until then,
your strategies are essentially uncountable (within a reasonably linear
plot). Several extremely dedicated people have completed Deus Ex with
the absolute minimum of kills. There are two points where avoiding death
is impossible if you wish to progress. By the time you get to these points
though, it doesn’t matter, because:

You’ll be completely immersed in the game. The quality of the
scriptwriting, plot and character development will have convinced you that
these deaths aren’t just necessary, but deserved. The sheer attention to
detail put into creating the dystopian future the game is set in is irresistible.

Suspicious players will find subtle hints at the real motivations and goals
of the people and organizations they work with (and for). You’ll frequently
break into apartments and find out more about the owner (and, often some

foreshadowing of coming plot) by what books they’re reading, as well as
the contents of their inbox. Datacubes within the game contain excerpts
of, to name a few, The Man Who Was Thursday (G.K. Chesterton) and Sun
Tzu’s “The Art of War”.

The whole game is as rich in social commentary as a good sci-fi novel; in
particular, one conversation with a deliciously sinister AI named
Morpheus yields some absolute gems (You can, should and must watch it
on youtube, here: http://www.youtube.com/watch?v=COwfIhvRtNw).
Each of the endings is paired with an appropriate quotation; one is from
Milton’s Paradise Lost; another, Voltaire; the third, Khalil Gilbran. I am
yet to find another game so committed to being so flagrantly cerebral.

Your character grows his skills (don’t pick swimming) not just by practice,
but by nano-augmentation. You travel the world via stealth helicopter,
visiting New York, Hong Kong, Paris and Area 51 before you’re done;
spending as much time on side quests and exploring as you do making real
progress through the game.

Ten years on, PC Gamer has given Deus Ex the accolade of ‘best game in
history’ two years in a row, in a remarkable instance of ‘being right on the
internet’. It is written that every time someone mentions Deus Ex, someone
reinstalls it. As I seal my media chest, I fear I may spend most of my time
on this sunny desert island putting on a trenchcoat and fighting
conspiracies in this masterpiece of a game. There is a working computer
on this island, right?
JUL 2011 | | 29{cvu}

30 | | JUL 2011{cvu}

Standards Report: C++0x
Roger Orr brings us up to date with the latest news.

t has been a long time coming but we finally have a new C++ standard
going for official ratification by ISO: the formal ballot should have
started on 6th June.

This was the most important formal motion that was agreed at the most
recent ISO standards meeting (held in Madrid 21–26 March). Three
members of the BSI C++ panel attended the week: Alisdair Meredith (who
many of you will know from ACCU conferences), James Dennett and me.
We also had a couple of days from Mark Batty of Cambridge University
who has particular expertise in the new C++ memory model. There were
in total around 50 people present for the week and eight different countries
were formally represented.

The event was hosted by Telefonica I+D, who not only sponsored the event
but additionally underwrote the cost of lunch for all the delegates each day
(which meant we all ate together in the hotel, giving us a chance to discuss
‘hot topics’ further over lunch).

The three major individual items of particular interest to the UK panel were
discussed in Madrid.

Range-based for statements and ADL (N3257)
The new range-based for (syntax to support simple iteration over an entire
container) has been implemented in a couple of compilers and people have
now begun to use it in existing code bases. However there were some
unexpected errors, for example with some versions of boost
(www.boost.org), an ambiguity is caused when user-provided definitions
of begin or end are available. For example:

 namespace n {
 struct X { ... };
 template<typename T> void begin(T& t) { ... }
 }
 std::vector<n::X> v;

 for (auto i : v) // ambiguity in range-based for

After a late night discussion and a plenary discussion we added a look-up
for member names begin and end, before looking for free functions, to
resolve the ambiguity in the common cases such as that above.

noexcept in the standard library (N3248)
Recent work has raised some issues with wholesale adoption of the new
noexcept keyword for the standard library. (This keyword has similar
semantics to the existing throw() but makes less onerous requirements
on the runtime if an exception does in fact get thrown.) After discussion
we agreed on a conservative set of functions in the standard library as
candidates for marking with the noexcept keyword. This is a safer option
as it is much easier to add the keyword later to more functions than to try
and remove it from existing ones.

Race condition in exception_ptr
The exception_ptr class was added to the standard principally to
support passing exception objects between threads and the draft standard
allows the exception to be either copied or reference-counted. The BSI
panel (and Anthony Williams in particular) dislike the reference count
option as this introduces a data race into the new standard and we
recommended enforcing a copy. However a majority of implementers
stated that this was not implementable without breaking backwards
compatibility on their ABI (so far as they were aware at the present).

Anthony Williams (another name known to ACCU members) joined the
discussion via Skype but a straw poll on the issue resulted in a very heavy
majority against making this change. While still hoping to get this changed
in the future the UK members didn’t think the issue was big enough to
delay the delivery of the standard.

So what’s in the new standard?

There are a number of new features of the language and the library in the
new standard and everybody’s list of the most important one is different.

There is a ‘C++0x FAQ’ at http://www2.research.att.com/~bs/
C++0xFAQ.html maintained by Bjarne Stroustrup and this page also
includes links to other web sites.

For what it’s worth my own short list of key new features includes:

 the auto keyword

The compiler infers the correct type for you, so you don’t have to
type things like:
std::vector<std::string>>::const_iterator.

 range based for (like the example above)

Provides a simple way to express iterating over an entire collection
– works very well in conjunction with auto

 lambda expressions

These allow anonymous functions/function objects to be defined
easily.

 the memory model, atomic variables and basic threading support

Obviously people are doing a lot of multi-threaded programming in
C++ already, but the work gives a standard (and portable) way to do
this.

 variadic templates

This allows templates with variable numbers of arguments.

Some features of the new standard are already included in individual
compilers – for example gcc 4.6 and MSVC 2010. (Scott Meyers maintains
a summary of the feature availability of these two compilers at http://
www.aristeia.com/C++0x/C++0xFeatureAvailability.htm). However, as
the new standard is now in its final form not just a draft, compiler vendors
should start to implement many more of the new features in future versions
of their compilers.

I’m looking forward to making use of these features in my own code.

I

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

JUL 2011 | | 31{cvu}

Growing Object-
Oriented Software,
Guided by Tests
By Steve Freeman and Nat
Pryce, published by
Addison-Wesley, ISBN
978-0321503626

Reviewed by Paul
Grenyer

I’ll cut straight to the
chase: This is a great book! In fact I’d put it
second on my must read list for developers,
behind Test Driven Development by Kent Beck.
Testing is so important and while Unit Testing
is becoming mainstream, many are failing to
take the next next few steps to integration and
system (end-to-end) testing. This book tells you
why you should and shows, with practical
examples, how to get started.

Growing Object Orientated Software Guided by
Tests was the first place I read about the Walking
Skeleton. Originally described by Alistair
Cockburn, this is a technique I’ve been using for
the last few years and didn’t realise there was a
name for. The Auction sniper example that
covered by the middle chapters introduces not
only testing techniques, but lots of useful and
practical lessons about good design. The later
chapters discuss improving your tests, including
readability. The final two chapters cover testing
threaded code and asynchronous code. Some of
the ideas presented here were new to me and
would have have been very useful refactoring
exercises for some projects I used to work on.

If you want to develop higher quality, robust
software, read and apply the lessons in the book.

Warning: The code examples in the Kindle
version of this book are difficult to read and
there are a few misprints compared to the paper
version.

Web site highlight – The Free
Software Foundation (FSF)
Reviewed by Ian Bruntlett

As you may already know, the FSF (http://
www.fsf.org/) provides many of the utilities that

Linux builds upon. They are also known to
campaign against technologies that are threats to
end user freedoms. They provide the GNU
Operating System (http://www.gnu.org). They
are working on an operating system kernel, Hurd
but in the meantime their work is usually used
on top of a Linux kernel, leading to such systems
being referred to as GNU/Linux systems. GNU
is a recursive acronym, meaning ‘GNU’s Not
Unix’. Both Hurd and Linux are heavily
influenced by Unix.

To support itself, the FSF has a shop (http://
shop.fsf.org/). I’ve bought books from here in
the past but have found that technical books tend
to become obsolete pretty quickly compared to,
say, a t-shirt (http://shop.fsf.org/category/gnu-
gear/).

When learning to use GNU software, you are left
with a decision: free download or purchase a
paper copy? I have a handful of GNU books –
however, when they are rendered obsolete (sic
transit gloria mundi) I will replace them with
(free) downloaded PDFs.

To get free GNU books, go to http://
shop.fsf.org/category/books/ , click on the book
you want and then click ‘Download an
electronic copy of this book’.

This isn’t a comprehensive review of the FSF/
GNU web sites but it covers what I find most
relevant.

If you are using a Linux/Unix based system then
there are two other sites you should know about.
The first is O’Reilly (http://oreilly.com/) who

publish a vast array of books. The second is
Amazon UK – here in Northumberland
specialist computer books are hard to get hold of
and (compared to Amazon prices) very
expensive.

C# In Depth,
2nd Edition
By Jon Skeet, published
by Manning, ISBN
9781935182474

Reviewed by
Steve Love

Highly
recommended

To say that Jon Skeet
is passionate about C# would be something of an
understatement. The result of this is that he is
prepared to investigate every feature, nuance,
dark-corner and (importantly) implication of C#
with patience and diligence, and then put all of
his discoveries in a book. This book. In short,
Jon Skeet knows C#. In ways many of the rest
of us would perhaps find disturbing. Happily,
the fact that Jon has looked into places we dare
not, and written it down means we don’t have to.

Jon’s enthusiasm for C# positively boils over in
the text,but that’s not to say he’s especially
evangelistic about it; he’s not afraid to highlight
some of the warts present in any practical
programming language (e.g. casts to and from
enums), and doesn’t shy away from pointing out
one or two limitations of some featuires (e.g. not
being able to use mathematical operators with
generics). When the title says In Depth, it really
means it.

A case in point is the book’s treatment of
Nullable Types. This is a superficially simple
feature of C#2.0 with some syntactic sugar to
make using it straightforward. However, there
are pitfalls and details under the surface which
may manifest themselves infrequently in

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

32 | | JUL 2011

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org Members.fm

The AGM at the ACCU
conference this year was a more
lively affair than normal. There
were a number of items of note. The first was
financial with the publication of the accounts for
2009 and 2010, which made for unpleasant
reading. I won’t repeat all the details and
explanations but sufficient to say that the large
losses of 2009 have been reduced by half in
2010. These we hope to reduce still further in the
current year. The other financial point was the
increase in subscription rates. This was a
necessary change and I thank the membership
for their understanding and trust in this matter.
The other item of note was that the discussion
over having an elected conference chair was
postponed until the next AGM because of a lack
of time.

The fact that for a number of members the above
paragraph will be the first time that they’ve

found out what happened at the AGM raises the
point that the ACCU doesn’t have an effective or
regular way of communicating with members.
At the recent committee meeting we discussed
this and decided that we want to improve
matters. It is not desirable that only those
members who attend the conference should be
involved or should know what happened at their
AGM – there are members who do not come to
the conference because of distance, cost or
problems getting time off work.

If the ACCU is to grow and attract more people
we need to find ways of involving all of the
members regardless of geography. We are
therefore considering a regular electronic
newsletter with ACCU news.

We also want to see if we can arrange some low-
cost events (members’ days) with a mixture of
talks from sessions given at the spring
conference alongside talks from first-timer
speakers. Learning and improving are key
values of the ACCU so this would be a great way
of developing our members’ presentation skills

in a friendly and supportive environment. We
might also be able to invite sixth-formers from
local schools, as happened at one of the autumn
security conferences at Bletchley.

Another idea was to hold these members’ day
conferences in different parts of the country to
reach more members and to help kick start local
ACCU groups. Broad participation is one way to
engage current and prospective members – the
ACCU is a community and we should seek to
foster and nurture that feeling. Many software
developers work in relative isolation, either
physically through working in a small group or
company or mentally through a lack of
knowledge of current practices and techniques;
the ACCU should seek to try to draw those
people together and provide a long-term
structure that is lacking for so many of them.

This is a long-term ambitious vision that will
take a lot of time and effort to make happen but
one that, I believe, is where the ACCU should be
heading.

‘ordinary’ code, but when they strike, can cause
hours of frustration in tracking their cause. Jon
Skeet investigates Nullable Types in intricate
detail, meaning that you can at least be
forewarned of some of these problems and either
avoid them, or recognise their symptoms when
you're bitten by one.

The book progresses in an orderly fashion from
C#1.0 to C#4.0 – current at the time of writing.
The main thrust of each chapter is to show how
each version of the language builds on its
predecessor to make something easier, more

natural or, in some cases, possible where it had
previously not been. In particular the changes to
delegate types in each version of the language
are explored to show how to get the best from
them in a given incarnation.

This is not really a book from which to teach
yourself C#, and the back-cover even mentions
the assumption that readers have a knowledge of

C# basics. If you know C# well enough to write
meaningful programs in it, then you should read
this book. I defy you not to learn something you
didn’t know before!

Bookcase (continued)

	CVu23-3-Final2.pdf
	Screen Test
	It’s The Thought That Accounts
	An Analysis of a Game of Divisions
	A Game of One Against Many
	All from a Telephone Call
	An Introduction to the Windows Presentation Foundation with the Model- View-ViewModel (Part 1)
	One Test or Two?
	Perforce Cross-Platform Patcher
	Bletchley Park Climbs to New Heights
	A Software Experience
	Goodbye from the Conference Chair
	Inspirational (P)articles
	Code Critique Competition 70
	Desert Island Books
	Mentored Developers Update
	Standards Report: C++0x
	Bookcase
	View From The Chair

