

MAR 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

What was, what is, and what
may be

ane was becoming increasingly confused. Since
joining her team, she’d had a variety of little
‘missions’ to complete, all working towards the

release of a replacement product, and (she had to admit)
they’d even been interesting missions, technologically
speaking. She’d even felt she’d had some influence on
the design of the new system. Nevertheless, she was
now finding it hard to escape a feeling of futility about it.

It seemed that the project was becoming bogged-down in
constantly re-visiting details of design that she (and her
colleagues, she felt sure) had already thought decided. No-one
had a very clear idea of how the different components should
communicate together, or even what those components
should be. There was no clarity on some fundamental
things like the domain types to be used, or the
persistence mechanism for them. In short, a lack of
concrete requirements. Oh sure, there was a broad
agreement about what the system should ‘do’ – it must be
be like the old system, but shinier and faster. And more
extensible.

She suspected it was this last part that was causing all the
trouble. Arequirements vacuum had inspired a universe of possibility in which all
things were possible. Instead of ‘just’ replacing the existing system, it had to be able
to support other output styles, manipulate new data types, received from as-yet-non-
existent sources, all dynamically configurable (of course). The possibilities were
endless.

Yes. Jane was sure that was the problem. Instead of actually asking people what they
required, the project had become encumbered and paralysed by the dreams of what
might be.

The question now was – what should she do about it?

 J

Volume 23 Issue 1
March 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Stephen Baynes, Alexander
Demin, Pete Goodliffe, Paul
Grenyer, Richard Harris, Jon
Jagger, Frances Love, Chris
Oldwood, Roger Orr, Nat Pryce,
Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAR 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
20 Inspirational (P)articles

Frances Love introduces
Chris Oldwood.

21 Desert Island Books
Nat Pryce makes his
selection.

22 ACCU Regional Meetings
The spotlight falls on
London.

23 Code Critique
Competition #68
Set and collated by
Roger Orr.

REGULARS
27 Bookcase

The latest roundup of
book reviews.

28 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.2: 1st April 2011
C Vu 23.3: 1st June 2011

Overload 103:1st May 2011
Overload 104:1st July 2011

FEATURES
3 The First Little Step into Test-Driven Development

Alexander Demin takes a good look at Google Test.

8 Many-festos
Pete Goodliffe crafts one manifesto to rule them all.

9 A Game of Blockade
Baron Muncharris sets a challenge.

10 On a Game of Tug o’ War
A student analyses the Baron’s latest puzzle.

11 Further Experiments in String Switching
Matthew Wilson finds adding requirements can be
agreeably easy.

13 Using the Windows Debugging API
Roger Orr reveals the magic of Windows debuggers.

18 What’s in an name?
Stephen Baynes examines just how important a name is.

19 The Kanban Ones Game
Jon Jagger describes a game revealing team behaviour.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

The First Little Step into Test-Driven
Development

Alexander Demin takes a good look at Google Test.

he software development world is changing rapidly – new versions
of the operating systems, compilers, libraries are coming up faster
and faster. It’s actually great. Lots of options allow you to choose the

development tools ideally fitting your personal requirements. Approaches
to developing good quality software are also changing all the time.
Nowadays the cool words in the programming world are object oriented
design, functional programming, extreme programming and of course test-
driven development (TDD).

Though I have more than ten years’ experience of programming, and it
covers various languages from machine code and assembler up to
functional programming, I have discovered the test driven development
world quite recently. Programmers are often very conservative (and quite
lazy!) and they do not like to change their habits. I am a perfect example.
But when I stepped over my laziness and started to use TDD I felt that my
development became more predictable, more stable. I managed to split
complex tasks into pieces, and manage code interdependencies
significantly more easily and faster. More importantly: I have stopped
repeating my coding mistakes, reintroducing already fixed bugs and now
I am able to refactor my code anytime without any fear of breaking
something important a day before the release. Why? All thanks to test
driven development.

I would like to share my experiences on entering the wonderful world of
TDD and hope to encourage somebody to join.

My main background is C and C++, so I will cover these languages, but
all ideas mentioned are common for lots of modern languages (Java, C#,
Python, Delphi etc).

Let’s start from the beginning. Usually the first program written by a
newbie is Hello World. Assume you have done it already and you want to
do something more complex.

Let’s assume you studied a lot of computer science and you know how to
implement a very fast multiplication function. Listing 1 is what it might
look like.

I want to warn the reader that this particular example is not ideal in terms
of coding style and it’s not clear in logic, it uses a lot of C/C++ ‘cool short’

expressions and so on. Also the function has some weird line with 920 and
847. This is intentional, and will be covered later.

Now, you have done the code. You definitely know that it should work
more reliably and faster because your computer science background tells
you that. How can you make sure that it works correctly? The function code
is quite ‘non-understandable’ and you cannot swear that it works correctly
just by looking on the source. You have to try it on. The first and the most
obvious way to create a simple example might be that shown in Listing 2.

Then you run it, play with it a bit, try a couple of examples and then come
to the conclusion that it works. Later you add the mult.cc file to your
project and probably delete the test example source because you do not
need it anymore. You have linked the function into your application and
you are almost happy.

Let’s step back for a second now and imagine that unfortunately sometimes
your application gives a wrong result or perhaps crashes and you suspect
that the issue is your mult() function. You have to find your original test
source or even write it again because you have lost it, then run it again
under a debugger and try to find what the problem is. And now imagine
you have hundreds or thousands of similar functions in your application
and you have to re-test them all. It’s a nightmare.

Well, let me show you another way – the test driven development way.
We will use the excellent Google Test Framework 1.5.0 for that. You can
download and unpack it in your working directory:

wget http://googletest.googlecode.com/files/
gtest-1.5.0.tar.gz

gzip -dc gtest-1.5.0.tar.gz | tar xvf -

It will create gtest-1.5.0 directory in your current folder. We will
refer to this directory below so make sure that you use proper directory
names in your compilation commands.

Then you create the unit test (mult_unittest.cc, in Listing 3).

 T

ALEXANDER DEMIN
Alexander Demin is a software engineer with a PhD in
Computer Science. Constantly exploring new
technologies he is always ready to drill down into the
code with a disassembler to prove that the bug is out
there. He may be contacted at alexander@demin.ws.

// File: mult.h
#ifndef _MULT_H
#define _MULT_H
int mult(int a, int b);
#endif

// File: mult.cc
#include "mult.h"
int mult(int a, int b) {
 if (!a || !b) return 0;
 int r = 0;
 if (a == 920 && b == 847) r++;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Li
st

in
g

1

#include "mult.h"
#include <iostream>

int main(int argc, char* argv[]) {
 while(1) {
 std::cout << "enter a: ";
 int a;
 std::cin >> a;
 std::cout << "enter b: ";
 int b;
 std::cin >> b;
 std::cout << "a * b = " << mult(a, b)
 << std::endl;
 }
}

Listing 2
MAR 2011 | | 3{cvu}

This file contains the simple test case. The meaning of it is explained
below.

Then the test main runner module (runner.cc, in Listing 4).

This runner will execute all declared tests in your test application. This
piece of code can be almost the same for any of your unit test suites. It just
parses the command line arguments and runs all tests.

Now let’s compile it. If you are running Linux and have the GCC C++
compiler version 3 or later you can use the following command:

 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

The mult_unittest executable should be generated. Let’s run it:

 ./mult_unittest

It prints something like this:

 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran.
 [PASSED] 1 test.

Let’s go back and look at it in more detail now. We have created a test case
named multTest.simple in the file mult_unittest.cc
(multTest is the test suite name and the simple is the test name in the
suite) which runs your function with 7 and 13 as the parameters and checks
that result is 91. The macro for the test declaration is TEST(...). The
magic happens in the EXPECT_EQ (...). This function call has two
arguments: the first one is the expected value and the second is the real
one. If they are equal the function passes through quietly but if they are
different it reports an error message.

The Google Test Framework provides a bunch of similar functions to
check various conditions with different argument types. The EXPECT_*
function family does not abort the test run. It just prints the report about a
test failure and keeps going to execute other tests. The ASSERT_*
functions (for example, ASSERT_EQ()) stop the test suite run and
terminate the runner. They are convenient when there is no reason to
continue testing on a fatal error (for example, a database is not available).

But in our case the test runner reports a successful test execution – the test
case has been executed and the result is correct. That’s fine but this test
case is so obvious and checks only one pair of numbers. You need more.
Because the mult() function has some weird checking of the argument
for zero at the beginning let’s test it. You add one more test case –
multTest.zero (File: mult_unittest.cc, Listing 5).

Let’s compile with the same command and run mult_unittest
executable again. It should print this:

 [==========] Running 2 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 2 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [----------] Global test environment tear-down
 [==========] 2 tests from 1 test case ran.
 [PASSED] 2 tests.

The new test passes successfully as well and the mult() function seems
to handle checking the parameter for zero correctly. But we still have an
unsolved issue – your application using the function mult() fails and it
means this function sometime returns wrong value. Let’s add a stronger
test to file mult_unittest.cc (Listing 6).

This test (multTest.all) checks all possible values of arguments from
0 to 999. Let’s compile and run it again:

 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 mult_unittest.cc:18: Failure
 Value of: mult(a, b)
 Actual: 779241
 Expected: a * b
 Which is: 779240
 [FAILED] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 2 tests.
 [FAILED] 1 test, listed below:
 [FAILED] multTest.all

 1 FAILED TEST

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

Li
st

in
g

3

#include <gtest/gtest.h>

int main(int argc, char **argv) {
 testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

Li
st

in
g

4

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

TEST(multTest, zero) {
 EXPECT_EQ(0, mult(0, 7));
 EXPECT_EQ(0, mult(7, 0));
}

Listing 5

#include <gtest/gtest.h>
#include "mult.h"

TEST(multTest, simple) {
 EXPECT_EQ(91, mult(7, 13));
}

TEST(multTest, zero) {
 EXPECT_EQ(0, mult(0, 7));
 EXPECT_EQ(0, mult(7, 0));
}

TEST(multTest, all) {
 for (int a = 0; a < 1000; ++a)
 for (int b = 0; b < 1000; ++b)
 EXPECT_EQ(a * b, mult(a, b));
}

Listing 6
4 | | MAR 2011{cvu}

Wow! The test fails. It means we have found the problem. We see that in
line 18 of mult_unittest.cc there is a test failure: the expected value
is 779240 but the actual one is 779241. It’s a great result, but we also need
to know which exact parameters cause this error. So let’s modify the test
(Listing 7).

This code will also print the error message and the values of a and b on
failure. The EXPECT_EQ(...) can be used the output stream similar to
std::cout, for example, to print out the diagnostics on a test failure.

Compile and run it again. We should get the following result:

 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 mult_unittest.cc:17: Failure
 Value of: mult(a, b)
 Actual: 779241
 Expected: a * b
 Which is: 779240
 wrong result on a=920 and b=847
 [FAILED] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 2 tests.
 [FAILED] 1 test, listed below:
 [FAILED] multTest.all

 1 FAILED TEST

Now we know exactly that the function fails when a=920 and b=847. This
is the problem. And now we can fix the ‘problem’ by removing the line
if a == 920 && b == 847) r++; from the mult.cc file. Listing
8 is an error free version of the main.cc.

Well, now compile it and run mult_unittest once again. Here is the
output:

 [==========] Running 3 tests from 1 test case.
 [----------] Global test environment set-up.
 [----------] 3 tests from multTest
 [RUN] multTest.simple
 [OK] multTest.simple
 [RUN] multTest.zero
 [OK] multTest.zero
 [RUN] multTest.all
 [OK] multTest.all
 [----------] Global test environment tear-down
 [==========] 3 tests from 1 test case ran.
 [PASSED] 3 tests.

All tests work perfectly and now you are sure that your function mult()
is fully error free.

Let’s analyse what we’ve done. We have created the function mult()
and also the tests which can be used any time to prove its proper
functioning. At this point test driven development strongly recommends

you include the test build and execution into your project build. For
example, this is the part of your myapp project makefile:

 ...
 all: build

 build:
 cc -o myapp main.cc mult.cc

You should add the test compilation and run into this makefile:

 ...
 release: build test

 build:
 g++ -o myapp main.cc mult.cc

 test:
 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

 ./mult_unittest

Why do you need this? You need this because each time you release the
project (using release target) it will compile and run the test suite to make
sure that the current implementation of the mult() function is ok and
works as you expect.

Now imagine you want to check whether it is reasonable to use your own
hacky implementation of the simple arithmetic operation as the
multiplication. Let’s run your test suite again using the command:

 ./mult_unittest --gtest_print_time
 --gtest_filter=multTest.all

We ask Google Test framework to print the test execution time and also
we ask to run only one test using the filter by name.

The output:

 Note: Google Test filter = multTest.all
 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.all
 [OK] multTest.all (1266 ms)
 [----------] 1 test from multTest (1297 ms total)

 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran. (1328
 ms total)
 [PASSED] 1 test.

It reports only one test run (testMult.all) and it takes 1279 ms on my
Core 2 Duo laptop (timing on your machine may be different).

Now you want to try another fairly simple implementation for the mult()
function (file mult.cc, in Listing 9).

Let’s compile it using exactly the same command as we used for the first
implementation:

TEST(multTest, all) {
 for (int a = 0; a < 1000; ++a)
 for (int b = 0; b < 1000; ++b)
 EXPECT_EQ(a * b, mult(a, b))
 << "wrong result on a=" << a << " and
 b=" << b;
}

Li
st

in
g

7 #include "mult.h"

int mult(int a, int b) {
 if (!a || !b) return 0;
 int r = 0;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Listing 8
MAR 2011 | | 5{cvu}

 g++ -Igtest-1.5.0/include -Igtest-1.5.0 -o
 mult_unittest gtest-1.5.0/src/gtest-all.cc
 mult.cc mult_unittest.cc runner.cc

and run it:

 ./mult_unittest --gtest_print_time
 --gtest_filter=multTest.all

The output should look like this:

 Note: Google Test filter = multTest.all
 [==========] Running 1 test from 1 test case.
 [----------] Global test environment set-up.
 [----------] 1 test from multTest
 [RUN] multTest.all
 [OK] multTest.all (1094 ms)
 [----------] 1 test from multTest (1141 ms total)

 [----------] Global test environment tear-down
 [==========] 1 test from 1 test case ran. (1171
 ms total)
 [PASSED] 1 test.

We see it takes only 1094ms on my laptop and it’s faster than our original
handmade implementation.

Now you know that the original implementation is not quite so good and
may be optimized or replaced by a better one.

So what is that we have achieved by this entire exercise? What is the point
of it?

Firstly, we have created a test mechanism for our function. This
mechanism can be used at a later time to prove the function logic and it
can be fully automated. Once created it can be re-used as many times as
you want. You do not lose your efforts applied initially for creating the
testing routine.

Secondly, we have included the test run into the project build. If the
function logic is broken for some reason (you’ve changed the code
accidentally or maybe the new version of the compiler has generated the
wrong code) the test will automatically point you towards it by failing the
build.

And thirdly, we tried two different implementations of the mult()
function using the same test suite. This means you can easily refactor the
code without any fear of breaking something. The tests will check the
function results and the expectations from the function. You have
determined the function behaviour via the test cases and from this point
you can easily play with the function implementation. On top of this we
have tested two different implementations for execution time and now we
have enough information to choose the better one.

These are really awesome results – you have automated the error checking
procedure for your project. You do not need to do any manual runs
anymore, playing with parameters to make sure that everything works as
expected after any recent changes. Let’s imagine how just a little extra
effort of writing a 5 minute test case (comparing to the original user
interactive test application) gave us so much additional information and
helped to create a better design for the application. It’s definitely worth it.

There is probably an argument that in some cases testing can be tricky
because real world applications are much more complex than this isolated
example. That is 100% correct, however the answer to it is also very
simple: you have to write testable code from the beginning. Every time a
piece of code is done, ask yourself – how will I test it? And maybe you

will write the code a bit more simply, a bit more split into simple sub-tasks,
a bit more isolated from external dependencies and so on. Definitely
writing testable code is a complicated issue and there are a lot of techniques
for it: dependency injection, isolating the business logic from the object
instantiation (operator new), using inheritance and polymorphism
instead of overly complicated if/switch constructions and so on and so
forth.

Of course I have referenced many things from the object oriented world
which make it easier to use unit testing. Applications with object oriented
design in most cases are quite easy to test but the classic procedural
languages like C or Pascal, for example, are not out of the question either.

Let’s see how to test a similar example written in ANSI C. Your sources
are in Listing 10.

I will use another Google testing framework here – cmockery 0.1.2. This
framework was designed to test C code and it’s a very powerful
framework. On top of the set of assert_* functions it can help to find
memory leaks, and buffer under- and over-runs.

Let’s get it:

 wget http://cmockery.googlecode.com/files/
 cmockery-0.1.2.tar.gz
 gzip -dc cmockery-0.1.2.tar.gz | tar xvf -

This command will create the cmockery-0.1.2 folder in your current
directory. We will use it so do make sure you do all runs below with this
as the current directory.

Let me show you the test suite with the same functionality but written in
C (mult_test.h in Listing 11 and mult_test.c in Listing 12), and
the runner (Listing 13).

Let’s compile it with GCC version 3 or higher:

 gcc -Icmockery-0.1.2/src/google -o mult_test
 cmockery-0.1.2/src/cmockery.c mult.c mult_test.c
 runner.c

If everything is correct you should test mult_test executable. Let’s run
it:

 ./mult_test

and it will print something like Listing 14.

#include "mult.h"
int mult(int a, int b) {
 return a * b;
}Li

st
in

g
9 // File: mult.h

#ifndef _MULT_H
#define _MULT_H
int mult(int a, int b);
#endif

// File: mult.c (buggy version)
#include "mult.h"
int mult(int a, int b) {
 int r = 0;
 if (!a || !b) return 0;
 if (a == 920 && b == 847) r++;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Listing 10

#ifndef _MULT_TEST_H
#define _MULT_TEST_H
void mult_simple_test(void **state);
void mult_zero_test(void **state);
void mult_all_test(void **state);
#endif

Listing 11
6 | | MAR 2011{cvu}

The mult_all_test fails on line 19 and it reports that the expected
value of multiplication is 0xBE3E8 (decimal 779240 = 920 * 847) but the
actual one is 0xBE3E9 (decimal 779240). Now we fix the mult()
function removing buggy line if (a == 920 && b == 847) r++;,
giving Listing 15, an error-free version of mult.c., and run the test suite
again.

Now it prints this:

 mult_simple_test: Starting test
 mult_simple_test: Test completed successfully.
 mult_zero_test: Starting test
 mult_zero_test: Test completed successfully.
 mult_all_test: Starting test
 mult_all_test: Test completed successfully.
 All 3 tests passed

We see now all three tests work fine. Of course C-based unit testing is not
as advanced and comfortable in terms of reporting or code organization.
You have to declare your test cases in the header file and in the runner but
this is a limitation of the C language. The cmockery framework from
Google makes the most of what is technically possible for comfortable
testing in C. But even if the reporting is not ideal you are always informed
about which test fails and in which line.

Other languages have unit testing frameworks as well. jUnit for Java,
pyUnit for Python and so on. The principles of unit testing are exactly the
same – running small pieces of your application in isolation.

QA (Quality Assurance) testing and regression testing are separate big
topic in themselves, and are handled differently. Good unit tests should be
fast so they don’t slow down the compilation process on the project. But
sometimes you want to do stress testing for your code – maybe execute
something millions of times, check memory allocation for leaks, create the
test for a recently fixed bug to avoid its reintroduction later and so on.
These kinds of tests can take a long time and it’s not comfortable to run
them on every project build. Here, QA and regression testing step onto the
scene. It’s also quite an interesting topic and I will try to cover it soon as
well.

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmockery.h>

void mult_simple_test(void **state) {
 assert_int_equal(91, mult(7, 13));
}

void mult_zero_test(void **state) {
 assert_int_equal(0, mult(0, 7));
 assert_int_equal(0, mult(7, 0));
}

void mult_all_test(void **state) {
 int a, b;
 for (a = 0; a < 1000; ++a)
 for (b = 0; b < 1000; ++b)
 assert_int_equal(a * b, mult(a, b));
}

Li
st

in
g

12

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmockery.h>
#include "mult_test.h"

int main(int argc, char* argv[]) {
 const UnitTest tests[] = {
 unit_test(mult_simple_test),
 unit_test(mult_zero_test),
 unit_test(mult_all_test),
 };
 return run_tests(tests);
}

Li
st

in
g

13

mult_simple_test: Starting test
mult_simple_test: Test completed successfully.
mult_zero_test: Starting test
mult_zero_test: Test completed successfully.
mult_all_test: Starting test
0xbe3e8 != 0xbe3e9
ERROR: mult_test.c:19 Failure!
mult_all_test: Test failed.
1 out of 3 tests failed!
 mult_all_test

Li
st

in
g

14

#include "mult.h"

int mult(int a, int b) {
 int r = 0;
 if (!a || !b) return 0;
 do {
 if (b & 1) r += a;
 a <<= 1;
 } while (b >>= 1);
 return r;
}

Li
st

in
g

15
MAR 2011 | | 7{cvu}

8 | | MAR 2011{cvu}

Many-festos
Pete Goodliffe crafts one manifesto to rule them all.

Confusion of goals and perfection of means seems, in my opinion, to
characterise our age.

– Albert Einstein

t’s becoming an epidemic! They’re springing up everywhere. We’ve got
them coming our of our ears. It’s as if you can’t write a line of code,
kick off a development process, or even think about the act of coding

without signing up to one.

With all these manifestos for software development, our profession is in
danger of becoming more about politics than the actual art, craft, science,
and trade of software development.

Of course, a large and important part of professional software development
is the people problem. And that necessarily involves politics, to some
extent. But we’re making even the foundational coding principles a
political battle. Is this for the best? Or is it just a fashionable, sound-bite-
sized way to get your point across, and to try to garner support for your
pet hobby-horse?

These ‘development’ manifestos are often too ambiguous for people to
sign up to in any meaningful way. They’re so general that they simply must
be right. Akin to a development horoscope, if you will. Very few of them
break new ground, or introduce anything genuinely radical. And, sadly,
when a manifesto becomes popular we see factions form around it, leading
to disputes about what the manifesto really stands for. Whole debates
spring up around the exegesis of the particular manifesto items.

Software religion is alive and well.

Whether or not manifestos are a good idea, they seem to be springing up
for any conceivable purpose. So, in order to stem the flow, and make it
easier for future software activists who’d like to pen their own manifesto,
here I present the one, the overarching, generic software development
manifesto. Manifesto<PET_SUBJECT>, if you like.

A generic manifesto for software development
We, the undersigned, have an opinion about software development. We are
concerned about the future of our profession, and our passion leads us to
draw the following conclusions:

 We believe in a fixed set of immutable ideals

over tailoring our approach to each specific situation.

 We believe in concentrating on and discussing only the things that
interest us

over the bigger problem.

 We believe in our opinion

 over the opinions and experiences of others.

 We believe in arbitrary black-and-white mandates

 over real-world scenarios with complex issues and
delicate resolutions.

 We believe that when our approach is hard to follow

then it only shows how much more important it is.

 We believe in crafting an arbitrary
set of
commandments

 over the realisation that it’s
just never that simple.

 We believe in trying to establish a
movement to
promote our view

over something that will
be genuinely
useful.

 We believe that we are better developers than those who don’t agree
with us

because they don’t agree with us.

That is, we believe we’re doing the right thing. And if you don’t you’re
wrong. And if you don’t do what we do, you’re doing it wrong.

OK, OK
Alright. I’ll admit it. I exaggerated for effect. And my tongue is in my
cheek. Mostly.

References
The Agile Manifesto http://agilemanifesto.org/
The Craftsmanship Manifesto

http://manifesto.softwarecraftsmanship.org/
The Refactoring Manifesto http://refactoringmanifesto.org/
The SOA Manifesto http://www.soa-manifesto.org/
The GNU Manifesto http://www.gnu.org/gnu/manifesto.html
The Software Testing Manifesto

http://www.softwaretestingmanifesto.org/
The Library Software Manifesto http://techessence.info/manifesto/
The OpenCloud Manifesto http://www.opencloudmanifesto.org/
The Mozilla Manifesto http://www.mozilla.org/about/manifesto
The Cluetrain Manifesto http://www.cluetrain.com/
The End-User Manifesto http://alistair.cockburn.us/User+Manifesto
The Experience Design Manifesto http://www.brazandre.com/manifesto/
The Hacker Manifesto http://en.wikipedia.org/wiki/Hacker_Manifesto

Questions
1. What foundational development ‘principles’ do you hold dear?

2. Do you sign up to, or align yourself with, development streams like
‘agile’, ‘craftsmanship’ and so on? How closely do you agree with
each of the items in their manifesto?

3. What do you think these manifestos do have to offer the
development community?

4. What kinds of harm might they really be able do, if any?

5. Or do you keep your head down and ignore this kind of thing?
Should you actually follow these software fashions and fads to
maintain personal development?

 I

Becoming a Better Programmer # 67

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

http://agilemanifesto.org/
http://manifesto.softwarecraftsmanship.org/
http://refactoringmanifesto.org/
http://www.soa-manifesto.org/
http://www.gnu.org/gnu/manifesto.html
http://www.softwaretestingmanifesto.org/
http://techessence.info/manifesto/
http://www.opencloudmanifesto.org/
http://www.mozilla.org/about/manifesto
http://www.cluetrain.com/
http://alistair.cockburn.us/User+Manifesto
http://www.brazandre.com/manifesto/
http://en.wikipedia.org/wiki/Hacker_Manifesto

MAR 2011 | | 9{cvu}

A Game of Blockade
Baron Muncharris sets a challenge.

ood heavens Sir R----- you look chilled to the bone! Come take a seat
by the fire and a glass of mulled wine to undo the ill effects of this
most unseasonable weather.

To speed your recovery might I suggest a small wager to warm the blood?

Splendid fellow!

I have in mind a game invented to commemorate my successfully quashing
the Caribbean zombie uprising some few several years ago. Now, as I’m
sure you well know, zombies have ever been a persistent, if sporadic,
scourge of those islands. On that occasion, however, there arose a
formidable leader from amongst their number; the zombie Lord J------ the
Insensate. [1]

Against all reason and contrary to historicity, the mindless Lord J------ was
possessed of a remarkable proficiency in the art of soldiering. He rallied
the shuffling horde into a single effective fighting force and proceeded to
make war upon the unfortunate islanders.

I was out scouting atop the mountains in the south when I spied the zombie
army marching in a westerly direction deep in a ravine beneath me. As I
turned back to give report of their position, my steed lost his footing and
we came sliding down the mountainside. We gathered quite the collection
of boulders during our descent and it took all of my not insubstantial
horsemanship to keep from falling; were I a lesser man my horse and I
should surely have perished.

When we reached the bottom I realised that our motley collection of
boulders had completely blocked off the eastern end of the ravine. I saw
immediately what needed to be done; I took one of the larger monoliths
and, employing my saddle as a sling, cast it the ten miles to the left hand
slope at the westward end. As I had anticipated, its impact set off a second
landslide trapping Lord J------’s forces between them.

Safe in the certitude that they could not escape their mountain gaol, I
proceeded at my leisure to alert the artillery of their target.

But now I am delaying our sport!

The game shall take place upon this chessboard I have set here before you,
although the outer squares shall play no part in our contest as we shall
restrict our field of play to the inner six by six squares.

We shall each take a store of dominoes and take turns placing them upon
the board so that each lays across two adjacent squares, either rank-wise
or file-wise. You shall place the first and the game shall continue until the
entire field is thusly covered.

We shall be free to choose any squares not yet occupied unless the
placement would render the game inconclusive by carving out an island
of empty squares odd in number.

If, at the conclusion, you have played artfully and blockaded each line
running between the ranks and files of the field by ensuring that they are
all straddled by at least one domino you shall have one coin of mine.
Contrariwise, if you have not, I shall have two coins of yours.

When I described the manner of play of this delightful test of strategy to
that wretched student with whose acquaintance I am so tediously
burdened, he took it upon himself to describe, at some quite unwelcome
length I might add, his newfound interest in pigeons. Now I will happily
admit to some small interest in ornithology, albeit principally the noble
falcon and not in any way that verminous fowl of his fancy, but quite why
he imagined that I should wish to discuss the subject with him is entirely
beyond me.

But this is not a fitting subject for conversation!

Come, take another draught and formulate your stratagems!

Note
[1] With thanks to ‘zombie’ Lee Jackson for this puzzle

Figures
Figure 1: Sir R----- loses!

Figure 2: An illegal move.

 G

A Game of... # 10

Figure 1
Figure 2

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

10 | | MAR 2011{cvu}

Errata

On a Game of Tug o’ War
A student performs his analysis.

ecall that the Baron’s game involves moving a coin on a track of 12
numbered spaces.

The leftmost 6 squares were held by the Baron and the rightmost by Sir R-----.
The Baron began by casting a die and placing a coin on his square numbered
with its value. If he rolled a 6 Sir R----- cast the die and placed it on his so
numbered square. If Sir R----- also rolled a 6 the game was begun anew.

The game progress with the player upon whose side of the track the coin lay
rolling the dice and, if it exceeded the value on the square, moving the coin
one square towards his 0 numbered, or home, square or one square away
otherwise.

The winner was to be the first player to move the coin to his own home square,
with the Baron having 3 coins from Sir R----- if he won and Sir R----- having
9 and one quarter coins from the Baron otherwise.

The key to a hasty reckoning of the fairness of this wager is firstly in
recognising that the game is symmetric; Sir R-----’s chance of winning the
game if the coin lies upon any given square is equal to the Baron’s if it were
on the other player’s equally numbered square. In consequence the Baron’s
chance of winning if the coin lies upon one of Sir R-----’s squares must be equal
to one minus the chance of his winning if the coin lies upon on the identically
numbered square of his.

Having so noted, we can express the probability of the Baron winning the game
from a start upon his 5 numbered square, p5, in terms of its own self and the
probability of his winning from a start upon his 4 numbered square, p4.

We can thus recursively construct the probabilities of his winning from any of
his squares.

I described these observations to the Baron when he told me of his game,
although I am not entirely sure that he gave them his full attention.

Substituting p1 into the equation for p2, p2 into the equation for p3, and so on
and so forth, yields

Finally, we may exploit the symmetry of the game once more to figure the
probability of the Baron winning before the starting square has been picked by
noting that if the Baron rolls a 6 then sir R-----’s chance of winning must be
equal to the Baron’s chance at the outset of the game.

Sir R-----’s expected winnings are consequently

and I should not therefore have advised him to enter into the Baron’s wager.

0 1 2 3 4 5 5 4 3 2 1 0

 R

p5
1
6
---p4

5
6
--- 1 p5– +=

6p5 p4 5 5p5–+=

p5
1
11
------p4

5
11
------+=

p4
1
3
---p3

2
3
---p

5

11
31
------p3

10
31
------+=+=

p3
1
2
---p2

1
2
---p4+

31
51
------p2

10
51
------+= =

p2
2
3
---p1

1
3
---p3+

51
61
------p1

5
61
------+= =

p1
5
6
---p0

1
6
---p2+

62
63
------= =

p2
51
61
------ 62

63
------ 5

61
------+ 3162 315+

3843
--------------------------- 3477

3843
------------ 57

63
------= = = =

p3
31
51
------ 19

21
------ 10

51
------+

589 210+
1071

------------------------ 799
1071
------------ 47

63
------= = = =

p4
11
31
------ 47

63
------ 10

31
------+

517 630+
1953

------------------------ 1147
1953
------------ 37

63
------= = = =

p5
1
11
------ 37

63
------ 5

11
------+

37 315+
693

--------------------- 352
693
--------- 32

63
------= = = =

p
1
6
--- 62

63
------ 1

6
---+

57
63
------ 1

6
---+

47
63
------ 1

6
---+

37
63
------ 1

6
---+

32
63
------ 1

6
---+ 1 p– =

7p
62 57 47 37 32 63+ + + + +

63
--- 298

63
---------= =

p
298
441
---------=

9
1
4
--- 1 p– 37

4
------ 143

441
--------- 5291

1764
------------ 2

1763
1764
------------= = =

On a Game of...

Owing to an attack by the typo gremlins you may have found the
student’s analysis in the last issue somewhat confusing.

Having worked out the area of a triangle in terms of trigonometric
functions of and , the analysis of the second game should
have proceeded as follows:

For a given , the average area of the triangles is thusly given by

To calculate the average area of any triangle we must perform a
similar exercise upon this result.

We have called in the gremlin catchers and hopefully the problem
will be resolved shortly.

1

--- cossin–cossin cossin–cossin – d

+d

0

1

--- cossin–sinsin 0

 1

--- cossin–sinsin

–=

2
sin cossin–

-- – cossin–

2
sin–

---–=

2
2 cossin–sin

-- cossin+=

2
2
----- 2

sin 2
2
----- sin cos d

0

–d

0

1

--- sin dcos

0

+

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?

Further Experiments in String Switching
Matthew Wilson finds adding requirements can be

agreeably easy.

n July 2010’s CVu [1] I wrote about my experiments in simplifying the
business of converting well-known command-line arguments strings
into well-known integral constants. The example given from that article

looked like Listing 1.

I observed two drawbacks with the implementation:

 It only worked with multibyte strings (i.e. character type = char)

 It only worked with C-style strings (i.e. non-null pointers to nul-
terminated character arrays).

Shortly, I’ll discuss how I was able to address the first of these
shortcomings with relative ease; the second is not yet addressed. But before
that, I want to discuss a new requirement that just cropped up, whose
solution prompted me to address the string encoding restriction, and to
write this follow-up article.

New requirements
In its original guise (Listing 1), stlsoft::string_switch()
operated by assigning to *result. In my continuing work involving lots
of command-line development, I’ve come across a need to have the string-
switching OR one or more bit flags to an already-assigned flag variable,
as in the following code, in which flags is manipulated by the detection of
command- l ine f l ags (e .g . --show-same) a s we l l a s , v ia
string_switch(), the value of the option --compare-as (see
Listing 2).

But how to achieve this dual role? Initially, only two unpleasant
alternatives sprang to mind:

 Add another method, called string_switch_or() or
string_switch_combine(), or some such, with the required
behaviour. In the implementation shown in Listing 3 the line
*result = case_.value; would be replaced with *result
|= case_.value;. Although not hugely onerous, repeating
almost the whole function body and whacking on a clumsy name
does not appeal to my aesthetic.

 Change string_switch() to the new semantics, and require
users to remember to set the result variable to 0 before calling. This
has the strong potential to break code, and is a total non-starter.

Taking the least bad of the two options, it looked like I’d have to grin and
bear the use of the cut-and-paste string_switch_combine() option.

 I

language_t language = SSSALC_LANG_NEUTRAL;
char const* val;
if(clasp::check_option(args, "--language",
 &val, NULL))
{
 string_t langStr;
 string_t verStr;
 . . .
 stlsoft::split(val, ',', langStr, verStr);
 stlsoft::split(verStr, '.',
 verHiStr, verLoStr);
 . . .
 if(!stlsoft::string_switch(
 langStr.c_str()
 , &language
 , stlsoft::string_cases(
 "C", SSSALC_LANG_C
 , "C++", SSSALC_LANG_CPLUSPLUS
 , "C#", SSSALC_LANG_CSHARP
 , "D", SSSALC_LANG_D
 , "Java", SSSALC_LANG_JAVA
)
)
)
 {
 ff::fmtln(std::cerr,
 "Invalid language specified: {0}", val);
 return EXIT_FAILURE;
 }

Li
st

in
g

1

MATTHEW WILSON
Matthew is a software development consultant and trainer
for Synesis Software who helps clients to build high-
performance software that does not break, and an author
of articles and books that attempt to do the same. He can
be contacted at matthew@synesis.com.au.

enum
{
 VDD_F_SHOW_SAME = 0x00000001,
 VDD_F_SHOW_DIFFERENT = 0x00000002,
 VDD_F_SHOW_LEFT_ONLY = 0x00000004,
 VDD_F_SHOW_RIGHT_ONLY = 0x00000008,
 . . .
 VDD_F_COMPARE_AS_BINARY = 0x00010000,
 VDD_F_COMPARE_AS_TEXT = 0x00020000,
 VDD_F_COMPARE_AS_NOWS = 0x00030000,
 VDD_F_COMPARE_AS_NOCOMMENT = 0x00040000,
 VDD_F_COMPARE_AS_LEX = 0x00050000,
 VDD_F_COMPARE_AS_TEXT_PERCENT = 0x00060000,
 . . .
 VDD_F_COMPARE_AS_MASK = 0x000f0000,
 . . .
};
static int tool_main(
 clasp::arguments_t const* args
)
{
 int flags = 0;
 char const* compareAs = NULL;
 clasp::check_flag(args, "--show-same", &flags,
 VDD_F_SHOW_SAME);
 clasp::check_flag(args, "--show-different",
 &flags, VDD_F_SHOW_DIFFERENT);
 clasp::check_flag(args, "--show-left-only",
 &flags, VDD_F_SHOW_LEFT_ONLY);
 clasp::check_flag(args, "--show-right-only",
 &flags, VDD_F_SHOW_RIGHT_ONLY);
 . . .
 if(clasp::check_option(args, "--compare-as",
 &compareAs, "binary"))
 {
 . . // contingent report, return EXIT_FAILURE
 }

Listing 2
MAR 2011 | | 11{cvu}

Just as I was about to paste, the distaste caused a brainwave that,
characteristically, seems risibly simple when explained. The new
implementation upgrades the existing string_switch() function with
the new functionality, while remaining backwards-compatible with the
old, just by the addition of a default argument, which defaults to 0, and
combining it with the result, as shown in Listing 4. All the existing unit-
tests continue to be satisfied, and the new requirements too.

One problem remains. The template parameter R designates the type of
*result as well as defining the type of the string cases. But when used
in bitwise OR guise, this will not suffice, because the type of *result is
int and, as in the motivating example above, the flag values are
enumerators. In this case, the fact that C/C++ enumerators are implicitly
convertible to int is of no use to the compiler, which gets all confused
when being passed ints and enumerators in the same call. The answer to
this is just as simple as the rest of this solution, and does rely on the implicit
conversion: simply define an additional template parameter to act as the
enumerators, as shown in Listing 5.

Widestring compatibility
I’d imagined this to be much harder than it turned out to be: abstracting
the worker types and functions on character type paying dividends. All the
changes are contained within the string_switch() function (see

Listing 6). Simply, the multibyte-specific strcmp() call is replaced by
use of std::char_traits<C>’s length() and compare()
methods. As a trivial bonus, the implementation is probably mildly better
performing than the original in cases where the strings have a mix of
lengths.

Listings
Listing 1 – Original implementation of string_switch().

Listing 2 – Bitwise-OR enhanced version of string_switch().

Listing 3 – Heterogeneous argument bitwise-OR enhanced version of
string_switch().

Listing 4 – Character-encoding agnostic version of string_switch().

 if(!stlsoft::string_switch(
 compareAs
 , &flags
 , stlsoft::string_cases(
 "binary", VDD_F_COMPARE_AS_BINARY
 , "text", VDD_F_COMPARE_AS_TEXT
 , "nows", VDD_F_COMPARE_AS_NOWS
 , "nocomment", VDD_F_COMPARE_AS_NOCOMMENT
 , "lex", VDD_F_COMPARE_AS_LEX
 , "percent",
 VDD_F_COMPARE_AS_TEXT_PERCENT
)
 , flags
)
)
 {...// contingent report, return EXIT_FAILURE
 }
 . . .

Li
st

in
g

2
(c

on
t’d

)

// in namespace stlsoft
template<
 typename C
, typename R
, size_t N
>
inline bool string_switch(
 C const* s
, R* result
, ximpl::string_case_item_array_t<C, R, N>
 const& cases
)
{
 { for(size_t i = 0; i != cases.size(); ++i)
 {
 ximpl::string_case_item_t<C, R>
 const& case_ = cases[i];
 if(0 == ::strcmp(case_.name, s))
 {
 *result = case_.value;
 return true;
 }
 }}
 return false;
}

Li
st

in
g

3

// in namespace stlsoft
template<
 typename C
, typename R
, size_t N
>
inline bool string_switch(
 C const* s
, R* result
, ximpl::string_case_item_array_t<C, R, N>
 const& cases
, R resultBase = R()
)
{
 { for(size_t i = 0; i != cases.size(); ++i)
 {
 ximpl::string_case_item_t<C, R> const&
 case_ = cases[i];
 if(0 == ::strcmp(case_.name, s))
 {
 *result = resultBase | case_.value;
 return true;
 }
 }}
 return false;
}

Listing 4

// in namespace stlsoft
template<
 typename C
, typename R
, size_t N
, typename V
>
inline bool string_switch(
 C const* s
, R* result
, ximpl::string_case_item_array_t<C, V, N>
 const& cases
, R resultBase = R()
)
{
 { for(size_t i = 0; i != cases.size(); ++i)
 {
 ximpl::string_case_item_t<C, V>
 const& case_ = cases[i];
 if(0 == ::strcmp(case_.name, s))
 {
 *result = resultBase | case_.value;
 return true;
 }
 }}
 return false;
}

Listing 5
12 | | MAR 2011{cvu}

Further Experiments in String Switching (continued)
Reference
[1] Wilson, Matthew (2010) ‘Experiments in String Switching’, CVu

22.3, July 2010.

// in namespace stlsoft
template<
 typename C
, typename R
, size_t N
, typename V
>
inline bool string_switch(
 C const* s
, R* result
, ximpl::string_case_item_array_t<C, V, N>
 const& cases
, R resultBase = R()
)

{
 typedef std::char_traits<C> char_traits_t;
 size_t const len = char_traits_t::length(s);
 { for(size_t i = 0; i != cases.size(); ++i)
 {
 ximpl::string_case_item_t<C, V> const&
 case_ = cases[i];
 size_t const caselen =
 char_traits_t::length(case_.name);
 if(caselen == len &&
 0 == char_traits_t::compare(case_.name,
 s, len))
 {
 *result = resultBase | case_.value;
 return true;
 }
 }}
 return false;
}

Fi
gu

re
 6

Figure 6 (cont’d)
Using the Windows Debugging API
Roger Orr reveals the magic of Windows Debuggers.

significant amount of most programmers’ time is spent in
debugging. Wikipedia defines this activity as: ‘a methodical process
of finding and reducing the number of bugs, or defects, in a computer

program or a piece of electronic hardware, thus making it behave as
expected.’

There are many different (overlapping) ways to debug; but one of the
commonest is to use an interactive debugger. There are a large number of
different kinds of interactive debuggers, such as hardware probes for
testing new hardware or emulators for embedded software components,
but most programmers probably think of debugging an application running
on a desktop operating system. However even on a desktop operating
system you may have:

 operating system level debuggers (so called ‘kernel debuggers’)
which usually require a secondary machine to host the debugger and
provide access to the entirety of the machine, device drivers,
operating system facilities and application programs.

 general application debuggers, such as Visual Studio in ‘Native’
debugging mode on Windows or gdb on Linux

 virtual machine debuggers, such as Visual Studio in ‘Managed’
debugging mode for .NET programs or the Eclipse Java debugger
for JVM programs.

What does a debugger do? Well, a compiler compiles programs so you
might naively expect that a debugger debugs them. Sadly this is not usually
the case; an interactive debugger is a tool used by programmers to find
errors in their program.

I personally dislike the term ‘debugger’: in my experience the best tools
for automatically debugging are static code analysis tools; but it’s probably
too late to change the name now.

So what does a debugger actually provide? In general, most interactive
debuggers provide the ability to:

 stop a program when errors occur

 inspect the state of the program

 set breakpoints

 step through the program

 provide symbolic names and source code for objects in the program

 modify the state of the program’s memory

Given this list, perhaps a better description of what they do is ‘interactive
tracing and visualisation’.

Many programmers are familiar with what they do, but few people seem
to know how they work.

This article focuses on the Windows application debugging API that is
used by the general application debuggers in the list above. (Kernel
debuggers and virtual machine debuggers use very different mechanisms
to perform their task.) There is a huge amount of work in a good interactive
debugger and it would take several articles to describe all the features that
need implementing. I am restricting this article to describing the basic
debugger API, and will work through a simple example of how to use this
API to trace the key events of a program’s execution.

 A

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
MAR 2011 | | 13{cvu}

(I hope to produce a subsequent article doing something similar with the
Unix debug API which will provide a contrasting mechanism for achieving
a similar end on a different operating system.)

What’s in the Win32 debugging API?
The two main methods in the Win32 debug in te r face a re
WaitForDebugEvent and ContinueDebugEvent. These provide the
mechanism for the debugger to be notified of debug events from the
process being debugged and to resume the target process once the event
has been processed.

These methods are activated when a child process is created with one of
the special flags: DEBUG_ONLY_THIS_PROCESS or DEBUG_PROCESS.
This sets up a communication channel between the child process (known
as the ‘debuggee’ or ‘target process’) and the parent (‘debugger’) process.

The debugger process then receives notification events from the debuggee
on:

 process start and exit

 thread start and exit

 DLL load and unload

 OutputDebugString calls

 each occurrence of an exception

In each case the event provides some additional data with the event to give
the debugger (just) enough information to be able to make sense of it. For
example when a DLL is unloaded the event contains the base address of
the unloaded DLL.

Note that several different things are included in the category of
‘exception’ – such as access violations, software generated errors and
break points (used in a full-scale debugger to add support for stepping
through a program).

What is missing?
The Windows debug API is solely concerned with the debug events and
does not of itself provide any other access to the target process. (Note that
this is very different from the ptrace interface used in most of the Unix
world.)

All other access to the target process is achieved using general purpose
functions that are not restricted to a debugger; given suitable permissions
any process can use these functions. So for example the debugger can use
the functions ReadProcessMemory and WriteProcessMemory to
read or write memory in the target process and GetThreadContext to
read the process registers for a thread.

This has the advantage that much of the functionality of a debugger does
not require the specific debugger-debuggee relationship between the
processes and so a variety of tools can be written to provide specific
functionality, such as visualising a program’s data structures or giving a
stack dump of all the active threads. The Microsoft debugger WinDbg
(included in ‘Debugging Tools for Windows’ [1]) has a ‘non-invasive’
attach mode that demonstrates just how much debugging you can do
without the debug API.

Interpreting symbolic information
The main method used by Microsoft for attaching symbolic information
to executable files is the PDB (‘program database’) format. I wrote an
earlier article (for Overload 67 [2]) giving an introduction to the Microsoft
symbol engine and I’ve used the code from that article (slightly expanded)
to help provide symbolic information in this example program. I’m not
going to go into further details of the symbol engine implementation, apart
from a note about the getString method (under ‘DLL load and unload’
below).

In the example code below the field eng refers to this symbol engine and
the methods from it used below include loadModule (loads the debug

information for a module), addressToString (converts a target address
into a symbolic string) and stackTrace (prints the call stack).

Processtracer
I am going to use a program that traces major events in a program’s
lifecycle to provide the framework for exploring the Windows Debug API.
Here is an example of the program in use (paths edited for clarity):

C:> ProcessTracer BadProgram.exe
CREATE PROCESS 4092 at 0x00401398 mainCRTStartup
f:\dd\...\crtexe.c(404)
LOAD DLL 77230000 ntdll.dll
LOAD DLL 75BC0000 C:\Windows\system32\kernel32.dll
LOAD DLL 75430000
C:\Windows\system32\KERNELBASE.dll
LOAD DLL 6BD90000 C:\Windows\WinSxS\...\MSVCR80.dll
LOAD DLL 76E40000 C:\Windows\system32\msvcrt.dll
EXCEPTION 0xc0000005 at 0x0040108C Test::doit + 12
c:\article\badprogram.cpp(10) + 12 bytes
 Parameters: 0 0
 Frame Code address
 0x0012FF34 0x0040108C Test::doit + 12
c:\article\badprogram.cpp(10) + 12 bytes
 0x0012FF44 0x00401045 main + 21
c:\article\badprogram.cpp(16) + 15 bytes
 0x0012FF88 0x004011F7 __tmainCRTStartup + 271
f:\dd\...\crtexe.c(597) + 23 bytes
 0x0012FF94 0x75C11194 BaseThreadInitThunk + 18
 0x0012FFD4 0x7728B3F5
RtlInitializeExceptionChain + 99
 0x0012FFEC 0x7728B3C8
RtlInitializeExceptionChain + 54
EXCEPTION 0xc0000005 at 0x0040108C Test::doit + 12
c:\article\badprogram.cpp(10) + 12 bytes (last
chance)
EXIT PROCESS 3221225477
 Frame Code address
 0x0012FF34 0x0040108C Test::doit + 12
c:\article\badprogram.cpp(10) + 12 bytes
 0x0012FF44 0x00401045 main + 21
c:\article\badprogram.cpp(16) + 15 bytes
 0x0012FF88 0x004011F7 __tmainCRTStartup + 271
f:\dd\...\crtexe.c(597) + 23 bytes
 0x0012FF94 0x75C11194 BaseThreadInitThunk + 18
 0x0012FFD4 0x7728B3F5
RtlInitializeExceptionChain + 99
 0x0012FFEC 0x7728B3C8
RtlInitializeExceptionChain + 54

Getting started
The first step is to create the child process (BadProgram.exe) with the
correct flags. This is the relevant call to CreateProcess:

 CreateProcess(0,const_cast<char*>(
 cmdLine.c_str()), 0, 0, true,
 DEBUG_ONLY_THIS_PROCESS, 0, 0, &startupInfo,
 &ProcessInformation)

We don’t need the process and thread handles returned by the
CreateProcess call as the debug API will provide them, so we close
these handles immediately.

One of the things I find confusing about the debug API is remembering
which handles need to be closed manually and which ones are handled by
the system – we will revisit this issue later on.

The debug API is designed to support debugging multiple processes; to
achieve this you should pass the DEBUG_PROCESS f lag to
CreateProcess. I’ve not done that in this example program as
implementing a debugger that correctly manages multiple child processes
would make the code significantly more complex without really adding
much new material.
14 | | MAR 2011{cvu}

The heart of the matter
The main driving loop of ProcessTracer is the ‘debug loop’, which looks
like Listing 1.

The first call halts the debugger until the next event is ready from the
debuggee and, on a successful return, the appropriate fields of the
DebugEvent structure will be populated. When one of the various debug
events occurs in the target, the operating system blocks all the threads in
the process and passes the appropriate debugging event and associated data
to the debugger. Execution of the target will not resume until the debugger
signals that it has completed its handling of the event by calling
ContinueDebugEvent.

ContinueDebugEvent needs the process and thread ID: in this example
the process ID will always be the same (but the thread ID may vary if the
target process creates additional threads). The function also takes a
continueFlag argument. This is only relevant when the event is an
exception and I’ll cover the use of this argument when I look at handling
exception events.

This synchronous call-based mechanism of passing events between the
debuggee and the debugger makes it slightly tricky to write an interactive
debugger since the debugger has to be responsive to user actions via the
GUI and also wait for debug events from the target process. This normally
means the debug loop runs in its own dedicated thread, decoupling it from
the user interface. However in the ProcessTracer example there is no UI
and so the implementation can be a simple single threaded application.

Process start and stop
The first event you receive is a CREATE_PROCESS_DEBUG_EVENT. The
code in the debug loop in ProcessTracer is shown in Listing 2.

The implementation of OnCreateProcess is in Listing 3.

The CreateProcessInfo debug event data includes a handle to the
process and to the main thread. Subsequent events will not provide these
handles so it is important to retain them while the process is active: I keep
the process handle in a simple field and the thread handle in a map indexed
by thread ID. (To my mind this is a poor API design since it forces each
user of the API to implement a mechanism to manage mapping process
and thread IDs to handles.)

Also included in the create process event data is a handle to the file
containing the executable program and the base address of the image. This
can be passed to the symbol engine to populate the data for the main

executable. Sadly, although the event data contains a field lpImageName
that is documented as ‘may contain the address of a string pointer in the
address space of the process being debugged’ the string is, as far as I can
tell, always absent. So we have a handle to the file but do not know its name
– I could write another article on the various mechanisms to get the file
name from a file handle but for simplicity I’ve simply passed an empty
string as the module name. (This is another place where the debug API
appears to have been poorly implemented.)

Finally note that the debug API manages the process and thread handles
and we must not attempt to close them, but that we are responsible for
closing the file handle (if it was provided) – failing to do this can result in
a long running debugger leaking file handles and keeping files locked. (As
I said earlier, this confusion over the ownership of open handles
complicates the job of writing a debugger; I can see no good reason for
this asymmetric design in the API.)

In this simple case the file handle will be provided as we create the child
process using the same credentials as the parent process; in more complex
uses of the debug API involving processes with different credentials you
may find that the debugger process has no permission to access the file and
then no file handle is provided.

When the process ends the EXIT_PROCESS_DEBUG_EVENT is generated
as the last debug event; the process handle is then closed by the debug API.
In ProcessTracer we log the event, print a stack trace using the symbol
engine and then set completed to true to terminate the debug loop.

Thread start and stop
The process start event implicitly includes a thread start event of the main
application thread (and the process exit event implicitly includes a thread
exit event for the last thread closed). On the creation of additional threads
a separate event is raised, containing the start address and thread handle
for the newly created thread.

void ProcessTracer::OnCreateProcess(
 DWORD processId, DWORD threadId,
 CREATE_PROCESS_DEBUG_INFO const &
 createProcess)
{
 hProcess = createProcess.hProcess;
 threadHandles[threadId] =
 createProcess.hThread;
 eng.init(hProcess); // Initialise the
 // symbol engine

 eng.loadModule(createProcess.hFile,
 createProcess.lpBaseOfImage, std::string());

 std::cout << "CREATE PROCESS " << processId <<
 " at " << eng.addressToString(
 createProcess.lpStartAddress) << std::endl;

 if (createProcess.hFile)
 {
 CloseHandle(createProcess.hFile);
 }
}

Listing 3

switch (DebugEvent.dwDebugEventCode)
{
case CREATE_PROCESS_DEBUG_EVENT:
 OnCreateProcess(DebugEvent.dwProcessId,
 DebugEvent.dwThreadId,
 DebugEvent.u.CreateProcessInfo);
 break;
 ...

Listing 2

while (!completed)
{
 DEBUG_EVENT DebugEvent;
 if (!WaitForDebugEvent(
 &DebugEvent, INFINITE))
 {
 throw std::runtime_error(
 "Debug loop aborted");
 }
 DWORD continueFlag = DBG_CONTINUE;
 switch (DebugEvent.dwDebugEventCode)
 {
 ... // cases elided, for now
 default:
 std::cerr << "Unexpected debug event: " <<
 DebugEvent.dwDebugEventCode << std::endl;
 }
 if (
 !ContinueDebugEvent(DebugEvent.dwProcessId,
 DebugEvent.dwThreadId, continueFlag))
 {
 throw std::runtime_error(
 "Error continuing debug event");
 }
}

Li
st

in
g

1

MAR 2011 | | 15{cvu}

Our code simply logs the event and adds the thread handle to the map.
Listing 4 is the method called from the debug loop.

When a thread exits the associated data includes the exit code for the
thread; in process tracer we simply log this and print a stack trace using
the symbol engine.

We also remove the thread handle from the map since the debug API closes
the thread handle for us on the next call to ContinueDebugEvent.

DLL load and unload
As a DLL is loaded into the target process a debug event is generated
containing, among other things, a file handle and a pointer to the file name
of the DLL (in the target address space).

The file name is usually a fully qualified path, but the first DLL loaded
(which is always ntdll) has a path-less file name simply consisting of
ntdll.dll. If you need the full file name you can use the fact that all
Win32 processes load ntdll.dll from the same location and so obtain
the full file name by using GetModuleFileName on the debugger
process.

Listing 5 is the code in ProcessTracer that handles the DLL load event.

Note that closing the file handle is, once again, our responsibility.

Similarly the unload DLL event is handled by logging the event and calling
eng.unloadModule(unloadDll.lpBaseOfDll).

How long is a NUL terminated string?
One slight twist I will mention in getString is that, since the string is
NUL terminated, we don’t know how long the string is until we have read
it. The naive implementation of just trying to read MAX_PATH characters
sometimes fails since the string being read is near a page boundary. It is a
shame that the debug API doesn’t report the string length too.

The error code reported by calling GetLastError on a failed call to
ReadProcessMemory is ERROR_PARTIAL_COPY but in fact no partial
copying has been done – the ReadProcessMemory function fails if we
try to read data from the target process where only some of the pages of
memory are accessible. Do not be misled by the last argument to this
function: SIZE_T *lpNumberOfBytesRead. This value can only be
either 0 on failure or the full buffer size on success!

My solution is to first try and read the entire MAX_PATH buffer from the
target, as this is usually successful. Should this fail I reduce the number of
bytes read to the next lowest page boundary.

OutputDebugString events
Windows provides the OutputDebugString function specifically to
send a string to the debugger for display. A debug event is generated when
the target process calls this function and the associated debug information
provides the buffer address – and length – so reading the data from the
target and displaying it is very easy.

Exceptions
These are probably the most interesting debug events and there is a lot of
processing that can be done here. The debug API allows the debugger a
first chance to look at the exception and, if neither the debugger nor the
debuggee handles the exception, a last chance to look at the unhandled
exception before terminating the process.

The detailed flow of control when an exception occurs is as follows.

1. An exception occurs in the target process

2. The debugger gets a debug event with the dwFirstChance flag
set.

3. The debugger calls ContinueDebugEvent with
dwContinueStatus set to:

a) DBG_EXCEPTION_NOT_HANDLED or

b) DBG_CONTINUE

The following stages will then be either

4. (a – DBG_EXCEPTION_NOT_HANDLED) The debuggee follows the
usual search and dispatch logic of normal exception flow

5. If no handler is found the debugger gets a second debug event – but
this time with the dwFirstChance flag set to zero

6. When the debugger calls ContinueDebugEvent the target
process is terminated.

or

4. (b – DBG_CONTINUE) The target process resumes execution back at
the exception context as if the exception had not occurred. The
context may be the next instruction (for example after a breakpoint
exception) or the same instruction (for example after an access
violation); in the latter case if the underlying cause of the exception
hasn't changed the exception will occur again and you end up back
at (1).

Microsoft Visual Studio, for example, uses the first chance exception to
pop up a dialog box with the options Break, Continue or Ignore. Break
leaves the debugger active and defers the ContinueDebugEvent call
until later; somewhat confusingly Continue corresponds to option 4a
(DBG_EXCEPTION_NOT_HANDLED) and Ignore corresponds to option
4b (DBG_CONTINUE).

Just to make things interesting, when a process is being debugged, the
program loader generates a breakpoint exception event when the process
start up has completed (this exception should always be continued). I think
this is a false economy in the API and it would have been better to designate
a specific event for dealing with this case. In particular reuse of the
breakpoint event makes it hard to process any exceptions that occur while
loading a DLL during process start-up. In ProcessTrace we simply test
and set a boolean variable attached to detect the first exception event.
I n a l l o the r c a se s we s e t t he continueFlag t o
DBG_EXCEPTION_NOT_HANDLED to trace into the handling of the
exception by the target process.

Our handling of an exception looks like Listing 6.

The event data contains the code for the exception and the address where
the exception occurred. Some exceptions also include additional
i n fo r m a t i o n d e s c r i b i n g t he exce p t ion ; fo r example

void ProcessTracer::OnCreateThread(
 DWORD threadId,
 CREATE_THREAD_DEBUG_INFO const & createThread)
{
 std::cout << "CREATE THREAD " << threadId <<
 " at " << eng.addressToString(
 createThread.lpStartAddress) << std::endl;
 threadHandles[threadId] = createThread.hThread;
}

Listing 4

void ProcessTracer::OnLoadDll(
 LOAD_DLL_DEBUG_INFO const & loadDll)
{
 void *pString = 0;
 ReadProcessMemory(hProcess,
 loadDll.lpImageName, &pString,
 sizeof(pString), 0);
 std::string const fileName(eng.getString(
 pString, loadDll.fUnicode, MAX_PATH));
 eng.loadModule(loadDll.hFile,
 loadDll.lpBaseOfDll, fileName);
 std::cout << "LOAD DLL " <<
 loadDll.lpBaseOfDll << " " <<
 fileName << std::endl;
 if (loadDll.hFile)
 {
 CloseHandle(loadDll.hFile);
 }
}

Listing 5
16 | | MAR 2011{cvu}

EXCEPTION_ACCESS_VIOLATION indicates the access mode that failed
(read, write, execute) in the first entry of the exception information and
the address of the inaccessible data in the second entry.

Changes in the debugged process
When a process is running under the debug API several things are different.
It is important to be aware of these as behaviour that is different under the
debugger is hard to debug!

Firstly, by default, the Windows Heap manager runs in a ‘debug’ mode
when the process is being debugged. This adds additional checking to
memory allocations and writes check data before and after each allocation
to allow detection of under- and over-runs. In current versions of Windows
this default behaviour can be turned off by defining the environment
variable _NO_DEBUG_HEAP.

ProcessTracer does this automatically using:

 _putenv("_NO_DEBUG_HEAP=1");

Secondly, the CloseHandle function throws an exception with
exception code STATUS_INVALID_HANDLE (0xC0000008) when an
invalid handle value is closed. The theory is that this ensures bad handle
values are made visible when you are debugging the program; but this can
mean the behaviour of an application changes under a debugger since
exception unwinding can be invoked. One option is to set the
continueFlag to DBG_CONTINUE for this exception code.

Thirdly, if SetUnhandledExceptionFilter is used to set the
unhandled exception filter for a process this will be ignored if the process
is being debugged. This is not usually a problem, but does make debugging
an unhandled exception filter troublesome.

Fourthly, text sent to OutputDebugString goes to the application
debugger rather than to the system debugger (or a tool like SysInternals
Dbgview).

Finally the action of the debugger changes the runtime behaviour of the
process as each debug event involves stopping all the threads in the process
and several context switches back and forth to the debugger thread. This
can make some sorts of race condition hard to debug since the action of
debugging the process changes the timings of the interactions between the
affected threads.

There are two API calls that can be used to check if a process is being
debugged: CheckRemoteDebuggerPresent (which checks the
presence of a debug connect ion from another process) and
IsBeingDebugged (which reads the value of the BeingDebugged flag
located at byte offset 2 in the Process Environment Block).

Attaching to existing processes
The debug API can also be used to attach to an already running process
by using DebugActiveProcess.

Most of the debug events described above are exactly the same in this case;
the biggest change is that when the process start and DLL load events are
generated the file handle and file name are usually both zero. However the
GetModuleFileNameEx function in the Windows ‘Process Status’
library (PSAPI) can be used to get the file name in this case (unfortunately
this method only works when attaching to an existing process).

Additionally in order to debug a process with different credentials you may
need to have the SeDebugPrivilege privilege and appropriate
permissions – the details are outside the scope of this particular article.

F ina l ly a debugger can de tach f rom a debuggee by us ing
DebugActiveProcessStop.

Writing a fully fledged interactive debugger
I haven’t covered more than the basics of a debugger and there is obviously
a lot more that must be added to write a proper interactive debugger.
However I hope that the overview of the debug API that I have presented
here has given you some understanding of the bare bones of the interaction
between the debugger and the target.

Acknowledgements
Many thanks to Lee Benfield and Baris Acar for reviewing this article and
providing numerous useful suggestions for improvement.

References and source code
[1] WinDbg is freely available from http://www.microsoft.com/whdc/

DevTools/Debugging/default.mspx
[2] Overload 67 http://accu.org/index.php/journals/276Source code
[3] The full source code for this article can be found at

http://www.howzatt.demon.co.uk/articles/ProcessTracer.zip

void ProcessTracer::OnException(DWORD threadId,
 DWORD firstChance,
 EXCEPTION_RECORD const & exception)
{
 std::cout << "EXCEPTION 0x" << std::hex <<
 exception.ExceptionCode << std::dec <<
 " at " << eng.addressToString(
 exception.ExceptionAddress);
 if (firstChance)
 {
 if (exception.NumberParameters)
 {
 std::cout << "\n Parameters:";
 for (DWORD idx = 0;
 idx != exception.NumberParameters;
 ++idx)
 {
 std::cout << " " <<
 exception.ExceptionInformation[idx];
 }
 }
 std::cout << std::endl;
 eng.stackTrace(
 threadHandles[threadId], std::cout);
 }
 else
 {
 std::cout << " (last chance)" << std::endl;
 }
}

Listing 6

Write for us!
C Vu and Overload rely on articles from members. That’s you! Without articles there are no journals. We need articles
at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
MAR 2011 | | 17{cvu}

http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx
http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx
http://accu.org/index.php/journals/276Source code
http://www.howzatt.demon.co.uk/articles/ProcessTracer.zip

18 | | MAR 2011{cvu}

What is in a name?
Stephen Baynes examines just how important a name is.

hoosing the name of a function is important both to improve the
reader’s understanding of the code and also because it can affect how
the code develops as it is modified over time.

Here is a little puzzler to make you think about the impact of your choices.
There are no right or wrong answers, just different ones.

The example is simple; you have to write some code. It is for an algorithm
which has to first find a starting point and then process the data from there.
The starting point is the largest item in the data set. You decide that locating
the starting point should be in a different function from the main algorithm.
So the big question is what do you call that function? Do you work top
down and name it after what it is for, which is locating the starting point?
Or do you name it bottom up and name it for what it does, which is finding
the largest? Here are three possible solutions:

1: Top down – call it by what it is for
dataptr find_main_start_point(){
 ...code to locate largest in dataset...
}
void main_algorithm(){
 dataptr start_point = find_main_start_point();
 ...rest of algorithm...
}

2: Bottom up – call it by what it does
dataptr find_largest(){
 ...code to locate largest in dataset...
}
void main_algorithm(){
 dataptr start_point = find_largest();
 ...rest of algorithm...
}

3: Do both in a multilayered way
dataptr find_largest(){
 ...code to locate largest in dataset...
}
dataptr find_main_start_point(){
 return find_largest();
}
void main_algorithm(){
 dataptr start_point = find_main_start_point();
 ...rest of algorithm...
}

I don’t know which of those you would have chosen, all are correct and
there is not much at this stage to choose between them. Things really
become interesting when the code is changed. Assume that the code is part
of a big application, with several programmers working on it who may
make calls to functions you have written, so that you have to try and avoid
changes that might affect the others working on the program.

Now think what you would do if you had to change the algorithm to use
the smallest data item, rather than the largest, as the starting point. If you
had chosen option 1 – you just need to change the contents of the function
find_main_start_point. But with option 2 and 3 you also have to
change the name from find_largest as well as the content (but you can
only do this if it is not used elsewhere) or introduce a new function with
the name find_smallest.

Returning to the original code, think what you would do if the change had
been to add elsewhere some code that also needed to locate the largest data
item. With options 2 and 3 you can just call find_largest. But with
option 1 you would have to write a new function to do the same work as
find_main_start_point or rename it using a new naming policy.

Then think what would happen if you did both these changes, one after the
other, both in the order given and in the reverse. Don’t forget to try and
avoid changes that might affect others working on the same program. For
example renaming or changing the behaviour of a function that could have
been called elsewhere.

You may have ended up with multi-layered solutions similar to 3 in all
cases, or you may have ended up with several functions doing the same
job, but with different names.

It is possible to draw some weak conclusions. Bottom up naming as (after
what a function does) as in option 2 gives more reuse. Top down naming
(after what a function is used for) as in option 3 tends to reduce coupling
making the code easier to change but at the risk of repeated code. The multi
layered solution (a function named for what it is used for calling a function
named for what does) as in option 3 gives the best of both worlds but with
additional overhead. Like many things, every situation is different, and
what is best one time, may not be the best another. But what you chose
may have consequences in the future and a little time spent now may save
some problems later.

C

STEPHEN BAYNES
At various times, Stephen has handled requirements,
been architect, developer, tester, trainer and project
manager. He is now senior developer at Smoothwall Ltd
and can be contacted at sbaynes@gmx.com

MAR 2011 | | 19{cvu}

The Kanban Ones Games
Jon Jagger describes a game revealing team behaviour.

invented a simple collaborative team-game to simulate some of the
aspects of software development recently. I made the mistake of telling
Steve Love about it at the accu Xmas get together. Of course, being a

dedicated editor, Steve immediately asked if I would write a short
description of the game for CVu. So here it is.

You need some paper, some pens, and some dice. Quite a lot of dice in
fact. But the dice are used merely to introduce some element of randomness
into the game. So if you wanted to program the dice in a small app that
would be just as good.

You start by rolling two dice, and adding up the total. So suppose you roll
a 3 and a 4 then that’s a 7. You then write 7 on a piece of paper. That piece
of paper represents a single work-item and it goes onto the backlog. You
can throw two dice to create a new backlog work-item whenever you like.

There are four tables (A,B,C,D) and each table represents a single column
in a kanban style workflow. There are two developers per table. Each
developer has 6 dice which they throw to simulate doing work. In overview
what happens is this; the work-items come off the backlog and are worked
on by the developers stationed at table A. If the work-item is a 7 they need
to do 7 units of work to complete it. When they complete the work-item
they pass it on to table B. The developers on table B then need to do another
7 units of work to complete it, then they pass it on to table C, etc. When
the developers of table D finish their 7 units of work then that work-item
finally makes it to DONE.

The developers work on the work-items in iterations. There are 10 days (2
weeks) per iteration. Each day’s work is simulated by the developers
simply by throwing their dice. Only 1’s thrown contribute to units of work.
So, for example, if a developer throws their 6 dice and gets 1,5,1,6,2,3 then
that 2 x 1’s and so they’ve done 2 units of work which they can put towards
a work-item, a 7 say, meaning it has 5 units of work left. At the end of an
iteration any work-item in the DONE column contributes to the velocity
for that iteration.

That’s the basic game play but there are some rules:

 You can use up units of work across different work-items. So, for
example, if table C has 3 work-items and throws 3 1’s then they can
reduce each work-item by 1, or reduce one work-item by 3, or any
other combination.

 1’s thrown on a table can only be used on that table.

 You can use up 1 unit of work to split a work-item. So, for example,
you can use up a 1 to split a 7 into a 2 and a 5. Of course, if 3 units
of work have been done on the 7 when you decide to split it then the
3 has to be distributed to the 2 and 5 somehow. For example, you
could put 2 on 5 work-item (meaning there is 3 left) and 1 on the 2
work-item (meaning there is 1 left). Or you could put 2 on the 2
work-item (to complete it) and put 1 on the 5 work-item (meaning
there is 4 left). You will find it useful if you can visually represent
the work left on a work-item in some way. One simple way is to use
coins.

 Each developer starts each day with 6 dice. However, they can opt
to lend some of their dice to a developer on another table. If they do
this they must put aside, and not throw (for that day) an equal
number of dice.

 At the end of each day, after completed work-items have been
moved to the next table, you must check for bugs. To do this you
throw two dice for each work-item. If the dice total 10 then 1 unit of
work is added to the work-item. If the dice total 11 then the work-

item goes back to the previous table and starts again (partial work is
lost). If the dice total is 12 then the work-item goes all the way back
to the backlog and starts again (partial work is lost).

Recap
Ten days per sprint. Each day

 add work-items to the backlog?

 help other tables by lending dice?

 roll your dice on your table.

 count your 1’s

 use up your 1’s (splitting if you want to)

 move completed work-items to the next table (or into DONE)

 check for bugs for each work-item still on a table.

At the end of the iteration

 record your velocity

 do a retrospective

There are numerous possible variations you can add:

 More or less tables.

 Physically separate the tables and watch how it reduces
communication. This is quite amazing to watch.

 More or less dice per developer.

 When developers lend dice to another developer they don't get them
back the next day.

 Record the number of days a work-item takes to get to done once it
comes off the backlog. The easiest way to do this is to record the
iteration and day it both leaves the backlog and then enters DONE.

This is a key measure.

 Scope an iteration to a fixed time period (e.g. 2 minutes) and let
developers throw their dice as often as they like – and then watch
how everyone concentrates almost exclusively simply on throwing
their dice faster.

 Measure waste. For example, the number of unrolled dice each
iteration (because of lending) or the number of 1’s thrown but
unusable (because there wasn’t enough work on the table).

I’ve written a blog entry on the game [1].

It’s fun and it’s simple but is surprisingly difficult to play well and
stimulates a lot of interesting discussions and behaviour!

References
[1] http://jonjagger.blogspot.com/2010/12/kanban-1s-game.html

I

JON JAGGER
Jon is a UK-based software consultant. His
passion is helping people improve their
effectiveness in this collaborative game we call
software development.

http://jonjagger.blogspot.com/2010/12/kanban-1s-game.html

20 | | MAR 2011{cvu}

Inspirational (P)articles
Dr Love introduces Chris Oldwood.

Many thanks to Chris Oldwood for sharing remembrances of his student
days, inspiration on how he managed to observe what was slowing him down
(the wrong tool), a better, quicker way (the right tool – in this case awk) and
how to find/read the manual. Further use (and abuse) of awk can be found
here: http://stackoverflow.com/questions/407518/code-golf-leibniz-
formula-for-pi

o, I’m sitting there slouched in my chair staring at the Visual Studio
text editor whilst it does a rather lengthy, but albeit simple
transformation of a text file and I’m coming to the realisation that this

is no longer just a one-off event. In fact as I think harder I realise that during
the last few weeks I’ve had to generate a number of long simple SQL
scripts by transforming the CSV format result set from SSMS[1] back into
a bunch of INSERT statements. It’s also suddenly become noticeable that
the tool I have historically been using for these simple tasks is no longer
the svelte and nimble text editor that was VC6 (nay VS98), but has instead
morphed into the bloated and sluggish VC9 (VS2008). I’ve read many
complaints in the past about its increasing slothfulness but brushed them
aside as they didn’t really resonate with me; but when a tool asks you if it
can disable its own ‘Undo’ feature to improve performance you know
you’re in trouble…

I haven’t been paid by-the-hour since before the millennium so just sitting
and waiting for it to finish was no longer an option. And then I started to
hear the sniggers in the background as legions of smug Unix programmers
chortle to themselves and flick through their tool chest whispering ‘Vi?’,
‘Emacs?’, ‘Sed?’, ‘Awk?’… And then I heard a chorus of disapproval as
every other programmer joined in with a round of ‘Use the right tool for
the job – stupid’. The problem was that I haven’t used any of those tools
since leaving university nearly 20 years ago and my previous experience
of Unix ports under DOS and 16-bit Windows was not favourable…

Still, I put my metaphorical spade down (actually I left it working away
in the background as I thought I might as well make use of my multi-
tasking OS) and go in search of a proper Windows port of Sed and/or Awk.
I mean one that respects Windows conventions like having spaces in
filenames, using backslashes in paths and understanding that it has to
process wildcards passed on the command line. I also didn’t want to have
to install and run any kind of emulator; as Raymond Chen once said ‘If
the solution starts with “First Install Product X” then now you have two
problems.’ Fortunately I think I’ve found a suitable candidate in the shape
of the UnxUtils project on good old SourceForge[2]. Of course Visual
Studio still finished before I had unpacked the .zip file, copied the files to

a folder and updated my PATH, but that’s not the point – I now had the
tools ready for action.

I didn’t have to wait too long either as a few weeks later I needed to work
out how much disk space a certain type of file was consuming in our one
of our data stores. This was an awkward one as I kind of knew how to do
it in PowerShell (which I’m also learning and has far more relevance for
sysadmin work on Windows), but I was keen to spend a short time with
Awk as I remembered that it could ‘do sums’ as well as transform text. A
quick Google later and I had a one liner that did exactly what I wanted
(albeit after some gnashing of teeth because END has to be in upper case
it seems).

Somewhat chuffed with myself at that point I decided that if I was going
to make a real go of it then I should seek out some paper based tutorial so
that I could harness (some) of the power of these two little gems. Mere
seconds on Amazon unearthed Sed & Awk (2nd Edition) by Dougherty &
Robbins with a second hand copy listed for just a handful of British
Pounds. I also couldn’t resist the companion O’Reilly Pocket Reference
either for a couple of quid. So a few clicks later and I’m done. The
Dougherty & Robbins book was the perfect introduction for me (ok, I’ll
stop there and take the opportunity to write up a formal review to keep Mr
Higgins off my back…) and many happy memories of my time at
university came flooding back as I remembered some of the things these
tools do well.

A few months later I then had one of those glorious moments where I had
a problem to solve and I knew exactly which would be the best tool for
the job. I needed to extract some values from a file which was formatted
somewhat like an XML data document with one element per line and a key
value pair as an attribute. A simple GREP wouldn’t do it as the key/value
pair occurred in a number of different contexts – what I needed to do was
restrict the GREP to certain repeating portions of a file. And before you
could say ‘Address Range’ I had already typed the command line and was
exhibiting a grin so large it would make the Cheshire Cat look miserable.
It seems this old dog can still be taught new tricks, but also very old ones
too…

References
[1] SQL Server Management Studio
[2] http://unxutils.sourceforge.net

 S

ACCU Mentored Developers Project
Growing Object-Oriented Software, Guided by Tests

The ACCU Mentored Developers will soon be embarking on their next
big project, a read-through of Growing Object-Oriented Software
Guided by Tests by Nat pryce and Steve Freeman. This will differ
slightly from the traditional project structure as there are no ‘items’ or
exercises. However, most of the chapters are only 10 to 20 pages long
and can therefore be read and discussed as if they are items. We’re
hoping to read at a pace of 2 chapters a week. Each chapter will be
reviewed and summarised by an allocated project member and serve as
a starting point for group discussion.

The project is open to all ACCU members. To take part, please sign up
to the list at the link below and make yourself known:

http://lists.accu.org/mailman/listinfo/accu-mentored-growing

You can take part as a project member, who will be allocated at least
one chapter to review, or an observer, who doesn’t review a chapter but
is free to take part in the discussion. If you have any questions about the
project, please feel free to email me: paul.grenyer@gmail.com.

http://stackoverflow.com/questions/407518/code-golf-leibniz-formula-for-pi
http://stackoverflow.com/questions/407518/code-golf-leibniz-formula-for-pi
http://unxutils.sourceforge.net

MAR 2011 | | 21{cvu}

Desert Island Books
Nat Pryce makes his selection.

first encountered Nat Pryce, together with Steve Freeman, at the ACCU
London event, ‘Sustainable TDD’, held at JP Morgan (remember the lifts)
in February 2010. I took two of my colleagues down from Norwich for the

night to see what we could learn and it turned out to be quite a lot.

The second time, like so many others, was at the ACCU conference where,
again with Steve, Nat spoke about ‘TDD at the System Scale’. Again, I learnt
a lot. The most recent time I met Nat was at the first Agile Cambridge event
where he and Steve sat on a very informative discussion panel on agile.
Steve and Nat will be giving a keynote at the conference this year and I’m
quite disappointed I won’t get to see it.

Nat and Steve do, of course, have a book! Growing Object-Orientated
Software, Guided by Tests is about to be the subject of an ACCU Mentored
Developers Project. This promises to be one of the best projects in terms of
the scope of things to be learnt. Since its release I have heard nothing but
good things about it, backed up by the strength of the material I have seen
Steve and Nat present.

Nat Pryce
So here I am in my steamer cabin, frantically stuffing what possessions I
can into my suitcase, while water sloshes over my ankles, rising towards
my knees. Through the porthole I can see a desert island within swimming
distance. That remote spot will be home for the foreseeable future, and I
don’t have much room in this suitcase. I’d better choose carefully. In go
my laptop, solar charger and speakers. There’s enough room for some
books and CDs. But what to choose...

I get bored easily so if I’m going to be stuck on this island all alone, I’m
going to need some intellectual stimulation. You can’t beat computer
programming for that, in my opinion, so first I’ll grab some technical
books. Since I’m going to be alone on this island, I don’t need to pick
anything practical. Pure (nerdy) indulgence is the order of the day!

The first book I choose is the OpenGL Superbible by
Richard S. Wright. Graphics and games attracted me
to computer programming in the first place but I
don’t get to do much of that in my professional work.
Months alone on a desert island will actually give me
time to revisit the programming I really enjoy and let
me wallow in nostalgia for my younger days, when
I wrote games on my ZX Spectrum. And I’ll be able
to noodle about with the latest technologies, such as
programmable graphics pipelines.

My second choice is ARM Assembly by William
Hohl. Some of my favourite jobs have involved
programming close to the machine in various
dialects of C. The only assembly programming I’ve
done has been for the Z80 microprocessor, the
PDP11 and the Motorola 68000 (I’m showing my
age!). If I’m going to be stuck in the middle of
nowhere, I’d like to rekindle my interest in low-level
fundamentals and learn some modern assembly
language. I’ve picked ARM because ... well... I have
the choice! Why would I choose to program the x86
for fun?

My third choice is The Structure and Interpretation
of Computer Programs by Abelson, Sussman &
Sussman. The idea that you should program by
extending the language to fit your domain has been
a big influence on the way I write code and this book
is the seminal text on that style of programming.
Every chapter ends with exercises, so it’ll also give
me plenty to do while stranded.

And finally I’ll pack The
Haskell Road to Logic, Math

and Programming by Kees Doets and Jan van Eijck.
After months alone on a desert island, having grown
unkempt facial hair and lost the ability to converse
with other people, I’m all set for career as a
mathematician. This book will help close the gap by
improving my mathematical thinking and proof
techniques.

My choice of non-technical
book is Gibbon’s The Decline
and Fall of the Roman Empire (just imagine my
suitcase has one of those zipped expandable
sections). I’ve always been interested in history,
especially ancient and pre-history. Gibbon’s huge
work will provide plenty of reading and his writing
style will make a pleasant change from the dry
technical texts that fill
the rest of my suitcase.

That leaves me jus t
enough space to wedge

in a couple of records. My first choice is Is a
Woman by Lambchop: beautiful, sparse music
that defies categorisation. The second record
I’ll take is Bright Phoebus by Lal and Mike
Waterson. That record will remind me of

England. It’s a mix
of folk, rock & jazz with strange pagan lyrics.
The title track that closes the album is a
wonderful, uplifting song.

Right, the water’s up to my neck. Time to float
off... Cheerio.

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Chris O’Dell

22 | | MAR 2011{cvu}

ACCU Regional Meetings
This time the spotlight falls on London.

ACCU London

Chris Oldwood reviews a presention by Russel Winder at the
November 2010 meeting

At the ACCU Conference back in April Russel gave one of the keynotes
on the future of computer architectures in the face of the stagnation that
has occurred with single processor speeds. The London branch of the
ACCU welcomed him to one of the Skills Matter offices to talk further on
the subject in November. There was an excellent turnout of around twenty-
something people so latecomers such as myself had to stand at the back.
There were once again a number of new faces – some of whom I later
grilled in The Slaughtered Lamb only to discover that they had already
become members.

The premise of Russel’s talk was similar to that of his keynote, but whereas
previously the bias seemed to be towards hardware, there was a larger
software and programming language element to this presentation which
made the trip equally worthwhile for us conference attendees. By the time
I arrived Russel was in full swing describing the multi-core revolution and
how threads are merely a distraction on the way to the true goal of
independent computation units that consist of a straight pairing of CPU and
memory. This was well and truly rammed home by the continual reuse of
one presentation slide that showed two columns of CPU/RAM pairs
connected by an ‘interconnect’. It has been apparent for some time that the
chasm between CPU and memory performance is widening rapidly and
multi-core CPUs will only fan the flames. Russel contends that although
the likes of Intel have a 48 core chip in the wings the memory contention
this introduces means that its possible that 16 cores could well be the
ceiling (in compute bound scenarios).

On the software side the picture painted was even less rosy as Russel
pointed out that none of the major programming languages (i.e. Java, C++,
Ruby, Python etc) have any natural support for the programming models
of the future. Yes there are libraries designed to make the task less painful
but you still have to get your feet wet to some degree. I’ve never quite been
sure what the actual distinctions are between the Actor, CSP and DataFlow
models and so I was pleased that Russel spent the time spelling this out.
Of course the code we write in our high-level languages still needs to
execute within some runtime environment that itself is likely hosted by an
Operating System. And the picture looks no better here either as the key
players are all monolithic architectures with an inherent limit that assumes
all memory is globally addressable. One answer it seems may be in the
form of Hypervisors and micro-kernels where each computation unit runs
its own (possibly different) OS. Naturally Russel was quick to point out
that none of this is new, it’s just that most of us have managed to avoid it
until now.

What made this presentation an improvement on the keynote was the
acknowledgement of how all this affects those outside the world of Super
Computing. Yes it all makes sense for the big number crunchers like
meteorology and quantum physics, but how does this affect the man on
the street whose PC spends the majority of its time waiting for user input?
It probably won’t, at least for a traditional PC set up, but a move to a Thin
Client model might provide the kind of catalyst whereby small chunks of
processing would need to be farmed out, e.g. spell checking paragraphs in
parallel. Interesting times lie ahead, that’s for sure.

Steve Love reviews a presentation by Chis Oldwood on xUnit
Style Database Testing at the January 2011 meeting

The January installment of the ACCU London meeting found us in a new
venue (St Alban’s Centre Main Hall), with a new speaker. Chris Oldwood
has been talking about this subject (informally, and on his blog: http://
chrisoldwood.blogspot.com/) for some little while now, and I’ve been
looking forward to seeing him present it. His premise is that unit testing
with tools such as NUnit, jUnit and their like is popular in many modern
programming circles, but SQL databases do not seem to be one of them.
Never one to just accept that it’s ‘just the way it is’, Chris has set about
developing such a practice within his own team, and this presentation
explored the approach taken, some of the obstacles encountered, how they
were overcome, and some of the compromises which had to be made.

The talk began with a little history and revision of how the xUnit-style of
testing is done in Object Oriented languages (C# was the language of the
examples). The next step was to show how the same basic principles could
be applied to a database environment (SQL Server being the database used,
but the principles are easily applied to other environments too). The
obvious candidates for this style of testing are stored procedures, but Chris
expanded on the idea to explain how default constraints, triggers, and
referential integrity tools (e.g. Foreign Keys) could also benefit from being
‘unit’ tested.

The basic approach was a library of tools which included such facilities as
‘assert’ in various forms, and some utility functions, which could then be
composed to write unit tests in the SQL environment, and capture results
easily. The structure of an individual test, as demonstrated by Chris, was
recognisably similar to an NUnit test for a C# program, characterised by
three sections: Arrange (set up the data/environment for the test), Action
(do something interesting) and Assert (check it worked).

Chris then went on to explore more precisely what should be tested. He
identified that the modern unit testing best-practice is to test the publicly
observable behaviour of a unit, and went on to describe what the public
interface of a database system should be. This included stored procedures
and views, but excluded constraints, triggers and actual table schemata,
the latter being characterised as implementation detail.

Lastly, Chris discussed with us the tools he’s used, and some of the
obstacles he has encountered in implementing this technique in his team.
Perhaps not surprisingly, many of the objections he received from within
the team were not different from those experienced with respect to unit
testing other aspects of software development.

One important (perhaps defining) point of the entire talk was the
implication of using SQL to write the tests, instead of writing some Data
Access Layer in C# (or Java or whatever) to exercise the logic. The fact
that the tests are in the database language itself means that those developers
maintaining the database who might not be familiar with OO languages,
can understand and therefore more easily maintain the tests. This has
obvious consequences for longevity and long-term regression testing – one
side effect of ‘regular’ unit testing – whereby the tests form a safety net
for ongoing changes in the system.

The talk was very popular – a great turnout! – and provoked many
interesting questions, some of which had to be saved until we had
adjourned to a local public house (The Cittie of Yorke) for some well-
earned refereshment.

Code Critique Competition 68
Set and collated by Roger Orr. A book prize is awarded

for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
Can anybody help me to cast wide characters to an stl string? I can handle
single characters successfully like this:

std::string str;
wchar_t wch = L'X';
str += (char)wch;

but I can’t seem to get the syntax right for doing a whole array of them. Here’s
a program (Listing 1) showing what I’ve tried.

Critiques

Peter Sommerlad <peter.sommerlad@hsr.ch>

There is an easy answer to the question and another question in return: 1.
No, I cannot help, because you can’t do that. 2. Why do you want to cast
a wide character string to a std::string anyway?

Nevertheless, I want to put my reply in a historic context (as far as I
remember it).

When C was invented 7bit ASCII character set ruled. When I learned C in
Germany often a C program looked on the screen and printed like this (only
guessing from memory):

 £include <stdio.h>
 int main ä
 printf("HalloÖn");
 ü

very interesting, because the Umlauts used the code points of curly and
angle brackets and backlash and vertical bar. With IBM DOS a great relief
to European programmers came to allow for 8bit ASCII using the code
points above 128 as the space to represent many of the European
characters, like the Umlauts. However, for most people in the world these
about 200 different characters are far from sufficient to represent their
language. I do not want to go into the details of the woes of wrong code
pages under DOS etc.

With the standardization of C in the later 80s and also C++ the concept of
a character type supporting more then 8 bits was successfully introduced,
but the standard didn’t say, if the ‘wider’ character type would be 16 or 32
bits. Also during that time Unicode and some of its representations were
defined in parallel. They weren’t ready then and thus the C standard
couldn’t refer to it. Today Unicode is a norm and its UTF-8 8bit
representation is IMHO a suitable means to represent Unicode within
programs and externally, since it is the most compact form. However, for
some applications a UTF-32 fixed width representation of characters also
can be appropriate. That seems what you try to achieve with your usage
of wchar_t (right?). Nevertheless I am not an expert in Unicode usage
and others have problems with it also, e.g., I had the experience that regular
expression libraries trying to support UTF-8 failed to do so correctly in
interesting ways.

Now back to the problem. As stated above sizeof(wchar_t) is
different from sizeof(char), on my system shows:

 sizeof(wchar_t) = 4
 sizeof(char) = 1

On other systems sizeof(wchar_t) used to be 2 (e.g. early Windows
versions), because that was sufficient to represent the relevant number of
different characters.

Using wchar_t interchangeably with char is calling for trouble. For the
simple ASCII-character set characters, this seems to work, since the
numerical value of L'X' is the same as for 'X', so truncating it with a
cast is not a problem. However, whenever you use a character that requires
more than 8 bits to represent, your code will fail to work as you expected it.

 wchar_t wch = L'←'; // left arrow
 // UTF8 0xE2 86 90, Unicode: 2190 (hex)
 str += (char) wch;
 std::cout << "wch = "<< int(wch) << std::endl;
 std::cout << "(char) wch =" << char(wch) <<
 " as int: "<< int(char(wch)) << std::endl;

will deliver the following output (platform dependent):

 wch = 8592
 (char) wch =ê as int: -112

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#include <string.h>
#include <string>
#include <iostream>
std::string castToString(wchar_t * wideStr)
{
 std::string str;
// This is what I want, but it won't compile:
// str = (std::string)wideStr;
// This compiles, but I just get "H":
 str = (char*)wideStr;
// This compiles too, with the same output:
 std::wstring wstr;
 wstr = wideStr;
 str = (std::string)(char*)wstr.c_str();
// This is nearly there I think:
// but I now just get "H e l l o"
 str = std::string((char*)wstr.c_str(),
 wstr.size());
 delete wideStr;
 return str;
}
int main()
{
 wchar_t * source = new wchar_t[12];
 memcpy(source, L"Hello world", 24);
 std::string str = castToString(source);
 std::cout << str << std::endl;
}

Li
st

in
g

1

MAR 2011 | | 23{cvu}

You see, your code that seemed to work, doesn’t. The value of 8592 gets
truncated (% 256) and because the highest bit is set becomes negative value
when converted back to int.

Now back to your original problem and my question number 2: I suppose
you want to represent string literals that use a character set beyond ASCII
that doesn’t fit a single byte or char variable. It depends on what you want
to do with these strings on how to handle that. First option is to use
std::wstring that provides the same API as std::string but uses
wide characters (wchar_t) instead of char as std::string does.
std::wstring and std::string a r e t yp e d e f s f o r
std::basic_string<> template class that only differ in the element
type (char or wchar_t respectively).

To convert between them you need to use a locale that suits your needs.
All details of using locales can be found in Standard IOStream and Locales
by Angelika Langer (a speaker at ACCU conferences) and Klaus Kreft.
On p. 279 we find a solution to your problem by using the function
(templates) narrow() or widen() to convert between wchar_t and
char respectively. But understand, narrowing a wide character might
result in loss of information, if its character cannot be represented in the
‘narrow’ character set. A more suitable option might be the codecvt
template class. Your vendor might provide an implementation that can
convert between UTF-8 and UTF-32 for example. Because of the variable-
width representation of unicode code points in UTF-8 such a codecvt
object might need state to represent partially converted characters. Langer/
Kreft’s section 6.1.3 contains an example of how to do that. I have to
confess, I only learned that while writing this feedback.

Now back to your code snippet, line by line:

 wchar_t * source = new wchar_t[12];

Why do you allocate that wide character array on the heap. There is no need
to do so. In addition, even if you do so, I consider it very bad practice to
pass the pointer to a function that in turn deletes the memory and leaves
the original pointer intact. That calls out for unintended memory
overwrites using the pointer referring memory already freed. In addition
the parameter name of source suggest a read-only access that it definitely
isn't with the delete. If you insist on allocating the memory on the heap
and delete it in castToString then you should at least pass the pointer
variable by reference. Another problem is, that you use the array version
of operator new[] but the plain version of operator delete in the
function. If these are overloaded and non standard you can be in trouble
again.

 memcpy(source, L"Hello world", 24);

As you learned above, memcpy call assumes sizeof(wchar_t) is 2,
which it isn’t on my machine. Thus it is inherently non-portable code. I
would refrain from using memcpy anyway in C++ and use the
corresponding (w)string class or std::vector instead for all ‘stringish’
data. Assignment or initialization is as effective as memcpy for simple or
trivial member types.

If you remove the delete wideStr; from castToString a better
means than these two lines with the same effect would be

 wchar_t const * const source = L"Hello world";

Now for an alternative implementation of castToString that can
somehow achieve what you are looking for with using locale and the
corresponding ctype<wchar_t> facet:

 #include <string>
 #include <iostream>
 #include <locale>
 #include <iterator>
 #include <algorithm>
 #include <boost/bind.hpp>
 std::string narrowWideString(
 std::wstring const &in){
 using namespace std;
 using namespace boost;
 string result;
 locale loc; // copy of the global locale

 ctype<wchar_t> const &facet =
 use_facet<ctype<wchar_t> >(loc);
 // the following selects the right overload
 // of the narrow member function of the
 // ctype<> facet
 char(std::ctype<wchar_t>::*narrow)
 (wchar_t,char)const =
 &std::ctype<wchar_t>::narrow;
 transform(in.begin(),in.end(),
 back_inserter(result),
 bind(narrow,cref(facet),_1,' '));
 return result;
 }
 int main() {
 wchar_t const source[] =L"Hello world";
 std::string str = narrowWideString(source);
 std::cout << str << std::endl;
 }

In main using an array type representing the wide string literal is better
than just a pointer. I pass the wide character array as a wstring parameter
to the function, so I can use begin() and end() to call the transform
algorithm. The decision to use transform makes the code a bit tricky, since
selecting the right version of an overloaded member function requires us
to ‘cast’ it by assigning it to a member-function pointer (narrow) of the
right member function signature type. A typedef for ctype<wchar_t>
might have made it a bit more readable. the blank in the bind call provides
the default char value to use, whenever the narrowing wouldn’t produce a
valid character fitting in the string.

However, I do not recommend you to blindly narrow your wchar_t
strings, so. Select a good internal and external representation, e.g. UTF-8
and use a library so convert that representation into another format, if you
really need it. I made the experience (in the server domain) that just passing
UTF-8 strings through a program works fine with std::string. But
there the rendering of non-ASCII characters was left to a web browser,
which was fine, when it was told the data comes in UTF-8.

I am out of time and steam. There remains more to be said, such as not
using C-style casts or ‘naked’ pointers in C++, knowing what you
internally to your data when casting (even with C++-style casts) and not
accessing internal data of objects, when you do not need to (e.g. calling
c_str() or data() member functions of string).

Huw Lewis <huw.lewis2409@googlemail.com>

Before tackling the primary subject matter (of wide character strings), we
need to cover the other mistakes in this code example.

Dynamic memory allocation strategy

The castToString helper function attempts to delete the memory of the
wide string data passed to it. This is a poor design choice as it places a
constraint on the caller to always pass in some raw, unmanaged
dynamically allocated memory that will not be deleted by any other means.
Fo r e xa mpl e , t h e c a l l e r co u l d no t pa s s i n a
wstring(L"blah").c_str() result as it would be doubly deleted
leading to a crash.

Operators new/delete for arrays

The memory was allocated with the array variant of operator new. It
must be deleted using the array variant of the delete operator, otherwise
corruption of the free store will ensue and we walk towards crash territory
once again (but much more unpredictably).

 delete [] wideStr;

Size of wchar_t

The program allocates an array of 12 wchar_t elements to hold the string
L"Hello world". However, the memcpy call used to write to the array
is given 24 as the length parameter. This parameter is the length in bytes
to be copied, and so shows the author’s assumption that wchar_t is 2
bytes in length. However, in my environment wchar_t is actually a 4 byte
field so only half of the intended buffer is copied. The size of wchar_t
24 | | MAR 2011{cvu}

is compiler dependent so instead use sizeof(wchar_t) or
<climits> (std::MB_LEN_MAX) [Ed: warning: MB_LEN_MAX is not
the same as sizeof(wchar_t)]. Note also that the wide character strlen
counterpart is named wcslen.

 const wchar_t* temp = L"Hello world";
 wchar_t* wideSource = new wchar_t[64];
 memcpy(wideSource, temp,
 wcslen(temp) * MB_LEN_MAX);

Converting the wide string

All of the attempts to convert the wide-char string have the same
underlying fault. They are trying to convert an array of multi-byte
characters directly to an array of single characters. Therefore the 'unused'
bytes of the multi-byte characters are also copied into the single character
string. The value of these bytes is zero and so they prematurely terminate
the single byte string. This is why the result of all attempts so far is simply
"H"1.

Note 1: I could not reproduce the reported output of "H e l l o" with
my test platform. The result remained the same ("H").

Fortunately, the C++ standard provides an easy way to convert a sequence
of any type to a string as long as there is a sensible conversion of the type
to char, in the form of this template constructor:

 template<InputIterator>
 string(InputIterator begin,
 InputIterator end);

This constructor populates the new string by converting the value of each
item in the range [begin, end) to a char in the new sequence. In this example
the wide character 'H' (0x00000048) is assigned to the single byte character
'H' (0x48), and so on.

Our example is simple with all characters in the ascii range. All characters
convert to single byte characters without data loss. However, what if our
wide string contains characters outside of the basic ascii range (> 127) e.g.
'£' (0x00A3)? The simple solution using the template constructor would
have the effect of truncating the character to 0xA3 which isn’t a printable
character in my console’s utf-8 encoding. In ‘normal’ single byte strings,
the '£' character is actually a multi-byte character – 0xC2A3. Confusing,
I know.

A safer conversion

Anyway, what to do about characters like this in our input data? Here are
some options in ascending order of complexity:

1. Ignore and simply put up with the unprintable characters in the
output

2. Detect the character and reject the conversion i.e. throw an
exception.

3. Detect the character and attempt a conversion to a multi-byte utf-8
character.

The choice of how to handle this situation is down to the application i.e.
is it a throw away test harness or a production enterprise application.

Option 1 is trivial as shown here:

 std::string castToStringOption1(
 const wchar_t* wStr, size_t len)
 {
 // Use the template constructor taking
 // an iterator range.
 std::string output(wStr, wStr + len);
 return output;
 }

Option 2 is also an easy implementation. Simply loop through each
character checking its range. Throw the exception of your choice if any
are out of range. Following the successful check, use the template
constructor to create the new string.

 class StringConverterOption2
 {
 public:

 class CharConversionError :
 public std::logic_error
 {
 public:
 CharConversionError(
 const std::string& msg)
 : std::logic_error(msg)
 {
 }
 };
 static std::string convert(const wchar_t* w,
 size_t len, bool check = true)
 {
 // check conversion
 if (check)
 {
 std::for_each(w, w + len,
 check_char_conversion);
 }
 // the check has passed, it is safe to use
 // the string template constructor
 return string(w, w + len);
 }
 private:
 // the checking function. This throws if the
 // input character is outside of the basic
 // ascii range
 static void check_char_conversion(
 wchar_t wideC)
 {
 if (wideC < 0 || wideC > 127)
 {
 throw CharConversionError(
 "Wide character out of ascii range");
 }
 }
 };

Option 3 would be ideal, but is not straight forward. First we’ll assume that
we’re converting from an input encoding such as unicode to a single byte
encoding such as utf-8. Then we’d need a function to do this conversion
for us. Sometimes the result of this would be 2 (or more) characters out
for one in (see '£' above) so the template constructor wouldn’t work. The
best approach would be to reserve the maximum amount of memory
required then build the output string one character at a time. Here is a
simple example implementation limited to single and double utf-8
characters.

 // An encoder functor to convert to utf-8
 class ConvertWideCharToUtf8
 {
 public:
 // Convert the given wide char to a sequence
 // of utf-8 encoded characters.
 // in - the input wide char
 // begin - the beginning of the output
 // sequence
 // end - the end of the output sequence
 // return - the next char pointer in the
 // output buffer after this encoded
 // character
 char* operator()(wchar_t in, char* begin,
 char* end)
 {
 if (!begin)
 throw std::runtime_error(
 "ConvertWideCharToUtf8 - "
 "invalid begin pointer");
 if (!end)
 throw std::runtime_error(
 "ConvertWideCharToUtf8 - "
 "invalid end pointer");
MAR 2011 | | 25{cvu}

 if (begin >= end)
 throw std::runtime_error(
 "ConvertWideCharToUtf8 - "
 "invalid iterator range");
 if (in <= 127)
 {
 // simple straight assignment
 *begin = static_cast<char>(in);
 }
 else if (in <= 0x07FF)
 {
 if (std::distance(begin, end) < 2)
 {
 throw std::runtime_error(
 "ConvertWideCharToUtf8 - "
 "output buffer too small");
 }
 // 2 byte field
 *begin = static_cast<char>(0xC0);
 *begin |= static_cast<char>(in >> 6);
 ++begin;
 // the lsb
 *begin = static_cast<char>(0x80);
 *begin |= static_cast<char>(in & 0x3F);
 }
 else
 {
 // TBD for larger characters
 throw std::runtime_error(
 "utf-8 encoding > 2 not supported");
 }
 // return the pointer to the next char in
 // the output buffer
 return ++begin;
 }
 };
 template<class Encoder =
 ConvertWideCharToUtf8>
 class StringConverterOption3
 {
 public:
 static std::string convert(
 const wchar_t* wStr, size_t len)
 {
 // reserve enough space for twice the
 // whole of the wide string so as to
 // prevent repeated allocations
 std::string output;
 output.reserve(len * sizeof(wchar_t) * 2);
 // Use a simple buffer to accept the
 // multi-char output
 char conversionOutput[sizeof(wchar_t)*2];
 // use an instance of the encoder's
 // operator() to do the conversion work
 Encoder encoder;
 for (size_t i = 0; i < len; ++i)
 {
 // append the encoded characters
 output.append(conversionOutput,
 encoder(wStr[i], conversionOutput,
 conversionOutput + sizeof(
 conversionOutput)));
 }
 return output;
 }
 };

Finally here is the new main function. I’ve used wstring to wrap up all
of the memory allocation and size issues described earlier.

 int main(int argc, char** argv)
 {

 const wstring wideSource(
 L"Hello, world! ££");
 cout << "option 1: " <<
 castToStringOption1(wideSource.c_str(),
 wideSource.size()) << endl;
 // option 2 will throw if it can't convert
 // the string.
 try
 {
 cout << "option 2: " <<
 castToStringOption2(wideSource.c_str(),
 wideSource.size()) << endl;
 }
 catch (StringConverterOption2::
 CharConversionError& e)
 {
 cout << "option 2 converter found a"
 " character out of ascii range" << endl;
 cout << e.what() << endl;
 }
 cout << "option 3: " <<
 castToStringOption3(wideSource.c_str(),
 wideSource.size()) << endl;
 return 0;
 }

The program output is given below. So, there’s more to complexity to
strings and character encodings than we thought!!

 option 1: Hello, world! úú
 option 2 converter found a character out of ascii
 range
 Wide character out of ascii range
 option 3: Hello, world! ££

Commentary
This critique had a double focus: one issue is the casting and the other is
the problem of changing character representation. I think the responses
received do a good job of covering the second point, but I’d like to say a
little more about the first.

C++ is a strongly-typed language, but unlike some such it does allow the
programmer to change the type of an expression. Some of these casts are
implicit (i.e. require no extra syntax) and others are explicit (i.e. require a
cast operator). Unfortunately the compiler cannot, in general, tell whether
the resultant coercion is valid.

It is doubly unfortunate that, because of the array to pointer conversion
rules, a valid cast of a single value may become invalid when applied to
an array.

So let’s define a couple of classes:

 struct base {
 int first;
 base() : first(1) {}
 virtual ~base() {}
 };
 struct derived : public base {
 int second;
 derived() : second(2) {}
 };

Now we use these classes with (implicit) conversion:

 base *baseptr1 = new derived();
 base *baseptr2 = new derived[10];

The implicit conversion is valid, syntactically, in both cases. However
problems come when we try to access the elements of the array:

 std::cout << baseptr2[1].first;

When I tried this I got 9540004 as the output – rather than the hoped for
value of 2. This problem is caused by C++ treating indexing as pointer
arithmetic using the declared type of the variable. So the difference
between the addresses given by baseptr2[1] and baseptr2[0] is
26 | | MAR 2011{cvu}

Lessons Learned in
Software Testing: A
Context-Driven
Approach
Cem Kaner, James Bach & Bret
Pettichord, published by Wiley,
ISBN: 978-0471081128

Reviewed by Alan Lenton

I first heard about this book at a London Tester
gathering which I sneaked into (I am after all a
programmer, not a tester!). It’s a fabulous
collection of tips and hints and techniques for
both the new and the experienced person
working in a software test department. It covers
obvious areas testing techniques, automated
testing (the material about what automated
testing can’t do is very high grade material),

documenting testing, and managing a test
project.

But it also covers some less obvious issues such
as thinking like a tester, bug advocacy, and how
to interact with programmers. The style is to
offer the advice in bite sized chunks, and, to my
surprise, it works, making it easy to look up
something only half remembered, in a moment.

Even more importantly, from my point of view,
the book is easily useable if you aren’t a
professional tester. If you are a programmer, or
even the CTO, in a small company that doesn’t
have a software testing department, you will still
get a lot of new ideas out of the book. Many of
the ideas are a nice fit with programmer test
driven development – some of them will work
for you, some won’t. Happily, the book isn’t
dogmatic, it’s much more of a ‘this is what we
have found can work in some of the projects we
have been involved in’ style. And it works very
well indeed. Highly recommended

Listing 2Bookcase
The latest book review.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

Jez Higgins (jez@jezuk.co.uk)

Code Critique Competition 68 (continued)
sizeof(base), whereas the actual difference between elements of the
array is sizeof(derived).

In the critique we are using an explicit cast, which adds further
complications, but it is primarily the addressing problem that means
casting a single character ‘works’ but casting an array doesn’t.

As a general rule, trying to avoid the so-called C-style casting and
preferring static_cast, const_cast, dynamic_cast and
reinterpret_cast can catch at least some of the problematic cases.
However, as the array case above demonstrates, even implicit conversions
can be problematic so it is important to understand what happens when
conversions occur (and what might go wrong!)

The Winner of CC 67
The two entries covered very similar ground. I liked the three options Huw
provided (since it was not specified what the user really wanted), and he
also provided just a little more explanation of why the original code was
flawed. However I appreciated Peter’s use of standard library facilities to
do the conversion (whether narrow or codecvt) and the background and
explanation about UTF-8 so on balance I decided to award him the prize.

Note that Peter won last time, and Huw won the two times previous to that.
As Tom Lehreh puts it in his delightful New Math song (http://
edit.mp3lyrics.org/t/tom-lehrer/new/) ‘let’s not always see the same
hands’. I’m sure others of you could provide a critique! If you’ve read this
far, why don’t you enter the next competition?

Code Critique 68
(Submissions to scc@accu.org by Apr 1st)

What’s the best way to read output from Fortran fixed-format strings using
scanf? The example is a database file with lines such as

" 26 2996100 1"

which were written by a fixed width format (i.e. this should be interpreted
as ‘leading space, _26, __2, 996, 100, __1’).

The problem is that automatic whitespace skipping in scanf means that
any %d format string is almost guaranteed to get confused for one or other
variant of full fields, e.g. the ‘obvious’ " %3d%3d%3d%3d%3d" format
string reads 26 299 610 0 1 here.

Listing 2 is a simple program demonstrating the problem (and the
asymmetry of C input/output formats!), and the results are:

 C:\cc68>output | input
 1 2 3 4 5
 100 200 300 400 500
 26 299 610 0 1

(Thanks to Robin Williams for suggesting this issue’s critique.)

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

//-- output.c --
#include <stdio.h>
int process(int v1, int v2, int v3,
 int v4, int v5)
{
 printf(" %3i%3i%3i%3i%3i\n",
 v1, v2, v3, v4, v5);
}
int main()
{
 process(1, 2, 3, 4, 5);
 process(100, 200, 300, 400, 500);
 process(26, 2, 996, 100, 1);
 return 0;
}
//-- input.c --
#include <stdio.h>
int main()
{
 while (!feof(stdin))
 {
 int i1, i2, i3, i4, i5;
 scanf(" %3i%3i%3i%3i%3i\n",
 &i1, &i2, &i3, &i4, &i5);
 printf("%i %i %i %i %i\n",
 i1, i2, i3, i4, i5);
 }

}

Listing 2
MAR 2011 | | 27{cvu}

accuACCU Information
Membership news and committee reports

The 23rd AGM
Notice is hereby given that the 23rd Annual General Meeting of The C Users’ Group (UK)
publicly known as ACCU will be held at 13:00 on Saturday 16th April 2011 at the Oxford Barceló
Hotel, (formerly the Oxford Paramount Hotel), Godstow Road, Oxford OX2 8AL, United
Kingdom.

Current agenda

1 Apologies for absence

2 Minutes of the 22nd Annual General Meeting

3 Annual reports of the officers

4 Accounts for the year ending 31st December 2010

5 Election of Auditor

6 Election of Officers and Committee

7 Other motions for which notice has been given.

8 Any other Annual General Meeting Business (To be notified to the Chair prior to the
commencement of the Meeting).

The attention of attendees under a Corporate Membership is drawn to Rule 7.8 of the Constitution:

... Voting by Corporate bodies is limited to a maximum of four individuals from that
body. The identities of Corporate voting and non-voting individuals must be made
known to the Chair before commencing the business of the Meeting. All individuals
present under a Corporate Membership have speaking rights.

Also, all members should note rules 7.5:

Notices of Motion, duly proposed and seconded, must be lodged with the Secretary
at least 14 days prior to the General Meeting.

and 7.6:

Nominations for Officers and Committee members, duly proposed, seconded and
accepted, shall be lodged with the Secretary at least 14 days prior to the General
Meeting.

and 7.7:

In addition to written nominations for a position, nominations may be taken from the
floor at the General Meeting. In the event of there being more nominations than there
are positions to fill, candidates shall be elected by simple majority of those Members
present and voting. The presiding Member shall have a casting vote.

For historical and logistical reasons, the date and venue is that of the last day of the ACCU Spring
Conference. Please note that you do not need to be attending the conference to attend the AGM.
(For more information about the conference, please see the web page at http://accu.org/
conference.)

More details, including any more motions, will be announced later. A full list of motions and
electoral candidates will be supplied at the meeting itself. We currently expect constitutional
motions regarding a widening of the aims of the society as stated in the constitution to cover
software development as a whole rather than just C and C++, and for the creation of a new
officer’s post, to be elected every two years, to be responsible to the committee (and thus to the
society as a whole) for the organisation of the conferences.

Please also note that both I, as Secretary, and Stewart Brodie, as Treasurer, wish to step down
from our posts. We’ve both been doing this for far too long (in my case, for a whole decade, and
Stewart isn’t far behind). So if anyone considers that they could stand for either position, please
let either me (as secretary@accu.org) or Hubert Matthews (chair@accu.org) know.

Alan Bellingham

Secretary, ACCU
REVIEWS

View From The Chair
Hubert Matthews
chair@accu.org

You will be reading this shortly
before the ACCU Conference,
another blockbuster of an event
that we’re all looking forward to. On the last day
of the conference, as is customary, is the ACCU
Annual General Meeting. I want to give you all
a heads-up view of the motions that the main
ACCU committee is intending to propose.

There will be a motion to tidy up some legacy
aspects of the constitution, primarily to make
official the transition from the ACCU’s origins
as a technology-specific user group (C and C++)
to a technology-independent organisation
dedicated to software development in general. I
don’t expect these will be controversial in any
way so I won’t give more details here.

The next motion concerns the Conference Chair.
The conference has grown over the years from a
series of technical talks at the AGM to a full-
blown conference that is now the public face of
the ACCU. It requires lots of dedication and
commitment from the conference team led by
the Conference Chair. It therefore seems
incongruent and intrinsically unsatisfying that
the role of Conference Chair is neither
recognised by nor accountable to the
membership as a whole. The committee is
therefore proposing that the Conference Chair
become an elected position and a named
committee member in the constitution. Because
of the demands placed on the Conference Chair
and the learning curve it involves, the committee
is proposing that the post be for a period of two
years unlike the other officers. If this motion is
passed the first election for the role would be
held in 2012 for the period 2012 to 2014.

The other motion regards the membership fees.
Over the last two years the ACCU has been
running at a loss, primarily because of the
decision to move to monthly posting of
magazines instead of bi-monthly. This decision
has proved popular with the members but is
costly. Full details of these costs and the
accounts for 2009 and draft accounts for 2010
will be presented at the AGM. The committee is
undertaking a number of actions to reduce costs
whilst maintaining monthly magazines.
However this still leaves us with a significant
shortfall that can only be covered by increasing
membership revenues. Therefore it will be
proposed to raise the standard membership by
£10/year from £35 to £45. The concessions rate,
the standing order discount and corporate
memberships would all be adjusted too. Without
this increase the ACCU will have completely
depleted its reserves within two years, reserves
that have been built up over many years. Fees
have been at the current levels for a number of
28 | | MAR 2011{cvu}
years and they would have needed to be revised
upward anyway to allow for inflation and
increased suppliers’ costs anyway.

Anyone wishing to propose any additional
motions (or as an alternative to any of the

committee motions) should inform the Secretary
at least fourteen days before the AGM, as
detailed in the constitution (Section 7.5,
available online at http://accu.org/index.php/
constitution).

http://accu.org/index.php/
http://accu.org/conference
http://accu.org/conference
http://accu.org/conference

	What was, what is, and what may be
	The First Little Step into Test-Driven Development
	Many-festos
	A Game of Blockade
	On a Game of Tug o’ War
	Further Experiments in String Switching
	Using the Windows Debugging API
	What is in a name?
	The Kanban Ones Games
	Inspirational (P)articles
	ACCU Mentored Developers Project
	Desert Island Books
	ACCU Regional Meetings
	Code Critique Competition 68
	Bookcase
	View From The Chair
	The 23rd AGM

