

JAN 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Look at the princess
was originally asked to cover as C Vu editor in October while Steve
and Frances were getting married. However, my wife and I were
expecting a little boy in July and I couldn’t see myself having

enough time to do it justice. As it turns out I wouldn’t have had
anything like enough time as Nathaniel Jacob Grenyer came along,
eventually, on the 2nd of August and we’ve been flat out since. I’ve
only just been able to to shoe-horn in enough time to make a proper
job of the January issue as, on top of everything else, I decided to
change jobs too. It is no longer a secret that I will be contracting at
a financial institution well known to a lot of ACCU members, for
six months, with Alan Griffiths and my old boss at Lehman
Brothers, Burkhard Kloss.

I have had quite a clear idea of what I wanted to have in my first C
Vu as editor for quite some time. I wanted articles from members of
the ACCU that I consider to be the big hitters and I wanted it to
have a Java feel. In this edition you’ll find articles by Kevlin
Henney, Jon Jagger and Russel Winder. There are all the usual high
quality regulars, such as Pete Goodliffe’s ‘Becoming a Better
Programmer’ column and there are two short articles from, to my
knowledge, new writers for the ACCU. I know you’ll enjoy all of them.
What you won’t find is anything about Java. You can’t have
everything!

Until next time....

 I
Volume 22 Issue 6
January 2011

Features Editor
Steve Love
cvu@accu.org

Guest Editor
Paul Grenyer
paul.grenyer@gmail.com

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Giovanni Asproni, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Kevlin Henney, Colin Hersom,
Frances Love, Roger Orr,
Russell Winder

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

PAUL GRENYER
GUEST EDITOR

2 | | JAN 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
24 Agile Cambridge 2010

Giovanni Asproni gives us
an alternative view of
Agile Cambridge 2010.

24 Inspirational (P)articles
Frances Love introduces
Sue Black.

25 Desert Island Books
Rachel Davies shares her
choice of books and
music.

26 Code Critique
Competition #67
Set and collated by
Roger Orr.

REGULARS
30 Bookcase

The latest roundup of
book reviews.

32 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.1: 1st February 2011
C Vu 23.2: 1st April 2011

Overload 102:1st March 2011
Overload 103:1st May 2011

FEATURES
3 Sustainable Space

Kevlin Henney shares a code layout pattern.

4 Experiences of Pair Programming
Chris O’Dell shares her experiences of pair programming.

5 When It’s Done, It’s Done
Pete Goodliffe implores us to stop. When it’s time to.

6 Hotel Room to Train Carriage
Jon Jagger shares some illuminating musings.

8 A Game of Tug o’ War
Baron Muncharis sets a challenge.

9 On a Game of Roulette
A student analyses the Baron’s latest puzzle.

11 Somno, The Barber of Clapham Junction, Introduces GPars
Russell Winder introduces concurrency techniques in
Groovy.

22 A Foray into CMake
Colin Hersom tells us of his experience using CMake for
the first time.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

JAN 2011 | | 3{cvu}

Sustainable Space
Kevlin Henney shares a code layout pattern.

ou are coding in a block-structured language. Spacing is normally
used in source code to express logical grouping and separation. For
example, indentation is used to show the dependency of code on

certain decision points, such as conditional and loop statements.

But what about logical lines of code that are too long to fit on a single
physical line? They need to be broken up, but where should the line break
appear and how should the overflow be aligned? Simply breaking when
the line overflows and using ordinary indentation after that creates an ad
hoc layout that appears clumsy and irregular:

 assignedVariable = firstTerm +
 secondTerm;
 targetObject.methodCall(firstArgument,
 secondArgument);

What is needed is a regular structure that demonstrates more care in the
code and is easier to skim read. It is tempting to break the line after the
first term on the right-hand side of an assignment or after the first argument
of a method call:

 assignedVariable = firstTerm +
 secondTerm;
 targetObject.methodCall(firstArgument,
 secondArgument);

This kind of spacing can also apply to method definitions and variable
declarations. The alignment makes it easier to see the related terms
together. However, the alignment is only local to a call, assignment,
variable declaration or method definition. Different expressions or
argument lists in the same method or the same class are not at the same
alignment, making the overall formatting ragged in appearance. More
problematically, however, is the effect of change on this kind of
formatting. If any of the names on the first line to the left of the alignment
change length, all the spacing becomes misaligned. This style is briefly
pleasing, but ultimately brittle. The common task of identifier renaming
should not become a high-maintenance obstacle when laying out code.

Therefore, place line breaks somewhere before rather than after the first
term of the expression or clause to be broken up. The line following should
be indented with respect to the left-hand side of the preceding line. Many
formatting styles satisfy this constraint. For example:

 assignedVariable =
 firstTerm + secondTerm;
 targetObject.methodCall(
 firstArgument,
 secondArgument);

Or:

 assignedVariable
 = firstTerm + secondTerm;
 targetObject
 .methodCall(
 firstArgument, secondArgument);

Spacing no longer depends on the syntax of identifier lengths of the items
on the first line. Not only is the spacing independent and, therefore,
unaffected by renaming, it also serves to emphasise the 'subject' of each
expression more clearly, making the relationship with the operands or
terms clearer.

In terms of screen real estate, this style uses less horizontal space and
slightly more vertical space than other styles. The code has a slightly more
compact appearance and is more consistently placed with respect to the

left-hand side of the screen. However, a reader will not see other alignment
between lines, such as finding all variable names lined up in the same
column. Although such alignment has some local aesthetic appeal to it, it
is ultimately not sustainable and should be considered subordinate to
maintaining a more global aesthetic and consistency. 

Acknowledgement
This pattern was first written up and discussed at the Pattern Languages
of Tandberg event in Oslo, December 2009. My thanks to those who gave
their feedback on the original draft, from which this write-up has evolved.
Some discussion of robust layout on accu-general in August 2010 also
helped to reinforce a couple of points and highlight a couple of omissions.

 Y

KEVLIN HENNEY
Kevlin is an independent consultant and trainer based in
Bristol. His development interests are in patterns,
programming, practice and process. He is co-author of
A Pattern Language for Distributed Computing and
On Patterns and Pattern Languages.

4 | | JAN 2011{cvu}

Experiences of Pair Programming
Chris O’Dell shares her experiences of pair programming.

n the last CVu Editorial, Steve asked what pair programming is like as
he had had limited experience, usually on one-off tasks lasting no more
than an hour at a time and in all cases he’s found the required level of

concentration to be extremely high – and it is. Three months ago I joined
7digital, a leading digital media delivery company, whose development
team use an agile approach including daily stand-ups, Test Driven
Development (TDD) [1] and kanban boards [2], plus pair programming.
In fact, the whole team pair programs as much of the time as is possible.
As Steve found out it can be quite exhausting, and I certainly discovered
this after my first couple of weeks with this approach. We hold regular 1-
2-1 meetings with the Development Lead and I mentioned this to him in
my first meeting. He agreed, pair programming is indeed intensive, and it
is counter-productive to be 100% focussed at all times, frequent breaks
were recommended and the pair will generally break for 10 minutes
returning to their respective machines to catch up on office email, read a
little Twitter and some blogs before jumping straight back in ready to focus
once again. I would say it is similar to the concentration techniques out
there such as Pomodoro [3], whereby you focus solidly for a set amount
of time, then break, which is an interesting technique that I have tried in
the past and actually found myself achieving more.

One other thing I brought up in my 1-2-1 was that I tended to take a more
‘passive’ role in the pairing – watching and commenting rather than
coding. As I was new to the code base this felt like the right approach to
take, but as is always the case, the learning does not sink in until you
actually type the code yourself. One method to increase my participation
was a ‘ping-pong’ pair programming [4] approach, whereby one developer
writes a failing unit test and the other developer writes the code for it to
pass, which fits in excellently with our TDD approach. But, all in all I
needed to work on being more assertive. As my Lead had stated, pair
programming is a skill just like any other and it must be learned and honed
for the benefits to be reaped.

Also on the personal side, pair programming got me up to speed with the
code base extremely quickly, and with pairs swapping once or twice a
week, I got an overview of many parts of the system far quicker than if I’d
been programming alone on a single feature. I also got to know the team
which is a massive bonus as there is so much to be learned from your
colleagues.

On the business side, we have reported a huge decrease in bugs reaching
production and thereby a marked increase in customer satisfaction. The
‘second pair of eyes’ which your partner provides is hugely valuable – how
many times have you found yourself going in circles trying to track a bug
down only to find it was a silly typo or something just as obvious? Your
pair is your saviour in these situations and they more often than not point
out the mistake before it gets to compilation and nowhere near production.
The changing of pairs may sound chaotic, but what usually happens is that
one person ‘owns’ the story and partners switch around. The advantage of
this is knowledge transfer. Of course, at first there is a small part of needing
to bring the new pair up to speed, but then they can jump straight into
assisting with development. If it takes too long to bring someone up to
speed, then your task is too big or your approach is too unwieldy, either
way it needs to be reassessed, which you can do with your pair. This hands-
on approach to knowledge transfer is far more effective than with the often

arcane ‘handover document’ usually written just before you head on a three
week holiday. As an example there was a piece of work to allow for gift
card purchases, broken down into many stories but with one overall
Minimum Marketable Feature (MMF) [5] and a colleague owned this piece
of work with at least 3 other developers having paired with him on it and
I was one of them. He took a week’s holiday during the development of
the MMF and for that week I took over the ownership of the work pairing
with one of the other guys and we continued it through to near completion
without a hiccup nor a handover document in sight. From a business point
of view the work did not need to stop or even slow down noticeably while
he was away and the knowledge of the implementation is spread between
at least 4 people. From the Dev’s point of view he got to take holiday when
he wanted and without rushing a handover the afternoon of his last working
day.

As with all methodologies it is not a silver bullet and relies heavily on the
attitudes of the developers involved. If anyone prefers to work alone –
building empires of arcane code, then they will find ways to continue to
do so and make their pair miserable in the process. In fact, there’s an
excellent list of 10 ways to Kill Pair Programming [6], which I suggest you
read and do the complete opposite of everything stated.

Your pair is your reviewer, your counsel, your sounding board, your
mentor, your student and the person keeping you focussed. There is one
thing though that I do miss from coding alone, and that is listening to music
with my headphones on, but I can happily trade this for the benefits listed
above. 

References
[1] http://en.wikipedia.org/wiki/Test-driven_development
[2] http://en.wikipedia.org/wiki/Kanban
[3] http://www.pomodorotechnique.com/
[4] http://en.wikipedia.org/wiki/

Pair_programming#Ping_pong_pair_programming
[5] http://www.netobjectives.com/glossary/7#letterm
[6] http://www.awkwardcoder.com/index.php/2010/08/27/10-ways-to-

kill-pair-programming/

 I

CHRIS O’DELL
Chris is a C# Web Developer working in London at
7digital who is constantly learning. When not programming
she can be found with her head in a fantasy book or a
manga comic.

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Kanban
http://www.pomodorotechnique.com/
http://en.wikipedia.org/wiki/Pair_programming#Ping_pong_pair_programming
http://en.wikipedia.org/wiki/Pair_programming#Ping_pong_pair_programming
http://www.netobjectives.com/glossary/7#letterm
http://www.awkwardcoder.com/index.php/2010/08/27/10-ways-to-kill-pair-programming/
http://www.awkwardcoder.com/index.php/2010/08/27/10-ways-to-kill-pair-programming/

Becoming a Better Programmer # 66
When It’s Done, It’s Done
Pete Goodliffe implores us to stop. When it’s time to.

In the name of God, stop a moment,
cease your work, look around you.

Leo Tolstoy

program is made of a number of subsystems. Each of those
subsystems is composed of a smaller parts - components, modules,
classes, functions, data types, and the like. Sometimes even boxes

and lines. Or clever ideas.

The jobbing programmer moves from one assignment to the next; from one
task to another. Their working day is composed of a series of construction
and maintenance tasks on a series of these software components:
composing new parts, stitching parts together, extending, enhancing or
mending existing pieces of code.

So our job is simply a string of lots of smaller jobs. It’s recursive.
Programmers love that that kind of thing.

Are we there yet?
So there you are: getting the job done. (You think.)

Just like a small child travelling in the back of a car constantly brays ‘are
we there yet?’, pretty soon you’ll encounter the braying manager: ‘are you
done yet?’

This is an important question. It’s essential for a software developer to be
able to answer that one simple request: to know what ‘done’ looks like,
and to have a realistic idea of how close you are to being ‘done’. And then
to communicate it.

Many programmers fall short here; it’s tempting to just keep hacking away
until the task seems complete. They don’t have a good grasp on whether
they're nearly finished or not. They think: There could be any number of
bugs to iron out, or unforeseen problems to trip me up. I can’t possibly tell
if I’m almost done.

But that’s simply not good enough. Usually, avoiding the question is an
excuse for lazy practice, a justification for ‘coding from the hip’, without
forethought and planning. It’s not methodical.

It’s also likely to create problems for you. I often see people working far
too hard:

 They are doing more work than necessary, because they didn’t know
when to stop.

 Without knowing when they’ll be done, they don’t actually
complete the tasks they think are finished. This leads to having to
pick things back up later on, to work out what’s missing and how to
stitch it in. Code construction is far slower and harder this way.

 The wrong bits of code get polished, as the correct goal was never
in sight. This is wasted work.

 Developers working too hard are forced to put in extra hours. You’ll
not get enough sleep!

Let’s see how to avoid this and to answer ‘are we there yet’ effectively.

Developing backwards: decomposition
Different programming shops manage their day-to-day development
efforts differently. Often this depends on the size and structure of the
software team.

Some place a single developer in charge of a large swathe of functionality,
give them a delivery date, and ask them for occasional progress reports.
Others follow ‘agile’ processes, and manage a backlog of more granular
tasks (perhaps phrasing them as stories), divvying those out to

programmers as they are able to
move into a new task.

The first step towards defining
‘done’ is to know exactly what
you’re working on. If i t ’s a
fiendishly large and complex
problem, then it’s going to be
fiendishly complex to say when
you’ll be done.

It’s a far simpler exercise to answer
how far through you are through a
small, well-understood problem.
Obvious, really.

So if you have been allotted a monster task, before you begin chipping
away at it, break it down into smaller, understandable parts. Too many
people rush headlong into code or design without taking a step back to
consider how they will work through it.

Split large tasks up into a series of smaller, well-understood tasks.
You will be able to judge progress through these more accurately.

Often this isn’t a complex a task, at least for a top-level decomposition.
(You may have to drill down a few times. Do so. But take note: this is an
indication that you’ve been handed a task at far too high a granularity.)

Sometimes such a decomposition is hard to do, and is a significant task
itself. Don’t let that put you off. If you don’t do it up-front for estimation
purposes, you’ll only end up doing it later on in less focussed ways as you
battle to the finish line.

Make sure that at any point in time, you know the smallest unit you’re
working on; rather than just the big target for your project.

Define done
You’ve got an idea of the big picture; you know what you’re ultimately
trying to build. And you know the particular sub-task you’re working on
at the moment.

Now, make sure that for whatever task you are working on, you know when
to stop.

To do this, you have to define what ‘done’ is. You have to know what
‘success’ means. What the ‘complete’ software will look like.

Make sure you define ‘done’.

This is important. If you haven’t determined when to stop, you’ll keep
working far past when you needed to. You’ll be working harder and longer
than you needed to. Or, you won’t work hard enough – you’ll not get
everything done. (Not getting everything done sounds easier, doesn’t it?
But it’s not... the half-done work will come back to bite you, and will make
more work for you later down the line, whether that’s bugs, rework, or an
unstable product).

Don’t start a piece of coding work until you know what success is. If you
don’t yet know, make your first task determining what ‘done’ is. Only then,

 A

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
JAN 2011 | | 5{cvu}

When It’s Done, It’s Done (continued)
get going. With the certainty of knowing where you’re headed, you’ll be
able to work in a focused, directed manner. You’ll be able to make
informed choices, and to discount unnecessary things that might side-track
or delay you.

If you can’t tell when it’s done, then you shouldn’t start it.

So how does this look in practice? How do you define ‘done’? Your ‘done’
criteria need to be:

Clear

It must be unambiguous and specific. A list of all the features to be
implemented, the APIs added or extended, or the specific faults to
be fixed.

If, as you get into the task, you discover things that might affect the
completion criteria (e.g. you discover more bugs that need fixing, or
uncover unforeseen problems) then you must make sure that you
reflect this in your ‘done’ criteria.

This criteria is usually directly traceable to some software
requirements or a user story – if you have them. If this is the case,
make sure that this connection is documented.

Visible

Make sure that the success criteria is seen by all important parties.
This probably includes: your manager, your customers, the
downstream teams using your code, or the testers who will validate
your work.

Make sure everyone knows and agrees on this criteria. And make
sure they’ll have a way of telling – and agreeing – when you are
‘done’.

The nature of each task will clearly define what ‘done’ means. However
you should consider:

 How much code must be completed. (Do you measure this in units
of functionality, APIs implemented, user stories completed?)

 How much is design done, and how it’s captured.

 Whether any documents or reports must be generated.

When it’s a coding task, you can mostly clearly demonstrate ‘being done’
by creating an unambiguous test set. Write tests that will show when
you’ve fashioned the full suite of code required.

Use tests written in code to define when your code is complete and
working.

There are some other questions that you may have to consider when you
describe what ‘done’ is:

 Where is the code delivered to? (e.g. to version control)

 Where is the code deployed to? (Is it ‘done’ when it’s live on a
server – or do you deliver testable product ready for a deployment
team to roll out?)

 What are the economics of ‘done’? The exact numbers required that
may lead to certain tradeoffs or measurements. For example: how
well should your solution scale? It’s not good enough if your
software only manages 10 simultaneous users if 10,000 are required.
The more precise your done criteria the better you understand these
economics.

 How will you signal that you’re done? When you think you’re done
how will you let the customer/manager/QA department know? This
probably looks different for each person. How will you garner
agreement that you are indeed done – who signs-off on your work?
Do you just check in, do you change a project reporting ticket, or do
you raise an invoice?

Just do it
When you’ve defined ‘done’, you can work with focus. Work up to the
‘done’ point. Don’t do more than necessary.

Stop when your code is good enough – not necessarily perfect (there may
be a real difference between the two states). If the code gets used or worked
on an awful lot, it may eventually be refactored to be perfect – but don’t
polish it yet. This may just be wasted effort. (Beware: this is not an excuse
to write bad code, just a warning against unnecessary over-polishing).

Don’t do more work than necessarily. Work until you’re ‘done’.
Then stop.

Having a single, specific goal in mind helps you to focus on a single task.
Without this focus it’s easy to hack at code randomly trying to achieve a
number of things and not managing any of them successfully. 

Questions
1. Do you know when you're current task will be ‘done’? What does

‘done’ look like?

2. Have you decomposed your current task into a single goal, or a
series of simple goals?

3. Do you decompose your work into achievable, measurable units?
Hotel Room to Train Carriage
Jon Jagger shares some illuminating musings.

aul has asked me to write something for CVu. I don’t have a clear
idea of what to write about so I thought instead I would just write
about stuff I’m doing. Tonight I’m currently sat in a hotel room in

Langley (Berks) after a thoroughly excellent day at a client’s site. I’ve been
teaching day one of my C Foundation course. John and Ed suggested some
ways the slides, and the words I use to describe the slides, could be
improved. So the first thing I’ve been doing is making some mods to the
slides.

The first was a simple int to pointer conversion where I initialised an int
pointer with the hex integer 0xBEEF. I chose 0xBEEF because it spells a

word but didn’t think about alignment. 0xBEEF is an odd integer number
and the address of an integer is likely to be, at the very least, even.

The second was something I said. In the chapter about pointers I said that
an invalid pointer doesn’t have to be dereferenced for bad things to happen.

 P
JON JAGGER
Jon is a UK-based software consultant. His
passion is helping people improve their
effectiveness in this collaborative game we call
software development.
6 | | JAN 2011{cvu}

That’s too strong. You only need to think about the free() function to
realise that. After you’ve called free(ptr) then ptr no longer points
to an object but as long as you don’t dereference ptr you’ll be ok. What
I should have said is that when you do pointer arithmetic any sub-
expressions must always be valid.

Something I try to do regularly is to examine what happened during my
day and to learn from it. A sort of retrospective. So I’m looking at the C
course mods and wondering what I can learn from them. I’m wondering,
in the first example, why I chose 0xBEEF in the first place. Choosing a
hex number that spells an English word is overly clever. Overly cute. So
now I’m thinking I’d be better off choosing a hex number that doesn’t
remotely even look like a word. One that would align correctly. I’m struck
by how hard it is to avoid being overly clever. By how hard it is to recognise
and take into account context. From the second example, I’m reminded
how hard it is to say clearly what I’m thinking. Or rather, how difficult it
is to have sufficient clarity in my thinking that the words are naturally clear.

As well as learning from the day’s mistakes it’s also important to think
about what went well. I recently did a ‘60 minutes in the brain of’
presentation for SkillsMatter [1] London on deliberate practice (the topic
of one of my entries in Kevin’s 97 Things Every Programmer Should Know
[2]). SkillsMatter videoed the talk and I’ve watched it a couple of times.
Watching yourself on video is a tremendously valuable thing. It allows you
to see yourself how others see you. Not how you see yourself. For example,
something I noticed was a tendency I have to say ‘ok?’ rhetorically at the
end of a sentence. Ok? Doing that once or twice is fine but I did it perhaps
a dozen times. It was almost becoming a tick. So one of my tasks today
was to try not to say ‘ok?’ at the end of my sentences. It’s hard to know if
I achieved that I at least feel I didn’t say it so often it became a noticeable
tick. And I recall a couple of times where I was conscious I had not ended
the sentence with ‘ok?’ when previously I might have. But, interestingly,
as I write this, I’m thinking how can I know? Perhaps I’m still doing it but
don’t realise because I can’t see myself. So I’m wondering if, tomorrow,
I will explicitly ask the guys on the course to tell me if I do it. I think I
will. As I write this I’m reminded of the line from Robert Burns’s To a
Louse, ‘To see ourselves as others see us!’ I remember Jerry Weinberg
mentioning the connection in one of his books. And I notice bagpipe music
is playing on my iTunes as I wrote that. I wonder if my subconscious made
the Scottish connection? It’s the Skye Boat Song. My mother used to sing
that to me as a bedtime lullaby when I was a small boy.

It’s now the next day. I’m on a train heading home. I’m reading some of
Weinberg on Writing by Jerry Weinberg. I always carry a book. Usually
three. I try to read a lot. I remember Craig Larman once saying to me once
that one of the main things that marks a consultant as a consultant is they
read a lot. I have an odd reading habit. I don’t read one book from start to
finish before starting another book. Instead I read a small chunk from one
book, and then put it down, and read another small chunk from another
book. I often have about 20 books all partly read. Today the other two are
A Little Book of f-Laws by Russell Ackoff and Herbert Addison, and
Culture Against Man by Jules Henry. I don’t have any fixed rules about
switching from one book to another. I just try to sense when it feels right.
And I don’t have any fixed rules about which books I pop into my travel

bags either. It may sound strange but I am trying to cultivate by
subconscious so again I just try to sense what feels right. As I’m reading
I highlight text that speaks to. For example, in Jerry’s book I’ve highlighted
the following:

A trigger is a small amount of input energy that sets off a large amount of
output energy.

That caught my interest. I recall Jerry discussing triggers in some of his
other books. So I’ve made a note to reread what he said about triggers there
in the light of that quote. An actual note that is – I also always carry a pen
and paper. Here’s another snippet:

Raise your typing speed by ten words per minute. This will give you an extra
six hundred words for every hour you work. If you work an hour a day, two
hundred days a year, you’ll type an extra 120,000 words – a couple of books’
worth.

That’s quite illuminating. Here’s another:

You know, there would be no problem raising kids if only you could throw
away the first one.

That made me laugh. And one last one:

Writer’s block is not a disorder in you, the writer. It’s a deficiency in your
writing methods – the mythology you’ve swallowed about how works get
written – what my friend and sometime co-author Tom Gilb called your
‘mythology’.

It took me a while to find that last one. I knew I had read it but I couldn’t
find it. I searched in the chapter I read most recently. No luck. I flicked
through looking at the marked passages. No luck. Then I stopped and
thought about what to do next. (It’s almost always better than repeating a
failed approach.) I wondered if Tom Gilb had an entry in the index. And
he did. And it was exactly the passage I remembered. It was on page 19,
not anywhere near the chapter I was reading most recently. And it was a
passage I’d marked as I read it. And yet I looked at the marked passages
trying to find it. I clearly missed it. That’s reminded me that I have a
tendency to only see something when searching for it if matches my pre-
formed idea of what it will look like. Natalie (my wife) tells me that’s a
typical male trait. That last snippet about Tom Gilb has sparked something
in my mind. Partly I’m attracted to the word myth because one of my
favourite corny jokes is the old chestnut ‘what is a myth?’ the answer being
‘a female moth’. But it’s more than that. I think it’s because my
subconscious is connecting the word mythology with the word
methodology. That’s an interesting connection. A Mythodology perhaps?
When I’ve finished reading a book I copy the bits I highlighted into my
personal wiki. Then I copy the dozen or so highlights that speak to me the
loudest into a small book ‘review’ snippet for my blog site Less Code,
More Software. Then I put the book onto a pile to take to the next accu
conference to raise some money for the charity.

We’ll be coming into Taunton at moment now so I’m going to sign off. 

References
[1] http://skillsmatter.com/
[2] http://programmer.97things.oreilly.com/wiki/index.php/

97_Things_Every_Programmer_Should_Know

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain
surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
JAN 2011 | | 7{cvu}

http://skillsmatter.com/
http://programmer.97things.oreilly.com/wiki/index.php/97_Things_Every_Programmer_Should_Know
http://programmer.97things.oreilly.com/wiki/index.php/97_Things_Every_Programmer_Should_Know

8 | | JAN 2011{cvu}

A Game of Tug o’ War
Baron Muncharris sets a challenge.

alutations Sir R-----! Pray come join me at my table and take a glass
of this most palatable brandy.

Will you again join me in a little gaming with your refreshment?

Excellent!

I have in mind a game of dice inspired by that ancient sport of tug o’ war;
a sport of which I have some small experience.

I recall one particular contest upon the cloud girdled summit of Mount
Olympus; the residents being especially fond of such diversions, as any
fellow schooled in the classics will attest. I had been invited to attend at
the behest of the noble Pallas Athene who wished to learn of the many
exotic peoples and lands I had encountered during my travels.

As I was describing the extraordinary habits of those settlers of the New
World an announcement came that the entire home team had been forced
to withdraw from the event on account of a lack of funds, their having to
a man entered into a series of ill-advised business ventures.

Having no desire to see my hosts thusly humiliated before the eyes of their
neighbours I naturally offered to represent them in their stead. Madame
Athene accepted my offer and I made my way to the field of sport, only
to find that I was to be pitted against my own regiment of Hussars!

I took this as a very great stroke of luck as I had been away from the
regiment for some time and might use this opportunity to remind my
brothers in arms of the quality of my mettle.

Upon the instruction of the referee we first took up the strain and then
began to heave. To my very great surprise these fellows were a match for
me; the flag didn't move one inch! For an hour we struggled and strained
with no discernable motion on either side.

With my patience wearing thin I resolved to give it my very all and, with
one final tremendous heave, I got the better of my comrades. But as the
flag passed over my line, the stand before me gave a tortured groan and
collapsed; much to the consternation of those unfortunate souls perched
upon it.

Upon inspection it was found that one of the supporting beams was no
longer in its rightful place, but rather was tied to the end of the rope. Clearly
I need not have worried that my reputation had faded at regimental head
quarters!

But here I am delaying our sport!

See I have set before you a track of 12 squares.

The leftmost 6 squares, from the home square 0 up to the first 5, shall be
mine and the rightmost 6 squares, from the second 5 down to the second
home square 0, shall be yours.

To begin I shall cast a die and place a coin upon that square of mine so
numbered. If I roll a 6 I shall pass the die to you and you shall do the same,
but placing the coin upon the so numbered square of yours. In the unlikely
event that you too throw a 6 we shall console ourselves with another draft

of this splendid brandy and, upon having so refreshed ourselves,
recommence the contest.

At each turn he whose square the coin rests upon shall again cast the die.
If its value exceeds that upon the square he shall move it one square
towards his home, otherwise he shall move it one square away.

Whosoever first moves the coin onto his home square shall have won the
wager. If it is I then I shall have from you 3 coins whereas if it is you then
you shall have from me 9 and one quarter part of a coin.

The reaction of that godforsaken student acquaintance of mine to the rules
of this game was to start mumbling about his need to rehearse some
symphony or other. I confess that I was glad of an excuse for keeping the
exchange as brief as possible, but must admit my surprise at this
unexpected musical propensity, it being hard to imagine that he is in
possession of a talent of any kind! Presumably he passes his evenings
playing low-brow tunes for measures of genever at those disreputable
establishments one supposes he so often frequents.

But enough of this! Here, take another draft and mull over your want for
a wager!

Listing 1 shows a C++ implementation of the game. 

0 1 2 3 4 5 5 4 3 2 1 0

 S

A game of...

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

unsigned
roll()
{
 return 1 + unsigned(6.0 * double(rand()) /
 (double(RAND_MAX)+1.0));
}

bool
play()
{
 bool barons_move = true;
 unsigned square = roll();

 while(square==6)
 {
 barons_move = !barons_move;
 square = roll();
 }

 while(square!=0)
 {
 const unsigned heave = roll();

 if(heave>square) --square;
 else if(square!=5) ++square;
 else barons_move = !barons_move;
 }

 return !barons_move;
}

Listing 1

On a Game of Roulette
A student analyses the Baron’s last puzzle.

ou will recall that the Baron proposed two games at a roulette wheel,
both for a stake of one coin. In the first Sir R----- was to spin the wheel
three times and mark the point closest to him after each spin. If the

triangle thus formed enclosed the centre of the wheel he should have
received a prize of four coins. In the second he should have won six and
one half coins if a point chosen at random upon the face of the wheel was
inside said triangle.

When figuring Sir R-----’s expected winnings in these games, we shall
make lighter work of it if we recognise the puzzles’ symmetry under
rotation; after Sir R----- has chosen his three points we can spin the wheel
again to reveal another, equally likely, outcome. When I mentioned this
to the Baron it seemed to me that it upset him a little, although I can fathom
no reason as to why it should have done so.

We can further exploit symmetry under reflection; looking at the wheel in
a mirror also reveals an equally likely outcome.

Now, in the first game, these observations mean that we can assume that
the first point is always at the top of the wheel, at twelve of the clock as it
were, since we are free to rotate the wheel until this is so. We can further
assume that the second point lies to its right, clockwise between the top
and the bottom of the wheel since we can view the wheel through a mirror
if it does not. The third point will, after these manipulations, still lie upon
some random spot upon the edge of the wheel.

If we draw a line from the second point through the centre of the wheel
we shall discover a fourth point upon its edge. It is plain to see that the
third point must lie clockwise between the bottom of the wheel and this
fourth point if the triangle is to enclose the centre of the wheel.

Figure 1 shows the set of winning third points marked in bold.

If the angle between the lines from the centre of the wheel to the first and
second points is , then the probability that the triangle will enclose the
centre is equal to

The expected winnings of the game are equal to the average of this
probability over all such  multiplied by the prize of four coins, given by

Since this is equal to Sir R-----’s stake I should have advised him that it
was a fair game and he should have no compunction in playing if he so
wished.

The winnings Sir R----- might expect from Baron’s second game are a little
more difficult to reckon. If we were to try the same trick that we used for
the first game we should soon find ourselves tied up in knots.

We might try figuring the outcome of a number of games using pencil and
paper, but if we do so we had better take care that the points on the face
of the wheel are chosen with uniform probability; that the probability of a
chosen point lying within a given region is some constant multiple of the
area of that region.

When I explained this to the Baron his temper worsened considerably and
he turned on his heel and left. I must confess that I remain utterly ignorant
of how I might have offended him!

Now, it is not sufficient to pick a random angle and distance from the centre
of the wheel when choosing points since this will concentrate the points
at the centre of the wheel. A superior scheme by far is to pick points at
random from within a square that surrounds the wheel and ignore those
that do not lie upon its face (Listing 1).

In playing some few hundred games on paper, my fellow students and I
found that the game seemed fair, but we were by no means certain.

Then it dawned upon me that, since the point is picked uniformly upon the
face of the wheel, the probability of winning the game must be equal to
the average area of the triangles divided by the area of the wheel.

To figure the average area of the triangles we can once again exploit the
symmetries of the game. Specifically we rotate the wheel so that the first
and second points lay either side of the line joining the top and bottom of
the wheel and at the same height from the bottom. We may now assume
that the third point will lie to the right of this line, since we can reflect the
wheel if it does not (Figure 2).

To simplify matters, we shall use the radius of the wheel as our unit of
length.

Now the area of such a triangle is equal to half of the length of the base
multiplied by the height of the third point above, or depth below, it.

If the angle between the lines connecting the centre of the wheel and the
top and rightmost point on the base is  then, with a little trigonometry,
we find that the length of the base is equal to

 Y


2

4

--- 

2

0



 d 4

---  2

4



0
 1==

b 2 sin=

Fi
gu

re
 1

point
pick()
{
 double x, y;

 do
 {
 x = 2.0*double(rand())/
 (1.0+double(RAND_MAX)) - 1.0;
 y = 2.0*double(rand())/
 (1.0+double(RAND_MAX)) - 1.0;
 }
 while(x*x+y*y>=1.0);

 return point(x, y);
}

Listing 1
JAN 2011 | | 9{cvu}

Similarly, if the angle so formed with the third point is , then the height
of the triangle is given by

giving an area of

If  is greater than  then this area will be negative so we shall have to
take care that we do not carelessly subtract the areas of such triangles from
the average.

We shall do so by breaking the calculation of the average area into two
parts. Firstly those triangles whose third point is above the base line and
secondly those triangles whose third point is below it.

For a given , the average area of the triangles is thusly given by

To calculate the average area of any triangle we must perform a similar
exercise upon this result.

The third term is the simplest to figure since

Since sin  is equal to zero when  is equal to both zero and , this term
is simply zero.

To figure the second term, we must use a technique known as integration
by parts which states

If we take u to be , this yields

The first of these terms is also zero, so the average area of the triangles
must equal

Using integration by parts again, with both u and v equal to sin , we have

Adding the integral of the squared sine to both sides of this equation yields

and hence

The average area of the triangles is therefore

Dividing this by the area of the wheel, which is trivially equal to ? in the
units we have adopted, and multiplying by the prize yields the expected
winnings of this game

The game is consequently slightly biased in the Baron's favour and I could
not in good conscience have advised Sir R----- to play.

Whilst my fellow students and I were considering the Baron's games we
came to wonder what might make a fair prize if the point were chosen on
the face of the wheel before the wager was made.

Considering the symmetry under rotation, it was readily apparent to us that
the size of such bounty should depend only upon the distance between the
point and the centre of the wheel.

By way of a careful approximation I found that the probability of winning
such a wager was always within roughly one chance in a hundred of

where arccos is the inverse function of the cosine and r is the distance of
the point from the centre of the wheel using the radius of the wheel as the
unit of length. Unfortunately not one of us has managed to bring this puzzle
to a tidy conclusion. I hardly need add that the fact that so simply stated a
wager has entirely evaded our most strenuous efforts has been a source of
no little frustration to me and my fellows. Figure 3 shows the error in the
approximation against r. 

h cos cos–=

A  cossin  cossin–=

1

---    scossin–cossin  a    cossin–cossin – ad

0



+d

0





1

---     cossin–sinsin 0

 1

---     cossin–sinsin 0


–=

2
sin   cossin–


--   –   cossin–

2
sin–


---–=

2
2   cossin–sin


--  cossin+=

2
2
----- sin  2

2
----- sin cos d

0



–d

0




1

--- sin  dcos

0



+

d
d
------ 2

sin 2  cossin=

u
dv
dx
------dx uv  v

du
dx
------dx–=

  cossin d

0




1
2
---  2

sin 0
 1

2
--- 2

sin d

0



–=

3
2
----- 2

sin d

0





2
sin d

0



  cossin– 0
 2

cos– d

0



– 2
cos d

0



= =

2 2
sin d

0



 2
cos d

0



 2
sin d

0



+ 2
cos 2

sin+  d

0



= =

2
sin  1

2
--- 2 2

sin+cos  d

0




1
2
--- 1  

2
---=d

0



= =d

0





3
2
----- 

2
--- 3

2
------=

3
2
------ 1


--- 6

1
2
--- 39

42
--------- 99

100
---------=

arc r r 1 r– +cos
2

--

Fi
gu

re
 2

Figure 3
10 | | JAN 2011{cvu}

Somno, The Barber of Clapham
Junction, Introduces GPars

Russell Winder introduces concurrency techniques in Groovy.

he Java Virtual Machine (JVM) has been around since before Java
became popular – remember the programming language and virtual
machine were called Oak as part of Project Green, before it all got

rebranded Java in 1995. From the outset it has supported threads. Initially
this meant user space threads in a uniprocessor process, but as operating
systems started to support kernel threads, JVM threads migrate to being
kernel threads. As operating systems harnessed kernel threads for
managing multiple processors, this meant that the JVM got parallelism for
free: as long as the operating system scheduled kernel threads across all
processors available then the JVM threads could potentially execute in
parallel.

The Multicore Revolution over the last three or four years has terminated
the era of the ever increasing clock speed of uniprocessors, and replaced
it with the ever increasing count of cores on a processor chip. The era of
the dual core processors is long gone, quad core is now the norm, 12-core
is on the horizon, and 48-core will soon be going into production – at least
for server chips, if not workstation and laptop chips.

Now whilst C++0x may (or may not) soon be ratified, this just brings a
standard thread model, albeit with good things such as futures and
asynchronous function calls. But this is low level infrastructure. Moreover,
it still assumes shared-memory multithreading, and hence the need for
locks, semaphores, monitors, and the ability to program all this
concurrency technology. Go [1] and D [2] have both chosen to use
lightweight processes and message passing as the way forward for
managing concurrency and parallelism. Is this process and message
passing technology something there should be C++ support for? Almost
certainly yes if C++ is to remain relevant in the coming times. C++, Go
and D though are in native code territory, what about the JVM?

The main thrust of Java development has been to accept that explicit
shared-memory multithreading is not the right approach for application
programming in a mult i-processor context: the facil i t ies in
java.util.concurrent have become the proper tools for handling parallelism
in Java code. This replaces explicit thread management with the use of
‘executors’ – abstracted ways of working with thread and process pools –
along with futures, asynchronous function calls, and parallel arrays.
Underneath it remains shared-memory multithreading requiring locks,
semaphores, monitors, atomics, etc., but the programmer works with a
façade, with a few extra facilities, to make it more usable and less prone
to error.

Scala [3] a language that, like Java, targets the JVM, took the direction of
realizing Actor Model as the principle tool of concurrent and parallel
programming. People can still use threads and shared-memory
multithreading if they really, really have to, but they are considered as low-
level tools for realizing a higher level model of computation (actors) more
suitable for day-to-day programming of concurrent and parallel systems.

The Actor Model was formulated in the early 1970s, but seems to have
been studiously ignored by the mainstream programming languages for
reasons that only the language designers involved will ever be able to shed
light on. Likely though, they probably won’t be telling – as they probably
don’t know themselves.

JCSP [4] has been around since 1997 and has been keeping the candle
burning for process-based computation in Java since before Scala was
around (c.2003): JCSP is a realization of Communicating Sequential

Processes (CSP, [5]) for Java. Sadly, most Java programmers have never
heard of CSP, let alone JCSP.

CSP was initially expressed by Tony Hoare around 1978, but it only really
hit the headlines in 1984 when his book (Communicating Sequential
Processes, [6]) was published. As with Actor Model, the mainstream
computer languages studiously ignored this model, again for reasons
which are unlikely to come to light. Conspiracy theories possibly lead to
prejudice as the reason – CSP was perceived as mathematics not
programming.

Another process-based model is ‘Dataflow Model’. Many people associate
‘dataflow’ as a term with either:

 ‘dataflow diagrams’ and the software analysis and design
techniques popularized by Tom DeMarco [7], and Ed Yourdon and
Larry Constantine [8]; or

 the attempt to create ‘dataflow computers’, i.e. hardware.

Whilst there were some sterling efforts to create dataflow computers,
dataflow never really took off as a computational model for hardware.
However, the abstract architecture makes an excellent software
architecture. The underlying ‘computational model’ in both these variants
of ‘dataflow’ is in fact fundamentally the same, data flowing along
channels between operations. The fact that it works for software whereas
it probably doesn’t in hardware is a definite opportunity.

The models
The Actor Model, CSP, and Dataflow Model rely on using processes and
message passing. Processes are distinct namespaces and/or address spaces.
This does not necessarily mean separate processors, processes can be
realized by partitioning a global address space – Erlang has been using this
approach very successfully for many years. This approach is obviously
very appropriate for today’s multicore processors with multiple processors
sharing a single memory. Processes can of course be separate address
spaces on separate processor. This leads to an interesting issue: where does
multicore end and distributed begin? This is really a question of
communications. There are many levels of communications speed:

1. Bus on chip.

2. Bus on motherboard.

3. Local board cluster.

4. Local machine cluster.

5. Wide area network.

One of the difficulties of the moment for these process-based models is
that they have just a single notion of communication: it is assumed that all
processes are at just one of the communications levels. Knowing the cost
of communication between processes is something that is critically
important to the programmer of an algorithm. It will therefore soon have
to be the case that weights will have to be given to the communications of
the various processes so as to take into account where a target process is

 T

RUSSEL WINDER
Having done the Professor of Computing Science and
Head of Department thing, I tried the CTO thing. Just as
things were going well the accountants closed the company.
I am now doing the author, trainer, consultant thing – all
reasonable jobs considered.
JAN 2011 | | 11{cvu}

relative to the sending process. Parallel and distributed computing will
have to merge into a single area of study.

Caveat communications cost, however any of these three models is
realized, as far as the programmer is concerned, each process is completely
independent and can only pass messages to other processes. There is (or,
at least, should not be) any notion of shared state. Clearly though in a single
memory realization of processes it can be tempting to utilize shared
memory, such temptation must be fought against and eschewed.

So the commonality is that the three models are all process based. The
differences between them lies in the way in which messages are passed and
the synchronization behaviour that is integral to the processing of
messages.

The actor model

Processes in the Actor Model each have one, and only one, incoming
message queue, often called a mailbox. An actor can send a message to
any other actor for which it has a reference to the target actor’s message
queue. How a sending actor gets a reference to the message queue of the
receiving actor is not predetermined, it could be by being given a reference
during construction or a reference might be sent as part of a message.

Messages are sent asynchronously in the Actor Model: the sender adds a
message to the message queue of the receiver and continues execution.
Each actor is responsible for processing messages in its queue. In effect
an actor is an event processing system with the message queue being the
event list.

CSP

CSP uses the idea of processes being connected by channels. Channels can
be one-to-one, one-to-many, many-toone, or many-to-many. Each process
has zero or more input channels and zero or more output channels. As with
Actor Model, there is an element of being event driven: a process is
responsible for taking messages from its input channels, doing
computation, and putting messages out on its output channels.

Apart from the fact that each process can have many rather than one input
message queue, the other crucial difference between actors and CSP is that
message passing is synchronous in CSP: message passing is actually a
rendezvous between two processes. This makes it relatively
straightforward to create systems that deadlock, but if it happens, it is
surprisingly easy to discover what the deadlock is and how to fix it. Also
because the processes are sequential and the channel properties can be
modelled exactly with mathematics, it makes it (relatively) easy to write
systems that reflect on code and determine whether or not that code will
deadlock. The beauty of CSP is that you can find out with certainty whether
your code will exhibit deadlock or not. If the tool for determining deadlock
says your code can’t deadlock, then it won’t, this is not something that can
be done for shared memory multithreading or Actor Model.

Dataflow model

In the Dataflow Model the processes are usually referred to as operators –
a hang over from the days of dataflow computer hardware most likely. Like
CSP processes, Dataflow Model operators can have zero or more inputs
and zero or more outputs. Unlike CSP and like Actor Model, Dataflow
Model has asynchronous message sending. However whereas Actor
Model and CSP require an explicit activity in the process for receiving
messages, Dataflow Model pins the execution and synchronization
behaviour of an operator to the reception of messages on its inputs. The
simplest of the algorithms is for the operator to be idle until there is valid
input on all the incoming channels. Having valid inputs on all channels is
the event that triggers execution in the operator, which then does
something and puts data out on the output channels. Alternative algorithms
are possible, for example trigger execution on reception of the first
message on any input.

Which model when

It may not be obvious at this stage but it is possible to implement any of
the three process-based models in any of the others. However to do so
would likely lead to inefficient systems. It is far better to implement all
three independently using the low-level thread and process management
of the underlying platform. This means treating the three as distinct. The
different message receive and execution trigger properties of the models
become the factors for determining what facilities of what packages to use
for a given solution to a given problem: some solutions to some problems
will more naturally be solved using one model rather than another. So what
is a Java programmer to do? java.util.concurrent has some great tools
but...Groovy and GPars provide massively useful augmentations.

GPars
GPars is a Groovy attempt to bring Actor Model, CSP, and Dataflow
Model to the Java and Groovy communities – Scala people can also use
it, but this seems less likely to happen for various reasons, some technical,
most psychological and/or social. The idea of using Groovy as a platform
for creating a framework for managing concurrency and parallelism on the
JVM had been mooted a number of times on the Groovy mailing lists in
2008 and early 2009. Václav Pech decided to act rather than talk, and
created the GParallelizer project. This was a personal project to get things
moving. Mid-2009 various people (including myself) joined Václav on the
project. After a little debate, we moved the project to Codehaus [9], the
home of Groovy [10], and rebranded it GPars [11]. Since then Václav has
been tireless in moving things forward supported to a greater or lesser
extent by the other members of the team.

Why use Groovy rather than just Java, or Scala? Well the Scala
concurrency and parallelism support is ploughing its own furrow based on
Actor Model, and supporting frameworks such as Akka and Scalaz. The
Groovy effort, driven via GPars, is about providing high-level, low-
overhead augmentation of what is available in Java. GPars harnesses the
meta-object protocol of Groovy to provide a very easy way of expressing
concurrent and parallel computations.

Of course all this is very general and vague, what is needed is something
less abstract, something more concrete. Basically we need some examples.

Concurrency (and parallelism), the classic problems
Since multiprogramming was first invented, operating systems
programming has been spawning problems in concurrency and share
memory management. The 1960s and 1970s saw an entire industry in
educating people how to manage resources using semaphores, monitors
and locks. Sadly these problems, and techniques for solution, were foisted
on applications programmers as well as systems programmers, but that rant
is wholly, but not completely, inappropriate for this article.

The classic problem in concurrency and resource management that every
programmer is forced to study is the ‘Dining Philosophers Problem’. The
underlying issue is one of resources being managed by operating systems
– and the origins of ‘Dining Philosophers’ is just such a problem set out
by Edsgar Dijkstra, but Tony Hoare reformulated it in real-world terms so
as to make it more comprehensible. Thus began two industries: a)
providing multiple solutions inmultiple languages to the ‘Dining
Philosophers Problem’; and b) finding new and novel model problems for
concurrency problems in operating systems couched as real-world
vignettes.

The ‘Sleeping Barber Problem’ (also attributed to Edsgar Dijkstra) is just
such a problem. Like ‘Dining Philosophers Problem’ it is a model of a
process synchronization issue in operating systems. But as Tony Hoare
showed, these things are far more interesting, and take on much more life,
when couched in real-world terms. Enter Somno, The Barber of Clapham
Junction.

Despite rumours, it is known that Somno does not have brother called
Figaro living in Seville. Moreover Somno does not sing, not even in a
barber’s shop quartet.
12 | | JAN 2011{cvu}

The sleeping barber problem
Somno owns a barber shop. He has one hair-cutting chair and four waiting
chairs. Music is provided via Somno’s MP3 player, an amplifier and
speakers, there is no barber’s shop quartet, Somno does not sing. If there
are no customers Somno snoozes in the hair-cutting chair. If there are any
customers, Somno cuts hair of customers, one at a time. Potential
customers enter the shop and if they see Somno asleep in the chair, they
wake him up, take the seat themselves and get a hair cut. If Somno is cutting
another customer’s hair then the potential new customer checks the four
waiting chairs to see if one is vacant. If there is a free chair the customer
sits and waits their turn. If there are no free chairs, the person exits –
somewhat less than chuffed at not being able to transform from potential
customer to customer. Potential customers arrive at random intervals, and
each customer hair cut takes a random amount of time.

At some point Somno is thinking of getting a second, or even a third hair-
cutting chair, allowing for there to be more than one barber in action
concurrently. For now though cash flow doesn’t allow for this to be
implemented. Somno is saving up for a new pair of scissors.

Using threads

The Wikipedia article [12] describes things much more according to the
operating system problem that inspired the description above. The
customers are processes or threads as is the barber: the problem is all about
synchronizing and queuing processes or threads. The article presents a
pseudocode solution based on using semaphores. This can be coded up
v e r y e a s i l y i n J a va o r G ro o vy u s i n g t h rea ds a nd t h e
java.util.concurrent.Sempahore class, so as to avoid either
writing an implementation of semaphores or using the Java wait/notify
technology explicitly – which generally results in incomprehensibly
deadlocked code. Here is a Groovy version, the Java version would be
fundamentally the same, just more verbose (see Listing 1).

A few thoughts and points on this code:

1 Groovy realizes the #! magic number start word specified by Posix
for executables. This means Groovy scripts can be commands on
Posix-compliant systems. Those addicted to Windows use will just
have to remain green with envy. Either that or join the ranks of those
using a proper operating system.

36 Groovy allows for list literals, e.g. [], the resultant object is of type
ArrayList by default.

58 Groovy allows for overloading of operators – like C++ and
completely unlike Java. The << in this context is appending a value
to a list.

62 The operator *. here is a ‘spread apply’ operation. The left-hand
operand is a list and the right-hand operand is the method call to be
applied to each element in the list.

68 Groovy has the facility to create anonymous functions that can be
passed as parameters: code in curly brackets in a context other that
one of ‘code block’ create a function object. Groovy gives these
things the type Closure which is actually a bit of a misnomer, they
are not closures (a closure is a function with an environment
providing bindings for all the free variables in the function) they are
functions potentially with free variables. In this case it happens not
to be the case, so we can’t tell that anonymous functions are not
actually closures. Which is good.

There are undoubtedly other interesting, or at least quite interesting, points
about the code, but let us leave it there for now. If there are questions that
are not answered by the end of the article, feel free to email me, or perhaps
raise the issue on the ACCU General email list.

Running the above program will result in something such as shown in
Listing 2. Since there is an element or two of randomness in the code, no
two runs of the code are guaranteed to be the same.

Which is (quite) interesting, not least because Somno appears to start
cutting the hair of the first customer before that customer has arrived in
the shop!

 1 #! /usr/bin/env groovy
 2
 3 // This is a model of the "The Sleeping Barber" problem using Groovy (http://groovy.codehaus.org),
 4 // cf. http://en.wikipedia.org/wiki/Sleeping_barber_problem.
 5 //
 6 // Copyright (c) 2010 Russel Winder
 7
 8 import java.util.concurrent.Semaphore
 9
10 def runSimulation (final int numberOfCustomers , final int numberOfWaitingSeats ,
11 final Closure hairTrimTime , final Closure nextCustomerWaitTime) {
12 final customerSemaphore = new Semaphore (1)
13 final barberSemaphore = new Semaphore (1)
14 final accessSeatsSemaphore = new Semaphore (1)
15 def customersTurnedAway = 0
16 def customersTrimmed = 0
17 def numberOfFreeSeats = numberOfWaitingSeats
18 final barber = new Runnable () {
19 private working = true
20 public void stopWork () { working = false }
21 @Override public void run () {
22 while (working) {
23 customerSemaphore.acquire ()
24 accessSeatsSemaphore.acquire ()
25 ++numberOfFreeSeats
26 barberSemaphore.release ()
27 accessSeatsSemaphore.release ()
28 println (’Barber : Starting Customer.’)
29 Thread.sleep (hairTrimTime ())
30 println (’Barber : Finished Customer.’)
31 }
32 }
33 }

Listing 1
JAN 2011 | | 13{cvu}

One of the problems with the code above is that is it trying to (minimally)
solve the thread/process scheduling problem, annotated with pointers to
the analogy, rather than being a model of Somno’s barber shop. There are
therefore some inconsistencies between the activity and the analogy used
to describe the problem. The solution is to forget the operating system
problem that inspired the analogy and to model and realize the analogy
more directly, i.e. take a much more simulation-oriented view of the whole
problem.

Also of course, the above is really a lesson in how not to do things unless
you are writing an operating system – and who would want to write an
operating system in Groovy, or even Java.

There are rumours that a number of universities are using Java as the
programming language for exercises in operating systems courses –
bizarre.

So what we should do is move much more towards a simulation modelling
approach. The core change is that customers become represented as data
rather than being labels on processes. This models far more literally what
happens in Somno’s shop. (Listing 3)

Note that we have to allow Somno to finish all the waiting customers (cf.
48, 23, 49) before actually shutting up shop, even after it is closed. It would
be somewhat uncivilized to allow customers to seat themselves expecting
a hair cut only to be ushered out of the door, sans trim, just because Somno
wants to knock off and go home.

An alternative might be for Somno to start trying to sing when he wants to
go home. The appalling noise would almost certainly clear the shop in a
huge hurry.

Now whilst the above is a (relatively) simple, two-thread solution with the
waiting chairs being the thread-safe shared state, there is a lot of data

34 final barberThread = new Thread (barber)
35 barberThread.start ()
36 final customerThreads = []
37 for (number in 0 ..< numberOfCustomers) {
38 println ("World : Customer ${number} enters the shop.")
39 final customerThread = new Thread (new Runnable () {
40 public void run () {
41 accessSeatsSemaphore.acquire ()
42 if (numberOfFreeSeats > 0) {
43 println ("Shop : Customer ${number} takes a seat.
 ${numberOfWaitingSeats - numberOfFreeSeats} in use.")
44 --numberOfFreeSeats
45 customerSemaphore.release ()
46 accessSeatsSemaphore.release ()
47 barberSemaphore.acquire ()
48 println ("Shop : Customer ${number} leaving trimmed.")
49 ++customersTrimmed
50 }
51 else {
52 accessSeatsSemaphore.release ()
53 println ("Shop : Customer ${number} turned away.")
54 ++customersTurnedAway
55 }
56 }
57 })
58 customerThreads << customerThread
59 customerThread.start ()
60 Thread.sleep (nextCustomerWaitTime ())
61 }
62 customerThreads*.join ()
63 barber.stopWork ()
64 barberThread.join ()
65 println ("\nTrimmed ${customersTrimmed} and turned away ${customersTurnedAway} today.")
66 }
67
68 runSimulation (20 , 4 , { (Math.random () * 60 + 10) as int },
69 { (Math.random () * 20 + 10) as int })

Li
st

in
g

1 (
co

nt
’d

)

World : Customer enters shop.
Barber : Starting Customer.
Shop : Customer takes a seat. -1 in use.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 0 in use.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 1 in use.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 1 in use.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 1 in use.
World : Customer enters shop.
Shop : Customer takes a seat. 2 in use.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
World : Customer enters shop.

Listing 2
14 | | JAN 2011{cvu}

coupling. For example notification about customers leaving the shop are
handled in the barber thread. Just because Somno has finished cutting the
customers hair doesn’t imply the customers has actually paid up and left
the shop. Also the world and shop are being modelled with the same thread.
In effect we haven’t modelled separately the idea of world and shop, which
would properly decouple things.

So perhaps we should write a new version with a barber object, a shop
object, perhaps even a world object, each having a Singleton instance, and
animated with many threads.

Mentioning Singleton here is of course offering the proverbial red rag to
the proverbial bull, especially as the readership here are ACCU members.
I have no doubt there will be a re-emergence of the traditional anti-
Singleton thread on ACCU General email list if anyone actually reads this
bit of this article.

An analytic intervention
Is it obvious? We are rapidly moving towards creating a number of objects
(world, shop, barber) each animated with a thread with each object
communicating to other objects by passing customers around. This sounds
like processes and message passing à la Actor Model, CSP, or Dataflow
Model!

It should be no surprise to anyone that trying to enforce encapsulation and
decoupling in this simulation modelling approach leads, especially in an
object-oriented programming context, to processes and message passing.
After all, object-orientation is all about processes and message passing: the
object-oriented model resulted from investigating simulation, cf. Simula-
67.

Using shared-memorymultithreading explicitly at the same time as
claiming to be following an object-oriented approach seems to be an act
of blatant doublethink.

Let’s short-circuit showing the whole sequence of solutions between
above and below and jump straight to GParsbased solutions – thereby
avoiding reimplementing GPars, which is effectively what would happen.

Actor model
This section presents a version of the Sleeping Barber Problem in which
each entity is modelled with an actor. There are actors for barber, shop and
world: well at least barber and shop, the world is modelled using the initial
thread that executed the program.

Before reading the following code, it is probably worth noting that the
@Grab annotation is one specific to Groovy (it is part of the Grapes system
in Groovy) that uses Ivy under the covers to ensure that the named artifact
is in the classpath for execution of the code, downloading the artifact if
necessary. In the case below the Grab is ensuring that the GPars artifact

Shop : Customer turned away.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
World : Customer enters shop.
Shop : Customer turned away.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
World : Customer enters shop.
Shop : Customer turned away.
World : Customer enters shop.
Shop : Customer turned away.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
World : Customer enters shop.
Shop : Customer turned away.
World : Customer enters shop.
Shop : Customer turned away.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
World : Customer enters shop.
Shop : Customer takes a seat. 3 in use.
World : Customer enters shop.
Shop : Customer turned away.
World : Customer enters shop.
Shop : Customer turned away.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
Barber : Finished Customer.
Barber : Starting Customer.
Shop : Customer leaving trimmed.
Barber : Finished Customer.

Trimmed 12 and turned away 8 today.

Li
st

in
g

2
(c

on
t’d

)

 1 #! /usr/bin/env groovy
 2
 3 // This is a model of the "The Sleeping Barber" problem using Groovy (http://groovy.codehaus.org)
 4 // only, cf. http://en.wikipedia.org/wiki/Sleeping_barber_problem.
 5 //
 6 // Copyright (c) 2010 Russel Winder
 7
 8 import java.util.concurrent.ArrayBlockingQueue
 9
10 import groovy.transform.Immutable
11
12 @Immutable class Customer { Integer id }
13
14 def runSimulation (final int numberOfCustomers , final int numberOfWaitingSeats ,
15 final Closure hairTrimTime , final Closure nextCustomerWaitTime) {
16 final waitingChairs = new ArrayBlockingQueue<Customer> (numberOfWaitingSeats)
17 final customersTurnedAway = 0
18 final customersTrimmed = 0
19 final barber = new Runnable () {

Li
st

in
g

3

JAN 2011 | | 15{cvu}

version 0.11 is used which is the latest version of GPars in the Maven
repository.

Grapes has to be deemed extremely cool.

(See Listing 4)

Various notes about the code:

15 Message passing in the Actor Model invariably requires the use of
case classes. Since an actor has but a single message queue, the type
of a message becomes very important metadata that drives the
computation. The shop has to process messages coming from both
the world and the barber and there has to be a way of distinguishing
which message came from where. The barber therefore (25) returns

20 private working = true
21 public void stopWork () { working = false }
22 @Override public void run () {
23 while (working || (waitingChairs.size () > 0)) {
24 def customer = waitingChairs.take ()
25 assert customer instanceof Customer
26 println ("Barber : Starting Customer ${customer.id}.")
27 Thread.sleep (hairTrimTime ())
28 println ("Barber : Finished Customer ${customer.id}.")
29 ++customersTrimmed
30 println ("Shop : Customer ${customer.id} leaving trimmed.")
31 }
32 }
33 }
34 final barberThread = new Thread (barber)
35 barberThread.start ()
36 for (number in 0 ..< numberOfCustomers) {
37 Thread.sleep (nextCustomerWaitTime ())
38 println ("World : Customer ${number} enters the shop.")
39 final customer = new Customer (number)
40 if (waitingChairs.offer (customer)) {
41 println ("Shop : Customer ${customer.id} takes a seat. ${waitingChairs.size ()} in use.")
42 }
43 else {
44 ++customersTurnedAway
45 println ("Shop : Customer ${customer.id} turned away.")
46 }
47 }
48 barber.stopWork ()
49 barberThread.join ()
50 println ("\nTrimmed ${customersTrimmed} and turned away ${customersTurnedAway} today.")
51 }
52
53 runSimulation (20 , 4 , { (Math.random () * 60 + 10) as int },
54 { (Math.random () * 20 + 10) as int })

Li
st

in
g

3
(c

on
t’d

)

 1 #! /usr/bin/env groovy
 2
 3 // This is a model of the "The Sleeping Barber" problem using Groovy (http://groovy.codehaus.org)
 4 // and GPars (http://gpars.codehaus.org) actors, cf. http://en.wikipedia.org/wiki/
 5 // Sleeping_barber_problem.
 6 // Copyright (c) 2009-10 Russel Winder
 7
 8 @Grab (’org.codehaus.gpars:gpars:0.11’)
 9
10 import groovy.transform.Immutable
11
12 import groovyx.gpars.group.DefaultPGroup
13
14 @Immutable class Customer { Integer id }
15 @Immutable class SuccessfulCustomer { Customer customer }
16
17 def runSimulation (final int numberOfCustomers , final int numberOfWaitingSeats ,
18 final Closure hairTrimTime , final Closure nextCustomerWaitTime) {
19 def group = new DefaultPGroup ()
20 def barber = group.reactor { customer ->
21 assert customer instanceof Customer
22 println ("Barber : Starting Customer ${customer.id}.")
23 Thread.sleep (hairTrimTime ())

Li
st

in
g

4

16 | | JAN 2011{cvu}

a customer wrapped as a SuccessfulCustomer so that the shop
can make the distinction. cf. 34–57.

19 Thread pools are used to animate the actors, hence the notion of a
group: all actors in a given group will be animated by the threads in
the associated thread pool. In this case we have just the one group.

20 Somno is realized as a reactor. A reactor is an actor that has no
persistent state, it simply processes received message and returns a
message to the sender of the received message. A nice abstraction
for Somno the barber. Somno sleeps if there are no customers
(modelled by being blocked waiting for an item on the message
queue: the message queue models the waiting chairs in the shop) and
reacts to a new customer by giving them a hair cut and sending them
back to the shop wrapped as a SuccessfulCustomer

61–67 The world is not an actor just the initial thread sending in customers
to the shop. Note that we use an empty string as a marker to close
the shop. Messages can be of any type, the receiving actor must deal

with this. so in the switch statement (34–57) we have 55 which deals
with this signal to close the shop, sent in 66.

The complexity in the shop actor is due to the need to managing persistent
state. It is an actor, but not a simple reactor, so therefore it needs a react
loop. So there is a loop construct (32–59) and a react construct (33–
58), which defines the function to execute on reception of a message. loop
is just a function that takes a ‘closure’ parameter and executes that
‘closure’ according to the loop constraints – in this case loop infinitely.
react is a function that takes a one-parameter ‘closure’ that gets called for
each message received by the actor. The shop receives customers from the
outside world and from the barber. Hence the need for the switch and
case classes in the react function to distinguish where the customer has
come from. The shop keeps track of how many customers there are in
Somno’s waiting queue, and is responsible for generating statistics for the
day’s business.

Note that we use the sending in of an empty string instead of a customer
instance as the marker to close the shop. As previously though we must

24 println ("Barber : Finished Customer ${customer.id}.")
25 new SuccessfulCustomer (customer)
26 }
27 def shop = group.actor {
28 def seatsTaken = 0
29 def isOpen = true
30 def customersTurnedAway = 0
31 def customersTrimmed = 0
32 loop {
33 react { message ->
34 switch (message) {
35 case Customer :
36 if (seatsTaken <= numberOfWaitingSeats) {
37 ++seatsTaken
38 println ("Shop : Customer ${message.id} takes a seat. ${seatsTaken} in use.")
39 barber.send (message)
40 }
41 else {
42 println ("Shop : Customer ${message.id} turned away.")
43 ++customersTurnedAway
44 }
45 break
46 case SuccessfulCustomer :
47 --seatsTaken
48 ++customersTrimmed
49 println ("Shop : Customer ${message.customer.id} leaving trimmed.")
50 if (! isOpen && (seatsTaken == 0)) {
51 println ("\nTrimmed ${customersTrimmed} and turned away
 ${customersTurnedAway} today.")
52 stop ()
53 }
54 break
55 case ’’ : isOpen = false ; break
56 default : throw new RuntimeException ("Shop got a message of unexpected type
 ${message.class}")
57 }
58 }
59 }
60 }
61 for (number in 0 ..< numberOfCustomers) {
62 Thread.sleep (nextCustomerWaitTime ())
63 println ("World : Customer ${number} enters the shop.")
64 shop.send (new Customer (number))
65 }
66 shop.send (’’)
67 shop.join ()
68 }
69
70 runSimulation (20 , 4 , { (Math.random () * 60 + 10) as int },
71 { (Math.random () * 20 + 10) as int })

Li
st

in
g

4
(c

on
t’d

)

JAN 2011 | | 17{cvu}

let the barber process all the waiting customers before it is home time. This
way of closing the shop – processing a fixed number of customers and then
sending in a special message – is clearly not a good ‘physical’ simulation,
but we’ll live with it for now.

Groovy CSP
Groovy CSP is a Groovy layer over JCSP – all the power of CSP as
implemented in JCSP, with all the ease and simplicity of Groovy as a
language for creating internal, domain specific languages. Sadly at the time
of writing Groovy CSP hasn’t had the work done that it deserves, so the
code is a little bit ugly. The hope and intention is to evolve the Groovy

CSP system to make much of what is in fact boilerplate code, expressible
in a neater and shorter way. (Listing 5)

Some commentary:

21 No extra ‘case class’. Because CSP allows for multiple input
channels, the shop can distinguish messages from the world and from
the barber by having them to be sent on different channels. If we had
a many-to-one channel for both the world and the barber to send

 1 #! /usr/bin/env groovy
 2
 3 // This is a model of the "The Sleeping Barber" problem using Groovy (http://groovy.codehaus.org)
 4 // and Groovy CSP (a part of GPars, http://gpars.codehaus.org), cf. http://en.wikipedia.org/wiki/
 5 // Sleeping_barber_problem.
 6 // Copyright (c) 2010 Russel Winder
 7
 8 @Grab (’org.codehaus.jcsp:jcsp:1.1-rc5’)
 9 @Grab (’org.codehaus.gpars:gpars:0.11’)
 10
 11 import groovy.transform.Immutable
 12
 13 import org.jcsp.util.Buffer
 14 import org.jcsp.lang.Channel
 15 import org.jcsp.lang.CSProcess
 16
 17 import groovyx.gpars.csp.PAR
 18 import groovyx.gpars.csp.ALT
 19
 20 @Immutable class Customer { Integer id }
 21
 22 def runSimulation (final int numberOfCustomers , final int numberOfWaitingSeats ,
 23 final Closure hairTrimTime , final Closure nextCustomerWaitTime) {
 24 final worldToShopChannel = Channel.one2one ()
 25 final shopToBarberChannel = Channel.one2one (new Buffer (numberOfWaitingSeats))
 26 final barberToShopChannel = Channel.one2one ()
 27 final barber = new CSProcess () {
 28 @Override public void run () {
 29 final fromShopChannel = shopToBarberChannel.in ()
 30 final toShopChannel = barberToShopChannel.out ()
 31 while (true) {
 32 final customer = fromShopChannel.read ()
 33 if (customer == ’’) { break }
 34 assert customer instanceof Customer
 35 println ("Barber : Starting Customer ${customer.id}.")
 36 Thread.sleep (hairTrimTime ())
 37 println ("Barber : Finished Customer ${customer.id}.")
 38 toShopChannel.write (customer)
 39 }
 40 }
 41 }
 42 final shop = new CSProcess () {
 43 @Override public void run () {
 44 final fromBarberChannel = barberToShopChannel.in ()
 45 final fromWorldChannel = worldToShopChannel.in ()
 46 final toBarberChannel = shopToBarberChannel.out ()
 47 final selector = new ALT ([fromBarberChannel , fromWorldChannel])
 48 def seatsTaken = 0
 49 def customersTurnedAway = 0
 50 def customersTrimmed = 0
 51 def isOpen = true
 52 mainloop:
 53 while (true) {
 54 switch (selector.select ()) {
 55 case 0 : //////// From the Barber ////////
 56 def customer = fromBarberChannel.read ()

Li
st

in
g

5

18 | | JAN 2011{cvu}

messages to the shop, then we would need case classes – but why
bother when we can just use multiple one-to-one channels.

24–26 We must explicitly create the channels. The channel for the world
to communicate to the shop and the channel for the barber to
communicate to the shop are both simple one-to-one channels that
require rendezvous between the processes. the channel for the shop
to send messages to the barber has a buffer. It is this that introduces
the element of asynchronous behaviour in the communication
between shop and barber. This just models the waiting seats of
course.

27, 42, 89 Barber, shop and world are processes: the way CSP works
everything has to be a process, we cannot ‘get away with it’, as we
did in the actor version in the previous section, using the initial thread
to represent the world.

100 Once all the processes are set up, and all the channels connected to
the processes, we have to create a process that determines how the
other processes execute. In this case we start all the processes in

parallel and let the communication of messages between the
processes determine what happens.

47, 54–85 Because message passing is synchronous in CSP and the shop
has multiple input channels, it has to have a way of choosing between
the channels. So in 48 we create an ‘alting’ object. The select method
of this object blocks until there is a message available on one of the
channels and return the index in the original list of the channel that
is ready to read. There are therefore two ‘branches’ of control flow,
one for a barber channel message and one for a world channel
message.

33, 51, 61–65, 69, 97 As with the Actor Model version in the previous
section, an ‘out of band’ message, i.e. a message with an unusual type
that constitutes a case class, is used to signal termination. The world
sends an empty string message to the shop just prior to terminating.
The shop uses this empty string message to set the shop state to
closed. When the barber has cut the last customer’s hair, the shop
sends an empty string message to the barber telling it to terminate,
and then terminates itself.

 57 assert customer instanceof Customer
 58 --seatsTaken
 59 ++customersTrimmed
 60 println ("Shop : Customer ${customer.id} leaving trimmed.")
 61 if (! isOpen && (seatsTaken == 0)) {
 62 println ("\nTrimmed ${customersTrimmed} and turned away
 ${customersTurnedAway} today.")
 63 toBarberChannel.write (’’)
 64 break mainloop
 65 }
 66 break
 67 case 1 : //////// From the World ////////
 68 def customer = fromWorldChannel.read ()
 69 if (customer == ’’) { isOpen = false }
 70 else {
 71 assert customer instanceof Customer
 72 if (seatsTaken < numberOfWaitingSeats) {
 73 ++seatsTaken
 74 println ("Shop : Customer ${customer.id} takes a seat. ${seatsTaken} in use.")
 75 toBarberChannel.write (customer)
 76 }
 77 else {
 78 println ("Shop : Customer ${customer.id} turned away.")
 79 ++customersTurnedAway
 80 }
 81 }
 82 break
 83 default :
 84 throw new RuntimeException (’Shop : Selected a non-existent channel.’)
 85 }
 86 }
 87 }
 88 }
 89 final world = new CSProcess () {
 90 @Override public void run () {
 91 def toShopChannel = worldToShopChannel.out ()
 92 for (number in 0 ..< numberOfCustomers) {
 93 Thread.sleep (nextCustomerWaitTime ())
 94 println ("World : Customer ${number} enters the shop.")
 95 toShopChannel.write (new Customer (number))
 96 }
 97 toShopChannel.write (’’)
 98 }
 99 }
100 new PAR ([barber , shop , world]).run ()
101 }
102
103 runSimulation (20 , 4 , { (Math.random () * 60 + 10) as int },
104 { (Math.random () * 20 + 10) as int })

Li
st

in
g

5
(c

on
t’d

)

JAN 2011 | | 19{cvu}

52, 64 Crikey, a label, and what effectively amounts to a goto. Should
Somno declare ‘shock, horror, . . . , probe’? Not really. The problem
here is that break on its own is relevant to the switch and we need to
have a break out of the while. The option of introducing a Boolean
to handle this seems overcomplicated compared to using the ‘break
out of a labelled statement’ feature of Java and Groovy.

There are of course many other ways of structuring this code. For example
we could have explicitly defined classes for barber, shop and world with
constructors. Somno and I will leave this as an ‘exercise for the student’.

Dataflow model
The following solution to The Sleeping Barber Problem not only uses
Dataflow Model, it uses a lot of ‘short cut’ features that GPars provides.

Structurally the code is not dissimilar to the Groovy CSP version in the
previous section. This is entirely reasonable: the algorithm is
fundamentally similar except that we are using asynchronous submission
of values to dataflow queues instead of synchronous communication via
CSP channels. Another aspect of the the reason this code looks cleaner and
simpler than the Groovy CSP code is that more work has already gone into
the ‘dataflow DSL’ compared to Groovy CSP.

Some commentary:

24 Attempting to obtain the next value from the DataFlowQueue
(r e m e m be r G r oo v y h a s p ro p e r t i e s , i n t h i s c a s e
shopToBarber.val means shopToBarber.getVal ())
causes a block pending availability of a value – Somno sleeps until
there is a customer of whom to cut the hair.

 1 #! /usr/bin/env groovy
 2
 3 // This is a model of the "The Sleeping Barber" problem using Groovy (http://groovy.codehaus.org)
 4 // and GPars (http://gpars.codehaus.org) dataflow, cf. http://en.wikipedia.org/wiki/
 5 // Sleeping_barber_problem.
 6 // Copyright (c) 2010 Russel Winder
 7
 8 @Grab (’org.codehaus.gpars:gpars:0.11’)
 9
10 import groovy.transform.Immutable
11
12 import groovyx.gpars.dataflow.DataFlow
13 import groovyx.gpars.dataflow.DataFlowQueue
14
15 @Immutable class Customer { Integer id }
16
17 def runSimulation (final int numberOfCustomers , final int numberOfWaitingSeats ,
18 final Closure hairTrimTime , final Closure nextCustomerWaitTime) {
19 def worldToShop = new DataFlowQueue ()
20 def shopToBarber = new DataFlowQueue ()
21 def barberToShop = new DataFlowQueue ()
22 final barber = DataFlow.task {
23 while (true) {
24 def customer = shopToBarber.val
25 if (customer == ’’) { break }
26 assert customer instanceof Customer
27 println ("Barber : Starting Customer ${customer.id}.")
28 Thread.sleep (hairTrimTime ())
29 println ("Barber : Finished Customer ${customer.id}.")
30 barberToShop << customer
31 }
32 }
33 final shop = DataFlow.task {
34 def seatsTaken = 0
35 def customersTurnedAway = 0
36 def customersTrimmed = 0
37 def isOpen = true
38 mainloop:
39 while (true) {
40 def selector = DataFlow.select (barberToShop , worldToShop)
41 def item = selector.select ()
42 switch (item.index) {
43 case 0 : //////// From the Barber ////////
44 assert item.value instanceof Customer
45 --seatsTaken
46 ++customersTrimmed
47 println ("Shop : Customer ${item.value.id} leaving trimmed.")
48 if (! isOpen && (seatsTaken == 0)) {
49 println (
 "\nTrimmed ${customersTrimmed} and turned away ${customersTurnedAway} today.")
50 shopToBarber << ’’
51 break mainloop
52 }
53 break

Li
st

in
g

6

20 | | JAN 2011{cvu}

30, 50, 61, 77, 79 The << operator targeting a DataFlowQueue is an
operator overload and means insert the item in the queue. Probably
obvious to C++ people, less so to Java people.

25, 50, 55, 79 An empty string message remains the tool for signalling
the end of computation.

40–41 The shop has two input queues. Rather than waiting for valid input
on both, we need to ensure we process valid values as soon as they
are available. Hence a selector on which we can select. This is
directly analogous to the select mechanism in CSP, except that we
are dealing with queues and not channels. In GPars, the select method
returns an object that packages the available value and the index of
the selector from which the value was retrieved.

As always there are many, many variants that could be written using the
same underlying infrastructure. In this case (Dataflow Model), we could
use explicit operators. Somno (and I) are of the opinion that this is an
excellent ‘exercise for the student’. Of course it may be that we could be
convinced to write a follow up article presenting these alternate solutions.

Reflections
Ignoring the first version, and looking at the other four – threads, actors,
CSP, dataflow – it is clear that the threads version has fewer lines of code.
In this case, I suggest that more is more. Although the threads version is
shorter, I claim the other three are actually easier to comprehend. Of course
the trouble is I wrote them. I guess I need to not read the code for six months
and then see.

Despite the similarities between the actors, CSP and dataflow versions, a
different mental model of execution is required – the different message
passing semantics have to be handled explicitly.

A very CSP oriented viewpoint has been used to write the dataflow version,
and so the dataflow version looks more like the CSP version than perhaps
it should – at least in trying to present actors, CSP and dataflow as three
separately useful tools.

Anecdotal experience indicates that the actor, CSP and dataflow versions
are much easier not to get wrong compared to the threads version.

Summary
Of course these solution are unlikely to be useful as solution to the
operating system resource management problem per se, not least because
it is highly unlikely that anyone will ever write an operating system in a
mix of Groovy and Java. There is though the distinct possibility that D and/
or Go will eventually be used to write an operating system. Since D
implements Actor Model and Go implements CSP (more or less), some of
the ideas in this article may eventually become part of operating system
orthodoxy.

It might even be the case that C++ gets Actor Model and Dataflow Model
infrastructure based on the new C++0x standard. There is already a CSP
implementation, C++CSP2, but it is not C++0x, it is just C++99.

Who said dynamic languages had no place in performance code – despite
being extraordinarily slow in comparison to Java, huge tracts of
applications are not performance critical, and Groovy is easily fast
enough for those bits. 

Acknowledgements
Thanks to Václav Pech and Paul King, fellow committers in the Groovy
and GPars projects for various conversations and code examples that didn’t
make it explicitly into this article but helped shape what did get in. Also
they gave splendidly valuable feedback on a draft of this article.

References
[1] http://go-lang.org
[2] http://d-programming-language.org
[3] http://www.scala-lang.org/
[4] http://www.cs.kent.ac.uk/projects/ofa/jcsp/
[5] http://www.usingcsp.com/

54 case 1 : //////// From the World ////////
55 if (item.value == ’’) { isOpen = false }
56 else {
57 assert item.value instanceof Customer
58 if (seatsTaken < numberOfWaitingSeats) {
59 ++seatsTaken
60 println ("Shop : Customer ${item.value.id} takes a seat. ${seatsTaken} in use.")
61 shopToBarber << item.value
62 }
63 else {
64 println ("Shop : Customer ${item.value.id} turned away.")
65 ++customersTurnedAway
66 }
67 }
68 break
69 default :
70 throw new RuntimeException (’Shop : Selected an non-existent queue.’)
71 }
72 }
73 }
74 for (number in 0 ..< numberOfCustomers) {
75 Thread.sleep (nextCustomerWaitTime ())
76 println ("World : Customer ${number} enters the shop.")
77 worldToShop << new Customer (number)
78 }
79 worldToShop << ’’
80 // Make sure all computation is over before terminating.
81 [barber , shop]*.join ()
82 }
83
84 runSimulation (20 , 4 , { (Math.random () * 60 + 10) as int },
85 { (Math.random () * 20 + 10) as int })

Li
st

in
g

6
(c

on
t’d

)

JAN 2011 | | 21{cvu}

http://go-lang.org
http://d-programming-language.org
http://www.scala-lang.org/
http://www.usingcsp.com/
http://www.cs.kent.ac.uk/projects/ofa/jcsp/

Somno, The Barber of Clapham Junction, Introduces GPars (continued)
[6] Hoare, Tony (1984) Communicating Sequential Processes, Prentice-
Hall, 1985

[7] DeMarco, Tom (1979) Structured Analysis and System Specification,
Prentice-Hall

[8] Yourdon, Ed and Constantine, Larry (1979) Structured
Design:Fundamentals of a Discipline of Computer Program and
System Design, Prentice-Hall

[9] Codehaus, http://www.codehaus.org
[10] Groovy, http://groovy.codehaus.org
[11] GPars, http://gpars.codehaus.org
[12] Wikipedia, Sleeping Barber Problem, http://en.wikipedia.org/wiki/

Sleeping_barber_problem

Postscript
The code in this article, and many other not disimilar variants in many other
l a n g ua ge s , c a n b e f ou n d i n b rowseab l e fo rm a t h t t p : / /
www.russel.org.uk:8080/SleepingBarber. This is a Bazaar branch being
rendered by Loggerhead. If you want to branch the branch using Bazaar
then use the url http://www.russel.org.uk/Bazaar/SleepingBarber.

Endnote
If you want to get involved in testing or developing GPars, just get stuck
in and/or ask on the mailing lists. If you want to do things surreptitiously,
then just clone the GPars Git repository which is at git://git.codehaus.org/
gpars.git and research from there. The browsable version is at http://
git.codehaus.org/gitweb.cgi?p=gpars.git.
A Foray into CMake
Colin Hersom tells us of his experience using

CMake for the first time.

Make (Cross Platform Make) is described as ‘a family of tools
designed to build, test and package software’ [1].

I am only concerned here in its use as a platform-independent
Makefile generator. As such it is an alternative to the GNU autotools
(autoconf, automake & libtool) [2]. These are venerable products, used by
many open source projects for as long as I remember and were explored
by Jez Higgins a few years ago [3].

I hope to give you a quick sketch of my experience of CMake, without
dwelling too much on the minutiae of the process. I am running Ubuntu
10.4 [4]. Other operating systems may behave differently.

Broken-down auto
A few months ago I picked up an abandoned project (untouched for three
years). Over time its environment (KDE [5]) had changed and some of the
programs that it was relying on had been replaced. A small fix was required
to make it find newer versions.

This sounds simple enough, but as always there are unexpected obstacles
and sometimes the best way of reaching ones destination is not to remove
the obstacle, but to find a completely different route. Although I did not
know it at the time, this was going to be one of those occasions.

After configuring in a separate build directory and running make, the
compiler complained of missing header files. It was looking in a directory
relative to the build because the Makefile.am file (and hence the final
Makefile) had a line of the form:

 INCLUDES = -I../core $(all_includes)

I tried fixing this, but for some reason my automake was missing some
macros. It seems obvious that this project had never been compiled in a
separate build directory. Maybe this is the reason it lies abandoned. The
original author has vanished and no-one can work out how to build it in
its current state. What do I want to do? Well the GUI is KDE3 and yet the

world has moved on to KDE4. If I want to make this project up-to-date, I
am going to need to convert to KDE4. One of the many changes that KDE4
has introduced is that it uses CMake in place of autotools, so rather than
fighting automake, a switch to CMake now would seem to make sense.

Let’s see what I am to make
Since many projects needed to move from autotools to CMake in their
transition to KDE3, a simple means of porting is available. This is in the
form of the program am2cmake. Run in the top source directory, this
recursively examines the Makefile.am files and creates the
corresponding CMakeLists.txt files. The results indicate that this is
a very crude conversion. For this project, which has a number of directories
each building a shared-object and one building an executable, the top-level
CMakeLists.txt pulls in KDE4 and QT and some other stuff then
drops into the subdirectories. In the subdirectories, the source files are
found and an appropriate target (either library or executable) is defined. It
does not find the dependencies on other packages (since configure did this)
nor, surprisingly, does it find the header files that need to be processed
using QT’s automoc. Although I have to add it manually, using that relative
path for include files actually works now, since all such paths are resolved
relative to the source directory

The expectation of the use of KDE4 is possibly not surprising, but is a little
annoying in this case. I need to replace this with KDE3 and alter the macro
calls like kde4_add_library with the base function add_library.
Ensuring that required packages are available is easy in CMake since you
use the macro find_package. For a specified package, this searches

 C

COLIN HERSOM
Colin Hersom was born into computers and has been programming all
his adult life. He is currently between assignments and is looking at
some open source projects to keep himself amused.
22 | | JAN 2011{cvu}

http://www.codehaus.org
http://groovy.codehaus.org
http://gpars.codehaus.org
http://en.wikipedia.org/wiki/Sleeping_barber_problem
http://en.wikipedia.org/wiki/Sleeping_barber_problem

cmake’s path for a file called Find<package>.cmake and this
tests to see whether the appropriate files are on the system. Since the
file name is made by concatenating strings, the package name is case
sensitive, in contrast to most of the rest of CMake. It is not always
obvious what the package is called, for example, for CUPS there is
FindCups.cmake but for curl it is FindCURL.cmake. The set
of packages supported by the CMake included with KDE3 is
considerably smaller than with KDE4, yet these packages are not
dependent on KDE at all. In order to build a KDE3 program, I needed to
copy some of the ‘Find’ files from the KDE4 CMake directories into my
local directory.

Tsunami warning
Having pulled in all the required packages, it was time to try compiling
again. This resulted in a deluge of warning messages from the compiler,
so many that error messages at the beginning of a compilation were
impossible to find simply by watching the terminal window. A redirection
of the output like this:

 make 2 > error.txt

worked well since the progress messages appeared on the screen but all
the errors went to the file.

Why were there suddenly so many warnings? The flags given to the
compiler are in a file called flags.make which is constructed by CMake
and put into <dir>/CMakeFiles/<dir>.dir, where <dir> is the
subdirectory that we are building in. This shows that every warning that
could be thought of is being produced. Although I agree with this, it is
unfortunate that QT3 triggers quite so many of them!

Closed library
Now I haven’t given my progress in strict chronological order. This project
consists of a number of components which produce non-UI shared objects
and a GUI executable that is dependent on KDE3. I can thus build the
shared objects without care to the version of KDE installed. I can use the
ready-compiled executable which comes in the Debian package to test
whether my new libraries are compatible. So I had done this with KDE4
macros. Trying to run this showed that the libraries were missing all linker
symbols. Investigating the flags.make file again shows that the compiler
is being given these flags:

 -fvisibility=hidden -fvisibility-inlines-hidden

This conceals all functions and classes unless appropriate attributes are
assigned to those that need to be exported. The reasoning behind this is
sound, GCC exports every non-local symbol which makes it difficult to
control the interface to a shared library. It does, however, effectively make
the library useless until such attributes are defined. I expected macros (e.g.
DLLEXPORT) to be defined to implement these attributes, but I could not
see any. Until CMake provides a mechanism to tell the compiler which
symbols to export, there is a problem since I cannot expect the code to be
portable unless I switch those flags off. The KDE3 version does not add
these flags.

Mockery
I mentioned earlier that the files to be processed through QT’s automoc
were not found with am2cmake, despite the Makefile.am containing
the lines

 # let automoc handle all of the meta source files
 # (moc)
 METASOURCES = AUTO

In order to get the build to work, this process (which adds additional
routines for QT) needs to be run. The simplest way, assuming one header
per C++ file, is to generate all the header file names from the source files
and flag them to be run by automoc (Listing 1).

And now everything seems to work perfectly. I can add my small fix and
rebuild which leaves me with a working program again.

A sea change?
My feelings about CMake are mixed. I am sure that I have only scratched
the surface, but from this experience I feel that the positive points are:

 All the requirements are in one (set) of files, rather than distributed
between autoconf & automake. The learning curve is thus less steep.

 Changing CMakeLists.txt and running make automatically
calls CMake, but CMake caches most of its results, so only a small
part of the configuration procedure is re-run. This is much faster that
the autoconf equivalent.

 There is less (no?) danger of accidentally using relative paths.

 The installation directories can be chosen at install time, whereas
this is fixed at configuration time with autotools’

 It runs on Windows as well as *n*x.

and the negatives:

 Some of its configuration files are tied in with the KDE version for
no obvious reason.

 The ‘is it or isn’t it case sensitive?’ question is a trap for the unwary.
Having to search for the CMake ‘Find’ files to determine the correct
case to use is a niggle I could do without.

 To compile a project, you must have CMake installed. This is a
dependency that autotools do not have, since the ‘configure’ is self-
contained’

 The lack of support for exporting library symbols is a problem.

When the tide has gone out
The autotools are mature and well used. CMake is the new kid on the block
with great potential. The documentation is lacking, probably not
surprising, but it does tend to mean delving into the source to find out how
to achieve certain things. For the project that I am attempting to revitalise,
it worked well, but I am sure that it is not to everyone’s taste. For a new
project, I would give it serious consideration, even if I were considering
only using standard Makefiles, since CMake files are even easier to write.
For an existing project with much more complex requirements, it is
probably not worth the effort to change from autotools if that is working
satisfactorily.

Now I’m off to wade through the debris of all those warning messages. 

References
[1] www.cmake.org
[2] www.gnu.org/software
[3] CVu Dec 2006, Feb & Apr 2007
[4] www.ubuntu.org
[5] www.kde.org

foreach(f_name ${gui_SOURCES})
 string(REGEX REPLACE "\\.cpp" ".h" HEADER ${f_name})
 set(gui_HEADERS ${gui_HEADERS} ${HEADER})
endforeach(f_name)
KDE3_ADD_MOC_FILES(gui_SOURCES ${gui_HEADERS})

Listing 1
JAN 2011 | | 23{cvu}

www.kde.org
www.ubuntu.org
www.gnu.org/software
www.cmake.org

24 | | JAN 2011{cvu}

Inspirational (P)articles
Dr Love introduces Sue Black.

At the age of seven Sue felt compelled to spend her pocket money on maths
text books. She had very few friends. If only she had known then that one
day geeks would be cool. Dr Sue Black is a Senior Research Associate in
the Software Systems Engineering group at University College London and
a Senior Consultant with Cornerstone Global Associates. She campaigns
passionately to raise awareness and support for women in tech and
Bletchley Park. Her research interests are software quality, software
development paradigms, social media, public engagement and anything
shiny. To find out more check out www.sueblack.co.uk and follow
@Dr_Black on Twitter.

found programming very hard during my degree, I think I’m quite a top
down type of learner and we were taught programming bottom up. I just
couldn’t get a proper handle on what I was supposed to be doing and

why, I found it exasperating. Despite this I managed to get a degree in
computer science, not excelling in software engineering.

After my degree I started a PhD in formal methods, which I also wasn’t
particularly good at, but I loved research, I really wanted to do a PhD, and
there was funding in that area. After six months I moved over to software
measurement, felt comfortable and stayed there. Two years or more into
my PhD I was designing and building a prototype tool in C. The tool was
required to take C programs as input and calculate a ripple effect measure

[1] for each module within a program and then the ripple effect for each
program as a whole. I spent a lot of time angsting about how crap I was at
programming, and then one day just somehow got on with it. It was hard
to start with, but using my C books, the one I remember best being
Kernighan and Ritchie [2] I gradually started to understand many things
that I had just not understood before. The day that I coded a function from
scratch to implement some complicated part of the ripple effect algorithm
still stands in my memory. I wrote the code, I compiled it, had no syntax
errors, I ran it and got what looked like reasonable output. I tested it and
found that it gave the correct result. That was one of the best days of my
life :)) 

References
[1] Black, S. E. ‘Computing ripple effect for software maintenance’,

Journal of Software Maintenance and Evolution: Research and
Practice 2001; 13:263-279.

[2] Kernighan, Brian W.; Dennis M. Ritchie (February 1978). The C
Programming Language (1st ed.). Englewood Cliffs, NJ: Prentice
Hall.ISBN 0-13-110163-3.

I

Agile Cambridge 2010
Giovanni Asproni gives us an alternative view of

Agile Cambridge 2010.

he first edition of the Agile Cambridge [1] conference took place this
year on the 14th and 15th of October. I went there with great
expectations, and I was not disappointed. The programme was quite

interesting and the speakers included quite a few of the usual suspects:
Rachel Davies, Nat Pryce, Steve Freeman, Allan Kelly, Jon Jagger, Paul
Grenyer, and yours truly, while the audience was made mostly of people
new to Agile.

I attended the two keynotes – one from James Whittaker, and the other
from Rachel Davies – the talks from Allan Kelly, and Paul Grenyer, and,
most importantly, the social event at the The Castle pub, where we had free
food (which was surprisingly good) acompanied by free beer, courtesy of
the conference sponsors.

James Whittaker is the Engineering Director over engineering tools and
testing for Google’s Seattle and Kirkland offices. He spoke about how they
do testing at Google using the metaphor of hospital triages where testers
are the doctors, and software applications the patients. Using this metaphor
he described various tools they developed to be able to test software
efficiently and to find and fix bugs quickly. He also described the ‘tour’
metaphor that he and his teams use to classify the kind of tests they run on
a particular application. I found his keynote quite inspiring, and his book
Exploratory Software Testing ended up very quickly in my Kindle.

Rachel spoke about building trust in agile teams. Setting aside lots of
interesting material about the importance of trust in teams and on various
techniques to use or avoid in order to earn trust, the highlight of her keynote

was an exercise where Paul Grenyer was volunteered by Rachel to do a
stage diving (interestingly enough, Rachel, Allan, Paul and I had talked
about it the night before at the pub, but we didn’t think Rachel was going
to take the conversation seriously). He accepted and was caught by a group
of six or eight people (which included Jon Jagger and Allan Kelly who
joined them to make sure the ACCU didn’t loose one of its most valued
members). I’m happy to report that Paul was not hurt during the exercise
(neither were Jon and Allan).

Paul presented a session entitled ‘Agile is a journey not a destination’
where he described his experience in introducing agile development
practices at his company. The session was aimed at people trying to
introduce agile in their own companies for the first time. Paul presented
the material in a clear and compelling way, and, judging from the number
of questions at the end, the audience really enjoyed it. Personally, I found
the content quite interesting, and I was truly impressed by the way he
delivered the presentation.

Allan’s talk title ‘What does it take to be an Agile company?’ describes
its content quite well. The session was very well led (as expected from
Allan) and full of interesting points.

All in all a very interesting conference. I’m already looking forward to
Agile Cambridge 2011. 

Reference
[1] http://www.agilecambridge.net

T

http://www.agilecambridge.net

JAN 2011 | | 25{cvu}

Desert Island Books
Rachel Davies shares her choice of books and music.

ike so many others I first encountered Rachel Davies at the ACCU Conference.
I went to her session on effective story writing to discover it was a tutorial! I'm
not a big fan of tutorials, but I enjoyed this one as it covered a lot of material I

was reading about and trying to apply at the time. The second time I encountered
Rachel was in a pub in Cambridge following the first day of the first Agile
Cambridge conference. I somehow managed to agree to jump backwards off the
stage the next day. And, sure enough as you can read elsewhere in this very CVu,
I did it!

Rachel Davies
I’ve got around 20 years’ experience as a software developer working
mostly in C, C++, and Java. Nowadays, I’m not writing much software,
instead I work as an independent coach helping teams work out how to
apply agile practices effectively. My claim to fame is having written the
first book on ‘Agile Coaching’ with Liz Sedley, which is published by
Pragmatic Bookshelf. I’m also a bit of a conference addict and have been
involved in organising XPDays, SPA and lots of other Agile events.

I live in Warwickshire with two teenage daughters and four cats. When I
get a bit of spare time I like to work in my garden, grew potatoes and
rhubarb for the first time this year. I also like getting out to do some hill
walking and seeking out ancient standing stones. I’ve always loved books
and always have a stack of books on software development that I’m
working through. I’ve tried to pick the titles that have most influenced my
approach to software development rather than what I’m reading right now.

My first choice is The Timeless Way of Building by Christopher Alexander,
which introduced me to patterns and the quest for the quality without a
name and inspiration to trust in emergent design. Before reading this book,
I tended to think of design as being an economical way of consolidating
functionality to enable reuse without aesthetic value. Although Alexander
writes about the design of buildings and towns, the photographs and
drawings show how important it is to consider the people who live and
work in the buildings. From this book, I grew to understand how important
it is to strive to make our code habitable and pleasant to
work in. Reading this book also lead me to the design
patterns community and that’s where I started to hear
about refactoring and extreme programming (XP).

This brings me onto my next book choice. There’s no
question I have to pick Extreme Programming
Explained by Kent Beck (although 1st edition, please).
Reading this book, lead me to a totally new way of

developing code working test-first and pair programming. This book gave
me the courage to resign from my management job, go to eXtreme Tuesday
Club and find a job as a programmer in an XP team. After several years
of working on large C++ projects that always got cancelled for one reason
or another, I was able to learn Java and finally deliver working software!

Now for a less obvious choice. The book is Are your
lights on? How to figure out what the problem
REALLY is by Donald C. Gause and Gerald M.
Weinberg. This book is full of cartoons and stories
that help the reader remember that they have some
responsibility to figure out what problem they are
solving. This book doesn’t help you construct code
but it can help you avoid writing unnecessary code
that solves the wrong problem. I happen to value my
time and so I think it’s rather important to check my
understanding of the requirements before getting
stuck into writing code. It is always good to be reminded that ‘The fish is
always the last to see the water’.My last choice on software takes me back
to Test-Driven Development (TDD). Although it was only published this

year, Growing Object-Oriented Software, Guided by
Tests by Steve Freeman and Nat Pryce explains a
style of programming that I have been trying to apply
since 2000. This was when I first started to learn how
use of Mock Objects in unit tests shaped the design
of the code making it more object oriented. It took a
while to understand how important it is to work from
the outside-in as the book emphasises. I’ve been
lucky enough to work on a team with Steve and see
first-hand how he listens to what the tests are telling
us about the design. Nat and Steve have done a great

job with this book explaining this approach to design with plenty of code
examples and refelection about the alternative approaches that these reveal
to design.

I typically only read non-fiction on airplanes or on holiday! Picking a novel
is a tough choice, as I want to pick one that I can read many times while
stuck on the desert island. So I’ll go for Wuthering Heights by Emily
Brontë. If you’ve seen film adaptations, you may have the impression that
this is a basic love story. However, when you read the book then you
discover that the full story is a complex tale of madness, isolation and
revenge. It also has an interesting structure with shifting narrators and
plenty atmospheric descriptions of the Yorkshire moors.

As for music, the album I listen to most is Apollo:
Atmospheres & Soundtracks by Brian Eno. I play this
when I’m writing as it helps me tune out distractions. I
suppose peace and quiet is not a problem I’ll have plenty
of tranquility on the island. So instead, I’d like to take
the Hot Rats album by Frank Zappa, which I’ve recently
rediscovered while clearing out my old vinyl record
collection. This album is mostly instrumental jazz-rock tracks with a very
positive vibe. I love the mix of horns and percussion, as it reminds me of
all kinds of bustling life in the city that I’d be missing while I’m all alone
on the island.

L

Next issue: Nat Pryce

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to choose the
eight records they would take with them to a desert island (http://
www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4 show.
You choose about five books, one of which must be a novel, and up to two
albums. Some people even throw in the odd film. Quite a few ACCUers have
chosen their Desert Island Books to date and there are plenty more to go.
The rules aren’t too strict but the programming books must have made a big
impact on your programming life or be ones that you would take to a desert
island. The inclusion of a novel and a couple of albums helps us to learn a little
more about you. The ACCU has some amazing personalities and Desert Island
Books has proved we only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share your
Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Code Critique Competition 67
Set and collated by Roger Orr. A book prize is awarded for the

best entry.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org.

Last Issue’s Code
This issue’s problem is also a bit of a design critique.

I’ve got a ‘log’ function (an externally provided function I can’t change) that
takes a char const * argument and I want to wrap it in a C++ layer so
I can stream to it. The function itself is thread-safe and I want to be able to
use streaming in multiple threads.

My approach here is to use a temporary helper object containing an
ostringstream and build up the string in there. The helper object is
created when the streaming starts, and is passed along the streaming
operators until the end of the statement when it is destroyed. The destructor
of the helper object passes the contents of the ostringstream to the log
function. It seems to nearly work, but I’m getting some odd characters in the
output. I found that adding an '&' (where it says: "/* Needed?: & */"
seems to fix it, but don’t know why. Are there any problems with this
approach – or better ways to do the same thing?

(To give a bit of background, following a recent discussion in the ISO C++
standards meeting about destructors that throw exceptions, I was keeping
a look out for examples of code where work was done in the destructor.
That provided the initial input to this example, but it also raises questions
about the lifetime of temporaries and the order of their destruction. Finally
the code in the critique compiles with visual studio but not with g++ –
making the change mentioned to add an ampersand fixes the compilation
problem, so we have a compiler difference to consider too.)

The header file log_wrapper.h is shown in Listing 1. Listing 2 contains
an example of its use: test_log_wrapper.cpp

Critiques

Chris Main <cmain@fastmail.fm>

Why are we going to the trouble of wrapping the log function in a C++
layer that provides a stream interface? Presumably to make it easy to use
for programmers familiar with C++ streams. If so, then the interface ought
to conform to the idioms of C++ streaming, otherwise it will be confusing
or misleading.

The first thing I notice that surprises me is that the return type of
logger::operator<< is not the logger& I expect, but helper.
Returning a value when normally a reference is returned sets off alarm
bells because of an experience I had a few years ago. I used a class that
provided operator[], but failed to spot that it was returning a value. I
had assumed that it was returning a reference, and had a frustrating time
tracking down the cause of some strange behaviour to the fact that I was
operating on a temporary object rather than the object which I thought I
had a reference to.

In this example it is not quite so bad because the value being returned is,
essentially, a pointer, although I can only know this by examining the
private part of the helper class, not the public interface.

The helper class, which should be an implementation detail, rather
dominates the public interface. It looks like the author was aware of this
and, judging by the friend declaration, tried at some point to hide it but
failed.

The other non-idiomatic feature is that the logger appears to flush its output
every time a semi-colon terminating a C++ source line is reached, and only
then. Standard C++ streams do not flush at the end of every source

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#include <memory>
#include <sstream>
// third party log function
extern void log(char const *);
// Add C++ style streaming to the log function
class logger
{
public:
 class helper
 {
 friend class logger;
 public:
 template <typename T>
 helper /* Need & here? */ operator<<(T t)
 { *oss << t; return *this; }
 helper() : oss(new std::ostringstream) {}
 // When helper destroyed log the message
 ~helper()
 {
 if (oss.get())
 {
 log(oss->str().c_str());
 }
 }
 private:
 std::auto_ptr<std::ostringstream> oss;
 };
 template <typename T>
 helper operator<<(T t)
 { helper h; return h << t; }
};

Listing 1

#include "log_wrapper.h"
// Dummy 'log' for testing
void log(char const *p)
{
 puts(p);
}
int main(int argc, char **argv)
{
 logger l;
 l << "Starting";
 l << "Testing number: " << argc;
 l << "Testing string: " << argv[0];
}

Listing 2
26 | | JAN 2011{cvu}

statement; they flush either when a std::endl is output to the stream or
when flush() is called.

I ran the C++ hello world program under a debugger to find out what
ultimately gets called by std::endl, and discovered that it was the
virtual function std::basic_streambuf::sync(). So it appears that
the STL designers have provided exactly the hook we need. All we need
to do is derive a class from std::basic_streambuf and override the
sync() function to call our log function and clear the buffer.

std::ostringstream uses std::stringbuf, which derives from
std::basic_streambuf and provides a string buffer, so it is the
obvious choice as the base class for our very own logbuf:

 class logbuf : public std::stringbuf
 {
 public:
 virtual int sync()
 {
 std::string message = str();
 // Do any extra formatting of message here
 // eg handling embedded \0 characters and
 // adding or removing trailing new lines
 log(message.c_str());
 str(""); // clear the buffer
 return 0; // return default value;
 // (return -1 on error)
 }
 };

Note that std::stringbuf provides a non-const str() member
function as well as the more well known const one, and we can use that
to clear the buffer.

At this point I was expecting to plug the logbuf into std::ostring
stream, but discovered that you can’t change the type of the stream buffer
used by std::ostring stream. Lazily I turned to Google and found an
article by Cay Horstmann originally published in the C++ Report in 1994
(http://www.horstmann.com/cpp/iostreams.html).

This showed that the rest of the plumbing I need is actually very simple:

log_wrapper.h

 #include <ostream>
 class logger : public std::ostream
 {
 public:
 logger();
 ~logger();
 };

How’s that for a clean public interface!The implementation is equally
succinct:

log_wrapper.cpp

 #include <log_wrapper.h>
 #include <sstream>
 namespace
 {
 class logbuf ... // as above
 }
 logger::logger() : std::ostream (new logbuf)
 {
 }

 logger::~logger()
 {
 delete rdbuf();
 }

Peter Sommerlad <peter.sommerlad@hsr.ch>

When compiling the code as given, gcc recognizes an error

../log_wrapper.h: In member function
 'logger::helper logger::operator<<(T)
 [with T = const char*]':
../main.cpp:8: instantiated from here
../log_wrapper.h:36: error: no
 matching function for call to
 'logger::helper::helper(logger::helper)'
../log_wrapper.h:16: note: candidates are:
 logger::helper::helper(logger::helper&)

One can see from this ‘strange’ error message that the helper class obtains
a non-regular copy constructor changing its origin. This is due to the
std::auto_ptr member variable, since auto_ptr only has a
auto_ptr(auto_ptr&) copy-ctor and not the regular using a const-
reference as parameter.

Like with other pointer member variables (except for shared_ptr) one
must define suitable own versions of operator= and the copy-
constructor or deny the generation of these.

The latter is done, in classic C++ by declaring operator= and the copy-
ctor as private members and never implementing them. In the new C++
standard due 2011, one would declare both as =delete instead, i.e.

 helper& operator=(helper const&)=delete;

Nevertheless, the use of auto_ptr and dynamic memory allocation is
completely unnecessary. A simple member variable of type
std::ostringstream should suffice. However, we cannot copy
stream objects simply.

Note: In C++0x one can use std::unique_ptr to get some of the effects
of auto_ptr without the dangers. This relies on the so-called r-value
references and "move"-constructors/assignment-operators. Explaining
these mechanisms is beyond this critique.

With the proposed "fix" of returning a reference to the helper object the
code compiles. Running lint (in our linticator plug-in – see Figure 1)
shows:

 The messages 1732 and 1733 show us that there is a potential
problem and suggest that an assignment operator and copy
constructor might be required.

 The message 1793 shows also the suspicious use of a temporary.

The code tries to create a temporary helper object, that will be copied and
the final one, should then release the collected characters to the log()
function. I believe it is a design error to rely on such non-const-ref passed
temporary objects. IMHO a better design would be to have the logger class'
destructor to actually retrieve the string from the ostringstream and
put it on the log. This way, the side effect is at least obvious from the code.

Thus a simple solution might be:

 #ifndef LOG_WRAPPER_H_
 #define LOG_WRAPPER_H_
 #include <sstream>

Fi
gu

re
 1
JAN 2011 | | 27{cvu}

http://www.horstmann.com/cpp/iostreams.html

 // third party log function
 extern void log(char const *);
 // Add C++ style streaming to the log function
 class logger {
 std::ostringstream oss;
 public:
 ~logger()
 try {
 log(oss.str().c_str());
 }
 catch (...) { }
 template<typename T> logger& operator<<(T t)
 {
 oss << t;
 return *this;
 }
 };
 #endif /* LOG_WRAPPER_H_ */

 note that the destructor consists of a try-catch function body, so that
no exceptions that might be thrown from calling log will be passed
on. Without that guard a logger object destroyed while stack-
unwinding from an exception happening will cause the program to
terminate. Not a nice behaviour, if that is caused by an auxiliary
function.

 returning by reference is usually unsafe, but returning *this from
a member function is safe, even so lint still complains in main about
this (as an information message)

 as a side effect of such a solution, the logger in the main function
will only call log() once.

3. To get back to the previous behaviour of one log() call per line we
need to change main() to avoid the explicit temporary but use a logger
temporary per line instead:

 int main(int argc, char **argv) {
 logger() << "Starting";
 logger() << "Testing number: " << argc;
 logger() << "Testing string: " << argv[0];
 }

This will be no more expensive than before. The remaining thing might
be that one can rename logger to log instead so that the code reads even
more simply.

A more sophisticated implementation of the admired behaviour would be
t o im p l eme n t ou r o w n streambuffer c l a s s , i . e .
log_ostream_buffer, for log output that uses log(char const *)
whenever the streambuffer should be flushed. This would allow us to
create a log_stream object, as one might use any other ostream.
However, doing so is overkill in this simple situation and explaining how
to do it safely, beyond my time for this critique.

Huw Lewis < huw.lewis2409@googlemail.com>
Compilation

My compiler (GCC 4.4.5) complained about not being able to find a
logger::helper::helper(logger::helper) constructor taking
a he lpe r pa ra me te r by va lu e . Th i s was down to t he
logger::operator<< returning the expression (h << t) that
represents the helper::operator<< method, returning a helper object
by value. I can’t be precise about the nature of this error, but it is to do
with the copy constructor for the helper class and its auto_ptr member
that will reset itself to NULL on being copied (passing ownership of the
pointee object away).

Oddly, adding '&' to the helper::operator<< method to make it
return by reference fixes the compilation error. This removes the necessity
for the copy operation coming out of helper::operator<<, but does
not remove the copy operation from the parent logger::operator<<
method so I remain a little puzzled by this. Could it be to do with inline
template methods?

A more satisfactory (or explainable) solution to the compilation issue is
to make the auto_ptr data member 'mutable' so that it can be
nullified while the object is const, and to explicitly add a copy
constructor.

Object lifetimes

To understand what is going on here, let us discuss the object lifetimes.
The logger object 'l' is constructed and survives until the end of the
function (and program in this case).

The logger::operator<< method returns a helper object by value. In
typical usage (as per the test harness) this helper object is a ‘temporary’
anonymous object that is destroyed at the end of the line. The destruction
of this object (or objects!!) is what initiates the sending of the log data to
the external log function. This is a neat design choice as messages are sent
to the log at the correct time. If, for example, it were the destruction of
logger that sent the data to the log then many messages built up over a
potentially long (maybe including blocking operations) lifetime.

In the original version, the helper::operator<< also returns a helper
object by value which has the effect of creating additional copies of the
helper on each streaming operation. The helper class uses an auto_ptr
to manage the lifetime of the ostringstream internal object so
ownership is passed along from copy to copy and only the final temporary
object does the destruction processing, passing the data to the external log
function.

When the & is added, the return type is by reference so these additional
copies don’t occur. We have the one logger object and a single helper
(anonymous temporary) object.

Odd characters in output?

The question says that the original version (which I couldn’t compile)
prints some odd characters in the output. I can’t see the reason for this
behaviour (and can’t reproduce it). How could erroneous characters enter
the stream? I can see situations that could lead to crashes where a helper
object attempts to be use the auto_ptr to the stream after it has passed
on ownership to the next helper copy.

We can disregard threading issues as the (external) log function is thread
safe. Changing the return type to reference wouldn’t affect that anyway.

Could there be some strange optimisation issues with all of the temporary
helper copies?

Design comments

I think that the designer/coder has got fairly close to a good solution with
this already, but we can always improve. I like the way that the logger
attempts to have stream semantics and I especially like the way that the
data is sent to the external log on destruction of the temporary helper
objects at the end of the line.

However, I have read conflicting information on the lifetime of temporary
objects. One source claimed that the C++ standard does not define the
lifetime of temporary objects, therefore it is compiler dependent and code
that depends on the lifetime of such objects might not be portable. Another
source states that temporary objects exist until the end of the full statement
in which they are created. [Ed: there was ambiguity in compilers in the 1990s
but the C++ standard does give clear guidance over the lifetime of
temporaries.]

There is another burning issue around the idea of using the temporary
helper object. Streams are types that simply aren’t meant to be copied. The
std stream types explicitly don’t provide copy constructors for that very
reason. Our technique of returning a helper object by value from
logger::operator<< skirts around this by using the auto_ptr to
pass ownership of the same underlying stream to the next helper copy
rather than creating a new stream copy. This leaves open the possibility
for some poor or malicious coder to create a helper copy and use the
original after a copy has been made – the auto_ptr to the stream is now
invalid!! You could code defensively to prevent a crash, but these niggles
are telling me that it isn’t the best design choice.

The corrected helper::operator<< returns a reference to the helper
object, allowing the chaining of streaming operations. As helper is not
28 | | JAN 2011{cvu}

derived from a std stream class, it will not play nicely with stream
manipulators (e.g. hex, endl, setfill, setw etc) and so we aren’t able
to perform any fancy formatting. We could make logger and helper
derive from ios_base , but that is likely to raise many more
complications.

Extra requirements?

Logging seems like such a simple concept, but in reality this is rarely the
case. Consider the following:

 we’d like to remove the logging code from release builds

 we’d like to run the system at varying levels of logging (info,
warnings, errors, etc).

 we’d like some extra metadata logged with each message e.g.
timestamps, thread id etc.

How would our previously reasonably elegant design handle these issues?

Alternative designs

One fundamental requirement I have experienced many times (especially
in high performance embedded systems) is to remove all logging code
from release build configurations. The most effective method to do this is
something we usually try to avoid – macros. They are good for some things.
For example:

 #define LOGGING_ENABLED
 // or define the symbol via the Makefile
 #ifdef LOGGING_ENABLED
 // the real implementation
 #define WRITE_LOG(x) blah....
 #else
 #define WRITE_LOG(x) // defined as nothing
 #endif // LOGGING_ENABLED

N o w a l l l o gg i n g c od e w i l l b e p re -p r oc e s s e d a w a y w he n
LOGGING_ENABLED is not defined.

Another nice feature (inspired by the original implementation) is to use
s t r e aming s em an t i c s i n s ide t he mac ro a rgume n t e . g .
WRITE_LOG_STREAM("some string" << stringVariable <<
std::hex << someIntVariable), where:

 // log wrapper function
 void log_wrapper(const std::string& out);
 ...
 #define WRITE_LOG_STREAM(x) \
 { std::ostringstream tempStream; \
 tempStream << x; log_wrapper(x.str());}
 #define WRITE_LOG(x) log_wrapper(x);

Where different types or levels of logging are required, it is fairly simple
to define variants with additional arguments e.g.:

 void log_wrapper(const std::string& out,
 LogLevel level);
 ...
 #define WRITE_LOG_LEVEL(level, x) \
 log_wrapper(x, level);

By keeping a simple interface (facade) made up of a small number of helper
functions and macros, the application code is kept simple and the
flexibility is retained to vary the implementation and behaviour as needed.

Commentary
This critique was inspired by some logging frameworks and, although I
agree with Chris Main that we expect operator<< to only flush when
std::endl is used (or flush() is called), there is a reason to avoid this
for a logging stream.

The problem comes when a program aborts; if this occurs then any un-
streamed data in the log buffers may contain the vital piece of information
that will help analyse the failure. If the logger auto-flushes at the end of
each line then all useful data will have been flushed out.

However C++ does not provide a way to detect the end of the statement
other than by inference when temporary objects are destroyed. Hence the

code provided uses the destructor of the last helper object to write the
complete message to the log. The problem with using this approach for
implementation is the ‘double destructor’ problem: should the destructor
of the temporary object throw an exception while unwinding from another
exception then the program will abort by calling std::terminate().
This is a bad end for a program!

The general rule is not to throw from destructors – but it is easy to break
this rule, as we do here. Consider what might happen when logging a
couple of largish messages in a low memory situation: when we try to
append the second message to the ostringstream there isn’t enough
memory to increase its internal buffer, so a bad_alloc exception is
thrown. This causes stack unwind, so temporary objects are destroyed –
including the logger helper object. The destructor of the object calls str()
on the ostringstream, which also fails because of the low memory and
so the program aborts.

The winner of CC 66
There was some good discussion in Huw’s critique and although I have
much sympathy with a macro solution I am always a little concerned at
the possibility of unexpected behaviour. I'm not quite sure what problems
there were with hex, endl and other manipulators: they appear to work
fine.

Peter made good use of lint to try and explore the problem although I was
a bit concerned at the large number of messages generated that were simply
wrong: there should be no need to write an assignment operator or copy
constructor in this case as the auto_ptr was supposed to handle the
ownership in the compiler-generated defaults. However his solution, using
a temporary logger object and thus removing the need for a helper class
completely, seemed to be a step in the right direction. The addition of the
catch statement to the destructor also fixes the potential for program abort
on a ‘double fault’.

Chris pointed out the helper class dominated the public interface of the
logger class: this is true; a forward reference of

 class helper;

would allow moving the actual implementation to later in the logger class
and make it clearer. I liked his attempt to use a logbuf class although his

#include <string.h>
#include <string>
#include <iostream>
std::string castToString(wchar_t * wideStr)
{
 std::string str;
// This is what I want, but it won't compile:
// str = (std::string)wideStr;
// This compiles, but I just get "H":
 str = (char*)wideStr;
// This compiles too, with the same output:
 std::wstring wstr;
 wstr = wideStr;
 str = (std::string)(char*)wstr.c_str();
// This is nearly there I think:
// but I now just get "H e l l o"
 str = std::string((char*)wstr.c_str(),
 wstr.size());
 delete wideStr;
 return str;
}
int main()
{
 wchar_t * source = new wchar_t[12];
 memcpy(source, L"Hello world", 24);
 std::string str = castToString(source);
 std::cout << str << std::endl;
}

Listing 3
JAN 2011 | | 29{cvu}

Software Requirements
& Specifications
By Michael Jackson, published
by Addison-Wesley, ISBN 0-201-
87712-0

Reviewed by Paul Floyd

Highly recommended

Not the Michael Jackson that
made the top-selling pop album, nor the
one that writes about drinking beer. This
is the software method Michael Jackson.
The subtitle of the book is ‘a lexicon of
practice, principles and prejudices’. I would
have added ‘philosophy’ in there somewhere, as
this is the software book with the most

pronounced philosophy bent that I’ve ever read.
Just as well that’s a good thing in my eyes.
Polya, Logical Postivism, Bertrand Russel and
Karl Popper all get mentions. Jackson makes a
fair bit of use of predicate logic, which might be
off-putting if you are significantly
mathematically challenged.

Looking at the bibliography, much of the
material is from the 60s to the 80s. Not
necessarily a bad thing, but it does somewhat
place Jackson with the ideas of structured
programming (which, as top-down design, he
frequently denigrates).

One thing I particularly enjoyed was that there
is a fair bit of humour and dry wit. Not too much,

but enough to give me a few chuckles, in
particular the item on ‘Brilliance’, p. 20.

I thought that there was plenty of sound advice,
like concentrate on the problem, not the
solution, and do your thinking at the right level
of detail (‘span’, as Jackson calls it). There is a
bit of repetition regarding Jackson’s ‘Frames’
method, but he doesn’t bang on about it
incessantly.

I haven’t read that many books about
requirements and specifications, but they have
tended to concentrate on things like use cases
and ‘requirements gathering’. This book isn’t
like them, and in fact, not like any other book
I’ve read. As a bonus, it’s only just over 200
pages long, so was quite easy to digest.

Reflections on
Management
By Watts Humphrey, published
by Addison Wesley, ISBN 978-0-
321-71153-3

Reviewed by Paul Floyd

Recommended

To give the book its full
subtitle ‘How to Manage Your Software
Projects, Your Teams, Your Boss, and
Yourself’. Quite an ambitious project.

For those that don’t know about Watts
Humphrey, he’s the man behind much of
CMMI. He earned his stripes at IBM, managing
the development of OS/360.

The book has something of a Readers’ Digest of
the other works of Humphrey (on PSP –
Personal Software Process and TSP – Team

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
30 | | JAN 2011{cvu}

Bookshops

simple stream (using Cay Horstmann’s article) is slightly too simple as it
loses the thread safety of the original code.

I found it hard to choose the winner, but eventually decided to give this
issue’s prize to Peter.

Code Critique 67
(Submissions to scc@accu.org by Feb 1st)

Can anybody help me to cast wide characters to an stl string? I can handle
single characters successfully like this:

 std::string str;
 wchar_t wch = L'X';
 str += (char)wch;

but I can’t seem to get the syntax right for doing a whole array of them. Here’s
a program showing what I’ve tried (Listing 3).

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

Code Critique Competition (continued)

Software Process). That’s not a bad thing, as it
makes the book refreshingly short and
accessible. The tone throughout is brusque,
positive and upbeat. I don’t think that Humphrey
has much time for people that have doubts and
hesitate. Issues are tackled head on, usually with
a step-by-step plan.

Broadly, the themes covered in the book are
software quality, making yourself and your team
efficient, and managing yourself and your boss.
Personally, I’m not entirely convinced by the
software-process-as-industrial-process thesis,
but clearly it does have merits. The book
contains plenty of plain common sense, like
‘define your objectives’ and ‘always start with
a plan’. What I found most interesting (and true
to life) in this book were the human insights. For
instance, what managers at various levels expect
and aim for: a Vice President with strategic long-
term goals compared to a line manager with
tactical short-term goals.

Final word, I found the book interesting enough
for me to get a copy of PSP(sm): A Self-
Improvement Process for Software Engineers
by the same author.

Gnuplot in Action
By Phillip K. Janert,
published by Manning, ISBN
1933988398

Reviewed by Giuseppe
Vacanti

Recommended

Gnuplot is a plotting
program, with some data analysis and
manipulation functionality. It is completely
command-line based, and because of this it can
be easily scripted. This feature makes Gnuplot
very appealing if a large amount of data must be
routinely processed in order to produce standard
plots.

This is a very good book that covers all the
aspects on Gnuplot, from the elementary to the
complex ones. As the subtitle - Understanding
data with graphs - suggests, the book is more
than just a guide to the program: the author also
ventures into explaining why one would want to
plot data, and what they might learn from it.

For those less at ease with all the terminology
related to the graphical representation of data,
the author takes the time to introduce the more
important concepts. For instance, in chapter
three the facilities related to logarithmic plots
are introduced. Logarithmic plots are not
however something that one comes across very
often outside of scientific and technical fields, so
the author explains the mathematics behind this
type of graph. Sections such as this one are
clearlyidentified and can be easily skipped if one
is already familiar with their content.

The subject matter is grouped in four parts. In
the first part we learn how to make increasingly
more complex plots, and we are introduced to
Gnuplot's data manipulation capabilities. At this

stage we are not concerned with the details of
how our graph looks like: the default look is
sufficient to gain insights into the data.

Having discussed how to make a plot, in the
second part the author dives into the details of
how to customize the look of our plot. Like any
good plotting program, Gnuplot allows one to
control almost every pixel on the canvas, and we
learn about symbol and line styles, axes, legend
boxes, multiple axes, and more. This part is
appropriately titled Polishing: the basic plot we
have, and now we want to make it look good in
every detail.

Whereas chapters in the first two parts must be
read one after the other, chapters in part three
(Advanced Gnuplot) can be read according to
interest or need. We learn about three-
dimensional plots, color management, curve
fitting, non-cartesian plots, fonts and output
formats, and scripting (including how to plug
Gnuplot behind a CGI script!). By the end of part
three we know all there is to know about
Gnuplot.

As hinted to earlier, an underlying theme across
the book is how graphs are a fundamental tool
in the understanding of data, and many of the
examples make this clear. In the fourth and final
part of the book the theme of graphical analysis
is central, and now we explore how to approach
data analysis and interpretation, and how
Gnuplot can help us achieve an extra level of
understanding. Here the author does not shy
away from some math and more complex topics,
but these can be skipped, as they do not
introduce any new functionality.

In summary a very good book describing a very
good piece of software.

Dependency
Injection: Design
patterns using
Spring and Guice
By Dhanji R. Prasanna,
published by Manning, ISBN
978-1-933988-55-9

Reviewed by Paul Grenyer

This is a great book. When I first saw it on the
ACCU review list I requested it out of pure
curiosity. Having used dependency injection for
some time I was intrigued to find out how what
appeared to be such a straightforward subject
could be stretched into a 300+ page book. I was
also pleased to find out that the book came with
a free PDF download, so it became the first book
I read on my Kindle.

Dependency Injection is quite a simple idea, but
there are pitfalls and plenty of things, such as
naming and scope, that must be considered when
using it. Dhanji goes into all of these in a lot of
detail and I suspect even seasoned dependency
injection users will learn something. He also
gives examples in both Spring and Guice all the
way through and finishes with a complete web
application in Guice.

I was also pleased to read about Dhanji's deep
dislike for the Singleton pattern, but he did
spend several pages explaining the problems.
Although this was good to read, it isn't really
related directly to dependency injection and
could probably have just beenreferenced. There
are quite a few topics in the book when Dhanji
goes off on a tangent. It's all good stuff, but not
particular relevant attimes. The only place
where he gets it a bit wrong is his description of
the behaviour of finalize.

If you are interested in dependency injection,
read this book!

JavaScript for
Programmers
By P.J. Deitel and Harvey
Deitel, published by Prentice
Hall, ISBN: 978-0137001316

Reviewed by Ian Bruntlett

This is an excellent book to
get to grips with internet
programming. Like all of computing, internet
programming is constantly evolving, constantly
making books out of date. There are plenty of
source code listings in the book, with certain
lines highlighted for those things that are
relevant to the chapter’s topic.

Most of this book’s chapters have a ‘Web
resources’ section at the end. The book is useful
for programmers who know about the web (e.g.
HTML) and want to get to grips with JavaScript.
It starts with an introductory chapter which
ensures that the reader is up to speed with the
basics. Chapter 2 is an introduction to XHTML
and provides useful links like validator.w3.org.

Chapter 3 details Cascading Style Sheets (CSS)
that are used to separate structure from
presentation which makes it easier to change the
appearance of a website by just selecting a
different style sheet. I was particularly interested
in its coverage of ‘Media Types’ where web
pages adapt to the type of the device used to
display content such as a computer screen, a
printer, a MID or, for challenged users, braille
or aural media types.

Chapters 4–9 cover JavaScript (Introduction (4),
Control Statements (5,6), Functions (7), Arrays
(8), Objects (9), Document Object Model aka
DOM (10), Events(11).

Chapter 6 is fairly routine except that statement
blocks can have labels which in turn are referred
to in break and continue statements.

Chapter 7 provides a good JavaScript example -
implementing the Craps dice game.

Chapter 8 describes arrays in JavaScript. The
only new thing I noticed was that when a value
is assigned beyond the current size of an array,
that array is resized. And functions can be stored
in arrays as well, I am told. Chapter 9 discusses
JavaScript objects – like a standard library for
JAN 2011 | | 31{cvu}

32 | | JAN 2011

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

At the next conference our current
commit tee secre ta ry , Alan
Bellingham, will be standing
down after ten years. Outside the hallowed
sanctum of the committee, the general
membership may not realise what the secretary
does or appreciate how much he can help or
hinder the smooth working of the committee
(and therefore the ACCU itself). Alan has
provided a much-needed sense of calm
continuity as a number of chairmen have arrived
and departed. I’m sure, like me, my predecessors
would all wish to thank him for his able
assistance. Alan kindly deferred his departure
for a year to avoid a simultaneous change of
secretary and chairman, for which I’m most
grateful. Of course, this leaves a golden
opportunity for someone to take over the
secretary’s role and to make it their own. The
duties are not onerous and the key capability
required is to be organised. Anyone who wishes
to know more should contact Alan or myself
directly. If no-one is forthcoming I shall have to

mount a charm offensive; you have been
warned.

On the accu-general mailing list there has
recently been a continuation of the discussion of
the role of the ACCU and how it relates to other
organisations in computing such as the BCS and
the IET. I am happy to see this discussion
cont inue and the level of in teres t and
commitment to the ACCU is very encouraging.
We certainly do need to continue to think where
we want the ACCU to go in the next few years.
Our industry is changing in many ways and we
must be a part of that change, and hopefully be
at the vanguard of it rather than being pulled
along reluctantly or told what to do by others.
Our industry is a young one and it is still
forming, still working out how the myriad pieces
fit together. Although we are in the first flushes
of hopeful and expectant youth compared to
medicine or other professions we have achieved
a lot in a short space of time. That time, however,
has been long enough to last a lifetime for some.
For instance, within the last few months we have
lost two notable names in our industry – Sir
Maurice Wilkes and Watts Humphrey – so it is
probably a good time to reflect on what they
achieved and what we can learn from them and

their lives. These two pioneers had vision and
the drive to see it through. From the earliest
computers through to the dawn of networking
with the Cambridge Ring, or as one of the
founders of software engineering, their
discipline and commitment remind us of what
we can all achieve with focus and rigour. We
won’t all reach the levels of these men but we
can all improve what we do and how we do it in
our own environments. I believe that the things
that inspired and motivated these men are the
same values that drive ACCU members and
their desire to create new solutions, learn new
techniques and hone their skills. We should not
be daunted by them but rather inspired by them
–JAN 2011 they set a pathway that we can and
should follow, both as individuals and as a
group. We cannot repeat what they did; we must
find a new way. As software designers, creating
novel solutions and envisioning architectures
for systems is what we are good at and what we
enjoy. All we need do is to apply these skills to
our industry and to the ACCU itself instead of
to the software we write. Now there’s a
challenge worth taking on and one that the
membership is ideally placed to do!

JavaScript – Math / String / Boolean / Number /
Document / Window and is a very interesting
chapter.

Chapter 10 covers the Document Object Model
(DOM) and shows the DOM tools that can be
added to IE or FireFox. Chapter 11 JavaScript:
Events explains how web pages can react to
events in the browser. Chapter 12 covers XML
and RSS. XML is the eXtensible Markup
Language.

Chapter 13: Ajax-enabled Rich Internet
Applications (RIA) are introduced, allowing a
developer to develop lots of Cool Things. The
obligatory appendices are here, covering a)
XHTML special characters, b) XHTML colours
and c) JavaScript operator precedence chart.

Bookcase (continued)

	Look at the princess
	Sustainable Space
	Experiences of Pair Programming
	Hotel Room to Train Carriage
	When It’s Done, It’s Done
	A Game of Tug o’ War
	On a Game of Roulette
	Somno, The Barber of Clapham Junction, Introduces GPars
	A Foray into CMake
	Agile Cambridge 2010
	Inspirational (P)articles
	Desert Island Books
	Code Critique Competition 67
	Bookcase
	View From The Chair

