

NOV 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

What’s It Like?
’ve never had the opportunity to do pair programming ‘for
real’ in a commercial environment. It’s always
considered either a waste of expensive resources

(people) or, bluntly, a pointless exercise – which is
just a variation of the first reason. Some teams I
have spoken to about it have been more positive
about the idea, but still often view it as best done on an
ad-hoc basis, for solving a particularly difficult problem,
or dealing with new code, rather than as a generally
applicable practice to be done all the time.
For myself, I’ve only ever paired with other programmers
for short periods of time – maybe an hour or two at most, but
often just a few minutes – but I’ve found the experience
enlightening and productive. A second pair of eyes, and all
that. The argument that the sum of paired programmers is
more than the two individuals is the common riposte from
proponents of the practice, to those who see it as wasteful
of resources, but I also see the difficulty with having two
people doing one job. When I have paired with someone
to solve a particular problem, it’s been a quite intense,
fast-paced and yes, exciting experience, but I don’t think I
could sustain that level of concentration all day, every day.
But then, maybe I have it all wrong, and I’m missing the
point. All along I have been looking for that middle ground,
the compromise which compromises the benefits of it, in the end. Perhaps it’s one of
those things that I must immerse myself in completely to enjoy the benefits the
advocates of pair-programming claim. Now we’re back at the beginning – I still need
an environment to do that in!
If you’ve worked in such an environment, I’m sure I am not the only reader of C Vu
who would be most interested to hear of your experiences – good, or bad.

 I
Volume 22 Issue5
November 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo, Paul Floyd,
Pete Goodliffe, Paul Grenyer,
Richard Harris, Jon Jagger,
Roger Orr, Alan Stokes

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | NOV 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
12 Desert Island Books

Alan Stokes chooses to
take old friends with him.

13 Inspirational (P)articles
Frances Buontempo
continues her quest for
positive experiences.

14 Code Critique
Competition #66
Set and collated by
Roger Orr.

18 Regional Meetings
A roundup of local
meetings and events.

REGULARS
20 Bookcase

The latest roundup of
ACCU book reviews.

24 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.6: 1st December 2010
C Vu 23.1: 1st February 2011

Overload 101: 1st January 2011
Overload 102: 1st March 2011

FEATURES
3 A Game of Roulette

The Baron has two games to play!

4 On a Game of Chase
The Baron’s student acquaintance analyses his previous
game.

6 A Comparison of Boolean Flags
Paul Floyd compares different ways of representing flags
in C++.

9 What is Code-Dojo?
Jon Jagger explains the game.

10 This Time I’ve Got It...
Pete Goodliffe tells us a story of stress, short-sightedness,
and solutions.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

NOV 2010 | | 3{cvu}

struct point
{
 double x;
 double y;
 point(const double x,
 const double y) : x(x), y(y)
 {
 }
};

point
spin()
{
 static const double pi = 2.0*acos(0.0);
 const double theta = 2.0*pi*double(rand())/
 (1.0+double(RAND_MAX));
 return point(sin(theta), cos(theta));
}

bool
enclose_0(const point a, const point b,
 const point c)
{
 return (a.x*b.y<a.y*b.x && b.x*c.y<b.y*c.x
 && c.x*a.y<c.y*a.x)
 || (a.x*b.y>a.y*b.x && b.x*c.y>b.y*c.x
 && c.x*a.y>c.y*a.x);
}

bool
play()
{
 const point a = spin();
 const point b = spin();
 const point c = spin();
 return enclose_0(a, b, c);
}

Listing 1

A Game of Roulette
The Baron has two games to play!

reetings Sir R-----! I must say that it is a pleasure to see you this fine
evening. I take it that I might tempt you with a glass of fortifying
spirit and perhaps a little sport alongside?

Splendid fellow!
I propose a game popular at the gaming tables of the court of Y--- gakha.[1]
I availed myself of such many times during my long stay as most honoured
guest within its vast maze of gleaming spires. This great and, truth be told,
extremely rewarding honour was granted me upon my discovery that one
of the courtesans was, in fact, a kumiho; a were-fox of murderous intent,
over-fond of the taste of human liver and distressingly common in those
parts at the time.
After a spate of killings amongst the minor nobility, my suspicions were
aroused that just such a beast was responsible by a sudden and unexpected
shortage of fava beans and Chianti in the court’s provisions.
I therefore donned my colours and rode, horn in hand, into the royal
audience chamber. All eyes turned to me as I sounded the call to hunt, but
one pair in particular, belonging to a courtesan with a somewhat vulpine
countenance, betrayed fear rather than shock. I knew instantly that I had
found my quarry and spurred my steed toward her as she took her true form
and fled.
That pursuing so nimble a creature over the roofs of those spires on
horseback was an impossible task hardly needs mention; nor, for that
matter, does my having successfully done so.
But I am keeping you from your sport.
Come, join me at the roulette wheel and I shall explain the rules.
Your stake shall be one coin for which you shall spin the wheel three times.
After each spin you shall mark the point on the wheel that is closest to you.
If the triangle formed by connecting these points with a silken thread
encloses the centre of the wheel you shall win four coins from my purse.
If this does not take your fancy, I have another.
In this game, on paying your stake of one coin a volunteer shall, having
been blindfolded and spun about until a little confused, pick a point upon
the face of the wheel with the aid of a pin. You shall then spin and mark
the wheel three times as before but shall win only if the triangle of thread
encloses the chosen point, albeit six and one half coins rather than four.
When I described these games to that odious student acquaintance of mine,
he started blabbering on in his familiar incomprehensible fashion but, in
an unusual display of lucidity, eventually noticed that I cared not one whit
for his stilted nonsense and demanded that I show more sympathy to those
of his vocation. Vocation! The miserable cur has the gall to suggest that
he and his ilk have a divine calling!
Presumably buoyed by this self appointed elevation in status he
compounded his insubordination by suggesting that I should take better
care of my uniform! Were I not, as you well know, the most modest and
merciful of noblemen, I should have run him through on the spot!
Still, let us not tarry on this distasteful episode; come replenish your glass
whilst you consider this wager!

Listings
Listing 1 is a A C++ implementation of the 1st game.
Listing 2 is a C++ implementation of the 2nd game.

Notes
[1] With thanks to Seung Yang for this puzzle.

G

bool
enclose_o(point a, point b, point c,
 const point o)
{
 a.x -= o.x; a.y -= o.y;
 b.x -= o.x; b.y -= o.y;
 c.x -= o.x; c.y -= o.y;

 return enclose_0(a, b, c);
}

bool
play(const point random_point)
{
 const point a = spin();
 const point b = spin();
 const point c = spin();
 return enclose_o(a, b, c, random_point);
}

Listing 2

A Game of...

4 | | NOV 2010{cvu}

On a Game of Chase
The Baron’s student acquaintance analyses his

previous game.

he Baron’s latest game involves racing a pair of coins around the outer
squares of a chessboard, with Sir R-----’s coin beginning at the lower
left and the Baron’s at the lower right.

Each turn consists of the Baron moving his coin four squares away from
Sir R-----’s and Sir R----- moving his towards the Baron’s by a number of
squares equal to the roll of a die.
If the Baron is able to return his coin to the lower row without being caught
up or overtook he receives one coin from Sir R-----. If not, Sir R-----
receives forty coins for each square between the Baron coin and the lower
left square.
We can reckon Sir R-----’s expected winnings at this game as the winnings
if the Baron is caught on the first move multiplied by the probability of
doing so, or zero, plus the expected winnings from the remaining turns
multiplied by the probability that he is not, or one.
Whilst this may not seem especially insightful, we can likewise reckon the
expected winnings from the remaining turns and thusly arrive at the desired
result.
Noting that the Baron’s nth move leaves his coin on the 4n+7th square from
the bottom left, we have

where rn is the position of Sir R-----’s coin on the nth turn.
Since the Baron will reach the lower row of the board on his 6th turn, we
also have

where the upside down ‘A’ means for all.
Now rn will be equal to the sum of n rolls of the die so we must figure the
probabilities of this sum being equal to any particular value.
The usual method for calculating such probabilities is by convolution. If
we have two integer random quantities, x and y, this means

where the capital sigma stands for the sum of the expression that follows
it for all integers.
If we denote the sum of n rolls of a die as xn, this becomes

If we were to use these probabilities in our reckoning we would be
committing a grievous error since the probabilities we require are those
conditional on Sir R----- not yet having won the game. These would give
weight to turns after the game had in fact finished and would consequently
lead to the overestimation of the expected winnings of the game.
I explained this problem to the Baron when he described the rules of his
game to me, but I fear he didn’t entirely grasp its significance.

We can figure the correct probabilities by counting the number of ways
we can arrive at a square from one that was behind the Baron’s coin in the
previous turn. We do this by noting that the lowest roll of the die, x, that
could possibly deliver Sir R-----’s coin to the kth square must satisfy

and hence

The number of ways Sir R----- can arrive at the kth square on the nth turn
is consequently

with the special case of

To calculate the probability we must divide this number by the number of
possible games that take n turns, given by

Using this probability in our formula for the expected winnings yields 475
of 486th parts of a coin and in consequence I should not have advised Sir
R----- to take up this wager.

Figures
Overleaf are histograms of dice sums:

Figure 1 for 1 dice
Figure 2 for 2 dice
Figure 3 for 3 dice
Figure 4 for 4 dice

T

en p rn 4n 7+≥() 40 21 4n–() p rn 4n 7+<() en 1+×+×=

n 5>∀ en 0=

p x y+ k=() p x i=() p y k i–=()×
i
∑=

p xn k=() 1
6
--- p xn 1– k i–=()×

i 1=

6

∑=

p x1 k=()
1
6
--- 1 k 6≤ ≤

0 otherwise⎩
⎪
⎨
⎪
⎧

=

k x 4 n 1–() 7+<–

x k 4n 3––>

N rn k=() N rn 1– k i–=()
i min 1 k 4n– 2–,()=

6

∑=

N r1 k=()
1 1 k 6≤ ≤
0 otherwise⎩

⎨
⎧

=

N r1() 6=

N rn() 6 N rn 1– bn 1–<()×=

double
N(const double n, const double k)
{
 if(n==0.0) return (k==0.0) ? 1.0 : 0.0;
 if(k<n || k>n*6.0) return 0.0;
 if(n==1.0) return 1.0;
 double sum = 0;
 for(unsigned i=1;i<=6;++i)
 sum += N(n-1.0, k-double(i));
 return sum;
}

double
p(const unsigned long n, const unsigned long k)
{
 return N(double(n),
 double(k)) / pow(6.0, double(n));
}

Listing 1

On a Game of...

NOV 2010 | | 5{cvu}

Fi
gu

re
 1 Figure 2

Fi
gu

re
 3

Fi
gu

re
 4

A Comparison of Boolean Flags
Paul Floyd compares different ways of representing

flags in C++.

n this article, I will explore some of the trade-offs between the various
ways that you can represent flags in C and C++. This is aimed at the
context of class/struct members and I will concentrate on memory use

and speed.
Let’s start with a quick tour of the representations that I’ll be looking at

bool
bitfields
std::bitset
std::vector<bool>

A bool flag needs no explanation. Bitfields have a limitation that they
can only be members of structs/classes. Further, in this article I’ll only
consider bitfields that are one bit wide – the minimum to represent a binary
flag. Both of these types of flags use named variables. std::bitset and
std::vector<bool> are a bit different. For these, the collection of
flags is named as a variable and the elements are accessed by index (or
iterator for std::vector<bool>. It is fairly straightforward to achieve
the same effect as bool/bitfield named flags with these two, using an
enum to name the flags. For instance, consider:
 class A
 {
 public:
 enum { flag0, flag1, flag2, flagSize };
 std::bitset<flagSize> flags;
 };

Then it is possible to write code like:
 if (flags[flag0])
 {
 ...

compared to using a bitfield:
 class A
 {
 public:
 unsigned int flag0:1;
 unsigned int flag1:1;
 };

And the client code:
 if (flag0)
 {

Whilst you can do with a bitset or vector<bool> what can be done
with bitfields or bools, the opposite is not true. std::bitset offers
many functions that are oriented towards manipulating flags. To list a few,
conversion to/from strings, logical operations between bitsets, checking

whether any bits in the bitset are set, set/reset/flip the whole bitset.
Std::bitset is statically sized. For instance, you might declare a
collection of flags as:
 std::bitset<10> flags;

which makes flags an array of bits with a static size of 10. As you might
expect with such a template, each instantiation with a different size
represents a di f ferent type. This means that i f you have a
std::bitset<10> and a std::bitset<12>, then you won’t be able
to use std::bitset operators like == or = with them.
std::vector<bool> has the usual standard library container features,
plus the flip() member function to invert all of the flags. It is
dynamically sized. Obviously, if you want to have named flags, then the
number of names cannot be extended at runtime – as an example, in class
A above , you can’ t add a flag3 to the enum a t run t ime.
Std::vector<bool> offers all of the associated standard container
features, plus the availability of the associated standard algorithms.
In order to measure the code size for accessing a flag of the various types,
I wrote a series of small set/get functions such as those in Listing 1.
I then compiled this with a number of compilers/platforms, using basic
high optimization. Where possible, I used nm to obtain the sizes of the
functions. nm is a UNIX tool for examining the contents of compiled
object, library and executable files. From the man page ‘nm - print name
list of an object file’. It can tell you things like the names, sizes, offsets, types
(function, data), bindings (static, global), index (which may be undef for
an undefined symbol). The output is usually quite verbose, as most
compilers add lots of extra little bits and bobs. Listing 2 contains an
example. (I’ve trimmed over 100 lines of the output.)
nm does have a different format on BSD and SysV systems. Personally, I
prefer the SysV output. Linux nm supports both, defaulting to BSD format,
but you can get the SysV format by using the -f sysv option.
On platforms where nm is not available (or is not capable of producing size
information), I resorted to dumping assembly, and calculating the sizes
from the offsets. This technique does mean that the results may be a little
distorted between platforms – sometimes the figure includes padding.
Table 1 presents the average bytes per function, and the average
normalized sizes of the functions, relative to the smallest. For instance, this
means that on average, the get bitset function was 2.24 times the size
of the minimum. Here, 15 combinations of platforms and compilers were
used.

I

PAUL FLOYD
Paul Floyd has been writing software, mostly in C++ and
C, for over 20 years. He lives near Grenoble, on the edge
of the French Alps and works for Mentor Graphics
developing a mixed signal circuit simulator. He can be
contacted at pjfloyd@wanadoo.fr.

class bf
{
 public:
 bool getBool() const;
 ...
 private:
 bool mBool;
 ...
};

bool bf::getBool() const
{
 return mBool;
}

Listing 1
6 | | NOV 2010{cvu}

Whilst I did expect bitset to require more code than bool (due to logical
masking and shifting), I was somewhat taken aback at the much larger code
generated by all compilers/platforms for vector<bool>. For the two
template classes, bitset and vector<bool>, the object code may also
include template instantiations, depending on how the C++ standard
library has been built for that compiler/platform. This object code was not
counted in the above figures.
There are two versions of the bitfield function. The first one, plain
bitfield, reads and writes a bitfield at position zero. The second is
at position 3. The table shows that accessing bitfields other than at
position zero adds roughly 3 bytes to the code size for each read and write.
This is because no shift is required at bit position zero.
This shows the relative size of the code to access the different types of
flags. How does this balance with the size of instances of the flags? I’ll
restrict the comparison to just bitfield and bool. On average, a
bitfield costs 9.86 bytes more per read, and 16.5 bytes per write in the
code text. On the other side of the balance, there’s the heap memory
containing struct instances. Assuming that the bitfields are all
contiguous and part of the same 32bit unsigned int, the memory occupied
per struct is 4*ceil(n/32) compared to a straight n bytes for bools. That
makes a difference of n – 4*ceil(n/32). Let’s take an example of a struct
with 28 flags, 1000 reads and 100 writes. That works out at an extra cost
of 9.86*1000 + 16.5*100 = 11510 bytes when using bitfields over
bools. Each instance of the struct saves 28 – 4*ceil(28/32) = 24. So to
break even, 11510/24 = 480 instances are required before the use of
bitfields will starts paying off with a total reduced memory footprint.
This example uses a fairly high packing factor of 28/32. If there are only
10 bitfields, then 1919 instances would be required. If 4 or fewer
bitfields are used, then there is no break even, bitfields will never
use less memory.
To measure the speed, I used a similar series of standalone functions (see
Listing 3). These were called using a test harness based on the code from
Jon Bentley’s Programming Pearls. For this test, the code was compiled
without optimization (with optimization turned on, it is often difficult to
prevent the compiler from optimizing away the whole timing loops).
The results were obtained from 14 combinations of platforms and
compilers.
Here we see that the bitfield version is a fair bit slower than the bool
one. bitfield3 is only a tiny bit slower than bitfield. Both the
bitset and vector<bool> versions are very much slower. It also

seems that there is a wide range of performance between
different compilers/platforms.

Conclusions
If performance is of no issue, then use std::bitset,
enjoy the functionality that is offered, and save yourself re-
inventing the wheel.
If speed is the key, then use bool flags.
If memory is your bottleneck, then things become more
complicated. You will have to choose between bool and

bitfields. If you have much code and few data instances, then bool
wins. When the number of data instances much outnumber the code
accesses, then bitfields will win. If you do use bitfields, try to
ensure that your most used flags is put in bit position zero, and don’t use
them unless you have 5 or more flags.

Afterword
Compilers/platforms used:

Solaris 10 x64, Sun Studio
Solaris Express 32bit, Sun Studio
Solaris 10 SPARC, Sun Studio
Mac OS X 10.5.1, GCC
FreeBSD 6.2, GCC
Fedora Core 6 32bit, GCC
Windows 2000, Visual Studio 2003, GCC, OpenWatcom, Digital
Mars
RHEL 4 64bit, GCC, Sun Studio
RHEL 4 32bit, GCC, Sun Studio

The only big omissions that I know of are the Intel and Borland Compilers.
I could have added HP-UX, but I think that I have quite a wide spread of
tests already.
I struggled a bit with the compilers that I’m not familiar with
(OpenWatcom and Digital Mars). In particular, I couldn’t extract the
function sizes with Digital Mars, so this is omitted from the test.
OpenWatcom gave very poor speed results, so these were excluded from
the results. The bitset results for GCC/cygwin are excessive, and I
removed that platform/compiler combination.
The time results are printed directly. The size results had to be further
processed after compiling the object files. Where possible I used nm. On
Mac OS X I used otool -t -v. For Windows GCC and VisualStudio I
used objdump -d. Lastly, for OpenWatcom I used wdis.
The normalized figures don’t always have a minimum of 1. For the size
measurements, this was due to there not being one function that always
had the lowest byte count.
I haven’t included figures for the tests that I did with char/int/long. On
average, int was a little faster than bool, but even less space efficient.

nm -C bitfield

bitfield:

[Index] Value Size Type Bind Other Shndx Name

[95] | 134547680| 100|FUNC |GLOB |0 |9 |main
[93] | 134547280| 0|FUNC |GLOB |0 |UNDEF |rand
[73] | 134547264| 0|FUNC |GLOB |0 |UNDEF |srand

Li
st

in
g

2

set get

nothing bitfield bitfield3 bool bitset vector nothing bitfield bitfield3 bool bitset vector

Avg Bytes 6.07 25.43 28.14 11.64 30.29 126.931 9.07 15.43 19.29 9.43 18.43 109

Normalized 1 5.24 5.9 2.2 6.14 26.42 1.07 1.87 2.42 1.06 2.24 13.83

Ta
bl

e
1

get set

empty bitfield bitfield3 bool vector bitset bitfield bitfield3 bool vector bitset

Avg time 10.48 15.24 15.29 11.34 157.88 89.13 16.88 17.12 11.57 163.14 95.3

Norm diff - 5 5.06 1 154.92 82.66 5.88 6.1 1 140.15 77.86

Ta
bl

e
2

NOV 2010 | | 7{cvu}

#include <bitset>
#include <vector>

class bf
{
public:
 bool getBool() const;
 void setBool(bool v);
 bool getBitset() const;
 void setBitset(bool v);
 bool getBitfield() const;
 bool getBitfield3() const;
 void setBitfield(bool v);
 void setBitfield3(bool v);
 bool getVector() const;
 void setVector(bool v);
 bool getNothing() const;
 void setNothing(bool v);
 void unused() const;

private:
 bool mBool;
 std::bitset<8> mBitset;
 unsigned char mBitfield:1;
 unsigned char mBitfield2:1;
 unsigned char mBitfield3:1;

 std::vector<bool> mVector;
};

bool bf::getBool() const
{
 return mBool;
}

void bf::setBool(bool v)
{
 mBool = v;
}

bool bf::getBitset() const
{
 return mBitset[0];
}

void bf::setBitset(bool v)
{
 mBitset[0] = v;
}

bool bf::getBitfield() const
{
 return mBitfield;
}

bool bf::getBitfield3() const
{
 return mBitfield3;
}

void bf::setBitfield(bool v)
{
 mBitfield = v;
}

void bf::setBitfield3(bool v)
{
 mBitfield3 = v;
}

bool bf::getVector() const
{
 return mVector[0];
}

void bf::setVector(bool v)
{
 mVector[0] = v;
}

bool bf::getNothing() const
{
 return true;
}

void bf::setNothing(bool /*v*/)
{
}

void bf::unused() const
{
}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Li
st

in
g

3 Listing 3 (cont’d)
8 | | NOV 2010{cvu}

What is Code-Dojo?
Jon Jagger explains a way to practise our coding skills.

n martial arts (such as karate) a dojo is a place where martial artists meet
to practise their martial art. Similarly a code-dojo is a place where
software developers meet to practise writing software.

A code-dojo is all about doing the practice – it’s a way to try and improve
your skill rather than finish a piece of software.
In a typical code-dojo you split into small groups, each group works on
the same small problem, often in a test-driven manner, periodically
rotating the keyboard driver.

Code dojo issues
After attending numerous code-dojos I began to
notice some things which didn’t seem ideal:

It frequently took a long time for some of the
groups to install their chosen compiler and
test framework onto their laptop.
Different people use different editors and
this again creates a bias in favour of the laptop-owner in each group.
Often, at the end of the practice each group presents their solution.
Again this seemed to waste a lot of time as each group struggled in
turn to attach their laptop to a projector.
Your options are very limited if someone has to leave early and take
an in-use laptop with them.
Sometimes one of the groups is pronounced ‘the winner’! What is
that all about?
After everyone had finished and walked home the collective efforts
were typically lost, never to be thought about again.

It occurred to me that all of these problems could be alleviated if you could
code and test inside a browser! I figured it wouldn’t be too hard to write
a server offering a simple browser-based code-editor environment together
with a button to submit the code to the server. The server would then save
the submission, run the tests, and return the test outcome; green if all the
tests passed, red if one or more tests failed, yellow if there was a syntax
error. With a setup like this:

The start up time would drop to almost nothing.
Everyone would be equally disadvantaged by having to use the same
browser-based editor (I like to think I abuse all people equally
regardless of their race, colour, creed, sex, religion, ...).
Any laptop could instantly substitute for any other laptop.
At the end everyone could have instant access to every run-tests-
increment of every group’s code (without needing a projector).
After the end everyone would still have access to everyone’s code.

What are we practising?
As I thought about this browser-based code-dojo idea I started thinking
hard about exactly what skills a code-dojo should help you practise.
I thought about something many classic books and ageing gurus try and
tell us, but which we seem prone to forget each new generation:

Jerry Weinberg: ‘It’s always a people problem’ (The Secrets of
Consulting)
Tom DeMarco and Tim Lister: ‘The major problems of our work are
not so much technological as sociological in nature’ (Peopleware)
Fred Brooks: ‘The Mythical Man Month is only incidentally about
software but primarily about how people in teams make things.’
Richard Gabriel: ‘My overall bias is that technology science,
engineering and company organization are all secondary to the
people and human concerns in the endeavor.’ (Patterns of Software)

I felt an ideal code-dojo should encourage social practice as well as
technical practice. For example, in a regular code-dojo it’s not uncommon
for people to spend two hours in a group of five people and not even ask
the names of the other four people in the group! And if you think that’s
bad think about the group to group communication. Or rather the lack of
it. It is quite stunning to watch a code-dojo unfold and see how often each
group implicitly assumes they are competing against the other groups. Or,
that they’re not allowed to even talk to the other groups.

CyberDojo
The more I thought about trying to break these implicit assumptions the
more attractive the idea of a code-dojo performed completely inside
browsers became. So I’ve written a code-dojo server! It’s called
CyberDojo.

CyberDojo currently supports C, C++, C#, Java, PHP, Perl, Python,
and Ruby.
There’s a CyberDojo server running at http://www.cyber-dojo.com
It’s open-sourced at http://github.com/JonJagger/cyberdojo so you
can build your own server if you want to.
There’s more information about CyberDojo at
http://jonjagger.blogspot.com/p/cyberdojo.html

Figure 1 is a screenshot showing the Pandas (each group chooses an animal
avatar for their laptop) who are currently at red.
The traffic-light display on the bottom-left indicates their previous two
submissions were green and red.
The weakest-link-tv-show-style points-ladder on the right indicates there
are at least five groups playing in this CyberDojo; the Pandas are at red,
the Bats and the Badgers are at yellow, the Bears and the Alligators are at
green. Two greens means 200 points are currently on offer, so if any group
clicks ‘Bank’ the balance will increase from 300 to 500.

I

JON JAGGER
Jon Jagger is a self-employed software coach-consultant-
trainer-mentor-programmer who works on a no-win no-
fee basis. He likes the technical aspects of software
development but mostly enjoys working with people. He
can be contacted at jon@jaggersoft.com

it’s not uncommon for people to spend two hours
in a group of five people and not even ask the

names of the other four people in the group!

often each group implicitly
assumes they are competing
against the other groups
NOV 2010 | | 9{cvu}

What is Code-DoJo? (continued)

Becoming a Better Programmer # 65

Fi

gu
re

 1
This Time I’ve Got It...
Pete Goodliffe tells us a story of stress, short-sightedness,

and solutions.

ust one more minute,’ Jim said. ‘I think I really do know what the
problem is now. This time I’ll fix it.’ Julie had been watching him
trying to solve the problem for almost a whole day now, with

increasing amusement.
Jim had been hunched over the keyboard for hours straight. He’d hardly
glanced up. He’d certainly not eaten. And he’d only had the one cup of
coffee that Julie had brought mid-morning, mostly out of pity.
It wasn’t like him at all. He was a man on a mission.
A sense of urgency, if not mild panic, had been brought about by a ‘level 1’
bug discovered in the live system. How it had got through the QA process
was anyone’s guess.
It was thought to be a problem in some of Jim’s code, and so Jim sprang
into action. It was partly pride that stopped him from asking for help, but
there was also a hint of naiveté – he thought he’d have it tracked down in
ten minutes, and he would then look like a hero for fixing the running
system.

So far that plan had failed.
With every minute that passed, the pressure increased. Reports from
customers were trickling in about the problem. One or two reports early
in the morning had become a steady stream. Before long that stream would
become a flood, and then the whole team would be dumped in it. Indeed,
if the problem wasn’t fixed soon the company could suffer as a result.
No one wants that on their conscience.
Or their CV.
Jim had to get this fixed. And fast. The pressure was building.

‘J

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
10 | | NOV 2010{cvu}

{cvu}

By now they surely should have rolled the code back to a
previously known good release and taken more time

over the diagnosis and the fix, but at every turn Jim
assured Julie that he was ‘almost there’. And he truly
believed it. But each time he got close to the cause

of the problem, each time he thought he had it
cornered, it seemed to back off into a darker recess of
the system.

The problem was clearly now not solely in Jim’s code.
All his unit tests showed that the module functioned as well as had been
expected. No, this was a gnarly integration issue; something strange
happening at the boundary of a number of software modules. And it was
intermittent, too. The problem was related to some subtle timing or
ordering of events flowing round the system.
Jim’s prey, like a shy deer, was evading his sights. He just couldn’t quite
find it.
‘I think I know where it is now. It’s not in the event dispatcher itself. I think
there’s some nastiness in the communication between it, the database and
the processing backend’ said Jim. ‘I’ve got it down to those three
components. I haven’t fixed it yet, but the next fix really has to work.’ He
tried to sound more certain than he really was.
‘Really? Are you sure?’ chimed Julie. There was a hint of mocking in her
tone. It wasn’t missed. Normally Jim would play along, but he wasn’t in
the mood today. He gave her the glare that he normally reserved for traffic
wardens and turned his gaze back to the scores of source code windows
open on his screen.
‘If I could just...’
‘Wait a minute’ interrupted Julie. ‘Seriously, just wait. Stop and think
about what you’re doing.’ Her calm voice cut across Jim and he looked up
again. He looked tired. And stressed. ‘Come on, walk with me to the coffee
machine. Tell me what you think the problem is.’
Jim had been thinking. All day. But he did need a
coffee, so he acquiesced. He’d been too proud to ask
for help; increasingly so as the day wore on. But now
he realised that he needed a listening ear and a fresh
perspective. He was out of good ideas, and was now
operating on educated guesses and adrenaline.
Jim had been too close to the problem. He’d tried every first thing that
entered his head without seeing (or yet understanding) the bigger picture.
He had started with a preconception of the issue, and hadn’t focused on
detecting the fault before applying sticking-plasters. Each one was a ‘little
fix’ that should have been the solution, but just masked, or moved the
problem around – like smoothing an air bubble trapped under wallpaper.
And he’d spent a whole day doing it. He felt no closer to the solution, and
he felt the rest of the team’s eyes boring into the back of his head as he
worked frantically on a fix.
‘Don’t worry’ said Julie. She had seen it many times over. She’d done it
herself enough times in the past. And she knew well enough that she was
still perfectly capable of doing it again. ‘Tell me what you’ve found so far.’
Jim started to describe the situation.
One coffee and one chat later Jim felt refreshed and had a new focus. As
he had explained the full problem to Julie, without her saying a single word,
it dawned on him that he’d missed a large piece of the puzzle. As he
described what he was going to do next, he realised how he’d not seen the
real problem. He described what he’d do instead.
‘That makes perfect sense’ said Julie encouragingly. ‘Do you want me to
pair with you?’
‘I think I’ve got this covered now,’ said Jim. ‘But do come back in ten
minutes and check that I’m not going off on one again.’ Then he added,
thoughtfully ‘And, when I’m done, would you mind reviewing the fix?’
‘Of course not’ said Julie. She smiled.
Jim was like her in many respects. She knew that he’d only learn by making
mistakes. At the end of the day, she’d ask him to reflect on what had

happened, a little personal retrospective. Hopefully he wouldn’t be doing
that again in a hurry.
Jim fixed the issue, they reviewed the fix, and deployed it by the end of
the day (which was spent celebrating over a drink, when it could have been
spent hunched over a keyboard working late into the night).

Desert island development
No developer is an island. Beware the peril of getting so narrowly focused,
and so close to a part of the problem that you’re not really able to see the
whole issue, or to be able to effectively work on it.
Watch yourself. Check whether you’re going down a coding blind alley,
and make sure that you will notice and can get back out. How can you do
this? Work out some practical mechanisms. Set yourself short time limits
and deadlines, and review your progress as you go. Make yourself
accountable to someone else as you work, either by pairing, reviewing, or
informally reporting progress to them.

Be accountable to another programmer. Review progress with
them regularly.

Never be too proud to ask for help. As we saw above, it’s often in
describing a problem that you’ll explain to yourself how to fix it. If you’ve
never tried doing this, you’ll be amazed at how frequently it happens. You
don’t even need to talk to another programmer. It could even be a rubber
duck [1].

Stood at the bottom of the mountain
Many software design issues, coding decisions, or bug fixes feel like a
huge mountain you have to climb. Running directly to the foot of the
mountain and starting to clamber up is often the wrong approach.

Often it is better (i.e. easier, more time/money
effective) to approach the mountain in a team. The
team can help each other up. One person can point out
when another is going to climb into a difficult
situation. The team can work together in ways that an
individual can’t.
It always pays to take a step back first and plan a route

before starting your ascent. Round the far side of the mountain there may
be a far easier route to get up, if you’d only look for it. Indeed, there may
already be a path laid. With signposts. And lights. And an escalator. Your
first route into a problem is rarely the best.

When facing a problem, make sure you’ve considered more than
one approach to solve it. Only then start work.

This is one example, of many, of how software development is often more
of a human problem than a technical problem. We have to learn how to
enable ourselves to solve problems most effectively, and overcome our
natural instincts to solve problems quickly – but ineffectively.

Questions
How effectively do you work with others in your team?
Can you ask for help, or to discuss problems?
How often do you ‘code yourself into a dead end?’ When did you
last do this? How long did it take you to notice?
Are you accountable to others? If not, to whom could you become
accountable?
Do you think sharing your progress and discussing problems would
make you look like a weaker programmer to others in the team?

References
[1] The Pragmatic Programmer. Andrew Hunt and David Thomas

(1999) ISBN-10: 020161622X

Your first route into
a problem is rarely

the best
NOV 2010 | | 11

Desert Island Books
Alan Stokes chooses to take old friends with him.

have just got back from the first Agile Cambridge and while I was there
a prominent ACCU member asked if I was always going to tease
(although he didn’t use that word) people in my Desert Island Books

introductions. I was a little taken as back as I see it as part of the fun and I
believe I only tease those people who I know well enough....

Although I have known Alan Stokes for a number of years, first on ACCU
general, then at the conference, then at the ISO C++ panel and finally at the
banks at Canary Wharf, I do not feel I know him well enough to tease.
However, in all the time and right from the beginning I have known him to
be a skilled, solid and highly talented developer.

Alan Stokes
The hard thing about this task of course is not deciding what to put in, but
what to leave out. I’m a hoarder by nature, particularly of books. The other
difficulty is deciding how to present them; I’ve decided to go for
chronological order, or at least the order in which I encountered these
books.
I think I’m supposed to focus on technical books (but I
must include a novel), but my first choice is neither. I read
(and re-read, and re-re-read) the Mad Scientists’ Club as
a child, long before I’d ever seen a computer. It’s a
collection of stories about a group of American kids in the
Fifties, who apply science (and engineering) to the
situations they face. They have access to an impressive
array of hardware (radio sets, scuba gear, helium cylinders) and manage
both inspired mischief (creating a fake Loch Ness monster, haunting a
house) and heroic rescues (correctly working out where a lost pilot must
have come down and going to get him). Something in this really chimed
with me – some combination of their ability to make things happen and
their sheer geeky excellence. Unfortunately I lost my copy many years ago
and would probably never have seen it again if it had not been mentioned
on Slashdot. The book (and several sequels) are now back in print, and I’ve
had the pleasure of reading them to my two boys. (It’ll be interesting to
see if this subliminal propaganda has any effect!) I still enjoy the stories,
and would take this with me to my desert island for pure escapism, and as
inspiration to take charge of my own rescue.
I was very lucky to have access to various microcomputers at school from
the age of 12 onwards – initially a Commodore PET (4k of RAM!
Addressable screen! Cassette deck!) and subsequently an array of BBC
Micros. I’m tempted to take The PET Revealed to my desert island (an
annotated disassembly of the firmware and general treasure of arcana). I’d
happily spend a couple of years discovering how the PET actually worked.
(My reaction on encountering a computer program for the first time was
a determination to find out how it was done, and to be able to do even better
myself. I’m still working on both.)
The book I will include from that part of my life is Compiler Construction
for Digital Computers. This was the first book I’d read that covered how
large programs could be put together. At that stage I’d dabbled in a few
languages beyond Basic and 6502 assembler – PL/1, Fortran, even a
strange thing called C – but was still more interested in how the compiler
worked (and how to make a better one) than in anything else. This book
was a revelation – there were data structures, algorithms, formal language
and parsing theory. It was also amazing in that it was clearly written using,
and printed by, a computer system – which nobody else seemed to have
thought of at that time. (While writing this article I’ve discovered that the
original punched card deck containing the book’s source and its formatting
program is on display at Stanford University, which is wonderful.)

After this historical interlude I’m going to leap forward a long way,
through my early professional career. There’s a few books I’m tempted to
include – Knuth’s Art of Computer Programming (I read volumes 1–3 a
long time ago, and really should re-read them and the newer fascicles), or
Bruce Schneier’s Applied Cryptography, which brought some depth to my
long standing interest in codes and ciphers. (I’m really looking forward to
his talk at the autumn conference.) I wish I’d read the Pragmatic
Programmer in those days – by the time I did so I’d learned a lot of its
lessons the hard way, through doing it all wrong. And Design Patterns, of
course – that had a massive impact on how I thought about code, but I don’t
think I’d take it with me – it’s much more of a starting point than the final
word. And then there’s Refactoring and Refactoring to Patterns, which
helped me to see how to incrementally change code and make its design
better, but I don’t feel a need to re-read them.
However, my next choice has to be Kent Beck’s Test-Driven Development
By Example. I’ve read other good TDD and Agile books
since (e.g. anything by Uncle Bob Martin, Steve Freeman
and Nat Pryce’s Growing Object-Oriented Software),
but Beck’s book was the one that changed my life. It’s
not a big book; I devoured it in a couple of days. And I
realised that I’d been doing it completely wrong all those
years; how could I have been so stupid? Equally clearly,
from now on I’d be writing and designing my code using
TDD, because I wanted it be correct, clear, and elegant (at the small scale
to the large – great programs exhibit ‘fractal attention to detail’, as
DadHacker put it). And because it was obviously the only way that made
any sense.
Not very long after that revelation I changed jobs and found myself
learning many new ideas and perspectives. I was very lucky to be working
with an extremely talented programmer who opened my eyes to more of
those simple and compelling ideas that are obvious in retrospect. As a nod

to that period my next book is The Art of Unix
Programming. This is highly opinionated, deeply partial
and thoroughly argumentative. It also illuminates many
profound truths. I learnt some good techniques – threads
should be the last resort not the first, the immense power
of plain text – but more importantly it changed my
attitudes to Unix, open source and programming in
general. This is a book I’d like to re-read, and it’ll give me

something to argue with while I’m alone on my island.
My final technical book is a difficult choice. I want to include something
with a functional perspective. I’ve always been interested in functional
programming – I chose to go to Imperial College as an undergraduate
partly because they had a strong functional focus. I’ve not yet written
serious code in a functional language, but I have dabbled, and the
functional perspective has influenced my style for years. I could go for a
language book (I’ve read books on Haskell and Erlang, and would like to
branch out into Scala or Clojure), but I think it’d be better to have
something on the underlying ideas. I’m tempted by The Fun of
Programming, a joyful festschrift for Richard Bird. This has some
wonderful applications of functional programming
(pricing options, describing musical notation) and some
very high-level abstract constructs that I might even
understand after a few years study on the island. But I think
I’ll take a gamble on a book I haven’t read yet but have had
highly recommended by someone whose judgement I have
great respect for – Bird’s own latest book, Pearls of
Functional Algorithm Design. (That also means I have

I

12 | | NOV 2010{cvu}

Inspiration (P)articles
Frances Buontempo continues her quest for positive

experiences.

aving spent years trying to make his Windows PC behave like Linux,
by using Gvim and unix tools, our esteemed editor, Steve Love, blats
Windows in favour of Linux and then tries to make his machine behave

like a Windows box.

I’ve been playing around with various flavours of Linux for several years,
but never really delved that deeply into it until I recently decided to go
head-first and make it my primary platform at home. I still want to be able
to do C# development, and Mono (www.mono-project.com) looks good.
One of the aims of Mono is to allow compatible binaries built for .Net to
also run natively under the Mono runtime without recompiling. I decided
to try three such libraries: the MySQL .Net connector, NHibernate and
xUni t (a l i gh twe i gh t NUni t - l i ke f ac i l i t y ava i l ab l e f rom
xunit.codeplex.com). I also wanted to try out the relatively new support
for Linq in NHibernate. Linq is part of the .Net 3.5 framework, and is

supported in the latest release of Mono. In spite of the very sparse
documentation for Linq support in NHibernate, when I eventually
managed to get my code to compile, it did indeed "just run" against my
database with NHibernate. Furthermore, the xUnit GUI program ran my
tests and (eventually) gave me the green bar! I am very new to the magic
of NHibernate, and so getting this to run – with Linq support – was quite
a breakthrough. That Mono just did the right thing with .Net binary
downloads, including the GUI of the unit test framework, is a testament
to the sterling job the Mono developers have done. I am not a Windows
or Microsoft hater (or lover, for that matter), but I’ve found it inspiring
being able to do many of things I’ve got used to in Windows without being
tied to one platform. And, I’m looking forward to learning how to do the
rest of them.

H

Desert Island Books (continued)

If you’ve read something in C Vu that you particularly enjoyed, you
disagreed with or that has just made you think, why not put pen to
paper (or finger to keyboard) and tell us about it?
something specifically on algorithms, which I seem otherwise to have
neglected from my choices.)
Right, we can stop being technical now. I need to choose a novel. I find it
impossible to choose a single book from all the ones I’ve read (I’m tempted
by my oldest favourite, The Hitchhiker’s Guide to the Galaxy, but I can
nearly quote that from memory so there’s no need to take it). Instead I’m
going to take a punt on a book I haven’t read yet. I read Thomas Pynchon’s
Mason & Dixon (The inspiration for Mark Knopfler? - Ed) a few years ago
– it took me over a year to finish it, and was hard work but rewarding. My

working assumption is that I will be stuck on the island for
some time, so a book that will take a fair bit of reading
seems a good plan. So I’m going to choose the same
author’s magnum opus, Gravity’s Rainbow.
There have been times in my life when music was very
important to me. I like to think of my taste as eclectic – it
sounds better than disorganised or old-fashioned. So I’m

going to simply pick some music that has meaning
and associations for me. My first choice is Essential
Fats Domino. I love all of the songs on this;
‘Blueberry Hill’ always sends shivers down my
spine. My second choice has to
be something by the Eels – and
perhaps the best would be their
atypically optimistic album

Daisies of the Galaxy.
I’m not going to choose a luxury – the choices all
seem too obvious (internet connection, small but
well-stocked and -staffed kitchen, nuclear
submarine, the final C++0x standard). But I should like to have with me
a photo of my wife Mandy and sons George and Ben, who have always
managed to put up with me with panache.

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Rachel Davies.
NOV 2010 | | 13{cvu}

Code Critique Competition 66
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Last issue’s code
State a problem together with a solution and ask for improvements (which,
in some cases, might lead to a full rewrite due to taking a different view or
to generalising and in others to the conclusion there’s no way to improve it).

The problem: Print all pairs of indices that bracket the maxima in a circular
list of numbers.

E.g.
0 1 2 3 4 5 6 7 8 9 <- indices
2,1,4,3,5,6,6,6,1,1 <- numbers
^ ^ ^ ^ ^ <- maximums (three 6s
 count as one).
(9,1) (1,3) (4,8) <- brackets (output in any
 order).

No doubt this can be made more efficient. Simply, after we print a pair we
could set j to k, couldn’t we? Well, we’d have to detect the case where k’s
been reset to zero and, if so, return immediately. I guess k’s only going to
be reset half the time, so we’ll be setting a k_was_reset_flag to no avail
half the time, so is it really more efficient? It certainly makes the code more
complicated – less easy to follow.

Maybe it’s better to write two functions, one brackets the maximums in a non-
circular list and the other looks for a wrapped maximum?

The code is in Listing 1.

Critiques

Huw Lewis <huw.lewis@hlsoftware.co.uk>

Efficiency?

As the problem itself suggests, the obvious inefficiency is the way the
algorithm finds a maxima, then continues its search from the incremented
index rather than the right hand side of the maxima previously found. This
isn’t difficult to correct and doesn’t leave much else to optimise. However,
one is left with the feeling that it could be better.

Re-factor for cohesion

The function provided is not very cohesive i.e. it is doing more than one
thing: managing a search through a circular buffer, finding maxima and
printing them. It might be better if there was a simpler function to find the
next maxima in the sequence from a given point and fail if it reaches the
end of the buffer.
Following this line of thought the result is a couple of small simple helper
functions (incrementIndex and previousIndex), a simpler bmax
algorithm (renamed to findNextMaxima) and a simpler ‘application’
function printMaxima that uses the findNextMaxima.
In order to pass the result of the maxima detection out to the calling
function, I have defined a maxima as std::pair<int, int> to
represent the indexes either side of the maximum value. The function
findNextMaxima works by looping through the array from a ‘from’ index
to the end looking for an increase in value. Once found the next value
transition type must be a decrease in order to be a maxima.

// Rather than find all maxima, the function should
// find the next maxima
typedef std::pair<int, int> Maxima;

bool findNextMaxima(const int* a, const size_t
 len, Maxima& result, const int from = 0)
{
 bool b_success = false;

 int i = from;
 int prevIndex = previousIndex(from, len);
 while (i < len && !b_success)
 {
 // See if this element is an increase...
 if (a[prevIndex] < a[i])
 {
 // Search for the next change of value
 int nextChange = incrementIndex(i, len);
 while (true) // loop cannot be infinite
 // due to increase detected above.
 {
 if (a[nextChange] != a[i])
 break;

 nextChange = incrementIndex(
 nextChange, len);
 }

 if (a[nextChange] < a[i])
 {
 // the next change is a decrease -

P

Li
st

in
g

1
Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

// The code to improve
void bmax(int const a[],int const n)
{
 int i = n-1;

 for(int j = 0; j != n; ++j)
 {
 if (a[i] < a[j])
 {
 int k = j;

 do
 {
 if (++k == n) k = 0;
 } while(a[j] == a[k]);

 if (a[j] > a[k]) print(i,k);
 }

 i = j;
 }
}

Li
st

in
g

1

14 | | NOV 2010{cvu}

 // this is a maxima!!
 result.first = prevIndex;
 result.second = nextChange;
 b_success = true;
 }
 }

 // move loop indexes
 prevIndex = i++;
 }
 return b_success;
}

void printMaxima(const int * a, size_t len)
{
 Maxima result(-1, -1);

 int from = 0;

 while (from < len &&
 findNextMaxima(a, len, result, from))
 {
 print(result.first, result.second);

 // move search index (from) to the end
 // of the maxima
 from = result.second + 1;
 }
}

A generic algorithm?

The previous solution provides a more readable and flexible
implementation, but what we have there is specific to arrays of integers.
This could be re-factored again to provide a generic solution for any
unsorted sequence (vector, list, queue etc) of any type that has a usable
operator<.
Furthermore, the solution can go further by replacing the operator< with
a template argument predicate functor. Now the algorithm finds not only
maxima but minima also, and custom predicate types can be used for
detecting maxima/minima in application specific class types.
I have framed my solution in a class template so as to provide a container
for typedefs and helper functions. The class CriticalPointDetector
takes 2 template arguments:

C – a STL container type (unsorted) e.g. std::vector<int>,
std::list<double> etc.
Pred – a predicate functor type to determine the ‘less than’ or
‘greater than’ characteristics of the contained type
(C::value_type).

Use operator< semantics for finding maxima
Use operator> semantics for finding minima
I then provided 2 simple template classes MaximaDetector and
MinimaDetector that inherit from CriticalPointDetector using
the appropriate std::less or std::greater predicates. Finally, the
printMaxima function manages the loop around the buffer and uses the
provided facilities to find and print maxima. It is trivial to write a
corresponding printMinima function using the MinimaDetector
template class instead of MaximaDetector.
The full solution is given below. It is certainly true that the original code
was a lot smaller, but did it provide any hope of re-use?

// Template Parameters:
// C - the unsorted sequence type e.g.
// std::vector<int>
// Pred - the predicate that is used to search
// for maxima or minima
// i.e. std::less for maxima,
// std::greater for minima

template< class C, class Pred >
class CriticalPointDetector
{
public:
 typedef typename C::iterator iterator;
 typedef typename C::const_iterator
 const_iterator;

 // A critical point is defined as a pair of
 // iterators outlining the point in the
 // sequence as [iterator before CP,
 // iterator after CP]
 typedef std::pair< const_iterator,
 const_iterator > CriticalPoint;

 static bool findNext(const C& seq,
 const const_iterator& from,
 CriticalPoint& result)
 {
 bool b_success = false;
 const const_iterator endIt = seq.end();

 if (seq.empty())
 return false; // EARLY RETURN

 const_iterator prevIt(
 previousIt(seq, from));
 const_iterator it(from);
 while (it != endIt && !b_success)
 {
 // If this is a hit...
 Pred pred;
 if (pred(*prevIt, *it))
 {
 // Search forward for the next value change
 const_iterator nextChange =
 findNextChange(seq, it, pred);
 if (nextChange != endIt &&
 pred(*nextChange, *it))
 {
 // this is an anti-hit, and
 // therefore is a critical point
 result.first = prevIt;
 result.second = nextChange;
 b_success = true;
 }
 }
 // move iterators on for next loop
 prevIt = it++;
 }
 return b_success;
 }

private:
 // return the previous iterator to it
 static const_iterator previousIt(
 const C& seq, const const_iterator& it)
 {
 const_iterator result = seq.begin();
 int n_distance =
 std::distance(result, it);
 if (n_distance > 1)
 {
 std::advance(result, n_distance - 1);
 }
 else
 {
 // the distance is 0 - we need the last
 // iterator
 std::advance(result, seq.size() - 1);
 }

Li
st

in
g

2

NOV 2010 | | 15{cvu}

 return result;
 }

 // return the next iterator
 static const_iterator nextIt(const C& seq,
 const const_iterator& it)
 {
 const_iterator result(it);
 ++result;
 if (result == seq.end())
 {
 result = seq.begin();
 }
 return result;
 }

 static const_iterator findNextChange(
 const C& seq, const const_iterator& from,
 const Pred& pred)
 {
 const_iterator result = nextIt(seq, from);
 size_t count = 0;
 const size_t seqSize = seq.size();
 while (count++ <= seqSize)
 {
 if (pred(*result, *from) ||
 pred(*from, *result))
 {
 // a change is detected
 return result;
 }
 // go to next iterator
 result = nextIt(seq, result);
 }
 // the entire sequence has been looped
 // through and no changes detected.
 throw std::logic_error("No changes "
 "detected in sequence values");
 }
};

// Define a shortcut to the maxima detector
template < class Seq >
class MaximaDetector
: public CriticalPointDetector<Seq,
 std::less< typename Seq::value_type > >
{
};

// Define a shortcut to the minima detector
template < class Seq >
class MinimaDetector
: public CriticalPointDetector<Seq,
 std::greater< typename Seq::value_type > >
{
};

template< class C >
void printMaxima(const C& seq)
{
 typedef MaximaDetector<C> MaximaFinderType;
 typename MaximaFinderType::CriticalPoint
 result;

 typename C::const_iterator from
 = seq.begin();

 while (from != seq.end() &&
 MaximaFinderType::findNext(seq,
 from, result))
 {

 print(std::distance(seq.begin(),
 result.first),
 std::distance(seq.begin(),
 result.second));
 // move search index (from) to the end of
 // the maxima
 if (from < result.second)
 {
 from = result.second + 1;
 }
 else
 {
 from = seq.end();
 }
 }
}

Commentary
This was an interesting problem to consider as the code looks inelegant
and a bit inefficient. However I was a little disappointed to only receive
one entry: perhaps the example was harder that it looks to improve.
If you have an algorithm of your own that could do with improvement
please consider sending it in for a future CC!
The first question I had was whether the code was really that inefficient.
I knocked up a quick test harness to populate an array of items of various
sizes and test the algorithm against them. I was able to process around
20,000 arrays with 1,000 elements in a second, so it didn’t seem to be an
obvious performance bottleneck; although this would of course depend on
the actual use.
I tried the same dataset using the generic solution given above and the
performance dropped significantly: about 6 times slower! (I didn’t try the
non-generic solution as the two helper functions weren’t provided.)
What has happened? It’s hard to tell without doing more analysis, but it
seems that the algorithm might be more generic and clearer to read, but at
the expense of efficiency. This may or may not matter in practice, but it
doesn’t really address the problem setter’s brief!
It is always important when addressing performance to keep (at least) two
key things in mind: firstly that you need to measure and secondly that
performance usually depends heavily on usage.

The Winner of CC 65
There was only one entrant, so Huw gets the prize.
For this issue I’ve set another code critique with a program that presents
a couple of problems with implementation but also one that raises some
questions about design too.

Late critiques for CC64
I received a late submission for CC64 (‘I’m trying to write a simple quadratic
equation solver for the equation "a * x * x + b * x + c = 0" that writes output
to a file but I am having problems getting it working. It’s OK for some inputs
but I’m having problems, in particular with equations that have no (real)
solution.’). I’ve added an editorial comment (Ed) in a couple of places.

Paul Floyd <Paul_Floyd@mentor.com>

1. Original code won’t even compile. Poor show!
 CC -library=stlport4 -o cc64 cc64.cpp
 "cc64.cpp", line 32: Error: The function "sqrt"
 must have a prototype.
 "cc64.cpp", line 33: Error: The function "sqrt"
 must have a prototype.

Error(s) detected.
sqrt should be in the std namespace.

Ed: This is true, but the code does compile with two different compilers (msvc
and g++). One of the real world problems with trying to write portable code
16 | | NOV 2010{cvu}

is that different ways implementers of the library use to pull in the C runtime
functions means sometimes they leak into the default namespace.

2. Problem hopelessly underdefined. Are real-valued quadratics the
only valid input or are complex quadratics allowed as well? Are only
real solutions valid, with complex solutions producing a
warning/error message, or are complex solutions allowed? If so,
should they be displayed as cartesian or polar values? Let’s guess
real quadratics, complex solutions allowed and displayed as
cartesian values.
Ed: It may simply reflect the business domain I’ve worked in for so
long: almost all the work I do is underdefined.

3. No error handling for errors reading std::cin, errors reading
file.dat or writing file.dat.

4. tofile writes using default precision of 6 digits. verify then
performs comparison at machine precision (~16 digits). I would
recommend using std::setprecision(16) when writing to
verify.

5. That comparison again. This needs to have some sort of tolerance;
absolute, relative or both. Go with this advice:
http://www.boost.org/doc/libs/1_32_0/libs/test/doc/components/
test_tools/floating_point_comparison.html

6. I don’t like camel case fromFile and flat case tofile. Use the
same coding standard.

7. No validation that the roots work back to the original coefficients.

Code Critique 66
(Submissions to scc@accu.org by Dec 1st)
This issue’s problem is also a bit of a design critique. I’ve got a ‘log’
function (an externally provided function I can’t change) that takes a char
const * argument and I want to wrap it in a C++ layer so I can stream
to it. The function itself is thread-safe and I want to be able to use streaming
in multiple threads.
My approach here is to use a temporary helper object containing an
ostringstream and build up the string in there. The helper object is
created when the streaming starts, and is passed along the streaming
operators until the end of the statement when it is destroyed. The destructor
of the helper object passes the contents of the ostringstream to the log
function. It seems to nearly work, but I’m getting some odd characters in
the output. I found that adding an & (where it says: /* Needed?: & */)
seems to fix it, but don't know why. Are there any problems with this
approach – or better ways to do the same thing?
(To give a bit of background, following a recent discussion in the ISO C++
standards meeting about destructors that throw exceptions, I was keeping
a look out for examples of code where work was done in the destructor.
That provided the initial input to this example, but it also raises questions
about the lifetime of temporaries and the order of their destruction. Finally
the code in the critique compiles with visual studio but not with g++ –
making the change mentioned to add an ampersand fixes the compilation
problem, so we have a compiler difference to consider too.)
The header file log_wrapper.h is shown in Listing 2.
Listing 3 contains an example of its use: test_log_wrapper.cpp
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <memory>
#include <sstream>
// third party log function
extern void log(char const *);
// Add C++ style streaming to the log function
class logger
{
public:
 class helper
 {
 friend class logger;
 public:
 template <typename T>
 helper /* Need & here? */ operator<<(T t)
 { *oss << t; return *this; }
 helper() : oss(new std::ostringstream) {}
 // When helper destroyed log the message
 ~helper()
 {
 if (oss.get())
 {
 log(oss->str().c_str());
 }
 }
 private:
 std::auto_ptr<std::ostringstream> oss;
 };
 template <typename T>
 helper operator<<(T t)
 { helper h; return h << t; }
};

Listing 2

#include "log_wrapper.h"

// Dummy 'log' for testing
void log(char const *p)
{
 puts(p);
}

int main(int argc, char **argv)
{
 logger l;
 l << "Starting";
 l << "Testing number: " << argc;
 l << "Testing string: " << argv[0];
}

Listing 3
NOV 2010 | | 17{cvu}

Regional Meetings
A round-up of what’s happened at an event near you!

Agile Cambridge 2010
Paul Grenyer outlines the programme at a regional Agile conference.

Mark Dalgarno, with the support of Redgate Software, is using Software
East to do great things for the software community in Cambridge. Software
East has been running frequent evening events on topics including Agile
and iPhone development and attracted a number of ACCU speakers
including Allan Kelly, Pete Goodliffe and everyone’s favourite Mac
pusher, Phil Nash. Not content with rivalling ACCU London’s events,
Software East has gone further and put on their own Agile conference over
two days in the heart of Cambridge. I was pleased to be asked to speak and
enjoyed both thoroughly exhausting days. What follows are some of the
highlights for me.
Agile Cambridge was the first conference I have attended as a Twitter user.
It’s an amazing tool for not only communicating with the the attendees and
passing on words of wisdom from one session to another, but also for
keeping those who could not attend up-to-date and whetting their appetites
for next time.
I do not know what it is about the last day of a conference, and it does not
seem to matter how long or short the conference is, but I always leave
completely spent on that last day. Maybe it is the activities of the night
before the last day? Agile Cambridge was no different and I cannot wait
to go again next year!

Test Engineering at Google
by James A. Whittaker

James Whittaker is the second incredibly enthusiastic and charismatic
tester I have had the pleasure of seeing speak this year, following James
Bach at ACCU 2010. He took us through the technology of the last twenty
years, including a picture of Michael Douglas on a phone about the size
of a small loaf of bread and demonstrated how things have changed. He
seemed very surprised that a lot of people in the audience still used a paper
phone book and this became the subject of a number of jokes throughout
the presentation. One of the main points James made was that with a lot
of software now being web based, it is no longer cheaper to fix bugs in a
product before it ships. He went on to describe the role of a tester as a
consultant in a hospital and told us that all software is broken and on life
support until the testers can get in and diagnose the diseases.

What Does It Take to be an Agile Company
by Allan Kelly

I have seen Allan Kelly speak a few times and have always enjoyed his
direct style. He passionately believes in what he is doing and I enjoyed this
presentation as well. I think Allan has a very complete view on what agile
is, where it came from and where it is going. He explained that he believes
that Agile has arrived and is here to stay and that it will only get better. I
am very much inclined to believe him. Another of the stand out points for
me was that companies should use experimenting over planning and make
sure that if and when failure comes, they fail fast and fail cheap. This
became a much repeated line throughout not only the presentation, but the
whole conference.

Building Effective Habits Through Peer Group Learning and
Assessment
by Jason Gorman

Jason Gorman has been doing some very interesting work. I think it is best
summed up when described as: coaching Test Driven Development (TDD)
at the BBC. I still find it amazing that some developers still do not see the

clear benefits of TDD and have to be encouraged with incentives. Jason
Gorman has been at the BBC teaching and assessing those who have been
incentivised and it sounded like very interesting work! He described some
of the exercises that the developers went through, their assessment and
certification and some of the problems he faced. One of the techniques used
was pair programming, where developers would mark off on a sheet which
TDD rules their partner had broken, in order to help them learn and
improve. At the end of the session he wrote some code and unit tests while
the audience marked off the rules he had broken on a similar sheet to
demonstrate how it worked. Of course he broke (almost) every rule. This
was another very enjoyable session.

Five Years of Change, no Outages
by Steve Freeman and Andrew Jackman

Again, I have seen Steve Freeman talk a couple of times before and he has
a lot of very interesting things to say. In this presentation Steve and Andrew
Jackman described a very successful project that they both worked on at
different times. It solved a particular problem that had been attempted by
different teams in the past who had failed. The main secret to the project’s
success was the use of Agile methods, including regular and automated
deployments. They described a lot of the methods I am using every day
and I am again amazed that more teams do not see the obvious benefits of
regular automated deployments. Maybe this is why this sort of conference
is needed so much.

Cyber-Dojo
by Jon Jagger

I attended Jon Jagger’s Cyber-Dojo as a participant at ACCU 2010. On
this occasion I was delighted to be asked to help out alongside Jon. The
setup had changed significantly as Jon has been developing his Cyber-
Dojo since the last time. There was a greater choice of languages and
problems to solve; and the teams were not given an objective until part way
through. What was most interesting to me was the teams being told that
their only objective was to get every team’s build to green and the number
of them that then proceeded to break their build after having reached green,
before the others had caught up. These Cyber-Dojos get more and more
interesting and I’m looking forward to the next one.

Building Trust in Agile Teams
by Rachel Davies

This was one of most enjoyable presentations, not least because I got to
take part. Rachel spoke about how important it was for members of Agile
teams to trust each other and the ways in which trust could be gained and
lost. Rachel has spent many years coaching Agile teams and had a lot of
very useful things to say. They certainly made me think about my team in
new ways. Unlike ACCU conferences, the Agile Cambridge bunch took
a while to start interacting with the speakers. There was plenty of
interaction throughout Rachel’s presentation and a whole lot of laughter.
I am very much looking forward to seeing Rachel speak again soon.

Creating a Development Process for Your Team:
What, How and Why
chaired by Giovanni Asproni

The final session at the conference was a panel. I really enjoy panels, both
as a member of the panel and a member of the audience. You never know
quite where it is going to go and by their very nature there is lots of
interaction between the audience and the speakers. Those who joined
Giovanni on the panel included Allen Kelly, Steve Freeman, Rachel
18 | | NOV 2010{cvu}

Davies and Nat Pryce. It was a chance for the audience to ask about some
of the recent Scrum bashing and get to the bottom of the concerns some
of the industry experts have with it. There was a long and very interesting
discussion on pair programming and another on how to convince an
organisation that Agile was the way to go.

ACCU London – September 2010
Chris Oldwood shares his experience of a real code-dojo.

Once again I found myself at one of the London offices of SkillsMatter
for an ACCU London get together. This time it was a Cyber-Dojo hosted
by Jon Jagger. I didn’t know exactly what one of those was, but there were
good reports about the one he ran at the ACCU
Conference this year so that made it sound
promising. Also there had been some chatter on
accu-general about the system he was building
for it that intrigued me.
The basic premise is that we were initially split
into groups of three to solve a s imple
programming task. There would be one person
allowed to use the keyboard (the driver) and two
aides. After ten minutes Jon would ring a bell
and the driver had to move to another group, but
he wasn’t then allowed to drive – one of the
remaining two had to take up the role. Due to the time constraints of the
event this part only lasted an hour with a few minutes afterwards to discuss
what happened. Naturally a few of us retired to The Slaughtered Lamb to
do some Pair Drinking.
I’ll be honest and admit that I was somewhat nervous at the thought of Pair
Programming with a bunch of ACCU members. If there is one thing I have
come to realise since joining the ACCU it’s how high the bar really is and
I probably would have felt somewhat intimidated if some of the bigger
names were there. In contrast I barely knew any of the 10 or so people that
turned up and that made it all the more exciting as I had some unexpected
social barriers to contend with instead. Still, rather than throw caution to
the wind and join two other new faces I spotted Allan Kelly was also a man
down and so took the safe approach and joined his group instead.
The setup was quite simple. Each group had a laptop with some custom
browser based software [1] that provided a simple text window into which
you could write either unit tests or production code. Once you were happy
with each you hit a button and the code would be compiled and the tests
executed. You would then either get a green or red light. Sadly I arrived
late and missed the explanation about how the groups were connected
behind the scenes, but there was some kind of gaming system under the
hood that turned your actions into a pot of money that gave you an
additional goal.
The programming problem itself was quite simple – format up an integral
value into Roman Numerals. It’s the sort of problem you would expect to
be pretty easy, at least if you’ve been through a round of job interviews in
the last few years; but it quickly becomes tricky. I’m not sure if it was stated
as a goal, but each group took a Test-First Development (TFD) approach
and wrote small failing tests before adding new production code. The
choice of initial tests was quite interesting as some started with the low
numerals, I, V etc, whilst others picked the opposite end, M, D etc. It didn’t
take long for the easy ones (1, 5, 10 etc) to be working and the teams to
stumble on the key difficulty with Roman Numerals – how to deal with
the numbers just less than the main numerals, i.e. 4 (IV), 9 (IX) etc. At this
point, for some, the ‘simplest thing that could possibly work’ changed from
a simple step to a much larger prospect as the teams started to discuss
algorithms to generalise the solution; others seemed happy to keep solving
each little case and try and continue taking small steps.
The 10 minute rotation now became more of a distraction as you were in
the middle of a ‘design meeting’ when you found yourself needing to stop
and bring the newest member of the team up to speed, or you became the

outsider and had to integrate with a new order. Near the end word spread
of a fresh lead involving special cases of numeral pairs and some members
were trying to explain their findings to their team mates when Jon called
time. Throw into the mix a subtle change in programming language (Java/
C#) and the fact that The Driver may not even have written code in one of
these curly brace languages, or even be used to the Imperative paradigm
for that matter and you can see why so little production code was written
in those short 60 minutes.
Of course we all know that Lines of Code is no measure of success and
what really mattered was the team dynamics. For example one team was
initially isolated in the opposite corner of the room and no one noticed

when it came time to swap – so they were left
with the same pairing until Jon stepped in.
Surprisingly there were no big egos, if anything
people were all a little too polite; perhaps that’s
a symptom of a largely anonymous group
whereas if we all worked together some of us
would have felt more comfortable taking a more
leading position.
Perhaps if more teams switched one of their
team-building events from paint-balling or
bowling to one of Jon’s Cyber-Dojos they might
build more than just morale.

Note
[1] For some insight into the “browser-based software” mentioned, be

sure to read Jon Jagger’s article on page 9.

we all know that Lines of
Code is no measure of

success and what really
mattered was the team

dynamics
NOV 2010 | | 19{cvu}

Growing Object-
Oriented Software
Guided by Tests
By Steve Freeman and Nat
Pryce, published by Addison-
Wesley, ISBN-13: 978-
0321503626

Reviewed by Alan Griffiths

Highly recommended
I’ve known Nat and Steve for some
years through the ‘Extreme Tuesday Club’
and various conferences. They are a
significant part of the UK’s community of
developers interested in advancing the state of
the art (or craft, or science according to your
prejudice). We’ve also worked at the same
client: their team was one of the users of the
software my team produced and gave some of
the clearest and most constructive feedback
on our product that I’ve had.
Having discussed the issues of software
development (and other less relevant topics)
with them over this time it was nice to see that
they’ve found time to produce a book
presenting their vision of software
development. It was also nice to see that they
discuss many of the issues we all encounter
when trying to put such a vision into practice
– I have to admit they’ve been more
successful than I have in addressing some of
them. This book inspires me to try harder!
The book itself covers the motivations for
incremental, test driven development and the

technical and people issues encountered in
applying it. This isn’t just about unit test, or
system tests it is a consistent vision of testing
all the way down from system features to class
interfaces. There is a worked example
illustrating both the process in miniature and
the tools (they use their own JMock along
with JUnit). It is a well chosen example in that
it is easy to understand but also incorporates
many of the issues that exist in real
developments and presents solutions that
ought to scale.
Potential difficulties are not ignored and are
presented with the air of someone that has
encountered them and knows the pain they
can cause. The solutions offered are often of
the kind that are obvious – but only after
someone else points them out. Many times I
found myself thinking ‘that is so cool!’
This is one book I’ll leave lying around
hoping my colleagues will borrow it.

The Java Programming
Language
By Ken Arnold, James Gosling,
David Holmes, published by L
Prentice Hall, ISBN: 978-
0321349804

Reviewed by Paul Grenyer

I decided to read this book about 18 months
after having to learn Java in a hurry after
discovering what I had been lead to believe
was a C# role turned out to be a Java role.

Despite several years of programming in C++
and C# I figured there must be lots of stuff that
was different in Java and that this book would
be a good way to find out. The first chapter is
a 40 page general introduction to Java and I
found it such a dry read that I gave up. Then,
twelve months later, I decided I really should
read it cover to cover to find out what I was
missing and it took me five months to do it!
Although solid and reasonable well written
the book is a dry read most of the way through.
The chapter on streams is especially hard
going. Although in many cases each method
of a class being discussed is described in
detail, this book represents a medium level (as
opposed to high or low level) introduction to
the language. As you would expect it covers
classes, interfaces, inheritance,
polymorphism, enums, control flow,
generics, threading, reflection, etc. so you do
get a good overview of the language.
However it does not go into any detail about
how to compile or run Java programs, neither
does it mention ANT or describe how to
create JARs. If you want a practical tutorial,
this is not the book for you.
I didn’t agree with a lot of the ‘good coding
style’ suggestions such as using a fall through
comment in switch blocks to tell the reader of
the code what he should already know the
language does or using continue in a bodiless
for loop as a semi-colon may get deleted or
forgotten. Many people, including myself and
the creators of the Spring library, believe that
checked exceptions are a bad thing in most
cases and should not have been added to the
lanuguage, so I find bad advice like ‘Nearly
all exceptions you create should extend
Exception, making them checked exceptions’
appalling. There are a number of examples of
poor practice throughout the exceptions
chapter.
Overall I think most Java developers would
benefit from reading this book just to plug a
few of the inevitable gaps in their knowledge.
It is hard going, but worth it. As it covers Java
1.5 and Java 1.7 is nearly upon is, it would
certain benefit from an update and a review of
good programming practice.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK
members – if you ever have a problem with this, please let me know – I can only act on
problems that you tell me about). We hope that you will give preference to them. If a
bookshop in your area is willing to display ACCU publicity material or otherwise support
ACCU, please let us know so they can be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
20 | | NOV2010{cvu}

Working Effectively
with Legacy Code
By Michael C. Feathers,
published by Prentice Hall,
ISBN: 978-0-13-117705-5

Reviewed by Paul Floyd

Recommended
Working with code in practice means
refactoring it. According to Feathers, the key
to refactoring is getting it into unit tests. He’s
well placed to have such an opinion, being the
original author of CppUnit. The purpose of
the unit tests is not so much to prove
correctness, Feathers argues, but more to
ensure that there are no changes to the
behaviour. The emphasis is on C++ and Java,
with one chapter covering non-OO
languages, specifically C.
In the first part of the book, Feathers describes
two fundamental issues with unit testing
legacy code: getting the code to compile and
link, and reading values in some way so that
you can detect any changes. He calls these
seams and sensing. Part I also covers some of
the main tools that can be used (harnesses and
mock-object libraries).
Part II then goes into the details of techniques
that can be used for seams and sensing. Each
chapter covers a class of problem, containing
sections in a similar style to Design Patterns,
with a catalogue of methods to solve the
problems. As an example, Chapter 10 ‘I Can’t
Get This Class into a Test Harness’ deals with
parameters that are difficult to instantiate,
hidden dependencies, breaking up large
constructors and global dependencies. There
are a couple of chapters covering more
abstract ideas for getting to learn what legacy
code does. The last part of the book is a
catalogue of 24 techniques for breaking
dependencies.
I found that Feathers treads the balance
between theory and practice well. He could
have regaled, or bored, us with endless tales
from the trenches. In fact he spares the
blushes of his clients, all the example code is
made up for the book.
If you are working with legacy code and
trying to get it under unit test, then you are
likely to benefit from at least some of the ideas
that this book describes.

Rapid Development
By Steve McConnell,
published by Microsoft Press,
ISBN: 978-1-55615-900-8

Reviewed by Paul Floyd

I’ll start out with the bad
points. This book was
written in 1996, so it predates the start of the
Agile/XP movement. If you’re a fan of Agile,
then you probably won’t want to read this

book, which is more of a ‘classic process’
book. Another bad thing, for me, was that I’ve
already read a few of McConnell’s books
(Software Project Survival Guide, Professional
Software Development and a long time ago the
1st edition of Code Complete). There’s a fair
bit of overlap, which didn’t help me keep my
concentration up. The most annoying part of
the book was the little fictional anecdotes.
Basically these are all along the lines ‘Ken
used my methods, and the project was a
success’ and ‘Joan didn’t use my methods,
and the project was a failure’. I don’t know
what purpose they serve.
McConnell is clearly well read. The
bibliography for this books runs to 14 and a
bit pages. The book is in 3 parts. The first is
the shortest, and covers the basics – high level
strategy, errors, fundamentals and risk
management. The second part is where the
meat of the book is. It covers all direct and
indirect aspects of projects, from planning to
project recovery for projects that fall off the
rails. This is where all that research must have
paid off, with plenty of references to to the
work of people like Capers Jones and Barry
Boehm. The last part of the book is a
catalogue of best practices, 27 in all. Some of
these just refer back to the earlier chapters.
For each best practice, an indication is given
as to its likely effect on schedule reduction,
visibility, risk, chance of 1st time success
chance of long term success.
In conclusion, a professionally written and
well researched book, but perhaps a little
dated with respect to Agile methods.

Software Requirement
Patterns
By Stephen Withall,
published by Microsoft Press
ISBN: 978-0-7356-2398-9

Reviewed by Paul Floyd

I’ve read a trio of books on
requirements recently (the other two by Karl
E. Wiegers). Book reviews are subjective
things, and with me being a mere code
monkey, and perhaps I aimed a bit above my
station in reading this book.
The premise of the book is to help people
write requirements patterns with the aim of
making writing the requirements themselves
easier. As with all such attempts at raising the
level of abstraction in order to increase the
amount of reuse, the problem domain needs to
be sufficiently large that the extra work in the
abstraction pays off in the reuse. The example
patterns in the book are oriented towards
corporate IS database centred projects. If
you’re developing embedded software or
COTS then the examples won’t be directly
applicable to you, which means that you’d
have to write your own patterns from scratch

rather than ‘leveraging’ the examples in this
book.
The first two chapters cover the basics of
requirements. There are extended versions of
these chapters available for download, grrr, as
a Windows setup.exe file. Even on our Citrix
Windows machines, I don’t have the rights to
run an installation program. What's wrong
with pdf?
The next two chapters cover the concepts of
requirement patterns and how to use and
create them. The patterns are made up of 9
sections: Basic details, Applicability,
Discussion, Content, Template(s),
Example(s), Extra requirements,
Considerations for development and
Considerations for testing.
The bulk of the book, about 280 pages,
consists of a catalog of requirement patterns.
Overall this was clear enough, though a few
times I felt that Withall was slipping a bit into
tutorial mode and explaining some of the
basics of databases and how to tackle
requirements like support for disabled users.

The Principles of
Successful
Freelancing
By Miles Burke, published by
Sitepoint, ISBN: 978-0-
9804552-4-3

Reviewed by Robert Jones

I received this slim volume (185
pages) way back in January 2009,
and only now have I managed to get
around to writing up the review, which tells
its own story really! Needless to say I have not
found this a gripping read. Despite both a
natural desire to see it through, and a certain
moral pressure since I was provided with the
book for free, I have not actually read it from
cover to cover, in over 18 months.
The book begins with a superficial, and
faintly obvious, coverage of the qualities
required of a freelancer, which frankly seem
to be qualities required of any slightly
successful professional, briefly tilts at
accountancy and bookkeeping obligations
(which bearing in mind the author is
Australian somewhat lacks a relevant focus),
before hitting its main stride with a series of
case studies.
Perhaps if you found your exact clone among
the case studies there would be some value in
them for you, but I found them contrived and
lacking in any real insight.
The latter part of the book, which due to
induced hypersomnia, I’ve only skimmed
covers longer term issues of freelancing such
as general wellbeing, intellectual property,
work/life balance, etc.
NOV2010 | | 21{cvu}

All in all, not a book with pride of place on
my book shelf.

Accelerated C# 2010
By Trey Nash, published by
Apress, ISBN : 978-1430225379

Reviewed by Allan Kelly

Browsing the ACCU list of
books for review it occurred
to me that never having
coded in C#, and having been away from the
code-face for a couple of years, I was well
positioned to review what, from the title,
appeared to be a rapid introduction to a
language.
The first thing I noticed about the book is that
it is big, 600+ pages, and the font is small.
Actually it is more than the font, the
typesetting leaves a lot to be desired. The lines
seem very close together and the side boxes
aren’t boxed – they just kind of appear (in a
larger font) before you realise you are reading
one. Even the notes which are boxed
sometimes appear out of position. This is
certainly not a book to read on a train or a
plane.
Reading the first chapter I was a little
confused about who the book is aimed at. It
seemed to be saying it’s for the beginner in C#
and then says ‘you probably know about
.NET already’, an odd mix. Elsewhere the
author says ‘I suggest you read this with the
C# reference close by because I can’t explain
everything’. In which case what does it
explain?
The constant references to C++ led me to
decide it is aimed at ACCU members, or
perhaps people who would benefit from
joining the ACCU. People who know how to
program, know C++, and now need to learn
C#. This might be why the book occasionally
presents IL assembler to illustrate a point.
The ordering of the material seems at times
strange. There is a big discussion of types
before classes are introduced; control
structures (all of half a page) come after
generics are mentioned; sometimes sections
seem to change direction half way through.
Somewhere the author states this is the third
edition of the book – usually publishers make
a big thing of this because it’s a sign of a good
book. But I get the feeling the text has been
added to without regard for the flow of the
book and cohesiveness of the sections.
As a result the book comes across as a stream
of consciousness – types, ref types, value
types; O generics are new and cool, now about
.... Which is a shame because the author
knows his stuff and he has a relaxed chatty
style which would be quite readable were it
not for the typesetting.

Overall this is not a book for beginners. It
doesn’t introduce programming, or C#
syntax. Nor is it a book for advanced readers;
some material is too basic for that. It’s for
intermediates. This is a difficult group to aim
at because intermediates each know more
about some things than others.
In the end I gave up on the book after a few
chapters because it hurt my eyes, literally.
There is a good book in here, but it needs to
decide what it is trying to be. Then someone
needs to restructure the material and get the
thing properly styled. As it stands I suspect
that it would be a useful reference book – even
if it wasn’t written as such.

Coders at Work –
Reflections on the Craft
of Programming
By Peter Seibel, published by
Apress, ISBN : 978-1430219484

Reviewed by : David Pol Ahonen

Verdict : Highly
Recommened
Coders at Work by Peter Seibel
captures eighty hours of interviews
with fifteen universally renowned
programmers. You may not know all the
names in the book by the time you start
reading it, but very possibly you know or have
used some of the software they have created.
The structure of the book is simple: each
interview is preceded by a short introduction
to the programmer that sets the context for the
reader and then comes the interview itself. All
the interviews share some common questions
(‘How did you learn to program?’, ‘Do you
ever write down anything before you start
writing code?’, ‘How do you read a big
program that you didn't write?’, ‘When
you’re debugging, what tools do you use?’,
‘Do you still find the kind of programming
you do interesting?’) that Seibel uses in a
smart way to later introduce specific
questions that are more tailored to the
interviewee at hand (Peter Norvig and
Google, Simon Peyton Jones and GHC/
Haskell, Joe Armstrong and Erlang, etc.). I
think this approach makes the book a joy to
read: you learn historical anecdotes of the
field (as most of these programmers started in
their craft in the 50s or the 60s), you get to
know their programming practices and you
learn about what they are doing now, how
they are doing it and what they think about the
future.
It definitely helps that almost all of the
interviewees answer Seibel’s questions with
such lucidity and sincerity. A lot of what is
written here can make for interesting quotes.
I was certainly surprised to learn that many of
these computer science heroes prefer print
statements over a debugger, and relieved to

confirm that they are all big pragmatics and
therefore tend to avoid big designs and prefer
to ‘just do it’ and iterate as needed. Of course,
not everyone agrees on the same things, and
that is also part of the richness of this book: it
will expose you to points of view that may
conflict with yours and may even trigger a
change in your own thinking. That is what this
is all about in the end: what makes a great
programmer working in a team in the real
world? This book is a good first step to
answering this question.
In summary, Coders at Work is a very
entertaining read and, if you find the content
as interesting as I did, you will probably finish
it in a sitting or two. Anyone with an interest
in programming will have a great time with it.

Perl Fundamentals
(booklet and DVD)
By Peter Scott, published by
Addison Wesley / livelessons,
ISBN : 978-0137001279

Reviewed by : Ian Bruntlett

This package consists of a 51
page booklet and a data DVD of 4 hours of
instruction. It is a data DVD with audio-video
files (.flv files, I had to install VLC media
player to watch the tutorials on a Ubuntu 9.10
system). It has a folder with the examples
source code in them. I found that to be of
particular help when typing in the examples
by hand and trying to run them. I found the
Perl error messages to be as helpful as a C++
compiler’s STL error messages. Because it is
a data DVD, the files can be copied onto a
folder and run directly from hard disk. This
was particularly convenient. This course
requires commitment – I spent about 20+
hours studying this course and making notes
(24 sides of A4 paper). The course is split into
8 lessons and an appendix. I will structure this
review accordingly. I’ll overlook the
similarities that Perl has with C/C++,
concentrating on some of the surprises in
store for newbie Perl programmers.

Lesson 1 [23m:37s] Introduction

Basics. Includes an overview of articles that
can be accessed by the perldoc command.

Lesson 2 [53m:18s] Basics

Simple variables (scalars) for string and
arithmetic operations. In particular,
interpolation is a powerful way of handling
strings. Conditional statements e.g if else
elsif and the less commonly found unless.

Lesson 3 [32m.11s] Arrays, Lists, Looping State-
ments and Command Line arguments

The heading pretty much says it all. Perl
arrays are more flexible than C’s arrays –
arrays can be printed in print statements by
22 | | NOV2010{cvu}

the use of string interpolation – something
akin to printf on steroids :)
my @Beatles = qw (
 John Paul George Ringo);
print "The Beatles are
 @Beatles\n";

Lesson 4 [30:30] Hashes (associative arrays)
and logical shortcuts

Hashes need no explanation. In this chapter
there are some interesting examples of how to
use hashes. There are code fragments like:
 my $date = shift or die
 "Usage: $0 date\n";

which use default parameter for the shift
function and a strange looking conditional
expression. Most programmers would
normally code the above with something like:
 if (! my $date)
 die "Usage: $0 date\n";

For me, the things that confused me in the past
were fragments of code which were so alien
to C programmers.

Lesson 5 [30m:52s] Subroutines for reusable
code

Perl functions (subroutines) don’t have
prototypes. They look something like this:
 sub print_cost
 {
 my ($pet, $cost) = @_;
 # put parameter values into
 # pet and cost
 # rest of function goes here.
 }

Lesson 6 [36m:21s] File handling. The implicit
variable $_

This chapter deals with hard core Perl magic.
The diamond operator <> is a Perl iterator. For
instance, this is a way of finding out the
longest line in a group of text files:
my $max_length = 0;
while (my $line = <>)
{
 chomp $line;
 $max_length = length($line) if
 length($line) > $max_length;
}

The <> defaults to reading in all the text in all
of the command line parameters. This isn’t
the shortest way to count file lengths – that
honour lies with the use of the implicit
variable (spelled $_ but more commonly left
out.

Lesson 7 [37m:16s] Regular expressions
(regexes) – searching and changing text

This is very much a strong point of Perl. This
lesson goes into the details of using regexes
and has a 6 step algorithm that explains how
a regular expression thinks – simplified
because it doesn’t cover backtracking. There
are different standards for regular expressions

so if you’re hopping from one language to
another, you may have to take care that you’re
speaking the correct regex dialect.

Lesson 8 [11m:38s] Perl modules (libraries),
CGI and web programs

Perl modules are stored in an online
repository called CPAN. It’s Perl’s
equivalent of C++’s boost libraries except
that CPAN is more of a repository than a peer-
reviewed library.
This is the worst part of the tutorial. It says
‘download Perl modules’ but doesn’t list
whereabouts in the perlmod reference
material there is a FAQ about downloading
CPAN modules.
There is an example in this lesson, mech.pl,
which uses the WWW::Mechanize module.
This wasn’t present on my PC. I tried to install
it using the CPAN command with root
privileges but that didn’t help. In the end I
installed the module using Ubuntu’s Synaptic
package manager and got it to work.
There is also an example CGI script (for web
server side processing) but I didn’t check it
out because I’m still a newbie when it comes
to networking and web servers (in my case,
Apache).
Final notes:
When studying this tutorial, I found my local
Linux User Group’s mailing list a good way
to get help. While watching the video clips, I
had to use VLC media player on my PC
(running Ubuntu 9.10).
Verdict: If you want to learn Perl and are
willing to put the hours in, you should buy this
tutorial.

Reflections on
Management
By Watts Humphrey, published
by Addison Wesley, ISBN: 978-
0-321-71153-3

Reviewed by Paul Floyd

Recommended.
To give the book its full subtitle How to
Manage Your Software Projects, Your Teams,
Your Boss, and Yourself. Quite an ambitious
range.
For those that don’t know about Watts
Humphrey, he’s the man behind much of
CMMI. He earned his stripes at IBM,
managing the development of OS/360.
The book has something of a Readers’ Digest
of the other works of Humphrey (on PSP –
Personal Software Process and TSP – Team
Software Process). That’s not a bad thing, as
it makes the book refreshingly short and
accessible. The tone throughout is brusque,
positive and upbeat. I don’t think that
Humphrey has much time for people that have

doubts and hesitate. Issues are tackled head
on, usually with a step-by-step plan.
Broadly, the themes covered in the book are
software quality, making yourself and your
team efficient, and managing yourself and
your boss.
Personally, I’m not entirely convinced by the
software-process-as-industrial-process
thesis, but clearly it does have merits. The
book contains plenty of plain common sense,
like ‘define your objectives’ and ‘always start
with a plan’. What I found most interesting
(and true to life) in this book were the human
insights. For instance, what managers at
various levels expect and aim for: a Vice
President with strategic long-term goals
compared to a line manager with tactical
short-term goals.
Final word, I found the book interesting
enough for me to get a copy of PSP: A Self-
Improvement Process for Software Engineers
by the same author.
NOV2010 | | 23{cvu}

24 | | NOV 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

I’ve been thinking recently about
the ACCU, where it’s come from
and where it might head in the
future. The ACCU has changed over its 24 years
and I think it is likely to change considerably
more in the years to come. It started as a
geographically focused technology interest
group (and it still retains the official name of the
C Users Group (UK)). It then took on board
another core technology (C++) and spread
outside the UK. In recent years it has started to
shed its technology-specific origins and has
moved towards being an organisation for
software developers wanting to learn and
improve. I think it is clear to most of the
members that software development in general
has changed and their jobs have changed too.
Few people now sit in functional silos and we
have all had to become multi-skilled and more
aware of the overall needs of our projects and
companies. Few have the luxury of single-
language development. Just as in leading-edge
science, software is now multi-disciplinary with
cross-functional skills and teams.

What does the ACCU’s 24-year history tell us?
What can we learn and what can or should
change? I think the key points are these:

Technology changes over time but our
general goals and aims change less
We have moved from a technology focus
to a developer focus
Members know why they are members
but find it hard to explain to others
We have been primarily inwardly focused

Some years ago the name ‘ACCU’ officially
stopped being an abbreviation but old habits die
hard and people still ask what it stands for.
Perhaps it is time to consider whether the ACCU
should rebrand itself and consider changing its
name. When I discuss this with members they
almost always think it’s a good idea – they know
all too well the problems they have talking to
potential members (‘well, ACCU used to
mean...’) – but they are understandably
concerned about losing the brand we have built
up and they also have no idea what a better name
might be. Names are extremely important (think
of the power of variable and function names in
code) and we need to consider the overall effects
such a refactoring would have. We certainly
wouldn’t want to suffer the fate of Consignia,

Monday, Inprise or any of a long list of other
failed and forced business renamings. In our
own industry the BCS has recently attempted to
change its brand to CIIT but people still think of
it as the BCS. Brands, names and clear messages
are important and the ACCU needs to sharpen
up these aspects if it is to grow and thrive in the
new broader world of software development.
There is a need for the long-term community and
opportunities for growth that we offer; we just
need to work out how to express that clearly and
succinctly to others so that they too can
recognise the value. We also need to start
thinking about being less internally focused and
more aware of how people find out about us,
what they think we stand for and why they might
want to join.
In summary, I think the ACCU is approaching a
crossroads in its history and we have to start
thinking about where we want to go, how to get
there and who we want to accompany us on the
journey. I also think that the membership
realises this even if they’ve not voiced it
explicitly and they are ready and eager to tackle
these issues. Let the debate commence!

ACCU website attack
Tony Barrett-Powell

Some of the regular visitors to the ACCU web site may have
noticed a recent rendering problem and short outage of the site.
This was a consequence of an attack on the web site and the
subsequent restore of the site to a good state.
We know the following things:

An attacker logged into the website using an Administrative
user’s credentials
A script was added to the home page of the site in an attempt
to gather sensitive configuration files at the server level
The administrative functions were used to browse data held
in the website database

We can only speculate how the attacker obtained the
administrative credentials. A compromised PC containing the
stored password in a browser is an obvious candidate, but we have
been unable to identify any such system.
The attacker’s attempts to add the script were technically poor and
caused the home page of the site to fail to render. Thus we are
certain no passwords were obtained using this script.
More concerning is that we cannot rule out the possibility that the
attacker may have downloaded the entire database backing the site,

which does contain information about the members of the site,
including names, email addresses, postal addresses and the
passwords for the site. We have never stored any credit card or
information about any other payment form on the site.
The site was designed with the possibility of a security attack in
mind, so we had already taken the precaution of salting the
passwords stored in the database, so there is no chance of
decryption in this case.
However, if the database was downloaded the attacker will have
access to member’s names, email and postal addresses.
We took some immediate actions:

Disable Administrative access
Ensure all passwords of any Administrative users were
changed
Establish a finer grained set of privileges for those users
contributing content to the site who previously had
administrative rights

It is also our duty to inform the members about the attack and our
assessment of the extent of the breach, which is the intent of this
report.
If you have any questions please contact me on
webeditor@accu.org.

	What’s It Like?
	A Game of Roulette
	On a Game of Chase
	A Comparison of Boolean Flags
	What is Code-Dojo?
	This Time I’ve Got It...
	Desert Island Books
	Inspiration (P)articles
	Code Critique Competition 66
	Regional Meetings
	Bookcase
	ACCU website attack
	View From The Chair

