

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

SEP 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

A Simple Assignment
eavens, Holmes! I sometimes wonder if you need
air at all!’ I fought through the thick atmosphere
of pipe smoke in our living room at 221b Baker

Street to open a window. ‘How long have you been
there?’
He was sitting at the writing desk, with two long rolls of
paper side by side, as if he were balancing accounts. ‘All
night, Watson,’ he replied wearily. ‘It must be here! I
have the code listing and the build log, and yet! I am
overlooking something obvious, I must be!’
Clearly he was looking into the little C# problem presented
by Lady Harrington. The code compiled, and the program
ran, but produced strange output results. The original build
log was at level-1 warnings only, which had elicited a
withering response from Sherlock Holmes. And so, the
level-4 build log was here.
‘Almost as long as the code listing, I see,’
‘You are scintillating, Watson,’ he jibed. ‘It is like
attempting to locate a wasp in a beehive.’ He puffed
furiously at the pipe, as if offended by the newly-cleared air.
At that moment, Mrs. Hudson chose to bring breakfast. ‘Ah,
Mrs. Hudson, a well-timed cup of tea!’ exclaimed Holmes.
‘Perhaps you’d care to look over this code and see what it is hiding, for I am certain
that I cannot?’
‘Certainly, Mr. Holmes. Just as long as you open another window before we all
suffocate!’ replied our long-suffering housekeeper with some asperity, setting the
tray on the breakfast table. No sooner had Holmes and I made ourselves comfortable
than Mrs. Hudson looked up again. ‘This, surely, is the problem,’ she asserted. ‘This
warning about ‘Assignment in conditional expression’. Yes, I am sure, here it should
be ‘equals-equals’ instead of just ‘equals’.’
Holmes recovered quickly and with a wry expression remarked ‘Let that be a lesson
to us all: never try to out-stare bad code on your own.’

 H
Volume 22 Issue 4
September 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Richard Harris, Jon Jagger,
Roger Orr, Richard Polton,
Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
17 Code Critique

Competition #65
Set and collated by
Roger Orr.

20 Inspirational (P)articles
Richard Polton discovers
that a little thought and
insight can save a lot of
time.

21 Desert Island Books
Chris Oldwood chooses
his companions to take to
the island

REGULARS
23 Bookcase

The latest roundup of
ACCU book reviews.

36 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.5: 1st October 2010
C Vu 22.6: 1st December 2010

Overload 100:1st November 2010
Overload 101:1st January 2011

FEATURES
3 People Power

Pete Goodliffe shows us how to become better
programmers.

5 Flexible Function Façades for C and C++
Matt Wilson presents a technique for compiling headers
as C or C++ without changes.

13 An Interview with Jerry Weinberg
Jon Jagger asks the questions.

15 A Game of Chase
Baron Muncharris plays a two-horse race.

15 On a Game of Guesswork
A student performs his analysis.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 64
People Power
Pete Goodliffe shows us how to become

better programmers.

Two things are infinite: the universe and human stupidity;
 and I'm not sure about the the universe.

– Albert Einstein
his is the 64th ‘Professionalism in Programming’ column I’ve written
for C Vu. If you are observant you’ll have noticed a subtle but
significant change that I have introduced after 63 issues. Have you

spotted it yet?
Sidle over to the sidebar for the answer. And if you’re not at all curious,
then skip it and read on...

Programming is a People Pursuit
Almost since the first programs were constructed we have realised that
programming is not a solely technical challenge. It is also a social
challenge. Software development is a pastime that involves writing code
with other people, for other people to understand, working with other
people's (variable quality) code, joining or leaving software teams,
managing developers (which is rather like herding cats), and so on.
Many of the most enduring programming tomes are devoted to the people
problem, for example: The Mythical Man Month [1], and Peopleware [2].
So, based on this, the first simple technique we’ll consider that will help
us to becoming better programmers is this:

Purposefully place yourself beside excellent programmers.

That is, if you want to be an exceptional programmer (or remain one) then
you must consciously place yourself daily amongst people who are

excep t i ona l
programmers
. It’s a really
s imp le bu t
profound way
to make sure
that you improve
your sk i l l s and
attitudes.
We are products of our
environment, after all.
Just as plants need good soil,
fertiliser, and the correct
atmosphere to grow healthily,
so do we.
Spending too long with depressing people will make you feel depressed.
Spending too long with run-down people will make you feel tired and
lethargic. Spending too long with sloppy workmen will encourage you to
work sloppily yourself – why bother trying if no one else is? Conversely,
working with passionate individuals who strive to make better software
will encourage you to do the same.
By immersing yourself in the environment of excellent programmers you
will treat yourself to:

Enthusiasm that is infectious
Motivation that is inspirational
Responsibility that is contagious

Find people like that and marinate yourself. Consciously seek out the
people who care about good code, and about writing it well. In that kind
of environment, you won’t fail to be nurtured and encouraged.
By working with high calibre developers you will gain far more than
technical knowledge, although that in itself is very valuable. You’ll enjoy
positive reinforcement of good programming habits and attitudes. You’ll
be encouraged to grow, and challenged to improve in areas you are lacking.
This isn’t always comfortable or easy, but it is worthwhile.
So make a point of seeking out the best programers and work with them.
Design code with them. Pair program with them. Socialise with them.

What to do
You could make this kind of relationship formal with mentorship (many
workplaces try to put mentorship schemes into practice formally). Or you
may pursue it informally: get yourself assigned on the same projects as the
great programmers. Move company to work with them. Go to conferences,
talks, or user groups to meet with them. Or just make a point of hanging
out with other great programmers.
As you do this, try to learn from them:

How they think and solve puzzles
How they plan a route into problems

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

Thanks for all the fish

So have you noticed what’s changed? Look at the top of the page. I’ve
changed the series title.
Why have I done this?
I started the ‘Professionalism in Programming’ column ten years ago
specifically because that was the strap line of the ACCU. Our maxim.
There’s an awful lot that comes under the umbrella of professionalism,
and I’ve made reasonable headway in examining some of it. Remember
that this professionalism has never been about merely being paid to
write code. No, ‘professionalism’ here means something far deeper. It’s
about taking a responsible, mature attitude to the design, construction,
cultivation, and crafting of software systems. These days the nearest
fashionable term is software craftsmanship. Although that term is not
without its own titular controversy.
Since I just had to describe it above, it’s clear that ‘Professionalism in
Programming’ is an ambiguous series title. It’s not immediately obvious
exactly what it means. All along, I’ve been mining specific tips,
techniques, issues and practices that will help us (myself included) to
become better programmers.
And so, with that in mind, I have chosen to switch the series title over to
the far clearer and more direct ‘Becoming a Better Programmer’.
Hopefully you’d not become too attached to the old title. I hope you like
this new one, and will enjoy what I write under the new banner.
This is not only a change of the words in the magazine header, though.
I also intend to change the format of the material I write. In order to focus
on specific things that will help us to become better programmers, I will
write each time about a single, simple key that will help us to improve as
programmers. This will be something small and practical that will be
easy to apply to our daily coding regimen.
Each issue I will also attempt balance this with a caution. This is a
technique, attitude, or problem that will prevent or hinder you from
becoming a better programmer.
Hopefully this is a simple recipe that will work well. But nothing is ever
set in stone.

As good as a rest
SEP 2010 | | 3{cvu}

The attitude they adopt when things get hard
How they know to keep pushing on a problem, when to take a break,
or when try a different approach
Specific coding skills and techniques you don’t understand

An interesting and beneficial side-effect of working with good coders is
that you are far more likely to end up working with good code.

Know your experts
Consider carefully what you think an excellent programmer looks like.
It might be the expert level practitioner described by the Dreyfus Model
of Skills Acquisition we saw in [3]. (Beware, they might be quite hard to
work with, or hard to learn from!) Or it could perhaps be a relative novice
who doesn’t ‘know it all’ but has innate skill and an excellent attitude.
You specifically don’t want to get alongside people who work too hard,
filling all the hours God sends with code. Those people are almost certainly
not the exceptional programmers! Managers often think that employees
who spend every waking hour on the project are the programming heros,
but often this really shows their lack of ability. They can’t get things right
first time, so they have to spend many more hours getting the code to
‘work’ than was actually necessary.
Experts make it look easy and get things done on time.

20/20 hindsight
I look back over my career and realise that the most enjoyable and
personally productive times I’ve encountered have been when I’ve been
working alongside excellent, motivated, interesting developers. And

because of this, I will now always attempt to place myself alongside people
like that.
I’ve realised that they make me better at what I do, and I have more fun
whilst I’m doing it.
So ask yourself:

Are you around people you think are excellent developers right
now? Why? Why not?
How can you move yourself nearer better coders? Can you move
projects or teams? Is it time to move company?
Perhaps you’re not yet employed. In education are you being taught
by people who know their onions? Are you working on the best open
source projects?

Caution: Don't stagnate
Iron rusts from disuse; water loses its purity from stagnation...

 even so does inaction sap the vigor of the mind.
– Leonardo da Vinci

The small caution that I will leave you with in this column is this:

Be wary of stagnation. Seeking to become a better programmer,
by definition, is not the most comfortable lifestyle.

Few people make conscious decisions like the one above to move
themselves into the path of excellent programmers. It’s risky and hard.
Keeping in the same job is usually easier, more familiar, and convenient.
And in the current economic climate, it’s also the safer bet.
However, there is a danger in staying in one place too long, doing the same
thing over and over with no new challenges. All too easily, we get
entrenched in what we’re doing. Familiarity breeds comfort. We like
being local experts; the king of our little coding castle.
When you are unnecessarily comfortable you have no need to step out of
that comfort zone. No need to learn new things, no need to be stretched,
or to even acknowledge that there is more to learn.
Beware of this trap.
Even if you’re not considering moving jobs, work out how to prevent
stagnation. Can you work on new projects? Get into a part of the system
you’ve no experience in? Can you attempt a new task that requires a
different skill?

Homework
1. Act on these points:

Are you alongside excellence? Can you move?
Are you stagnating? How can you shake this up?

2. Look back over your programming career. What is the single most
important thing that you think has made you a better programmer?
If there is something specific that you can put your finger on, I
would love to hear about it. Please send me an email.

References
[1] The Mythical Man Month Frederick P. Brooks Jr. Addison Wesley,

1995. ISBN: 0201835959.
[2] Peopleware Tom Demarco and Timothy Lister. Dorset House

Publishing, 1999. ISBN: 0932633439.
[3] ‘Professionalism in Programming #60: Live to Love to Learn, Part

2’ Pete Goodliffe. In: C Vu 22.1, March 2010.
4 | | SEP 2010{cvu}

Flexible Function Façades for C and C++
Matt Wilson presents a technique for compiling headers as C or

C++ without changes.

his article illustrates a number of simple techniques for writing
(header-only) library function façades that must compile and function
correctly as both C and C++. It covers issues of ordering and

comparison, conversion to and from string forms, working with multiple
character encodings, and pointer/reference equivalence, focusing on
intrinsic software quality characteristics of correctness/robustness and
modularity. It also examines areas in which use of such façade function
suites from C++ can be substantially enhanced by the application of
namespaces, overloading, default arguments and function templates,
raising the level of abstraction and increasing flexibility.

Introduction
Quoth C++ programmer to C programmer: Your language is
primitive, inexpressive, dangerous, and engenders resource loss.
Quoth C programmer to C++ programmer: Your language is
baroque, complex, flabby, obtuse, and produces inefficient and
bloated executables.

All too often, proselytisers of a given language ignore the hazy margins
where it may need to interact with others. Heaven forfend that
programmers might actually need to work in anything other than the ‘one
true language’!
In large part, the business of software development is the business of
writing abstractions to solve your current problem, and then packaging
them for reuse so you don’t have to reinvent the same solutions in the
future. In other words: writing libraries. This is an essential task, but not
always an easy one. It’s complicated considerably when you need to write
a library that will serve more than one language.
If you happen to be writing in a .NET language, then you have less to worry
about (in this regard, anyway): just pump out your assembly and (with
certain limitations that are outside the scope of this article) consume it in
C#, F#, C++/CLI. (I don’t include VB.NET because it is a bad joke of a
language built from, yet mocking, an execrable ‘language’ whose very
existence speaks to much of what is wrong with the software development
world. So there.)
A similar situation exists with Java and Scala (and no doubt other JVM
languages of which I have neither awareness nor experience). There are
some less obvious, but no less useful, combinations, such as using COM
as an interoperability mechanism between C/C++ and .NET, Python and
Ruby. (The latter combination is one I use all the time in internal tools.
Who said COM was dead?!)
But this is the ACCU, where the Cs (used to) stand for C and C++, so I
expect the majority of you are thinking: What about C++ being a (nearly
proper) superset of C? Isn’t that the very essence of inter-language code
reuse? Well, yes. But, then again, no.
As well as being the portable assembler, C is also considered to be the
lingua-franca of interoperability. C APIs can be consumed directly from
C++, D, Delphi, Fortran, and others. (It can be consumed indirectly from
C++/CLI and C#, whereby the compilers and the .NET runtime do all the
things for you that you have to do yourself to consume it from the likes of
Java, Perl, Python, Ruby.)
One problem with direct (and indirect, for that matter) consumption of C
is that the level of abstraction of a C-API is usually lower than that
convenient to the application programmers of the consuming language.
You need look no further than many standard library functions. For

example, say you want to erase a file whose path you’re storing in a string
object:
 std::string path = "~/stuff";
 ::remove(path.c_str());

The C++ code is written with std::string as the unit of currency for
text strings. The C standard function remove() requires a C-style string,
necessitating our explicit call of the c_str() method. This is an example
of a phenomenon I call abstraction dissonance [1], and I believe it
seriously detracts from expressiveness and flexibility.
There are several ways in which C–C++ cross-language library support
can be more clearly provided. In my experience, the most common and
generally the most useful is to write adaptation layers. For our trivial
remove() example this could be achieved as follows:
 inline int remove(
 std::string const& path
)
 {
 return remove(path.c_str());
 }

If it didn’t violate the C++ standard rules, we might wish to put this in the
std namespace.
However, in some circumstances a better approach is available. Bearing
in mind that C programmers can experience just as much vexation with
verbose low-level C-APIs, sometimes it’s useful to write façades for C-
APIs in C.

The problem

For pedagogical purposes we’ll consider a more technology-specific API.
At the moment I’m doing expert witness work, and am having to conduct
large-scale comparative source code analyses partially aided, thankfully,
by automated code analysis tools. One of Synesis’ extant source analysis
tools is having a few superchargers fitted, in order to cope with the
enormous data sets involved in a case on which I’m working. One of the
modifications required is to represent paths as fixed-length unique
identifiers. Since the dedicated machine on which I’m executing the
analyses is a Windows box, a GUID fits the bill nicely. In order to work
with the various data structures involved, I need to provide the following
operations for GUIDs:

Conversion to text string
Conversion from text string
Equality comparison
Ordering comparison

Conversion to string is available from the Windows API functions
StringFromCLSID() and StringFromGUID2(), defined as follows.

T

MATTHEW WILSON
Matthew is a software development consultant and trainer
for Synesis Software who helps clients to build high-
performance software that does not break, and an author of
articles and books that attempt to do the same. He can be
contacted at matthew@synesis.com.au.
SEP 2010 | | 5{cvu}

WINOLEAPI StringFromCLSID(
 REFGUID rclsid // GUID (aka CLSID) to be
 // converted
, LPOLESTR* ppsz // Address of string pointer
);
int StringFromGUID2(
 REFGUID rguid // GUID to be converted
, LPOLESTR lpsz // Pointer to buffer
, int cchMax // Size of buffer
);

Both work only with wide strings, and are therefore inconvenient if you’re
working with multibyte strings. StringFromCLSID() is doubly
irksome because it allocates the result string – even though it must always
have a length of 38 – which you must then free. Since I am working with
multibyte strings I don’t want to have to write code such as the following,
from which I’ve elided error handling for brevity:

/* (i) with StringFromCLSID() */
GUID guid = . . .
char mbs[39];
LPOLESTR olestr;
HRESULT hr = StringFromCLSID(guid, &olestr);
size_t n = wcstombs(mbs, NUM_ELEMENTS(mbs),
 olestr);
CoTaskMemFree(olestr);
fputs(mbs, stdout);

/* (ii) with StringFromGUID2() */
GUID guid = . . .
LPOLESTR olestr[39];
char mbs[39];
HRESULT hr = StringFromGUID2(guid, olestr,
 NUM_ELEMENTS(olestr));
size_t n = wcstombs(mbs, NUM_ELEMENTS(mbs),
 olestr);
fputs(mbs, stdout);

Yuck. And imagine how much worse it is if the error-handling is in there.
About as transparent and expressive as a teenager!
If you’re working in C++ this issue is already resolved by use of STLSoft’s
string access shims [2] [3] [4]: the GUID overloads are available via
comstl/shims/access/string/guid.hpp.
 #include <comstl/shims/access/string/guid.hpp>

 GUID guid = . . .

 ::puts(stlsoft::c_str_ptr(guid) , stdout);
 ::fputws(stlsoft::c_str_ptr(guid) , stdout);

That may not look so impressive when used explicitly, but if you’re using
FastFormat (for output) or Pantheios (for diagnostic logging) then the
advantage is much more significant, since they both understand anything
for which string access shims are defined (and do so with 100% type-safety
[5]):
 GUID guid = . . .

 ff::fmt(std::cout, "guid = {0}", guid);
 pan::log_DEBUG("guid = ", guid);

It’s also possible to use a façade class, such as STLSoft’s comstl::guid
class:
 #include <comstl/util/guid.hpp>

 GUID guid = . . .

 ::puts(comstl::guid(guid).c_str(), stdout);
 ::fputws(comstl::guid(guid).c_str(), stdout);

This requires two temporary instances be created, which smells bad to me,
even though actually it isn’t bad in this case. Furthermore, it involves my
arch-nemesis, c_str(), in application code, which is invariably an
indicator of abstraction dissonance.
Either of these two types of solutions are viable in C++, but are of no use
to C application programmers.
In a similar vein, conversion from string is available from the Windows
API function CLSIDFromString():

HRESULT CLSIDFromString(
 LPOLESTR lpsz //Pointer to the string
 //representation of the CLSID
, LPCLSID pclsid //Pointer to the CLSID
);

There’s no issue of memory ownership here, but still the inconvenience
of working with multibyte strings. (I won’t bother with an example here,
as I’m sure you can all, gentle readers, imagine the tiresome application
of mbstowcs() in application code.)
Neither equality comparison nor ordering comparison are provided in
any specific form for either language. They can both by synthesised by use
of memcmp(), but, once again, we’re leaking abstraction levels into
application code (i.e. by highlighting that a GUID is a baroque melange
of integral types with memcmp() and sizeof; see sidebar).
So, I had a clear requirement for GUID to be ‘promoted’ to a value type
[2], for comparison at least, and to be succinctly and flexibly converted to
and from text string representations. Furthermore, since STLSoft provides
façades in C form wherever practicable, I elected to beef up the GUID
handling components with a suite of functions supporting both C and C++.

As anyone who’s read Imperfect C++ [2] will attest, I’ve been intrigued
by the nitty gritty of how C and C++ interact with each other for a long
time. One of the things I learned early on is the relationship between
pointers and references. Though not prescribed by the standard, all
known compilers treat the two as equivalent in object code. In other
words, a C++ reference to a given type is represented as a machine
word containing the address of the object it is referencing, just as a
pointer is. This can be used to advantage.
In COM, a GUID is a 128-bit type, comprised of one 32-bit unsigned
integer, two 16-bit unsigned integers, and eight 8-bit unsigned integers.
In almost all cases where a GUID is passed to a function, a NULL
pointer is neither appropriate or acceptable. Because COM is a multi-
language binary standard, its API functions can only represent the
minimum common set of linguistic constructs. In simplistic terms, COM
has a C-API.
In order to simplify C++ client code’s manipulation of GUID constants,
while still observing the requirement to be a pointer in C, many COM
functions utilise the fungible type REFGUID (and its aliases REFIID
and REFCLSID), which is defined as GUID const* in C and GUID
const& in C++, relying on the binary equivalence of pointers and
references provided by the Microsoft and other COM-compatible
compilers.
In other words, the definition of the aforementioned API function
StringFromCLSID() is seen in C compilation units as
 WINOLEAPI StringFromCLSID(
 GUID const* rclsid
 , LPOLESTR * ppsz
);
and in C++ compilation units as
 WINOLEAPI StringFromCLSID(
 GUID const& rclsid
 , LPOLESTR * ppsz
);
This saves on a whole lot of otherwise-necessary address-of operators
applied everywhere a GUID (aka IID, aka CLSID) is specified.
Although only one character – & – this actually does result in significantly
clearer code, and I think the COM team made the right (albeit
implementation-defined) choice.

REFGUID
6 | | SEP 2010{cvu}

This article is the story of the design decisions involved. If you’re using
COM, you may find the technical details of the following discussion
directly relevant. If so, that’s a bonus, but not my expectation for most
readers. Rather, the purpose of this article is to discuss several principles
and techniques for writing façade components that support C and C++,
applicable to any application domain.

Flexible function façades for C and C++
Let’s now look at the implementation of the new/enhanced GUID function
façades available with STLSoft 1.10. Given the limited space in this
forum, I’m going to cover the broad structure of the file, and then break it
down into more detail to cover the individual functions.
The function façades are defined within the file comstl/util/
GUID_functions.h, which has the structure shown in Listing 1.

Includes

As indicated by the comments, this file supports both C and C++
compilation units, so you can expect __cplusplus to put in an
appearance, at least. The includes include (ha ha!) the first interesting
point, shown in Listing 2.
Put aside the STLSoft 1.10 alpha includes, which will change when
STLSoft 1.10 enters beta, the ‘regular’ STLSoft includes shows inclusion
of the COMSTL sub-project main header, in order to get hold of the COM
standard headers (objbase.h, oleauto.h, oaidl.h, …) and
various constants and macros. It also, conditionally, includes the default
STLSoft header for string access shims [2] [3] [4]. For those of you familiar
with my use of string access shims, this is a clear indication that we’ll be
promoting string-related flexibility once we hit C++.

Namespace

The multi-language support aspect is equally evident in the namespace
blocks, as shown in Listing 3.
In C++, we play nice with the rest of the world by encapsulating everything
within the comstl namespace; in C, we rely on the naming convention;
see the next section. (There’s actually a little more to it, but it’s not relevant
here; see [6], and look inside the headers, for more details).

C function declarations

Now we get to the meat of the C functions. I’ll first show them as a
collective in summary in Listing 4.

Focusing just on the signatures, we can see two common distinctive
features: the STLSOFT_INLINE storage class specifier; the comstl_C_
prefix.
Be aware that STLSoft, and all its sub-projects (COMSTL, UNIXSTL,
WinSTL, …) are 100% header-only, which significantly simplifies use by
avoiding issues of compilation of source and/or distributing binaries. An
essential element to achieve that is the use of inline: as well as being a
hint to the compiler to define a given function inline, it also requires that
the compiler/linker ensure that only a single version of the function exists,
thereby avoiding fatal linker errors. It’s the latter aspect for which it’s
employed throughout header-only libraries.
As we all know, inline is (and always has been) supported by C++, but
was standardised in C only as of C99. Thus, STLSOFT_INLINE resolves
to inline in C++ and in C-99, or to compiler-specific extensions such

/* copyright information header block */
/* includes */
/* namespace (opening) */
/* C functions (visible from C) */
/* C functions (visible from C++) */
/* C++ functions */
/* namespace (closing) */

Li
st

in
g

1

/* STLSoft 1.10 alpha includes */
#include <stlsoft/stlsoft_1_10.h>
#include <stlsoft/quality/contract.h>
#include <stlsoft/quality/cover.h>

/* STLSoft includes */
#include <comstl/comstl.h>
#ifdef __cplusplus
include <stlsoft/shims/access/string.hpp>
#endif /* __cplusplus */

/* Standard includes */
#include <wchar.h>

Li
st

in
g

2

#ifdef __cplusplus
namespace comstl
{
#endif

/* C functions (visible from C) */
/* C functions (visible from C++) */
/* C++ functions */

#ifdef __cplusplus
} /* namespace comstl */
#endif

Listing 3

STLSOFT_INLINE int comstl_C_GUID_compare(
 GUID const* lhs
, GUID const* rhs
, HRESULT* comparisonSucceeded
)
{ . . . }
STLSOFT_INLINE int comstl_C_GUID_binary_compare(
 GUID const* lhs
, GUID const* rhs
)
{ . . . }
STLSOFT_INLINE int comstl_C_GUID_equal(
 GUID const* lhs
, GUID const* rhs
)
{ . . . }
STLSOFT_INLINE HRESULT
comstl_C_GUID_from_string_w(
 wchar_t const* str
, GUID* pguid
)
{ . . . }
STLSOFT_INLINE HRESULT
comstl_C_GUID_from_string_a(
 char const* str
, GUID* pguid
)
{ . . . }
STLSOFT_INLINE HRESULT comstl_C_GUID_to_string_w(
 REFGUID guid
, wchar_t (*buff)[1 + COMSTL_CCH_GUID]
)
{ . . . }
STLSOFT_INLINE HRESULT comstl_C_GUID_to_string_a(
 REFGUID guid
, char (*buff)[1 + COMSTL_CCH_GUID]
)
{ . . . }

Listing 4
SEP 2010 | | 7{cvu}

as __inline and __inline__, or, at worst, to static for those very
old C compilers for which none of the above are supported. (The static-
fallback case, needed only for very old compilers, works, but has the
obvious cost of code-bloat, since multiple instances of the functions are
present. They don’t clash the linker because they have internal linkage, by
dint of the static keyword.)
Use of the comstl_C_ prefix is simply there to provide API
disambiguation in the tried-and-trusted C way of prefixing library API
functions with some aspect of the library name [7]. Obviously, such things
do not guarantee uniqueness, but in practice it almost always works. In
previous versions I’ve transgressed good practice by using prefixes such
as comstl__, names that, by having two consecutive underscores, are
reserved. These are gradually being replaced by standards-conformant
ones, as illustrated here.
Before we look at the implementations, I want to talk about the semantics
implied by the function signatures:
comstl_C_GUID_binary_compare() does exactly what you’d
expect, i.e. behaves like memcmp(), returning <0, 0 and >0 to indicate
ordering. In fact, it uses memcmp(), so is fast, but its result is architecture-
dependent: on different byte-ordering architectures the comparison results
of two given GUIDs may differ.
comstl_C_GUID_compare() performs an architecture-independent
comparison, by converting the GUIDs to string form for comparison. And
it has the ability to ‘fail’, as indicated by the comparisonSucceeded
out-parameter. We’ll see how and why shortly.
Both of these functions, and comstl_C_GUID_equal(), take
arguments of (non-mutating) pointer to GUID, rather than REFGUID (see
sidebar), implying that NULL values are valid. This is a weakening of
preconditions, which leads to a modest, though idiomatic, increase in
complexity of implementation, as we’ll see.
The remaining four functions are for conversion between GUID and text
string forms, in matching pairs for wide string and multibyte string
representations. The ‘from string’ pair declarations are pretty boilerplate:
the return type indicates error in format of the string form to be converted.
By contrast, the ‘to string’ pair parameters warrant some discussion. First,
the GUID is passed as a REFGUID (see sidebar), indicating that NULL
arguments are not valid (and not accidentally possible in C++). Stranger,
perhaps, is the destination character buffer parameter, which is a pointer
to an array of dimension 1 + COMSTL_CCH_GUID (== 1 + 38). This
curious construction is quite different from an array or a pointer, to which
an array will naturally decay. In fact, it’s the very ability of an array to
decay into a pointer (see [2] and [8] for more information on this subject)
that motivates the use of an array pointer.
Consider a function with the following declaration instead:
 STLSOFT_INLINE HRESULT fn(
 REFGUID guid
 , char* buff
);

The compiler would allow all of the following:
 GUID guid = . . .
 char ch;
 char ar1[1];
 char ar2[39];
 char ar3[100] = "guid=";
 /* 1 */ fn(guid, &ch);
 /* 2 */ fn(guid, &ar1[0]);
 /* 3 */ fn(guid, ar1);
 /* 4 */ fn(guid, &ar2[0]);
 /* 5 */ fn(guid, ar2);
 /* 6 */ fn(guid, &ar3[0] + 5);

Of these, only 4, 5 and 6 are well-defined. 1–3 will involved undefined
behaviour, and will likely (and hopefully) crash.
You might think that specifying the array size will help:
 STLSOFT_INLINE HRESULT fn(
 REFGUID guid
 , char buff[1 + COMSTL_CCH_GUID]
);

Alas, this is not so. In accordance with the rules of the language(s), the
compiler ignores the number and interprets it as being identical to
fn(REFGUID, char[]), which it interprets as being identical to
fn(REFGUID, char*).
In cases where the size is known at compile time it is possible to have the
compiler enforce the array size by defining the parameter as a pointer to
an array. Having the buff parameter be of type char (*)[39] means
the only parameter it will accept will be the address of an array of
dimension 39.

 STLSOFT_INLINE HRESULT fn(
 REFGUID guid
 , char* buff
);
 . . .
 char ar4[39];
 /* 7 */ fn(guid, &ar4);

In my opinion, this is a great boon to type-safety. The three incorrect cases,
1–3, are rejected. Cases 4 and 5 are replaced by case 7. The only loss in
flexibility incurred by the substantial increase in correctness/robustness
[1] is the inability to write into a part of a (larger) array. I suggest that this
is a bargain well made.

C function implementations

Let’s now look at the implementations. This is where straddling two
languages results in a bit of mess. For the sake of brevity, I will make only
cursory mention of things that are idiomatic, or that have been covered
elsewhere.
First, comstl_C_GUID_compare() (Listing 5).
The features of note are:

Use of Variable form [9] of Null Object pattern [10] to simplify use
of *comparisonSucceeded
Including NULL in ordering (where NULL is ‘less’ than any non-
NULL string)
Use of pointer-to-array, in invoking comstl_C_GUID_to_
string_w(), discussed later

Given the foregoing, all that are left to explain are the two macros,
COMSTL_PTR_2_REF() and STLSOFT_NS_GLOBAL(). As you might
guess from the name, the former turns a pointer into a ‘reference’, by
applying a * in C++ to make a C++ reference, and leaving it as a pointer
in C. The latter applies the global scope operator :: to the macro parameter
in C++, and leaves it unadorned in C.
By dint of these two, the function body will correctly see and invoke
wcscmp() and comstl_C_GUID_to_string_w() whether compiled
as C or as C++.

Afference (afferent coupling) refers to the number of other components
that a given component utilises, i.e. is coupled to. Efference (efferent
coupling) is the inverse, that is the number of other components that
utilise a given component. Each is used as a measure of software
quality, in ways that are outside the scope of this article. What we can
say, however, is that other things being equal, keeping efference of
wrapped API functions is good. Writing façades is, in part, about
covering up the ugly/awkward/sub-par. Consequently once you’ve done
that once you can save yourself from further effort by reusing your own
good works.
(Note: it’s not always a good idea to implement in terms of oneself. In
particular, when implementing classes that segregate public and
internal methods for the purposes of multithreading, contract
enforcement, and so on, it can be a fragile and dangerous pursuit. But
we’re away from the main topic now, and on to issues I’ll be examining
in detail in forthcoming instalments of the ‘Quality Matters’ column over
in Overload.)

Afference and efference (aka fan-in and fan-out)
8 | | SEP 2010{cvu}

Gi ven wha t we ’ve j u s t l e a rne d , t he i mp lem en t a t i on o f
comstl_C_GUID_binary_compare() is now straightforward (as
shown in Listing 6).
comstl_C_GUID_equal() (Listing 7) is also pretty obvious, with the
detail that the ‘assumption’ contract enforcement requires that the two
compare functions agree when it comes to equality (which they may not
be able to do with ordering).
Let’s now turn our attention to the string functions.
comstl_C_GUID_from_string_w() (Listing 8) is another
straightforward façade function, comprising nothing more than parameter
p re c o nd i t i o n c o n t r a c t e n f o rc emen t s , and fo rward i ng t o
CLSIDFromString(). It applies const_cast to improve const-
correctness for users of the façade, to overcome an oversight in the COM
API, which is not const-correct in many places. Still, otherwise it does
nothing much at all, and you may wonder at the point of it: Why not just
have users invoke CLSIDFromString() (with cast if necessary)? There
are four reasons:

Const-correctness

Consistency (with comstl_C_GUID_from_string_a())
Reduction of the efferent use of the COM API function
CLSIDFromString() to 1 (see sidebar)
Overloading (as we’ll see later in this article)

The aforementioned issue of efference is in play in the implementation of
its complement function, comstl_C_GUID_from_string_a() (see
Listing 9). This function takes a multibyte string, which it converts using
the Windows API function MultiByteToWideChar(), before nul-
t e rmi na t i ng t he r e su l t a nd pa s s ing t o
comstl_C_GUID_from_string_w() , rather than cal l ing
CLSIDFromString() directly (with a second const_cast).

STLSOFT_INLINE int comstl_C_GUID_compare(
 GUID const* lhs
, GUID const* rhs
, HRESULT* comparisonSucceeded
)
{
 HRESULT comparisonSucceeded_;
 if(NULL == comparisonSucceeded)
 {
 comparisonSucceeded = &comparisonSucceeded_;
 }
 *comparisonSucceeded = S_OK;
 if(NULL == lhs)
 {
 return (NULL == rhs) ? 0 : -1;
 }
 else
 {
 if(NULL == rhs)
 {
 return +1;
 }
 else
 {
 OLECHAR s1[1 + COMSTL_CCH_GUID];
 if(FAILED(*comparisonSucceeded
 = comstl_C_GUID_to_string_w(
 COMSTL_PTR_2_REF(lhs), &s1)))
 {
 return -1;
 }
 else
 {
 OLECHAR s2[1 + COMSTL_CCH_GUID];
 if(FAILED(*comparisonSucceeded =
 comstl_C_GUID_to_string_w(
 COMSTL_PTR_2_REF(rhs), &s2)))
 {
 return -1;
 }
 else
 {
 return STLSOFT_NS_GLOBAL(wcscmp)(s1, s2);
 }
 }
 }
 }
}

Li
st

in
g

5

STLSOFT_INLINE HRESULT
 comstl_C_GUID_from_string_w(
 wchar_t const* str
, GUID* pguid
)
{
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != str,
 "string parameter may not be null");
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != pguid,
 "return value out parameter may not be
 null");
 return STLSOFT_NS_GLOBAL(CLSIDFromString(
 stlsoft_const_cast(LPOLESTR, str), pguid));
}

Listing 8

STLSOFT_INLINE int comstl_C_GUID_binary_compare(
 GUID const* lhs
, GUID const* rhs
)
{
 if(NULL == lhs)
 {
 return (NULL == rhs) ? 0 : -1;
 }
 else
 {
 if(NULL == rhs)
 {
 return +1;
 }
 else
 {
 return STLSOFT_NS_GLOBAL(memcmp)(lhs, rhs,
 sizeof(GUID));
 }
 }
}

Listing 6

STLSOFT_INLINE int comstl_C_GUID_equal(
 GUID const* lhs
, GUID const* rhs
)
{
 STLSOFT_CONTRACT_ENFORCE_ASSUMPTION(
 (0 == comstl_C_GUID_binary_compare(lhs, rhs))
 ==
 (0 == comstl_C_GUID_compare(lhs, rhs, NULL)));

 return 0 == comstl_C_GUID_binary_compare(
 lhs, rhs);
}

Listing 7
SEP 2010 | | 9{cvu}

comstl_C_GUID_to_string_w() (see Listing 10) is pretty
straightforward. Points of interest are:

Dereference of the pointer-to-array to obtain the array to pass to the
underlying API function

Conditional parameter precondition contract enforcement
Postcondition contract enforcement of the nul-terminating character
of *buff.

comstl_C_GUID_to_string_a() (see Listing 11) is completely
comprised of features we’ve already discussed. The only specific comment
is regarding the use of the postcondition contract enforcement of the nul-
terminating character, which WideCharToMultiByte() must return
because we gave it the space in which to do so.

Ambient character encodings
Thankfully, that’s it for all the long listings. Now we turn to the issue of
selecting the requisite _a/_w function variant, dependent on our ambient
character encoding. In C, this is just a matter of using macros, as in:
 #ifdef __cplusplus
 . . . /* The C++ functions */
 #else /* ? __cplusplus */

 # ifdef UNICODE
 # define comstl_C_GUID_from_string
comstl_C_GUID_from_string_w
 # define comstl_C_GUID_to_string
comstl_C_GUID_to_string_w

STLSOFT_INLINE HRESULT
 comstl_C_GUID_from_string_a(
 char const* str
, GUID* pguid
)
{
 OLECHAR ws[1 + COMSTL_CCH_GUID];
 HRESULT hr = S_OK;
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != str, "string parameter may not be
 null");
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != pguid, "return value out parameter may
 not be null");
 switch(STLSOFT_NS_GLOBAL(MultiByteToWideChar)(
 0, 0, str, -1, &ws[0], 1 + COMSTL_CCH_GUID))
 {
 case 1 + COMSTL_CCH_GUID:
 ws[COMSTL_CCH_GUID] = L'\0';
 hr = comstl_C_GUID_from_string_w(
 ws, pguid);
 break;
 default:
 if(S_OK == (hr = HRESULT_FROM_WIN32(
 STLSOFT_NS_GLOBAL(GetLastError)())))
 {
 hr = E_INVALIDARG;
 }
 break;
 }
 return hr;
 }

Li
st

in
g

9

STLSOFT_INLINE HRESULT comstl_C_GUID_to_string_w(
 REFGUID guid
, wchar_t (*buff)[1 + COMSTL_CCH_GUID]
)
{
 int r;
#ifndef __cplusplus
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != guid, "GUID parameter may not be
 null");
#endif /* !__cplusplus */
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != buff, "array parameter may not be
 null");
 r = STLSOFT_NS_GLOBAL(StringFromGUID2)(guid,
 *buff, 1 + COMSTL_CCH_GUID);
 if(0 == r)
 {
 return E_INVALIDARG;
 }
 else
 {
 STLSOFT_CONTRACT_ENFORCE_POSTCONDITION_PARAMS
 _EXTERNAL(L'\0' == (
 *buff)[COMSTL_CCH_GUID],
 "buffer must be nul-terminated");
 return S_OK;
 }
}

Li
st

in
g

10

STLSOFT_INLINE HRESULT comstl_C_GUID_to_string_a(
 REFGUID guid
, char (*buff)[1 + COMSTL_CCH_GUID]
)
{
 OLECHAR wbuff[1 + COMSTL_CCH_GUID];
 HRESULT hr;
#ifndef __cplusplus
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != guid, "GUID parameter may not be
 null");
#endif /* !__cplusplus */
STLSOFT_CONTRACT_ENFORCE_PRECONDITION_PARAMS_API(
 NULL != buff, "array parameter may not be
 null");
 hr = comstl_C_GUID_to_string_w(guid, &wbuff);
 if(FAILED(hr))
 {
 (*buff)[0] = '\0';
 }
 else
 {
 switch(
 STLSOFT_NS_GLOBAL(WideCharToMultiByte)(
 0, 0, wbuff, 1 + COMSTL_CCH_GUID, *buff,
 1 + COMSTL_CCH_GUID, NULL, NULL))
 {
 case 1 + COMSTL_CCH_GUID:
 STLSOFT_CONTRACT_ENFORCE_POSTCONDITION
 _PARAMS_EXTERNAL(
 L'\0' == (*buff)[COMSTL_CCH_GUID],
 "buffer must be nul-terminated");
 break;
 default:
 if(S_OK == (hr = HRESULT_FROM_WIN32(
 STLSOFT_NS_GLOBAL(GetLastError)())))
 {
 hr = E_INVALIDARG;
 }
 break;
 }
 }
 return hr;
}

Listing 11
10 | | SEP 2010{cvu}

 # else /* ? UNICODE */
 # define comstl_C_GUID_from_string
comstl_C_GUID_from_string_a
 # define comstl_C_GUID_to_string
comstl_C_GUID_to_string_a
 # endif /* UNICODE */

 #endif /* __cplusplus */

In C++, however, we prefer inline functions to macros. It would be a simple
matter to do this, as in:
 inline HRESULT comstl_C_GUID_from_string(
 TCHAR const* str
 , GUID* pguid
)
 {
 # ifdef UNICODE
 return comstl_C_GUID_from_string_w(str, pguid);
 # else /* ? UNICODE */
 return comstl_C_GUID_from_string_a(str, pguid);
 # endif /* UNICODE */
 }

TCHAR is a Windows header-defined typedef, similarly conditional to
either wchar_t or char, depending on the presence or absence of the
UNICODE pre-processor symbol definition.
However, this is not the preferred option. In C++ we also have overloading
available to us, which I use as shown in Listing 12.
For one thing, it supports C++ users who may wish to work with both
character encodings in the same code-base. But there’s a much more
convincing reason, which we'll cover next.

Flexible C++ functions

Another C++ language feature is namespaces. Since, in C++ compilation
units, all of the functions in the GUID façade suite reside within the

comstl namespace, we can dispense with the comstl_C_ prefix,
allowing the user to decide whether they wish to explicitly qualify:
 comstl::X();

or use a using declaration
 using comstl::X;
 X();

(They could also use using directives, but I’d strongly suggest they do
not; see [2] for reasons against.)
So, we define a separate set of simplified-name function façades (Listing
13), implemented in terms of the ones already discussed. The points of note
are:

Overloaded to work with pointer and reference arguments
Defaulting of the comparisonSucceeded parameter to NULL, in
which case an exception is thrown
Definition of GUID_from_string() as a function template, and
the use of string access shims in its implementation to make it
compatible with any ‘shim’d type’ (see [2] [3] [4] [11])

The first two points are straightforward, but the latter bears some
explanation. The stlsoft::c_str_ptr string access shim is a function
overload set whose purpose is to ‘access’ (involving either elicitation or
conversion) the C-string form of a type. Arguments of extant overloads
include std::string, std::wstring, stlsoft::string_view,
HWND, struct dirent, and many more (including those defined,
without any coupling to STLSoft, in other libraries and commercial
projects). Anyone is free to define their own overloads to suit their projects.
The precise return type from stlsoft::c_str_ptr() depends on the
function arguments:
 // in namespace stlsoft
 char const* c_str_ptr(
 std::string const& s
);
 wchar_t const* c_str_ptr(
 std::wstring const& s
);

Finally it’s clear why both overloads (char const* and wchar_t
const*) are defined in C++ for comstl_C_GUID_from_string():
the compiler selects the overload of stlsoft::c_str_ptr() that
matches GUID_from_string()’s str parameter, and then selects the
overload of comstl_C_GUID_from_string() accordingly. This is
one of the key elements of the application of string access shims in
generalising APIs that can work with different character string encodings.
In the commercial project that motivated these façade functions, the file
identifier string-forms reside within a memory mapped-file, and are
acce s sed u s i ng s t r i ng v i e ws [12] i n t he fo rm o f
stlsoft::string_view. These instances are convertible to GUID via
the requisite overload of stlsoft::c_str_ptr().

Classes?

You understand, I hope, the motivation for providing façade functions as
both C and C++ compatible. The final element in providing façades for
the GUID type is to (re)use these façade functions in the implementation
of façade classes, i.e. comstl::guid. In a future version of STLSoft
1.10, all previous uses of the Windows API GUID<->string functions will
be replaced by the new ones described here. That will assist in my ongoing
(and eternal, and unwinnable) battle to keep a clean separation in the levels
of abstraction: 3rd-party API -> function façades -> class façades ->
application code.

Acknowledgements
I’d like to thank Steve Love, the CVu editor, for dealing flexibly and
patiently with this chronically deadline-slipped author, and my friends and
review panel resident experts, Garth Lancaster and Chris Oldwood.

#ifdef __cplusplus
inline HRESULT comstl_C_GUID_from_string(
 wchar_t const* str
, GUID* pguid
)
{
 return comstl_C_GUID_from_string_w(str, pguid);
}
inline HRESULT comstl_C_GUID_from_string(
 char const* str
, GUID* pguid
)
{
 return comstl_C_GUID_from_string_a(str, pguid);
}
inline HRESULT comstl_C_GUID_to_string(
 REFGUID guid
, wchar_t (*buff)[1 + COMSTL_CCH_GUID]
)
{
 return comstl_C_GUID_to_string_w(guid, buff);
}
inline HRESULT comstl_C_GUID_to_string(
 REFGUID guid
, char (*buff)[1 + COMSTL_CCH_GUID]
)
{
 return comstl_C_GUID_to_string_a(guid, buff);
}
#else /* ? __cplusplus */
. . . /* The C macros */
#endif /* __cplusplus */

Li
st

in
g

12
SEP 2010 | | 11{cvu}

References
[1] ‘Quality Matters, part 1: Introductions and Nomenclature’, Matthew

Wilson, Overload 92, August 2009
[2] Imperfect C++, Matthew Wilson, Addison-Wesley, 2004
[3] Extended STL, volume 1: Collections and Iterators, Matthew

Wilson, Addison-Wesley, 2007
[4] ‘An Introduction to FastFormat, part 2: Custom Argument and Sink

Types’, Matthew Wilson, Overload 89, April 2009
[5] ‘An Introduction to FastFormat, part 1: The State of the Art’,

Matthew Wilson, Overload 88, February 2009
[6] ‘Open-source Flexibility via Namespace Aliasing’, Matthew Wilson,

C/C++ Users Journal, July 2003
[7] C Interfaces and Implementations, David R. Hanson, Addison

Wesley, 1997
[8] Deep C Secrets, Peter van der Linden, Prentice-Hall, 1994
[9] ‘Safe and Efficient Error Information’, Matthew Wilson, CVu, July

2009
[10] Null Object: Something for Nothing, Kevlin Henney, 2003

(originally presented at EuroPLoP in July 2002), available from
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/
NullObject.pdf

[11] ‘An Introduction to FastFormat, part 3: Solving Real Problems,
Quickly’, Matthew Wilson Overload 90, June 2009

[12] ‘A View To A String’, Matthew Wilson, Dr. Dobb’s Journal,
January 2006

#ifdef __cplusplus
inline int GUID_compare(
 GUID const* lhs
, GUID const* rhs
, HRESULT* comparisonSucceeded = NULL
)
{
 HRESULT succeeded;
 int result = comstl_C_GUID_compare(lhs, rhs,
 &succeeded);
 if(S_OK != succeeded)
 {
 if(NULL == comparisonSucceeded)
 {
 throw com_exception("comparison failed",
 succeeded);
 }
 else
 {
 *comparisonSucceeded = succeeded;
 }
 }
 return result;
}
inline int GUID_compare(
 GUID const& lhs
, GUID const& rhs
, HRESULT* comparisonSucceeded = NULL
)
{
 return GUID_compare(&lhs, &rhs,
 comparisonSucceeded);
}
inline int GUID_binary_compare(
 GUID const* lhs
, GUID const* rhs
)
{
 return comstl_C_GUID_binary_compare(lhs, rhs);
}
inline bool GUID_equal(
 GUID const* lhs
, GUID const* rhs
)
{
 return 0 != comstl_C_GUID_equal(lhs, rhs);
}
inline bool GUID_equal(
 GUID const& lhs
, GUID const& rhs
)
{
 return 0 != comstl_C_GUID_equal(&lhs, &rhs);
}
template <typename S>
inline HRESULT GUID_from_string(
 S const& str
, GUID* pguid
)
{
 return comstl_C_GUID_from_string(
 stlsoft::c_str_ptr(str), pguid);
}
inline HRESULT GUID_to_string(
 REFGUID guid
, wchar_t (*buff)[1 + COMSTL_CCH_GUID]
)

Li
st

in
g

13 {
 return comstl_C_GUID_to_string_w(guid, buff);
}
inline HRESULT GUID_to_string(
 REFGUID guid
, char (*buff)[1 + COMSTL_CCH_GUID]
)
{
 return comstl_C_GUID_to_string_a(guid, buff);
}
#endif /* __cplusplus */

Listing 13 (cont’d)
12 | | SEP 2010{cvu}

http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf

An Interview with Jerry Weinberg
Jon Jagger asks the questions.

erry Weinberg was born in 1933 and is the author of over 40 books
and 400 articles on wide-ranging topics centred on software
development. Jerry has also started writing science fiction novels

and I can thoroughly recommend First Stringers and The Aremac
Project. He is a winner of the J.D. Warnier prize in information science
and the Stevens Award for Contributions to Software Engineering and
was an inaugural inductee into the Computer Hall of Fame. As well as
writing classics such as The Psychology of Computer Programming,
The Secrets of Consulting, and Quality Software Management volumes
1–4, he is also a founder of the Amplify Your Effectiveness (AYE)
conference and runs several world-class workshops including Problem
Solving Leadership (PSL). I have read most of Jerry’s books and had
the honour of meeting him at the 2009 AYE conference and the 2010
PSL workshop.

If you were stranded on a desert island with five books which
books would you choose and why? Please don’t pick more than
one of your own!

1. An empty notebook with as many square feet of blank paper
possible, for keeping my journal of this desert island adventure.

2. The complete Oxford English Dictionary, so I can study the English
language in depth for the future when I might be rescued.

3. Frazer’s Golden Bough, so I can immerse myself in the vastness of
human culture.

4. Martin Gardner’s The Annotated Alice (Lewis Carroll’s Alice books,
annotated by Martin Gardner) so I could read for wisdom and humor
at the same time. (I’ve used this book as a text in s/w development.)

5. If a Kindle counts as one book, I’d take that. Otherwise, Wilderness
Medicine, Beyond First Aid, 5th Edition by William Forgey (I’d like
to research this one, because I haven’t read this, but I would need the
best such book.)

I don’t have any computer books on the list because I’m assuming I
wouldn’t have a computer.
If there were such a book, I’d probably want How to Build a Two-Way
Radio Out of Coconut Shells.

Which books would you change and to what if you did have a
computer?

1. I would not need the empty notebook, as I could keep my journal on-
line. Instead, I’d want a complete service manual for the computer
equipment.

2. I would not need the OED, for the same reason – an on-line OED.
Instead, I would take Don Knuth’s The Art of Computer
Programming. I assume we count all published volumes as one
‘book’.

 The rest I would keep the same.

What do you consider your biggest contribution to the software
world.

That’s easy. I answered that some years ago, and my answer hasn’t
changed. My biggest contribution to the software world is that I never
invented yet another programming language.

What would you still like to achieve?

I’d like to persuade more computer people to work on the unsolved
problems of our profession, rather than the (pretty much) solved ones such
as compiler writing.

Could you give some examples of what you consider to be the
important unsolved problems of our profession

Requirements: finding out what will really make people happy
Doing the things we know we ought to do
Not doing things we know we ought not do
Conservation of knowledge from one generation to the next
Developing some sense of standard practice (can be more than one,
but not too many) that will be followed around the world

You’ve written that you get a lot of inspiration from nature. Could
you give some examples – of both the inspiration and nature that
inspired it.

Systems grow, and when they grow, they change. I’ve learned a lot
about growing systems from natural systems and how they grow.
For instance, there’s D’Arcy Thomson’s book, On Growth and
Form, and a lovely little book, The Adaptive Geometry of Trees.
Systems adapt. Way back, I wrote Natural Selection as Applied to
Computers and Programs, inspired by such works as Fisher’s The
Mathematical Theory of Natural Selection.
Many of my insights from nature, along with references, can be
found in my books on Systems Theory, such as An Introduction to
General Systems Theory and General Principles of System Design.

If you had a one-time-only time machine how would you use it?

I wouldn’t. I have a rule: Don’t mess with time.

Suppose you used it to visit your younger self what advice would
you give yourself?

When someone offers advice, you ought to taste it, but you don’t have to
swallow it.

J

JON JAGGER
Jon Jagger is a self-employed software coach-consultant-
trainer-mentor-programmer who works on a no-win no-
fee basis. He likes the technical aspects of software
development but mostly enjoys working with people. He
can be contacted at jon@jaggersoft.com
SEP 2010 | | 13{cvu}

In question one you mentioned Martin Gardener’s book, The
Annotated Alice. Could you expand on how you used this as a text
in s/w development.

Alice’s trip across the chessboard to become promoted quite nicely
parallels a typical development process. It’s no coincidence that Lewis
Carroll (Dodgson) was a mathematical logician. He was able to do logic,
and to make memorable the instances of illogic. For example, the Red
Queen’s behaviour is that of many bad development managers (‘Off with
their heads.’) The students were invited to find other parallels in the book,
which hopefully set their minds to work.

What is the biggest change you’d like to see in the software world?

Slowing down in order to do things right.

What would it take to make this happen?

Hell would have to freeze.

What question would you ask yourself?

What question would you ask yourself?

And what is your answer.

What question would you ask yourself? Just kidding. That was a fun
recursion.
(this is the real question Jerry would ask himself)
Why are you writing novels these days?
(and this is his real answer)
Like any life-changing decision, the switch to
fiction has many reasons, all intertwingled.
What follows are some of the reasons I have
been able to disentangle.
All my life, I’ve dedicated myself to helping
smar t , t a len ted people be happy and
productive. You can see that theme in my
books, I think, and it’s the theme I’ve continued in my novels (see list
below).
But not all my work has been through writing. Dani and I have also spent
our careers training these smart, talented people through the use of
experiential workshops – Problem Solving Leadership Workshop (PSL),
Organization Change Shop (OCS), Systems Engineering Management
(SEM), and the Amplifying Your Effectiveness Conference (AYE). We
use experiential training methods because they are effective. They reach
many people, and much more deeply, than your typical lecture class with
PowerPoint slides.
In many ways, reading a non-fiction book can be much like one of those
PowerPoint lectures, so whenever possible, I have used stories to bring my
non-fiction works to life. Stories have always been powerful for learning,
going back thousands of years. Why? Because a good story arouses the
readers feelings of participating in the experience the story describes.
A great deal of the popularity of my books (and other non-fiction writers
like Tom DeMarco) is in the stories. They make for lighter reading, which
some people love and some people find objectionable, but overall, I have
managed to present lots of hard stuff effectively through these stories.
Some of my books have been directed specifically at Information
Technology (IT) people. Some have not. Generally, the ones that have sold
best and longest have been the ones not so specifically directed at IT people
– books such as An Introduction to General Systems Thinking, The Secrets
of Consulting, Are Your Lights On?, What Did You Say?, and Weinberg
on Writing: The Fieldstone Method. These readers tell me they like the
stories, even those that have some technical content. In fact, they often
learn technical concepts and details as a byproduct of reading and enjoying
the stories. I like that, because it says I have reached many smart, talented
people who don’t happen to be IT folk. The novels do that even better. I
hope more people try them.

Could you briefly mention some of your favourite music and films.

Music: Almost anything Baroque. Any of Mozart (I have the complete
recordings of his works, which should tell you something). Most music
prior to 1850; almost nothing after that except Sousa, Gilbert & Sullivan,
and Scott Joplin.
Films: (I’m probably missing some, but all these are favorites that I can
see again at any time, with no hesitation.)

The African Queen (1951)
Bringing Up Baby (1938)
Casablanca (1942)
City Lights (1931)
Duck Soup (1933)
Fantasia (1940)
The Gold Rush (1925)
High Noon (1952)
It’s A Wonderful Life (1946)
Modern Times (1936)
A Night At The Opera (1935)
Paths of Glory (1957)
Singin’ In The Rain (1952)
The Treasure of the Sierra Madre (1948)
The Wizard of Oz (1939)

Could you expand a little on your rule ‘not messing with time’?
Does it relate to ‘Slowing down in order to do things right’?

Yes. Things take the time they take, not the time you hope they will take.
Pushing for half-time produces half-baked.

At your Problem Solving Leadership
course I noticed you sometimes answered
a question obliquely. For example when
discussing cancer treatments you told the
story of the Aspen mountain passes and

how none of them are really much good. Could you explain why
you sometimes choose to answer a question in this manner.

What you call oblique, I call powerful. Take your example. Few of my
listeners have had cancer, but many of them have the experience of hiking
on difficult trails. Thus, the lesson is more likely to stick, as it has with you.

You’ve said learning a new language (a human language, such as
Spanish) really helped your ability to think in a Systems Thinking
way. Could you expand on that?

In my case, it was French, learned while living in Geneva for a number of
years. After a while, I found myself thinking in French when my ordinary
thinking wasn’t solving a problem. For instance, in English we say things
like, ‘I took an aspirin for my headache’. In French, the expression would
be ‘against my headache’. To me, that seems to imply something different
from the English expression – a different way of thinking about disease
and cure.
So, in effect, after learning French, I have a second way of addressing
problems – and once I have a second way, it’s easy to see that there may
be a third way, and a fourth way, and so on. Being about to see a situation
in multiple ways is a key concept in systems thinking, and learning a new
language favors that concept.
The same phenomenon occurs in so-called programming languages.
Someone who can work in only one such ‘language’ cannot truly be
considered a real programmer, in my opinion. That’s why in school, I
always insisted that programming homework be done in at least two
languages – along with a written analysis of how each language affected
the way the student approached the problem.

Acknowledgement
Photograph courtesy of Fiona Charles.

I have a rule.
Don’t mess with time!
14 | | SEP 2010{cvu}

A Game of Chase
Baron Muncharris plays a two-horse race.

alloo Sir R-----! Pray come join me and partake of a glass of this
rather excellent potation! Might I again tempt you with a wager?
Splendid!

I have in mind a game that always reminds me of my victory on the turf
at Newmarket. Ordinarily I would not participate in a public sporting event
such as this since I am at heart a modest man and derive no pleasure in
demonstrating my substantial superiority over my fellows.
On this occasion, however, I had been asked to ride by the Empress of
Russia herself and could not honourably have refused. Finding herself in
some temporary pecuniary difficulty she had wagered her jewellery on a
gelding from her own stable and felt, with ample justification I might add,
that my being his jockey would greatly improve her chances.
My steed seemed in good condition as we cantered to the starting line but,
as soon as the starter dropped his flag, he stumbled and fell. As my fellow
jockeys raced down the track I examined his leg and came to the conclusion
that it had been deliberately injured; presumably by a bookmaker fearful
of losses resulting from my inevitable victory.
Naturally I could not ride the injured animal, but nor could I entertain
failing the Empress. I therefore took the beast upon my shoulders and
started off at a sprint. It took fully half the circuit before I had caught up
with the pack and another quarter before I had taken the lead, although in
my defence I had not yet lunched.
That my victory was celebrated in fine style hardly bears telling. Rather,
let us commence our game.
Here, I have placed your coin on the lower left hand square of this
chessboard and mine on the lower right. At each turn I shall move my coin
four squares away from yours around the perimeter of the board and you
shall likewise move your coin towards mine, albeit by a number of squares
determined by the roll of a die.

If my coin remains ahead of yours until it returns to the bottom row of the
board I shall have your coin as my prize. If, however, you catch or pass
my coin before I do so the chase shall end and you shall receive a bounty
of forty coins for every square between mine and my goal!
When I described the rules of this game to that damnable student
acquaintance of mine, he started tiresomely wittering on about his
condition once more and about some convocation I can only suppose he
is planning to attend. What interest he supposes a noble such as I might
have in either the health or the calendar of a wretch such as he is quite
beyond my comprehension.
Now take another draught and think on your chances!
(Listing 1 shows a C++ implementation of the game.)

On a Game of Guesswork
A student performs his analysis.

ecall that the Baron’s game consisted of guessing under which of a
pair of cups was to be found a token for a stake of 1 and 7/8ths of a
coin and a prize, if correct, of 1/8th of a coin. Upon success, Sir R-----

could have elected to play again with three cups for the same stake and
double the prize. Success at this and subsequent rounds gave him the
opportunity to play another round for the same stake again with one more
cup than the previous round and a prize equal to that of the previous round
multiplied by its number of cups.
In other words, if Sir R----- had earned the right to play the nth round, he
would have had to pay a stake of 1 and 7/8ths of a coin to do so and must
have guessed beneath which of n+1 cups was the token for a prize of:

At first glance the game seems to be heavily biased in the
Baron’s favour. Indeed, Sir R----- could only have come out
ahead if he won 5 games in a row (see equation 1).
The chance of his having done so was a paltry

strongly suggesting he should not have taken up the Baron’s challenge.
Appearances, however, can be deceptive. We can reckon Sir R-----’s
expected winnings with the never-ending formula

H

R

1
8
--- 1× 2× 3× … n××

1
2
--- 1

3
---× 1

4
---× 1

5
---× 1

6
---× 1

720
---------=

17
8
---–

1
2
--- 1

8
---⎝
⎛×– 17

8
---–

1
3
--- 2 1

8
--- 17

8
---–

1
4

2 3 1
8
--- 17

8
---–

1
5
--- …×+××⎝

⎛

×+×⎝
⎛×+

Equation 1

1
8
--- 2+

1
8
---× 2 3 1

8
---×× 2 3 4 1

8
---××× 41

8
--- 4 17

8
---×< 71

2
---==+ +

1
8
--- 2+

1
8
---× 2 3 1

8
---×× 2 3 4 1

8
---××× 2 3 4 5 1

8
--- 191

8
---=×××× 5 17

8
--- 93

8
---=×>+ + +

unsigned
roll()
{
 return 1 + unsigned(6.0 * double(rand())
 / (double(RAND_MAX)+1.0));
}
unsigned
play()
{
 unsigned b = 7;
 unsigned r = 0;
 while(b<28 && r<b)
 {
 b += 4;
 r += roll();
 }
 return (b<28) ? 40*(28-b) : 0;
}

Listing 1
SEP 2010 | | 15{cvu}

Rearranging this yields

and thus

Using an exclamation mark to denote the product of 1 and every integer
greater than zero and less than or equal to that that immediate precedes it,
known as the factorial, and a capital sigma to represent the sum of the
expression that follows it with the variable term replaced one after the other
by each of the integers between those below and above it, we have equation
2 (below).
The first sum is known as the exponential series and is equal to the
mathematical constant e, or approximately 2.7183. The second sum is
known as the harmonic series and is infinite in value! I expressed as much
to the Baron, but I am not entirely sure he grasped my point.
This fact that the sum of these ever diminishing terms grows without limit
seems unlikely, but it is relatively easy to demonstrate upon grouping them
together. See equation 3.
The question that remains is how long must Sir R----- have been willing
to play in order to exploit this advantage.
Unfortunately, I know of no tidy formula with which to express the sum
of the first n terms of the harmonic series. We can, however, figure bounds
on it using the integral calculus.

The sum of the first n terms of this series is trivially equal to the area under
the curve that takes the value of 1 between 0 and 1, of 1/2 between 1 and
2, of 1/3 between 2 and 3 and so on and so forth up to 1/n between n-1 and
n. Now this curve is everywhere above that of 1/(x+1) and nowhere above
that of the lesser of 1 and 1/x.
Using the integral calculus to calculate the areas under these two bounding
curves we can conclude that

and hence, by the rules of integration

If we treat the first n terms of the exponential series as if it were equal to
its entirety, a reasonable supposition if n is not small, Sir R-----’s expected
winnings if he elects to never play more than n games, En, would have been
approximately bounded by

Now the number of games that Sir R----- must have been prepared to play
if he wished to come out ahead on average is bounded by

which, upon rearranging, gives

and therefore, for large n, approximate bounds of

or, in more familiar notation, roughly
156,000,000,000 < n < 425,000,000,000

I should consequently have advised Sir R----- to
take up the Baron’s challenge, but only if he had
a taste for a very large prize at very long odds and
plenty of time on his hands!
Figure 1 shows bounds for the harmonic series.

17
8
---–

1
2
--- 17

8
--- 1

2
---–× 1

3
---× 17

8
---×–

1
2
--- 1

3
---× 1

4
---× 17

8
--- …–

1
2
--- 1

8
---×+

×–

1
2
--- 1

3
---× 2 1

8
---×× 1

2
--- 1

3
---× 1

4
---× 2 3 1

8
---××× …+ + +

17
8
--- 1 1

2
--- 1

2 3×
------------ 1

2 3× 4×
--------------------- …+ + + +⎝ ⎠

⎛ ⎞ 1
8
--- 1

2
--- 1

3
--- 1

4
--- …+ + +⎝ ⎠

⎛ ⎞×+×– 1
x 1+
------------ xd

0

n

∫ 1
i

i 1=

n

∑ 1 1
x
--- xd

1

n

∫+≤<

n 1+() 1
i

i 1=

n

∑< nln≤ln

13
4
--- 17

8
--- e 1

8
---+× n 1+() En<ln× 13

4
--- 17

8
--- e 1

8
---+× 1 n()ln+()×–≤–

13
4
--- 17

8
--- e 1

8
---+× n 1+()ln× 0 13

4
--- 17

8
---–≤< e 1

8
---+× 1 n()ln+()×–

14 15 e n 1+()ln+× 0 15 15 e n()ln+×–≤<–

15 e 15 n() 15 e 14–×<ln≤–×
25.7742 n() 26.7742<ln≤

e25.7742 n e26.7742≤ ≤

17
8
--- 1

n!

I 1=

∞

∑×–
1
8
--- 1

i

i 2=

∞

∑× 1–
7
8
---= 1

i!

i 0=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

× 1
8
--- 1

i

i 1=

∞

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

1–
⎝ ⎠
⎜ ⎟
⎛ ⎞

×+ +

13
4
--- 17

8
---– 1

i!

i 0=

∞

∑× 1
8
---+ 1

i

i 1=

∞

∑×=

1 1
2
--- 1

3
--- 1

4
--- 1

5
--- 1

6
--- 1

7
--- 1

8
--- 1

9
--- 1

10
------ 1

11
------ 1

12
------ 1

13
------ 1

14
------ 1

15
------ 1

16
------ …+ + + + + + + + + + + + + + + +

1 1
2
--- 1

3
--- 1

4
---+⎝ ⎠

⎛ ⎞ 1
5
--- 1

6
--- 1

7
--- 1

8
---+ + +⎝ ⎠

⎛ ⎞ 1
9
--- 1

10
------ 1

11
------ 1

12
------ 1

13
------ 1

14
------ 1

15
------ 1

16
------+ + + + + + +⎝ ⎠

⎛ ⎞ …

1 1
2
--- 1

4
--- 1

4
---+⎝ ⎠

⎛ ⎞ 1
8
--- 1

8
--- 1

8
--- 1

8
---+ + +⎝ ⎠

⎛ ⎞ 1
16
------ 1

16
------ 1

16
------ 1

16
------ 1

16
------ 1

16
------ 1

16
------ 1

16
------+ + + + + + +⎝ ⎠

⎛ ⎞ …

1 1
2
--- 1

2
--- 1

2
--- 1

2
--- …+ + + + +=

+ + + + +>

+ + + + +=

Eq
ua

ti
on

 2
Eq

ua
ti

on
 3

Fi
gu

re
 1

AN APOLOGY
A footnote was unintentionally omitted from ‘On a Game of Nerve’
(CVu 22.3) that identified Louis Lavery as Monsieur L.... and thanked him
for his solution.
16 | | SEP 2010{cvu}

Code Critique Competition 65
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Last issue’s code
I’m trying to write a simple quadratic equation solver for the equation "a * x
* x + b * x + c = 0" that writes output to a file but I am having problems getting
it working. It’s OK for some inputs but I’m having problems, in particular with
equations that have no (real) solution. The code is in Listing 1.

Critiques

Thaddaeus Frogley <codemonkey.uk@gmail.com>

The program as presented has two maths problems:
1. if b*b < 4*a*c then it will try to take the square root of a negative

number.
2. if a == 0 then it will divide by zero

Both of these operations are invalid with normal floating point (or integer)
maths.
Assuming solutions involving complex numbers[1] are outside the scope
of the assignment, the student should modify his code to explicitly check
for these cases and present the user with an appropriate message instead
of a garbage result.
Recommended reading for the student:
 http://en.wikipedia.org/wiki/Floating_point
Specific attention should be paid to section 4.2, which talks about Special
Values, and will explain the meaning of "-1.#IND", and section 7 which
talks about exceptional cases.

References:

[1] http://en.wikipedia.org/wiki/Complex_number

Richard Polton <drboots@galactichq.org>

This is possible within C++ using the std::complex data type:
#include <complex>
#include <iostream>

int main(int, char**)
{
 double a=1, b=2, c=3;

 std::complex<double> x1 = (-b + sqrt(
 std::complex<double>(b*b - 4*a*c)))
 / (2*a);
 std::complex<double> x2 = (-b - sqrt(
 std::complex<double>(b*b - 4*a*c)))
 / (2*a);

 std::cout << "the two roots are: " << x1 <<
 " and " << x2 << std::endl;
 return 0;
}

However my programming language du jour is F# so I thought a little
function to do the same thing using the equivalent library function
wouldn’t go amiss...

#r @"c:\FSharp\FSharpPowerPack-
2.0.0.0\bin\FSharp.PowerPack.dll";;
open Microsoft.FSharp.Math;;
let toComplex = fun x -> Complex.mkRect(x, \
 0.0);;

P

Li
st

in
g

1
Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

C:> cc64
Enter quadratic coeffs: 1 0 -1
Roots: 1 and -1
C:> cc64
Enter quadratic coeffs: 1 2 3
Roots: -1.#IND and -1.#IND
Didn't match

// Solve quadratic equation.
// Save the roots.
// Read and verify they wrote OK.

#include <cmath>
#include <fstream>
#include <iostream>
void tofile(double a, double b)
{
 std::ofstream("file.dat") << a << b;
}
void fromFile(double & a, double & b)
{
 std::ifstream("file.dat") >> a >> b;
}
void verify(double rootHigh, double rootLow)
{
 double readRootHigh, readRootLow;
 fromFile(readRootHigh, readRootLow);
 if ((readRootHigh != rootHigh) ||
 (readRootLow != rootLow))
 {
 std::cout << "Didn't match" << std::endl;
 }
}
int main()
{
 std::cout <<
 "Enter quadratic coefficients: ";
 double a,b,c,rootHigh,rootLow;
 if (std::cin >> a >> b >> c)
 {
 rootHigh = (-b + sqrt(b*b - 4*a*c)) / 2*a;
 rootLow = (-b - sqrt(b*b - 4*a*c)) / 2*a;
 std::cout << "Roots: " << rootHigh <<
 " and " << rootLow << std::endl;
 tofile(rootHigh, rootLow);
 verify(rootHigh, rootLow);
 }
}

Listing 1
SEP 2010 | | 17{cvu}

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Complex_number

let quadraticSolver (a:float) (b:float) \
(c:float) =
 let sqrt = (fun x -> (Complex.mkRect \
 (x,0.0))) >> Complex.sqrt
 (toComplex(-b) + sqrt(b*b - \
 4.0*a*c))/toComplex(2.0*a),
 (toComplex(-b) - sqrt(b*b - \
 4.0*a*c))/toComplex(2.0*a);;
[Editor’s note: I’ve used a trailing \ to show the split lines]

Sadly, I couldn’t work out how to extend the + et al. operators to have
dissimilar types, e.g. a float and a complex number, so I had to stick with
the helper function toComplex. Overloading the sqrt function was
much easier :-)

Huw Lewis <huw.lewis@hlsoftware.co.uk>

First pass

Serialisation
There is a problem with the serialisation scheme used. This writes two
doubles to the file as text. As there is nothing between the two numbers
to delimit them, they cannot be reliably read back e.g: the numbers 1.2 and
3.4 would be serialised as: "1.23.4". So, on reading the first number we
get 1.23, then 0.4 for the next.
The solution for this is simple – add white-space between the two numbers.
Operator precedence
The calculation of the quadratic equation roots has errors with operator
precedence. I can remember from my old school days that the solution for
a quadratic equation is:
 roots = (-b +/- sqrt(b2 - 4ac)) / 2a

However, the code as given ended with:
 / 2 * a;

This would have the effect of dividing by 2, then multiplying the result by
'a', which is not the desired effect. Amend to the intended:
 / (2 * a);

Other observations
Main function is declared with an int return type but has no return
statement.
Now that we have a return code, it should indicate success only if the
operation succeeds – including the verification of the serialised results.
The verify method uses the != operator for the double type. This is
notoriously troublesome as all sorts of rounding errors and precision issues
can result in a tiny difference between values that are intended to be the
same. Instead, use < and > operators with an acceptable error margin.
rootHigh and rootLow variables are declared in a scope where they
aren’t really needed. Prefer to declare variables within the scope they are
required.

Quadratic equations

Quadratic equations are of the form:
0 = ax2 + bx + c

The solution to quadratic equations is:
rootHigh = (-b + sqrt(b2 - 4ac)) / 2a
rootLow = (-b - sqrt((b2 - 4ac)) / 2a

Note there are two solutions (roots) to the equation and these may be real
(a simple number) or complex (a 2-D vector consisting of real and
imaginary components).
So, the code as-is will support only real roots, complex roots will manifest
themselves as good old nan (not a number) results.

Complex numbers

Complex numbers are a concept used to handle some (normally)
impossible operations such as the square root of a negative number. They
are a 2-D vector consisting of a real component and an imaginary
component, i where i represents -1½.
Lucky for us, C++ provides a Complex Number type in the STL
<complex> header. This is a template that takes a type argument for the
underlying real/imaginary components.
So, the equation will have complex roots if the expression to be ‘square
rooted’ is negative:

b2 - 4ac
When the above expression is negative, we know that it represents the
square of an imaginary component of the complex number.

sqrt(b2 - 4ac) = i * sqrt (abs(b2 - 4ac))
So, we can calculate our complex root (high) as follows:
 complex<double> rootHigh = -b;
 rootHigh.imag(sqrt(abs(b * b - 4 * a * c)));
 // imaginary component
 rootHigh /= (2.0 * a);

The root (low) calculation is as above but with the imaginary component
being applied in the negative.

 Tidying up

Now we have used complex numbers, we have some maintaining to do.
It is necessary to handle complex number types in a few places e.g. the
calculations, the serialisation, verification etc. Therefore it would be
convenient to define a typedef for our std::complex<double> to
aid readability: ComplexNumber_t.
The tofile, fromFile and verify functions should now operate on
ComplexNumber_t rather than simple doubles. The white-space added
earlier to delimit the simple doubles is no longer required.
In order to use the streaming operators from <complex> the serialisation
lines must be split to separate the construction from the streaming
operations.
It was found that by default, the streaming of double types was printing
only to 6 significant figures causing verification errors when comparing
with the calculated values to many more decimal places.

Increase the precision to 10 significant figures
Calculate the acceptable error margin as the least significant of the
10 sig figures.

Solution
// Solve the quadratic equation.
// Save the roots.
// Read and verify they wrote ok.

#include <cmath>
#include <fstream>
#include <iostream>
#include <complex>
namespace // anon for file-scope
{
 // Define a complex number type for this program
 typedef std::complex<double> ComplexNumber_t;
 // Define some constants
 enum{
 double_precision = 10 // significant figures
 };

 // Write the given complex number results to a
 // file: file.dat
 void tofile(const ComplexNumber_t& a,
 const ComplexNumber_t& b)
 {

Li
st

in
g

2

18 | | SEP 2010{cvu}

 std::ofstream output("file.dat");
 output.precision(double_precision);
 output << a << b;
 }

 // Read the complex number results from
 // the file.dat
 void fromFile(ComplexNumber_t& a,
 ComplexNumber_t& b)
 {
 std::ifstream input("file.dat");
 input >> a >> b;
 }

 // return the number of digits in the
 // whole number part of the double
 // precision number.
 int decimal_order(double n)
 {
 return static_cast<int>(std::log10(n)) + 1;
 }
 bool doubles_are_equal(double a, double b)
 {
 // Get the difference between the two doubles
 const double diff = std::abs(a - b);
 if (diff == 0.0)
 {
 // a and b really are equal
 return true;
 }
 else
 {
 // there is a difference, but how big is it?
 double min_var = std::min(std::abs(a),
 std::abs(b));

 // define the error margin as the least
 // significant digit
 const double error_margin =
 decimal_order(min_var) / std::pow(10,
 double_precision - 1);
 return (diff < error_margin);
 }
 }
 bool verify(const ComplexNumber_t& rootHigh,
 const ComplexNumber_t& rootLow)
 {
 // read back the serialised results
 ComplexNumber_t readRootHigh, readRootLow;
 fromFile(readRootHigh, readRootLow);
 return (doubles_are_equal(
 readRootHigh.real(), rootHigh.real()) &&
 doubles_are_equal(readRootHigh.imag(),
 rootHigh.imag()) &&
 doubles_are_equal(readRootLow.real(),
 rootLow.real()) &&
 doubles_are_equal(readRootLow.imag(),
 rootLow.imag()));
 }
} // end namespace

int main()
{
 // define return code constants
 enum
 {
 ret_ok = 0,
 ret_error = 1
 };
 int retCode = ret_error; // assume error until
 // operation completes

 // Get the inputs from the user
 std::cout <<
 "Enter quadratic coefficients: ";
 double a, b, c;

 if (std::cin >> a >> b >> c)
 {
 // Declare the roots as complex numbers
 ComplexNumber_t rootHigh;
 ComplexNumber_t rootLow;

 // Quadratic Equation solution:
 // (-b +/- sqrt(b*b - 4*a*c)) / (2*a)

 // evaluate the fragment in the square root
 double sqrtExpression =
 (b * b) - (4 * a * c);
 if (sqrtExpression < 0.0)
 {
 // the roots will be complex.
 // make the sqrtExpression positive,
 // then assign to the imaginary
 // component.
 sqrtExpression = std::sqrt(
 std::abs(sqrtExpression));
 rootHigh = -b;
 rootHigh.imag(sqrtExpression);
 rootHigh /= (2.0 * a);
 rootLow = -b;
 rootLow.imag(sqrtExpression * (-1.0));
 rootLow /= (2.0 * a);
 std::cout << "Roots are complex: "
 << rootHigh << " and "
 << rootLow << std::endl;
 }
 else
 {
 // The roots will be real
 sqrtExpression =
 std::sqrt(sqrtExpression);
 rootHigh = (-b + sqrtExpression) /
 (2.0 * a);
 rootLow = (-b - sqrtExpression) /
 (2.0 * a);
 std::cout << "Roots are real: "
 << rootHigh.real() << " and "
 << rootLow.real() << std::endl;
 }
 // Serialise results
 tofile(rootHigh, rootLow);
 // verify the result serialisation
 if (verify(rootHigh, rootLow))
 {
 // Operation succeeded
 retCode = ret_ok;
 }
 else
 {
 std::cout << "Verification failed." <<
 std::endl;
 }
 }
 return retCode;
}

Commentary
The code sample has several problems. Firstly, the code is broken, as Huw
points out, because the operator precedence rules mean the code doesn’t
do what was expected: expression / 2*a ignores white space and
SEP 2010 | | 19{cvu}

Inspirational (P)articles
Richard Polton discovers that a little thought and insight can

save a lot of time.

have recently discovered Project Euler (http://www.projecteuler.net)
and had elected to work through the problems as part of my teach-
myself-F# course. One of the problems involved counting the number

of factors in the ascending sums of the natural numbers. Although I had
previously tackled a similar problem concerning prime factorisation, I
made a small error.
My program was successful but, curiously to me at the time, took over two
weeks solid processing time to arrive at the answer. This seemed wrong

to me and so while the program was running I attempted a number of
optimisations in an effort to find the mistake. Most mysterious!
The issue came about because of the way in which the factors were
determined. I used a brute force algorithm, trial division, but forgot that
the upper limit should be sqrt n and not n itself. Therefore, each iteration
was taking a significantly longer time! In fact, whe n I changed the upper
limit to sqrt n then the program took a mere seven seconds to complete!
That’s a certain improvement over two weeks!

I

Code Critique Competition (continued)
{cvu}

binds the operators left to right; so it is equivalent to (expression /
2) * a.
Secondly there are various problems serialising double precision numbers
to a file – the C++ iostream metaphor seems broken to me when, as in this
case, operator<< and operator>> calls are not in general reciprocal.
Note that changing the data type to std::complex<> solves this issue
since the output format in this case is bracketed – but I suspect this is a
fragile solution.
Thirdly there is the question over what answer is actually desired when the
mathematical solution is a complex number. Generalising the calculation
to return values of this type may be the best solution, but of course the
format of file.dat has to change in this case.
Finally there is the vexed question of infinity. Unfortunately the C++ is
silent on the string that will be output when a floating point value is infinite
(or a Nan) and equally silent on whether or not such a value can be streamed
into a double.
A helper class or similar can be used to assist with this particular problem
if a solution is needed; if not then the program should be changed to return
an error where a non-representable result is returned.

The winner of CC 64
There are three very different critiques above. The first two provide ways
to avoid the problem either by explicitly failing for some inputs or solving
a more general problem. The last critique engages more with the original
problem (and also pointed out the problem with the operator precedence)
so I am awarding this issue’s prize to Huw.

Code Critique 65

(Submissions to scc@accu.org by Oct 1st)

As mentioned in the last issue Louis Lavery had a proposal for a minor
change in the formulation of the code critique. His proposal goes ‘State a
problem together with a solution and ask for improvements (which, in
some cases, might lead to a full rewrite due to taking a different view or
to generalising and in others to the conclusion there’s no way to improve
it)’.
The problem: Print all pairs of indices that bracket the maxima in a circular
list of numbers.

For example:
0 1 2 3 4 5 6 7 8 9 <- indices
2,1,4,3,5,6,6,6,1,1 <- numbers
^ ^ ^ ^ ^ <- maximums (three 6s
 count as one).
(9,1) (1,3) (4,8) <- brackets (output in any
 order).

No doubt this can be made more efficient. Simply, after we print a pair we
could set j to k, couldn’t we? Well, we’d have to detect the case where k’s
been reset to zero and, if so, return immediately. I guess k’s only going to
be reset half the time, so we’ll be setting a k_was_reset_flag to no
avail half the time, so is it really more efficient? It certainly makes the code
more complicated – less easy to follow.
Maybe it’s better to write two functions, one brackets the maximums in a
non-circular list and the other looks for a wrapped maximum?
The code is shown in Listing 2. You can also get the current problem from
the accu-general mail list (next entry is posted around the last issue’s
deadline) or from the ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who typically get the magazine
much later than members in the UK and Europe.

// The code to improve
void bmax(int const a[],int const n)
{
 int i = n-1;
 for(int j = 0; j != n; ++j)
 {
 if (a[i] < a[j])
 {
 int k = j;
 do
 {
 if (++k == n) k = 0;
 } while(a[j] == a[k]);
 if (a[j] > a[k]) print(i,k);
 }
 i = j;
 }
}

Listing 2
20 | | SEP 2010

Desert Island Books
Chris Oldwood chooses his companions to take to the island.

lthough I have seen Chris around at conferences and other ACCU
events and on accu-general, I had never put the name to the face until
the night he claims he put me off my stride. What he fails to mention

about that night was the huge compliment he paid me in the pub afterwards.

When Chris sent me his desert island books I thanked him on receipt before
reading them and he warned me to save my thanks until I read them. When
you read them you’ll see that they are very good, but I couldn’t help pointing
out that as the column editor I’d have the final say! With that in mind I’d like
to point out that my respect for Chris has taken a slight dip. Not only did he
mock Spandau Ballet, but he clearly feels that Borderline is a better song
than Like A Prayer. Utter madness.

Chris Oldwood
I have a strange feeling that I know why I might be stuck on this desert
island – it’s probably penance for knocking the host of this column off his
stride whilst he was giving a presentation to the London branch of the
ACCU. Unlike the heckling from the Henney corner that night mine was
a little more subtle. I forgot my glasses and so kept squinting at the slides
in what must have seemed to be a ‘very confused’ manner – actually maybe
it’s not penance but sabotage…
So where do I start? I guess I’ll follow the pattern of my predecessors and
generally cover the technical books first. The music should be easy, but
the novel is going to be pretty tough as I just don’t read fiction books. As
a child I’d have preferred a complete set of Haynes manuals to the
collective works of William Shakespeare; and as I saunter into my
technical library (aka The Downstairs Toilet) I find myself staring at the
modern equivalent – umpteen books on [D]COM and Windows’ internals.
On a pragmatic note I feel the most useful would be four of the books by
Jeffrey Richter as he has produced some paper based behemoths that could
easily be bound together to make a pretty sizeable raft.
Hmmm, I thought this was going to be easy. There aren’t many unfinished
books on the shelf (although I’m ashamed to admit that one is by our very
own Pete Goodliffe) so perhaps I should just take those? Looking back at
previous choices I seem to have some serious omissions. I’ve been writing
C++ for about 15 years and yet I don’t own a copy of Bjarne Stroustrup’s
The C++ Programming Language or Nicolai Josuttis’ The C++ Standard
Library. Come to think of it I don’t own a copy of the standard either; in
fact I don’t think I’ve ever seen one; then again I’ve never suffered from
insomnia.
Anyway I probably shouldn’t use this time to learn
about a specific technology but perhaps use it to reflect
on our profession instead – I’m sure I spend way too
much time ‘doing’ and not nearly enough thinking
about ‘how’ I’m doing it. And so we come full circle
and Pete Goodliffe’s Code Craft comes back off the
shelf again. I’ve read the first 75 or so pages and it
looks like a modern take on the software development
process so I reckon it’s a good start. My 1st Edition of
Code Complete by Steve McConnell is looking a little outdated so perhaps
this will supplement it nicely. Plus it comes with monkeys, although I
suspect I won’t be short of those for company on the island.
A couple of years ago I raised a question with my fellow ACCU colleagues
about what modern books there are on the Object Orientated paradigm. I
realised I had stumbled into C++ development and consequently the OO
world without really understanding the principles of the paradigm I was
supposed to be following. It seems as though the age old tomes by Grady
Booch (Object Oriented Analysis and Design with Applications) and
Bertrand Meyer (Object-oriented Software Construction) are still a force

to be reckoned with even now. Hubert Matthews chipped
in with the more recent Object-Oriented Design
Heuristics by Arthur J. Riel. I’ve browsed through that and
it looks very useful, especially with the slightly different
format, but I think I’ll go with the Meyer classic as it
covers the basics. It’s also another hefty beast and so
should come in handy to weigh down any tarpaulin.

In terms of shelf space Kent Beck barely registers (he creates very svelte
works by comparison) and yet I’ve found his books an absolute joy to read.
He has a pleasant conversational style that almost makes you feel like he’s
in the room reading to you (now that would make a novel episode of
Jackanory). Implementation Patterns in particular is one of those books
that really tries to help you get inside the author’s head. Some might say
much of it is obvious, but that’s only because he’s pointed it out. If there
was a Collective Works of Kent Beck available to satisfy these ham-fisted
rules I’d take that; after all I only read Extreme Programming Explained
because I enjoyed reading Implementation Patterns and Test Driven
Development. So let’s see what else Amazon says he has to offer, back in
a moment…
Oh, that’s it really. But that’s good because now I have another choice that
I wasn’t expecting. Whilst on Amazon I checked my ever growing wish
list to see what else might inspire me. One subject leaps out and that is to
better appreciate what it is that my manager is [supposed to be] doing. I
digested Steve Maguire’s Debugging the Development Process a very long
time ago when I was but a junior starting out. Although
I thoroughly enjoyed it I’m not convinced I would have
read it with this goal in mind. Peopleware: Productive
Projects and Teams by Tom DeMarco and Timothy
Lister appears to be the classic text everyone refers to
and so I’d probably go with that as my starter. Perhaps
when I’ve been rescued I could delve a little deeper and
try something more modern – I seem to remember that
Allan Kelly bloke having a book out.
So I’m down to my last choice and I’m feeling somewhat guilty. I’ve only
scratched the surface of The Pragmatic Programmer (Andrew Hunt and
David Thomas) even though it is considered an all time classic and I know
it’s packed to the gills with sound advice. I’ve also just started Coders at
Work (Peter Seibel) as the whole ‘Duct Tape Programmer’ debacle caught
my attention. It’s a collection of interviews with such famous luminaries
as Donald Knuth. It would be neat if I could use that as my novel-come-
not-so-hardcore-techie-book because it’s a bit more touchy-feely instead.
So when I said there aren’t many unfinished books on my shelf what planet
was I on? What would be a really bold move is to pick one of those books
Jon Jagger was selling at the ACCU Conference this year; there was some
seriously weird looking titles in there and yet so intriguing at the same time.
This software business is way deeper than you think…
Actually I’ve known all along the one book I was
definitely going to take and that is Writing Solid
Code by Steve Maguire. This (along with Code
Complete by Steve McConnell which is arguably a
significantly more useful book) had a huge impact on
me and the team I joined back at the start of my
career. I know nostalgia isn’t what it used to be, but
I still have a great fondness for this book – most
notably the anecdotes from Steve’s days managing
projects at Microsoft. I personally found the airing of their dirty laundry
particularly refreshing; it added a sense of humility and real-worldliness

A

SEP 2010 | | 21{cvu}

to it. As the books subtitle suggests (Microsoft Techniques for Developing
Bug-free C Programs) it has less direct relevance to me these days but I
still enjoy thumbing through the pages of this (and his sister book
Debugging the Development Process) to read random anecdotes for the
occasional sanity check. Blast, now I’ve realised I don’t have room for
Raymond Chen’s The Old New Thing, and after I gave it such a glowing
review in C Vu as well!
So with my geeky side nourished I come back to the thorny issue of what
novel to take. It’s probably apparent from my earlier comment that I’ve
barely read any novels as it’s not a pastime I indulge in. So do I go for the
safety of what little I already know or pick something I think I’ll like?
There’s probably going to be a beach on the desert so I feel inclined to pick
one of those ‘best sellers’ by Jackie Collins or Andy McNab. Not really
my scene though. If I can’t abuse the rules and get Coders at Work accepted
then maybe I should try for The Cuckoo’s Egg by Clifford Stoll. This is
about how he tracked down a hacker back in the 80’s whilst working at
the Lawrence Berkeley Labs. For a techie I thought he penned a pretty good
book.
Now if it were films life would be easier with anything
from Sergio Leone’s westerns to Michael Bay’s glossy
sci-fi flicks to choose from. Here’s a novel thought (ha
ha), perhaps I should read the book of a film I enjoy –
everyone always says how much better they are. That
would probably push me towards some sort of Philip K
Dick affair, but I’d rather go with something humorous.
Douglas Adams vs Terry Pratchett; it’s so predictable.
Oh, alright then, it has to be The Hitchhiker’s Guide to
the Galaxy.
Is anyone still reading at this point? Have I managed to portray myself as
such a shallow character by now that you’ve decided I probably deserve
to be marooned on a desert island to reduce pollution of the gene pool?
Good, then I shall hit you with my musical taste… Let me start by pointing
out that I’m a product of the 1980s. It’s ok, I’m not going to pick Spandau
Ballet, but I do covet the keyboard and sampler rather than guitar so anyone
looking for more weight to the Purple Floyd vs Deep Pink or whatever the
argument was can go back to sleep now.
My love of beeps and squeals starts with Kraftwerk, passes through
Depeche Mode on to The Prodigy, The Chemical Brothers and ends with
a variety of DJs such as Carl Cox. There is also the occasional diversion
into ska, hip hop and rap. I suspect that a turntable would fair better than
a CD player in such a dusty climate, but sadly the vast majority of my vinyl
collection is in the form of 12" singles so I would have to pick something
like the Soft Cell 12" Singles Box Set to get value for money out of my
musical choices. With only two options available it would need to be a pair
of those rarest of albums; the ones that you could listen to relentlessly and
don’t have a single duff track that you always skip. There is plenty of house
and techno that I listen to relentlessly at work as I find it an enjoyable
accompaniment; the disruptive exceptions being Music for the Jilted

Generation by The Prodigy and Swordfish (The Album) by Paul
Oakenfold. These have a habit of forcing me to context switch in search
of the ‘track repeat’ button. If it wasn’t for my IBM Model M keyboard I
suspect Voodoo People would have had to answer for quite a few broken
keys by now.

For ‘The Island’ where solitude is likely the order of
the day, I’d prefer lyrics and big beats so I’m going
to pick Confessions on a Dance Floor by Madonna
and To The 5 Boroughs by The Beastie Boys.
Madonna has teased us in the past with a few
cracking tracks on Ray of Light and Music (and in
secret I’ll even admit to adoring Borderline from the
’80s) but Confessions is 100% perfect pop with a

modern dance/house edge. The Beastie Boys on the
other hand ticks all the boxes I’m looking for in the
hip hop/rap/humour department. It was a close call
between Hello Nasty (their previous best work) and
Boroughs but the later has an extra level of maturity
and polish. Depending on whether or not my family
are also marooned with me I could allow for a
significant increase in the swearing ratio and pick
Encore by Eminem instead.
Let me finish with my own J. J. Abrams inspired addition to the format by
asking ‘What type of clunky old terminal would you like to find in the
bunker hidden under the island?’ For me it would be an RM 380Z as that’s
where it all started.

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

CONGRATULATIONS STEVE AND FRANCES

The CVu team, along with
the rest of the ACCU
membership, would like to
send our congratulations
and best wishes to the
CVu editor Steve Love
and Inspirational
(P)articles author
Frances Buontempo
on their recent
marriage.

It’s slightly worrying
that Frances is now
offically called Dr
Love. We’re not
sure if she’s
become an evil
Bond villain or a
daytime
television agony
aunt.

We wish you many happy years together.

We are glad to
know that your
honeymoon can
only interrupt
magazine
production the
one time!
22 | | SEP 2010{cvu}

SEP 2010 | | 23{cvu}

Refactoring, Ruby
Edition
By Jay Fields, Shane Harvie,
Martin Fowler with Kent Beck,
published by Addison
Wesley, ISBN: 978-0-321-
60350-0

Reviewed by Gavin
Heavyside

Fowler and Beck’s original Refactoring book is
deservedly a classic, and helped to formalise a
set of best-practices that should be second nature
to all aspiring software craftsmen. This version
updates the original to use Ruby examples and
idioms throughout.
The book begins with a simple worked example
that illustrates how a series of small independent
refactorings can lead to radically different – and
better – program structure while preserving all
outward behaviour. It then covers the principles
underpinning refactoring, and catalogues code
‘smells’ that warn the programmer of areas that
might deserve refactoring.
The ‘Smells’ section details several warning
signs that your code needs work, and developing
an intuitive sense of smell for code is the key to
applying refactorings successfully.
Conventional warning signs like duplicated
code are highlighted, but also smells that are
more Ruby oriented such as ‘Metaprogramming
Madness’. Metaprogramming is a powerful
feature of Ruby and powers some common
Ruby libraries, but it can easily lead to
obfuscated code that is impossible to decipher.

The bulk of the book comprises a catalogue of
named refactorings. Each refactoring is named,
described, and the motivation behind its use is
given. The mechanics of performing the
refactoring are given in a step-by-step
description, and a simple example of performing
the refactoring is given in Ruby. The catalogue
covers a wide range of refactorings, both
updated versions of the original text, and new
ones that take advantage of Ruby language
features (e.g. ‘Replace Loop with Collection
Closure Method’). There are some pairs of
complementary refactorings (e.g. ‘Change
Reference to Value’ and ‘Change Value to
Reference’) that acknowledge all changes are
context-dependent.
The scope of refactorings cover a diverse range
topics and scopes, from the trivial (‘Rename
Method’) all the way up to more wide-ranging
architectural changes (‘Convert Procedural
Design to Objects’). In each case the reasons
why you would consider the refactoring are
covered, followed by how to do it. Class
diagrams accompany most of the refactorings,
which is perhaps the first time I’ve ever seen
UML used to describe Ruby code.
Refactoring is the process of changing the
structure of a program, without affecting its
behaviour. I’ve lost count of the times I’ve
heard developers claim to be ‘refactoring’ some
code without any unit tests, and if you don’t have
tests then there is no reliable verification of its
behaviour. Without tests, you aren’t refactoring,
you are just rewriting. The book includes a short
(9 page) introduction to unit testing with the

Test::Unit framework, but it cannot provide
the background needed to develop a test suite
sufficient to perform major refactoring.
In my experience TDD is fairly pervasive in the
serious Ruby community, and every self-
respecting Rubyist uses either a combination of
rspec and cucumber or some of the other leading
test frameworks. The concepts and language
from the original Refactoring book have
permeated modern test-driven practices, and it
seems to me that this familiarity has somehow
diluted the impact that this edition ought to have.
It is a good book with much to recommend it,
particularly the catalogue of refactorings, but for
me it slightly falls between two stools. If you are
have unit test coverage to the point where you
are ready to refactor, there is a good chance you
are already doing some of the things that this
book describes. If not, then you need to
bootstrap your TDD. If you are new to the world
of TDD and refactoring then it should be read in
conjunction with a good TDD book for you to
get the most benefit.

Pro Android 2
By Sayed Hashimi, Satya
Komatineni, and Dave
MacLean, published by
Apress, ISBN : 978-
1430226598

Reviewed by Derek M Jones

This book deals with
writing applications to run
under Google’s Android 2 platform/operating
system/API. It is Java specific and those
wanting to use C or another language will have
to look elsewhere. The book has a strong hands-
on feel to it with the authors sprinkling the text
with useful practical tips and warnings.
Like any modern platform Android contains a
huge amount of functionality and even a book of
736 pages can only skim the surface. As might
be expected in a book about a platform from
Google there is a strong bias towards
applications that use the internet and search.
The user interface APIs include support for
OpenGL, widgets, text to speech and
touchscreen. The material strikes a good
balance between providing an introduction to
the topic and practicalities of using the API. In
places the quantity of code is excessive, but in
general it is well integrated into the discussion
of the topic at hand.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

24 | | SEP 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

While obtaining and using system resources is
covered, it is not covered in any detail and a
developer wanting to make sophisticated use of
system resources will need to look elsewhere.
I get the feeling that Android 2 is still evolving
and some of the information in the book is liable
to change. However, developers have to start
somewhere and this book covers the basic
functionality, provides useful hands-on
information and is readable (it does not attempt
to provide exhaustive coverage and complete
reference information is freely available
elsewhere). In 12-18 months time things may
have moved on sufficiently that a new book is
required, in the meantime this book is
recommended.

jQuery Recipes: A
Problem-Solution
Approach
By B. M. Harwani, published
byApress, ISBN 978-1-4302-
2709-0

Reviewed by Alan Lenton

Cookbook/Recipe style
books seem to be all the rage at the moment.
Although I do prefer reference books, I do find
the cookbook style useful for things that I don't
do very often, and this book was no exception.

I would emphasize, though, that it's not a book
you could really use to learn how to use the
library.
jQuery is one of the most widely used JavaScript
libraries and the book provides solutions to a
wide range of the problems you are likely to
encounter. The books starts out with the basics
- selecting and using the DOM, and moves on to
more complex situations from there. I found the
form validation examples, and the event
handling material particularly useful.
Each entry consists of statement of the problem,
followed by a solution, and then a longer or
shorter explanation and discussion of how and
why the solution works. The stuff I used out of
the book worked just fine, with no errors.
Obviously, I didn't use everything, but the
quality of the code provided seemed fine to me.
I was, however, a bit disappointed by the quality
of the book production. The paper it's printed on
is rather low quality, and some of the fonts used
in displaying sample output are reproduced in
very small type, making it difficult to read.
Overall the level of graphic design leaves
something to be desired. Fortunately, the
content manages to overcome this handicap.
I found it useful, but I suspect this is partly a
matter of taste. Ten years ago I would have
recommended dropping into your nearest

computer bookshop and browsing through this
book and the O'Reilly equivalent to see which
one is more to your taste. Sadly the dominance
of Amazon has ended the possibility of this sort
of activity, as
well as the
possibility of
serendipity in
the finding of
books you
never knew
existed.

View From The Chair
Hubert Matthews
chair@accu.org

As the rest of us drift through the
summer months, our conference
committee despite their important
day jobs are flexing their not-insubstantial
brains and preparing for another blockbuster
conference. The conference has grown to be a
large part of the ACCU and its public face. If it
continues to grow then we will again outgrow a
venue, so the time has come to start thinking
about what happens when we do. There has been
quite a bit of internal discussion on the matter
already and I think that it time that this
discussion encompassed the membership as a
whole. There are lots of points to take into
consideration: which city, the range of type and
price of accommodation, whether
accommodation across multiple venues is
acceptable, easy access to pubs and restaurants,
whether the main venue has a bar, etc. There are,
of course, pros and cons to each of these and
different people will have potentially radically
different opinions. Some factors we can’t

control (such as getting time off work or
companies to pay the costs, long-distance travel)
but some we can control and we need to
understand the effect of possible changes. For
instance, what can we do to encourage people
who have never come to the conference to come
for the first time. Instead of trying to collate the
opinions of the most vocal majority by asking on
accu-general, we are considering using a web-
based survey to solicit everyone’s views.
Moving conference venues isn’t something we
want to do lightly so your input and views are,
as ever, important; watch this space.
Gathering information on people’s views is
something that I think we should be doing on a
wider scale within the ACCU and not just for the
conference. The ACCU has a large geographical
spread with a wide range of members, ranging
from professional developers and consultants –
some with international reputations – through to
keen amateurs and those who do not earn their
living through developing software. Some
people we know well from the conference and
some through local groups. Others we know
hardly at all. I would like to conduct a

membership-wide survey to see what people
would like from the ACCU and where they think
it should be heading. At the basic level, do
people want more local groups? What would
encourage them to turn up, or even better help
organise a group? Do they want speakers or is a
pub meeting adequate? How can the ACCU
help? We could then start to explore larger issues
about what defines success for the ACCU, how
and in what direction we want to expand (if at
all) and what we think the ACCU stands for. We
have grown organically up till now and perhaps
this is the time to take stock and discuss what we
want for the future. Retrospectives are popular
with agile developers so why not with us? I’m
sure we have between us a whole raft of ideas,
thoughts and wisdom kicking in the back of our
minds but it hasn’t been brought out or collated.
The ACCU is a volunteer organisation and will
therefore only thrive with the participation and
engagement of members of all levels and types,
rather than just the well-known and vocal ones.
Our sense of community is one of the things that
defines us – let’s build on it and provide
something for everyone.

ERRATUM
An incorrect URL was given for the Software
Toolkit in Ian Bruntlett’s ‘Competency Scale’
article in CVu 22.3. The correct URL is:
http://contactmorpeth.wikispaces.com/
SoftwareToolkit

Bookcase (continued)

http://contactmorpeth.wikispaces.com/SoftwareToolkit

Get Visual Studio 2010 with MSDN and start building outstanding applications

- Silverlight tools
- Sharepoint development
- Cloud development
- Web development
- Generate from usage
- Multi-core development
- Windows development
- Office development
- Customisable IDE
- New WPF editor.

- UI Test automation
- Performance profiling
- Code coverage
- Database change management
- Database unit testing
- Test impact analysis
- Static code analysis
- Code metrics
- Test data generation
- Database deployment.

- IntelliTrace
- UML modelling
- Architecture explorer
- Logical class designer
- Load testing
- Layer diagram
- Test Manager 2010
 - Test case management
 - Manual testing
 - Web testing.

Simplify test planning and manual test execution
using a specialized toolset that enables effective
collaboration between developers and testers.

Create and manage virtual environments on a pool
of Hyper-V hosts and System Center Virtual Machine
Manager library servers.

 Why Call QBS?
QBS is a Microsoft Gold Certified Partner specialising in providing licensing
solutions for decades. All QBS Account Managers are Microsoft Licensing
Sales Expert accredited and will provide clear information on all the
options that suit your circumstances.
Please Call QBS today on 08456 580 580.

Delivering technical software to developers
for more than 20 years with world-class service

QBS Software is a responsive Microsoft licensing partner with dedicated account managers who are
Microsoft Licensing Sales Specialists. They understand Microsoft licensing options fully and will listen
to your requirements and provide clear information on all of the options that suit your circumstances.

It does not matter which software you require; at QBS Software you will always find someone
responsible to speak to. There are no automated telephone systems and no hard-sell.
QBS seeks to develop a transparent partnership with you to help you to obtain the service and
software that fits your needs best.

Below are just a few of the respected publishers and products that you can find on our web site:

C

M

Y

CM

MY

CY

CMY

K

addqbs.ai 1 19/08/2010 11:31:17addqbs.ai 1 19/08/2010 11:31:17

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	A Simple Assignment
	People Power
	Flexible Function Façades for C and C++
	An Interview with Jerry Weinberg
	A Game of Chase
	On a Game of Guesswork
	Code Critique Competition 65
	Inspirational (P)articles
	Desert Island Books
	Bookcase
	View From The Chair
	2009-07-01 Care About Code (A4).pdf
	Slide 1

