

NOV 2008 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Tell me about it
have a confession to make. I rarely read an issue of CVu from cover to cover –
this issue, of course, being one of the exceptions! Not that there’s anything wrong
with the articles I skip over; far from it. They’re accomplished and detailed

pieces that really help with practical tasks, offering the kind of knowledge sharing
that helps to make ACCU the supportive community that it is. So why do I
sometimes skip them? Precisely because they contain detailed instructions; if an
article explains how to do something I’m not likely to find myself doing, I’m not
the audience for it. But that doesn’t stop me from being curious. I’d still like
to know the ‘what’ and ‘why’ of what others are doing, even if I’m never going
to need the ‘how’ myself.
So when I got the chance to guest edit an issue of CVu and pick a theme
for it, I thought it would be nice to pay particular attention to those
questions of ‘what?’ and ‘why?’ and perhaps also get a glimpse into some
areas which many of us don’t encounter in our daily routine. I’ve asked
writers to take a step back and look at their knowledge with an outsider’s
eye – no easy task, but they have risen to the challenge marvellously to
address my rather philosophical questions.
We have articles addressing both the technical and human sides of code
analysis; a chance to peek into the worlds of teaching and research;
tasters of Gant and Groovy; a considered look at choosing the right C/
C++ feature for the job; and a bird’s eye view of virtualization that might
just change your mind if you didn’t think this was a technique for you. I
hope you will find some interesting articles that would normally fall outside
your radar, and I suspect you’ll also find something new in the ‘bigger
picture’ perspective on topics you’re already familiar with.
I’m handing over to the next guest editor, Faye Williams, for the January
issue. I’d like to wish her luck, and also thank Tim Penhey on your behalf
for all his hard work as CVu editor over the last couple of years.

I
Volume 20 Issue 5
November 2008

Editor
Tim Penhey
cvu@accu.org

Guest Editor
Gail Ollis
accu@ollis.org.uk

Contributors
Nick Efford, Robert Finking,
Stuart Golodetz, Pete Goodliffe,
Paul Grenyer, Thomas Guest,
Tony Jenkins, Steve Love,
Anna-Jayne Metcalfe, Roger Orr,
Peter Pilgrim, Matthew Wilson

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

GAIL OLLIS
GUEST EDITOR

2 | | NOV 2008

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

SUBMISSION DATES
C Vu 21.1: 1st December 2008
C Vu 21.2: 1st February 2009

Overload 89: 1st January 2009
Overload 90: 1st March 2009

FEATURES
3 Taming the Lint Monster (Part 1)

Anna-Jayne Metcalfe gives a personal perspective of the
PC-Lint code analysis tool.

6 Beyond Programming
Stuart Golodetz addresses the challenges of working in a
research environment.

8 This “Software” Stuff
Pete Goodliffe takes a peek into a sweet can of software
development. And it’s not fizzy.

10 Tell me about... Virtualization
Thomas Guest explains the virtues of virtual machines.

12 XML is not the build system you’re looking for
Paul Grenyer provides an introduction to Gant.

13 Let the Machine Debug For You
Robert Finking takes stock of code analysis techniques.

17 !(C ^ C++)
Matthew Wilson takes a considered look at C and C++.

24 Python: New Thinking in the Teaching of Programming
Nick Efford and Tony Jenkins recommend Python as a
practical first language.

27 A Groovy Example: Mail Merge Made Easy
Peter Pilgrim demonstrates a Groovy way to automate
your admin tasks.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
31 Code Critique Competition

This issue’s competition
and the results from last
time.

39 Regional Meetings
Local ACCU gatherings.

40 Desert Island Books
Paul Grenyer introduces
Steve Love and his
selection of books.

41 Bookcase
The latest roundup of
ACCU book reviews.

44 ACCU Members Zone
Reports and membership
news.

Taming the Lint Monster (Part 1)
Anna-Jayne Metcalfe gives a personal perspective of the

PC-Lint code analysis tool.

An all too common story
t’s such a common story. Partway through a project, the company starts
to become anxious about the number of defects that are being identified
in the product, and how long they are taking to fix. Even worse,

customers are beginning to notice.
Something must be done. Additional resources are thrown at the problem,
but somehow it doesn’t ever seem to be enough. The codebase is large,
complex and hard to understand and maintain. It is – for all intents and
purposes – a ‘Big Ball of Mud’ (not that anyone in the company would
know such a term; after all – they are far too busy firefighting to read tech
blogs and keep up to date with current trends in software development).
After several months of throwing additional firefighters at the problem,
someone has the bright idea™ to find out just how much hidden nastiness
is lurking in the code base waiting for the right moment to let loose its wrath
on the unsuspecting team.
An appropriate tool is identified and procured, and then the real fun starts
– actually using it.
Inevitably, it never quite turns out the way the team (or their managers)
expect. Not only does it turn out to be an absolute nightmare to configure
and use (after all you never appreciate how much work compiler project
files can save you from until you have to maintain something comparable
yourself), but when the team do finally get it working to their satisfaction
the results it produces are so volumous that nobody quite knows what to
do with them. Worse, they contain some really bad news™.
As all too often happens, dealing with the issues the tool raises is deemed
to be a) too expensive, b) too risky and c) not as much fun as writing new
copy-paste code (though nobody is ever quite honest enough to admit to
the latter).
The team conveniently forget about the whole experience and go back to
compiling at warning level 3 as they always have done. The installation
disk for the offending tool is quietly hidden away in a desk drawer and
forgotten...and of course, the Big Ball of Mud grows ever bigger until the
inevitable ‘let’s just re-write it in language X’ event a year or two later

(Figure 1). With an eye on what language ‘X’ would look like on
everyone’s CV, of course...
But it sure did seem like a good idea at the time.

Meeting PC-Lint in a dark alley
My personal experience of PC-Lint started around 1996. At the time, I was
leading a small team (actually, there were three of us...) developing virtual
instrument software for a Windows NT 3.51 based automatic test system
to support a military aircraft. My team was just one of several on the
project, and although we had a good team we were badly under-resourced
and constantly on edge – partly because of (seemingly politically
motivated) interference by our prime contractor.
It was challenging, but highly stressful work (our Software Manager
leaving the project due to stress was testament enough to that).
Nevertheless, we were making good progress – our code was working and
we were back on schedule (or at least we were after re-estimating
everything from the ground up with three times the original estimate...).
On the surface, the worst was behind us, and our system was actually
starting to look pretty good.
It was at that point that someone had the bright idea of applying code
analysis tools to the codebase to see if any potential nasties were lurking
within. A demonstration by McCabe was arranged, and although it looked
very impressive – especially on the (as it seemed at the time) huge monitor
they brought (ours were tiny 14" things then) – but the price was well
beyond our budget – especially at such a late stage of the project.
Enter Gimpel PC-Lint [1], a C/C++ static code analysis tool published by
Gimpel Software (then at version 6, if I remember rightly). This was a tool
I was not aware of at the time but which my co-team leader recommended.
When it arrived we had of course to learn how to use it. At the time we
were using a mixture of Visual C++ 1.52 and 4.2, so the ‘integration’
consisted of adding a custom tool to run an analysis on a single file and
display the results in the output window. Rather amazingly, that is still the
way it is usually done today.
Needless to say the results seemed cryptic and verbose, so we did what
most teams in this situation do – turn off most of the PC-Lint messages,
leaving only those which we thought might indicate a serious problem.
That is an entirely reasonable approach, but it does of course carry the risk
that in doing so you may inadvertently mask something very significant.
The next thing that happened was that our code review policy was amended
to include a requirement that each lint issue remaining in the codebase be
justified by the developer responsible for it. Suddenly code reviews
became more of a challenge, so in that respect the process worked well.
We did, however only use a very small subset of PC-Lint’s capability –
and the warning policy remained (to my mind, looking back) far too lax
for long term use.

I

ANNA-JAYNE METCALFE
Anna hasn’t always written software for a living, but
saw the light and defected to software development
after several years writing ‘Rusty Washer Reports’ in
the defence sector.
She has a taste for Belgian beer (hint, hint!) and may
be contacted at anna@riverblade.co.uk.

Fi
gu

re
 1
NOV 2008 | | 3{cvu}

Up close and personal with PC-Lint
PC-Lint and its Unix/Linux cousin Flexelint are among a number of other
similar tools on the market (e.g. PreFAST, Klocwork Insight, Parasoft and
QA C++), but most are part of a much larger integrated toolset with an
enterprise price tag to match. The only open source contender I’m aware
of (Splint [2]) is limited to C and its authors unfortunately seem to have
no intention of adding C++ support (however, as the source code is freely
available, I will happily leave that as an exercise for the reader...).
PC-Lint is a command line tool with a range of options rivalling those of
a full featured C++ compiler. All of that configurability comes at a price
of course – complexity and all it entails. It is far from easy to use, and the
analysis results it produces can also be verbose and cryptic to say the least.
Nevertheless, PC-Lint is very thorough, and more than capable of exposing
potentially serious hidden flaws in your codebase.
At its absolute simplest, a PC-Lint command line to analyse a single file
and output the results to the console looks something like this:
 lint-nt std.lnt <filename>

where lint-nt.exe is the
PC-L in t execu t ab l e and
std.lnt is a configuration file
(Gimpel call them ‘indirect
files’) describing the compiler
and framework configuration
(preprocessor symbols etc.),
include paths and warning
policy.
std.lnt usually consists of a
set of references to other indirect
files, together with a handful of
options and a set of include
folder specifications, (Listing 1).
Of p a r t i cu l a r no t e i s
options.lnt, which usually
defines the warning policy,
together with additional issue
suppression options. Our own

warning policy is actually
pretty simple – it consists
of the full set of Scott
Meyers’ recommendations
(activated by the inclusion
of au-sm123.lnt in
std.lnt), with a handful
of issues suppressed by -e
directives (Listing 2).
Such a n agg re s s i ve
warning policy is however

not well suited for use with a
codebase which has not been
analysed before. In such cases,
replacing au-sm123.lnt with a
less stringent alternative is often
advisable until the major issues in the
codebase have been dealt with.
If you use Microsoft Visual C++ you
can download sample std.lnt and
options.lnt files for all Visual
Studio versions from Visual C++ 6.0
to Visual Studio 2008 and eMbedded
Visual C++ 4.0 from the Riverblade
website. [3]
When PC-Lint is run on a source file,
the results are by default presented in
textual form, as Listing 3shows.

Message formatting and presentation
The format of the analysis results can be configured using a suitable
indirect file. With the appropriate configuration for a given development
environment, most development environments can understand enough to
provide ‘double click to go to issue location’ functionality for analysis
results piped to its output window.
Gimpel provide a number of such environment options files in the PC-Lint
installation (for example env-vc8.lnt for Visual Studio 2005), and
others can be downloaded from the support page at ht tp: / /
www.gimpel.com/html/ptch80.htm (PC-Lint 8.00) or http:/ /
www.gimpel.com/html/ptch90.htm (PC-Lint 9.00).
A special mention must be made of env-xml.lnt, which allows PC-
Lint to easily generate XML (Listing 4).
If you intend to post-process the raw analysis results, the usefulness of this
should be obvious!

// Standard PC-Lint configuration options for Visual Studio 2005
// Generated by Visual Lint version 1.5.9.79 at Tuesday, April 08, 2008 16:40:13
au-sm123.lnt // Effective C++ 3rd Edition policy
co-msc80.lnt // Visual Studio 2005 compiler definitions
lib-mfc.lnt // MFC library definitions
lib-stl.lnt // Standard Template library definitions
lib-w32.lnt // Win32 API definitions
lib-wnt.lnt // Windows NT API definitions
lib-atl.lnt // ATL definitions
riverblade.lnt // Other library tuning
options.lnt // Warning policy
-si4 -sp4 // Integers and pointers are 4 bytes

// Include definitions for platform 'Win32'
-i"C:\Program Files\Microsoft SDKs\Windows\v6.0\Include"
-i"C:\Program Files\Microsoft SDKs\Windows\v6.0\Include\gl"
-i"C:\Program Files\Microsoft Visual Studio 8\VC\include"
-i"C:\Program Files\Microsoft Visual Studio 8\VC\atlmfc\include"
-i"C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\include"

Li
st

in
g

1

-e27 // Avoid "Illegal character" errors on VS2005 .tlh and .tli files)
-e537 // (Warning -- Repeated include file)
-e655 // (Warning -- bit-wise operation uses (compatible) enum's)
-e730 // (Info -- Boolean argument to function)

-e783 // (Info -- Line does not end with new-line)
-e944 // (Note -- Left / Right argument for operator always evaluates to False)
-e1550 // (Warning -- exception thrown by function is not on throw-list of function)
-e1774 // (Info -- Could use dynamic_cast to downcast ptr to polymorphic type)
-e1904 // (Note -- Old-style C comment -- Effective C++ #4)

Li
st

in
g

2

--- Module: CJFlatHeaderCtrl.cpp
}
CJFlatHeaderCtrl.cpp(160): error 1401:
 (Warning -- member 'CCJFlatHeaderCtrl::m_bSortAsc'
(line 146, file ..\Include\CJFlatHeaderCtrl.h) not initialized by constructor)

}
CJFlatHeaderCtrl.cpp(166): error 1740:
 (Info -- pointer member'CCJFlatHeaderCtrl::m_pParentWnd'
(line 150, file ..\Include\CJFlatHeaderCtrl.h)
 not directly freed or zero'ed by destructor

-- Effective C++ #6)

--- Global Wrap-up
error 900: (Note -- Successful completion, 2 messages produced)

Li
st

in
g

3

4 | | NOV 2008{cvu}

(Very) basic IDE integration
Incidentally, some of the the env-*.lnt files also contain instructions
on how to perform a basic integration of PC-Lint within the corresponding
IDE. This usually takes the form of a custom tool, as you can see in this
screenshot of an example for Visual Studio (Figure 2).
Although such an integration is how it is often done, it can be less than
ideal – the operation is modal (which you will really feel if the analysis
takes more than a few seconds), and the analysis results arrive in a daunting
blob of monospaced text. Every developer has their own strategies for
dealing with those issues, of course – although I suspect that the industry
standard is probably extended coffee breaks and lots of grepping….

To conclude part 1…
PC-Lint is a very capable tool, but one in which you really need to invest
the time and effort to learn how to use it effectively if you want to reap the
real benefits it can yield (if you are looking for a ‘quick fix’ for a dirty
codebase, look away now…).
Although basic PC-Lint configurations are usually pretty straightforward,
things can get rather complex very quickly. To close this first part of the
article, take a look at Listing 5, an example command line generated by
Visual Lint.
Even though this command line could be shortened by using relative paths
it is still not really something you would want to have to type very often
from memory, is it?
In part 2 (‘Deconstructing the PC-Lint command line’) we will look in
detail at how this command line is formed, and some of the common PC-
Lint options. We will also discuss how to configure PC-Lint for a particular
project configuration, and consider some strategies for dealing with the
analysis results it generates.

 References
[1] http://www.gimpel.com
[2] http://www.splint.org
[3] http://www.riverblade.co.uk/products/visual_lint/downloads/

PcLintConfigFiles.zip

<?xml version="1.0" ?>
<doc>
 <message>
 <file>fileb.cpp</file>
 <line>2</line> <type>Info</type>
 <code>753</code>
 <desc>local class 'X' (line 2, file fileb.cpp)
 not referenced</desc>
 </message>
 <message>
 <file>fileb.cpp</file>
 <line>4</line>
 <type>Info</type>
 <code>754</code>
 <desc>local structure member 'X::a' (line 4,
 file fileb.cpp) not referenced</desc>
 </message>
</doc>

Li
st

in
g

4

"C:\Data\PC Lint\8.00\lint-nt.exe" -i"C:\Data\PC
Lint\8.00" -background -b --u
C:\Data\Code\Projects\Applications\SourceVersione
r\Development\SourceVersioner_vs71_Debug_Win32.ln
t -u "C:\Data\PC Lint\8.00\std_vs71.lnt" env-
vc7.lnt -t4 +ffb +linebuf -
iC:\Data\Code\Projects\Applications\SourceVersion
er\Development\Debug
c:\Data\Code\Projects\Applications\SourceVersione
r\Development\Shared\FileUtils.cpp

Li
st

in
g

5
Figure 2
NOV 2008 | | 5{cvu}

Beyond Programming
Stuart Golodetz addresses the challenges of working in a

research environment.

oftware development and programming/coding are often seen as
being essentially the same thing, and it is certainly true that dealing
with code is a large part of what we do. As a result, it is easy to get

into the mindset of thinking that an ability to write good code is all there
is to being a good software developer. However, whilst it is certainly true
that good software developers must be able to write good code, there is far
more to the role than simply being able to hack a great program.
In this article, I want to explore some of the challenges you may face away
from the code-face, based on my own experiences during my doctorate.
My own work, as some Overload readers may have observed, is in medical
imaging (or more specifically, medical image segmentation), a field
notable for its reliance on collaborative, inter-disciplinary work, and large
amounts of data from external sources. These dependencies make life a lot
more complicated; the ‘I am a rock, I am an island’ dictum that might serve
you (or, perhaps, your team as a whole) adequately in other settings is
fundamentally unsuited to the challenges posed by an environment in
which (busy) people in other organisations hold the knowledge and data
you require before you can even start to think about writing any code.
My goal, then, is to highlight some of the problems raised by working in
this way, and make suggestions as to how to mitigate/overcome them.
Whilst a few of these problems are specific to the research domain, I
suspect that many of them are equally applicable in the commercial
settings with which a large number of you are probably more familiar. I
would be curious to hear from people as to whether this suspicion is borne
out in practice!

Non-technical problems are sometimes harder
In many ways, for technically-minded people like us, actual programming
is the easier part of our job. Whether we misspent our formative years
honing our ability to write the ‘perfect’ code comment, or learnt our trade
from scratch on the job, coding is such a large part of what we do that we
quickly get quite good at it: practice makes perfect.
Moreover, coding is by and large a deterministic activity: you write code,
and the computer does what you told it to. You might have told it to do
the wrong thing, but that’s your own fault. What happens doesn’t depend
on the amount of pizza you ate beforehand, the phase of the moon, or the
existence (or otherwise) of your pet hamster...unless it sadly happened to
chew through the power cable, of course. I know that in some cases the
observable behaviour can seem non-deterministic – think of undefined
behaviour, multithreading, etc. – but your computer is a machine, and thus
in principle predictable if you understand all the factors involved.
Finally, and somewhat related to the previous point, coding itself can be
done largely independently of other people. This is not to say that it should
be, and indeed interaction in the form of pair programming, code reviews,
etc., makes good sense, besides making your job a great deal more
interesting and fun, but you can (in principle) write code on your own,
without having to interact with those around you.
None of this is to suggest that programming is an easy activity: far from
it. My point is merely that the other aspects of software development I want

to discuss are comparatively hard, especially for those with a primarily
technical mindset.

What’s your problem?
Many of the trickier problems you come across in software development
are really process issues, less to do with the actual code and more to do
with your interactions with key people like your users. These are the sort
of problems that can cause your project to fail if not resolved. If you can’t
implement feature X or Y due to a coding issue, that may or may not be a
deal-breaker for your project. If you’re building a system your users don’t
want or, worse, you don’t know what it is that they want, then your project
is certainly doomed.
Let’s look, then, at a few of the potential problems you might face:

The unknown system
You can’t build a system if you don’t know what it should do, and as such
you must make it an absolute priority to pin this down as soon as possible.
This seems like it’s so obvious that it’s barely worth saying, but it can be
easier said than done in some cases. For instance, your users may not be
familiar with what is possible on a computer: they may not know that a
particular feature that could make their lives easier is implementable.
Conversely, they might want you to automate the solution to a problem
which can’t even be solved by hand yet (even in principle). As software
developers, we need to develop our communication skills so that we can
clearly explain our own side of the story.
The other side of the coin is that your users generally understand their own
problem domain far better than you could ever hope to; the problem here
is in how to ask them the right questions to obtain the information you need
to do your job. Useful tips include talking generally to users about what
they do: this may help you ascertain areas where you might be able to help,
and you can then ask more targeted questions about those areas. Good
observational skills are also key here; simply by observing your users
doing their job, you may notice things which would seem merely routine
to them. Active listening is important: don’t rely on them guessing what
you need to know, tell them clearly and then take careful note of the
answers you get.
Generally speaking, this whole process is one of requirements analysis,
something that might seem to have little to do with the actual development
of the software. Indeed, in large companies, you might well have a
business/requirements analyst doing this sort of work, leaving the
developers to get on with the code. Having a specialist facilitator present
will certainly help the process along, but in my opinion it’s still helpful
for developers to interact directly with users if possible. If nothing else, it
helps to build trust with your users, who will have more confidence in you
if they can interact directly with the team doing the work and see for
themselves that they’re competent.

Data shortage
Some systems, for example those that work with medical images, require
a substantial amount of data on which to work. You can’t build such a
system without it, but acquiring it can easily become a bottleneck, not least
because you need to have a very clear idea of what data you need in the
first place, something which generally requires a reasonable understanding
of the system you’re trying to build (see ‘The unknown system’, above).

S

STUART GOLODETZ
Stuart has been programming for 13 years and is studying for
a computing doctorate at Oxford University. His current work
is on the automatic segmentation of abdominal CT scans. He
can be contacted at stuart.golodetz@comlab.ox.ac.uk
6 | | NOV 2008{cvu}

Acquiring data is a process that can take a substantial amount of time, and
you need to be as prepared as you can be for this in advance. For a start,
data is rarely doled out haphazardly to anyone who asks for it (at least, it
shouldn’t be): generally you’ll need at the very least to be able to present
a good case for why you need the data to the people who currently hold it
(your data holders, as I’ll refer to them). You should definitely make the
benefits of your system to them (not to you, or to random third parties) clear
up-front if you want their help (this is a widely applicable principle in life
in general, actually).
You need to be prepared for the fact that the data holders may not have the
exact type of data that you need, or at least may not have easy access to it.
If this is the case, you may have to redesign your system (including its
feature list) to make use of the data available, a process that can take time,
or alternatively try and find the desired data elsewhere, if it exists at all.
Bear in mind that it can be easier and more productive in such a situation
to spend the time and effort to change the design of your system than to
try and establish good working relationships with other data holders
elsewhere from scratch.
Even assuming that you’ve reached a stage where both you and your data
holders can see some value in the system that you’re proposing, and
they’ve agreed to give you the data, there may be further obstacles to
overcome. One minor issue is that it may take some time for them to
actually acquire the data for you. There’s nothing you can do about this
besides keeping up-to-date with them to know how things are going, so
you just have to find something else to do while you’re waiting. The bigger
problem at this stage, especially when dealing with things like medical
images, is that there may be legal hurdles to your getting the data: in
particular, you may need to apply for things like ethics approval. The best
advice in this situation is to talk to the data holders about the way the
process works: they will often have been through it before, and can give
you useful advice. If possible, ask them to work with you when applying,
as letters of support from them can help the process work more smoothly.
With luck, the hard work you and they have put in will eventually pay off.

Time is money
It’s a fact of life that the most skilled and useful people are often the busiest.
Whilst there’s thus some truth in the old adage that ‘if you want something
done, you should ask a busy person’, you need to at least be aware that
your users/data holders have many other calls on their time (many of which
will, in all honesty, be more important than meeting you) and that you need
to value the time they do grant you highly. It goes without saying that these
people are vitally important to the whole project: you literally can’t build
your system without their help! The goal, then, is to take up as little of their
time as possible, but to use the time you do spend with them productively.
There are two main issues here. Firstly, you need to do your planning well
in advance. This goes both for arranging meetings (which incidentally
should always be done by phone, to show that you are committed enough
to call them/their secretaries, and to avoid any possible confusion) and for
deciding what to say in meetings themselves. It may be necessary to meet
people individually, since trying to convene meetings of large groups of
people is much harder and can push the meeting back for months: not what
anyone involved wants.
Once you actually meet with them, you should make it clear that you value
their time and intend to waste as little of it as you can, and then get to the
point quite quickly. Be as warm and friendly as you are (I hope!) normally,
but don’t go overboard and waste their time with platitudes: show them
that their time is important to you rather than just telling them. They’ll
appreciate the consideration you show them more than anything you might
say. Remember: like everyone else, they want to work with competent
equals and feel like they’re getting something out of the process too, not
to feel like they’re doing you a favour.

Avoiding Kermitdom
Continuing on from the last point, you may initially need to work hard to
persuade people that you’re competent and trustworthy (alternatively, ‘not

a muppet’). This is especially the case when establishing a completely new
working relationship with people in another organisation. References from
other people they already know and trust can certainly help break the ice
here, particularly if they’ve worked productively with them in the past, but
ultimately you will still have to prove yourself to them directly (after all,
your referees may have inadvertently missed your budding ineptitude, and
your new colleagues will probably want to make sure about you).
One good thing you can do here is to build them a prototype. This doesn’t
have to be a prototype of the system itself (especially if you don’t yet know
what that is), but it’s well worth building something, preferably of
relevance to the problem domain. Feel free to use old work for this as well,
but make sure it’s relevant.

Money takes time
In a research environment, hiring new people can take much longer than
it would in a commercial setting. Whilst the process of interviewing and
deciding to hire someone new takes the same amount of time in both cases,
funding issues are different. Researchers need to be aware in advance of
university funding procedures and, since funding applications have a long
turn-around, to plan ahead.Getting funding without a track record in a
particular domain is especially hard (and rightly so in many ways), but if
your group is branching out into new areas then it may once again be a
case of having to prove yourself, this time to your potential funders (e.g.
a government research council).
Applying for funding can certainly be a difficult process, but there are at
least a few things you can do to make it easier. First of all, get the timing
right. If you submit your application too early, you probably won’t have
been able to define your project in detail, and it will get rejected. This is
a waste of everybody’s time: don’t be in unnecessary haste. The flip side
is that once you know you have your project reasonably well pinned down,
you should really knuckle down and get the application in as soon as
possible. Applying for funding may be a somewhat onerous process, but
you have to do it sooner or later, and the long turn-around means that it
really should be sooner in this case.
The second piece of advice is to gain some experience in your chosen field
before applying if you don’t have any in advance. For example, nobody
wants to fund the physicist applying to study medieval history because he
thought ‘knights sounded interesting’. Do your homework. Yes, it can be
hard to do your initial research without proper funding, but that’s the way
it is unfortunately.
Finally, bear in mind that if you can get any sort of grant to do some research
(however small an amount), you can use it as a basis for future applications.
Feasibility studies are a good way to get some initial funding, since people
are always happier to shell out a small amount of money for a risky idea
than a large amount. You can always apCply for further funding later on.

Conclusions
As software developers, it is important for us to understand the whole
development process, and where programming fits into it. Programming
is obviously a key skill for a developer, but the challenge is far greater than
just one of writing code. The vast majority of the non-technical skills you
need are largely untaught, so you have to pick them up on the job. The key
things to learn are communication skills, planning and patience. You need
to be able to communicate clearly with users, data holders and others, and
understand their needs if you are to have a productive working relationship
with them.
Training can help with this, but in truth you learn most from being put in
situations where the sort of issues we’ve discussed arise. I would suggest
that the lesson for employers, then, is to enhance their developers’ skill-
sets by putting them in situations where they have to exercise new skills.
Obviously developers are still primarily there to write code, and shouldn’t
be forced to undertake roles which don’t suit them, but at the very least,
showing them the whole picture enhances their effectiveness at what they
do best. True code gurus will generally welcome the opportunity to
understand their work in context in any case.
NOV 2008 | | 7{cvu}

Professionalism in Programming # 52
This ‘Software’ Stuff
Pete Goodliffe takes a peek into a sweet can of software

development. And it’s not fizzy.

t’s a sad fact of life that I won’t be able to rely on my sharply honed
intellect forever. At some unspecified time in the future my wits will
fade, and I won’t be the sharp technical genius I am now. So I need a

pension plan, a way to make my millions so that I can live in luxury in my
old age. Or considering the current credit crunch, perhaps I should be
aiming to make billions, just to be safe?
Figure 1 shows my original plan for world domination. It was so simple it
couldn’t fail. Milk + fizz = fizzy milk! Original experiments with a Soda
Stream proved somewhat messy. And it turns out that curdled milk doesn’t
taste very nice. But that was a mere implementation issue.

However, before I got a chance to work out the finer details of the recipe,
I received some devastating news... fizzy milk has already been done.
Some evil American company was already selling it. Gutted, and with the
patent rights slipping through my fingers, I went back to the drawing board
to come up with my new pension plan. And this time it’s a good one.
This sure-fire money spinner goes back to the classic foods of my youth:
custard and Alphabetti Spagghetti. I’ll share the secret with you, because
you look trustworthy. I’m sure you can see where I’m going: Alphabetti
Spaghetti + custard = Alphabetti Custard! My initial experiments have
proved promising. Figure 2 shows the latest recipe.

The real trick here is to wash the spaghetti first, otherwise you end up with
a really quite bizarre concoction. Admittedly, even when you do make it
right you end up with a relatively bizarre concoction; it’s kinda like rice
pudding, but wheatier. It’s an acquired taste, but I think it could catch on.
I’ll be rich. And famous. Probably.
Just don’t steal my recipe.

So what?
I can imagine that by now, you’re wondering why on earth I’m telling you
all this? Is there some twisted moral to this sordid story? Yes, there is. And
it’s not tenuous at all.
I’m telling you this because of a simple observation that I’ve made about
the software industry in the years I’ve been incarcerated within it. Too
much software is like my Alphabetti Custard: it’s the wrong thing, written
the wrong way.
It’s obvious how to make Alphabetti custard the ‘right way’ – you’d make
the pasta first by hand and avoid all that tedious washing, wouldn’t you?
(Just nod and say “yes” at this point). Anyone with industry experience
will know what I’m talking about (in the software sense, at least).
As conscientious software developers we should all aspire to the opposite:
to write the right thing in the right way. One of the keys characteristics of
truly excellent programmers is actually caring about the software that we
write, and how we write it. That’s what I’d like to investigate in this mini-
series of articles. My aim (grand as it is) is to work out how to become
better programmers And here’s how we’re going to do it.
I will pose a series of personal questions as we go along. So how much
you get out of these articles depends on how much you are willing to put
in. It’s you own fault it they don’t work! When you see each question,
consider if it applies to you. Remember the ones that are most pertinent to
you . And then think about what you can do about them?
So that’s the game plan, and here’s your first question...

Do I...want to improve as a programmer? Do I actually want to
write the right thing in the right way?

If your answer is “no” then give up and stop reading now.

This software stuff
So, back to this ‘software’ stuff. If we want to get better at writing it, then
the first question has to be: what is it? Let’s peer into the bowl and find
out. To be sure, software is complicated stuff. It has many aspects. Now,
this isn’t going to be a great intellectual treaty on software development.
But as the quick breakdown in Figure 3 shows, it is part science, art, game,
sport, chore, and more. (That’s a real bowl of Alphabetti Custard, by the
way.)
Based on that, how can we find keys to help us deliver the right stuff in
the right way? I have this strange fascination with what an ‘ideal’
programmer would look like. I’d like to know what to aspire to. And so
based on the unscientific breakdown above, and after some genetic
research, I have discovered what the ideal programmer looks like.
Feast your eyes on Figure 4: the ideal programmer. Now that’s something
to aspire to. He looks like the kind of person who’d eat Alphabetti Custard!

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

Fi
gu

re
 1

Fi
gu

re
 2
8 | | NOV 2008{cvu}

We’ll look at each of these aspects of software development in turn and
see what we can learn from them.

Software is... an art
So first up, a great programmer needs to be a great artist. But is
programming really an art? That’s a debate that has long been held in
software development circles. I’m sure that someone somewhere is still
whittering about it. Some people think that programming is an engineering
discipline, some an artform, some sit the in between, considering it a craft
(and I did call my book Code Craft, after all).
Knuth is probably the most famous proponent of software as art, naming
his series of books The Art of Computer Programming. He said this: Some
programs are elegant, some are exquisite, some are sparkling. My claim is
that is it possible to write grand programs, noble programs, truly magnificent
ones! Stirring stuff. There’s more to code than bits and bytes. There’s more
than brackets and braces. There’s structure and elegance. There’s poise and
balance.
Whether or not we can generalise about the whole programming pursuit,
a good programmer certainly needs a sense of aesthetics to write
exceptionally good code. And there are many parts of the development
process akin to the creation of a work of art. The process is:

Creative It requires individual, personal use of imagination. The
software must be skilfully constructed and precisely designed.
Programmers must have a vision for the code they are about to
create, and a plan of how they will make it. Sometimes that involves
a great deal of ingenuity.
Aesthetic Good code is hallmarked by elegance, by beauty and
balance. It stands within certain cultural idioms. We consider the
code’s form and its function.
Mechanical As any artist, we work in our particular medium with
our particular tools, processes and techniques. We work under
commission for generous benefactors.
Team-based Many forms of art are not single-person endeavours.
Not every art form sees an artist setting alone in their studio slaving
day and night until their masterpiece is complete. Consider the
orchestra; each member held together by the conductor. Consider a
musical composer, writing a piece which will then be interpreted by
the performer(s). Or the architect designing a building that will be
erected by a team of builders.

We haven’t the time or space to go into any more depth in this article, but
it’s clear that in many respects, the skill set of an artist is similar to that of
a programmer. Michelangelo was the archetypal renaissance man: a

painter, sculptor, architect, poet,
engineer. Perhaps he’d’ve made an
incredible programmer! When asked
about how he created one of his most
famous works, the statue of David, he
said: I looked into the stone and saw him
[David] there, and just chipped away
everything else.
Is that what you do? Do you reduce and
remove the complexities of the problem
space, chipping them all away until you
reach the beautiful code you were
aiming for?
So here are a few questions to ask
yourself...

Do I... consider the creative aspects of software development, or
treat it as a mechanistic logical activity?

Should I... develop a keener sense of elegance and aesthetics in
code? Should I look beyond what’s functional and solves the
immediate problem?

Do I... think that my idea of ‘beautiful’ code is the One True
Opinion? Should I consider artistry as a team pursuit?

Until next time
That’s quite a lot to be thinking about until next time. In the next article
we’ll look at programming as a science, and programming as a sport.
Until then, don’t eat too much Alphabetti Custard....

Fi
gu

re
 3 Figure 4
NOV 2008 | | 9{cvu}

THOMAS GUEST
Thomas is an enthusiastic and experienced programmer who
has worked on everything from embedded systems to
clustered servers. His website is http://wordaligned.org and he
can be contacted at thomas.guest@gmail.com

Tell me about... Virtualization
Thomas Guest explains the virtues of virtual machines.

irtualization solves a computing problem by adding a layer of
indirection. The problem being: how to run multiple operating
systems on a single computer; and the indirection: to slip a software

shim between a guest operating system and the hosting platform, which
continues to run its native operating system.

An example makes this clear. I work
on an Apple computer which runs
OS X, a flavour of BSD Unix. To
develop portable code which will
build and run on Linux and Windows
as well as OS X, I use virtualization
software. Using this software
enables my Apple computer to run
(for example) Windows XP and
Linux Fedora Core 7 as guest
operating systems alongside its

native OS X. Effectively, I have three computers running on the same
physical machine with no need for extra power supplies, keyboards, mice,
monitors and so on. (Figure 1.)
The Parallels Desktop [1] virtualization software I use
doesn’t come free but it’s cheaper and more convenient
than buying more hardware. VMware [2], perhaps the
single biggest name in virtualization, does offer free
entry-level products for doing a similar job on Windows
and Linux platforms.
This article will not provide details on installing and configuring
virtualization software, troubleshooting problems, and so on: the products
have matured to the extent that these details are hardly needed, and any
problems are quickly answered by online forums. We won’t attempt to
explain how exactly virtualization works. Instead, we’ll talk more about
what virtualization is, how we can use it, and why we should be interested it.

Virtualization in general
Before we go further I should explain this article uses the term
‘virtualization’ in the specific way described in the introduction. More
generally, in computing, virtualization refers to the abstraction in software
of the platform on which a program runs. The Java Virtual Machine is a
well known example, allowing software developers to build a single
executable which should run on any machine. The JVM also isolates the
application from the rest of the machine. These advantages, of portability
and isolation, also apply to the full virtualization we’ll discuss in this
article.

Creating a virtual machine
Setting up a virtual machine feels just like setting up a normal machine,
except you don’t need new hardware. All you need is your host machine,
the guest operating system media, and a suitable licence to use it. With your
host up and running, mount the install media, start up the virtualization
software, click ‘Create new machine’, and follow the prompts. You’ll have
to specify what resources to grant the machine (disk space, RAM, etc.) but

very quickly you’ll be following the standard install procedure for your
guest OS, selecting languages, packages and so on.
You don’t need actual physical media: you can create your virtual machine
by booting it up from a DVD image on disk or over a network in much the
same way.

Here’s one we made earlier
Actually, you may not require any install media. Your virtualization
software is capable of booting up a pre-built virtual machine. VMware
terms such machines virtual appliances [3]. Running such an appliance is
as easy as downloading it (which, at around 300Mb or less, requires far
less bandwidth than a typical install image) and clicking on the
downloaded file.
What you’ll typically be getting is a stripped-down Unix server, pre-built
for a specific purpose, with stable, tested, compatible versions of whatever
packages it requires for that purpose, and capable of operating within, say,
256Mb of RAM and as much hard disk as you’re prepared to allow it. You
can run this Unix server on a Windows machine. You can reconfigure it.
You can even transfer it to a different machine.
As an example, suppose you want evaluate Trac [4], an integrated version
control and project management application. Trac may be open-source,
popular and free, but I can personally vouch that on a Unix system it takes
some setting up, and I can’t imagine getting it to work natively on a
Windows server. Using virtualization, you simply download a virtual
machine which has been loaded with the latest stable release of Trac. Boot
up this machine using your host virtualisation software and run it on any
supported operating system – Windows included. Do the same with
Redmine [5], another web-based project management application, and you
can compare it with Trac. Once you’ve completed your evaluation, delete
the one you don’t like and keep going with the other. As a virtual machine,
it’s easy to move it to a new host, if desired.
VMware provide instructions for creating appliances and host a library of
such appliances [3] on their website. Organisations like JumpBox [6] make
a business out of providing virtual machines which
run on a number of different virtual platforms.

Running a virtual machine
Parallels Desktop creates shortcuts which I click on
to power up the virtual machines. VMware on
Windows does something similar. My perception
is that these virtual machines boot as quickly as
their physical counterparts would, but it could simply be that I’m using the
host system to do something else while they start up in the background.
Exactly how the guest operating system integrates with the host varies.
Some systems/configurations give you a window within a window; the
guest user interface is displayed as a whole within a single window on the
host, and you switch focus to this window to use it. More sophisticated
systems integrate seamlessly, so you can tab between host and guest
applications as if they were all running natively, and guest and host file
browsers see both machines’ file systems transparently. The end-user
experience is of the host and guest operating in parallel, as a single
computer which can run software native to both systems.
In my experience, the first mode can be awkward to use. I much prefer the
second: any friction context-switching between machines, and you find
yourself preferring separate machines and a KVM, or using an X server to
display X windows presented by a remote machine.

V

Fi
gu

re
 1
10 | | NOV 2008{cvu}

Peripheral access
Which peripherals can the guest operating system access? Certainly, the
guest wouldn’t be much use if it couldn’t make use of monitor, keyboard
and mouse – although you may suffer translation and configuration
wrinkles due to the different keyboard layout and mouse button
conventions used by different operating systems.
Access to other peripherals and interfaces will depend on the virtualization
software: check the product information. My guest Windows XP can use
its host’s network interfaces, USB ports, DVD drive, speakers and built-
in camera. Actually, I didn’t realise it could use the camera, having never
had cause to use the camera from within Windows, but a quick check
shows it can. Access to networked printers also just works.

Opportunities
I’ve already mentioned some obvious uses for virtualization, and I’ll add
some more which I’ve found useful in the past:

you can develop for multiple platforms using a single machine
you can download pre-built machines designed to run particular
applications, saving you from package management headaches
if you use a laptop, virtualization allows you to carry many
machines around with you: a sales person could demonstrate Unix-
based software on a Windows machine, for example
you can script the creation of machines, and test e.g. clustered server
configurations, without needing a rack filled with hardware
you can test on multiple platforms.

Even if your application itself is server-based and only runs on a single
platform, virtualization allows you to test its web interface on multiple
browsers. And even if your development is tied to a single operating
system, virtualization allows you to keep old versions of that operating
system alive on new hardware, and indeed to constrain the resources
available to these old versions.
Hosting companies often use virtualization to create an indirection
between user accounts and the hosting hardware farm. Users have root
access to their own virtual machine yet are isolated from other root users
on the same hardware (for example, rebooting a virtual machine doesn’t
affect other machines on the same host); and their virtual machine can be
transferred between physical hosts without them even realising.
It would even be possible to distribute software as a virtual appliance.
Rather than requiring your users to install version X of Python, version Y
of SQLite, version Z of the database bindings and so on, you might
consider distributing an entire system which runs as a virtual machine.

Considerations
Running a virtual machine requires real resources. I deliberately chose
Windows XP over Vista for this reason; XP has the smaller footprint and
it’s all I personally need for developing software which ports to Windows.
As already mentioned, your guest operating system needs licensing. You
need to pay to use Windows even if you’re running it on an Apple computer
and have already paid for OS X. You’ll also need to go through the usual
activation procedure.
You’ll need to tend to your virtual machines like any others on your local
network. They need naming and backing up. User accounts must be
created. Depending on what presence they have on your network, you may
want to configure DHCP, or take anti-virus measures. You also need to
consider upgrading them.
I have run into wrinkles and irritations with the hardware abstraction side
of virtualization. For example, the Apple keyboard I use doesn’t map
exactly to what I’d want when using Windows. It’s occasionally taken me
some fiddling with X configuration files to get a Linux graphical interface
displaying properly. Generally, though, someone else will have found and
fixed the problem before you, and searching online forums turns up an
answer.

In this article’s introduction we classed virtualization as yet another
computing problem solved by indirection. Indirection has a price. What
about the accumulated expense of everything passing through the software
shim which abstracts the platform? Surely a guest operating system can’t
be as fast as a native one on equivalent hardware? I have no hard figures
to present here but personal experience suggests no perceptible difference:
the only thing I have noticed is that my guest Windows XP seems to use
only one of its host’s two CPUs.

Just for fun
We’ve seen it’s possible and sensible for a platform to host a guest
operating system within its native operating system. How about trying
something silly? Could our guest operating system itself use virtualization
to become a host for a guest of its own?
I gave it a go. Using Parallels Desktop on my OS X host, running Windows
XP as a guest, I installed (the free) VMware Player virtualization software
for Windows. So far, so good. Next I downloaded vmTrac, a 113Mb
VMware appliance which packages Trac, Subversion, WebMin and
Lighttpd on a FreeBSD core. I extracted the archive and opened the
appliance using VMware Player.
Figure 2 shows my desktop. I’ve used Google Chrome and Internet
Explorer to access Trac and WebMin, which are running as web
applications on FreeBSD, itself running as a Windows XP guest, and
Windows XP is a guest on OS X.

Further reading
http://www.justsoftwaresolutions.co.uk/testing/testing-on-multiple-
platforms-with-vmware.html
Although virtualization products are mature and modern hardware is ready
to accommodate them, the options and possibilities still take some
explaining. You’ll find plenty of good material on the VMware [2] and
Parallels [1] websites. It’s also worth searching for other virtualization
platforms. This is a growing market, there are lots of competitors and good
deals to be had.
Testing on Multiple Platforms with VMware by Anthony Williams
provides a clear overview of the subject addressed in this article.

References
[1] http://www.parallels.com/
[2] http://www.vmware.com/
[3] http://www.vmware.com/appliances/
[4] http://trac.edgewall.org/
[5] http://www.redmine.org
[6] http://www.jumpbox.com

Thanks
I would like to thank everyone at CVu for their help with this article.

Figure 2
NOV 2008 | | 11{cvu}

XML is not the build system you’re looking for
Paul Grenyer provides an introduction to Gant.

n Thursday 21st August I attended a Skills Matter [1] ‘In the Brain’
session on Gant [2] given by Russel Winder at their offices in
London:

I will be doing an ‘In the Brain’ session on Gant (The Groovy way of
scripting Ant tasks) on Thursday 2008-08-21 18:30. This will happen at
Skills Matter, 1 Seckford Street, London EC1R 0BE, UK.

As part of this session I am going to undertake ‘The Gant Challenge’.
The idea is for people to bring small examples of Ant (or other) builds
that really irritate them so we can create the Gant version live and show
that Gant can do the business where Ant often cannot.

If you are in the area then, feel free to drop by – though you need to
register beforehand so some forethought is needed. This is planned as
a 90min session after which things move to a local hostelry.

Skills Matter is an organisation which supports the Agile and Open Source
developer community, by organising free events, training courses,
conferences and by publishing thousands of podcasts on ideas and
technologies that drive innovation.
Russel’s 90 minutes soon became 120, but it was very informative and very
interesting. The basic gist was that, although Ant [3] is a powerful build
system, XML is not the best way of specifying the steps in a build process.
Chiefly because it is verbose, not human readable as a programming
language can be and it’s difficult to do common programming tasks such
as if, for, foreach, switch, etc.
Gant is written in Groovy [4] and sits on top of Ant giving an extra layer
of indirection to existing Ant tasks. I had only heard of Groovy before and
never used it, so Russel spent a little time showing me, and the others,
simple Groovy programs and how to run them. I was also introduced to a
new concept known as closures.
Wikipedia described closures [5] as follows:

In computer science, a closure is a function that is evaluated in an
environment containing one or more bound variables. When called, the
function can access these variables. The explicit use of closures is
associated with functional programming and with languages such as ML
and Lisp.

Gant build scripts are also Groovy programs and bring with them all the
power of the Groovy programming language, so it is possible to do just
about anything and have a more readable, less verbose method of
describing build steps.
Once I got home and found a spare hour I gave Gant a go. I’m using
Windows. So I downloaded the Windows installer for Groovy [6]. It was
easy to install. I just used all of the defaults, except that I specified that
environment variables should be system rather than user and I didn’t install
Gant as it was only version 1.2.0 and a later version was available from
the website. I had to fiddle with the environment variables by hand to get
them right, but eventually I got:
 groovy -v
 Groovy Version: 1.5.6 JVM: 10.0-b22

It should be noted that the uninstall does not remove the environment
variables so GROOVY_HOME and the system path entry to the bin folder
must be removed by hand if uninstalling.

I installed the latest version of Gant [7] from the website. Installation
consisted of unzipping the zip file and adding the path to the Gant bin
folder to the system path. Ant is also required and ANT_HOME must be set.
Once they were in place I got:
 gant -V
 Gant version 1.4.0

All relatively straight forward so far. Now for a test. The Gant home page
gives Listing 1 as an example.
I dropped it into a file called build.gant, typed gant at the command
line and got:
 Stuff
 [echo] A default message from Ant.
 OtherStuff
 [echo] Another message from Ant.

Brilliant! Assuming Groovy and Ant are properly installed it would appear
that Gant works straight out of the box. I’m a big fan of things that work
straight out of the box and always strive to make my own projects work
that way.
Now for the acid test, a straight comparison between a simple Ant build
script and Gant one. Let’s take a very simple Java program:
 public class HelloWorld
 {
 public static void main(String[] args)
 {
 System.out.println("Hello, Gant World!");
 }
 }

The usual Ant script to compile this would look something like Listing 2.
It’s quite verbose with a lot of angle brackets. Although XML is meant to
be human readable, it’s far from simple to read. The equivalent Gant script,
which I worked out in about 5 minutes from the docs and Russel’s session,
is Listing 3.
As you can see the Gant script is clearer, simpler and easier to read. Like
the Ant script, it has two targets with the run target dependent on the

O includeTargets << gant.targets.Clean
cleanPattern << ['**/*~' , '**/*.bak']
cleanDirectory << 'build'

target (stuff : 'A target to do some stuff.') {
 println ('Stuff')
 depends (clean)
 echo (message : 'A default message from Ant.')
 otherStuff ()
}

target (otherStuff : 'A target to do some other
 stuff') {
 println ('OtherStuff')
 echo (message : 'Another message from Ant.')
 clean ()
}

setDefaultTarget (stuff)

Listing 1

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com
12 | | NOV 2008{cvu}

XML is not the build system you’re looking for (continued)
compile target. The compile target uses javac to build a Java class file and
the run target executes the class file using java. Finally the default target
is specified.
This is all very attractive to me, despite needing to add yet another tool to
my build environment installation. Overall it was a very interesting,
informative and enjoyable session. I always enjoy anything that Russel is
involved in, he has a lot of charisma. It was certainly worth the five hour
round trip from Norwich for the evening.

References
[1] http://skillsmatter.com/
[2] http://gant.codehaus.org/
[3] http://ant.apache.org/
[4] http://groovy.codehaus.org/
[5] http://en.wikipedia.org/wiki/Closure_(computer_science)
[6] http://dist.codehaus.org/groovy/distributions/installers/windows/

nsis/groovy-1.5.6-installer.exe
[7] http://dist.codehaus.org/gant/distributions/gant-1.4.0_groovy-

1.5.6.zip

target (compile : 'Compiles.')
{
 javac (srcdir : "src")
}

target (run : 'runs.')
{
 depends(compile)
 java(classname : 'HelloWorld',
 classpath : 'src')
}

setDefaultTarget (run)

Listing 3

<project name = "HelloWorld" default="run"
 basedir=".">
 <target name = "compile">
 <javac srcdir="src" />
 </target>
 <target name = "run" depends="compile">
 <java classname="HelloWorld">
 <classpath>
 <pathelement path="${basedir}"/>
 </classpath>
 </java>
 </target>
</project>

Li
st

in
g

2

Let the Machine Debug For You
Robert Finking takes stock of code analysis techniques.

ver the past few decades a number of semi-automated debugging
technologies have emerged. Rather than doing all the debugging by
hand, why not let the machine do some of it for you?

As with computer aided anything, there are strengths and weaknesses of
the techniques available. Automated debugging tools are great at spotting
some bugs and completely blind to others.
The two classes of tools which we’re going to look at in this article are
great at spotting run time bugs, but no good at finding functional defects.
What sorts of things do we mean by run-time bugs?

Null pointer dereferences
Array/alloc bounds overruns (read or write)
Uninitialised memory reads
Double free
Memory leaks

Generally speaking we’re talking about tools for Java/C/C++ here. There
are bits of tool support available for other languages but the bulk of what
is available is for C derivative languages. There are two reasons for this.
Firstly, it is a lot easier to reason about what is going on with a piece of
source code if it is statically typed. With more dynamic languages such as
Python, it is harder to produce this kind of tool. Secondly, languages
derived from C tend to have a lot of potential runtime problems that other
languages have defined away. This is less true of Java, but it has its own
problems to worry about!
The two techniques we’re going to explore in this article are static analysis
and dynamic analysis. Dynamic analysis covers a wide range of
techniques, but we’re explicitly going to look at automatic memory usage

checkers. Static analysis also covers a wide range of techniques, many of
which are still being researched. We are going to focus on the kinds of tools
currently available for use today.

Dynamic analysis
Dynamic analysis of code can tell you what problems exist and how they
occur.

Malloc debuggers

Malloc debuggers are the most widely available form of free tool. Most of
these are distributed in source form and as a result work on a wide variety
of platforms. They operate by providing an alternate library for memory
allocation calls. Some of these use non-standard function names and

O

ROBERT FINKING
Robert Finking is a professional software engineer who is always trying to
improve and pass it on. He is currently engaged part time in a research
programme attempting to break new ground in software tools technology.
He likes Jesus and beer. He can be contacted at
robertfinkng555@o2.co.uk (the mis-spelling of Finking is intentional).

mpatrol
NJAMD (Not Just Another Malloc Debugger)
Electric Fence/DUMA [2]
Dmalloc
BoundsChecker.

Example malloc debuggers
NOV 2008 | | 13{cvu}

therefore require you to write your code with them in mind from the outset.
Most however provide re-implementations of the standard malloc and
free operations and so can be slotted in to an existing development. It’s
simply a case of including them in your list of link libraries and specifying
that they be linked ahead of the standard library.
In fact the standard GNU C library now includes a simple malloc debug
facility. To use this the application must be started in a special mode which
is enabled by setting the MALLOC_TRACE environment variable to the
name of the file to use for output, and by inserting calls to mtrace() in
the source code (see [1]).
As the name suggests these tools are mainly the preserve of C, though some
of the libraries cover new and delete too and so are effective for C++.
Since Java has garbage collection built into the VM,
no equivalent is available for it. Of course that’s not
to say you can’t have memory leaks in Java – you can.
However because it’s far less of a problem, dynamic
debugging tools are more or less restricted to memory
usage profilers such as: http://www.ibm.com/
d ev e lo p e r wor ks / j a va / l i b r a r y / j - l e aks /
heapsummary.gif
For most of the malloc debuggers available, the
overhead of tracking the memory usage slows down execution
considerably. One of the most well known debuggers, Electric Fence (and
its descendant DUMA [2]), gets around this problem by using hardware
acceleration. Since the machine’s MMU generates a hardware interrupt
(page fault) if an attempt is made to access memory beyond the end of the
page, Electric Fence allocates all memory so that it ends at the very end
of a page. That way no runtime checks need to be made in software, but
rather the MMU issues a page fault if the executable attempts to access an
address beyond the end of the page. There are a couple of disadvantages
to this approach however. Firstly, it makes very inefficient use of memory.
Even allocations of a few bytes take up an entire page (typically 4KB). For
a program with large numbers of small allocations this can result in running
out of memory quite quickly. The second issue is that unlike other malloc
debuggers, this technique can only check for boundary overruns at one end
of the allocated block, typically the top. In fact, since almost all bounds
overruns occur at the top of the block of memory (loop variables almost
always start at zero and go upwards), this is not a problem. Periodically
re-running tests with the boundary configured to be at the bottom of the
block should pick up any unusual boundary overruns that are occurring at
the bottom of the memory.

Full memory debuggers

Perhaps the two most readily applicable tools covered by this article are
Valgrind and Mudflap. These take a step beyond traditional malloc debug
libraries and provide diagnosis of a variety of memory problems. In fact
Mudflap is descended from the classic gcc patch BCC (the bounds

checking compiler patch – see [3]) but Valgrind works in an entirely
different way.
Valgrind [4] is in fact a framework which allows a wide variety of tools
to plug into it. The main tool of use, and the one most people are referring
to when they say ‘Valgrind’, is the memcheck tool. Valgrind works by
simulating the processor and runs your entire executable inside this
simulation. The beauty of this solution is that it can work on your existing
executable without having to modify the source code, instrument the object
code, or even re-link the executable. To analyse your code with Valgrind,
simply append your ordinary command line to the Valgrind command
(much like using "time" or "rsh"). Of course if you analyse a stripped
executable, the debug messages you get back might not be too helpful. If
Valgrind shows up a bug, you really need to point it at a version of the code
built with -g in order to get details of line numbers etc. You will of course
notice that -g is specific to gcc and here comes the main and only real flaw
of Valgrind: it only works on executables compiled with gcc and running
under Linux. Of course this applies to a wide variety of developments, but
clearly not all. In particular it does not work under Cygwin or MinGW.
Valgrind checks to see if your program:

Accesses memory it shouldn’t (areas not yet allocated, areas that
have been freed, areas past the end of heap blocks, inaccessible areas
of the stack).
Uses uninitialised values in dangerous ways.
Leaks memory.
Does bad frees of heap blocks (double frees, mismatched frees).
Passes overlapping source and destination memory blocks to
memcpy() and related functions.

Almost all modern Linux distros include Valgrind either as standard or as
an optional extra. Such is the usefulness of these checks that there is a case
for making a non Linux codebase multiplatform just so the memory

analysis can be done.
Mudflap [5] performs all of these checks and more,
and has slightly wider applicability. Mudflap is a gcc
4 plugin. Some platforms (e.g. SUSE) ship with it
installed as standard, others will require you to
upgrade your gcc installation (no mean feat).
However, Mudflap is not limited to Linux, but
operates on any platform where gcc has it installed.
Mudflap executables also tend to run less slowly than

executables running through Valgrind since it does not rely on a simulation
of the processor. The killer bug detection feature Mudflap has over
Valgrind is its ability to detect memory bugs on the stack. Valgrind on the
other hand is restricted to the heap (due to the way it works). Mudflap is
harder to use however. Even if Mudflap comes pre-installed on your
version of gcc, it takes some configuring to get it to behave like you want
it to (see sidebar). Once you’re familiar with it, this is another strength –
it is very configurable. The learning curve to get started is definitely steeper
than Valgrind though.
If you are on a platform that supports Valgrind but not Mudflap, and you
want a quick and dirty way to get a bit of stack memory checking without
the hassle of rebuilding gcc, there is an easy solution. "Propolice" [6]
comes installed as standard on version 4.1 and later of gcc. Compile with
the flag -fstack-protector-all to enable stack checking. This
feature is aimed at security rather than debugging and so is very fast. It is
intended to be left in the final executable as a security measure to protect
against malicious buffer overflow attempts. However it doubles as a handy
stack overflow bug detector. The downside is, its security background
means it doesn't give you any clues as to what went wrong - your code will
just bomb out.
There are commercial alternatives to these tools such as Rational Purify,
but they don't really add much and are in fact weaker in some areas than
their open source cousins. The main reason for looking at commercial
alternatives here is the desire to roll out such tools onto platforms that are
not currently covered by Mudflap and Valgrind (in addition to the usual
concerns such as training support etc.)

Some of the most useful Mudflap options settable in the
MUDFLAP_OPTIONS environment variable

-mode-nop mudflaps do nothing

-mode-check mudflaps check for memory violations
(active)

-viol-gdb violations fork a gdb process

-print-leaks print any memory leaks at program
shutdown

-check-initialization detect uninitialized object reads

-abbreviate abbreviate repetitive listings (active)

-wipe-stack wipe stack objects at unwind

-wipe-heap wipe heap objects at free

-heur-stack-bound enable a simple upper stack bound
heuristic

Mudflap options

Of course that’s not
to say you can’t

have memory leaks
in Java – you can
14 | | NOV 2008{cvu}

Static Analysis
Static analysis tells you why and where problems exist as well as what and
how.

Lint tools

There are various categories of static analysis tools, the widest used
category being ‘Lint Tools’. These have evolved from the early UNIX lint
command which used to sit alongside the compiler in order to carry out
more thorough checks than the compiler had time to do. With increased
computing power on the desktop, most of the checks that lint used to
perform are now built into the compiler in the form of warnings. If you
currently use default compiler options, a useful step forward is to read the
manual and switch on the extra warnings which modern compilers provide
(an easy one to remember for gcc is -Wall, which switches on a lot
of the more useful warnings).
Modern lint tools check for three main classes of issues. Firstly and
most usefully they check for potential bugs. These are almost
exclusively bugs local to a single function. For example you may
malloc some memory and neither free it by the end of the function,
nor keep hold of the pointer to it – a simple memory leak.
Secondly lint tools often have facilities for checking code against
particular rulesets and/or standards e.g. MISRA C [7], Scott Meyers’
recommendations [8]. These are particularly useful if your customer has
specified compliance to these standards. Often the commercial tools are
much stronger in this respect than open source alternatives.
Thirdly lint tools check for bad style – i.e. they pick up the fluff in your
code that you really don’t want to be there. Some of these checks can be
a waste of time in that the chances of them ever causing a problem are so
low that the cost of fixing them outweighs the benefit. The danger here is
that you end up swamped with all sorts of warnings which don’t get fixed
and end up missing some of the real issues because they get lost in the midst
of all the warnings. There are however some very good style checks in
some of these tools. We’re not talking about whether your brackets are
aligned properly or whether you’ve used the correct indent – use a code
beautifier for that.
Things that might make code non-portable or easy to misunderstand are
the kinds of style issues addressed by the tools. Take splint for example
(an open source lint tool for C). One of the checks it can perform is for
two variables which look visually similar on the screen. It would warn you,
for instance, if you had variables named bal and ba1 in the same scope
(since a number 1 looks very similar to a letter l). In a similar vein it will
warn you if you have used C++ reserved words as identifiers, since it
makes your code non-portable for use with C++ compiler e.g. has anybody
ever written a function with parameters named old and new?
There are not a lot of open source lint tools available, and in particular at
the time of writing there appear to be no free C++ static analysis tools
available. There is a Sourceforge project aiming to produce a C++ version
of splint but it has shown no sign of emerging from the planning stage for
years [9]. The good news is that the commercial tools do not cost the earth.
They are certainly affordable by a small business and even just about
within reach of a home developer, costing about the same as a good
graphics card.

Security tools

The second category of static analysis tool is the security checker. These
tools are sometimes entirely based on static analysis, but often also use
dynamic techniques. Their raison d’etre is to discover possible

vulnerabilities in your code base, typically in web applications. Unlike
security tools such as Nessus[10] which take a black box approach, these
security checkers analyse the source code and report use of unsafe
constructs, API calls etc.
Checking for security issues is a big topic, beyond the scope of this article
and won’t be covered any further here other than to note that there is a
degree of overlap with the final category of tools we are going to look at.

Super Lint? Meet the big boys!

So what is the final category of static analysis tool? In parallel with the
evolving of lint tools a new breed of tools has emerged over the past decade
or so. These take code checking to a whole new level. The main difference
between lint tools and these tools is the scope of the analysis they carry
out. Lint tools almost exclusively operate on a function by function basis.
However as we all know, the really nasty bugs are never local, they arise

due to the interaction between multiple parts of the code. And that’s where
these tools score highly – they perform path analysis. They use various
different reasoning techniques to spot possible paths through your code
where run time errors could occur (such as null pointer dereferences), and
if found, explain to you how they could happen. If lint tools complement
unit testing, these tools complement integration tests. They find bugs on
paths which your tests don’t execute (but which your end user probably
will – you know how it is).
Another difference with these tools is that they tend to have a centralised
console and issue tracking system. These are typically accessed via a web
interface. This makes the tools much easier to use in a team environment
where any given piece of code may be edited by multiple individuals. A
single central repository allows team members to leave notes on issues to
say what has been done to address them and why. Often the central
consoles provide summaries, graphs, breakdowns etc. which are all useful
for getting a handle on the state of the code base.
Because of the larger scale of these tools they tend to be a lot less nitpicking
than lint tools. They focus on major issues such as run time bugs, security
vulnerabilities, architectural problems etc, rather than the fluff. This makes
them a lot nicer to pick up and start using than lint tools which do seem to
be over pedantic until you get used to using them. Unfortunately, also
because of the scale of the tool, no open source solutions are currently
available. The required level of development is just too high it seems.
Commercial tools have come from various sources. Klocwork sell a tool
which was originally produced in house to improve code quality and save
on testing effort. Coverity was originally developed at Stanford University
by academics and used to be available for free until somebody realised they
could make money out of it! One of the older players in this sector came
not from academia or industry but from outer space: Polyspace
The catastrophic failure of the Arianne 5 rocket launch in 1996 was found
to be due to a software issue [11]. In order to prevent a similar error
occurring in the future, work was begun to find an automatic checking tool.
Polyspace was the result of that work. The proof is in the pudding: all of
the other checkers mentioned in this article will report all the errors they
detect, but will not guarantee to have found all errors of a particular type.
Because of its background, Polyspace aims for no false negatives – i.e. if
it claims that you have no null pointer exceptions in a piece of code, then
you really don’t. It guarantees to find them all. However the cost of this is

Klocwork
Fortify
Ouncelabs

Security checkers
PC-Lint/Flexelint (~£250 per seat C/C++ tool)
Splint (FREE C tool)
Sparse (part of FREE Linux kernel tools)
Findbugs (FREE Java tool)
Programming Research tools: QAJ, QAC and QAC++

Lint tools

lint tools check for bad style – i.e. they
pick up the fluff in your code that you

really don’t want to be there
NOV 2008 | | 15{cvu}

a belt and braces approach which doesn’t let you get away with code which
might conceivably result in an error. You therefore end up jumping through
a lot of hoops to get your code into an all clear state. Typically therefore
Polyspace is most applicable to high integrity software development where
the cost of jumping through the hoops is worth it because of the stringent
reliability requirements the software has to meet. Although viewed as a
static analysis tool, under the hood Polyspace actually uses dynamic
techniques as part of the ‘static’ analysis (known as ‘Abstract
Interpretation’), though this is hidden from the user [12]. The thoroughness
of this checking technique requires considerably more processing power
than that used by other tools.

Hot on the heels of the three main players mentioned above is a new kid
on the block: CodeSonar. The code sonar tool is more straightforward and
to the point than the other tools on the market, and being fairly new is
considerably cheaper.
And there’s the rub. Because advanced static analysis tools like these
require fairly serious development effort to produce, there is a price tag to
match. Typically licenses cost £10000s (that's right, four zeros). The cost
of these tools clearly puts them way beyond the home developer. However,
some of the vendors have provided their tools for free to open source
projects, so if you’re involved with an open source project it’s always
worth an ask. For example see [13]. For commercial software development
the benefit is fairly easy to see when you add up the cost of fixing bugs,
especially the ones you accidentally ship to the end user. If such tools are
used correctly they prevent many bugs from getting into the checked-in
codebase in the first place, which hopefully saves money at all stages of
testing as well as increasing code quality. This is true of any static analysis
tool, but ‘Super lints’ come into their own during integration as the number
of path combinations explode way beyond what is humanly testable.

How to use
Most of the time the sorts of tools listed above are only wheeled out in order
to find some hard-to-track-down bug. However I’d like to suggest that
using these tools in that way is similar to only running your unit tests once.
What you need (for both) is a regression strategy. A simple and very
effective approach is to run all of your unit tests under a dynamic analysis
tool such as Valgrind and check that they come out clean.
Even doing this as a one off is certainly useful. Apart from
anything else it improves the effectiveness of your unit tests.
Your code may contain a local memory leak. There is no way
to detect memory leaks using test cases alone, but a dynamic
testing tool will warn you immediately it detects a problem. But
why do it just once? My advice is to make it a standard part of
your regression testing. If at some later point somebody introduces a
memory leak into the code, or makes some other mistake that doesn’t show
up in the unit test results, your unit testing procedure will now pick it up.
The beauty of this is that you’re starting to pick up issues during unit testing
that normally don’t show up until integration.
Similarly I would recommend applying your static analysis tool at the same
level. The feasibility of this second suggestion depends very much on what
static analysis tool you are using and whether you are starting with a clean

codebase. Lint type tools produce a large number of warnings, most of
which are not related to genuine code defects. To get the value out of these
tools you need to get used to their way of working and work with them
from the outset rather than against them. The most effective use of lint tools
is to treat their output as compiler warnings: always aim for a clean build.
That way, as soon as any new issues crop up they are immediately visible.
It does take a bit of getting used to. The payback however is worth it.
A final point about static analysis tools. Lint and static analysis tools in
general are typically very configurable. Often when first using the tools
the common gut reaction is to switch off any checks which are reporting

false positives. Unfortunately this often robs the tool of its power.
There are usually several levels of warning suppression you can go
through before resorting to switching off a check completely,
including modifying your code. Learn to use the different
suppression techniques and maximise the advantage of using the
tool. Don’t fight it, work with it and it should pay you back

handsomely.

Conclusion
The currently available tool offerings, both open-source and commercial,
offer an impressive range of abilities and can save huge amounts of effort
if used properly. Being too nitpicking can result in loss of productivity –
learning to configure your tool to the optimum level is an art and takes
some time to get right, but is well worth the effort. Happy debugging.

References
[1] http://www.gnu.org/software/libc/manual/html_node/Allocation-

Debugging.html
[2] http://duma.sourceforge.net
[3] http://www.doc.ic.ac.uk/~phjk/BoundsChecking.html
[4] http://www.valgrind.org/
[5] http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging
[6] http://en.wikipedia.org/wiki/ProPolice
[7] http://www.misra.org.uk/
[8] Effective C++ - 50 Specific Ways to Improve Your Programs and

Designs, Scott Meyers, 1998 Addison-Wesley
[9] http://sourceforge.net/projects/splintpp
[10] http://www.nessus.org/nessus/
[11] http://en.wikipedia.org/wiki/Ariane_5_Flight_501
[12] https://tagteamdbserver.mathworks.com/ttserverroot/Download/

42825_white_paper_abstract_interpretation.pdf
[13]http://scan.coverity.com/

Further reading
1. http://www.infoworld.com/article/06/01/26/

73919_05FEcode_1.html
2. http://www.infoworld.com/article/06/01/26/

74270_05FEcodelint_1.html
3. http://en.wikipedia.org/wiki/Memory_debugger

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now? What did you just explain to someone?

What technology are you using? What techniques and idioms are you using?

The editorial staff are on hand to help you out.

For further information, or to submit an article, contact: cvu@accu.org or overload@accu.org

some of the vendors have provided their
tools for free to open source projects

Don’t fight it, work with it and it should pay
you back handsomely
16 | | NOV 2008{cvu}

!(C ^ C++)
Matthew Wilson takes a considered look at C and C++.

hen the CVu editor asked me to write this article (instead of the
one I’d proposed), I immediately thought that the best approach
would simply be to write from the perspective of someone who

is an ardent fan of both languages, uses them both on a daily basis, and
has strong opinions on each.
This article does not attempt to be a comprehensive look at the differences
between the two languages; rather it’s a list of the issues, trivial and
substantive, that first occurred to me in response to this task. They will
inevitably be steeped in my bias as a software consultant (who spends a
lot of time helping teams out with projects that are in difficulty), as an avid
library writer (who is trying to change the C++ world from the inside out),
and as an author (who writes books that attempt to show how advanced
techniques may be applied in practice).
In the two main sections I list the things I miss about C++ when writing
in C and vice versa, and, where possible, I’ll discuss techniques to emulate
the missing feature. I also comment on techniques that can be used to
ensure code compiles correctly in both languages, something that is
essential in the creation of header-only libraries that support both
languages. In the final section, I discuss why it is that I persist in using both
languages, and discuss briefly some of my criteria for selecting one
language over the other for a given task.

10 things I miss from C++ in C
In no particular order, here is a list of the facilities of C++ that I most miss
when programming in C. Some are trivial; others less so. Some have
workarounds; others do not.

1. for initialiser scope

In C++, I can write:
 for(int i = 0; i != 10; ++i)
 {
 printf("%d\n", i);
 }
 for(int j = 0; j != 10; ++j)
 {
 printf("%d\n", j);
 }

In C, I cannot. I must instead write:
 { /* Some scope: function, if-block, . . . */
 int i;
 int j;
 . . . /* Arbitrary amount of code . . . */
 for(i = 0; i != 10; ++i)
 {
 printf("%d\n", i);
 }
 for(j = 0; j != 10; ++j)
 {
 printf("%d\n", j);
 }

This adds more lines to the code, and violates the principle of locality of
scope. There’s a simple workaround, however: introduce a new scope:
 { int i; for(i = 0; i != 10; ++i)
 {
 printf("%d\n", i);
 }}

 { int j; for(j = 0; j != 10; ++j)
 {
 printf("%d\n", j);
 }}

2. Anonymous arguments

In C++, I can omit the name of an argument that’s not used, and thereby
be relieved of the compiler – whose warning-level is always set to
maximum, of course – nagging me about not having used it.
 inline int fn(int used, char /* notUsed */)
 {
 return used;
 }

In C, that’s not possible, and one must instead reference it in some way or
other:
 inline int fn(int used, char notUsed)
 {
 ((void)notUsed);
 return used;
 }

The ((void)notUsed) statement is a bit ugly and not all that self-
documenting – at least I’ve met experienced developers who don’t get it.
Furthermore, being a C-style cast, it is something one likes to avoid in C++,
it doesn’t jump out of the page even at those developers who do get it, and
it precipitates warning from those compilers who are generous enough to
be able to warn us about them. (Digital Mars is one.) Changing it to
static_cast<void>(notUsed) means that the code will not compile
for C, and also leads to warnings about meaningless statements from other
compilers. (Open Watcom is one.)
My a pp roa ch i s t o u se a m ac ro , STLSoft ’ s
STLSOFT_SUPPRESS_UNUSED(), which resolves to an appropriate
construct whatever language/compiler is being used. For those really fussy
C++ compilers, it resolves to a call to a suite of function templates, whose
main actor is
 // in namespace stlsoft
 inline void suppress_unused_func(
 T const volatile &)
 {}

With this I can rewrite fn() in the following way, and have it compile
correctly, at all warning levels, in both languages, and with all C/C++
compilers. It also stands out, and is readily grepable.
 inline int fn(int used, char notUsed)
 {
 STLSOFT_SUPPRESS_UNUSED(notUsed);
 return used;
 }

W

MATTHEW WILSON
Matthew is a software development consultant, columnist,
and author of Imperfect C++ and Extended STL. He is the
creator of the FastFormat, Pantheios and STLSoft
libraries. Matthew is curently working on Breaking Up The
Monolith: Advanced C++ Design Without Compromise.
NOV 2008 | | 17{cvu}

3. Dynamic struct initialisation (for local scope)

This one can be a real pain. Here’s some code from an example that was
recently added to the Pantheios logging library. I’d written it in C++,
probably because Pantheios is primarily a C++ library, but once it was
written I decided, with an hour to go before release time, to rename it to
.c. Whenever possible I like to write in C to verify that libraries that
purport support for both C and C++ actually do so. Here’s an extract from
the succinct C++ version:
 {
 char buff[101];
 pan_beutil_time_t tm = {
 STLSOFT_NUM_ELEMENTS(buff), 0, buff, NULL };
 size_t n = pantheios_util_getCurrentTime(
 &tm, 0);
 printf("time with 0 flags: %.*s\n", (int)n,
 buff);
 }

When compiled as C, the compiler applies the rules of C and balks on the
dynamic initialisation of the tm instance. So it has to be rewritten as:

 /* Using local time with the default
 representation for the platform */
 {
 char buff[101];
 pan_beutil_time_t tm;
 size_t n;

 tm.capacity = STLSOFT_NUM_ELEMENTS(buff);
 tm.len = 0;
 tm.str = &buff[0];
 tm.strftimeFmt = NULL;

 n = pantheios_util_getCurrentTime(&tm, 0);

 printf("time with 0 flags: %.*s\n",
 (int)n, buff);
 }

The extra verbiage adds nothing to readability. In this case, there’s no
workaround: you just have to wear the extra SLOCs. Of course, I would
want this only for local-scope: one of the nice features of C is that there is
no dynamic initialisation of non-local structures.

4. Class/structure/union/enum name scope

That hasty rewrite had a positive effect, in that it revealed a defect in the
definition of the structure pan_beutil_time_t. This is due to one of
C’s irritating, albeit obviatable, quirks, whereby the scope of the name of
an enumeration, structure or union type is the scope of the type. Given the
structure
 struct pan_beutil_time_t
 {};

any C code that references i t has to use the name struct
pan_beutil_time_t, rather than pan_beutil_time_t. In C++, you
just simply refer to pan_beutil_time_t. The workaround, which I
(believed that I) always use to define structures (and unions, and
enumerations) for libraries that have to support both C and C++, is as
follows:
 struct pan_beutil_time_t
 {
 . . . /* Members */
 };
 #ifndef __cplusplus
 typedef struct pan_beutil_time_t
 pan_beutil_time_t;
 #endif /* !__cplusplus */

The way to find out whether you’ve forgotten to do so is, as in this case,
to compile in C.

5. Namespaces

I make sophisticated use of namespaces in C++, but in C the only thing I
really miss about namespaces is protection from shortsighted C library
writers (or giant software companies) who write libraries containing name
definitions such as:
 #define FOR if(0); else for
 #define BLOCK (UINT)65536
 #define INFINITE 0xffffffff
 int GetClass(void);

and their ilk. Namespaces do, of course, have a great many powerful uses,
but in C you’re pretty ok as long as you simply choose sensibly and
predictably unambiguous names, and then use those names to prefix all the
globally visible names, as in:
 #define ACMELIB_BLOCK_QUANTUM (65536u)
 #define ACMELIB_INFINITE_TIMEOUT (0xffffffff)
 int AcmeLib_GetClass(void);

Note the absence of an ACMELIB_FOR: that’s a stupid idea, even without
the stupid name.

6. Overloading

Consider the function b64_encode2(), from the b64 library.
 size_t b64_encode2(
 void const* src
 , size_t srcSize
 , char* dest
 , size_t destLen
 , unsigned flags
 , int lineLen /* = 0 */
 , B64_RC* rc /* = NULL */);

The function Base-64 encodes a block of memory described by src and
srcSize into a character buffer described by dest and destLen
according to the given flags. Users can optionally specify a line length and/
or the address of a variable to receive a return code in the case of encoding
failure. In C++ we might implement four overloads, with five, six and
seven parameters to cover the four permutations.
 // in namespace b64
 size_t encode(void const* src, size_t srcSize,
 char* dest, size_t destLen,
 unsigned flags); // 5
 size_t encode(..., int lineLen); // 6
 size_t encode(..., B64_RC* rc); // 6
 size_t encode(..., int lineLen, B64_RC* rc);// 7

In C, callers indicate their desire for the ‘default’ parameters by specifying
0 and NULL, respectively.
Contrast this situation with the function cstring_createLenEx()
from the cstring library:
 CSTRING_RC cstring_createLenEx(
 struct cstring_t* pcs
 , char const* s
 , cstring_flags_t flags
 , size_t cch
 , void* arena
 , size_t capacity
);

Amongst other things, this function allows a cstring_t instance to
be created from a custom memory arena, such as a fixed block of stack
memory. In this case, the arena and capacity parameters are both required
when specifying the memory block.
18 | | NOV 2008{cvu}

Where such flexibility is not required, the arena parameter should be NULL
and the capacity parameter should be 0; specifying either without the other
is invalid. Were cstring to have a C++ API, we would define two
overloads, of four and six parameters, to clearly connote this relationship:
 // in namespace cstring
 CSTRING_RC create(
 struct cstring_t* pcs
 , char const* s
 , cstring_flags_t flags
 , size_t cch
);
 CSTRING_RC create(
 struct cstring_t* pcs
 , char const* s
 , cstring_flags_t flags
 , size_t cch
 , void* arena
 , size_t capacity
);

In C, the best we can do to avoid any erroneous suggestion that one
parameter is valid without the other is to specify an additional API
function, cstring_createLen(), which takes only four parameters.
 CSTRING_RC cstring_createLen(
 struct cstring_t* pcs
 , char const* s
 , cstring_flags_t flags
 , size_t cch
);

7. Destructors for guaranteed resource cleanup

If you’re using C++, you know about resource acquisition is initialisation
(RAII), even if that’s not what you call it. It is made possible by C++’s
support for deterministic destruction, arguably C++’s most important
feature, and one whose lack is a fatal flaw to many, supposedly more
modern, languages.
Even when there’s not a pre-written class for a given resource, you can
a p p l y RAI I i n C + + w i t h c om po n e n t s s uc h a s S T L S o f t ’ s
scoped_handle:

 int main(. . .)
 {
 int panres = pantheios::init();
 if(panres < 0)
 {
 . . . // report and quit
 }
 else
 {
 stlsoft::scoped_handle<void>
 scoper(pantheios::uninit);
 . . . // application code
 } // pantheios::uninit() automatically
 // called here
 . . .
 }

This code guarantees that pantheios::uninit() is called regardless
of what ‘application code’ does (except if it calls exit()), at the end of
the block in which scoper is defined.
In C, one must decide the exact point at which to invoke a cleanup function,
and consequently be at the mercy of premature returns.
 int main(. . .)
 {
 int panres = pantheios_init();
 if(panres < 0)
 {

 . . . /* report and quit */
 }
 else
 {
 . . . /* application code */

 if(. . .)
 {
 pantheios_uninit(); /* Don't forget! */
 return EXIT_FAILURE;
 }
 else
 {
 . . . /* more application code */

 if(. . .)
 {
 pantheios_uninit(); /* Don't forget! */
 return EXIT_FAILURE;
 }
 . . .

If any part of ‘application code’ executes a return without also invoking
pantheios_uninit(), the library uninitialisation will not occur.
One approach to deal with this is to impose a single return call per function.
In many cases that can work well, but the exceptions to the rule are
cumbersome indeed. In the case above, we can easily imagine setting
panres to -1 at the start of main(), and then checking it at the end, and
only invoking pantheios_uninit() if it’s non-negative. But consider
when we are using two, three, four, … ten libraries, all of which need to
be initialised in the same manner. It’s too easy to render such code
defective during maintenance, either by forgetting the right uninitialisation
sequence, or by adding in a premature return and bringing down the whole
house of cards.
My approach in C for this problem is to use layered functions, as in:

 /* file: my_application.c */
 int main_application(int argc, char** argv);
 /* . . . application code . . .*/

 int main(int argc, char** argv)
 {
 int res = pantheios_init();
 if(res < 0)
 {
 . . . /* report and quit */
 }
 else
 {
 res = main_application(char, argv);
 pantheios_uninit();
 return res;
 }
 }

When multiple libraries must be initialised, more layers may be added by
interleaving in more initialisation function layers. To be sure, it’s more
code. But it’s a heck of a lot more proof from maintenance damage.
Naturally, if you’ve a lot of these, and they’re all structurally and
semantically conformant (they each take 0 parameters, and return a
negative integer on failure), you can be a bit smarter and define a layering
API initialisation library, to give something like the following main
application code:
 static const layered_api_entry apis[] =
 {
 { pantheios_init, pantheios_uninit },
 { shwild_init, shwild_uninit },
 . . .
NOV 2008 | | 19{cvu}

 { AcmeLib_init, AcmeLib_uninit }
 };

 int main_application(int argc, char** argv);
 /* . . . application code . . .*/

 int main(int argc, char** argv)
 {
 return layered_api_main(&apis[0],
 NUM_ELEMENTS(apis), argc, argv,
 main_application);
 }

I’ll leave it as an exercise for the reader to implement it – including
handling different error return semantics, initialisation flags, and calling
conventions – and release it as open-source.

8. Strings and containers

Although a huge topic, the point to be made about these two items is
simple: the lack of such libraries in the C standard library and their
presence within the C++ standard library means that, absent other
important factors, writing a library or application that makes much use of
either is going to be a lot easier in C++. Furthermore, because they’re
available in the standard library, you can worry a whole lot less about
coupling in such a C++ project than in a corresponding C project that also
requires its users to download and build AcmeLib’s C Containers Library.
I would remark on one neat (read: perverse) trick a colleague and I used
recently. We’re building a suite of tutorial material about writing
applications in C and C++ using only existing standard and open-source
libraries, and wanted to use C as the implementation language of an early
example for pedagogical reasons. The rub was that we needed to store a
sequence of file paths for later processing. The trick we came up with was
to use the cstring library to store the paths as a single string, separated
by the | character (something that cannot occur in a path). Then we
processed the ‘list’ by tokenising it (via strtok()) and operating on
each retrieved path in turn.

9. Transparency of application code

C++ is hugely more expressive than C. Consider the following two
snippets of application code that log a function entry and its parameter
values. First, in C:

 int connect_to_peer(struct in_addr const* addr)
 {
 pantheios_logprintf(PANTHEIOS_SEV_DEBUG
 , "connect_to_peer(%u.%u.%u.%u)"
 , (NULL == addr) ? 0 : (
 (addr->s_addr & 0x000000ff) >> 0)
 , (NULL == addr) ? 0 : (
 (addr->s_addr & 0x0000ff00) >> 8)
 , (NULL == addr) ? 0 : (
 (addr->s_addr & 0x00ff0000) >> 16)
 , (NULL == addr) ? 0 : (
 (addr->s_addr & 0xff000000) >> 24));
 . . .

Now in C++:
 int connect_to_peer(struct in_addr const* addr)
 {
 pantheios::log_DEBUG("connect_to_peer(",
 addr, ")");
 . . .

For things like this, there’s just no contest. The former is verbose and
opaque, and as a consequence significantly detracts from transparency (the
quality of how easy it is to understand a piece of code in order to change
it). The latter is the opposite, intrudes minimally into the function’s

implementation, and is more efficient when the debugging level is
switched off.

10. Beauty (aka expressiveness)

While it’s certainly true that C++ gives you much broader capacities for
writing inscrutable junk, it also affords a level of expressiveness that’s
simply not achievable in C (or in plenty of other C-family languages, for
that matter). If you’ll permit me the tasteless indulgence of taking content
from my second book, Extended STL, volume 1 [1], here’s an example of
a highly expressive piece of code that deletes files from the current
directory.
 using unixstl::readdir_sequence;
 readdir_sequence entries(".",
 readdir_sequence::files);
 std::for_each(entries.begin(), entries.end()
 , ::remove);

It’s almost possible to read this as natural language: ‘for each entry in the
sequence of files in the current directory, remove it’.
The alternative in C is around fifteen lines of code, almost all of which is
boilerplate involving opendir(), readdir(), closedir(),
S_IFREG and S_IFMT, and a whole lot more gunk that makes for very
poor reading. (You can check out the code, and the accompanying
discussion, by downloading the book’s Prologue, which is freely available
from http://www.extendedstl.com)

10 things I miss from C in C++
In no particular order, here is a list of some aspects of C that I most miss
when programming in C++.

1. (Absence of) overloading

Overloading is great. Except when it isn’t. (It’s always better than default
parameters, of course, but no-one’s ever going to give back weapons once
they’ve got them. Actually, they’re necessary for a whole manner of
techniques for working around compiler/language defects, so there’s no
question of giving them up.) Anyway, back to overloading.
This one can be a surprisingly inscrutable problem. Consider the following
code:
 // file: my_app_main.cpp
 namespace
 {
 void onBadArg(int bExit, char const* reason,
 int invalidArg, int argc,
 char const* const* argv);
 void showHelp();
 }
 int main(int argc, char** argv)
 {
 // process the command-line
 if(1 == argc)
 {
 onBadArg(1, "insufficient options; use --help
 for usage", -1, argc, argv);
 }
 }
 namespace
 {
 void onBadArg(int bExit, char const* reason,
 int invalidArg, int argc,
 char const** argv)
 {}
 void showHelp()
 {}
 }

This compiles fine, but balks at linker time, rabbiting on about something
like
20 | | NOV 2008{cvu}

"absence_of_overloading.obj : error LNK2019:
unresolved external symbol "void __cdecl `anonymous
namespace'::onBadArg(int, char const*,int,int,char
const* const*)"
(?onBadArg@?A0x85adb1b1@@YAXHPBDHHPBQBD@Z)
referenced in function _main"

What are you talking about? says the unfortunate time-poor developer, who
goes on to spend many head-scratching minutes before asking a colleague
to break the mental torment. Said colleague instantly spots the missing
const in the definition of onBadArg(). C++’s overloading facility is a
definite hindrance in cases such as this. What can we do?
Well, as readers of my first book, Imperfect C++[2], will know, there’s a
whole lot you can do with the magic of C++’s backwards-compatibility
mechanisms. In this case, we can use the extern "C" linkage specifier
to instruct the compiler that we don’t want overloading of our helper
functions, as in:
 // file: my_app_main.cpp
 namespace
 {
 extern "C"
 {
 void onBadArg(int bExit, char const* reason,
 int invalidArg, int argc,
 char const* const* argv);
 void showHelp();
 }
 }

 int main(int argc, char** argv) ... // as before

 namespace
 {
 extern "C"
 {
 void onBadArg(int bExit, char const* reason,
 int invalidArg, int argc,
 char const** argv)
 {}
 void showHelp()
 {}
 }
 }

Now when you compile, you’re given a much more informative response,
and by the compiler rather than the linker, along the lines of

"absence_of_overloading.cpp(24) : error C2733:
second C linkage of overloaded function
'`anonymous-namespace'::onBadArg' not allowed
 absence_of_overloading.cpp(23) : see
declaration of '`anonymous-namespace'::onBadArg'"

If you enclose the declaration but forget the definition, you’ll still get
‘successful’ compilation, and only find out at link time. But at least it’ll
be clearer, along the lines of

"absence_of_overloading.obj : error LNK2019:
unresolved external symbol _onBadArg referenced in
function _main"

The absence of C++ name mangling should give you a better clue about
what the problem is.

2. Compilation times

This one’s a no-brainer: we all know that C++ has much longer
compilation times, exacerbated of late with the increasing use of templates.

When building the (legion) object libraries of Pantheios on my main 64-
bit Linux box, it’s impossible to follow the compilation of the C
compilation units with the eye, while the C++ ones take at least a second
each.

3. Portability

The C dialects supported by the various popular compilers differ very
slightly in comparison to the dialects of C++. In all the libraries I write,
and port across a large number of compilers and platforms, I have found
very few problems in ensuring the portability of the C, as long as I stick
with standard (C89 or C99, whatever the case may be).
By contrast, I’d guesstimate that 50% of my effort in writing and
maintaining my main C++ libraries – FastFormat, Pantheios,
STLSoft, VOLE – is spent ensuring portability and inventing cunning,
fatuous, and philosophically worthless workarounds. That’s pretty sad
when you think about it.
With compilation times, these two explain why so much of Pantheios, a
C++ logging library whose selling points include employing C++’s type-
system to yield 100% type-safety (something of passing importance in a
logging library), is written in C!

4. Interoperability (ABI)

In C (with very few exceptions), I can use any C compiler on a given
platform and interoperate with C, C++, C#, D, Java, Perl, Python, Ruby
and many other languages and technologies. By contrast, in C++ (with very
few exceptions), I can interoperate with C (produced with most compilers)
and with C++ written only with the same version of the same compiler.
Consequently, a host of C++ language features (some good, some not so
much) are not available when writing/using libraries that are going to be
connected together via link-time or runtime, rather than compile-time,
mechanisms. Multiple-inheritance, exceptions, RTTI, static objects (local
and non-local), and templates are all out. Virtual methods can be achieved
only with considerable effort (see Chapter 8, ‘Objects Across Borders’,
from Imperfect C++). Name-mangling schemes are different between
different compilers. Calling conventions (and their concomitant symbol
name decoration) are at best troublesome; at worst some compilers support
a different set of calling conventions to others.
What this means is that you either have to be sure that you’ll always be
able to generate all your libraries (static and dynamic) from the same
compiler (or one of the small set of compatible compilers), or, as I prefer
to, eschew the use of C++ features (with the occasional exception of
portable vtables, when the benefit warrants the effort) and stick with a C-
compatible interface.

5. Discoverability and transparency of library code

Ok, let’s get real here for a minute. Many C and C++ libraries lack
something in discoverability (the quality of how easy it is to understand a
piece of code in order to use it), and I’d guess that the vast majority leave
much to be desired in transparency. (Discoverability tends to be more
associated with the interface, and transparency with the implementation,
although the demarcation is not absolute.)
In my opinion, however, C++ libraries tend to be considerably worse than
C libraries of the same/equivalent complexity in both aspects. Of course,
it’s difficult to nail down exact causes with third party libraries produced
by disparate groups of authors. However, if you take a look at the interfaces
and implementations of any standard library implementations you’ll
probably see some merit in what I’m saying. And in reviewing my own
work I can definitely see a difference in levels of transparency.
Given the portability issues in C++, particularly when templates are mixed
in, I can see an argument to be forgiving of messy implementations in C++
libraries. However, no such quarter should be asked or given when it comes
to crappy C libraries – if you can’t comfortably inspect the C libraries
you’re using, chuck them and try another.
NOV 2008 | | 21{cvu}

6. WYSIWYG: lack of exceptions

Ok, don’t get me wrong here. I am a big fan of exceptions, as long as they’re
used sensibly, that is, for the indication of unusual conditions that are
within the purview of the software design, not for the transition between
common program states, nor for the indication of design violations.
Having said that, it’s still something of a pain sometimes when one is
spending so much mental effort attempting to see all the hidden exit paths
from a given piece of source. Whenever you look at any non-trivial piece
of C++, at minimum you have to ask yourself what’s the consequence of
std::bad_alloc being thrown. If that’s your only concern, it’s not that
bad because an out-of-memory condition usually means that your process
has entered a practically unrecoverable state. As long as you have some
high-level catch clause to detect and attempt to report it, you can call your
job done in that regard. (I use the word ‘attempt’ advisedly, since nothing’s
guaranteed when there’s no more memory left. But you have to make a
good-faith attempt, preferably using a very low-impact logging call.)
In most cases you have a lot more to consider than the low-likelihood,
simple-response case of out-of-memory. Anytime you use a library (that
uses a library, which uses a library) that might throw exceptions
representing recoverable conditions, the complexity of your code rises
dramatically. What exception(s) might be thrown? Where? Under what
conditions? With what mitigations, or alternate actions?
What might seem a clear distribution of normal vs exceptional semantics
with one component/library at one level of abstraction can be but a
portion of a baffling spectrum of complexity when it is considered in
concert with several others, from a vantage point of a few levels of
abstraction above.
Conversely, in C the question of whether the execution path encounters a
given code block can be reasoned based entirely on the code that one sees
at that level of abstraction. To be sure, the manual receipt, translation and
transport of return-code conditions between different layers of abstraction
in C presents a challenge of similar magnitude, is a lot more work, and is
all too easy to do incompletely. Neither situation is particularly good: just
different negatives.

7. WYSIWYG: Lack of dynamic initialisation (well, … only a bit)

In C, the only actions that may be said to occur outside the scope of
main() are the invocation of the termination functions registered at
atexit(), and the closing of any open streams. And even these two are
skipped if you invoke _Exit(), though that’s not something that’s
recommended except in extremis.
What this means it that you don’t have to wonder what kinds of things
might be happening in your program far away from main() (and your
ken). By contrast, in C++, you can find yourself in all kinds of link-time
trouble because some library designer has thought fit to whack in a few
globals for the sake of specious expediency.
This is one reason why writing libraries in C (with or without a nice header-
only C++ API) is a good thing.

8. WYSIWYG: lack of invisible costs

C++ has a reputation for being inefficient, particularly with respect to its
older brother. This does not have to be so; it’s just that it usually is. One
reason is that it’s very easy to hide large amounts of functionality within
seemingly innocuous statements, and lots of developers don’t seem to want
to think about what’s going on inside the components that they’re using
(which is pretty reasonably, after all; library designers should be serving
them better).
In C, I have to name functions in order to carry out actions. The things that
happen are, with a few rare cases, right in front of me in my code. If I call
a function, Xml_LoadFileIntoDom(), I have a pretty good notion of
the scale of its costs. In C++, you are at the mercy of the library designers’
whims (and experience), since it’s quite possible for you to write
innocuous statements in your library code and have huge amounts of stuff
done without your having a clue from looking at the code.

Consider the IOStreams, one of my pet hates, for an example. The
insertion statement in the following code incurs seven memory allocations
(with VC++ 9):

 std::stringstream ss;
 std::string journal = "CVu";
 int year = 2008;
 char const* answer = "yes";
 ss << "Write for " << journal << " in "
 << year << "? The answer is " << answer;

This is ludicrous. Compare that to C’s

 char result[100];
 char const* journal = "CVu";
 int year = 2008;
 char const* answer = "yes";

 sprintf(&result[0]
 , "Write for %s in %d? The answer is %s"
 , journal, year, answer);

The not-inconsiderable downside to the latter, as you well know, is that
it’s not type-safe, and it can overflow the receiving buffer. Naturally, there
are better alternatives to both, but that’ll have to wait for another article.

9. WYSIWYG: lack of operator abuse

I’m as guilty as the next programmer about having abused the meanings
of operators. Early on in my career, I did some truly terrible things with
overloaded operators, and even now some path manipulation components
in the STLSoft libraries overload the division operator for the purposes
of path concatenation. The older I get, the less I like it, and I’m seriously
considering deprecating/removing all operator overloading in all of my
libraries in the near future. There’s just no net benefit in looking at code
such as the following
 p = d / f;
 s = t + u;

and not knowing whether these are arithmetic operations or a path
composition (of directory d and file f) and a string concatenation (of string
t and character u). Sure, it’s enormous fun to write libraries that do this,
and a fair amount of fun to use them. Until you forget how to use them,
that is, and then the specious expressiveness quickly becomes obfuscation.
Since I spend most of my commercial time looking at other people’s code,
and most of my ‘free’ time looking at my own code, I value transparency
more highly.
We may assume that operator abuse was legitimised by the inclusion of
the woeful IOStreams library into the C++ standard library. But now we
also have to contend with a profusion of string concatenation, path
manipulation, formatting, and all manner of expression templates; I know
because I’ve done my fair share. But they just add to dialecticism and
reduce maintainability. Ho hum.

10. WYSIWYG: lack of mutable (non-const) reference parameters

In common with the other four items, this one also has to do with C++’s
propensity for delivering (unwanted) side effects. And, like most of the
items in this section, it’s a facility that I both abhor and use to good ends
in producing C++ libraries that have the characteristics I deem necessary
and appropriate. Such is life.
Nonetheless, in ‘normal use’, mutable reference parameters are just a pain,
and they dramatically reduce code transparency. Consider the
integer_to_string function suite from STLSoft that performs the
conversion of any integer type into a string with very high efficiency. The
four-parameter overload provides the number of converted characters used
in the given string, allowing for the following:
22 | | NOV 2008{cvu}

 std::string fast_i2s(long long value)
 {
 char num[21]; // 21 is large enough for
 // any 8-64 bit integer value
 size_t n;
 char const* r =
 stlsoft::integer_to_string(&num[0],
 STLSOFT_NUM_ELEMENTS(num), val, n);
 return std::string(r, n);
 }

There’s one problem with this. When looking at the code it’s not
i m m e d i a t e l y ob v i o us t ha t n i s an ou t -p a r ame t e r o f
integer_to_string(). Sure, we can look at the fact that it’s not
initialised, and make an inference from that. (Some compilers aren’t so
clever, and you may find yourself having to initialise it to 0, which totally
blows that out of the water.) Or we can look at the documentation of
integer_to_string(), which costs us a couple of minutes and takes
our attention away from the code we’re trying to understand/modify.
The issue is that an out-parameter codified as a mutable reference is a
pointless thing. It reduces discoverability because when you look at the
interface of a function such as integer_to_string() you must work
out (through the documentation or the implementation) whether the
parameter is in-out, or just out. And it reduces transparency of client code
in the way described above.
All that for the specious feeling of safety you get from ‘knowing’ that a
reference can’t be NULL. (Which of course it can, as quickly and easily as
you can type static_cast.) I believe that out-parameters in C++ should
always be coded as a pointer, because the benefits to transparency are
obvious:
 size_t n;
 char const* r =
 stlsoft::integer_to_string(&num[0],
 STLSOFT_NUM_ELEMENTS(num), val, &n);

Now we don’t need to look any farther afield to understand what’s going
on.

Why I use both
When I’m creating application code, I always select the C++ option in my
code generation tools, for the following reasons:

Expressiveness
Resource management
Transparency (of application code)

The situation is less clear-cut when it comes to library code, and is much
more of an ‘it depends’ situation. Absent any overriding reasons, I’m going
to choose C. But there are quite a number of such reasons. Table 1 lists
the details for my main open-source libraries. The main reasons why I’ve
used C++ for implementing some of them are:

Need of strings and, especially, containers
Need to have complex internal data structures
Resource management
Use of existing façades for non-trivial APIs

Some final things to think about:
If you use exceptions, you cannot properly manage resources
without RAII. (This is of relevance to users of the half-baked
younger siblings of C and C++.)
Exceptions for unrecoverable conditions are the absolute best choice
mechanism, but the case is less clear in other cases: you’re left to
choose between certainty that something will be reported even
though you might not know what that is while you’re designing your
software, or clarity in manual error-handling with the likelihood that
you’ll be introducing defects for any that you overlook.
Highly expressive C++ libraries must be efficient.
The discoverability of C++ libraries tends to be lower than C
libraries, meaning that users will be looking inside them more often,
meaning that the transparency needs to be higher. (But, C++
libraries also tend to have lower transparency. Which is a problem.)
If you want C programmers to use your libraries, just providing a C
API over a C++ implementation might not be enough. They may
want ‘100% C’.

I love both these languages, and have (so far) made a challenging career
from knowing and applying them well. The key is in knowing the
appropriate language, and features, for the given circumstance. I hope that
this article has helped you a little with that.

References
[1] Wilson, Matthew (2007), Extended STL, volume 1, Addison-Wesley

(see also http://www.extendedstl.com).
[2] Wilson, Matthew (2004), Imperfect C++, Addison-Wesley.

Library
Language(s)

Reasons for choice of implementation language
Client API(s) Implementation

b64 C, C++ C, C++ C Portability, Transparency, Efficiency

CLASP (not yet released) C, C++ C, C++ C Portability

cstring C C C Portability, not a library used by C++

FastFormat C++ C++ C++ Containers, Complexity in implementation (parsing, memory mgmt, etc.)

Pantheios C, C++ C, C++ C, C++ C: Compile Times
C++: Use of existing libraries (for synchronisation, OS façades, memory)

recls C, C++ C, C++ C, C++ Use of existing libraries (for synchronisation, file-system enumeration, memory)

xCover C, C++ C, C++ C++ Containers, Complexity in implementation (classes, memory mgmt, etc.)

xContract C, C++ C, C++ C Very simple implementation

xTests C, C++ C, C++ C++ Strings, Use of existing libraries (printf-traits)

UNIXem C, C++ C C Portability

VOLE C++ C++ C++ COM => C++ (unless you're insane)
NOV 2008 | | 23{cvu}

Python: New Thinking in the
Teaching of Programming

Nick Efford and Tony Jenkins recommend Python as a
practical first language.

he teaching (or, probably more accurately, the learning) of
programming is a perennial problem in Computing Higher
Education. Here is a subject that lies at the very heart of our discipline,

but it is a subject that always seems to cause our students misery and
distress. Every year we see students leave Computing for different subjects
and, more often than not, it turns out that their struggles with programming
are the root cause.
It might seem obvious that the programming language that students learn
first sits at the heart of the problem. Many languages have been tried over
the years, but few, if any, have had any noticeable impact. There is
something of a Catch-22. Some languages, like Pascal or even BASIC,
have been designed with the needs of learner programmers in mind. But
these languages are not taught because there is no demand in industry for
Pascal programmers. So Universities tend to teach languages that are in
demand in industry, notably at present Java; unfortunately these are
languages that were designed for professional programmers, not for
learners. The ideal language would be, obviously, one that is both easy to
learn and in demand in the industry.
We believe that Python is that language.
Universities do not change their first programming language lightly. The
phenomenon of a ‘Language War’, where factions of academics debate the
merits of their preferred language long into the night, is well known.
Surprisingly, we were able to adopt Python without the need for a war. We
report here on what happened when we adopted Python as our introductory
programming language.

A brief history
The School of Computing at the University of Leeds has taught
programming for many years. It has always been one of the first courses
that students take, and programming has always been regarded as
fundamental to all the degrees offered in the School.
The progression of language has followed a predictable pattern. In the
mists of time, Algol was the choice. In the mid-1980s the language of
choice became Pascal. This was replaced by C++ in the mid-1990s, and
then by Java in about 2002. There is very little evidence that any of these
changes altered the students’ learning of programming.
In 2004 we dabbled with a new language, Python. This was used as an
introduction to the course, before the students moved on to Java. The
results of this were promising but, for various reasons, the experiment was

dropped. A complete redesign of the degree programmes in 2007 gave the
opportunity for a change, and Python was adopted.
We were most pleased with the results. We will not be changing back to
Java any time soon.

Python in industry and academia
Python is a mature, well-established, very high-level programming
language renowned for its clear, readable syntax and for the significant
productivity gains [1] that it brings to programmers brought up on lower-
level languages such as C or Java. It has been used successfully in countless
real-world business applications, including many large, mission-critical
systems [2], by companies such as Google, IBM, HP, Disney and Nokia.
It is also increasingly popular in academic and industrial research, where
it has been used for space shuttle mission design [3], biomolecular
modelling [4], the control of large-scale physics simulations and the
analysis and visualisation of weather radar data, to give but four examples.
Python has a long history as a language of interest to educators, dating back
to 1999’s DARPA-funded CP4E project [5] and beyond. Web-based
resources have sprung up, dedicated to the teaching of Python in high
schools [6], and the language plays a central role in the One Laptop Per
Child project [7].
Within the university sector, interest in using Python to teach
programming to students of computing is growing rapidly. Besides Leeds,
the Universities of Coventry and Glasgow here in the UK are using Python
extensively for this purpose, as are a number of institutions in the USA –
e.g., UC Irvine, Michigan State University and, notably, MIT [8]. Python
is also finding favour amongst those who teach more advanced topics from
the computer science curriculum (e.g., natural language processing at
Leeds and at the University of Toronto [9], or the semantic web at the
University of Maryland).

Rationale for adopting Python as a first language
Programming is unusual among ‘academic’ subjects in that it does not
form a single coherent body of knowledge. To illustrate this, consider the
question of what should be the very first thing that a new programmer
learns. Arguments could be made in favour of any of:

How a computer represents data;
The programming methodology;
How to declare a variable;
The mechanics of compilation or interpretation.

and many, many more.
A key issue is the number of concepts that a new programmer must learn
before they can produce something [10]. The first program that any novice
programmer sees is, of course, always the same; it prints hello, world
on the screen. In C that program might be something like:
 #include <stdio.h>
 int main (void)
 {
 printf ("hello, world!\n");
 return 0;
 }

T

TONY JENKINS
Tony Jenkins is a Senior Teaching Fellow in the School of Computing at the
University of Leeds. A confirmed devotee of all things Pythonic and
becoming known as a Python advocate in the UK higher education
community, he is really glad that he doesn’t have to teach Java any more.

NICK EFFORD
Nick Efford leads the teaching of software engineering to undergraduates
in the School of Computing at Leeds. He also teaches computer security at
undergraduate and postgraduate level and has researched and taught in
the area of image processing and computer vision.
24 | | NOV 2008{cvu}

The line that does the printing is obvious enough, although a novice would
require some explanation of the need for the mysterious \n at the end. But
what of the rest of the program? The novice will want to know what stdio
is all about. Why is main int and what is void all about? Why is this
program returning 0?
As a small aside, consider for a moment the semi-colon at the end of the
printf line. Without that small piece of punctuation this program is
completely worthless. Edsger Dijsktra [11] has pointed out that this
feature, whereby the ‘smallest perturbation’ renders the program
completely useless, is something that makes programming especially
difficult to learn.
Of course, few universities now teach C as their main language; Java has
occupied that role in most institutions for many years now. The first
program in Java can be written like so:
 public class Hello {
 public static void main (String args [])
 {
 System.out.println ("hello, world!");
 }
 }

(Note that we are adopting a simplified approach here; the Java purist
would argue that we should define a ‘proper’ class, with a constructor and
a method that prints the greeting, and that we should then create an instance
of the class in main and invoke that method on the instance.)
It is difficult to know where to start in counting the concepts here, even in
this simplified, object-free example. As before, spotting the line that does
the printing is easy, but the rest of the program is full of mystery. What is
a class? What are String args? And what on earth is public
static void main all about?
The solution to this conceptual overload is naturally to tell novice
programmers not to worry about such things; just copy the program
blindly, and assume that everything will work. We find this most
unsatisfactory, especially as the smallest error in copying the code can
provoke all sorts of arcane messages from the compiler. We would much
rather that our students understood all of their programs from the start.
Here is the first program in Python:
 print 'hello, world!'

That’s it. There is one concept to understand: a ‘command’ with an
‘argument’. A student who cannot grasp what is going on here is probably
doomed to failure from the outset.
Obviously there is far more to choosing a language for teaching than the
simplicity of this one program. Having a small and uncomplicated ‘Hello,
World’ isn’t useful if more realistic tasks require code comparable in size
and complexity to Java code. Fortunately, however, Python remains
reassuringly clear and concise as we move on to more advanced topics.
Chou [12] has found, for example, that Python implementations of sorting
algorithms look almost identical to the pseudocode representations
appearing in a standard computer science textbook. Chou has also shown
that data structures such as directed graphs have almost trivial
representations in Python, in stark contrast to the situation with Java, C++,
etc.

Python in practice
In our experience, programming language complexity is not the only factor
influencing students’ motivation. We therefore established four principles
for teaching programming with Python:

1. ‘Cool’ – programming is cool, and Python is cool. Writing programs
to find the average of test scores is not cool; writing a game with
some neat graphics is cool.

2. ‘Useful’ – programming is useful. Programs to carry out artificial
tasks should be avoided; programs should address real problems.

3. ‘Real’ – our programming should use real languages, libraries and
environments, that are being used by professional programmers in
industry applications.

4. ‘Fun’ – above all, programming should be fun. If the students found
the programming experience fun, hopefully they would be
motivated to practice, and hopefully they would not give up.

With these principles in mind, we taught the course in a fairly conventional
way. We started with the traditional first program and then introduced
concepts such as input/ouput, conditional statements and loops before
moving on to look at the structuring of programs using modules and
functions. Everything seemed to go rather well, and by the end of the
seventh week we found that we had covered most of the basics.
At this point we wanted to enable the students to write something
interesting (cool, useful, real and fun), either using the facilities of
Python’s standard library or those of a separate package. As a good
example of something both useful and real, we chose PySQLite – a module
that supports use of the SQLite [13] embedded database from within
Python programs, conveniently available as standard with Python 2.5. We
also chose Pygame [14], a third-party, cross-platform framework for game
and multimedia programming, to fulfil the requirement for something that
was cool and fun.
After some lectures and exercises covering the use of both PySQLite and
Pygame, students were asked to do a four-week project, to be done
individually or in pairs, using one of these options or something else
entirely. Although most opted to use Pygame, we also had a few students
developing networked applications using the Twisted [15] framework, or
web applications using Django [16], plus one student who created an
application for his Nokia mobile phone (discussed below). Just before
Christmas, students took part in a ‘programming showcase’ where they
demonstrated their finished projects to tutors and members of the School’s
Industrial Advisory Board.
Teaching for the second semester proceeded along similar lines, albeit
covering different topics (object orientation, test-driven development,
debugging and some forays into basic web and GUI programming). Once
again, students were given the opportunity for an extended piece of project
work, to be completed over the Easter break.

Results
Here, we look at some
specific examples of project
work from the first semester
of the course and consider
the outcomes of switching to
Python.
Figure 1 is a screenshot from
a lunar lander game. The
author of this game had
cons i de rab l e p r i o r
experience of programming
and therefore had li t tle
difficulty in implementing
the necessary game logic.
This left him with plenty of
time to polish the game by
ad d i ng mu s ic an d
implementing impressive
v i sua l e f f ec t s suc h a s
sp inn ing boulders and
dramatic explosions.
Figure 2 shows the monkey
game , a much s imple r
offering from a pair of less
confident students with no prior experience of programming. Despite their
relative lack of confidence they were nonetheless able to implement a
largely functional game in which the monkey can be moved around the
screen using the cursor keys, eating bananas and avoiding the spiders in
order to score points. These students would not have fared well in earlier,
Java-based incarnations of this course, and would certainly not have been
able to reach the level of achievement seen here.

Figure 1
Figure 2
NOV 2008 | | 25{cvu}

Figure 3 shows a turn-based, two-player strategy game running over the
network. This was implemented by a pair of very keen programmers and
was perhaps the most impressive project from a purely technical
standpoint. The details of the map on which the game is played are passed
over the network in compressed form, and the students developed their
own network protocol to handle this and the movement of player pieces.
Finally, Figures 4 and 5 show a simple Python application running on a
Nokia Series 60 mobile phone. The application captures an image using
the phone’s built-in camera, allows the user to draw two lines over the top
of this image, then computes and displays the angle between the two lines.
The author of this application was repeating his first year, having struggled
with programming originally. The project work was highly motivating for
him and, thus stimulated, he went on to achieve good results at the end of
the year.

Most students were proud of what they had
accomplished in their projects after only ten
weeks of learning Python. Colleagues and
members of our Industrial Advisory Board
were visibly impressed by the work that
was demonstrated to them, and by the level
of enthusiasm shown by the students. By
the end of the year, fewer students were
fai l ing the course and fewer were
complaining about the difficulty of
programming.

Conclusions
Python is no ‘silver bullet’, and we
certainly do not claim to have solved the
perennial problem of teaching students
how to program. Those who struggle with
the level of discipline and precision
required in programming, or who cannot
grasp the concept of breaking down a
problem into smaller pieces in order to
solve it, will continue to find programming
difficult. But too many students simply
give up when learning Java or C++ because
they struggle with these issues in addition
to struggling with the language itself.

Python succeeds here because it puts far fewer syntax-related obstacles in
the way of the novice.
The high-level nature of Python also allows ideas to be turned into working
code with much less effort – making it possible for the keen programmer
to do truly impressive things in a short space of time, but also allowing the
less confident student to accomplish something satisfying. Nowhere was
this illustrated more clearly to us than in the standard reached by our
students in their project work. We are seeing greater confidence and a
higher degree of motivation in our students as a result of switching from
Java to Python, and we hope that other institutions will follow our lead.

Notes and references
1 http://mail.python.org/pipermail/python-list/2004-February/

249707.html
2 http://www.python.org/about/quotes/
3 http://www.pythonology.com/

success&story=usa
4 http://www.pythonology.com/

success&story=mmtk
5 http://www.python.org/doc/essays/cp4e/
6 http://openbookproject.net/pybiblio/
7 http://laptop.org/
8 http://www-tech.mit.edu/V125/N65/

coursevi.html
9 http://www.cs.toronto.edu/~gpenn/csc401/
10 We have the concept of ‘something that they

would be happy to show their mother’ to illustrate
the minimum standard that we would like new
programmers to reach as quickly as possible.

11 EW Dijkstra, ‘On the Cruelty of Really Teaching
Computing Science’, Communications of the
ACM, 1989

12 PH Chou, ‘Algorithm Education in Python’,
Proceedings of the 10th International Python
Conference, 2002 (http://newport.eecs.uci.edu/
~chou/py02/python.html)

13 http://www.sqlite.org/
14 http://www.pygame.org/
15 http://twistedmatrix.com/trac/
16 http://www.djangoproject.com/

Fi
gu

re
 3

Fi
gu

re
 4
26 | | NOV 2008{cvu}

PETER PILGRIM
Peter is a Java EE software developer, architect, and Sun
Java Champion from London. By days he works as an
independent contractor in the investment banking sector.
Peter can be contacted at peter.pilgrim@gmail.com

A Groovy Example: Mail Merge Made Easy
Peter Pilgrim demonstrates a Groovy way to automate

your admin tasks.

n this article, I will explain how the Groovy language can act as a really
neat scripting language tool, which you can use to perform systems
administration tasks. I’ll demonstrate with an example program that

sends a farewell letter to a list of recruitment agencies. I will explain how
to read data from a Comma Separated Value file (in this case, the
recipients’ address details) and use the default template engine to insert it
into the standard text. Groovy, like Java, can connect to the Google Mail
SMTP server, so the finished letter is sent using the JavaMail API.

Ingredients
For this recipe, you will need the following ingredients:

Groovy Development Kit 1.5 or above
JavaMail and Bean Activation Framework JARs
A Google Mail Account
Spreadsheet CSV file
Java Development Kit 1.5 or above
Groovy Console for Editing (included with GDK)

Groovy is based on Java, so therefore it helps to already have the Java
Development Kit installed on your machine. Point your browser to http://
groovy.codehaus.org, in order to locate and download the Groovy
Development Kit. Follow the instructions in the package to install and run
it. For Windows XP, download the ZIP file and my advice would be to
unzip the distribution under folder called C:\opt, in order to avoid
problems with folder names that contains spaces e.g. C:\Program
Files. Download the JavaMail 1.4 and the associated JavaBeans
Activation Framework jars separately. If you already have the GlassFish
application server then you can get JARs from that distribution. You also
need a Google Mail account in order to send the resignation email using
the scripts here. You need a spreadsheet that acts as a list of contacts (e.g.
recruitment agents), first and last names, email, street, address columns in
Comma Separated Value format.

Configuration
Once you have Groovy up and running, we need to configure the start up
in order to find the extra JARs. We alter the default classpath for Groovy
start-up by creating a new file. Under Windows XP this is called
C:\Documents and Settings\YOUR-USER-NAME\.groovy
\postinit.bat.
 REM postinit.bat
 set STARTER_CLASSPATH=%STARTER_CLASSPATH%;
 \%GLASSFISH_HOME%\lib\mail.jar
 set STARTER_CLASSPATH=%STARTER_CLASSPATH%;\
 %GLASSFISH_HOME%\lib\activation.jar

In the Groovy 1.5.4 on my machine, currently I can also install the JARs
under the folder C:\Documents and Settings\YOUR-USER-
NAME\.groovy\lib, without using the above post initialisation script.
Whatever works for you, as long as it works.

About Groovy
The Groovy language is a dynamically typed scripting language and it is
a lot more flexible than Java. The language was designed to give
developers like you and me seamless integration into existing Java libraries

and code. Being a dynamically typed language, like JavaScript, Python and
Ruby it supports the notion: if it walks like a duck and if it quacks like a
duck, then it probably is a duck!
There are some other similarities with scripting language brethren, not
surprisingly. Everything is an object in Groovy. Java primitives are silently
converted into their equivalent immutable Wrapper objects, at least most
of the time. Groovy assumes you want accurate decimal numbers in your
mathematics and defaults to java.math.BigDecimal. So allow me to
quickly demonstrate this with two other very important Groovy features:
closures and GStrings.

 def val = 0.0 // 1
 10.times({ it -> val += 0.1 }) // 2
 println "This is the answer val=$val"; // 3

The first line, above, defines a untyped variable val, which is a decimal
number. The second line calls an extended method, times(), on the
integer object 10. The times method() accepts a lexically scoped
anonymous function, our closure. Do not worry too much about the syntax
here of the closure. This is full version of closure syntax. The left hand side
of the arrow (->) denotes closure parameters. There is only one and in this
case, it is the variable called it, which happens to be the default name of
a single closure parameter. The right hand side of the arrow (->) denotes
the closure’s body, which is to add a literal number 0.1 to the decimal
variable val. (Groovy designers chose BigDecimal by default to avoid
floating point accumulator errors, obviously to be programmer friendly at
the command line.) The third line outputs the result of the accumulation
exercise. Groovy uses GStrings behind the scenes to enhance the basic Java
String. If you have experienced Bash or Korn Shell programming then you
will recognise the style of variable substitution immediately.
To send mail with JavaMail API we need to create a SMTP authenticator.
This is a simple class that implements the Authenticator interface and
allows the calling program to send back the login credentials to the mail
account.
We also require a way of templating the letter. We substitute text such as
the subject and sender address at placeholders, key positions in the letter.
The concept is similar to the way office word processing applications

I The automatically included JARs are set up a differently to the
Windows version described in the main article.

Create a .groovy/lib directory in your home directory, any JARs
found in this directory will be automatically included in the CLASSPATH
when you run Groovy from the command line. The .groovy/lib
directory is disabled by default; please enable it in the configuration file
$GROOVY_HOME/conf/ groovy-starter.conf
Hopefully this advice also sorts out Mac users.

Linux and Mac
NOV 2008 | | 27{cvu}

substitute text at placeholder positions in a document in order to perform
a mail merge.

Groovy SMTP authenticator
You can define classes in Groovy and extend interfaces and other (abstract)
classes coming from the world of Java. Listing 1 is the code for SMTP
authenticator class for the JavaMail API.
In Listing 1, we have defined a Groovy class implementation of the
JavaMail authenticator. It is simply an object that accepts your Gmail email
address and password and stores them to private data members. The
JavaMail library framework will call back on the authenticator object in
order to get credentials for the Google Mail SMTP service, at the
appropriate time. Like all good frameworks, this design concept follows
the Hollywood Principle, ‘Don’t call us, we’ll call you!’ By the way, you
will also need to have a couple of Java imports in order to make all of this
work successfully.

 import javax.mail.*;
 import javax.mail.internet.*;

 import com.sun.mail.smtp.*;
 import java.util.Properties

The letter template
In scripting languages like Bash, there is a concept of a HEREDOC (or
rather a here-document). A heredoc allows strings to contain arbitrary
characters e.g. XML syntax and/or embedded new lines and tabs. Groovy
has its own take on these heredocs with triple apostrophe characters. Here
is the text of our resignation email, which we will eventually send to all
recruitment agents.
In Listing 2, we have placeholders in the GString definition. The place
holders will be substituted with values from the said named variables, if
they exist – otherwise they will be empty. Listing 3 is a sample Groovy
script to make the template engine actually work and produce output. It
will work in the Groovy console.
Notice how, unlike Java, Groovy allows map collections to be literally
defined in place. The simple template engine is also a default part of the
GDK and there are a couple of other useful engines. You can find more
information on the groovy.text.SimpleTemplateEngine inside the Groovy
Development Kit manual, which is available online.

The MailMerge class
Being decent object oriented programmers, we define an object class for
a mail merge (Listing 4). Sorry about this, but it is a bigger class. Groovy

class SMTPAuthenticator extends
 javax.mail.Authenticator
{
 private String d_email;
 private String d_password;
 public SMTPAuthenticator(String d_email,
 String d_password)
 {
 this.d_email = d_email;
 this.d_password = d_password;
 }
 public PasswordAuthentication
 getPasswordAuthentication()
 {
 return new PasswordAuthentication(d_email,
 d_password);
 }
}

Li
st

in
g

1

def mailout = '''
$firstName $lastName
$street
$address
$company
Dear $firstName
I am writing to inform you that I am no longer
actively looking for employment.
I have recently accepted a very generous offer.
Thank you for your past support.
Regards
--
A.N. Other
a.n.other at gmail dot com'''

Li
st

in
g

2

def engine = new
groovy.text.SimpleTemplateEngine()
def template = engine.createTemplate(mailout)
def binding = [
 firstName: "Scott",
 lastName: "Liddle",
 company: "Agency One",
 street: "555 Liverpool Street",
 address: "Big ACME Building, London, EC1X 7EE"
 email: "scott.liddle@agencyone.acme.com"]
def text = template.make(binding).toString()
println text;

Li
st

in
g

3

class MailMerge {
 private String host;
 private int port
 private String senderAddress
 private String org
 private SMTPClient smtpClient;
 private String mailText;
 def exclusion = [];
 def password = 'PASSWORD'
 private Properties props;
 MailMerge(String host, int port,
 String password, String org,
 String senderAddress, String mailText)
 {
 this.host = host
 this.port = port
 this.org = org
 this.password = password
 this.senderAddress = senderAddress
 this.mailText = mailText
 props = System.getProperties();
 props.put("mail.smtp.user", senderAddress);
 props.put("mail.smtp.host", host);
 props.put("mail.smtp.port",
 Integer.toString(port));
 props.put("mail.smtp.starttls.enable",
 "true");
 props.put("mail.smtp.auth", "true");
 props.put("mail.smtp.socketFactory.port",
 Integer.toString(port));
 props.put("mail.smtp.socketFactory.class",
 "javax.net.ssl.SSLSocketFactory");
 props.put("mail.smtp.socketFactory.fallback",
 "false");
 props.each{ entry ->
 if (entry.key =~ /^mail\./) {
 println entry.key + " = > " + entry.value
 }
 }
 }
 //...
}

Listing 4
28 | | NOV 2008{cvu}

supports a great deal of the Java syntax without change, so I will gloss over
the easy details. One can have private, protected and public data members.
The mail merge class defines a list (untyped) collection variable called
exclusion. It also stores a copy of the system properties for further use.
Properties are mapped collections in Groovy too.
The constructor for MailMerge class follows the same style as Java. We
set the data members of the object from the constructor parameters. Next,
we get the system properties and append additional properties. We need
to do this in order to initialise the JavaMail framework correctly for the
GoogleMail SMTP service. Examine the last statement of the constructor,
because it contains a closure that iterates through the property collection
and dumps the key and value to the console for debugging. It also filters
on the property name with a literal regular expression!

class MailMerge {
 // ...
 public String trimQuotes(String s) {
 if (s.length() > 0 && s.getAt(0) == '\"') {
 s = s.substring(1)
 }
 if (s.length() > 1 &&
 s.getAt(s.length()-1) == '\"') {
 s = s.substring(0, s.length() - 1)
 }
 return s;
 }
 // ...
}

Li
st

in
g

5

class MailMerge {
 // ...
 public void mailMerge(String inputCsvFile)
 {
 def handle = new File(inputCsvFile);
 def counter = 0;
 handle.eachLine {
 ++counter;
 def rawCellLine = it.split(",");
 def cellLine = [];
 rawCellLine.each{ cellLine.add(trimQuotes(it)) }
 def firstName = (cellLine.size() > 1 ? cellLine[1] : '');
 def lastName = (cellLine.size() > 3 ? cellLine[3] : '');
 def company = (cellLine.size() > 4 ? cellLine[4] : '');
 def street = (cellLine.size() > 6 ? cellLine[6] : '');
 def address1 = (cellLine.size() > 7 ? cellLine[7] : '');
 def address2 = (cellLine.size() > 8 ? cellLine[8] : '');
 def city = (cellLine.size() > 9 ? cellLine[9] : '');
 def postcode = (cellLine.size() > 11 ? cellLine[11] : '');
 def country = (cellLine.size() > 12 ? cellLine[12] : '');
 def email = (cellLine.size() > 14 ? cellLine[14] : '');
 if (!exclusion.contains(firstName+" "+lastName) &&
 email.length() > 0 &&
 email =~ /\b[A-Za-z0-9._%+-]+\@[A-Za-z0-9._%+-]+\b/) {
 def Authenticator auth = new SMTPAuthenticator(senderAddress, password);
 def Session session = Session.getInstance(props, auth);
 // set sender and recipient
 println "["+counter+"] Sending mail to "+ firstName+" "+lastName+" ("+email+")"
 def engine = new groovy.text.SimpleTemplateEngine()
 def template = engine.createTemplate(mailText)
 def binding = [
 firstName: firstName,
 lastName: lastName,
 company: company,
 street: street,
 address: (address1+" "+address2+" "+city+" "+postcode+" "+country),
 email: email
]
 def text = template.make(binding).toString()
 // send body of message
 def MimeMessage msg = new MimeMessage(session);
 msg.setText(text);
 msg.setSubject('Accepted Job Offer - Unavailable For Contracts');
 msg.setFrom(new InternetAddress(senderAddress));
 // Test line to send to your own ISP account
 msg.addRecipient(Message.RecipientType.TO, new InternetAddress('A.N.Other@YOURISP.co.uk'));
 // Uncomment this line to actually send mail with GMAIL!
 // msg.addRecipient(Message.RecipientType.TO, new InternetAddress(email));
 Transport.send(msg);
 }
 }
 }
 // ...
}

Li
st

in
g

6

NOV 2008 | | 29{cvu}

Trim the double quotes
With the constructor definition over, we need to have a handy function to
tidy up those troublesome CSV files. I don’t know about you, but the CSV
file output by MS Excel that arrives from most of the business folks I know
tends to have embedded quotes around the values, which we do not need
in the mail merge program. Listing 5 is a useful Groovy function to remove
leading and trailing double quotes:

The big operation
The mailMerge() is a large operational method. Essentially, it reads the
CSV file one line at a time. (See Listing 6.) The bulk of the work happens
in long closure statement. For each text line from the file, we break it into
an equivalent list collection of Strings, which represent the row cells from
the spreadsheet. We sanity check for an email cell, in this case the column
number of electronic mail address in my CSV data file is 14. If this email
cell exists and is valid, then we can move to the text templating and the
sending of email, otherwise we skip to the next line.
So this code is not rocket science by any stretch of the imagination. Groovy
easily allows a file to read line by line using a closure. Here is a simple
Groovy script to read a source code line by file and prefix with the line
number. Try it in the GroovyConsole.

 def file = new File("Foo.groovy);
 def count = 1;
 file.eachLine {
 line -> println "${count} ${line}"; ++count }

Let us get back to the MailMerge program and the mailMerge()
method. We make use of the trimQuote() function to tidy up the cell
text. Essentially, Groovy Strings extends the java.lang.String with
some useful functions of its own. The split() method breaks the
supplied string into list collection of Strings according to the delimiter.
Remember our list of exclusion data; in the mail merge method we use
it to avoid sending email to certain agents. This feature allows us the
freedom to give those privileged agents our exclusive personal touch!
Groovy supports regular expressions directly in the language. We use this
feature to verify the contents of the email cell is actually a conforming
electronic mail address.
The rest of code is split between the Groovy template engine, which I have
already shown you above, and the code to send email using the JavaMail
API. You can learn about the latter on-line, because there are tons of
articles. The only part to explain is that an SMTP authenticator object is
created each time. The authenticator instance and the stored system
properties create the JavaMail session handler for sending email.

Make it work
We have a finished our mail merge Groovy class, which we can now
instantiate and send news-update emails to those recipients!
The code in Listing 7 defines the SMTP server and port for Google Mail
service. You will need to write your own Gmail address and secret
password. Obviously, you need to edit the mailMerge() function in the
MailMerge class to set up how to process your own CSV spreadsheet data
file. For example to change the column cell numbers in each iteration.
Once you have a working CSV file then you are ready to test the mail with
a dummy target address. After testing then you can perform the mail merge
for real.

Conclusion
In summary, you now have a program that demonstrates a mail merge with
Groovy. I wrote this pretty quickly because Gmail certainly did not work
correctly in Open Office 2.3! Writing the equivalent code in Java would
be a lot more complex and in my opinion have taken longer to get right.
The mentality of a Java programmer starts off with proper object oriented
techniques. A dynamic scripting language allows one to be, how should I
say, more lazy. There is a question of maintainability with dynamic
languages over static typed ones. The benefits for this new Groovy
programmer are clear however. I wrote a simple mail merge with a text
templating, authenticator and SMTP authenticator in less than a day. I
simply had no extra time to devote to writing the code in the Java traditional
OOP way. So I apologise if this code is a little funky.
This code should be tidied up. For instance it would be better to make some
of the configurat ion information such the SMTP hostname
"smtp.googlemail.com" and port "456" as final static constants. Ideally
they should be properties of the mail merge and be loadable from a
properties file. Of course that is an exercise for the reader.

References
http://groovy.codehaus.org/ (Groovy Home Page, Groovy Development

Kit)
http://www.onjava.com/pub/a/onjava/2007/03/23/using-groovy-to-send-

emails.html (Using Groovy send Email)
http://forum.java.sun.com/thread.jspa?threadID=668779 (Using Java to

sent mail using Gmail Provider)
http://blogs.sun.com/apanicker/entry/java_code_for_smtp_server (Java

Code for SMTP server)
http://java.sun.com/products/javamail/downloads/index.html (Javamail

1.4 Download)
http://java.sun.com/javase/technologies/desktop/javabeans/jaf/index.jsp

(JavaBeans Activation Framework)
http://groovy.codehaus.org/groovy-jdk/ (Groovy Development Kit)
http://groovy.codehaus.org/User+Guide (The very well documented,

Groovy User Guide)

class MailMerge {
 // ...
}
def host = 'smtp.googlemail.com'
def port = 465
def org = 'YOURORG.com'
def emailAddress='YOURACCOUNT@gmail.com'
def secret='XXXXXXXX'
def mailout=''' as before ... '''
def x = new MailMerge(
 host, port, secret, org, emailAddress, mailout)
def inputfile = "C:\\Documents and Settings\\
 Peter\\My Documents\\
 RecruiterDatabase_2008.csv"
// Agents To Exclude
x.exclusion = ['Sally Martin',
 'Charles Underwood', 'Margaret Fitzgerald'];
x.mailMerge(inputfile);

Li
st

in
g

7

30 | | NOV 2008{cvu}

Code Critique Competition 54
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry. Readers are also encouraged to comment on published

entries, and to supply their own possible code samples for the competition
(in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a program to see if a triangle is right angled. I’ve got part
way there, but the program seems a bit unreliable – sometimes it crashes
and sometimes it says triangles are right angled that aren’t. Can you help?

Can you help answer the question? The code is shown in Listing 1.

Critique

Robert Jones <robertgbjones@gmail.com>

I have identified two specific errors in this code, but they may be masking
other issues as well. The whole approach of the code is bizarre, but that is
presumably because it is a contrived example.
Firstly, the readInt() function contains the line,
 if (! iss>>result)

which actually binds as
 if ((! iss) >> result)

when what was required was
 if (! (iss >> result))

Secondly, the use of a map structure means that if any of the points of the
triangle have the same x-coordinate only one of the points will be recorded.
So when presented with
 00 04 04 00 00 00

which represents {0,4}, {4,0}, {0,0}, what is seen is {0,0}, {4,0}. The use
of a fixed array of points would be more appropriate.

Frances Buontempo < frances.buontempo@gmail.com>

This is an interesting problem. It got my attention because I had to think
for a while about the test for a right angle.
 double slope1 = (vals[bx] - vals[ax]) /
 double(bx - ax);
 double slope2 = (vals[cx] - vals[bx]) /
 double(cx - bx);
 if (slope1 * slope2 == -1)
 cout << "Right angled" << endl;

A line from (0,0) to (x,y) is rotated 90o anti-clockwise if and only if it ends
up at (-y,x). See figure 1.
The gradient or slope of the first line is y/x. The slope of the second line
is y/-x. This gives us:
 slope1 * slope2 = (y/x)*(x/-y)
 = (y*x)/(x*-y)
 = (y*x)/(y*x*-1) = -1 Similarly, for a line translated 90o clockwise (x,y) will end up at (y,-x),

again giving us slope1 * slope2 = -1.

P

yx

-y x

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

#include <iostream>
#include <map>
#include <string>
#include <sstream>
using std::cin;
using std::cout;
using std::endl;
typedef std::map<int,int> triangle;
// will have 3 points!
// Read integer: DD (base10) or 0xDD (base16)
int readInt(std::istream & is)
{
 std::string s;
 is>>s;
 int result(0);
 char x;
 std::istringstream iss(s);
 if (! iss>>result)
 cout << "Not a number!" << endl;
 else if (result==0 && iss>>x && x=='x')
 iss>>std::hex>>result;
 if (! iss.eof())
 result = 0;
 return result;
}
triangle readTriangle(std::istream &is)
{
 triangle vals;
 cout << "Enter triangle coordinates: ";
 for (int idx = 0; idx != 3; ++idx)
 {
 int key = readInt(cin);
 vals[key] = readInt(cin);
 }
 return vals;
}
int main()
{
 triangle vals = readTriangle(cin);
 triangle::iterator it = vals.begin();
 int ax = it++->first;
 int bx = it++->first;
 int cx = it++->first;
 double slope1 = (vals[bx] - vals[ax]) /
 double(bx - ax);
 double slope2 = (vals[cx] - vals[bx]) /
 double(cx - bx);
 if (slope1 * slope2 == -1)
 cout << "Right angled" << endl;
}

Listing 1
Fi

gu
re

 1
NOV 2008 | | 31{cvu}

Now cons ide r a
triangle, shown in
Figure 2.
The angle between
the line AB and BC is
the ang le we a re
testing. The code is
w r i t i n g (ax,

vals[ax]) for the coordinates of A, (bx, vals[bx]) for the
coordinates of B, and (cx, vals[cx]) for the coordinates of C. This
took a moment to spot, and is unintuitive. We call vals[ax] because the
data is stored in a map. How very odd. All will be revealed. We’ll get back
to the code in a moment.
Imagine rotating line BC round to BA through degrees. We can treat
point B as the origin (0,0). Point C is then at (cx - bx, vals[cx] -
vals[bx]), and point A is at (bx - ax , vals[bx] - vals[cx]).
Now, provided bx-ax isn’t zero and cx-bx isn’t zero, we can use the test
of the product of the slopes above. If the product is -1, we have a right
angle.
Of course, if bx-ax is zero, meaning the x-coordinates are identical, or
cx-bx is zero, again meaning the x-coordinates are identical, the test
won’t work since we will be trying to divide by zero. At this point we have
a choice: we can either decide the test does not work for a whole load of
triangles, tough, or find another test. In fact, the test in the code won’t work
for any triangles with a vertical side. The first triangle I wanted to test was
(1,0), (0,0) and (0,1) but this is not possible.
We could use a different test. Now, the inner product of two
(mathematical) vectors (a1,a2) and (b1, b2) is a1 . b1 + a2 . b2 =
lengthAB . cos . This is also known as the dot product. See http:/
/en.wikipedia.org/wiki/Dot_product.
Since cosine 90o is 0, we could change the test at the end of the code to:
 int inner_product = (bx - ax)*(cx - bx)
 +(by - ay)*(cy - by);
 if (inner_product == 0)
 cout << "Right angled" << endl;

This provides one way to avoid the potential divide by zero. Adopting this
approach allows any triangle to be tested.
If we stick with the test adopted in the code, we must avoid the potential
divide by zero. This can be achieved by forcing users to only enter triangles
that are free from vertical lines. How do you do that? Well, avoid identical
x co-ordinates. And how do we do that? Obvious, isn’t it? Store the co-
ordinates in a std::map. Ah! I see now. When I first looked at the code,
my immediate question was why are we using a map?
Of course, with the code as it is, the poor user can still try to enter my
favourite right angled triangle (1,0), (0,0), (0,1). Let’s explore what
happens when we do this. Starting at the top of main, we call
readTriangle. Actually, before I get as far as my favourite right angled
triangle, I can just type "RUBBISH" in can’t I? OK, I will get the helpful
message,"Not a number!" but the readInt function will return 0.
Then readTriangle will try to add this to the map, but the code doesn’t
check the point has been added. If I keep typing "rubbish" it tries to add
(0,0) to the triangle co-ordinates, but fails, since we have chosen to use a
map, to avoid identical x co-ordinates. But no clue is given to the user.
When we get back to main, we increment the iterator into the map under
the assumption, stated in the comment:
 // will have 3 points!

(By the way, why is this an iterator rather than a const_iterator?).
Unsurprisingly, regardless of the imperative expressed in this comment,
at runtime we are in trouble if there aren’t enough points in the triangle.
The code could test there are three points in the ‘triangle’:
 if(vals.size() == 3)
 {
 //do incrementing and test here
 }

This may avoid some of the crashes. Alternatively, in readTriangle,
instead of just calling
 int key = readInt(cin);
 vals[key] = readInt(cin);

it may be more informative to provide some feedback, and only increment
the index when a point has been added:
 std::pair<triangle::const_iterator,bool> ret =
 vals.insert(std::make_pair(key,val));
 if(ret.second)
 {
 cout << "inserted [" <<
 key << "," << val << "]" << endl;
 ++idx;
 }
 else
 {
 cout << "Failed to insert ["
 << key << "," << val << "]" << endl;
 }

Now, at least when I try to test my favourite triangle for right angledness,
I am told that I can’t add (0,1). Which is very disappointing, but at least it
won’t crash when it tries to iterate through non-existent points.
Is everything OK now? No. Let’s try the program again with the
modification to readTriangle. I will forget my favourite triangle and
try (1,1), (0,0) (-1,1). This is a right angled triangle, and should get inserted
into the map because the x co-ordinates all differ. Oh dear! This happens.
 Enter triangle coordinates: 1 1
 inserted [0,0]
 0 0
 Failed to insert [0,0]
 -1 1
 Failed to insert [0,0]

Before, the code would carry on regardless, and we would only have (0,0)
in the map despite the comment that it will have three points. What on earth
is going on? Ah. Found it.
 if (! iss>>result)
 cout << "Not a number!" << endl;

! has higher precedence than >>, so this is calling
 if ((!iss) >> result)
 cout << "Not a number!" << endl;

In other words, bit shifting (!iss), which is false, by result, which is 0,
always giving us 0 >> 0, zero. What we actually need is
 if (! (iss>>result))
 cout << "Not a number!" << endl;

It would probably be better to throw an exception here, so we know we
haven’t read an int, rather than return 0 and carry on regardless.
With the brackets around (iss>>result) we now get
 Enter triangle coordinates: 1 1
 inserted [1,1]
 0 0
 inserted [0,0]
 -1 1
 inserted [-1,1]
 Right angled

Much better! I still can’t test my favourite right angled triangle, but I’ll get
over it. I know that’s right angled. How about my second favourite
triangle? (3.3, 3.3), (0.0, 0.0), (-3.3, 3.3)?
 Enter triangle coordinates: 3.3 3.3
 inserted [0,0]
 0 0
 Failed to insert [0,0]
 -3.3 3.3
 Failed to insert [0,0]

θ

θ

Fi
gu

re
 2
32 | | NOV 2008{cvu}

So, I can’t have a triangle with non-integer co-ordinates, in addition to the
ban on triangles with vertical lines? No fair! This disallows an infinite
number of triangles. Oh well. There is code there to accept integers
represented in hex, so I can input the same triangle in a couple of ways to
make up for things. Let’s try it.
 Enter triangle coordinates: 0x01 0x01
 inserted [1,1]
 0x00 0x00
 inserted [0,0]
 -0x01 0x01
 Failed to insert [1,1]

Oh, really. First, I have typed the numbers in as hex, but the code I added
to figure out what was happening in here doesn’t send them back in the
same format. That’s my fault though. Now, what about these -0x01 values
becoming 1? The readInt function needs some work.
 int readInt(std::istream & is)
 {
 std::string s;
 is >> s;
 int result(0);
 char x;
 std::istringstream iss(s);
 if (! (iss>>result))
 cout << "Not a number!" << endl;
 else if (result==0 && iss>>x && x=='x')
 {
 iss>>std::hex>>result;
 }
 if (! iss.eof())
 result = 0;
 return result;
 }

OK. In order, from the top. We put the contents of the stream into a string.
We put the contents of the stream into a stringstream. I’m getting dizzy
already. We put the contents of the stringstream into an int. For "0x01" we
will be OK. Result will be 0, then we read the next character into a char,
and if it’s 'x', we set the stream to be hex and read the remains into result.
Result! What happens with "-0x01"? We read -0 into result, which means
result is zero and we forget about the minus sign. And then continue as
before, read the 'x' and treat the remaining "01" as hex, incorrectly giving
1 rather than -1.
If we remember the minus sign at the start we can make this work:
 int readInt(std::istream & is)
 {
 std::string s;
 is >> s;
 int sign = 1;

 int result(0);
 char x;
 std::istringstream iss(s);
 if (! (iss>>result))
 cout << "Not a number!" << endl;
 else if (result==0 && iss>>x && x=='x')
 {
 iss>>std::hex>>result;
 if (!s.empty() && s[0]=='-')
 sign = -1;
 }
 if (! iss.eof())
 result = 0;
 return sign*result;
}

Why the user would prefer to be allowed to type in the values in hex, but
not allowed to use doubles or triangles oriented horizontally is curious.
These suggestions will stop the code crashing and make it correctly
identify if a triangle, with non-vertical sides, is right angled. It is far from

perfect. Of course, if I type "Rubbish" as an input it will assume a value
of zero and carry on regardless. I am tempted to re-write the readInt
function, but will leave that as an exercise for the reader.

Joe Wood <joew@aleph.org.uk>

The following conversation takes place between two post-graduate
students one evening.
Derek sat down, a rueful smile on his face “Joe’s been to see me again
today.”
Brian “Oh, he tried to nab me in the lab, but I made my excuses. Is it a
mess?”
Derek “Some ideas are interesting. But I think his solution is ideally fitted
for the yokel joke about ‘If I was going there I wouldn’t start from here.’”
Brian “So what’s wrong?”
Derek “Very briefly. Joe wants to determine if a set of points represents a
right angled triangle. He starts by representing a triangle as a map between
ints and ints.”
Brian “Why use a map of ints? Triangles always have three points, even
if they degenerate to a line or even a point. And why use integers at all?”
“Good questions. A map is particularly unfortunate because two points like
(1,2) and (1,3) will degenerate to a single point, probably (1,3).”
“As regards to the use of ints, I was puzzled. From the one line comment
above a function called readInt, I think part of the exercise is to handle
both decimal and hexadecimal integer numbers. Frankly, however, I don’t
get Joe’s readInt at all.”
“Hold it, I want my laptop to set up some test cases.”
Derek “Right, let’s see (3,4,5) is a valid right angled triangle, as is
(5,12,13). So that’s [(0, 0) (0, 3) (4, 0)] and [(0, 0) (0, 5) (12, 0)].”
“However, the triangles [(0, 0) (0, 3) (3, 1)], [(0, 3) (0, 3) (4, 0)] and [(0,
0) (0, 0) (0, 0)] definitely are not. The first is not right angled, the second
is really a line and the third is a single point.”
“You knock out an initial test file. Later, we should test for horizontal and
vertical shifts, say (+6, 13), including negative cases, say (+6, -13).”
Brian “OK, let’s suppose that we can fix readInt later, for now we just
use.”
 int readInt (std::istream & is) {
 int result = 0;
 is >> result;
 return result;
 }

Brian “We need a hexadecimal test case as well, hmm, the positive shift
case converted to hex.”
“Let’s use a pair of ints to represent a point, with three points in a
triangle.”
 // need <utility>
 typedef std::pair<int,int> point;

 struct triangle {
 point a;
 point b;
 point c;
 };

Derek “Why use a struct for triangle? We could use a plain array, or a
vector or even a class?”
Brian “Well, arrays quickly degenerate into plain pointers, with absolutely
nothing to check their size. We could use a vector, but their size can
change, and there is nothing to indicate how many points it should contain.
A class seems a little overkill, it’s a small program and the default
constructors and destructor work fine in this case.”
Derek “OK, anyway we can always revise this decision later. Given that
we have introduced a point abstraction, I think we should add a new
function readPoint.”
NOV 2008 | | 33{cvu}

 point readPoint (std::istream & is) {
 const point p (readInt(is), readInt(is));
 return p;
 }

Brian “Hmm, but you can’t use point(readInt,readInt) because
C++ makes no statement about the order of parameter evaluation, we must
use.”
 point readPoint (std::istream & is) {
 point p;
 p.first = readInt(is);
 p.second = readInt(is);
 return p;
 }

Derek “Good point. Now that makes readTriangle clearer.”
 struct triangle readTriangle
 (std::istream & is) {
 struct triangle vals;
 cout << "Enter triangle co-ordinates: ";
 vals.a = readPoint(is);
 vals.b = readPoint(is);
 vals.c = readPoint(is);
 return vals;
 }

Brian “By the way, I see Joe didn’t use the input parameter. What does he
think compiler warnings are for?”
“What about determining if it’s a right angled triangle?”
Derek “Well, Joe had an interesting idea. As you may recall from calculus,
two perpendicular lines have tangents that multiply together and make -1.”
Brian “You know maths is not my strong point, yeah, yeah, we’re still
looking! But I see two problems. Firstly, which two of the three tangents
are you going to use? And secondly, if one of the sides is parallel to the
vertical axis, the gradient will overflow, another undefined C++ area.”
Derek “Both true. So we will ditch the tangents and use Pythagoras’
theorem, which you will remember said ‘The sum of the square of the
hypotenuse is equal to the sum of the squares of the other two sides’.”
Brian “Yes, I remember Pythagoras, but what if it’s not a right angled
triangle?”
Derek “Well, the cosine rule, generalises Pythagoras’ theorem, and it
means that if Pythagoras’ theorem holds it must be a right angled triangle.”
Brian “Good job we using integers, or we’d have to worry about equality.”
Derek “True. Let’s add a function to find the length of a line.”
Brian “We can be smarter. Your function would need to take the square
root, and later square it to apply Pythagoras’ theorem. If instead, we just
calculate a line metric using”
 typedef long metric;
 metric lineMetric (const point & p1,
 const point & p2) {
 const metric dx = (p1.first - p2.first);
 const metric dy = (p1.second - p2.second);

 return dx * dx + dy * dy ;
 }

Brian “We needn’t take the square root and lose the precision.”
Derek “Perhaps the maths is beginning to rub off. We still need to calculate
the three line metrics and apply Pythagoras.”
Brian “Well if we put the line metrics into a local vector, and sort it, if
Pythagoras holds we get.”
 v[0] = v[1] + v[2]

Derek “Have to sort the vector using greater than, but that’s easy. Not too
happy about adding v[1] and v[2], but is a local action, so it’s safe
enough."
Brian “What if somebody enters a line, not a triangle, then we always get,
v[0]=v[1] as v[2] is zero."

Derek “We must test for that. So our main function becomes"
 int main()
 {
 struct triangle vals = readTriangle (cin);
 // need <vector>
 std::vector<metric> sides;
 sides.push_back(lineMetric(vals.a, vals.b));
 sides.push_back(lineMetric(vals.b, vals.c));
 sides.push_back(lineMetric(vals.a, vals.c));
 // need <algorithm>
 std::sort(sides.begin(), sides.end(),
 cmpMetric);
 if ((sides[0] != sides[1]) &&
 (sides[0] == sides[1] + sides[2])) {
 cout << "Right angled" << endl
 } else {
 cout << "NOT right angled" << endl;
 }

 return 0;
 }
 with
 int cmpMetric (metric a, metric b)
 {
 return a > b ;
 }

Derek “I need another pint.”
Brian “Hold on. What about readInt?”
Derek “Get the drinks and I’ll have another think.”

A little later.
Derek “Joe reads the number into a string, which seems a good idea. How
come you have to tell C++ to handle a hexadecimal number, some
languages know that '0x' starts a hex string and behave correctly?”
Brian “No idea, just one of those things. Suppose we split the problem, is
it a hex string and correctly process the remaining input string.”
Derek “OK, but your have to modify the input string to take off the initial
0x if required. So readInt becomes something like”
 int readInt (std::istream & is)
 {
 int result(0);
 // Test for good input stream
 if (is) {
 std::string s;
 is >> s;
 const bool hexString = isHexString (s) ;
 std::istringstream iss(s);
 if (! hexString) {
 iss >> result ;
 } else {
 iss >> std::hex >> result ;
 }
 // reset the input stream
 is.clear();
 }
 return result;
 }

Brian “And then we have.”
 bool isHexString (std::string s)
 {
 const std::string hexStr("0x");
 bool isHex = false ;
 if (s.size() >= hexStr.size()) {
 std::string format =
 s.substr(0, hexStr.size());
 for (size_t i=0; i != format.size(); ++i){
34 | | NOV 2008{cvu}

 // need <cctype>
 format[i] = tolower(format[i]);
 }
 if (format == hexStr) {
 isHex = true;
 s = s.substr(hexStr.size(), s.size());
 }
 }
 return isHex;
 }

Derek “Oh, I see, test for the format identifier, and if present strip it off
the input string and set the return flag.”
Brian “OK, that works, I hope Joe appreciates all our hard work.”
Derek “I’m sure he will until his next assignment is due.”

Nevin ":-)" Liber <nevin@eviloverlord.com>

Looking at the code, I see three major issues:
1. Because triangle is just a std::map, it only contains points which

have unique x-coordinates (since x-coordinates are the key, and
keys of maps are unique). For example, the triangle described by
(0,0),(0,3),(4,0) will only have two of its vertices stored, and the
third dereference of the iterator has undefined results.

2. Slopes can have values of negative-infinity and positive-infinity.
Again, the example of (0,0),(0,3),(4,0) shows this.

3. The inexactness of floating point mathematics. For some
calculations, the multiplication of the calculated slopes may not
result in exactly -1. Read the paper ‘What Every Computer Scientist
Should Know About Floating-Point Arithmetic’ at <http://
dlc.sun.com/pdf/800-7895/800-7895.pdf>. The layman advice I
usually give to people about floating point is that casual use is for
display purposes only when exactness doesn't matter.

Now, we can mitigate (1) by using a std::multimap instead of a
std::map. But more to the point, it just isn’t the right data structure. It
has far too complicated an interface to use for storing something as simple
as a triangle. Let us go back to fundamentals.
What is a triangle? A collection of three points. What is a point? An x-
coordinate and a y-coordinate. I will start there:
 struct Point
 {
 int x;
 int y;
 friend std::ostream& operator<<
 (std::ostream& os, Point const& p)
 { return os << '(' << p.x
 << ',' << p.y << ')'; }
 friend std::istream& operator>>
 (std::istream& is, Point& p)
 { is.unsetf(std::ios::dec);
 return is >> p.x >> p.y; }
 };

Because I created a data type for Point, I can give that type a stream
inserter (operator<<) and extractor (operator>>). Of note in this
extractor is the unsetf() call, which sets the stream up so that the int
extractors automatically handle both integer and hexadecimal numbers.
This takes the place of the work done in the original readInt() function.
Now that I have Point, let me define Triangle in terms of it:
 struct Triangle
 {
 Point vertices[3];
 friend std::ostream& operator<<
 (std::ostream& os, Triangle const& t)
 { return os << t.vertices[0]
 << ',' << t.vertices[1]
 << ',' << t.vertices[2]; }

 friend std::istream& operator>>
 (std::istream& is, Triangle& t)
 { return is >> t.vertices[0]
 >> t.vertices[1] >> t.vertices[2]; }
 };

Note: while this program as is doesn’t use the inserters, I left them in
anyway, as they are very useful during debugging.
To mitigate issues (2) and (3), I’ll use other mathematics to both avoid
division and to keep things in the integer realm. Namely, I’ll use the
Pythagorean Theorem: the square of the hypotenuse of a right triangle is
equal to the sum of the squares on the other two sides.
How does one calculate the square of the side of a triangle where that side
is specified by two points? That’s easy:
 int Distance(Point const& a, Point const& b)
 { return (a.x - b.x) * (a.x - b.x)
 + (a.y - b.y) * (a.y - b.y); }

Note: If the x-coordinates or y-coordinates are sufficiently large, this and
other calculations can cause overflow, which real-world code should
consider. For purposes of this critique, I am assuming that the values are
not that large.

Applying the Pythagorean Theorem:
 bool IsRightTriangle(Triangle const& t)
 {
 int sides[] =
 {
 Distance(t.vertices[0], t.vertices[1]),
 Distance(t.vertices[0], t.vertices[2]),
 Distance(t.vertices[1], t.vertices[2]),
 };
 std::sort(sides, sides + 3);
 return sides[2] == sides[1] + sides[0]
 && sides[0];
 }

The way this algorithm works is as follows:
A. Calculate the square of the length of each side.
B. Sort them by the square of the length, so that the square of the

hypotenuse is in sides[2] and (as I’ll need in (ii) below) the the
square of the shortest side is in sides[0]. One might ask: is
std::sort overkill for sorting three values? No, as it already
works and therefore is code that I don’t have to write, debug or
maintain. Plus, most implementations optimize it for small data sets
anyway.
Consider degenerate cases, where the three vertices do not describe
a triangle:
(i) All three points are distinct but on the same line. It turns out that
this implementation will correctly return false in this case.
(ii) Two or more points are the same (for example, (0,0),(0,0),(0,0)).
This will result in the smallest side being 0, and needs to be tested
for explicitly.

C. Return whether or not we are a right triangle by applying the
Pythagorean Theorem.
Putting it all together, using as close as possible the same formatting,
input and output as the original program:

 int main()
 {
 std::cout << "Enter triangle coordinates: ";

 Triangle vals;
 if (!(std::cin >> vals))
 std::cout << "Not a number!" << std::endl;
 else if (IsRightTriangle(vals))
 std::cout << "Right angled" << std::endl;
 }
NOV 2008 | | 35{cvu}

Note: Instead of the original readTriangle() function, I just use the
extractor. However, the output may not be exactly the same in the case
where the user provides data that isn’t an integral or hexadecimal value.

Michal Rotkiewicz <michal@michalhr.ehost.pl>

In this program there are three problems:
1. Input reading
2. Data storing
3. Algorithm

Let’s see what is going on at each point.
1. Input readings

There is an issue with readInt function. At first sight the instruction if
(! iss>>result) looks innocent, but there is a problem in fact.
std::istringststream class has operator! function that returns
true if either one of the error flags (failbit or badbit) is set on the
stream. Otherwise it returns false. So in fact our if behaves like this:
 if (iss.operator!() >> result)

As on the left side of operator >> there is no istringstream object
any more >> is interpreted as a right bit shift.
A simple example will prove that:
 int main() {
 std::string s;
 cin>>s;
 int result(0);
 char x;
 std::istringstream iss(s);
 iss>>result;
 iss>>result;
 cout<<(!iss>>result)<<endl;
 return 0;
 }

If I run this program and enter a value greater than or equal to 1 the output
is 0, but if we enter 0 the output is 1. How does it work? My intention was
to setup error flag on the stream. To achieve that I used:
 iss>>result;
 iss>>result;

While the first one reads value from the stream the second one sets error
flag on the stream as the stream is empty at this point. Thanks to it !iss
returns true. When I run the program and enter value 1 the
!iss>>result becomes true>>1. True is converted to int and I have
1>>1 which is 0. But if I enter value 0 the expression 1>>0 is evaluated
to 1 as 1 shifted right by 0 is still 1.
To solve the problem we have to enforce that iss>>result is done first.
Instead of if (! iss>>result) we write if (!(iss>>result)).
Now the readInt function works correctly. To make this function shorter
we may get rid of
 if (!iss.eof())
 result=0;

as we do only one iss>>result operation so the eof bit won’t be set.
2. Data storing

The next bug is in readTriangle function. This function works only if
the first coordinates are different. Map class allows to keep only one
element with given key. If we provide the second element with the same
key the first element’s value gets overwritten with the second element’s
value. To keep such data we need a multimap container.
It comes from "map" header as well. Comparing to map, multimap doesn’t
have operator[] so we can’t use the instruction:
 int key = readInt(cin);
 vals[key] = readInt(cin);

Instead we may insert elements like this:
 int key = readInt(cin);
 int val = readInt(cin);
 vals.insert(std::make_pair(key, val));

3. Algorithm

Ok – at this point we have all coordinates collected. Finally we have to
determine whether given triangle is right-angled. Unfortunately existing
algorithm doesn’t answer to this question correctly for two reasons:

1. It checks if angle only at vertex B is right,
2. It leads to ‘division by zero’ error if bx-ax equals 0 or cx-bx

equals 0. What I suggest to do is to calculate the square of each side
length. If triangle is right-angled we are able to find side a so that
a^2 = b^2 + c^2.

Last but not least: so far we have had silent assumption that we have a
triangle. But it’s possible to enter coordinates that don’t form a triangle
(eg. they are colinear). Therefore I suggest to check it. In many cases we
calculate sides’ length and check if sum of any two is bigger that the length
of the third.
Instead of calculating lengths and introduce floating point values I decided
to use another approach: if we have a triangle its area must be greater than
0. Area may be easily calculated using determinant:
 | Ax Bx Cx |
 Area = 0.5 * abs | Ay By Cy |
 | 1 1 1 |

that may be presented as:
 Area = 0.5 * abs(
 (Cx-Ax)*(By-Ay) - (Bx-Ax)*(Cy-Ay));

To check if area is not equal to zero it’s sufficient to check that(Cx-
Ax)*(By-Ay) - (Bx-Ax)*(Cy-Ay) is not equal to zero.

Finally the program looks like:
 #include <iostream>
 #include <map>
 #include <string>
 #include <sstream>
 using std::cin;
 using std::cout;
 using std::cerr;
 using std::endl;

 typedef std::multimap<int,int> triangle;
 int readInt(std::istream &is) {
 std::string s;
 is>>s;
 int result(0);
 char x;
 std::istringstream iss(s);
 if (! (iss>>result))
 cout<<"Not a number !"<<endl;
 else if (result==0 && iss>>x && x=='x') {
 iss>>std::hex>>result;
 }
 return result;
 }
 triangle readTriangle(std::istream &is) {
 triangle vals;
 cout<<"Enter triangle coordinates: ";
 for (int idx=0; idx !=3;++idx)
 {
 int key = readInt(cin);
 int value = readInt(cin);
 vals.insert(std::make_pair(key,value));
 }
 return vals;
 }
36 | | NOV 2008{cvu}

 int main() {
 triangle vals= readTriangle(cin);
 triangle::iterator it = vals.begin();
 int Ax = it->first;
 int Ay = it++->second;
 int Bx = it->first;
 int By = it++->second;
 int Cx = it->first;
 int Cy = it++->second;
 int double_area = (Cx-Ax)*(By-Ay)
 - (Bx-Ax)*(Cy-Ay);
 if (double_area == 0) {
 cout<<"Not a triangle!"<<endl;
 return 0;
 }
 int a_sqr = (Bx-Ax)*(Bx-Ax)
 + (By-Ay)*(By-Ay);
 int b_sqr = (Bx-Cx)*(Bx-Cx)
 + (By-Cy)*(By-Cy);
 int c_sqr = (Cx-Ax)*(Cx-Ax)
 + (Cy-Ay)*(Cy-Ay);
 if (a_sqr == b_sqr + c_sqr or
 b_sqr == a_sqr + c_sqr or
 c_sqr == a_sqr + b_sqr)
 cout <<"Right angled"<< endl;
 return 0;
 }

Colin Grant <cgrant@gtsoftware.co.uk>

So, I’ll start by skipping over the lack of definition for how it should be
used, e.g. test cases, and get on to the starting with the first problem – the
function to read in an integer is broken. Firstly the unary operator ! grabs
the string stream so round brackets can ‘mend’ that
 if (! (iss>>result))

Generally the readInt function smells – I don’t see any advantage in
passing in a stream when the guts use cout anyway (and the interim
readTriangle ignores its stream parameter), and it just doesn’t fill me
with any confidence that it is efficient or sane. In a code review I would
suggest the author considers if it is very clear and whether the error
handling is sufficient because bad values will return a result – exceptions
spring to mind for exactly this.
Moving on to the data representation of a triangle – using an associative
container is never going to work since having the same first coordinate
means there are fewer entries in the map. Extensibility is a good goal but
since a triangle is never going to change from having exactly three points,
I suggest another representation that captures the three pointedness of a
triangle explicitly would be better.
Finally the algorithm to work out the right angledness of the triangle cries
out to be separated from the control code, but disregarding that it’s easy
to see that it needs to be revisited to avoid division by zero errors.
As a user I would prefer positive feedback about the right angle nature of
the triangle, but that’s just me (I guess it depends on the unstated
requirements).
Please tell me that the code is a made up example! Which begs the question,
how did you manage to make up the horrid code?
Roger: yes, the code is made up; but the constituent pieces do all come from
real code. I am still surprised by the strange uses to which people put the
STL collection classes!

Commentary
I think the entrants between them have covered pretty well all the issues
with the code. The main point about the code is that this is one of the cases
where using the STL was a bad choice – or at least using std::map was.
I was pleased to see that Nevin and Michal both mentioned the
std::multimap as my impression is that the multixxx associations

deserve to be better known; although in this particular case I think it was
right to prefer a simpler data structure.

The Winner of CC 53
I had a couple of goes at deciding who should get the prize in this issue.
Although I appreciated Frances’ pictures and also enjoyed the dialog
between Derek and Brian in Joe’s entry, I eventually decided that Nevin’s
critique was the best one; one of its strengths seems to me the way that the
data structures and the code in main so clearly express intent (and he also
got a ‘bonus’ mark for using unsetf to allow reading of hex).

Code Critique 54
(Submissions to scc@accu.org by Dec 1st)

I’m trying to write a simple logging header file, but it doesn’t seem to be doing
the right thing – my errors aren’t being logged. Can someone help me sort
this out?

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the
ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who typically
get the magazine much later than members in the UK and
Europe.

// ---- logging.h -----
enum { ERROR, WARN, DEBUG };
int level;
std::string now()
{
 time_t timeNow = time(0);
 char buffer[20];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}
#define LOG(LEV, X) \
{ \
 if (level & LEV) { \
 std::ostringstream oss; \
 oss << now() << " [" << #LEV << "] " \
 << (X) << std::endl; \
 printf(oss.str().c_str()); \
 } \
}
#define LOG_ERROR(x) \
LOG(ERROR, x)
#define LOG_WARN(x) \
LOG(WARN, x)
#define LOG_DEBUG(x) \
LOG(DEBUG, x)
// ---- example.cpp ----
#include <ctime>
#include <iostream>
#include <string>
#include <sstream>
#include "logging.h"

int main()
{
 level = DEBUG | WARN | ERROR;
 LOG_DEBUG("This is a test");
 LOG_WARN("This is a warning");
 std::ostringstream oss;
 oss << "An example msg";
 LOG_ERROR("Problem: " + oss.str());
}

Listing 2
NOV 2008 | | 37{cvu}

38 | | NOV 2008{cvu}

Regional Meetings
A round-up of the latest ACCU regional events.

ACCU Bristol
Report by Ewan Milne (ewan@calenture.org)

On a demi-semi-regular basis, a group of Bristol-based ACCU members
meet up for an evening of curry and coding (Patia and patterns? Jalfrezi
and Java? Oh, okay then). Sometimes we are joined by other members
visiting the area: on one previous occasion, a group of bemused waiters
was even treated to a full double-speed preview of a conference keynote
talk (complete with slides!).
This time around (15th September) there were five of us present. I was
joined by Tony Barrett-Powell, Tom Guest, Rob Jones and Pavol
Rovensky, while apologies were received from Jon Jagger (family illness)
and Kevlin Henney (too busy jet-setting). The conversation was relatively
light on geek topics, covering parenthood (both recent and impending),
dangerous locations for customer site visits (a tie between Tony’s nuclear
power station and my North Sea oil rig), and Pavol’s hobby of competition-
level model aircraft flying.
In finest Bristolian ‘why rush?’ tradition, the establishment of a more
formal local group has been discussed on and off in recent times. But I’m
now going to commit in print to getting the ball rolling early in 2009. We
are looking for somewhere to meet, so if you can help find a location please
contact me at ewan@calenture.org. And also get in touch if you are based
in or near Bristol and would be interested in attending a local group.
Hopefully there will an announcement of the first meeting on accu-general
in the new year.

ACCU Oxford
Report by Jim Hague (jim.hague@acm.org)

The copy deadline for the last CVu meant that my first report on the nascent
ACCU Oxford had to be filed shortly before our second meeting on July
30th.
As promised, Chris Jefferson, BSI C++ committee member, gave what
turned into a full-length presentation on what’s likely to be in C++0x (as
of that week). It was an excellent session, enjoyed by both C++ gurus and
those like myself with rusty C++.
After a break for the monsoon season (UK readers will understand), we
returned with Pete Dillon presenting the IBM zSeries mainframe world.
A foreign land to most, Pete’s observations on where Unix and other
systems go wrong gave plenty of food for thought. We’ll return to Pete and
his thoughts on Cobol at a later date.
Our next meeting will be on October 29th, when we’re planning an open
discussion of what qualities developers and their managers look for in each
other. Keep an eye on ACCU-general for details, or if the volume there
overwhelms you check http://www.lunch.org.uk/wiki/ACCUOxford

ACCU Cambridge and ACCU South Coast
Report from Ric Parkin (ric.parkin@gmail.com) and Pete Hammond
(peter.hammond@baesystems.com)

Finding speakers is a major sticking point which has made it a quiet period
for both these groups. Ideas for how to get speakers have been explored at
an informal pub-meet in Cambridge, but more suggestions are always
welcome from the wider membership. If you can recommend a speaker,
propose an algorithm or a pattern for finding one, or simply have an idea
for a topic you’d like to hear about, please discuss it on your regional
mailing list: accu-southcoast or the newly created accu-cambridge. And if
you’re not already on the list, please join it; it’s low volume and the ideal
way to hear about – and influence – what’s going on in your area

ACCU North East
Report from Ian Bruntlett (ianbruntlett@hotmail.com)

The 17th ACCU NE meeting saw 4 attendees (Ian, Steven, Michael & Jeff)
looking at and discussing some Haskell code. We also had a look at some
of Michael’s C++ course work examples and decided the best thing to do
next month would be to install C++ Builder on a PC and show Michael
what C++ is all about.
If you didn’t already know, Morpeth, home of Contact, where ACCU NE
regularly meets, was flooded. Here is some footage of the main bridges
into Morpeth being stress tested by the flood waters:

http://uk.youtube.com/watch?v=WIQ5d0yCxmM
http://uk.youtube.com/watch?v=dWPDfF-CE8g

Contact was unlucky in the flooding. It happened on a Saturday meaning
that our downstairs offices were flooded before anyone could get to them
to move our Information Point’s resources. We lost two offices and a
kitchen, two laptops, a tower PC and an expensive photocopier. The net
result of that is that the computer access project, that makes PCs & the
internet available to Contact’s members, has had to be scaled down.
If anyone would like to help, the kinds of things we need are 1) memory
modules of 256MB or better, 2) windows licences (pref XP or 2000 but
others are also viable) 3) redundant laptops. Or if you have something else
yo u t h i n k w e m i gh t h a v e a u s e f o r , s e n d a n e m a i l t o
IanBruntlett@hotmail.com. Thanks in advance.
Despite the flooding it’s business as usual and we didn’t miss a single
meeting. We meet at Contact on the third Saturday of the month ACCU
NE; looking forward to seeing you at the next meeting.

NOV 2008 | | 39{cvu}

Desert Island Books
Paul Grenyer introduces Steve Love’s reading

selection.

I have known Steve Love a good few years. We met at an ACCU
conference (well, strictly speaking I think it was in the Dirty Duck in
Stratford-upon-Avon), we’ve done a conference presentation together

and consumed more alcohol than I care to mention. In fact with the possible
exception of Alan Lenton and a couple of others whom I won’t mention, I
think I’ve consumed more alcohol with Steve Love than any other ACCU
member and the amount of curry we’ve consumed together doesn’t bear
thinking about.

I’ve always felt Steve was like my formula one team mate. We have many
of the same skills and have had similar experiences in our professional
careers, feel the same way about a lot things and I always felt we were on
a similar level. In recent years, especially when I went though my dark mobile
phone and banking years, I feel Steve has pulled ahead. And interestingly
enough, Steve now works for the bank I wanted to and never did.

Steve often talks of the time he filled in for the guitarist in a Whitesnake
covers band. Never managing to master the guitar (probably lack of practice)
I am quite jealous. Having seen Whitesnake recently get completely blown
away by Def Leppard, I find myself wondering if they’d be better off replacing
at least one of their (now American) axe wielding duo with Steve.
Refreshingly Steve hasn’t chosen any Pink Floyd, but I would of course
argue that Trash and Hey Stoopid are the only Alice Cooper albums worth
listening too. But that’s a subject for another curry and long drinking session.

Steve is a regular conference goer, CVu and Overload writer and accu-
general participant. He is part of the backbone of the organisation and we,
as ACCU members, would be a lot poorer without his contributions.

Steve Love
I reckon choosing technical books with which you’d be happy being
washed up on a desert island is a pretty hard task. Apart from anything else,
quite a lot of the tech books in my library are quite big – take the obvious
titles from Stroustrup or, say, Josuttis – and would likely prevent me being
washed up anywhere. Fortunately, Paul’s specification for this little
diversion has a get-out clause which I’ll avail myself of: books that have
made a big impact, or that I would take to a desert island.
Having mentioned large books, first up is a much smaller
one. Ruminations on C++ by Andrew Koenig and
Barbara Moo is so full of interesting anecdotes and
enlightening experiences with C++ that its age is soon
forgotten. Although much of the material pre-dates the
first C++ ISO standard by nearly 10 years (some of it
longer than that), it’s no less relevant to today’s C++
because it is as much about thinking about programming and problem
solving as it is about C++ specifics.
The content is based on articles and columns written over
several years for such journals as JOOP and C++ Report,
and those articles themselves drew on years of
experience the authors had in using and teaching C++
and programming in general. It’s just plain hard to find
that much knowledge and insight all between the covers
of one book anywhere else!
Is it cheating to cite Scott Meyers’
Effective C++ and More Effective
C++ as one selection? (Paul: No, but I’d
include Effective STL or just take the
CD instead) Well, since the copies I
first read were on a single CD, and they
liberally cross-reference each other,

it’ll have to do.
I t ’ s d i f f icu l t to
gauge exactly how
important these books
were – and still are, I think –
because they distill so much knowledge, and make it accessible to newbies
as well as providing insights relevant to more experienced programmers.
I was certainly new to C++ and Object Oriented Programming when I first
got hold of these two books (the CD was borrowed) and some of the more
advanced topics were, to me, revolutionary.
Having the CD with links between the different items in EC++ and MEC++
was really useful to me as someone trying to learn as much as I could really
quickly. But, I still can’t quite get on with reading detailed stuff on a screen,
and a real book is still more comfortable to read. The CD might not cause
me to sink on my swim to the desert shore, but a laptop with a large enough
screen might not survive the experience.
Next stop, bigger and newer, but still 10 years old, is Matt
Austern’s Generic Programming and the STL. When I
first read this, it was a bit of a revelation, talking about
abstract requirements and not using inheritance <gasp!>.
Although by no means a gentle introduction to STL,
Austern’s book explains its underpinning concepts in a
way I could grasp, and put to use almost immediately.
Although this is largely a reference book, covering each aspect of the STL
in intricate detail, its more fundamental impact on me as a user of STL was
its coverage of the abstract principles used to enable STL to work at all –
for example, the idea of iterator concepts.
This book is about much more than using STL; it’s about understanding
enough of its design principles to extend it properly, and live within the
rules. Matt Austern covers that aspect with real panache and clarity, and
the fact that ‘Generic Programming’ is a comprehensive reference manual
for the STL is almost an afterthought.
Between them, these four books probably had the most influence on my
early programming career, and are all books I still refer to frequently
enough that I keep them close at all times! When I first started using C++

I

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Running Windows on
your Mac
By Dwight Silverman, published
by Peachpit Press (2008), ISBN:
978-0321535061

Reviewed by David Sykes

Recommended for people with little knowledge
of the subject.
The book is split into three parts: Installing and
Running Windows on the Mac, Macintosh for
Windows users, and Windows for Macintosh
Users.
Part 1 begins with a brief explanation of the
history and differences between the Mac and
PC, and why you would want to run Windows
on your Mac, before outlining the three main
routes available: Boot Camp, VMWare and
Parallels. Chapter 1 finishes with a list of

features and functionality for each option to help
you to decide which route is best for you.
The rest of part 1 is split to cover each of the
three options. One chapter covers Boot Camp
installation. Parallels and VMware have three
chapters each, covering installation, running and

advanced items. Installing and running Parallels
and VMWare is very simple, and the
instructions are very clear and detailed, with
pictures and explanations of each dialog box.
Perfect if you have no knowledge of the
software, or if you want something to give you
confidence that you are doing things correctly.
People who are confident with computers, e.g.
most people in ACCU, will probably find the
instructions unnecessary, although the book
does mention a few setting changes that are
valuable but not immediately obvious.
Part 2 covers the Macintosh for Windows Users,
and is split into four chapters: ‘Mac Basics’,
‘Inside System Preferences’, ‘Advanced Mac’,

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
40 | | NOV 2008{cvu}

Bookshops

Desert Island Books (continued)

in a job, I was lucky enough to be in a team of really excellent developers,
all genuinely interested in what they were up to, and eager to share their
discoveries and skills with the new kid on the next desk. Not only did they
share their library with me, they introduced me to ACCU, too, so a round
of applause for them, please!
There have been so many other sources of information I’ve found
indispensable that choosing just a few was difficult, but ones that really
stand out include the ACCU itself – the journals, the mailing lists, the
conferences and the community – the original Guru of the Week from Herb
Sutter, most of which made it into the Exceptional C++ series of books,
but which started on the comp.lang.c++.moderated news group, and the
on-line version of the C++ FAQ.
Time for a break, then: the novel.
There have been a few favorites over the years, but I guess the one that
must take the prize is Tai-Pan by James Clavell. It describes and
dramatises the founding of Hong Kong in the 19th century by the Opium
pirates of the South China seas, and has at least one foot in the truth.
Romance, swashbuckler, political thriller, historical tale and plain ol’
adventure story all rolled into one, it’s a novel I’ve lost myself in for a few
days, more than once, and will again and again. The Tai-Pan is the big chief
of a company (it turns out to be a bit of a joke made by the Chinese at the
expense of the ‘foreign devils’, but you’ll have to read this book and its
successor, Noble House to discover why if you don’t already know!) and
the story revolves around the fortunes of two China Traders at logger-

heads. Tai-Pan is part of Clavell’s Asian Saga, which includes the
probably better-known Shogun, another close contender for the choice to
take to a desert island.
Finally, some music. This is particularly difficult, especially to choose just
two albums from the hoards of great ones I’ve heard and owned. In the
end, I’ve settled on two that, instead of being particularly indicative of my
usual taste in music, hold emotional significance for me.
The first is Da Da by Alice Cooper, a definite piece
of left-field from a guy who’s made his name being,
well, a bit out of the ordinary! From that album,
‘Former Lee Warmer’ stands out as a quite
unsettling track, conjuring images of Vincent Price
or Christopher Lee in some grainy black-and-white
Lovecraftian creep show, and admirably captures
the Alice Cooper penchant for the theatrical.
The second album is Aqualung by Jethro Tull,
featuring some startling virtuosity from the one-
legged flautist Ian Anderson. ‘Cross-Eyed Mary’ in
particular is a rich, funny and sharply sarcastic song,
although quite how Anderson manages playing a
flute with his tongue wedged so firmly in his cheek
remains his secret.

Next issue: Alan Lenton picks his desert island books.

and ‘Mac Apps: An Overview’. Like the rest of
the book it provides a basic introduction to the
Mac in a clear and detailed way. This would be
great for anybody new to the Mac, but is unlikely
to contain much new to anybody with much
previous experience. The book is written for
Leopard, and includes a few items that are not
relevant to previous versions.
The book finishes with a short section on
Windows for Macintosh users. I found the book
easy to read, and for somebody who is new to the
subject, or would like something to give them a
bit of confidence, then this book is great. If,
however, you have any knowledge already then
much of this book will cover things you already
know.

Visual Studio Team
System: Better Software
Development for Agile
Teams
By Will Stott and James W
Newkirk, published by Addison
Wesley (2007), ISBN: 0321418506

Reviewed by Ed Sykes

VSTS: BSDFAT is essentially a rehashing of
Kent Beck’s work on extreme programming as
presented in Extreme Programming Explained:
Embrace Change and Test Driven
Development. The authors frame XP in the
context of a project with a broken process which
adopts the Team Foundation System (TFS) in
order to fix it. It focuses on the usual agile
practices of version control, continuous
integration, automated builds, Test Driven
Development, Automated Customer acceptance
tests and continuous planning. All the advice for
these subjects is useful and accurate and will set
novices in agile practices heading in the right
direction. There are also some anecdotes that
help to lend legitimacy to the advice given.
This book succeeds as a worked example of a
team adopting agile practices, however for
someone with experience of working in an agile
environment the book is not weighted enough
towards team foundation system. At the end of
reading this book I was disappointed to find that
I hadn’t learnt anything new from this book.
Admittedly my appreciation of the book was
tainted by my level of proficiency with my old
toolset and my skill level. I was looking for
something similar to Laura Wingerd’s Practical
Perforce that would explain how to use the
building blocks of TFS to get more out of it. This
is definitely not that kind of book. Going straight
to the Kent Beck books will give you a better
grounding in agile practices and the TFS
documentation grounds the reader as well as this
book.
This book is not going to help you to understand
the Team Foundation philosophy. It’s not going
to help to mould you into the Team Foundation
tool set or help you become a power-user. I can’t
recommend this book, not even to someone with
a limited budget, because you can buy both of

Kent’s books for the same price and the TFS
documentation is free.

Semantic Web for the
Working Ontologist
By Allemang & Hendler,
published by Morgan Kaufmann
(2008), ISBN: 978-0-12-373556-0

Reviewed by Seb Rose

Recommended.
This book fills the gap between vague waffle
about ‘Web 3’ and the very detailed W3C specs.
It starts by examining the motivation for adding
semantics to the web and then dives into the
stack of technologies available for modeling
information, reasoning about that information
and making inferences based upon that
reasoning. Starting with RDF, it works
coherently through RDFS, RDFS-Plus and
OWL with concise and comprehensible
examples and challenges. These examples
amount to a pattern catalogue (a view that is
further reinforced by special purpose FAQ /
Index) that is invaluable to new (and not-so-
new) ontologists.
Along the way you also get introduced to the
three concepts that make working with the
Semantic Web so different from (for example)
OO modeling:

1. Anyone can say Anything about Any topic
(AAA)

2. Open World Assumption (OWA) – just
because you haven’t seen a piece of
information yet, you can’t assume that it
doesn’t exist

3. Unique Naming Assumption (UNA) – the
same entity might be known by more than
one name.

A couple of ‘In The Wild’ chapters describe
aspects of actual implementations – from Friend
Of A Friend (FOAF) to the National Cancer
Institute Ontology (NCIO). These chapters are
interesting because they demonstrate some of
the concepts described in earlier chapters and
root the discussion in practical applications.
A chapter on good and bad modeling practices
is also indispensable, as it lists some of the
common antipatterns that crop up when OO
practitioners begin working with semantic
modeling. The final chapter discusses the
different dialects/species of OWL and begins to
scratch the surface of the formal underpinnings
of the technology. It also looks forward to what
might be included in the next version of OWL,
which is currently being designed.
The book has its fair share of typos, but is
generally well laid out and easy to follow.
Some things that you won’t find in this book:

there’s no ‘code’
there’s no discussion of toolsets that
implement the technology

you get introduced to N3 notation, but not
RDF/XML
there’s no detail about query languages
such as SPARQL.

In short, this is a book that gives you the
understanding to work with the technology, not
a book that describes low level details or specific
implementations.

Reaching the Goal – How
Managers Improve a
Services Business Using
Goldratt's Theory of
Constraints
By John Ricketts, published by IBM
Press (2007), ISBN: 0132333120

Reviewed by Frances Buontempo

Recommended
Disclaimer: I am not a manager, so cannot
comment on the accuracy of any of the technical
details in this book.
In a nutshell, Goldratt’s theory of constraints
(TOC) [see http://www.goldratt.co.uk/]
concerns identifying bottlenecks in a process,
such as a machine that has a fixed throughput,
and using that as a positive way to organise the
work flow. Conventional wisdom might see this
as a bottleneck which must be overcome in order
to increase profits. Buying more machines
would allow you to produce more and thereby
make more money. Instead, Goldratt’s theory of
constraints treats this as a basis for reorganising
a service industry business’s process, which
according to some measures could increase
profits. Pushing more products onto the market
may not be the best way to go. The organisation
must decide their purpose first, and can use the
bottlenecks to drive what happens when. Instead
of pushing products onto the market/production
line, things are pulled as required. This,
apparently, flies in the face of traditional
approaches. The impact on sales and marketing
as well as supply chain, logistics, accounting
and internal organisation is also considered. The
analysis, with clear, specific examples, was easy
to read and thought provoking, given I have no
background in this area.
The book briefly considers the theory of
constraints in other types of business, and draws
attention to particular problems in the service
industry. In particular, predicting work flow is
hard if your raison d'être is to help/provide a
service on demand. Special consideration is
given to these problems. For example the author
shows how various measures should be adopted
in order to take these problems such as
unpredictable work flow into account. The
author briefly mentioned agile, but emphasised
TOC is a different approach, relevant when the
requirements cannot be changed. TOC deals
with fixed requirements.
This book is easy to read with clear examples.
Frequently, the approach dictated by Goldratt’s
NOV 2008 | | 41{cvu}

theory of constraints differs from the usual
business approach taken, and this is clearly
spelled out each time. It was interesting to
consider how this different approach could
change organisations where I have worked and
if it would change things for the better. I suspect
it also made me consider things from a
manager’s point of view and learn some of their
lingo, which is always a good thing.
The only difficultly I had with the book was a
periodic, in your face, evangelical tone of voice
adopted to emphasise how TOC could solve
almost everything. That aside, it is a good book,
assuming a minimal level of background
knowledge. If you need to learn about TOC this
is probably a good place to start.

Learning PHP and MySQL
(2nd ed)
By Michele E Davis & Jon A
Phillips, published by O'Reilly
(2006), ISBN: 978 0 596 51401 3

Reviewed by Alan Lenton

Not recommended.
This is an adequate,
though uninspired, look through the basics of
using PHP and MySQL to build dynamic web
sites. Because it is trying to cover two major
topics from a starter level it is unable to treat
either in the depth needed for the reader to
become fluent in either the use of SQL
databases, or PHP.
However, the book also suffers from a serious
flaw which renders it unfit to be used by those
wishing to learn the subjects involved. The
sample code is frequently incorrect, and this will
cause endless confusion for newcomers. It is
clear that insufficient attention has been paid to
making sure the code is correct, which would
seem to indicate that the authors haven’t even
tried to run the code they present. What the
editors at O’Reilly were thinking of when they
let this go through, I really don’t know.

Implementation Patterns
By Kent Beck, published by
Addison Wesley (2007), ISBN:
03211413091

Reviewed by Ed Sykes

Reading Implementation
Patterns will help you write
highly object orientated, intention revealing
code. Unfortunately there isn’t a simple trick to
reveal. Instead values, principles and patterns
are described that will get you thinking about
your minute by minute implementation
decisions. Sometimes, reading and writing code
generates mental friction. Other times the
process is effortless. If you want to understand
why then buy this book.
This book is short but full of useful ideas. The
language used to describe the patterns is
informal and easy to digest. The examples are in
Java that anyone with OO experience can
follow. Since you must think deeply whilst

reading this book it takes longer to read than the
143 pages would suggest.
If you have invested in a language bible, the
practice of programming and a design patterns
book, then Implementation Patterns would be a
good investment. You will get three things for
your investment. Firstly, whatever your
experience, an immediate improvement in the
quality of the OO code that you write. Secondly,
a set of thinking tools and a language to describe
how code works at a micro level. Thirdly, an
insight into the mind of Kent Beck, one of the
most influential software engineers of recent
times.
Whilst reading Implementation Patterns I began
to understand why I have adopted certain
conventions when crafting software. Now I also
understand better why I don’t like parts of the
code bases that I work on. I’ve read the book
twice and the second time was more rewarding
than the first. I also expect to reference the book
whilst writing more of the kind of code that I
like.
This book is worth the money.

Microsoft Visual C#
2005 Unleashed
By Kevin Hoffman, published by
SAMS Publishing (2006), ISBN: 0-
672-32776-7

Reviewed by Omar Bashir

Recommended only as a broad reference.
This book attempts to explain the C# language
as well as the complete .Net Framework using
the C# language. The book initially implies that
it is not an introduction to programming but later
at a number of locations attempts to explain
fundamental programming concepts. For
example, chapter 1 explains the concept of a
variable from a very basic level. The book then
proceeds while assuming previous experience or
knowledge of Visual Studio and a rather hasty
initial introduction to the language.
A number of key terms are used without
explaining what they mean. For example, the
keyword base is used in chapter 5 without any
previous reference. Examples are inadequately
explained and so are some key concepts, which
require the reader to refer to other text on the
subject. The organization of the book could also
have been better. The chapter on collections
might have followed the chapter on generics to
avoid duplication of explanation of a number of
related concepts.
A number of other concepts are either vaguely
or at times inaccurately explained. A striking
example is the explanation of string
immutability in chapter 3. It suggests that string
immutability refers to storage of each string in
a fixed space to optimize CLR runtime requiring
operations on strings to return modified copies
of the original string. Thus, in a round about
manner it is suggested that strings are read-only,
as precisely suggested by the MSDN topic on
strings.

However, there is some interesting explanation
of various aspects of the language and the
framework. For example, the chapter on
optimization of .Net code explains the
performance impacts of autoboxing and auto
unboxing in method calls. This chapter also
gives an interesting introduction to the
Performance Wizard and FxCop (.Net static
code analysis utility).
I would recommend this book with a caution. It
is a reasonable broad overview of the .Net
framework using the C# language. However,
any detail, even at an intermediate level requires
referring to some other text on the subject (e.g.,
Programming C# by Jesse Liberty) as well as the
MSDN. The book is not adequately indexed
making it difficult to refer to topics using
keywords, a common practice used by most
developers.

Advanced AJAX
by Shawn M. Lauriat, published by
Prentice Hall (2007), ISBN:
0131350641

Reviewed by John Lear

The tag line for this book’s title
is ‘Architecture and Best
Practices’ and it is this that drew my attention. I
have been developing web applications using
AJAX technologies for almost a year and so was
looking for something that would expand my
knowledge beyond the basics of the
XMLHttpRequest.
The book itself is divided into 11 chapters, each
covering a different aspect of web development.
Reviewing the chapter titles revealed my first
disappointment. There is very little about
architecture in this book. What is covered is
limited to nothing more than the Model-View
Controller design pattern. One of the most useful
sections of this book covers the debugging tools
available for the most popular browsers.
This brings me to my second complaint; a lot of
the content of this book is not what I would call
advanced, some of it is even what I would call
basic programming skills. Three of the chapters
cover Accessibility, Debugging and source code
documentation. Worthy topics in themselves but
not what I would expect to find bulking out an
Advanced Level book.
There are some omissions as well. I would
expect an Advanced book to deal with topics
such as session management and to also cover
some of the libraries that can be used to abstract
away the many differences in how AJAX is
implemented in browsers.
Despite these complaints Advanced AJAX is not
a bad book, just poorly named. If you don’t
already own a book that covers this topic, you
will find lots of useful information here.
However, if you already own something on the
subject, I would recommend that you give this
book a miss.
42 | | NOV 2008{cvu}

Cross-Platform
Development in C++
By Syd Logan, published by
Addison-Wesley (2007), ISBN: 0-
321-24642-X

Reviewed by Alan Griffiths

There are a lot of features of
C++ that the standard defers to the
implementation (the size of ints, the sign of char,
...) and these can trip up the unwary when
moving between platforms. Further there are
variations in the libraries available and the tool
chain used in building software.
Syd bases his book on his experience working
for Novell on various projects but most of his
solutions derive from Netscape/Mozilla. In
particular the development of the user interface
abstraction layer. In covering this he addresses
language variations, availability of libraries and
portable build tools including make,
Autoconf/Automake and Imake. In the latter
category I’d also recommend looking at SCons
and bjam.
I enjoyed reading the book – it has a pleasant
conversational style and it exposed me to
options I’d either not been aware of previously
or had no real life information about. I was
particularly pleased to see a treatment of the
team dynamics of ensuring that the integration
build works for all supported platforms (the
examples used are OS-X, Windows and Linux).
My interest did wane somewhat when, after
presenting a couple of the existing portable user
interface libraries (wxWidgets and XUL) he
moves on to promoting a new one he’s
developed to illustrate the book. I guess Syd’s
interest also waned as the book ends not with
concluding remarks but with a listing of the
build process for this Trixul project.
Out of interest I visited the Trixul website – like
many open source projects this shows little
activity. Similarly the book website currently
shows no errata (I noticed a few discrepancies
between listings and text, but they don’t spoil
anything).
With a few reservations (indicated above) I’d
recommend this book as what it is: one man’s
experience of cross platform development.

Expert MySQL
By Charles A Bell, published by
APress (2007), ISBN-13: 978-1-
59059-741-5

Reviewed by Tim
Pushman

Highly Recommended.
This book is somewhat
mistitled, I was expecting a guide to installing
and working with MySQL with a focus on best
practices. In fact, the book is a guide to
modifying MySQL at the code level to provide
facilities that aren’t included with a standard
installation, for example, adding other storage
engines or modifying the query engine. A better
title may have been ‘Hacking MySQL’ or

‘Inside MySQL’. I suspect that these titles have
been taken by O’Reilly or others.
The book starts with an overview of MySQL and
how it fits into the open source software
paradigm. This is followed by a high level guide
to the MySQL source code and guidelines on
compiling and installing the software. Part one
ends with setting up a test environment for
MySQL.
Part two sets off into some serious code work,
with a chapter on debugging changes that you
might make, moving on to using MySQL in an
embedded environment, creating a custom
storage engine and extending MySQL with
custom functions and commands. There is full
code supplied, with a focus on writing code in
the same style as the existing code.
Part three takes us on a guide to some of the
internals of the MySQL database engine, with an
good description of how an SQL query gets
parsed, its internal representation and execution.
There are many ideas on how to optimise the
database engine, possible modifications you
could make and ideas on how to test the
effectiveness of any changes.
C A Bell is an excellent writer. Although I have
no intention (or time) to play around with any of
the ideas here, I read most of the book just out
of interest in how a big project is handled and
how to work with it. Bell is a senior programmer
at MySQL and clearly knows his way around the
source code. He also has an infectious
enthusiasm for hacking on the code that had me
tempted once or twice to drop everything and
load up the MySQL source!
If you are involved in customising MySQL, or
need to use a version of it in an embedded
environment, or are simply interested in how a
database engine works at the code level, this
book is almost essential and highly
recommended. The APress web site (http://
apress.com/) have full source code and two
sample chapters available.

Pascal for Science and Engineering
By James J McGregor and Alan H Watt, published by
Pitman (1983), ISBN: 0273018892

Reviewed by Colin Paul Gloster

I recently have joined a group which I had
preached to about Ada. I noticed that we have a
large collection of Pascal books, so I planned to
review some of these, but more in the context of
would these help someone to learn the
fundamentals of Ada instead of are they still
accurate for users of current Pascal. It transpired
that the person responsible for these Pascal
books is only ‘sort of’ involved in my main
project, so I might not review any more Pascal
books in the near future unless that changes.
One difference I note between the languages is
that though they both support providing
alternative compatible names for a type, Pascal
lacks the excellent facility of Ada to make
otherwise identical types incompatible. Another
disadvantage of using Pascal instead of Ada is

that Pascal does not require an exhaustive static
check that all values of a CASE condition lead
into a branch (it was vaguely stated that the
program would ‘fail’ so I checked another two
Pascal books before I found a specific
explanation: the result of an unaccounted for
CASE condition is undefined). No Pascal
function can return something which is not of a
simple type. To check records for equality in
Pascal, one must check on a field-by-field basis.
A less important advantage of Ada is that its
standard generic input/output routines can be
instantiated with any enumerated type. Newer
dialects of Pascal support operator overloading,
but they were released much later than this book.
I suspect that some of the other problems in this
paragraph have also been overcome in newer
Pascal dialects.
The book contains good advice against variable
names only one letter long. Unfortunately, this
advice is not adhered to in the book. For
example, a squareroot program contains just
three variables viz. e, r and a. Overall, this is a
nice book but it does have a number of
problematic quirks. Programming techniques
tend to improve in later chapters but magic
numbers can unfortunately be found in many
parts of the book. I found the magic numbers
1..2001 for a range of years to be amusing. On
page 87, symbolic names were replaced with
hard-coded numbers (sic).
This book does not seem to be intended for
financial science (that is an established term),
but I wish to remark that the use of real on page
88 for a financial program is inappropriate. I
know of someone who claimed to have ‘seen a
banking project using float for the money (under
C++) because the team have been working on
scientific projects before’.
It was (correctly) claimed that iterative methods
are interesting for solving simultaneous linear
equations, but why this is is not explained, nor
is it explained that iterative is a synonym of
indirect (inexact). In fairness, this is not a book
on numerics and it does provide a gentle
introduction with a better language than used in
many other books, in order to prepare people to
read an advanced numerical book but to still use
a fairly decent language regardless of what is
used in the numerical book.
Some programmers dislike unnecessary
parentheses, but I prefer the advice in this book
to have slightly more than necessary than not
enough.
I rarely see other people use them in practice, but
I like REPEAT-UNTIL statements (which are
liberally promoted in this book) (and of course
their counterparts in other languages (do-
while statements in C++ and loops in Ada with
EXIT WHEN at the end)). Unfortunately in
Spring 2008 I encountered C++ code which
showed to me that the syntactic layout of these
statements in Ada, C++ and Pascal is bad. This
is because the aforementioned C++ code
contained do- while statements which were so
large (over a screen) that I forgot that I was in a
NOV 2008 | | 43{cvu}

44 | | NOV 2008

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

Sometimes I feel like a bit of
fraud in this job. People
sometimes shake my hand or
clap me on the back and
congratulate me about the
conference, how useful they found a particular
article, or some such. I smile weakly, thank
them and say "well, it's really nothing to do with
me".
CVu and Overload arriving through my
letterbox is as much a surprise to me as to you.
I have no prior knowledge of what is in each
issue, and finding out is a pleasure. (I could ask
in advance, I suppose, but where would be the
fun in that?) If you feel so inclined the hands to
shake are listed at the front - Overload editor
Ric, CVu editor Gail and other guest editors, and
the writers of our various articles, columns, and
book reviews.
Still exhausted from last year's conference?
Ready to gear up for next April? Shake the hand
of Giovanni and his conference committee, and
of our speakers past and future. Giovanni
announces next year's keynote speakers
elsewhere in this CVu and I think it's an
extremely exciting line up.
If you enjoyed a particular article or found an
email on a mailing list particularly helpful, drop
the author a note. Better yet, nudge your
colleague on the next desk and tell them about it
too. As a last resort, though, I'll be happy to have
my hand shaken. I might not be directly
responsible, but I'm proud to be part of it.

Membership Report
Mick Brooks
accumembership@accu.org

The annual re-subscription rush
is now over, and I’m happy to
report that on the whole it has

gone well: most members were able to renew
without incident using the website. The
membership numbers look about as expected:
we currently have around 810 subscriptions,
which is down from around 900 just before the
end of August. A drop in membership of this size
looks to be consistent with the turnover rates
from previous years.
There were a few issues that came up, which
Tim Pushman and I will be working on fixing for
future renewals. Currently, people who have
opted out of receiving ‘announcement emails’
on their website profile only receive one email
message about the renewal, which arrives just
after their membership expires. Those who are
opted in get reminders in advance of their expiry
date. It seems that most of you would expect to
receive reminder emails even if opted out of
announcements, which is what I suggest we do
in future.
Others had trouble with the 3DSecure systems
(aka Verified by Visa and Mastercard Secure)
which are now being used by Worldpay, who
process credit and debit card payments for us.
Many banks are now making these systems
mandatory[1], and Worldpay do not allow us to
switch it off. As implemented on many sites,
including ours, the system can look like a
phishing or cross-site scripting attack, as you’re
redirected to your bank’s (often well disguised)
servers for authentication. I can’t help feeling
there must be a better way. Some of you may use
these systems in your work: if you know how to
make better use of them, then please get in
touch.
Some people were left in the dark about whether
their standing order payments had been
processed. Some of you even paid twice in the
confusion! We’ve improved the text of the
reminder emails, so things should be clearer in
the future.
We’d really love to be increasing the
membership numbers, not just holding steady. If
you have ideas about how to do so please get in
touch, and tell friends and colleagues about us.

And if you have any questions or queries about
your membership, please contact me at
accumembership@accu.org
[1] http://www.theregister.co.uk/2008/08/07/
verified_by_visa_compulsion/

Conference Report
Giovanni Asproni
conference@accu.org

The preparations for the next ACCU spring
conference (22nd-25th April 2009) are well
under way, and, I'm sure, it's going to be another
great event.
For a start, we have a world class line-up of
keynote speakers:

Robert Martin (Uncle Bob). Leading
software development expert, author and
speaker
Frank Buschmann. Worldwide authority
on software architecture and patterns
Baroness Susan Greenfield. Well known
scientist, writer, broadcaster, and member
of the House of Lords
Allan Kelly. ACCU member, author, and
expert on software project management,
agile development, and patterns

The organization of the pre-conference tutorials
is still going on, but I can confirm that Linda
Rising, the renowned patterns expert, author,
and speaker, will be teaching one.
At the time of writing, the programme is not
ready – the call for proposals is not over yet –
however, looking at the proposals received so
far, I can already anticipate that it is going to be
extremely interesting and exciting.
I suggest to check the conference web-site
(www.accu.org/conference) regularly for
updates because there is more to come.
I’m looking forward to seeing you all in Oxford
next April.

Bookcase (continued)

do-while statement by the time I reached the
end of one of them. This of course is a symptom
of a more important problem, but a language
whose syntax required the condition to be stated
near the top would have helped me.
Some people might dismiss the following as
pedantry, but computers do not make exceptions
for people who speak too sloppily to be
programmers. Mass was called ‘weight’ on
page 15 and on page 12 the phrase ‘area of the
circle’ was used, though of course no circle has

an area. The intended readership might
mistakenly accept ‘multivalued function’ from
page 230 (a relation can be multivalued, in
contrast to a function which can not).
Page 7 contains a program which is called one
thing in the source code and which is incorrectly
called something else in the execution example.
This is a flawed book, but it is much better than
other programming books intended for scientists
and engineers. As for my personal aim of
suggesting a Pascal book as a shortcut to

beginning Ada, the lack of a facility in Pascal to
make structurally equivalent types incompatible
reduces how useful this book could be in the
absence of an Ada textbook.

	Tell me about it
	Taming the Lint Monster (Part 1)
	Beyond Programming
	This ‘Software’ Stuff
	Tell me about... Virtualization
	XML is not the build system you’re looking for
	Let the Machine Debug For You
	!(C ^ C++)
	Python: New Thinking in the Teaching of Programming
	A Groovy Example: Mail Merge Made Easy
	Code Critique Competition 54
	Regional Meetings
	Desert Island Books
	View From The Chair
	Membership Report
	Conference Report

