

AUG 2008 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

A sideways glance at Java
elcome to the August issue of CVu! If you subscribe to
Overload as well as this journal, then this is the last time
both will be arriving on your doormat together: as of issue

20.5, the two journals will be published in alternate months. In other
words, the journal latency is increasing, or if you consider that a
wanton abuse of a well-defined technical term, we’re spreading the
journal marmalade more evenly over the year’s toast. The next issue
of CVu will arrive in November, which means that potential authors
have a whole more month than usual to ponder, propose and polish
their first submission…
Something else you may have noticed is that I’m not Tim Penhey.
For those of you who missed the Publications Officer’s report in the
previous issue, I’m the second of a short succession of guest editors while we find a new editor for
CVu: if you think you’d like to have a go at editing an issue, or taking on the job for longer, please
email publications@accu.org.
This month we have a slight Java flavour to CVu. If you haven’t taken a look at Java recently (and
who could blame you: you may have been getting excited by all the goodies in C++0x), then perhaps
it’s time you did. The language leapt forward with Java 5 in 2004, and closures and type inference
may yet make it into Java 7, making it more interesting and hopefully less verbose. However, in
recent years Java the language has started to share Java the platform with a number of others, in a
decidedly similar way to .NET’s CLR: a variety of useful and interesting languages now compile
to Java bytecode, statically and/or dynamically, to run on the JVM. You can do functional
programming and strong typing with Scala, extension scripting and rapid prototyping with Groovy,
Jython, JRuby and JavaScript (via Rhino), and soon you’ll be able to write rich internet applications
with the declarative JavaFX. All of these can use and extend the huge number of libraries that already
run on the JVM, JNI is there for you if you need access to the bare metal, and you can deploy them
all with WebStart. Several of them have quick-start web-frameworks: JRuby on Rails, Groovy on
Grails and Scala on Lift (not to mention the as-yet-unreleased-and-may-never-be Rhino on Rails).
So if you can chisel a gap in your Copious Free Time, and you have a yen to learn something new
(and if you’re in ACCU, you almost certainly do), I hope the contents of this issue give you something
to fill it with.
Don’t forget: CVu 20.5 is out in November; Gail Ollis will be your editor for that issue.

W
Volume 20 Issue 4
August 2008

Editor
Tim Penhey
cvu@accu.org

Guest Editor
Guy Bolton King
gbk@birchcrown.demon.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Allan Kelly, Alison Lloyd,
Roger Orr, Peter Pilgrim.

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

GUY BOLTON KING,
GUEST EDITOR

2 | | AUG 2008

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 20.5: 1st October 2008
C Vu 21.1: 1st December 2008

IN OVERLOAD
Alex Fabijanic describes a way of dynamic typing in C++, Klaus
Marquardt discusses possible treatments for ‘Performitis’,
Stuart Golodetz examines partition trees, Bill Clare looks at
different approaches to parameterization, Anthony Williams
explores error handling and Allan Kelly begins a new series: ‘On
Management’.

DIALOGUE
16 Desert Island Books

Paul Grenyer introduces
Allan Kelly and his
selection of books.

18 Regional Meetings
Local ACCU gatherings.

19 Code Critique Competition
This issue’s competition
and the results from last
time.

22 Bookcase
The latest roundup of
ACCU book reviews.

24 ACCU Members Zone
Reports and membership
news.

FEATURES
3 An Introduction to the Java Native Interface

Alison Lloyd shows us round the JNI, avoiding some traps
on the way.

6 Restaurant C++ and Pigdin Python
Pete Goodliffe asks us to understand the idiosyncracies of
the languages we’re working in.

8 JavaOne: JavaFX and the Future of Java
Peter Pilgrim shares his perspective of the JavaOne
confernce.

11 Java Web Start
Paul Grenyer demonstrates an easy way to distribute Java
apps.

An introduction to the Java Native Interface
Alison Lloyd shows us round the JNI, avoiding some traps on

the way.

he Java Native Interface often seems to be regarded in the same light
as advanced string theory: everyone’s heard of it, and knows a little
bit about it, but it’s also seen as complicated, requiring specialised

knowledge to use. A number of problems can be solved (or at least
reduced) via its application; and talking about JNI at parties is a sure-fire
way of not getting invited again.
While it’s true that some frighteningly complicated JNI-based systems
exist, the fundamental building blocks are simple, and once you see the
trick, creating JNI-based applications is (mostly) trivial. In this article,
based on my talk at the 2008 ACCU conference, I’ll introduce the
fundamentals of using JNI, and demonstrate a simple application. I’ll also
touch on some of the useful features provided by the system, and finally,
I’ll discuss the most irritating pitfalls. If you take nothing else from this
article, read the pitfalls section; if you ever need to use JNI in the future,
it’ll save you time, grey hair, and at least a week in rehab.
So what exactly is JNI? In essence, it is a way for Java code, running in
its virtual machine, to interact directly with other, native code, possibly
written in C, C++, or whatever. As a standard part of the Java system, you
can use the JNI to embed native code (perhaps written in C) into your Java
system. Alternately, you could embed a Java virtual machine into a system
written in C++, if you wished. In short, JNI provides all the necessary glue
and translation for native code to live and work happily with Java.
Using JNI, you can do any of the following:

Call native code from Java code
Call Java methods from native code
Create and use Java objects
Throw and catch Java exceptions from native code
Embed a JVM (complete with Java code) into a native application.

The Java native interface may be used to mitigate one of Java’s problems,
which is a lack of hardware support. No Java-related text would be
complete without some mention of platform independence, and this one
is no exception. JNI allows systems developers to talk directly to hardware,
which is particularly useful when you’re working with hardware
completely unsupported in Java. This is done in such a way as to retain as
much platform independence in the Java code as possible, which is nice.
In particular, the JNI is good for:

Reusing existing libraries
Direct hardware access, adding support for hardware
Time-critical code / operations
Making use of another language’s better support for something.

Which leads to the other side of something very versatile and powerful:
when shouldn’t it be used? As already mentioned, integrating native code
into a Java application makes it somewhat more platform dependant, in the
sense that it only runs on one platform: if you’d like to run elsewhere, you
need to port the native code. In addition, the application becomes more
complicated, with all the attendant opportunities for bugs and memory
leaks; at the very least, you add an extra compilation stage. If you find
yourself having a conversation that goes something like, ‘We absolutely
have to use Java for this project!’ then JNI wizardry probably isn’t going
to save you.

A basic JNI application
The JNI exists towards the bottom of the Java ecosystem, around where
the JVM interfaces with the underlying system, providing the link between
the Java stack and an external (native) block of code. There are thus 3 parts
to this model:

1. The Java application, comprising the various Java objects and the
JVM;

2. Some native code, helpfully wrapped up into a dynamic library;
3. The JNI, sitting somewhere between 1 and 2.

For the purposes of this article, I will be discussing Windows
programming, using DLLs, but everything applies equally to other systems
that support Java. The native code is usually wrapped in whatever the
platform uses for dynamically loaded code (e.g. *NIX shared objects),
while the Java code stays the same.
In time-honoured fashion, I will be writing a ‘Hello World’ program, with
the twist that the actual printing-to-screen will be done by some native
code; you may imagine that I’m using a really esoteric monitor that isn’t
supported by Java, if that helps.

Step 1: Design the system

System design is a fairly subjective topic, about which much has been
written. On the basis that if one can’t be a shining example, one should at
least be a dire warning, the general rules of thumb I follow are:

Try to stick to the ‘one piece of functionality equals one class’ idea;
Have a clear idea of what each piece of native code is going to do,
and split it up into simple functions;
It may make sense to split the required native code into several
libraries for neatness;
Keep as much of the functionality in the Java application as possible
– keep the native code as simple as possible;
Wrap the native code in wrapper objects, which allow it to be easily
isolated from the rest of the system.

Bearing in mind that every time you need to change the native code, you
add a compilation stage to building your application, I would recommend
trying to keep the native code to stuff that doesn’t change very often.
Keeping as much of the functionality in the Java code helps with this.
Our example program, being pretty simple, only requires a single piece of
native code, which prints a string to the screen. This will be implemented
as one native function.

Step 2: Write the Java code

In the Java application, the printing functionality will be provided by a
native library. It is necessary to tell Java at compile time what methods are

T

ALISON LLOYD
Alison used to work in education but is now
recovering. When not fiddling with her motorbike or
flying helicopters, she has been known to do
computer-related things. She writes embedded
software, mailnly to fund her flying habit. She can
be contacted at alison@zinc.org.uk.
AUG 2008 | | 3{cvu}

implemented elsewhere, and what those methods look like, which is done
by marking a method as native. For example:
 public native void printString (String strOut);

Note that the method must exist inside a class, like all other methods. It
may be public, private or protected, and it may take and return any types.
You may overload native methods, too. Rather like an abstract method,
there is no implementation, just a prototype; if it helps, think of a native
method as like an abstract method, where rather than being implemented
in a descendant class, the implementation comes in a (separate) native
library. You may have as many native methods in a class as you like.
In addition to some native methods, you need to tell the JVM where to find
the native implementations. As a dynamic library should only be loaded
once, this is done in a static, or class-level block, for example:

 static {
 System.loadLibrary("myLib");
 }

This is tied to a class, and makes sure the library is loaded when the JVM
loads the class. Of particular importance is that the name passed to
System.loadLibrary will be converted to a platform-specific scheme,
so if this code was running on Windows, the JVM would look for
something called myLib.dll. Conversely, if it were running on Linux,
toys would be thrown if libmyLib.so were nowhere to be found.
In a larger, more complex system, this would form a wrapper class, which
provides an interface between the rest of the (Java) system and the native
code. If the native methods are public, other objects may call them directly.
Alternately, you may wish to keep your native methods private, and have
other objects call wrapper classes; this is useful when you need to build
on the native functionality with some additional logic within your Java
application.
It isn’t necessary to load the dynamic library in the class whose native
methods it implements; it just has to be loaded somewhere in the system.
That said, loading libraries outside the classes where they’re used doesn’t
really add much beyond needless complexity. If you find you’re defining
native methods in several different (Java) classes, you may want to
consider splitting your native code into several libraries.
Putting all this together, you should end up with something like Listing 1.
Having written your wrapper class, you should compile it and sort out any
syntax errors.

Step 3: Generate the native header

The Java SDK comes with a handy tool for translating Java native methods
into C / C++ header files, called javah. For our example, having compiled
the HelloWorld class, you would do:

 javah -jni HelloWorld

This would produce a header file rather like Listing 2. Of note is that each
native method has been rendered into a C prototype, with the name being
munged into something that includes class, method, and parameters (more
on this below). In addition to whatever parameters were specified, each
method also gets a pair of standard parameters, which are used to access
JNI functionality. The header file pulls in the JNI functionality via the
jni.h header.

Step 4: Implement the native code

The native code in this example will be implemented in C. I generally use
Visual Studio to roll up a DLL when I need one, but you can of course use
whatever method you prefer. Having created the DLL, add the generated
header from step 3, and then copy the prototype to a source file. Fill in
useful names for the parameters and implement whatever functionality you
need.

The native code for our example application is given in listing 3.
The JNIEnv and jobject parameters are used to access various JNI
helper functionality. In this case, we need to convert the Unicode Java
string into a C char array, which is done using the GetStringUTFChars
function. This allocates some memory, so when you're done with the
string, you should call the ReleaseStringUTFChars function. There are a
number of other string-related functions available - see 'String Operations'
in section 4 of the JNI specification.
Before compiling the native code, you need to…

public class HelloWorld
{
 public native void printString (String strOut);

 public static void main (String args[]) {
 HelloWorld app = new HelloWorld();

 app.printString("Hello World!");
 }

 static {
 System.loadLibrary("myLib");
 }
}

Listing 1

/* DO NOT EDIT THIS FILE - it is machine
generated */
#include <jni.h>
/* Header for class HelloWorld */

#ifndef _Included_HelloWorld
#define _Included_HelloWorld

#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: HelloWorld
 * Method: printString
 * Signature: (Ljava/lang/String;)V
 */
JNIEXPORT void JNICALL
Java_HelloWorld_printString
 (JNIEnv *, jobject, jstring);

#ifdef __cplusplus
}
#endif
#endif

Listing 2

#include "HelloWorld.h"
#include <stdio.h>

JNIEXPORT void JNICALL
Java_HelloWorld_printString
 (JNIEnv *jenv, jobject jobj, jstring str) {
 const char *s = (*jenv)->GetStringUTFChars
 (jenv, str, 0);

 printf("%s\n", s);

 /* Free up memory to prevent memory leaks */
 (*jenv)->ReleaseStringUTFChars(jenv,str,s);
 }

Listing 3
4 | | AUG 2008{cvu}

Step 4a - Tell Visual Studio where to find the JNI stuff

You need to add the JNI location to your include path. This will be the Java
SDK installation, as follows:
 <java install>\include AND
 <java install>\include\<platform>

So something like:
 C:\jdk1.5.0_15\include
 C:\jdk1.5.0_15\include\win32

Having done this, you should be able to compile the DLL. In order to run
the application, the DLL needs to be somewhere the JVM can find it. This
may be either the execution directory (i.e. wherever the Java application
is being run from) or in the search path (which may be altered by fiddling
with the JVM initialisation files – here be dragons); the path of least
resistance is to place it in the same directory as your application.
Finally, the example ‘Hello World’ application should run, predictably
printing "Hello World!" to the screen.

Useful information
Some background is in order at this stage. In particular, how exactly are
the Java native method names converted into the C function names, how
does the JNIEnv pointer work (and what else can it do), and how does one
call Java methods from within the native code?
Native function names are constructed from:

The prefix Java_
Mangled fully-qualified class name, followed by a separator ("_")
Mangled method name
For overloaded native methods, two underscores followed by the
mangled argument signature.

Note that the fully-qualified class name includes the package name, if
any. Read that again! When generating the C header with javah, if you
don’t specify the full class name, including the package, the generated C
prototypes will be wrong, which means that the JVM won’t be able to
find the matching implementation for the native methods. If you get an
UnsatisfiedLinkError, check your native function names.
Method signatures, which are necessary for calling Java methods or
working with Java objects from native code, are a shorthand for uniquely
identifying a given method. Primitive types are represented as single
letters, while object types are fully qualified (with an ‘L’ prefix); arrays
are designated with an opening square bracket (‘[’), followed by the array
type.
The general method signature form is (arg-types) return-type.
For example, the method:
 long foo (int a, float b[], String c)

would give:
 (I[FLjava/lang/String;)J

The full list of type representations can be found in section 3 of the JNI
specification.
The JNI environment (JNIEnv) pointer passed into all native functions
provides a handle to the JNI functionality. In particular, this gives access
to the various translation mechanisms for converting Java types and
objects into a form that may be used in C. It also gives access to the
invocation API, which allows calling of Java methods (and object creation
/ manipulation) from within native code. In the same way that the Java
library APIs contain just about everything you can imagine (and many
things you probably shouldn’t), the JNI environment provides (almost)
everything you need to translate Java gubbins into C.
An example of this is calling a Java method from native code. In order to
do this, you need to know the class name, method name, and method

signature (see above for signature construction) for the method you want
to call. You then use JNIEnv->GetMethodId to get an ID for the
method, and call it using JNIEnv->CallXXXMethod, where XXX is the
return type (there’s a version of CallXXXMethod for each possible return
type). There are equivalent functions for calling static methods. Accessing
object fields is done in pretty much the same way (get a field ID,
GetXXXField).
Note that some data-related functions cause memory to be assigned, such
as the string translation functions. The (primitive) array handling functions
are another example. When working with these data types, you need to
remember to free the memory when you’re done, generally using the
relevant JNIEnv->ReleaseXXX method:

ReleaseStringUTFChars
ReleaseIntArrayElements

etc.

Pitfalls
There are a few pitfalls to be aware of when working with the JNI. In
typical fashion, this sort of thing will cause endless frustration when the
system mostly works, yet fails in odd, irritating ways. I have already
touched on several, but I’ve gathered them into a single section at the end
for easy finger pointing.

Specify the package name when generating the C header

If you don’t specify the fully-qualified class name, including the package
name, when generating the C header with javah, the native function
names won’t match what the JVM thinks they should be, and it won’t be
able to reconcile the native methods with their implementations.
Extraneous UnsatisfiedLinkErrors are a good indicator of this.

Memory leaks when working with strings and arrays

When converting Java Strings and arrays into something the native C code
can handle, remember that you need to free up memory when you’re done.
Failure to do this will result in slow (or not so slow) memory leaks,
especially if you reassign the pointers before releasing the memory!

Multiple instances of the same library

The JVM will only load a given dynamic library once, even if you load it
in several places in the Java code. This could cause a problem if you’re
storing state information in your native code, or have initialisation code
designed to be called once, and are expecting several Java wrapper classes
to each get separate copies of the DLL. The DLL (or SO) will get loaded
with whichever class gets loaded first, and any subsequent classes will get
a reference to it. Keeping your native code as simple as possible will
generally mitigate this problem, to a point.

Finally
This article provides an introduction to the basics of using the Java Native
Interface. By demonstrating a simple ‘Hello World’ program, it shows the
steps required to create a JNI-based application. I’ve also touched on
various other areas of the JNI system, and pointed out a few pitfalls.
I hope I’ve demystified JNI, and demonstrated that it can be a powerful
tool. Like all versatile ways to shoot oneself in the foot, good planning is
key to producing a useful system, but if done right, a JNI-based application
can be simple and easy to work with.

References
[1] Sun Microsystems, Java Native Interface Specification,

http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html
[2] Sun Microsystems JNI tutorial:

http://java.sun.com/docs/books/tutorial/information/download.html
[3] Sun Microsystems, Java Native Interface: Programmer’s Guide and

Specification: http://java.sun.com/docs/books/jni/index.html
AUG 2008 | | 5{cvu}

Professionalism in Programming # 51
Restaurant C++ and Pidgin Python
Pete Goodlife asks us to understand the idiosyncrasies of

the languages we’re working in.

guess that I’m a typical Briton. I am a tea-drinking, fish-and-chip junkie
who goes red thirty-five seconds after exposure to sunlight. I don’t own
any bulldogs, although I’ve been known to spout plenty of bull. And

my grip of foreign languages is typically poor. I have what you’d politely
call restaurant-French. Any slightly taxing conversation involves me
gesticulating wildly, whilst repeating the same sentence louder and more

slowly until the conversant finally understands
what I’m saying. Or politely pretends that they
do. It works. At least, until they give up and talk
back to me in English.
So, not a natural French-speaker, then.
Just how good is your mastery of your
programming languages? Is it like my French –
do you have restaurant Java, or tourist Python?
Or do you really know the languages you use?
Do you need phrase books and cheat sheets, or
are you fluent, knowing the natural language
idioms? Do you have to screw your eyes up and
think hard when crafting code to make sure that
it makes sense? Do other readers understand

what you write? Or do you write pidgin-code, translating idioms from a
different language into the one you’re writing?
A fluent French speaker doesn’t think in English and convert their thoughts
to French before speaking them. They think in French, and what they speak
aloud comes naturally. There is no mismatch of idioms. There is no need
for internal translation of the English idiom to the French idiom. To be truly
effective in a programming language, to be able to craft Really Good Code,
you have to operate in the same way.
There is a very real difference between fluent, idiomatic code, and pidgin-
code. Stop for a moment and consider the number of ways that Listing 1a
offends you. Count them all. How is Listing 1b better? Is it any better? And
what language is each one written in, anyway?
When we’re staring at code, we like to see clear structure and code patterns
that we’re familiar with – the natural idioms of that language. Certain code
patterns are offensive – they naturally cause us to sit up, take note, and
apply extreme caution. The mere sight of a goto invokes the gag reflex,
when we see messy and inconsistent layout we feel bile rising, global
variables cause an allergic reaction, and in the face of illogical and
unmalleable structure we’re gripped with the urge to run away very
quickly. This kind of judgement is a part of what sets great programmers
apart from the merely adequate ones. And we all want to be great
programmers, don’t we? How advanced do you think your internal quality
meter is?

Beauty is in the idiom of the beholder
It’s interesting to note that our sense of ‘beauty’ is shaped by familiarity
– by the prevalent idioms of the implementation domain. What constitutes
natural and beautiful code differs from language to language. Idiomatic C
code is quite a different beast from idiomatic Python. Listing 2 (2a, 2b, and

2c) illustrate this. The Python code in Listing 2b is idiomatic, but it could
have been written like Listing 2c – that listing is a more direct translation
of the original C code. But it’s not idiomatic Python, and it doesn’t look
or feel ‘right’ as a consequence. Listing 2c is more verbose, and
consequently harder to comprehend and more likely to harbour bugs.
And that’s just a really small example. (After all, small examples are
idiomatic for magazine columns.)

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

// Listing 1a - Ouch!!

bool ouch()
 {
 if (do_something() == FAILED)
 goto fail_1;
 if (do_something_else() != OK)
 goto fail_2;

 return true;
 fail_2:
 tidy_up_second_thing();
fail_1:
 tidy_up_first_thing();
return false;
}

// Listing 1b - Better?
bool better()
try
{
 do_something();
 do_something_else();
}
catch (...) { return false; }

Listing 1

// Listing 2a: Idiomatic C code

int list[] = { 1, 2, 3, 5, 8 };
for (int n = 2; n < 4; n++)
{
 do_something(list[n]);
}

// Listing 2b: Equivalent idiomatic Python code

list = [1, 2, 3, 5, 8]
for element in list[2:4]:
 do_something(element)

// Listing 2c: Equivalent non-idiomatic
// Python code

n = 2
while i < 4:
 do_something(list[n])
 n += 1

Listing 2
6 | | AUG 2008{cvu}

We become accustomed code that fits the natural idioms of the language
we’re using. Non-idiomatic code is most often what sets our internal alarm
bells ringing. And rightly so. Idioms don’t just look nice, they help us to
write safe, correct code, avoiding the subtle pitfalls in the language. Like
old wives’ tales, there is a body of collected wisdom in our programming
language idioms that is perilous to ignore.
Learning the specific idioms of a language are a rite of passage, and mark
your mastery over the language, like a journeyman programmer
becoming getting aquatinted with his tools.

No idiom is an island
Important as they are, idioms are not sacred. Nor are idioms fixed and
immutable. Fashion doesn’t stand still; over time tastes change. Some
classic programming idioms have dated: Hungarian Notation used to be
a conventional, safe, and well-regarded practice. These days it is not
merely passé, but socially unacceptable: the modern equivalent of software
leprosy.
Idioms don’t have all the answers, either. Multiple idioms compete over
the same coding practice, and no one is necessarily right. Some aspects of
code beauty are not clear cut and are continually the root of religious
debates. For example, what is your opinion on the following; do you even
care about them?

Do you indent with spaces or tabs?
If you use C-like languages, where do you put your braces?
Do you advocate single-entry-single-exit functions?
Do you prefer the functional coding style, where functions have no
side effects?

The functional coding idiom, in particular, is gaining a lot of mindshare
recently as functional programming enjoys a renaissance and the industry

begins to learn how powerful and tractable some of the functional idioms
are. Indeed, imperative languages like D are gaining functional language
facilities and ways to express side-effect-free functions.

Idiom idiocy
But sometimes the desire for elegant, beautiful, idiomatic code can trip us
up. Well intentioned use of idioms can bite you. Here’s a cautionary tale
involving C++. Now, C++ idioms are particularly amusing. The oft-cited
Perl mantra is There’s more than one way to do it. C++ is like that for idioms
– there’s always more than one idiom for anything in C++, and you can
bet that each has zealots who fervently believe that theirs is the Only Right
Way To Do It.
One of the most basic, contentious, C++ idioms is the naming of member
variables. Many of these idioms involve the subtle incursion of Hungarian
Notation. See Listing 3 for examples.
Many C++ programmers prefix member variables by an underscore.
However, this is dubious practice as the language standard reserves many
identifier names beginning with an underscore. Class member variables
are not actually one of the reserved cases, but this convention sails
dangerously close to the wind. Also common is the m_ prefix (where m
stands for member). I’ve even seen the disgustingly cute my_ prefix, e.g.
my_member. Euch!
So what do the C++ experts do? Herb Sutter advocates a trailing
underscore on member variable names. Andrei Alexandrescu sadly seems
to follow his lead here. I have to admit that I have a personal dislike for
this approach as the variable names read very strangely.
Scott Meyers is the sensible advocate of minimalism – he writes the
variable name, the whole name, and nothing but the name (see the end of
Listing 3). To my mind, this approach makes sense. If you need any extra
indication of memberyness then you probably have code that is too hard
to read – your function has too many parameters, or your class is too large.
Fix that problem, don’t mask it with silly variable names.
Why does this simple naming issue matter? Well, it shouldn’t, until we
combine the Meyers Minimal Member Moniker Mechanism with another
idiom. When constructing a C++ class, members are given their initial
values in the member initialisation list. There’s another naming minefield
here: three of the options are enumerated in Listing 4.

They are only subtly different, are functionally equivalent, and each seems
perfectly adequate. They are all common in modern C++ code. My
workplace tends to adhere idiom 3, it’s nicely symmetric and doesn’t
introduce another unnecessary name into the code.
Great.
Well, not quite. Idiom 3 has a hidden sting in its tail. Sure enough, in
Listing 4 it works just as advertised. But consider what happens when you
need some slightly more complex constructor logic:
 Foo::Foo(int thing) : thing(thing)
 {
 if (thing == 1)
 thing = 2;
 }

What is the value of the thing member when a Foo is constructed with
the value 1? It’s 2, right? Well, no it isn’t. It's 1. But how can that be, I
hear you ask? The name thing inside the constructor is bound to the
constructor parameter, not to the class’ member variable. If you wanted to
assign the member, you must write:

 this->thing = 2

class ExampleMemberNames
{
 // Many programmers prefix member variables
 // with “_”
 int _common;

 // Also common is an “m_” prefix
 int m_member;
 int m_another;

 // Herb Sutter advocates a trailing underscore
 int sutter_;

 // Scott Meyers is the sensible advocate of
 // minimalism
 int meyers;
};

Li
st

in
g

3

class Foo
{
private:
 int thing;

public:
 // How would you name the ctor parameter?
 Foo(int thing_in) : thing(thing_in) {} // (1)
 Foo(int t) : thing(t) {} // (2)
 Foo(int thing) : thing(thing) {} // (3)
};

Li
st

in
g

4

the sensible advocate of minimalism –
he writes the variable name, the whole

name, and nothing but the name

functional programming enjoys a
renaissance
AUG 2008 | | 7{cvu}

World View of a Java Champion # 4
PETER PILGRIM
Peter is a Java EE software developer, architect, and Sun
Java Champion from London. By days he works as an
independent contractor in the investment banking sector.
Peter can be contacted at peter.pilgrim@gmail.com

JavaOne: JavaFX and the Future of Java
Peter Pilgrim shares his perspective of the JavaOne

conference.

n May 2008, I got my fifth chance to visit California and attend the
annual JavaOne Conference. Whenever I go to conferences like this I
typically spend the majority of the time enjoying the technical sessions.

However, it is an enjoyable experience meeting other delegates and other
engineers from around world. The conference is truly international. Java
and the number of people involved in its ecosystem are vast. There are
people who specialise in everything from mobile device development to
SOA. It is impossible to keep up with the momentum of 15000 delegates,
all interested in different areas of computing.
At this year’s JavaOne, the conference was split into several tracks: Cool
Stuff, Desktop, Consumer Technologies, Java SE, Rich Media and
Content, Open Source, Java EE, Tools and Script Languages, SOA and
Enterprise Integration, Java ME and Next-Generation Web. The technical
sessions and birds-of-a-feather talks matched at least one of these tracks.

JavaFX: Declarative rich internet client programming
The most important sessions, in my view, involved improvements to Java’s
graphics, desktop and client side capabilities. Hence, I spent a lot of my
time in sessions on the Rich Media and Content track, because I am
particularly excited by the JavaFX family of technologies. I shared the
belief with several other User Interface engineers that JavaFX stack was
this year’s great innovation. JavaFX is a statically typed declarative
compiled language for building RIAs (Rich Internet Applications).
JavaFX is the marketing term for a language created by a certain Mr.
Christopher Oliver, when he was employed by SeeBeyond. SeeBeyond
was later acquired by Sun in September 2005. Oliver called his creation
F3 (Form Follows Function). A lot of developers, at the conference,
commented that when they saw the syntax of JavaFX, it felt like a non-
Sun technology. In fact, Charles Lowell of the Drunk and Retired Podcast,
declared his surprise in his podcast. He thought that Sun must have hired
an old Lisp programmer or a Haskell engineer to create the language.
Lowell was not far from being correct. Oliver had a background in Lisp
programming and his inspiration for F3 came partially from linguistics and
literate programming.
What is the difference between JavaFX and normal Java? Other than
favouring a declarative syntax for programming, JavaFX also compiles to

byte-codes that are interpreted and run on the JVM (Java Virtual Machine).
The language supports four data types: Boolean, Integer, Number and

Object, whereas Java has primitives like char, short, int, long, float, double
and, of course, Object. JavaFX makes event notification very easy through
a built-in language concept of binding. Binding is a feature which allows
an attribute of a target object to be notified when an attribute of a source
object is changed. Building an equivalent Swing user interface using Java
takes a lot of effort, code and know-how. In Java you would need to create
your event class, listener and source. After that you would need to add logic
to publish and subscribe to your custom event. In comparison JavaFX is
avant-garde, but you still need to know what you are doing. The declarative
syntax of JavaFX is a boon for understanding the structure of the user
interface. The binding feature permits the user interface elements to be
updated whenever the data model changes and vice versa. JavaFX can
integrate with other APIs written in Java. So the world of open source and
commercial frameworks and libraries is fully available. It is a little harder
to call a JavaFX object from Java, but entirely possible.
JavaFX, then, is Sun Microsystem’s spearhead. It is their attempt to gain
more market share in the RIA sector and compete with the other two major
players: namely, Microsoft’s SilverLight and Adobe’s Flex. Sun has
wisely invested attention in the Java Runtime Environment over the past
year. In the past, the big problem with Java has always been the size of the

I
In comparison JavaFX is avant-

garde, but you still need to know
what you are doing
Restaurant C++ and Pidgin Python (continued)
otherwise you’re just writing to a temporary variable that will shortly be
thrown away. This is a subtle but nasty way to introduce obscure bugs into
your codebase. So there you have a collision of idioms. Some idioms are
bad for you! Hurrah for C++, and hurrah for idioms.
 How could you alleviate this problem? There are many ways. For
example, you could make the thing parameter const in the constructor
implementation. But for built-in types passed by value, this isn’t idiomatic!
How else could you avoid it? (You could always chose to follow a different
set of idioms. Or use a different language.)

The moral of the story
It’s important to consider the idioms of the language you’re working in –
and to gauge the beauty and quality of code against the familiar idioms it

should adhere to. Common language idioms have several important uses:
they help to show the elegance, beauty, and artistry of a piece of code. They
help you to write code that seems familiar and easy to work with, and they
(usually) help you to avoid simple bugs. You can gauge your mastery of
a language by how well you know its idioms.
It’s particularly important to understand why these idioms exist. Learn to
think in the programming language you’re using, to think in terms of it
idioms.
But don’t blindly trust idioms. Idioms can be flawed. Always use your
brain. Of course, if this seems like too much work, perhaps you should give
up and produce boring, ugly code. Or learn to speak French properly
instead.
8 | | AUG 2008{cvu}

download over the network. The runtime was too big to be transported
across the wire to clients in comparison with Adobe’s smaller Flash
solution. Flash is available in 99.9% of desktop computers with a web
browser according to some industry figures. The trouble was also that the
Java Runtime Environment was very monolithic and not modular.
Consequently, the cost of administration across client PCs was high, and
obviously Sun and Java have some catching up to do. At JavaOne 2007,
Sun announced the Consumer JRE, which would make significant in-roads
in these deployment, administration and installation problems. The
Consumer JRE includes many initiatives such as QuickStarter, a Java
Kernel, a Deployment Kit and hardware accelerated graphics
improvements. At this year’s conference, Sun announced the early beta of
JDK 6 Update N (the official name of Consumer JRE). It is available now
for developers to test and experiment with. The new JDK also has a bonus,
a great new look and feel cross-platform UI, called Nimbus as the default.
There were several conference special key
notes to illustrate the new features of JavaFX.
In one such presentation Sun demonstrated
something truly amazing, the ‘Video Ball’.
This was a live demo of JavaFX playing scores
of video players. Each video was mapped to the
surface of a 3D sphere. Every video frame was
also rotated in real-time in three dimensions
around x,y and z axes. No longer could you say
that Java was slow, apparently. In years gone
by, Java has had a poor story when working
with audio and video. Now with this Video
Ball demonstration, all of our tails were up with excitement.
Adobe Flash is currently still the leader in web based video and audio and
this technology is well proven with excellent sites like Youtube.com and
Vimeo.com. These Web 2.0 applications would not be possible without the
Flash Video encoding and decoding technologies, but now JavaFX (and
Java) have at least a playback ability. It is called the Java Media
Component API. Sun announced the public release would expected to be
July 2008. Through this library Java will be able play audio and video
content through codecs installed on the users machine. It is a clever way
to get around the litigation and confusion surrounding codec licenses and
lawyers, methinks. Sun announced at the conference that it had signed a
deal with leading Video Codec provider, On2 to provide a cross platform
media platform codec (On2 is also the company behind the Flash Video
codec by the way). So this is wonderful news, for developers who hope to
take advantage of Java’s famed portability (write once run [almost]
everywhere) with a cross-platform codec.
On the grapevine, I talked to many engineers, who expressed some of
disappointment with Java at the moment. Some are interested in other
compatible languages like Scala, created by Martin Odersky, and dynamic
languages like JRuby and Groovy. For the JavaFX Freaks like myself,

there were complaints that yet again this conference had produced not one
single deliverable product in time. It was again all promises about product
releases well into the future, by three, six or even twelve months down the
line. In particular, the JavaFX SDK Preview 1.0 release was delayed until
the summer of 2008 (so by the time you read this in ACCU, it will, fingers
crossed, have already been released). This was frustrating to developers,
I could share their pain. We all asked a simple question. When are we going
to see any tech conference when the product is released rather than hear
about a product that will be released soon? For those you are interested in
mobile phone development then JavaFX Script for Mobiles will be

released in Spring 2009. On the positive side, clearly the makers of Java
are definitely attempting pushing the boat out to reinvigorate Java on the
Desktop again.

What’s Coming in Java 7?
Of course, there is more to Java than rich media or graphics and there was
debate about the modularisation of the Java platform. It would appear that
OSGi and the JSR 277 modularisation standard have made a peace of sorts,
albeit unofficially. Java Specifications Requests are the names of
proposing standards that are govern by the Java Community Process (I
talked about the JCP in the previous Champions View series article #3).
JSR 277 is a specification about introducing a standard module system into
the Java platform. The related JSR 294 specifies superpackages and the
concept of importing and exporting Java packages. Peter Kriens and the
OSGi body were very much against the original specifications, because of

their non-involvement in the standard. OSGi is
an existing standard for Java modularisation
going back almost a decade. The OSGi side
were pushing their de-facto initiative as being
more mature and already proven. It would
appear that the Glassfish application server
project has signalled the peace between these
two opposing forces, because it has decided to
support both in version 3 of their development
source code. Glassfish is the open source
project of Sun’s application server product.

And then, there was the unresolved closures in Java debate. At this point
in time, it appears disappointingly that closures will not be making their
entrance into the Java language any time soon. Closures are functional
blocks that appear in other languages like Ruby, Scala and Groovy. Getting
resolutions on closures is hard, because there are at least three competing
papers floating around on the web: BGGA (Gilad Bracha, Neal Gafter,
James Gosling and Peter von der Ahé), CICE (Concise Instance Creation
Expessions by Joshua Bloch, Bob Lee and Doug Lea) and FCM (First
Class Methods by Stephen Colebourne and Stefan Schulz). Each camp has
its supporters and there is also another camp that believes adding closures
would be detrimental to the language. Some folks even believe that
developers should move to other languages with closures, Scala, and leave
Java well alone. Personally, I would love to see closures make it into Java,
if only to make writing control abstractions easier, because I have seen lots
of commercial APIs that throw checked exceptions all over the place.
Closures would enable me to write a simple library API to handle these
cases. James Gosling had this to say in a recent blog about the history of
the Java language:

Closures were left out of Java initially more because of time
pressures than anything else. Closures, as a concept, are tried and
true - well past the days of being PhD topics. The arguments are in
the details, not the broad concepts. In the early days of Java the lack
of closures was pretty painful, and so inner classes were born: an
uncomfortable compromise that attempted to avoid a number of
hard issues.

In relation to the possible (non-)inclusion of closures in the next version
of Java, version 7, there was interest in other improvements for Java SE
7. I think everyone felt that there was much uncertainty about the features
to include. Java is not the only language that runs on the JVM. Since Sun
has invested in Ruby and very recently Python running on the JVM,
respectively JRuby and Jython. They hired the key personnel to work full
time on these projects. I think it is a very good guess that the dynamic
invocation instruction will make an appearance inside the JVM 7. The
invokedynamic byte code will support dynamic languages and allow the
possibility of writing efficient and economic compilation techniques at
run-time. Almost certainly a standard module system will appear in Java
7 with superpackages and a default repository. Whether if it will be OSGi
compatible remains to be seen.
The concurrency library extensions, like the brand new TransferQueue
collection (created by Doug Lea and Brian Goetz) and some innovations

there is more to Java than
rich media or graphics and
there was debate about the
modularisation of the Java

platform

When are we going to see any tech
conference when the product is
released rather than hear about a
product that will be released soon?
AUG 2008 | | 9{cvu}

from Cliff Click will make it into Java 7. The ability of Java to run on multi-
core systems is very important and Sun will surely make any concurrency
improvements available inside the Java SE core. In relational to
concurrency, the improvements to I/O, in NIO2, will also make it into the
Java 7. Lastly, I would expect the Java Media Components and the brand
new Swing Application Framework to also make it in.
So when will we see Java 7? This is the bone of contention. Apparently,
and very surprisingly, there is no official Java SE 7 JSR in existence at this
time of writing, although Danny Coward, Sun’s Java SE chief engineer and
the specification lead is said to be working on it. Well, he has been working
for 18 months already or so. So your guess is as good as mine, but I
guestimate late 2009.

Enterprise Java
At this year’s conference, there was less excitement on the enterprise
development side. JPA 2.0 (Java Persistence API 2), EJB 3.1 (Entity Java
Beans) were discussed, presented and, naturally, the Java Enterprise
Edition 6. These standards are in public draft review or will be released
for future debate. However, there was one talk that did interest me. It was
JAX-RS, Java API for XML RESTful Services. This specification allows
RESTful services to be created and declared on POJOs using annotations.
In much the same way you can already define a SOAP/WSDL style web
service on a methods belonging to Session Beans in EJB 3, the JAX-RS
annotations will allow you to declare RESTful service endpoints. So this
is exciting for enterprise development, because annotations make it easier
to write these services. I suspect RESTful services will become popular
inside companies that want to expose functionalities between divisions,
departments and ‘silos’. A RESTful service is great way to expose data to
another department using standard Internet protocols and techniques.

In summary…
Java has a great future on the desktop, providing that the rich media
applications and libraries live up to the expectations. Adobe still have the
lead on audio and visual content. On the other hand, Java has a ubiquitous
virtual machine and it is proven. I think the Consumer JRE will be a big
hit. If they can get the size of the install down and the launch time for a
cold start Java[FX] applet to be short as it is for a Flash application then
Sun is on to a winner. The JVM is available on mobile phones, desktops
and inside servers. I think we are heading to a marvellous new age of
development, where the engineer can dictate the technology for once. I
think that Sun should also think about the ‘Prosumer’ market as well.
These are the smarter engineers and media people who are starting to think
about computing on the move. Asus did think about it years ago with its
cheaper ultra mobile laptops and obviously Apple has its Air product on
the high end. There is definitely a brand new market niche out there now
and Java should be part of it as well.

References
[1] JavaFX http://www.sun.com/software/javafx/
[2] JavaFX Script http://www.sun.com/software/javafx/script/
[3] JavaFX Script Documentation http://openjfx.java.sun.com/current-

build/doc/index.html
[4] JavaFX Home Page to sign up for the private preview of the JavaFX

SDK and to view demos http://www.javafx.com/
[5] Open JavaFX https://openjfx.dev.java.net/
[6] Latest JavaFX Script Compiler Release Milestone 3 http://

openjfx.java.sun.com/
[7] James Weaver’s JavaFX Blog http://learnjavafx.typepad.com/
[8] Create rich applications with JavaFX Script http://www.ibm.com/

developerworks/java/library/j-javafx/
[9] Planet JFX http://jfx.wikia.com/wiki/Main_Page

[10] Drunk and Retired Podcast by Charles Lowel and Michael Coté http:/
/www.drunkandretired.com/podcast/

[11] David Herrron on Scene graph API available under open source
http://weblogs.java.net/blog/robogeek/archive/2007/12/
scene_graph_api.html

[12] Alex Miller’s frequently updated list of features proposed for Java 7
includes 150 links related to closures at the time of writing (Alex
Miller, Pure Danger Tech) http://tech.puredanger.com/java7.

[13] James Gosling addressed the history of closures in Java in a recent
blog post (On the Java Road, January 2008) http://blogs.sun.com/jag/
entry/closures.

[14] Closures for the Java Language http://www.javac.info/ BGGA
Closures specification http://www.javac.info/closures-v05.html

[15] FCM Closures specification http://docs.google.com/
View?docid=ddhp95vd_0f7mcns and see here FCM for a prototype
http://www.jroller.com/scolebourne/entry/fcm_prototype_available

[16] CICE Closures specification http://docs.google.com/
View?docid=k73_1ggr36h also see the CICE+ARM prototype http:/
/slm888.com/javac/

[17] Java 7 Development Home https://jdk7.dev.java.net/
[18] Dr Cliff Click, Azul Systems, JavaONE Slides on Towards Scalable

Non-Blocking Coding Style in Java http://www.azulsystems.com/
events/javaone_2008/2008_CodingNonBlock.pdf

[19] Consumer JRE: http://java.sun.com/developer/technicalArticles/
javase/consumerjre
10 | | AUG 2008{cvu}

Java Web Start
Paul Grenyer demonstrates an easy way to distribute

Java apps.

ava. I spent years avoiding it. I felt it was inferior to the power of C++.
I thought it was slow, clunky, the GUI was rubbish and that garbage
collection was for wimps who did not know how to clean up after

themselves or use smart pointers. Ok, so we all know I was wrong. And
life being the way it is, being so outspoken about Java was sure to come
and bite me and it did.
Since December I have been writing Java as part of my day job and I found
I liked it so much I’ve even started using it for some of my own projects.
I do not even miss Microsoft’s Visual Studio. I have become very attached
to Eclipse [1] and having code checked in real time, therefore negating a
build stage, is very useful.
I have been so busy writing Java (and editing my new CVu column, ‘Desert
Island Books’) that I have not written an article on anything else for quite
some time. The editor of Overload has been nagging me for material, as
has the new publications officer. I have also seen a few comments here and
there about how poorly Java is served by the ACCU at present, but then
with a strong history in C and C++ this is to be expected. However, my
plan here is to redress the balance a little.
I’m spending most of my free time (not that I have a lot these days) working
on a file viewer application that allows fixed length record files in excess
of 4GB to be viewed without loading the entire file into memory. I wrote
one of these in C++ (MFC) for a company I worked for a number of years
ago. It worked well, but was a bit clunky and the user interface looked
rubbish. I think they are still using it, but I’m not sure. I have had a few
failed attempts to write it in C# recently, but it was not until I had a go in
Java with its JTable and TableModel classes that I really made some
progress.
The file viewer is a little way off being finished, but I am starting to think
about package and deployment options. I want it to be easy and one of the
applications I use in my day job uses Java Web Start [2] and it works really
nicely. Sun describe Java Web Start as:

Using Java Web Start technology, standalone Java software
applications can be deployed with a single click over the network.
Java Web Start ensures the most current version of the application
will be deployed, as well as the correct version of the Java Runtime
Environment (JRE).

It sounds ideal for a constantly developing application that may be used
by people all over the world on different operating systems.
As I sit down to write this article I have done no more that briefly read the
Java Web Start documentation (so much for writing about what I know
about – again!). I am intending to write an article about how to create
applications and deploy them using web start by investigating it myself and
writing down the steps as I go. I’ll assume a reasonable familiarity with
Java and Swing [4].
From reading the documentation it looks like I need to package my Java
application in a JAR file so I’ll look at how to do that and make the process
easily repeatable using ANT.

Java Web Start application
In order to test Java Web Start I need a simple Java application. Before
getting stuck into writing such an application it is worth consulting the
Java Web Start Guide [5] section on Application Development
Considerations, which states:

Developing applications for deployment with Java Web Start is
generally the same as developing stand-alone applications for the
Java(TM) Platform Standard Edition. For instance, the entry point
for the application is the standard:

 public static void main(String[] argv)

However, in order to support Web deployment – automatic
download and launching of an application – and to ensure that an
application can run in a secure sandbox, there are some additional
considerations:

An application must be delivered as a set of JAR files.

All application resources, such as files and images must be stored
in JAR files; and they must be referenced using the
getResource mechanism in the Java(TM) Platform Standard
Edition.

If an application is written to run in a secure sandbox, it must
follow these restrictions:

No access to local disk.

All JAR files must be downloaded from the same host.

Network connections are enabled only to the host from which
the JAR files are downloaded.

No security manager can be installed.

No native libraries may be used.

Limited access to system properties. The application has
read/write access to all system properties defined in the JNLP
File, as well as read-only access to the same set of properties
that an Applet has access to.

An application is allowed to use the System.exit call.

An application that needs unrestricted access to the system
will need to be delivered in a set of signed JAR files. All
entries in each JAR file must be signed.

As expected, the application needs to be JARed. My file viewer application
uses both resources and requires access to the local system so the JARs

J

import javax.swing.JFrame;
import javax.swing.JLabel;
public class HelloJavaWebStart
{
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Java Web Start!");
 JLabel label = new JLabel(
 "Hello, Java Web Start!", JLabel.CENTER);
 frame.add(label);
 frame.setSize(250,100);
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

Listing 1

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com
AUG 2008 | | 11{cvu}

will have to contain resources and be signed, but I want to start with
something simpler first. All of this is covered in the Application
Development Considerations.
I will start with a simple Java Swing application (Listing 1).
The above application creates a simple window with the title ‘Java Web
Start!’ and a label ‘Hello, Java Web Start’. The window is 250 by 100
pixels and visible. The easiest way to test the application is at the command
line (unless of course you are using Eclipse):
 javac HelloJavaWebStart.java
 java HelloJavaWebStart

The window looks like Figure 1.

JARing
The Sun website describes JAR files as follows:

The JavaTM Archive (JAR) file format enables you to bundle multiple
files into a single archive file. Typically a JAR file contains the class
files and auxiliary resources associated with applets and
applications.

The format of the command line parameters for the jar command is:
 jar cf jar-file input-file(s)

The options and arguments used in this command are:
The c option indicates that you want to create a JAR file.
The f option indicates that you want the output to go to a file rather
than to stdout.
jar-file is the name that you want the resulting JAR file to have.
You can use any filename for a JAR file. By convention, JAR
filenames are given a .jar extension, though this is not required.
The input-file(s) argument is a space-separated list of one or
more files that you want to include in your JAR file. The input-
file(s) argument can contain the wildcard * symbol. If any of the
"input-files" are directories, the contents of those directories
are added to the JAR archive recursively.

Putting the application into a JAR is therefore straight forward:
 jar cf HelloJavaWebStart.jar
 HelloJavaWebStart.class

However, to be able to just run the application from the JAR file, I need a
manifest file to tell Java which main should be run by default. Obviously,
the HelloJavaWebStart application only has a single main, but any
number of classes can be included in a JAR and all of them could have
their own main methods.
A manifest file is just a text file that, in this case, indicates which main to
run:
 Main-Class: MyPackage.MyClass

The text file must end with a new line or carriage return, otherwise the last
line will not be parsed properly. Also, there must only be a single space
between the colon and the start of the package or class name.
The HelloJavaWebStart application uses the default package, so only
the name of the class is required:
 Main-Class: HelloJavaWebStart

To incorporate the manifest file into the JAR add the m command line
parameter and the name of the manifest file to the invocation of the JAR
tool:
 jar cfm HelloJavaWebStart.jar Manifest.txt
 HelloJavaWebStart.class

On Windows and Linux (and MacOS X – Ed.) the application can now be
run by simply double clicking the JAR file. The alternative is to run it from
the command line:
 java -jar HelloJavaWebStart.jar

JARing with ANT
Having to repeatedly type the javac command followed by the jar
command is both time consuming and error prone (not to mention
irritating). Ant [3] is a build tool that can automate both. I won’t go into
the details of installing Ant, but the basic steps are:

1. Download and unpack Ant.
2. Make sure the Ant bin directory is in your platforms PATH

environment variable.
3. Add JAVA_HOME to your platform's environment variables and

make sure it points to the location of your Java SDK installation
(e.g. on Windows: C:\Program Files\Java\jdk1.6.0_06).

Ant uses XML to describe builds. Every Ant build file must contain a
project:
 <project name="HelloJavaWebStart" basedir=".">
 ...
 </project>

As shown above, every Ant project should specify its name and the base
directory. The name is specified by the name attribute. The base directory
is the directory where Ant will go looking for the files to be processed and
is specified by the basedir attribute. Specifying a full stop tells Ant to
look in the current directory. When an Ant build file is run, the tasks inside
the project are executed.
The javac task is used to compile java files:
 <javac srcdir = "${basedir}"/>

In its simplest form the javac task only needs to know where to look for
the .java files to compile. This is specified by the srcdir attribute.
When ${basedir} is read by Ant it is replaced by the value of basedir
specified by the project. The javac task will look in the current directory
for .java files and, by default, write the .class files to the same
directory. In most cases you would want to specify a separate source and
destination directory. Ant does of course allow this, but it is not necessary
for this example.
The jar task is used to create JAR files:
 <jar jarfile="HelloJavaWebStart.jar"
 basedir="${basedir}"
 manifest="manifest.txt"
 includes="*.class"/>

The jar task needs to know:
The name of the JAR file to create, specified by the jarfile
attribute.
The directory to look in to find the files to jar, specified by the
basedir attribute.
The location of the manifest file, specified by the manifest
attribute.
The types of files to include in the jar, specified by the include
attribute. In the example above, specifying *.class tells the jar
task to include all .class files and nothing else.

Fi
gu

re
 1
12 | | AUG 2008{cvu}

By default Ant build files are called build.xml. The complete Ant file
for the HelloJavaWebStart looks like Listing 2 and should be saved
to the same directory as HelloJavaWebStart.java.
To invoke Ant and build the application type the following at the command
line:
 ant

This will give something resembling the following output:
 Buildfile: build.xml
 [javac] Compiling 1 source file
 [jar] Building jar: HelloJavaWebStart.jar

 BUILD SUCCESSFUL

Ant is a very powerful build tool and does far more than I have described
here. See the Ant documentation for details.

Configuring a web server
Java Web Start applications can be hosted on almost any web server, but
the server must be configured to support the JWS mime type.

Apache

Apache [6] web server could not be easier to configure for Java Web Start:
1. Open the mime.types file from the Apache conf directory.
2. Add the line:

 application/x-java-jnlp-file JNLP

to the end of the file and save.
3. Restart apache.

Microsoft Internet Information Server (IIS)

The standard IIS 5.0 that come with Windows XP appears to support JWS
by default, although it is not listed on the ‘Mime Types in IIS’ page [8].
If you do find you need to add the JNLP mime type, follow these steps:

1. In the IIS snap-in select the website to add the mime type to and
bring up the Properties dialog box.

2. Select the HTTP Headers tab.
3. Under MIME Map, click the File Types tab and select New Type.
4. Type .jnlp in the Extension field and application/x-java-

jnlp-file in the Content Type field, and then click OK.

Publishing an application
Once a web server has been configured, all that is left is to publish the JAR
file to the server, along with a Java Network Launch Protocol (JNLP) file
that describes how to launch the application and a hypertext link to that
same JNLP file. JNLP files can be very simple or very involved. Listing 3is
the simplest possible JNLP file that will get the HelloJavaWebStart
application to launch:

The codebase attribute specifies the base location for all relative
URLs specified in href attributes in the JNLP file.
The information element contains other elements that describe
the application and its source. The title and vendor elements are
the bare minimum.
The resources element describes all the resources that are needed
for an application.

The j2se element specifies what version of Java to run the
application with.
The jar element specifies the JAR file to launch.

The application-desc element denotes this is the JNLP file for
an application.

A simple hypertext link is needed to launch the application. Assuming that
the JAR file and a JNLP file called HelloJavaWebStart.jnlp have
been copied to http://myserver/apps the following link will allow
the application to be launched:
<a href="http://myserver/apps/
 HelloJavaWebStart.jnlp">Hello Java Web Start

That completes a simple example of creating and deploying a Java Web
Start application. Yes, it really is that easy. However, if you need to access
resources such as images it does get a little more complicated, but not
much.

Retrieving resources from JAR files
As mentioned previously, any resources used by a Java Web Start
application must be included in the JAR file. The Java Web Start
Application Development Considerations states the following:

Java Web Start only transfers JAR files from the Web server to the
client machine. It determines where to store the JAR files on the
local machine. Thus, an application cannot use disk-relative
references to resources such as images and configuration files.

All application resources must be retrieved from the JAR files
specified in the resources section of the JNLP file, or retrieved
explicitly using an HTTP request to the Web server. Storing
resources in JAR files is recommended, since they will be cached
on the local machine by Java Web Start.

The following code example shows how to retrieve images from a
JAR file:

 // Get current classloader
 ClassLoader cl =
 this.getClass().getClassLoader();

 // Create icons
 Icon saveIcon = new ImageIcon(
 cl.getResource("images/save.gif"));
 Icon cutIcon = new ImageIcon(
 cl.getResource("images/cut.gif"));
 ...

The example assumes that the following entries exist in one of the
JAR files for the application:

 images/save.gif
 images/cut.gif

To retrofit this on the HelloJavaWebStart application I need an image
(the ACCU [7] logo will do nicely) in a subdirectory to the directory where

<?xml version="1.0" encoding="UTF-8"?>
<jnlp codebase="http://myserver/apps">
 <information>
 <title>JavaWebStart</title>
 <vendor>Paul Grenyer</vendor>
 </information>
 <resources>
 <j2se version="1.2+"/>
 <jar href="HelloJavaWebStart.jar"/>
 </resources>
 <application-desc/>
</jnlp>

Listing 3

<project name="HelloJavaWebStart" basedir=".">
 <javac srcdir="${basedir}"/>
 <jar jarfile="HelloJavaWebStart.jar"
 basedir="${basedir}"
 manifest="manifest.txt"
 includes="*.class"/>
</project>

Li
st

in
g

2

AUG 2008 | | 13{cvu}

HelloJavaWebStart.java is, called images. The application also
needs slightly refactoring so that an instance is available to call getClass
on and the label text needs to be replaced with the image (Listing 4).
It is important that paths to images use forward slashes, otherwise they will
not be found. The path is the relative path in the JAR file. If you use Ant
to build the new HelloJavaWebStart application, but run the .class
file or run it from Eclipse:
 java HelloJavaWebStart

all is well. However, if you try and run the JAR file an exception is thrown
as the image cannot be found. This is because the image has not been
included in the JAR file. To do this the jar task must be modified to
include the image:
 <jar jarfile="HelloJavaWebStart.jar"
 basedir="${basedir}"
 manifest="manifest.txt"
 includes="*.class, images/*.*"/>

As you can see above, images/*.* has been added to the include
attribute. This tells Ant that as well as all the .class files, it should
include all the files in the images subdirectory. Run Ant again and launch
the application via the JAR file locally and then copy it to the web server
and try it there (Figure 2).
So adding a static image to the JAR was not that bad. What is more
interesting is allowing the user to select the image at runtime.

Allowing local access
As mentioned previously, if a Java Web Start application wants to access
local resources, such as the file system, it must be digitally signed and the
JNLP file configured to allow it. Let’s start by modifying the
HelloJavaWebStart application to open a file chooser dialog and
allow the user to select the image that is loaded (Listing 5).
When this application is built, with the Ant build file (removing the JARing
of the images directory as it is not needed for this example), and run locally
it allows the user to select and display an image from the hard disk. If the
JAR file is deployed to the web server and the same test run, the error
“access denied” is given.
This error is caused by the lack of security permissions in the JNLP file.
These can be added by modifying the JNLP file (Listing 6).
Running the application from the web server now gives the error
“Unsigned application requesting unrestricted access to system.”

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloJavaWebStart extends JFrame
{
 private HelloJavaWebStart()
 {
 this.setTitle("Java Web Start!");

 ClassLoader cl =
 this.getClass().getClassLoader();
 ImageIcon image =
 new ImageIcon(cl.getResource(
 "images/accu_logo.gif"));
 JLabel label =
 new JLabel(image, JLabel.CENTER);

 this.add(label);
 this.setSize(250,100);
 this.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String[] args)
 {
 new HelloJavaWebStart().setVisible(true);
 }
}

Li
st

in
g

4
Fi

gu
re

 2

import javax.swing.ImageIcon;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;

public class HelloJavaWebStart extends JFrame
{
 private HelloJavaWebStart()
 {
 this.setTitle("Java Web Start!");

 final JFileChooser chooser =
 new JFileChooser();
 if (chooser.showOpenDialog(this) !=
 JFileChooser.CANCEL_OPTION)
 {
 ImageIcon image = new ImageIcon(
 chooser.getSelectedFile()
 .getAbsolutePath());
 JLabel label = new JLabel(
 image, JLabel.CENTER);
 this.add(label);
 }

 this.setSize(250,150);
 this.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String[] args)
 {
 new HelloJavaWebStart().setVisible(true);
 }
}

Listing 5

<?xml version="1.0" encoding="UTF-8"?>
<jnlp codebase="http://myserver/apps">
 <information>
 <title>JavaWebStart</title>
 <vendor>Paul Grenyer</vendor>
 </information>
 <resources>
 <j2se version="1.2+"/>
 <jar href="HelloJavaWebStart.jar"/>
 </resources>
 <application-desc/>
 <security>
 <all-permissions/>
 </security>
</jnlp>

Listing 6
14 | | AUG 2008{cvu}

For this to work the JAR file must be signed using the Java SDK keytool
and jarsigner tools.
Open a command prompt and move to the directory holding the source files
for HelloJavaWebStart. Then follow these steps:

1. Create a key store, called myKeystore with the alias “myself” by
entering the following command and entering the required
information at the prompt:

 keytool -genkey -keystore myKeystore
 -alias myself

This should give the following output and create a file called
myKeystore:

 Enter keystore password:
 Re-enter new password:
 What is your first and last name?
 [Unknown]: Paul Grenyer
 What is the name of your organizational unit?
 [Unknown]: Marauder
 What is the name of your organization?
 [Unknown]: Marauder
 What is the name of your City or Locality?
 [Unknown]: Norwich
 What is the name of your State or Province?
 [Unknown]: Norfolk
 What is the two-letter country code for this
 unit?
 [Unknown]: UK
 Is CN=Paul Grenyer, OU=Marauder, O=Marauder,
 L=Norwich, ST=Norfolk, C=UK correct?
 [no]: yes

 Enter key password for <myself>
 (RETURN if same as keystore password):

2. Create a certificate by entering the following command and the
password entered in the previous step:

 keytool -selfcert -alias myself
 -keystore myKeystore

3. To check that the key store and certificate have been created, enter
the following command using the same password as before:

 keytool -list -keystore myKeystore

This should give output similar to the following:

 Enter keystore password:

 Keystore type: JKS
 Keystore provider: SUN

 Your keystore contains 1 entry

 myself, 18-May-2008, PrivateKeyEntry,
 Certificate fingerprint (MD5): 77:72:06:EC:
 18:2F:00:85:8E:E8:A8:EE:74:69:F9:EF

4. Finally, to sign the JAR file enter the following, and the same
password:

 jarsigner -keystore myKeystore
 HelloJavaWebStart.jar myself

which should give the following output:

 Enter Passphrase for keystore:
 Warning:
 The signer certificate will expire within six
 months.

Now copy the JAR file over and try the application via the web server
again. You should be presented with a dialog similar to Figure 3.
Click Run to launch the application with full access to local resources.
This is not quite the end of the story though. Although the key store and
certificate only need to be created once, signing the JAR file needs to be
done every time the JAR file is deployed, so should be part of the Ant build
file. Ant has a signjar task that does this (Listing 7).

The jar attribute specifies the JAR file to sign.
The keystore attribute specifies the key store to use.
The alias attribute specifies the alias to use.
The storepass attribute specifies the password for the key store.

The output from the new task looks like this:

 [signjar] Signing JAR: HelloJavaWebStart.jar to
 HelloJavaWebStart.jar as myself
 [signjar]
 [signjar] Warning:
 [signjar] The signer certificate will expire
 within six months.
 [signjar] Enter Passphrase for keystore:

Although it appears from the output that the password is requested, it is in
fact automatically entered by the signjar Ant task.
The Java Web Start Guide section on Application Development
Considerations reminds us that:

Note that a self-signed test certificate should only be used for
internal testing, since it does not guarantee the identity of the user
and therefore cannot be trusted. A trustworthy certificate can be
obtained from a certificate authority, such as VeriSign or Thawte,
and should be used when the application is put into production.

Conclusion
So here we are at the end. As a learning experience, getting to grips with
Java Web Start is actually quite straightforward. Of course there is plenty
more that can be configured in the JNLP files, especially in terms of

Figure 3

<project name="HelloJavaWebStart" basedir=".">
 <javac srcdir="${basedir}"/>
 <jar jarfile="HelloJavaWebStart.jar"
 basedir="${basedir}"
 manifest="manifest.txt"
 includes="*.class"/>
 <signjar jar="HelloJavaWebStart.jar"
 keystore="myKeystore"
 alias="myself"
 storepass="secret"/>
</project>

Listing 7
AUG 2008 | | 15{cvu}

Desert Island Books
Paul Grenyer introduces Allan Kelly’s essential

reading.

llan Kelly is another ACCU stalwart. He has an opinion on everything
and, often irritatingly, he is usually right. The moment I met Allan Kelly
will be imprinted on my mind forever. It was at the 2002 ACCU

conference at the Motor Museum. I had been an ACCU member for about
a year and generally made a lot of unhelpful noise. As I shook his hand, Allan
looked me in the eye, grinned and said ‘So you're Paul Grenyer.’ That rather
set the tone for the conference.

In recent years I have spent many an evening drinking alcohol with Allan
and we even worked together for a brief period in 2007. I don’t want to turn
this column into a which-Pink-Floyd-album-is-the-best debate, but I have to
say (sorry Allan), it isn’t Dark Side of the Moon either.

Allan Kelly
I guess I am not the only person who has listened to Desert Island Discs
and wondered what eight records I would take. However I like to think I
have come a lot closer to the situation than many might.
A few years ago I sailed from Montreal to London; well, sailed might give
you the wrong idea. The ship was 250m long and carried 2,500 containers
– TEU in the trade – and I arrived not so much in London as at an ugly
container port, Thamesport, east of the city.
Why did I do this? Not to save airfare (it was more expensive) but for fun,
or rather to say ‘I have sailed the Atlantic’ – the way people would in olden
days. As there were the 22 or so crew, the Captain and I had plenty of
reading time on the seven-day journey.
True, in the middle of the journey, staring out at the grey Atlantic without
another ship in sight I did wonder: what am I doing here? – but by then it
was too late. In retrospect it was worth it for the experience. If nothing else
sailing up the frozen St Lawrence River, breaking ice as we went made it
all worth while.
I can’t remember exactly the books and CDs I took but I do remember
taking about 12 CDs. While the MV Canmar Pride was a comfortable ship
it was no desert island. Neither was there much prospect of finding one in

the Nor th
Atlantic. So, with the
benefit of hindsight which
books and CDs would I take to
the Caye Grenyer?
As most readers probably know I spend little time programming these days
and lots of time managing programmers. So no apologies for choosing
more managerial books. The challenge with both books and CDs is to
choose ones you know you will like (tending towards ones read before)
and those where you will find something new (tending towards ones never
read before).
First has to be The Fifth Discipline by Peter Senge. To many this may be
an abstract book which discusses ideal work environments, but I loved this
book and couldn’t put it down when I read it. It really inspired me to see
the world differently. The book described what learning organizations are,

A

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
16 | | AUG 2008{cvu}

security and versioning, and there’s plenty more that Ant can do, but that’s
outside the scope of this article.
If you are still not sure of the advantage of Java Web Start over the usual
installer method of deploying applications, let me describe a situation I
have been in on many occasions:
It is 7am in the morning and I’m in a deserted office moving from PC to
PC installing the latest release of the software. It gets to 9am and everyone
starts arriving. But it is ok, all the machines have been updated.
So I go back to the development office to find the phone ringing. As I listen
to the user explaining the problem with the new release I realise it’s an easy
fix, but will require another install to every machine. The whole business
grinds to a halt while the bug is fixed and then gets delayed a further two
hours while everyone’s machine is updated.
If I had used Java Web Start I would not have had to get into the office at
7am to do the release and any post release problems could be deployed more
quickly and easily once fixed. In fact releasing involves building some
signed JARs, copying them to the webserver and asking everyone to restart.
Easy!

References
[1] Eclipse: http://www.eclipse.org/
[2] Java Web Start: http://java.sun.com/products/javawebstart/
[3] Ant: http://ant.apache.org/
[4] Java Swing: http://en.wikipedia.org/wiki/Swing_(Java)
[5] Java Web Start Guide: http://java.sun.com/javase/6/docs/technotes/

guides/javaws/developersguide/contents.html
[6] Apache: http://httpd.apache.org/
[7] ACCU: http://www.accu.org
[8] Mime Types in IIS: http://technet.microsoft.com/en-us/library/

bb742440.aspx

Java Web Start (continued)

how they operate and how you can start to build one. As many readers will
know, I see the whole of software development as learning, so it follows
naturally that the best teams and organizations are ones that learn. If you
ever wonder what is beyond coding, read this book: it deserves reading and
re-reading.
Next is Jim McCarthy’s The Dynamics of Software Development. For me
this book deserves far more attention than it ever got: it came out about
the same time as books from Steve Maguire and Steve McConnell, and was
overshadowed by them. In retrospect we would see it as an ‘Agile’ book
today, but in 1995 the term had yet to be invented. I would love to have
the time to re-read it, see how well it has stood the test of time and discover
new lessons.
When I first read the book I was working on a Railtrack privatisation
project conforming (supposedly) to ISO 9000 standards. The project can
best be described in two words: Death March. The contrast with
McCarthy’s advice could not have been greater. Advice like Cycle
Rapidly, Establish a Shared Vision, Nobody Reaches the Zero Defect
Milestone Until Everybody Does might seem like convention wisdom
today – at least in Agile circles – but in the 1995/6 ISO 9000 world people
thought these ideas were madness. Nobody was ever doing to tell John
Major ‘You can’t privatise the railways because the software isn’t ready?,’
so the Government would spend what ever they needed to and the sub-
contractor pointed to their ISO 9000 badge to show they were following
‘best practice’.
I learned two invaluable lessons on that project: some projects are just
better off not done, and inside every big project is a small one trying to get
out.
Back in my undergraduate days I had a lecturer who relentlessly sung the
praises of Gödel, Escher, Bach. I was (obviously) very impressionable
because a few years later I got the book and attempted to read it.
Technically I succeeded, I read it from cover to cover, but, it took me over
four years with lots of time-outs and other books in between. Hopefully,
my time on the island will give me time to read it properly this time.
That leaves me one serious book still to pick. I’m ready to be adventurous
here and grab something I haven’t read before. Since Jez managed to
rescue a PC with a development environment I’m going to assume I can
too. As with so many people at the ACCU conference I got the functional
programming buzz so a book on Haskell is very tempting but I don’t know
which one to pick. So, since I’ve been meaning to learn Python and web
development forever I’m going to grab a Python web development book.
I hear good things about Django so I’m going to take a risk, grab Pro
Django: Web Development Done Right and hope that between this book

and the online docs I can master both Python and Django. With a bit of
luck I’ll develop some really useful application which, after my rescue, I’ll
be able to sell for a couple of million.
Now a really difficult choice: my novel. Between GEB, learning Python
and Django and not forgetting surviving and escaping I’m going to be busy
on this island. I’m going to need to be able to relax and mentally escape
so I need a good novel.
My novel has to be good, deep, fresh and lasting. Two books spring to mind
immediately and, as fate would have it they sit next to each other on my
bookshelf: Catch-22 and The Ragged Trousered Philanthropists (actually
originally published in 1914). Another odd coincidence is that of the few
hundred books on my shelf these are among the very few which I have read
more than once. Given my heavyweight selection elsewhere I’m going to
have to plump for Catch-22: I’m going to need something ‘humorous’ on
the island. After I’ve read it once I intend to try and read it in the correct
chronological order.
Now things get hard, two ‘albums’ – in quotes because I’m not sure Herr
Mahler ever recorded an ‘album’, some symphonies, yes, but an album…
This is really hard because in my world there are three types of music:
classical (including opera), jazz (including blues) and everything else
falling under the broad category of rock/pop. This last category includes
everything from early Clash, through Elvis (Costello) to modern Ministry
of Sound Annuals.
But I can only take two of three. Although I listen to more jazz than
anything else these days I simply can’t choose which jazz recording I
would take: Miles Davis Kind of Blue, Charles Mingus’ Criss-Cross, or
Guy Barker’s Soundtrack to remind me of London? But what of Shorter,
Monk, Tracey, Hancock, Methany, and-and-and…no, I can’t decide so
none of them will come.
From the sinking ship I will save Stravinsky’s The Rite of Spring, which
fortunately in my collection comes with Petrouchka—so I won’t forget all
my Russian. (London Symphony Orchestra conducted by Rafael Frubeck
de Burgos, 1989, Collins Classics).
The final choice is also easy, but it means leaving behind New Order’s
Substance 1987, a great album and the theme track to my late teens and
early twenties. Instead I grab the album that really opened my eyes to rock
music, an album that is only a few years younger than myself but does not
age, one that has always been there for me, one that sounds as new today
as it did when I first heard it: Dark Side of the Moon by Pink Floyd.

Next issue: Steve Love picks his desert island books.
AUG 2008 | | 17{cvu}

18 | | AUG 2008{cvu}

Regional Meetings
A round-up of the latest ACCU regional events.

ACCU London
Report from Steve Love (steve@essennell.co.uk)

Thursday 19th June – ‘Visual Studio 2008 and .Net 3.5’, a talk by Michael
Taulty.
In spite of a smaller turn-out than was expected for this talk, Michael
Taulty from Microsoft gave an interesting and detailed talk about some of
the features in the latest edition of Microsoft Visual Studio and the new
.Net Framework. It seems there is quite a lot of new stuff in VS 2008, so
Michael chose – perhaps a little predictably – to talk mainly about the
LINQ (Language Integrated Query, for those who’ve not yet encountered
it) technology, a flagship feature of .Net 3.5, C# v3 and VB.Net.
In essence, LINQ is a data querying language, similar in syntax and
approach to SQL, which provides a unified syntax for filtering data from
a number of different sources, for example an SQL database, an XML
document, or in-memory objects and collections. Michael gave examples
of each of these three approaches, highlighting the fact that the syntax was
almost identical between them. In fact, any data can be made a source for
LINQ if the necessary adapter is provided. Michael also demonstrated how
the actual mechanics of getting the data differs between the in-memory
provider – which merely iterates over a collection (actually an
IEnumerable for those .Net’ers reading) – and the SQL provider which
uses a new IQueryable interface.
Most of the presentation wasn’t about the syntax of LINQ itself, however;
Michael first took us through the new language features which enable
LINQ to operate. These features include anonymous types, automatic type
inference, lambda expressions and partial- and extension-methods.
Without these features, LINQ wouldn’t be possible, but they have all been
exposed separately as language features so all programmers can take
advantage of them.
Michael was animated and knowledgeable, and used a mixture of slides
and code (actually writing code as he talked, which was quite a feat!) to
demonstrate the features. It also allowed him to show off some of the GUI
effects of – I presume – Windows Vista by flicking back and forth between
Visual Studio itself and the presentation. The spinning cube of different
desktops was particularly exciting.
In usual ACCU London tradition, we repaired to the pub afterward to
discuss, among other things, the usefulness of LINQ, and the language
features which enable it, and why ironing is such an important – if
controversial – activity.
Thanks go to Michael for giving such an interesting and enlightening talk
which certainly provoked much discussion, to 7city for hosting the talk and
providing a room, and to Allan Kelly and James Slaughter for organising
another successful evening.
References

LINQ: http://msdn.microsoft.com/en-us/netframework/aa904594.asp
Michael’s Slides are available from his blog at http://miketaulty.com

ACCU Oxford
Report by Jim Hague (jim.hague@acm.org)

The OX postcode contains more ACCU members than any other single UK
postcode, so it seemed a pity to me that there weren’t any Oxford regional
events.
After being idiot enough to muse about this to a few people at the 2008
Conference, I was gently encouraged to adopt the Open Source approach
to the problem – if you don’t like something, fix it yourself.
So, the inaugural Oxford group meeting was held at the West Oxford
Community Centre on June 25th. To allow time for a little discussion on
the direction the group should take, we had two short talks timetabled. I
resurrected a talk on organising cross-platform source code bases
previously given at Conference in 2003, and Phil Armstrong embarked on
a session on type inferencing with pick-it-up-as-we-go Haskell.
Unfortunately technical problems at the laptop/projector interface meant
the session was unfinished by the time we had to leave the meeting room
and adjourn to the Watermans on Osney Island.
A second meeting on July 30th has been announced on accu-general, where
we will retry Phil’s session and hear from Chris Jefferson, BSI C++
committee member, on the latest on what’s likely to be in C++0x.
After that we’ll be taking a break for August, but look to return at the end
of September with a full length talk. At the time of writing I’m hoping this
will be a look at the IBM zSeries mainframe world, and Cobol’s niche.
It’s early days for the Oxford group, but we’re under way. Keep your eyes
on ACCU-general for news of future events.

ACCU North East
Report by Ian Bruntlett (ianbruntlett@hotmail.com)

The meeting started off quietly, with cheese rolls and drinks readied in
time. There were about 7 of us with differing levels of programming
confidence. ACCU NE members tend to have dual nationality, visiting
ACCU NE on the third Saturday of the month, in Contact’s building (see
http://accu.org/index.php/accu_branches/accu_ne for more details), and
v i s i t i n g t h e T yn e s i de L U G (L i nu x U s e r G ro u p , h t t p : / /
www.tyneside.lug.org.uk) on the first Saturday of the month in the
Discovery Museum, just off the Westgate Road in Newcastle.
We installed ghc (the Glasgow Haskell Compiler) on a Kubuntu box
(upgraded from Ubuntu earlier in the meeting) and an OpenSuSE box, and
experimented with doing the usual strange functional language things –
very concise quick sorts and recursive mathematical functions.
Later, Alex Kavanagh showed some production Perl code and explained
some of the issues in writing Perl for production.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now? What did you just explain to someone?

What technology are you using? What techniques and idioms are you using?

If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in Overload, and by
a newcomer. For further information, contact the editors: cvu@accu.org or overload@accu.org

Code Critique Competition 53
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry.

Readers are also encouraged to comment on published entries, and to
supply their own possible code samples for the competition (in any
common programming language) to scc@accu.org.

Last issue’s code
I am having problems getting a template to work. The code below is
supposed to print out the range of the data points, but the range function
isn’t producing the right answer for the WDatum class. Someone told me it
was because I needed a virtual destructor – but that made it worse. I’ve even
got rid of all the compiler warnings I had. Can you help me understand what’s
gone wrong?

Can you help answer the question? The code is shown in Listing 1.

Critique

Robert Jones <robertgbjones@gmail.com>

The easy thing about this code critique is the fix. Simply change the type
of the iterator variable in the for-loop of the templated range function from
Datum to T.
What’s more interesting is what’s going on. In the case of instantiating the
range function for type WDatum, the iterator of type Datum is iterating
over an array of objects of type WDatum, so incrementing the iterator
(pointer) will leave you pointing at a place other than the next array
element.
It just so happens that:

WDatum is exactly one float larger than Datum, so the first
increment probably leaves you pointing at part of WDatum just after
the Datum part of WDatum, but only probably!
WDatum is twice the size of Datum, so the termination condition is
met for arrays with an even number of elements.
The range function is called with an even number of elements.

This is a nice example of how ‘undefined behaviour’ can mean ‘very nearly
works’.
Adding the virtual destructor changes the object layout again, so all bets
are off. At some point as we increment through the array we are likely to
interpret vtable data as a float, which is likely to produce gibberish. In
addition, the loop termination condition may never be satisfied, unless the
sizeof(WDatum) j u s t happens t o be a mu l t i p l e o f t he
sizeof(Datum).

Charles Bailey <charles.bailey@igence.com>

Fixing code so that it compiles without warnings is often a good compass
but as this code shows, it shouldn’t be the ultimate destination.
main and the Datum and WDatum classes are simple enough, so the
template function is the natural place to start looking for the bug.
Unfortunately, the expression statement ++it is where the bug is being
triggered. I was going to say that that is where the bug is, but we’ve all
seen so many thousands of loops with just such a simple increment in the
last position that it seemed a little unfair to single it out as a buggy
statement.
What actually sticks out like a sore thumb in the template function is the
use of the Datum identifier in the template class. When writing templates

it is always a good idea to minimise the
requirements that you put on any template parameters. This makes the
template as generic as possible and improves the chances that it can beP

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

// Simple datum
class Datum {
 float payload;
public:
 Datum(float value = 0)
 : payload(value) {}
 float getValue() const
 { return payload; }
};
// Weighted datum, simple by default
class WDatum : public Datum {
 float weight;
public:
 WDatum(float value = 0, float weight = 1)
 : Datum(value), weight(weight) {}
 float getWeight() const
 { return weight; }
};
// Return range (max - min) of data
template <typename T>
float range(T * begin, T * end)
{
 float top = 0, bottom = 0;
 for (Datum *it = begin; it != end; ++it)
 {
 float v = it->getValue();
 if (!top && !bottom)
 top = bottom = v;
 else if (top < v)
 top = v;
 else if (bottom > v)
 bottom = v;
 }
 return top - bottom;
}
#include <iostream>
int main()
{
 static const int count = 4;
 Datum data[count] =
 { 1.3f, 1.2f, 1.4f, 1.7f };
 WDatum wdata[count] =
 { 1.3f, 1.2f, 1.4f, 1.7f };
 float drange = range(data, data+count);
 float wrange = range(wdata, wdata+count);
 std::cout << "range (expect 0.5)\n"
 << "Datum " << drange << "\n"
 << "WDatum " << wrange << std::endl;
}

Listing 1
AUG 2008 | | 19{cvu}

usefully reused, which is, after all, the whole point of writing templates in
the first place.
With the power of psychic debugging, we can see that range used to be a
non-template function operating on Datum pointers and was converted to
a template so that it could be used with WDatum as well. During the
conversion the use of the Datum type in the for loop was missed and it
is this that causes the problem.
Because WDatum is derived from Datum, a pointer to WDatum can and will
be converted to a pointer to Datum without warning. This conversion is
correct and works fine. The gotcha here is that WDatum and Datum have
different sizes. This means that in an array of WDatum, each element is
further away from the previous element than in an array of Datum. Pointer
arithmetic just uses the static type of the given pointer. When you do ++it
where it is a pointer to Datum, it will be incremented to point to where
the next Datum would be in an array of Datum. If it is actually pointing
into an array of WDatum then the pointer will not have been moved far
enough to point to the next WDatum array element, but will instead be
pointing to some offset inside the original WDatum element.
Ah! So now we know what the issue is, the fix is easy, then?
 template <typename T>
 float range(T * begin, T * end)
 {
 float top = 0, bottom = 0;
 - for (Datum *it = begin; it != end; ++it)
 + for (T *it = begin; it != end; ++it)
 {
 float v = it->getValue();
 if (!top && !bottom)

Just use the templated type T instead of Datum and the template now works
for both Datum and WDatum.
All done? Not yet.
Looking at the logic, there’s a test on (!top && !bottom). If both
top and bottom are zero then we reset both top and bottom to be the value
of the current item. Why is this? Well, top and bottom are initialised to zero
before the loop iterates through all the values. This initial zero shouldn’t
form part of the range so the first time through we need to reset both top
and bottom to be the value of the current item. This isn’t exactly what the
code says, though, and here is a test case that proves it.
 Datum data2[count] =
 { 0.0f, 1.2f, 1.4f, 1.7f };
 Datum data3[count] =
 { 1.7f, 1.4f, 1.2f, 0.0f };

 float drange2 = range(data2, data2+count);
 float drange3 = range(data3, data3+count);
 std::cout << "range (expect 1.7)\n"
 << "Datum 2: " << drange2 << "\n"
 << "Datum 3: " << drange3 << std::endl;

Here, drange2 and drange3 contain exactly the same values but in a
different order. drange2 starts with 0.0, but drange3 ends with 0.0. For
this pair of ranges I get:
 range (expect 1.7)
 Datum 2: 0.5
 Datum 3: 1.7

The zero at the start of the drange2 array of Datum is being ignored
because although we’ve had a legitimate zero value, the code assumes that
both top and bottom being zero means that this is the first time around the
loop. While the latter implies the former, the converse does not always
hold. The solution is to say what we actually mean. If we are on the first
iteration then it will be the same as begin.
 float range(T * begin, T * end)
 for (T *it = begin; it != end; ++it)
 {
 float v = it->getValue();
 - if (!top && !bottom)

 + if (it == begin)
 top = bottom = v;
 else if (top < v)
 top = v;

That’s better.
As another aside, double should normally be preferred over float. In
most current architectures, double is faster that float and floats are
often converted to doubles for calculations before being converted back
for storage in a float result variable. Usually the only reason for choosing
float over double is where there is a proven need for a more compact
storage format.
Now back to the template function. Looking at the template parameter T,
notice that it is only ever used in the function as T *. This is a good
indication that we can make the template more general by replacing T *
by a more general template parameter. Even the name of the iterating
variable, it, suggests that this could be part of the original intention. I
choose the template parameter name Iter.
 -template <typename T>
 -float range(T * begin, T * end)
 +template <typename Iter>
 +float range(Iter begin, Iter end)
 {
 float top = 0, bottom = 0;
 - for (T *it = begin; it != end; ++it)
 + for (Iter it = begin; it != end; ++it)
 {
 float v = it->getValue();
 if (it == begin)

Excellent, in one easy step we have now enabled our template to work not
only with pointers, but with all kinds of iterators including most of those
provided by the standard library’s containers.
There is still one thing that sticks out as being non-generic and that is the
use of the getValue function. It means that any type that we want to
iterate through in the range template must provide a getValue function
which returns something that can be converted to a float. It would be
nice if the template could be used with raw floats, for example.
Well, it is possible, but whether it is worth the effort is open to debate. Here
is one approach.
First we create a template class with a static function that can extract a
float value from a constant reference to something. We give it an
implementation that copes with anything that can be implicitly converted
direct to a float.
 template <typename T>
 struct FloatExtractor
 {
 static float Extract(const T& t)
 { return t; }
 };

Now we add specializations for Datum and WDatum which call
getValue.
 template <>
 struct FloatExtractor<Datum>
 {
 static float Extract(const Datum& t)
 { return t.getValue(); }
 };

 template <>
 struct FloatExtractor<WDatum>
 {
 static float Extract(const WDatum& t)
 { return t.getValue(); }
 };

We now replace the it->getValue() call with something that uses our
potentially specialized FloatExtractor.
20 | | AUG 2008{cvu}

In order to get the type to use as a template parameter we use a useful
template from the standard library: std::iterator_traits. It is
specialized for pointer types to ‘do the right thing’, all the standard
containers’ iterators have appropriate specializations. If your favourite
iterator doesn’t have a specialization of it, you can always write one.
OK, take a deep breath, here is the new call:
 float v =
 FloatExtractor<typename std::iterator_traits
 <Iter>::value_type>::Extract(*it);

OK, not very beautiful, but look, I can now use the template with a list of
floats:
 std::list<float> flist;
 flist.push_back(1.2f);
 flist.push_back(0.0f);
 flist.push_back(1.7f);
 flist.push_back(1.4f);
 std::cout << "list (expect 1.7)\n"
 << "flist: " << range(flist.begin(),
 flist.end()) << std::endl;

range is now a more powerful template, was it worth the extra work? That
depends.
And now a final controversial assertion. Take this with a large pinch of
salt! The original code was actually correct and the bad behaviour is
actually a compiler bug. For a pointer type p the expression ++p is defined
as being equivalent to p += 1 which is in turn equivalent to p = p +
1. The value of p + 1 is only defined if p points to an element of an array
object and the result is defined only in terms of the elements of that array
object. For the behaviour of p + 1 to be defined the type of p must be a
pointer to a completely defined object type (i.e. not a pointer to void or
a forward declared class), but there is no requirement that the completely
declared object type be the object type of the array elements in question.
Interpretation of the standard is, however, notoriously difficult and this
reading implies something like run time checking for all pointer arithmetic
operations. This expense is almost certainly not intended, so I wouldn’t
expect your compiler vendor to be too sympathetic to any bug report
submitted on this issue.

Commentary

This code demonstrates a problem caused by the similarity in C and C++
between pointer arithmetic and array indexing.
If you have a single object of type WDatum then it 'is-a' Datum and a
pointer to this object can be implicitly converted from a WDatum* to
Datum*.
So this code is completely valid:
 WDatum myPoint;
 Datum * pPoint = &myPoint;

When you have an array of objects the same behaviour is true of each
object in the array individually:
 WDatum myPoints[2];
 Datum * pPoint = &myPoint[1];

However, doing pointer arithmetic is not valid as this
changes the address by the size of the actual object
type. A picture may make this clearer:
Each WDatum object contains (by inheritance) a
Datum object and individually can be treated as one.
However, the Datum objects are not contiguous – they
are separated from each other by the intervening extra
part of each WDatum object.

The Winner of CC 53

Both entries picked up the main bug – the use of Datum
inside the template function. However Charles also
noticed the bad termination condition so I’ve given
him the prize for this critique.

Thanks to all who contribute to this column – it has been good to see a few
new people contributing their critiques but there’s still room for you if
you’ve not yet entered the competition!

Code Critique 53
(Submissions to scc@accu.org by 1st October

I’m trying to write a program to see if a triangle is right-angled. I’ve got part
way there, but the program seems a bit unreliable – sometimes it crashes
and sometimes it says triangles are right-angled that aren’t. Can you help?

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from
the ACCU website (http://www.accu.org/journals/). This
particularly helps overseas members who typically get
the magazine much later than members in the UK and
Europe.

#include <iostream>
#include <map>
#include <string>
#include <sstream>
using std::cin;
using std::cout;
using std::endl;
typedef std::map<int,int> triangle;
// will have 3 points!
// Read integer: DD (base10) or 0xDD (base16)
int readInt(std::istream & is)
{
 std::string s;
 is>>s;
 int result(0);
 char x;
 std::istringstream iss(s);
 if (! iss>>result)
 cout << "Not a number!" << endl;
 else if (result==0 && iss>>x && x=='x')
 iss>>std::hex>>result;
 if (! iss.eof())
 result = 0;
 return result;
}
triangle readTriangle(std::istream &is)
{
 triangle vals;
 cout << "Enter triangle coordinates: ";
 for (int idx = 0; idx != 3; ++idx)
 {
 int key = readInt(cin);
 vals[key] = readInt(cin);
 }
 return vals;
}
int main()
{
 triangle vals = readTriangle(cin);
 triangle::iterator it = vals.begin();

 int ax = it++->first;
 int bx = it++->first;
 int cx = it++->first;
 double slope1 = (vals[bx] - vals[ax]) /
 double(bx - ax);
 double slope2 = (vals[cx] - vals[bx]) /
 double(cx - bx);
 if (slope1 * slope2 == -1)
 cout << "Right angled" << endl;
}

Listing 2
AUG 2008 | | 21{cvu}

Systems Construction and Analysis: A
Mathematical and Logical Framework
by Norman Fenton and Gillian Hill, published by
McGraw-Hill (1993), ISBN 0077074319

Reviewed by Colin Paul Gloster

This is a very large theoretical undergraduate
textbook. It is too large to read in under one
month, therefore no course could be reasonably
based on the book in its entirety. The coverage
in Chapters 14 to 17 is too shallow as these
deserve five courses (two courses for Chapter
16) and dedicated textbooks, but I do not
criticize them for managing to fit so much into
one book.
The book’s strengths lie in formal languages and
logic. However, the importance of formality is
overstated in this book and inconsistencies
(page 14 is contradicted by page 15, and page
180 is contradicted by page 181); mistakes (e.g.
Figure 2.27 supposedly contains four different
drawings of the same tree but they are not all the
same tree: one has more vertices than the
others); and bad names (e.g. on page 53 id(v)
was defined to be the indegree of v instead of the
identity of v) might leave students unconvinced.
It was emphasized on pages 111 and 161 that
‘logical implication’ (denoted by the meta-
symbol =>) is for an assertion whereas the term
‘assertion’ is avoided on those pages when
talking about the connective for implication
within the calculus (-> which they confusingly
called ‘The logical connective for implication’
which does not help to distinguish it from
‘logical implication’). This taboo on assertion
for implication within the calculus (->) is not
maintained on pages 106 and 149.
I have found only one other undergraduate
textbook which mentions fixed points (in the
sense of lambda calculus), though I suppose that
others have been published. It is nice to see in
print their admission that functional
programming is not ideal for everything.
If I ever write a book then I would be afraid that
I do not know how to avoid having my next
criticism rebounding on me. The index is
commendably big but not good enough. For
example, bijection was briefly defined in the
second chapter and does not appear again until
page 202, with no reminder as to what bijection

is and no entry in the index. Another example is
the / character which is not listed in the index,
and which is sometimes used (according to page
207) when showing equivalence classes of a set
with an equivalence relation (as opposed to
alternative meanings such as division). This
could make the book too difficult to use for
studying.
I am impressed by how many obscure languages
are mentioned in the book. Object orientation
was treated as a special case of procedural
programming. Do you agree? One thing I can
make no sense of is the claim ‘specifications are
loose and permissive because functions are
partially defined rather than partial’ on page 264.
Is it a mistake or is it one of the book’s subtle
points which only the most intelligent readers
deserve to understand?
Chapter 13 is controversial. The use of goto
was defended if the language being used does
not support a better control structure. I believe
that a better approach would be to use a better
language. Less than three pages were given over
to Petri nets and only one sentence to Harel’s
statecharts. Chapter 13 is not all bad though. Its
discussion of ‘restructuring’ shows that OO
refactoring was already old when it was new.

xUnit Test Patterns – Refactoring Test
Code
by Gerard Meszaros, published by
Addison-Wesley (2007), ISBN
0131495054

Reviewed by John Penney

An academic tome that needs some extensive
refactoring before its handful of interesting
ideas can be of use.
Unit testing is an increasingly mainstream
development practice, whether it’s done to
support TDD or as part of a more traditional test-
after methodology. Our own personal
experience is that in the areas where we’ve
practised unit testing our unit test codebase
comfortably exceeds our deliverable codebase.
As such, it seems that there’s an urgent need for
a book that focuses on the problems and patterns
that are peculiar to unit test code. We were
therefore keen to embrace this book but were
ultimately disappointed.
What we have is a hefty book with a quality feel:
for a book of this size the lack of searchable CD/
DVD is disappointing. The tone is rather
academic and we wondered if it was targeted at
undergraduates rather than practising engineers.
The book comes in three parts, each exploring
unit testing from a different angle. This structure
means that the reader comes across the same
idea being presented several times. It makes
sense in each context, but left us rather
impatient. The scope of the book extends
beyond refactoring too, with discussions of test
tool architecture and test organisation.
The first part presents a narrative taking the
reader through the goals, philosophy and
principles of unit testing before presenting the
different ways in which tests can be constructed
and organised. It makes for a well-structured and
interesting read, though the pace is a little
pedestrian at times. Like the rest of the book, this
section is liberally sprinkled with code samples,
diagrams and tables which break up the text and
are mostly informative, though we found the
faddish mix of programming languages used in
the examples to be rather irritating.
The subtitle of Meszaros’ book is rather
misleading: refactoring is really only the focus

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
22 | | AUG 2008{cvu}

of the second part, where the author catalogues
a number of ‘test smells’. These are analogous
to the ‘code smells’ first identified by Fowler in
his seminal book Refactoring (a ‘smell’ is a
symptom of a problem: the analogy with a real-
world smell is apt – often your subconscious
knows something is wrong before you do!).
Meszaros’ descriptions of test smells are typical
of the rest of the book, being exhaustive and
well-researched. However, it’s hard to get
excited about some of them: the symptoms and
cause of an Erratic Test are much like those of
erratic production code. And an Obscure Test is
as frustrating and dangerous as that obscure
module of legacy code that everyone knows and
dreads, and has much the same causes and cures.
Still, many of the smells are interesting points of
conversation and we can imagine them forming
the starting point for reflection workshops
where your own legacy test code is examined
and its flaws exposed and discussed.
The final part of this book (excluding the rather
pointless appendices) presents a catalogue of
patterns. Here we felt particularly frustrated.
There are lots of interesting ideas here: we have
a bestiary of ‘test doubles’ for example where
different kinds of mock/stub/test object are
explored, and an odd but strangely satisfying
little collection of ‘value patterns’ in which
Meszaros presents three different patterns
answering the problem ‘How do we specify the
values to be used in unit tests?’. But the sheer
number of patterns and detail afforded to each
means that it’s impossible to make use of them.
A lot of the OO principles and patterns that apply
to production code should apply to unit test
code, but this book demonstrates that there are
some interesting smells and patterns that are
more prevalent in the world of unit testing . But
this interesting material is swamped in detail and
duplication. There are a number of (decidedly
smaller) books on unit testing and related topics
that can and do provide more benefit. Prefer a
different unit testing book such as JUnit Recipes
(Rainsberger) and a copy of Working Effectively
with Legacy Code (Feathers).

Getting Noticed on Google
by Ben Norman, published by
Computer Step, ISBN 1-84078-
332-X

Reviewed by Giuseppe Vacanti

On the High Street the
location of your business is
very important when it comes
to attracting passing shoppers.
On the electronic high street, this translates to
being listed within the first few links returned by
a web search engine.
OK, I wrote ‘a search engine’, but most likely
you read Google. In December 2007 Google
topped the US search engine rankings, with
almost 60% of the searches. Yahoo came in a
distant second, with 22%, followed by
Microsoft with 10%. We commonly take these
numbers to apply to the rest of the world, and so

we come to the conclusion that topping the
Google ranking is the most effective way to be
found by the Internet shopper.
Getting Noticed On Google is a short book
containing a number of procedures and bits of
advise that web site managers should follow in
order to raise their sites’ Google ranking. Most
of the advice contained in the book is eminently
sound, although, given that the Google
algorithms are not known, it is difficult to judge
how effective any of it can be. On the other had,
the book’s advice follows the gist of what can be
found on Google’s own web master pages, so by
that measure it cannot be too much off.
If you are ready to read all of the material that
Google itself makes available to web masters,
you probably do not need this book. The book
is however quite accessible, mostly avoiding
technical jargon and marketing mumbo jumbo
(with the exception of a few sentences here and
there, like on on page 8 where we encounter
‘Google is an advertising vertical in its own right
that, if used properly, can provide an abundance
of highly converting traffic.’ Uh?).
As I said, most of the advice in the book makes
sense, and it would apply to a web site even if it
were not trying to enter the Google top ten list:
choose your keywords well, have meaningful
text for your links, stay on message, and in
general – although this is finally mentioned only
one third down the book – write good content for
your site.
The book covers a number of free tools available
in order to study how Google has ranked your
site: unsurprisingly these are all provided by
Google, who has all the knowledge on this
matter. Another tool mentioned is Web CEO,
that comes in a free and a business version. Web
CEO makes an analysis of your web site, and
suggests way to improve its web search ranking.
Finally, the book covers also Google Analytics
and Google AdWords: the former as another
analysis tool, the latter as a way to bring traffic
to your site.
All in all, the book is a worthwhile read.
Although much of the same information could
be gathered by reading a few of web sites,
including Google’s own pages for web masters,
the book brings it together in a concise manner,
and it offers many ideas for further
investigation.

Genesis Machines – The new science
of biocomputing
by Martyn Amos, published by
Atlantic Books, ISBN-13: 978-
1843542254

Reviewed by Ian Bruntlett

My apologies for this review –
I’m only competent to review the
conventional aspects of this book and am not
qualified to review the biological aspects of this
book.
This book looks decades into the future,
considering the fundamentals of computation

(Von Neumann Machines, Turing Machines)
giving a birds-eye view with copious references
to other sources and books.
Chapter 2, ‘Birth of the machines’, covers things
like the tally stick, a computing device dating
back to 20,000 BC, and the rise of mathematics
(in the 5th century BC Indian mathematicians
discovered the number zero and the idea of a
positional number system). It (incorrectly)
states that you can count up to 1024 on ‘your
fingers using binary’: this is incorrect, you can
only count up to 1023! However it does do a
good job of introducing binary and boolean
algebra (AND, OR, NOT but not XOR).
It describes the steps taken to produce the first
‘Feynmann machine’: the TT-100, a computing
device that used the manipulation of
moleculesat the heart of its operation.
The rest of the book covers the development of
biological / DNA computers, something that is
beyond my realm of experience.
VERDICT: An interesting read, if a little
technical.

Implementation Patterns
by Kent Beck, published by
Addison-Wesley, ISBN 978-0-321-
41309-3

Reviewed by Seb Rose

It is difficult to decide who this
book is aimed at. Given the title
of the book (and the subtitle on
the back cover that reads ‘... a
Catalog of Patterns Infinitely Useful for
Everyday Programming’), you might expect a
reference tome that sits beside the ubiquitous
GoF volume. I doubt that that is where it will end
up.
For starters the book is unashamedly slanted
towards Java, with references to Java visibility,
Java collection classes and (in the context of
framework design) the Java packaging scheme.
This is not necessarily a weakness in itself – the
GoF book presented the material in C++ and
Smalltalk – but the patterns in this book are
much lower level, and in some cases, much more
specific to the implementation language. I
would have expected some indication of this
bias in the title or on the cover somewhere.
I would also question whether the book
describes patterns at all. Certainly, they are not
presented formally (with context, problem,
forces, solution and consequences), but instead
are small sections of prose grouped into chapters
with titles like Class, State, Behavior, Methods.
Some of these sections describe the Java
language itself (e.g. ‘Behavior: Control Flow’)
while others are stylistic in content (e.g. ‘State:
Role-Suggesting Name’). I found myself
agreeing with almost everything that was
written, but very little reached levels of
concreteness that I actually thought might be
useful. And when I read that ‘the whole question
of equality seemed more important 20 years
ago’ (‘Methods: Equality’) I found myself
AUG 2008 | | 23{cvu}

24 | | AUG 2008

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

In my last ‘View From The
Chair’, I sang the praises of
several retiring office holders,
thanking them for their various
contributions to ACCU over the past several
years. As I’ve said before, we don’t always
express our appreciation as often as perhaps we
should. While it is important to acknowledge the
work people do, I don’t want to appear as if I’m
begging for pats on the back for the committee
or for myself. Nor do I want to suggest the
benefits only flow from the individual to the
membership. The reverse is also true.
ACCU is a participatory organisation. All of us
participate in some way, even if we don’t realise
it. That little spark of recognition, excitement
even, when you see a new CVu sitting on your
doormat? That’s it, that’s the start. If your
software practice has been changed even
slightly by your membership of ACCU, then
consider yourself engaged. You have, as they
say, got the point. I believe, though, that the
more we, as individuals, take part in ACCU
activities then the more we, both as individuals
and collectively as an organisation, benefit.
These benefits are not always direct,
measurable, or obvious. They might be
unexpected or surprising. They might take years
to blossom, but they are there and they are real.

I don’t want to turn this View into a plea for
more articles (although I believe every member
does have something interesting to write about)
or to beg you to join the committee (but I’d be
happy to see you). I would simply ask you to
consider doing something. It need only be small
– a book review, an email to accu-general, a
discussion with a colleague. It could be large – a
series of articles, a conference presentation,
becoming an officer. You might find it very
easy, or it may present a challenge to overcome.
Whatever it is, you’ll have fun and ACCU will
appreciate it.

Membership Report
Mick Brooks
accumembership@accu.org

This month marks the
association’s traditional
membership renewal period. For
new members who don’t know what I’m talking
about, we used to have a fixed membership year,
running from August to August. Although
membership is now on a more flexible rolling
scheme, the vast majority of subscriptions still
become due at the end of August.
The preferred way to renew is by logging in to
the website, then following the links named
‘Account’, then ‘ACCU Subscriptions’, and
then ‘Renew’, where you can pay by credit or
debit card. I’ll happily accept a cheque if you’d

prefer (email me for details). Some of you will
have arranged to pay by standing order, and
won’t have to do anything to ensure your
membership continues. If you’re not currently
paying by standing order, then you’re too late to
arrange it for this year, but drop me a line if you
want to set it up for 2009. Less hassle for you,
and we even give you a discount.
However you choose to pay, now is a good time
to log in to the website and review your mailing
address details and contact preferences. If you
have problems or questions about renewals, or
anything else, then email me at
accumembership@accu.org.

Advertising Officer Report
Seb Rose
ads@accu.org

It has been an eventful few months in
advertising. We reworked our advertising
packages (to make them really good value) and
have now sold all of our cover spaces until well
into next year. There were a few teething
problems with our use of OpenX to deliver ads
on the web site, but we got over them and we
now have only one slot left to fill.
So if you think that your organisation could
benefit from exposure to the thousands of
visitors to the ACCU web site, you’AUG 2008d
best get in touch as soon as possible!

wondering if I’d been transported to a twilight
zone somewhere between software engineering
and gender politics.
The prose style is clear and easy to read, which
lends credibility to the main thrust of the book
(outlined in a 2-page chapter ‘Motivation’),
which is that coding style is about
communicating intent to people. However, I
think that less experienced programmers will
find it all a bit woolly, while those with more
experience will wonder if there’s anything good
on telly.

Beyond the C++ Standard Library – An
Introduction to Boost
by Bjorn Karlsson,
published by Addison
Wesley,
ISBN 0-321-13354-4

Reviewed by Rob Jones

Highly Recommended
My technical books broadly
fall into two categories. On the one hand there
are references, like Stroustrup’s C++
Programming Language or Josuttis’works. On
the other hand there are books with more of a
narrative flow like Meyers’ or Sutter’s books.

With Beyond the C++ Standard Library
Karlsson manages to fall into both categories.
After a brief introductory chapter the remainder
of the book is simply a catalogue of popular
picks from the Boost libraries, one chapter per
library. In some ways this is one of the book’s
few downfalls, in that the coverage is
necessarily patchy. The book in no way attempts
to offer full coverage of the Boost libraries, and
would be a pretty hefty tome if it did, but having
had Karlsson show you around some libraries he
is missed for others.
In keeping with the Boost libraries themselves,
this is not a guide for the C++ novice. The base
level of knowledge presumed by the author is
significant, and you need to be familiar and
comfortable with all the advanced features of
C++, like templates and functors, and similarly
with the STL (containers, algorithms, binders
etc). In a book titled, Beyond the C++ Standard
Library this does perhaps go without saying.
The text is graced with many excellent
examples, which conspire to cover a broad range
of different use cases, and together form a useful
body of knowledge of the details of the syntax.
In same way that K&R shows the idioms of C,
and Meyers and Sutter many of the idioms of
C++, this book shows us how to get things done

with the Boost Libraries. It has quickly become
the volume I reach for when I need to remind
myself what a certain construct looks like.
The text accompanying the examples is
comfortably fast paced, and with a pleasant
narrative style. Karlsson even manages to inject
a little humour from time to time, which is
welcome in book dealing with such a intricate
topic. As well as being a comprehensive account
of how it works, this book also manages to
convey and share the author’s obvious pleasure
at the beauty and elegance of the Boost libraries,
and gives good insight into the architectural
forms that these facilities encourage. In short,
with this book under your belt, the solution
space for everyday programming requirements
is so very much richer.
Your mileage may vary depending on your
environment, but for me the highlights were the
chapters on Boost.Bind, Boost.Lambda &
Boost.Function. The ability to define
anonymous functions at the call site scratched an
itch for me in the same way that the introduction
of classes into C did – an elegant solution to an
obvious problem.
At 380 pages, this is already a substantial book,
but I can only hope Karlsson will write further
volumes!

Book reviews (continued)

	A sideways glance at Java
	An introduction to the Java Native Interface
	Restaurant C++ and Pidgin Python
	JavaOne: JavaFX and the Future of Java
	Java Web Start
	Desert Island Books
	Regional Meetings
	Code Critique Competition 53
	View From The Chair
	Membership Report
	Advertising Officer Report

