

JUN 2008 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

ACCU vs. Open Source
 took on editorialship of C Vu around about the same time that I started working
for Canonical. Canonical is an interesting company full of smart people. These
are people who are leaders in their field and who care about what they do.

Sound familiar? I though so. I thought that these people would be great ACCU
people. They had similar ideals and to me everything seemed like a natural fit.
Why then do I have such a hard time getting them to even consider ACCU?
I’ve come to realise over time that many of the things that people join ACCU for
are also available through getting involved in open source projects. People
get involved with ACCU to get around like minded people, who care about
their profession. To be able to connect in some way with other people that
they do not work with on a day to day basis that they can learn from, mentor,
or just share a laugh with.
However all of these things are available through getting involved with an
open source project that interests you. The projects are normally lead by a
number of smart people. People who are interested in getting others
interested in what they do. People who lead and mentor junior team
members in how to fix problems, and follow the standards of the greater
team. Members of these teams form bonds with others in the team. Often
the members have never met, some occasionally try to get together and
meet face to face. Now, the chances are if you have never been to an ACCU
conference, I have no idea who you are, nor you me. This isn’t so different
to these open source projects, except that ACCU doesn’t have an underlying
project.
Now I don’t know the actual numbers, but it is my guess that the vast majority
of ACCU members are not actively involved in open source projects. It seems
to be that ACCU offers the professional developer a way to get this camaradarie.
Many upcoming developers though, those that are finishing degrees and entering
the work force now have had some of the open source goodness. A good question
then is ‘What can ACCU offer over an above what they get from their open source
participation?’
I feel like I’m running out of space, but one theme that has come up over the years
of membership is of mentoring and apprenticeship. Perhaps there is something there?
Perhaps you have other ideas. I, for one, would love to hear them.

I
Volume 20 Issue 3
June 2008

Editor
Tim Penhey
cvu@accu.org

Guest Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Renato Forti, Pete Goodliffe,
Paul Grenyer, Kevlin Henney,
Jez Higgins, Roger Orr.

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

2 | | JUN 2008

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 20.4: 1st July 2008
C Vu 20.5: 1st October 2008

IN OVERLOAD
Richard Harris continues to unravel knots in the second part of
his series, Stuart Golodetz introduces the mathematics behind
the RSA encryption algorithm, Tom Gilb presents a ‘Quality
Manifesto’ and Klaus Marquardt describes the symptoms of
‘Performitis’.

DIALOGUE
28 Desert Island Books

Paul Grenyer introduces
Kevlin Henney and his
selection of books.

31 Code Critique Competition
This issue’s competition
and the results from last
time.

36 Regional Meetings
Local ACCU gatherings.

37 Bookcase
The latest roundup of
ACCU book reviews.

39 ACCU Members Zone
Reports and membership
news.

FEATURES
3 Garbage Collection in C and C++

Renato Forti provides automatic memory management for
C and C++.

6 Write Less Code!
Pete Goodliffe implores us to produce less code for the
sake of our software.

10 Custom Iterators in C++
Jez Higgings searches for a base class.

14 ACCU Conference 2008
Jez Higgins and friends look back at this year’s ACCU
conference.

Garbage Collection in C and C++
Renato Forti provides automatic dynamic memory

management for C and C++

Audience
his article was written for beginners and experienced developers who
are not familiar with Garbage Collection and would like to have a
small introduction.

Introduction
Traditionally in C, you need to dynamically allocate and deallocate
memory using malloc and free or in C++ using the new and delete
operators. This method is not ideal as managing dynamic memory by hand
can be very hard and error prone.
Some languages, like Java, Smalltalk and Prolog, have a mechanism
known as Garbage Collection (GC) that recycles memory automatically.
In this article I will introduce a fantastic GC library implemented by Hans
J. Boehm[1], Alan Demers[2], and Mark Weiser[3] that brings automatic
memory recycling to your C or C++ application.

The Boehm-Demers-Weiser garbage collector
The GC library is supported on various platforms, but not all, as GC cannot
be implemented as completely portable C code. The current supported
platforms include (at time of writing) Linux, Windows, MacOS X, and a
variety of Unixes.
If your platform is not supported you could try to port
yourself using Boehm’s guidelines[4].
 GC i s open sou rce . The l i cence i s he re :
http://www.hpl.hp.com/personal/Hans_Boehm/gc/li
cense.txt.
The GC library is well established and used in many
projects around the world including Mozilla[5], the
Irssi IRC client[6], the Berkeley Titanium project[7],
and many others.

How GC works
The main function of GC is to provide an easy way to
manage the memory of your program. You use new to allocate memory,
but a call to delete is optional. If you don’t call delete, the GC will
reclaim the unreachable memory and make it available to your program
again automatically.
Automatic memory recycling can significantly reduce the development
time of your application, reducing errors caused by dynamic memory
management that need the use of delete or free. Amongst other things,
it can also be used as a leak detector. Memory reclaimed by the GC must
not have been released by delete or free, and so must represent a leak.
Mozilla, for example, uses GC to do this.
Boehm maintains a discussion about the arguments for and against garbage
collection on his website[8], and I don’t intend to repeat them here.
GC uses the mark-sweep algorithm. This algorithm determines what
memory can be recycled by occasionally marking all objects referenced
directly by pointer variables. It marks all objects directly reachable from
newly marked objects, then a sweep over the entire heap is performed to
restore unmarked objects to a free list. These objects can then be
reallocated. You can find a complete discussion of the mark-sweep
algorithm on Boehm’s website[9].

Get and build
When I wrote this article the most recent version of GC was 7.0. You can
download it from:

http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/
After downloading, use the provided MAKEFILE to build the library in gc-
root/doc. The readme files are very useful for learning how to use the
MAKEFILE for your platform.
In my case I will build GC for Windows and so my readme is
README.win32.
To build for Win32 we need rename: NT_THREADS_MAKEFILE (it is in:
gc-root/) to MAKEFILE.
Now do the build. It will create a gc.dll, and link library gc.lib. If you
need a static library you can use NT_STATIC_THREADS_MAKEFILE to
generate a .lib instead. On Windows you also have have other options:

NT_MAKEFILE

NT_STATIC_THREADS_MAKEFILE

NT_THREADS_MAKEFILE

NT_X64_STATIC_THREADS_MAKEFILE

See readme for details on your platform.
Binary packages may also be available through the
usual channels. The GC library is, for example,
included in Debian (apt-get install libgc-
dev) and is available for MacOS X through
MacPorts.

C++ interface
Most of the GC library is written in C. The C++
interface is implemented as a layer on top of the C
interface. We will use this interface here. If you want
use the C interface see the online guide[10].
The C++ interface is defined in gc_cpp.h, and you
can find this file in gc-root/include/gc_cpp.h

and the implementation in gc-root/. All clients should include this file.
Listing 1 is the GC C++ interface (gc_cpp.h).
As you can see it provides new, new[], delete and delete[] operators for a
class. It also provides replacements for the global new and delete operators.
This can be a problem on some platforms and you may need do some
adjustments in the C++ layer (gc_cpp.cc, gc_cpp.h, and possibly
gc_allocator.h) for correct operation.

Using GC.
We will start with a simple example that makes a class collectable to GC.
Listing 2 shows an ordinary class. When complied and run the output,
shown in Listing 3, is as you would expect.

T

automatic memory
recycling can
significantly

reduce the
development time
of your application

RENATO FORTI
Renato Tegon Forti is an independent software
developer, working from his home office in Brazil for
many companies. He can be contacted at
re.tf@acm.org
JUN 2008 | | 3{cvu}

4 | | JUN 2008{cvu}

class gc
{
public:
 void* operator new(size_t size);
 void* operator new(size_t size,
 GCPlacement gcp);
 void* operator new(size_t size,
 void *p);
 void operator delete(void* obj);
 void* operator new[](size_t size);
 void* operator new[](size_t size,
 GCPlacement gcp);
 void* operator new[](size_t size,
 void *p);
 void operator delete[](void* obj);
};

void* operator new[](size_t size);
void operator delete[](void* obj);
void* operator new(size_t size);
void operator delete(void* obj);

// many implementation details and preprocessor
// directives were omitted for clarity

Li
st

in
g

1

#include <iostream>
class Test
{
public:
 Test()
 {
 std::cout << " Test Constructor..."
 << std::endl;
 }
 ~Test()
 {
 std::cout << " Test Destructor..."
 << std::endl;
 }
};
void test()
{
 for (size_t i = 0; i != 5; ++i)
 {
 Test* pTest = new Test();
 ...
 delete pTest;
 }
}
int main()
{
 test();
 return 0;
}

Li
st

in
g

2

 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...

Li
st

in
g

3

Now we will make the class collectable. This is very straightforward, as
shown in Listing 4, we simply make our class publically derived from the
gc base class.
The output from the modified program is shown in listing 5. Well, it shows
5 constructors and but what about destructors?
This occurs because a class that is derived from gc will only have its
memory freed. The destructor will not be called. We will see how the
destructor can be called below.
Continuing, if you need to make your class collectable by GC, do you need
to inherit from gc? The class you wish to collect may not be under your
control, perhaps from a third party library. Happily, there are other options.
For example you can use the GC placement new to make object instances
collectable, as shown in listing 6.
The output from this program, shown in listing 7, is the same as the
previous example. However, the difference to not is in listing 4, the class

#include <iostream>
#include <gc/gc_cpp.h>
class Test: public gc // NOTE: inherit from gc
{
 //… as Listing 2 …
};
void test()
{
 for (size_t i = 0; i != 5; ++i)
 {
 Test* pTest = new Test();
 ...
 // delete pTest; // no longer needed
 }
}
int main()
{
 GC_INIT();
 test();
 return 0;
}

 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...

#include <gc/gc_cpp.h>
class Test // NOTE: no longer inherit from gc
{
 //… as Listing 2 …
};
void test()
{
 for (size_t i = 0; i != 10; ++i)
 {
 Test* pTest = new(GC) Test(); // note (GC)
 ...
 // delete pTest; // no longer needed
 }
}
int main()
{
 GC_INIT();
 test();
 return 0;
}

Listing 5
Listing 4

Listing 6

is marked as collectable, while in listing 6, the individual object instances
are marked as collectable.
Now if your class inherits from gc but you don't want GC to collect
particular instances, you can use the NoGC placement new. Listing 8
shows this in action. Note that since we have turned off garbage collection
for these objects we must explicitly delete them and therefore their
destructors are called, as shown in listing 9.
Another common question is if my class is collectable and I use delete to
free memory, what will happen?
The memory will be freed immediately, as expected and the destructor will
run. You can explicitly delete both uncollectable and collectable objects.

gc_cleanup / call destructor
GC C++ interface provides a class called gc_cleanup. If your class inherits
from it then it will be visible to the GC to be collected, and when an object
is freed by the GC its destructor will be called. List 10 shows a class which
inherits from gc_cleanup, and listing 11 shows the output from this
program.

Clean-up function
The GC interface also provides a clean-up function that any collectable
object may have. This function is invoked when the collector discovers the
object to be inaccessible, like the gc_cleanup class.

GC determines if an object is inaccessible when you allocate memory and
it becomes impossible to ever free it because there are no longer any
references to it, then the clean-up function is invoked.
Listing 12 show an example, and listing 13 its output.

 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...Li

st
in

g
7

#include <iostream>
#include <gc/gc_cpp.h>
class Test: public gc // NOTE: inherit from gc
{
 //… as Listing 2 …
};
void test()
{
 for (size_t i = 0; i != 5; ++i)
 {
 Test* pTest = new(NoGC) Test();
 …
 delete pTest; // now we need to use delete
 }
}
int main()
{
 GC_INIT();
 test();
 return 0;
}

Li
st

in
g8

 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...
 Test Constructor...
 Test Destructor...

Li
st

in
g

9

#include <iostream>
#include <gc/gc_cpp.h>
class Test : public gc_cleanup
{
 … as Listing 2 …
};

void test()
{
 for (size_t i = 0; i != 5; ++i)
 {
 Test* p = new Test ();
 }
}

int main()
{
 GC_INIT();
 test();
 return 0;
}

 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Destructor...
 Test Destructor...
 Test Destructor...
 Test Destructor...
 Test Destructor...

class Test : public gc
{
 public:
 … as Listing 2 …
 static void clean(void* obj, void* data)
 {
 std::cout << " clean function" << std::endl;
 }
};

void test(size_t sz)
{
 Test * p;
 for (size_t i = 0; i < sz; i++)
 {
 p = ::new (GC, Test::clean) Test ();
 }
}

int main()
{
 GC_INIT();
 test();
 return 0;
}

Listing 11
Listing 10

Listing 12
JUN 2008 | | 5{cvu}

Professionalism in Programming # 50
Conclusion
GC is powerful tool and can simplify the complexity of writing software.
It can bring an easier way to manage memory like you have in Java, but
for C++ users. The Boehm GC provides collection on a per class or per
instance basis, with the option of calling or not calling destructors. The
negative point is that it introduces a reduction of performance in system.
This is not so much of a problem for most modern system. GC deserves a
look.

Acknowledgements
I would like to thank Jez Higgins and Paul Grenyer for the various
improvements they suggested for this article.

Bibliography
Richard Jones & Rafael Lins, Garbage Collection - Algorithms for
Automatic Dynamic Memory Management, ISBN 978-0471941484

A ga rbage c o l l e c to r f o r C and C++ (Hans J . Boehm) ,
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Libgc, http://developers.sun.com/solaris/articles/libgc.html

The Web Links listed here may not be valid in the future.

References
[1] Hans J. Boehm, http://www.hpl.hp.com/personal/Hans_Boehm
[2] Alan Demers, http://www.cs.cornell.edu/annual_report/00-

01.bios.html#demers
[3] Mark Weiser, http://www-sul.stanford.edu/weiser/
[4] Porting guidelines,

http://www.hpl.hp.com/personal/Hans_Boehm/gc/porting.html
[5] Mozilla project, http://www.mozilla.org/
[6] Irssi IRC client, http://www.irssi.org
[7] Berkeley Titanium project, http://titanium.cs.berkelyh.edu/
[8] http://www.hpl.hp.com/personal/Hans_Boehm/gc/issues.html
[9] http://www.hpl.hp.com/personal/Hans_Boehm/gc/complexity.html
[10] http://www.hpl.hp.com/personal/Hans_Boehm/gc/gcinterface.html

 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 Test Constructor...
 clean function
 clean function
 clean function
 clean function
 clean function

Li
st

in
g

13

Garbage Collection (continued)
Write Less Code!
Pete Goodliffe implores us to produce less code for the

sake of our software.

t’s a sad fact that in our modern world that there’s just too much code.
I can cope with the fact that my car engine is controlled by a computer,
there’s obviously software cooking the food in my microwave, and it

wouldn’t surprise me if my genetically modified cucumbers had an
embedded micro controller in them. That’s all fine; its not what I’m
obsessing about. I’m worried about all the unnecessary code out there.
There’s simply too much unnecessary code kicking around. Like weeds,
these evil lines of code clog up our precious bytes of storage, obfuscate
our revision control histories, stubbornly get in the way of our
development, and use up precious code space, choking the good code
around them.
Why is there so much unnecessary code? Perhaps it’s due to genetic flaws.
Some people like the sound of their own voice. You’ve met them; you just
can’t shut them up. They’re the kind of people you don’t want to get stuck
with at parties. Yada yada yada. Other people like their own code too much.
They like it so much they write reams of it. {yada->yada.yada();}
Or perhaps they’re the programmers with misguided managers who judge
progress by how many thousands of lines of code have been written a day.
Writing lots of code does not mean that you’ve written lots of software.
Indeed, some code can actually negatively affect the amount of software
you have – it gets in the way, causes faults, and reduces the quality of the
user experience. The programming equivalent of anti-matter.
Some of my best software improvement work has been by removing code.
I fondly remember one time when I lopped literally thousands of lines of
code out of a sprawling system, and replaced it with a mere ten lines of
code. What a wonderfully smug feeling of satisfaction. I suggest you try
it some time.

Why should we care?
So why is this phenomenon bad, rather
than merely annoying? There are
many reasons why unnecessary code
is the root of all evil. Here are a few
headlines:

Writing a fresh line of code is the
birth of a little lifeform. It will need
to be lovingly nurtured into a useful and
profitable member of software society. Then
you release the product.
Over the life of the software system, that line of code needs
maintenance. Each line of code costs a little. The more you write, the
higher the cost. The longer they live, the higher the cost. Clearly,
unnecessary code needs to meet a timely demise before it bankrupts
us.
More code means there is more to read – it makes our programs
harder to comprehend. Unnecessary code can mask the purpose of a
function, or hide small but important differences in otherwise
similar code.

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
6 | | JUN 2008{cvu}

The more code there is, the more work required to make
modifications – the program is harder to modify.
Code harbours bugs. There more code you have, the more places
there are for bugs to hide.

Duplicated code is particularly pernicious; you can fix a bug in one
copy of the code and, unbeknown to you, still have another thirty
two identical little bugs kicking around elsewhere.

Unnecessary code comes in many guises: unused components, dead code,
pointless comments, unnecessary verbosity, and so on. Let’s look at some
of these in detail.

Flappy logic
A simple and common class of pointless code is the unnecessary use of
conditional statements and tautological logic constructs. Flappy logic is
the sign of a flappy mind or, at least, of a poor understanding of logic
constructs. For example:
 if (expression)
 return true;
 else
 return false;

can more simply, and directly be written:
 return expression;

This is not only more compact, it is easier to read, and therefore easier
understand. It looks more like an English sentence, which greatly aids
human readers. And do you know what? The compiler doesn’t mind one
bit.
Similarly, the verbose expression:
 if (something == true)
 {
 // ...
 }

would read much better as:
 if (something)

Now, these examples are clearly simplistic. In the wild we see much
more elaborate constructs created; never underestimate the ability
of a programmer to complicate the simple. Real World code is
riddled with things like this:
 bool should_we_pick_bananas()
 {
 if (gorilla_is_hungry())
 {
 if (bananas_are_ripe())
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 else
 {
 return false;
 }
}

which reduces neatly to the one-liner:
 return gorilla_is_hungry() && bananas_are_ripe();

Cut through the waffle and say things clearly, but succinctly. Don’t feel
ashamed to know how your language works.
It’s not dirty, and you won’t grow hairy palms.
Knowing, and exploiting, the order in which
expressions are evaluated saves a lot of
unnecessary logic in conditional expressions.

 if (a
 || (!a && b))
 {
 // what a complicated expression!
 }

can simply be written:
 if (a || b)
 {
 // isn't that better?
 // didn't hurt, did it?
 }

Short-circuit evaluation is your friend.

Duplication
Code duplication is evil. We mostly see this crime perpetrated through the
application of cut-and-paste programming; when a lazy programmer
choses not to factor repeated code sections into a common function, but
physically copies it from one place to another in their editor. Sloppy. The
sin is compounded when the code is pasted with minor changes.
When you duplicate code, you hide the repeated structure, and you copy
all of the bugs that existed. Even if you repair one instance of the code,
there will be a queue of identical bugs ready to bite you another day.
Refactor duplicated code sections into a single function. If there are similar
code sections with slight differences, capture the differences in one
function with a configuration parameter.
Not all duplication is malicious or the fault of lazy programmers.
Duplication can happen by accident too, by someone reinventing a wheel
that they didn’t know existed. Or it can happen by constructing a new
function when a perfectly acceptable third party library already exists. This
is bad because the existent library is far more likely to be correct and
debugged already. Using common libraries saves you effort, and shields
you from a world of potential faults.

There are also micro code-level duplication patterns. If example:
 if (foo) do something();
 if (foo) do_something_else()
 if (foo) do_more();

could all be neatly wrapped in a single if statement. Multiple loops can
usually be reduced to a single loop. For example, the following code:
 for (int a = 0; a < MAX; ++a)
 {
 // do something
 }
 // make hot buttered toast
 for (int a = 0; a < MAX; ++a)
 {
 // do something else
 }

Flappy logic is the sign of a flappy mind or, at least,
of a poor understanding of logic constructs

Not all duplication is malicious or the
fault of lazy programmers
JUN 2008 | | 7{cvu}

boils down to:
 for (int a = 0; a < MAX; ++a)
 {
 // do something
 // do something else
 }
 // make hot buttered toast

Not only is this simpler to read and understand, it’s likely to perform better
too, as only one loop needs to be run. Also consider redundant duplicated
conditionals:
 if (foo)
 {
 if (foo && some_other_reason)
 {
 // the 2nd check for foo was redundant
 }
 }

You probably wouldn’t write that on purpose, but after a bit of maintenance
work a lot of code ends up with sloppy structure like that. If you spot
duplication, remove it.
I was recently trying to debug a device driver that was structured with two
main processing loops. Upon inspection, these loops were almost entirely
identical, with some minor differences for the type of data they were
processing. This fact was not immediately obvious because each loop was
300 lines (of very dense C code) long! It was tortuous and hard to follow.
Each loop had seen a different set of bugfixes, and consequently the code
was flakey and unpredictable. A little effort to factor the two loops into a
single version halved the problem space immediately; I could then
concentrate on one place to find and
fix faults.

Dead code
If you don’t maintain it, your code can
rot. And it can also die. Dead code is
code that is never run, that can never
be reached. That has no life. Tell your code to get a life, or get lost.
These examples both contain dead code sections that aren’t immediately
obvious if you were to quickly glance over them:
 if (size == 0)
 {
 // ... twenty lines of malarkey ...
 for (int n = 0; n < size; ++n)
 {
 // this code will never run
 }
 // ... twenty more lines of shenanigans ...
 }

and
 void loop(char *str)
 {
 size_t length = strlen(str);
 if (length == 0) return;
 for (size_t n = 0; n < length; n++)
 {
 if (str[n] == '\0')
 {
 // this code will never run
 }
 }
 if (length) return;
 // neither will this code
 }

Other manifestations of dead code include:
Functions that are never called.
Variables read but never written
Parameters passed but never used
Enums, structs, classes, or interfaces that are never used

Comments
Sadly, the world is riddled with awful code comments. You can’t turn
around in an editor without tripping over a few of them. It doesn’t help
that many corporate coding standards are a pile of rot, mandating the
inclusion millions of brain dead comments.
Good code does not need reams of comments to explain it. Careful choice
of variable, function and class names and good structure should make your
code entirely clear. Duplicating all of that information in a set of comments
is unnecessary redundancy. And like any other form of duplication, it is
also dangerous; it’s far too easy to change one without changing the other.
Stupid, redundant comments range from the classic example of byte
wastage:
 ++i; // increment i

to more subtle examples, where an algorithm is described just above it in
the code:
 // loop over all items, and add them up
 int total = 0;
 for (int n = 0; n < MAX; n++)
 {
 total += items[n];
 }
 // (yes, we could see that, thanks!)

Very few algorithms when expressed
in code are complex enough to justify
that level of exposition. (But some are
– learn the difference!)
It’s also common to enter a crufty
codebase and see ‘old’ code that has
b e e n s u rg i c a l l y r em ov e d , b y

commenting it out. Don’t do this; it’s the sign of someone who wasn’t
brave enough to perform the surgical extraction completely, or who didn’t
really understand what they were doing and thought that they might have
to graft the code back in later. Remove code completely. You can always
get it back afterwards from your source control system.
Don’t write comments describing what the code used to do; it doesn’t
matter any more. Don’t put comments at the end of code blocks or scopes;
the code structure makes that clear. And don’t write gratuitous ASCII art.

Verbosity
This is really a quite general topic. A lot of code is needlessly chatty. At
the simplest end of the verbosity spectrum (which ranges from infra-
redundant to ultra-voluble) is code like this:
 bool is_valid(const char *str)
 {
 if (str)
 return strcmp(str, “VALID”) == 0;
 else
 return false;
 }

It is quite wordy, and so it’s relatively hard to see what the intent is. It can
easily be rewritten:
 bool is_valid(const char *str)
 {
 return str && strcmp(str, “VALID”) == 0;
 }

Don’t write comments describing
what the code used to do; it doesn’t

matter any more
8 | | JUN 2008{cvu}

Don’t be afraid of the ternary operator, it really helps reduce code clutter.
Replace this kind of monstrosity:
 public String getPath(URL url) {
 if (url == null) {
 return null;
 }
 else {
 return url.getPath();
 }
 }

with:
 public String getPath(URL url) {
 return url == null ? null : url.getPath();
 }

Of course, you can’t do that in Python – it doesn’t have a ternary operator.
Snakes can’t count to three.
C-style declarations (where all variables are declared at the top of a block,
and used much, much later on) are now officially passé (unless you’re still
forced to use officially defunct compiler technology). The world has
moved on, and so should your code.
 int a;
 // ... twenty lines of C code ...
 a = foo();
 // what type was an "a" again?

Move variable declarations and definitions together, to reduce the effort
required to understand the code, and reduce potential errors from
uninitialised variables. In fact, sometimes these variables are pointless
anyway:
 bool a;
 int b;
 a = condition_1;
 b = condition_2;
 if (a)
 foo(10, b);
 else
 foo(5, b);

can easily become the less verbose (and, arguably clearer):
 foo(condition_1 ? 10 : 5, condition2);

Bad design
Of course, unnecessary code is not just the product of low-level code
mistakes or bad maintenance. It can be caused by higher-level design
flaws. For example:

Bad design may introduce many unnecessary communication paths
between components – lots of extra code for data marshalling for no
apparent reason. The further data flows, the more likely it is to get
corrupted en-route.
Over time code components become redundant, or can mutate from
their original use to something quite different, leaving large sections
of unused code. When this happens, don’t be afraid to clear away all
of the dead wood. Replace the old component with a simpler one
that does all that is required.

Whitespace
Don’t panic! I’m not going to attack whitespace (that is, spaces, tabs, and
newlines). Whitespace is a good thing – do not be afraid to use it. Like a
well placed pause when reciting a poem, sensible use of whitespace helps
to frame our code.
Use of whitespace is not usually misleading or unnecessary. But you can
have too much of a good thing, and twenty newlines between functions
probably is too much.

Consider, too, the use of parenthesis to group logic constructs. Sometimes
brackets help to clarify the logic even not necessary to defeat operator
precedence. Sometimes they are unnecessary and get in the way.

So what do we do?
To be fair, often such a build up of code cruft isn’t intentional. Few people
set out to write deliberately laborious, duplicated, pointless code. (But
there are some lazy programmers who continually take the low-road rather
than invest extra time to write great code.) Most frequently we end up with
these code problems as the legacy of code that has been maintained,
extended, worked with, and debugged by many people over a large period
of time.
So what do we do about it? We must take responsibility. Don’t write
unnecessary code, and when you work on ‘legacy’ code watch out for the
warning signs. It’s time to get militant. Reclaim our whitespace. Reduce
the clutter. Spring clean. Redress the balance. Pigs live in their own filth.
Programmers needn’t. Clean up behind yourself. As you work on a piece
of code, remove all of that unnecessary code you encounter.
But take heed of this simple rule: make ‘tidying up’ changes separately
from other functional changes. This will ensure that its clear in your source
control system what’s happened. Gratuitous structural change mixed in
with functional modifications are hard to follow. And if there is a bug then
it’s harder to work out whether it was due to your new functionality, or
because of the structural improvement.

Conclusion
Software functionality does not correlate to the number of lines of code,
or to the number of components in a system. More lines of code does not
necessarily mean more software.
So if you don’t need it: don’t write it. Write less code, and find something
more fun to do instead.
JUN 2008 | | 9{cvu}

Custom Iterators in C++
Jez Higgins searches for a base class.

ustom iterators in Java are easy: you just implement the
java.util.Iterator interface. Listing One shows an example.
The FilterIterator wraps an existing iterator, returning only

those values which satisfy some condition. Doing the same thing in C++
is more awkward.

Custom iterators and their uses, which include abstracting data sources,
building views and queries, and pipeline processing, were the basis of a
session I gave at the 2007 conference[1]. It had gone well, but I wasn’t
quite sure I had really put my main point across very well. In December
last year, I had another go, presented a revised version to the ACCU
Cambridge group[2]. The example code I show is in Java and Python,
primarily for my own convenience. As I’ve noted, iterators in Java are easy
and they are equally easy in Python, so you can fit a complete example on
one slide. Further, most people can read Java and Python even if they don’t
use them.
The audience that evening was largely composed of guys who worked in
C++. I asserted throughout that the ideas shown could be

implemented in C++ without any particular difficulty. I was picked up on
that by someone (whose name I unfortunately didn’t catch, apologies) who
argued that a C++ version of the FilterIterator would be hampered
by the type signatures. They would simply get in the way. Java iterators
can be freely interchanged at runtime, thanks to that base interface. C++
iterators have no such common base, and iterators are typically tied to the
type of whatever they iterate over. A std::vector<string>’s iterators
a r e o f t ype std::vector<string>::iterator , a
std::deque<string> ’ s i t e r a t o r s a r e o f t ype
std::deque<string>::iterator , and the two are not
interchangable at runtime, despite both having essentially identical
characteristics. Generally this isn’t a problem but for the situations I was
describing, which rely on runtime composition and substitution, it presents
rather an obstacle. I continued to assert that the obstacle was, in fact,
surmountable and that a little bit of scaffolding would take you a long way.
He disagreed. There was a bit of back and forth around the room, but I
didn’t win him over and, short of writing code on the whiteboard, it didn’t
look like I was going to. So we all went to the pub.
In the following few days I did write the code, and I think I would have
brought him round in the end.

A naive C++ filtering iterator
Listing Two shows my first pass at a C++ filtering iterator. There are some
obvious differences from the Java version, primarily due to differences in
language idiom. Java iterators know when they hit the end of the range they
traverse, while C++ uses a pair of iterators to denote a range.
This iterator does indeed filter and its use, shown in Listing Three is
straightforward. Job done, right? Well, no.
It works as a filter, but the usage is cumbersome at best. The type of the
instantiated filter_iterator is related not only to the type of iterator
it wraps but also to the type of the predicate. You cannot substitute a
filter_iterator<std::vector<int>::iterator, Even> for
a std::vector<int>::iterator, nor can you substitute it for
filter_iterator<std::vector<int>::iterator, Odd>. I’m
not sure that fits any accepted definition of adding flexibility. It certainly
isn’t any closer to the runtime behaviour I want.
But what to do?

Simplification through type erasure
The approaches I described in the talk are built on object-oriented
techniques. The Java standard library is resolutely object-oriented, with
concepts expressed as interfaces or classes. Huge chunks of the C++
Standard Library, on the other hand, are built around generic programming
techniques, most notably the containers, iterators, and algorithms of the
STL. Concepts are expressed as a set of requirements on a type, rather than
directly in code. A Java iterator is an iterator because it implements the
Iterator interface. A C++ iterator is an iterator because it can be can be
dereferenced to refer to some object, and incremented to obtain the next
object in a sequence[3]. Java iterators are substitutable at runtime, while
C++ iterators are substitutable at compile time.
The proliferation of types in the code above arise from the tension between
generic and object-oriented approaches. How can that tension be relieved?
In our filter_iterator, we don’t care about the actual type of iterator
being wrapped. It isn’t exposed through the public interface, and so our
client code doesn’t (indeed can’t) care about it either. In the public
interface, we only care that it returns an int (or whatever) when

C
public interface Predicate
{
 public boolean test(Object o);
}
public class FilterIterator implements Iterator
{
 public FilterIterator(Iterator iterator,
 Predicate predicate)
 {
 iter_ = iterator;
 pred_ = predicate;
 findNext();
 }
 public boolean hasNext()
 {
 return next_ != null;
 }
 public Object next()
 {
 Object current = next_;
 findNext();
 return current;
 }
 public void findNext()
 {
 next_ = null;
 while(iter_.hasNext() && next_ == null)
 {
 Object candidate = iter_.next();
 if(pred_.test(candidate))
 next_ = candidate;
 }
 }
 ...
}

Li
st

in
g

1

JEZ HIGGINS
Jez works in his attic, which was recently replastered, living
the devil-may-care life of a journeyman programmer. He is
currently learning to tumble turn without getting water up his
nose. His website is http://www.jezuk.co.uk/
10 | | JUN 2008{cvu}

dereferenced. Internally, the implementation only requires that wrapped
iterator can be advanced by calling operator++ and compared for
equality. If only there was a common base class along the lines of Listing 4.

If you squint a bit, looks almost like the java.util.Iterator, doesn’t
it? Perhaps Josh Bloch was on to something after all. Anyway ...

We can effectively introduce such a base class through the use of an
adaptor or wrapper. If we have a template class, parameterised on the
iterator’s type, with a non-template base class, we can create a type-
specific wrapper to swaddle around the iterator, which we only manipulate
through the base class. Because the base class isn’t parameterised, it
doesn’t expose anything about the wrapped iterator. By the classical
computer science technique of an extra layer of indirection, we can slip a
common base class in down the side of our existing iterators.
The adaptor is shown in Listing 5, which is continued on the next page.

template<typename iterator_type,
 typename predicate_type>
class filter_iterator
{
public:
 typedef typename iterator_type
 ::value_type value_type;
 filter_iterator(const iterator_type& begin,
 const iterator_type& end,
 const predicate_type& pred):
current_(begin),
 end_(end), pred_(pred)
 {
 while((current_ != end_)
 && (!pred_(*current_)))
 ++current_;
 } // filter_iterator
 value_type& operator*() const { return
*current_; }
 value_type& operator->() const {
 return *current_; }
 filter_iterator& operator++() { advance();
 return *this; }
 bool operator==(const filter_iterator& rhs)
 const { return current_ == rhs.current_; }
 bool operator!=(const filter_iterator& rhs)
 const { return !(operator==(rhs)); }
private:
 void advance()
 {
 do
 {
 ++current_;
 }
 while((current_ != end_)
 && (!pred_(*current_)));
 } // advance
 iterator_type current_;
 iterator_type end_;
 predicate_type pred_;
};

Li
st

in
g

2

class Even
{
public:
 bool operator()(int& i) { return i%2 == 0; }
};
...
std::vector<int> vec;
... populate the vector ...
filter_iterator<std::vector<int>::iterator,
 Even> fb(vec.begin(), vec.end(), Even());
filter_iterator<std::vector<int>::iterator,
 Even> fe(vec.end(), vec.end(), Even());
for(; fb != fe; ++fb)
{
 std::cout << *fb << std::endl;
 ... do something else with *fb ...
} // for ...

Li
st

in
g

3

class iterator_base
{
 virtual int& get(); // aka operator*()
 virtual void advance(); // aka operator++()
 virtual bool equal(
 const iterator_base& rhs) const;
 // aka operator==()

}

Listing 4

template<typename value_type>
class iterator_holder
{
public:
 template<typename iterator_type>
 iterator_holder(const iterator_type& iter) :
 iter_(new holder<iterator_type>(iter)) { }
 iterator_holder(const iterator_holder& rhs) :
 iter_(rhs.iter_->clone(); }
 ~iterator_holder() { delete iter_; }
 value_type& get() const { return iter_->get();
}
 void advance() { return iter_->advance(); }
 iterator_holder& operator=(
 const iterator_holder& rhs)
 {
 iterator_holder(rhs).swap(*this);
 return *this;
 }
 template<typename other_iterator_type
 iterator_holder& operator=(
 constother_iterator_type& iter)
 {
 iterator_holder(rhs).swap(*this);
 return *this;
 }
 void swap(iterator_holder& rhs)
 {
 iterator_base* c = iter_;
 iter_ = rhs.iter_;
 rhs.iter_ = c;
 }
 bool operator==(const iterator_holder& rhs)
const
 {
 return iter_->equal(rhs.iter_);
 }
 bool operator!=(const iterator_holder& rhs)
const
 {
 return !(operator==(rhs));
 }

private:
 class iterator_base;
 iterator_base* iter_;
 class iterator_base
 {

Listing 5
JUN 2008 | | 11{cvu}

That’s quite a chunk of code, I don’t intend to dwell on the details. The
main thing to note is that the outermost class iterator_holder is
parameterised on the value type, on what the held iterator points to, rather
than the type of the iterator itself. The holder and iterator_base are
the template class with non-template base described above.
We can rewrite filter_iterator to use iterator_holder, and our
example becomes:

 filter_iterator<int, Even> fb(vec.begin(),
 vec.end(), Even());
 filter_iterator<int, Even> fe(vec.end(),
 vec.end(), Even());
 for(; fb != fe; ++fb)
 {
 std::cout << *fb << std::endl;
 ... do something else with *fb ...
 } // for ...

But look at this. We can also write this:

 std::deque<int> deq;
 ...
 filter_iterator<int, Even> fb(deq.begin(),
 deq.end(), Even());
 filter_iterator<int, Even> fe(deq.end(),

 deq.end(), Even());
 for(; fb != fe; ++fb)
 {
 std::cout << *fb << std::endl;
 ... do something else with *fb ...
} // for ...

Exchanging the std::vector for a std::deque doesn’t require any
other change. That’s rather a useful result.

One down, one to go
While using the filter_iterator now requires less typing, it still
doesn’t have the runtime behaviour we want. While the dependency on the
wrapped iterator’s type has been removed, the predicate’s type still
intrudes. Again, however, we are not interested in the details of the
predicate type. It isn’t exposed through the public interface, and internally
we only care that it has some function that takes a value_type and
returns bool – we really don’t care about the precise details. By writing
a similar predicate_holder, the filter_iterator reduces to that
shown in Listing 6.
It doesn’t look hugely different from the first version, but the type signature
is much more straightforward. Not only is it much easier to work with, it’s
significantly more flexible. (Listing 7.)
Victory is mine, I gloated to myself before realising I’d rather exceeded
my brief. The iterator_holder class, far from being an
implementation detail for the filter_iterator, is a useful piece of kit
in its own right, providing a runtime polymorphic type-safe wrapper for
arbitrary iterators. It’s the thing, the little bit of scaffolding, I should have
been aiming for to begin with. With that in place, providing the runtime
behaviour I need, everything else – filtering iterators, transformers, or
whatever – can be built on and with it.

Further reading
‘External Polymorphism – An Object Structural Pattern for Transparently
Extending C++ Concrete Data Types’. What we’ve just done has a name.
http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/
External-Polymorphism.html
Googling around I found ‘A Fistful Of Idioms – Giving STL Iterators a
Base Class’, an article from Overload 38 back in July 2000, in which my
chum Steve Love develops an any_iterator wrapper class. He
approaches it from a slightly different direction and rather more formally,
but our results are similar. I must have read it at the time, but can’t
explicitly recall doing so. If you don’t have that to hand, it’s available in
the members area of the ACCU website at http://accu.org/index.php/
journals/479.
Towards the end of last year, Thomas Becker published on article on
Artima, http://www.artima.com/cppsource/type_erasure.html, entitled
‘On the Tension Between Object-Oriented and Generic Programming in
C++ and What Type Erasure Can Do About It’ in which he developed
any_iterator, a type-safe, heterogeneous C++ iterator. The Adobe
Source Libraries also have an any_iterator , (see ht tp: / /
opensource.adobe.com/classadobe_1_1any__iterator.html). All of those
are rather better developed that what I stumbled over writing
filter_iterator. Perhaps I should pre-emptively google next time?
Boost.Iterator includes a filter_iterator. It also includes
s e v e r a l o t he r u se fu l i t e r a t o r a d a p t o r s , i nc l u d i ng a
transform_iterator and a zip_iterator. Matthew Wilson
describes a bidirectional filter_iterator in an extract from his
Extended STL book available at http://www.informit.com/articles/
article.aspx?p=770642&seqNum=5. I found another at http://
www.salilab.org/~drussel/pdb/iterator_8h-source.html. All are essentially
equivalent to the naive version presented above, if more complete and, in
the Boost case, more formally specified.
On a slightly different track, a chap called Mr Edd describes an
opaque_iterator, designed to reduce compile-time dependencies, at
http://www.mr-edd.co.uk/?page_id=43.

 public:
 virtual ~iterator_base() { }
 virtual iterator_base* clone() const = 0;
 virtual void advance() = 0;
 virtual value_type& get() const = 0;
 bool equal(iterator_base* rhs) const
 {
 return (type() == rhs->type())
 && (up_compare(rhs));
 }
 protected:
 virtual const std::type_info& type()
 const = 0;
 virtual bool up_compare(
 iterator_base* rhs) const = 0;
 }; // class iterator_base
 template<typename iterator_type>
 class holder : public iterator_base
 {
 public:
 holder(const iterator_type& iter) :
 iter_(iter)
 { }
 virtual iterator_base* clone() const {
 return new holder(iter_); }
 virtual void advance() { ++iter_; }
 virtual value_type& get() const {
 return *iter_; }
 protected:
 virtual const std::type_info& type() const {
 return typeid(iter_); }
 virtual bool up_compare(
 iterator_base* rhs) const
 {
 holder* r = dynamic_cast<holder*>(rhs);
 return iter_= == r->iter_;
 }
 private:
 iterator_type iter_;
 }; // class holder
}; // class iterator_holder

Li
st

in
g

5
(c

on
t’d

)

12 | | JUN 2008{cvu}

Kevlin Henney's article in the August 2000 C++ Report, ‘Valued
Conversion’, covers the same techniques describing a class which can hold
any value. That code grew up to become Boost.Any.
Thomas Guest has fun building iterator pipelines in ‘Zippy triples served
with Python’, at http://wordaligned.org/articles/zippy-triples-served-
with-python

Notes
[1] Finding the Utility in a java.util.Iterator. The slides are at

http://www.jezuk.co.uk/accu2007/iterator/
[2] Slides from the presentation are available at http://www.jezuk.co.uk/

files/iteration/, so you can compare and contrast.
[3] These are the requirements for an input iterator. The C++ Standard

Library describes five distinct iterator concepts.

Acknowledgements
I would like to thank Thomas Guest for his many contributions to this
article, from graciously allowing me to steal his examples for my
presentation through to his many suggestions and improvements to the
article itself.

template<typename value_type>
class filter_iterator
{

public:
 template<typename iterator_type,
 typename predicate_type>
 filter_iterator(const iterator_type& begin,
 const iterator_type& end,
 const predicate_type& pred):
 current_(begin), end_(end), pred_(pred)
 {
 while((current_ != end_)
 && (!pred_.test(current_.get())))
 current_.advance();
 } // filter_iterator
 filter_iterator(const filter_iterator& rhs) :
 current_(rhs.current_), end_(rhs.end_),
 pred_(rhs.pred_) { }
 filter_iterator& operator=(
 const filter_iterator& rhs)
 {
 current_ = rhs.current_;
 end_ = rhs.end_;
 pred_ = rhs.pred_;
 return *this;
 } // operator=
 value_type& operator*() const {
 return current_.get(); }
 value_type& operator->() const {
 return current_.get(); }
 filter_iterator& operator++() { advance();
 return *this; }
 filter_iterator operator++(int)
 {
 filter_iterator c(*this);
 advance();
 return c;
 } // operator++
 bool operator==(const filter_iterator& rhs)
 const { return current_ == rhs.current_; }
 bool operator!=(const filter_iterator& rhs)
 const { return !(operator==(rhs)); }

private:
 void advance()
 {
 do
 {
 current_.advance();
 }
 while((current_ != end_)
 && (!pred_.test(current_.get())));
 } // advance
 iterator_holder<value_type> current_;
 iterator_holder<value_type> end_;
 predicate_holder<value_type> pred_;
}; // class filter_iterator

Li
st

in
g

6 filter_iterator<int> fb(vec.begin(),
 vec.end(), Even());
filter_iterator<int> fe(vec.end(), vec.end(),
 Even());

for(; fb != fe; ++fb)
{
 ... do something with *fb ...
} // for ...

// and now the odds
fb = filter_iterator<int>(vec.begin(),
 vec.end(), Odd());

fe = filter_iterator<int>(vec.end(),
 vec.end(), Odd());

for(; fb != fe; ++fb)
{
 ... do something with *fb ...
} // for ...

Listing 7
JUN 2008 | | 13{cvu}

ACCU Conference 2008
Jez Higgins and friends look back at this year’s

ACCU Conference.

very year my recovery from the conference takes longer. I’m not
talking about the physical effects of perhaps too much late night
talking and drink and perhaps too little sleep, I mean the time it takes

from my brain to stop churning seems to be extending and extending.
Maybe I’m just getting old, but I prefer to put it down to the excellence of
the programme. It was as wide and as varied as ever, mixing programming
techniques, design, management, methodology and more, along with a
generous portion of functional programming. This year’s keynote speakers
were Tom Gilb, an authority on software project management, Simon
Peyton-Jones, inventor of Haskell, Andrei Alexandrescu, noted C++
expert, and Roger Orr, a member of the BSI and ISO C++ panels and well
known ACCU member. Sessions covered topics from debugging to the
building of Cambridge colleges, from Python on .NET to project
management, from parallel processing to Lisp, from robots to a search for
God in the machine. The extra-curricular entertainment included Just a
Programming Minute, ‘birds of feather’ sessions, technology
demonstrations, the odd game of squash, a competition to win an X-Box,
and a very great deal of socialising (by which I mean talking and drinking
late into the night). It’s really no surprise that many delegates go home with
over-heated brains and slightly queasy tummies.
Last year, I thought the programme was ridiculously good. This year’s was
better (or, depending on your outlook, worse). There were several
occasions when I was interested in seeing four out the five sessions, and
there wasn’t a time when I was interested in less than two. It was
ludicrously hard to decide, and I know from asking around that I was far
from alone in finding it difficult. Giovanni Asproni, our conference chair,
deserves hearty congratulations, right before we take him round the back
and give him a good roughing up. Next year I’m shooting for a 15-day
single track conference, just to make the choices easier on everyone.
To give a flavour of things to those who couldn’t attend, to jog the
memories of those who were there and are still recovering, and to
encourage those who are thinking about next year, here are some write-
ups from various attendees. These are little tastes of what people felt about
the event, summaries of some of what went on, and synopses of sessions
attended.

Allan Kelly <allan@allankelly.net>
It’s always troubled me that we don’t have more Java and C# at the
conference but I think I understand now. The kind of people who come to
ACCU like a certain type of programming challenge, you find this in C++
but not so much in Java or C#. This is partly because Java and C# do their
job well and partly because they are, well, shall we say, a little boring. They
do what they are supposed to. Because of the way C++ has developed and
the type of applications it is used for, it includes more of these challenges.
(Having said that, I had a conversation the other day which started: Java
is not as interesting as C++, in fact Java is boring, but reflection is
interesting. And annotations. And the libraries, and ...)

It seems functional languages too have these challenges. People here are
very excited about all things functional. Already it looks like next year will
have plenty of Haskell, Erland, Lisp etc.
Oddly, for the first time ever I found myself with spare time on my hands
at the conference. Not a lot but there was the odd session where I was not
interested in anything – although there were more sessions where I wanted
to be in two places at once. I think this is more a reflection on myself, I’m
increasingly post-technical and the technical sessions here were hard core.
Some more comments, observations and thoughts, with no particular
linking theme ...

Jobs and banks

There were a lot of bankers at the conference this year – or rather
developers who work in banks. In truth this is always the case but this year
I think there were more. It also gave the opportunity to find out what was
happening in the financial job market.
Before Christmas I think many people were expecting a shake-out similar
to that of 2001/2002 but it seems the effect of the crisis or credit crunch is
very mixed. I observed a few weeks ago that one effect has been to push
up rates and while some banks do seem to be shedding staff others are still
hiring and demand is strong. I talked to someone from one (American)
bank which had drastically cut back staff, while people at another (English)
bank were still hiring lots, and another (Scottish) bank which recently
bought another (Dutch) bank is having to hire lots of people to help
integrate the systems of the two banks.

Lies, damned lies and statistics

I’ve had a downer on metrics and statistics for a long time. But I’ve also
been aware that getting the right data and measuring the right numbers is
often the key to success. Tom Gilb is firmly in the numbers and metrics
camp and argues a good case for measurement and targeting. I was lucky
enough to spend lots of time listening to Tom and talking to him.

E

Giovanni Asproni <aspro@acm.org>
This year was my first one as conference chair, and I’m happy to say it
was another great event. I wish I could take all the credit, but,
unfortunately, I can't ;-) . In fact most of it goes to the conference
committee – Ewan Milne, Alan Lenton, Francis Glassborow, Tim
Penhey, and Aaron Craigie – to Kevlin Henney (in the role of special
adviser for the committee), and to our conference organisers Julie
Archer and her colleague Marsha Goodwin, who, as always, did an
outstanding job.
Some highlights include the opening keynote from Tom Gilb, which
caused a bit of a stir and a heated discussion between Tom on one side,
and Nico Josuttis, Jutta Eckstein and Peter Sommerlad on the other; the
special track on functional programming, which was a sell out – every
single session (including the Erlang pre-conference and Simon Peyton-
Jones’ keynote) in the track had a huge attendance; and Jon Lakos’
session, in which he managed to present more than 560 slides in 90
minutes establishing a new world record that won’t be easily beaten
Unfortunately, we had also some negative feedback – many delegates
kept complaining that, in every slot, there were too many good sessions
at the same time, and they didn’t know which one to choose. The only
answer I can give them is that, in this respect, we are already working
hard to make the 2009 edition much worse!
Finally, there have been a few changes in the committee. Aaron Craigie,
unfortunately, had to leave due to other commitments, but we also have
three new members; please join me in welcoming Astrid Byro, Roger
Orr, and James Slaughter.

From the Conference Chair
14 | | JUN 2008{cvu}

It seems that, as with so many other things in life, the key is doing it right.
It is very easy to set the wrong targets, to measure the wrong thing and
produce side-effects you don’t want. But when you look at the right
numbers, measure the right thing, and set the right targets you can get great
results.
But it isn’t easy, most people get it wrong.
Tom is a fascinating guy, if you ever get the chance to hear him speak do
so. A lot of his ideas come directly from Deming – who he knew
personally. I don’t think it is too much of an exaggeration to say Tom may
be the Software World’s own Deming. If nothing
else Tom interprets Deming’s message for software
development.

Software development success

In an aside Tom also pointed out that the UK now
has Royal Academy of Engineering and that they
(not so) recently produced a report on software
development. It’s a shame that you can’t download the report, I’d like to
read it.
I notice the comment that ‘only around 16% of IT projects can be considered
truly successful’. That 16% seems very close to the figures given in the MIT
Sloan Review piece on the IT alignment trap last year. That report said 7%
of companies had effective IT departments which delivered on business
objectives and another 8% who were effective but were not aligned with
the business.
Unfortunately that means 85% of us are working on failing projects.
Depressing.

The 1968 wrong turn reconsidered

I’ve been heard to say that somewhere about 1968 the software industry
took a wrong turn. We went down the route of engineering, planning and
tools rather than people and learning. But the conference made me wonder,
maybe it wasn’t such a wrong turn, maybe it was a diversion we needed
to take so we could solve some problems. Now those problems are kind
of solved we need to refocus on the people.
Maybe.

Product managers

I have long claimed that UK business do not get Product Managers, this
might now be changing. The term Product Manager was in wide use and
more people seemed to have a Product Manager on their team.
Lets hope I’m right.
Still, there are too few Product Managers, too few of them are really good,
their role is still misunderstood and there is not enough training for them.

Next year’s conference

I’m no longer on the committee for the conference but I still have
conversations about it. It is already taking shape in people’s heads and
promises to be an even better conference. For better or worse the
conference is unlikely to get any bigger. If it were to get bigger it might
lose some of its flavour.
I think the next two or three years will be an interesting time in the UK
and European conference scene. The arrival of the profit making QCon is
having an effect and I know there is some debate about the future, style,
content and so on of other conferences. At a guess I think you might see
one or two new conference appear and others (perhaps) disappear or
change.

Tim Pushman <tpushman@gnomedia.com>
So it’s April, I’m in Oxford... it must be the ACCU conference again. I got
off to an inauspicious start by spraining my ankle before arriving and I’ve
spent the conference hobbling around. Unfortunately, many of the talks
were upstairs, slowing me down even more.

Day one

The first day’s talks cover a variety of subjects: network services and
programming, agile development, programming methodology and
robotics.
For the morning session I went to Roger Orr’s talk on ‘Programming in a
Networked World’, where he showed us some of the pitfalls of writing
programs that had to function over network connections. The talk was quite
high level and more an overview of the possible problems of latency and
bandwidth issues, but unfortunately didn’t have time to cover solutions

except in a general sense.
I chose the afternoon track on robots, something that
sounded fascinating and unusual. Bernhard Merkle
started with an introduction to his work at Sick AG,
a German company that makes sensors, essential to
any robot. Indeed on the control side, a robot is a
collection of sensors (input devices) and motors
(output devices) and the coordination between them.

After a quick look at what his company has been doing as part of the
DARPA Urban Challenge, he then took us into the depths of Microsoft’s
Robotics Studio, a complete development environment and simulator for
creating robotic devices. It’s big and it’s complex, and it’s probably very
useful for a large enterprise development, but it seems overkill for someone
just starting up with robots.
Which led nicely into the second robotics session, from Ed Sykes and Jan-
Klaas Kollhof. They had brought in a couple of Lego Mindstorms robots
and we watched them motor around the floor while Ed and Jan explained
how they were programmed to do what they did. They had each taken a
different approach to the programming, Ed using Microsoft Robotics
Studio, and Jan using an open source environment for similar ends. While
MSRS allowed Ed to create and control his robots through a graphical
interface and then simulation testing, Jan took the approach of writing
external scripts to control the robot. Firstly through using Python scripts
running on his laptop and communicating via bluetooth and next using
NXC and pblua to compile and push the code on to the robot, making it
run autonomously. Lego robots provide a very open and flexible
environment for playing around with this sort of thing and it was
impressive how little coding it took to have them following a line on the
floor. With addition of a camera to one of them, it could then follow the
other robot, which had an orange ball on top as a identifier, around.

Day two

One of the tracks at this conference has been on functional programming
and today’s sessions covered FP in general and more specifically, Erlang
and Haskell. Every conference has a special track, in the past there has been
template programming in C++, C# and .Net programming, or open source
software. The special tracks often are on subjects which are not mainstream
at present. But if they are well attended, it’s usually an indication that they
may be in the next couple of years. And the FP sessions were very well
attended (I spent a couple sitting on the floor) so expect to see more of these
languages in the future.
The Erlang session, by Joe Armstrong, covered the origins of Erlang in the
telecoms industry. The industry needed a system that was very robust
(99.9999999% was claimed), could be updated while running and was
fully concurrent. Erlang was the result. Interestingly, it creates and
manages its own processes, allowing process creation to be very fast and
cheap. Each process is a service and the system uses message passing
between the services to provide robustness. This also provides scalability
over multiple servers/CPUs and very robust error handling and recovery.
Joe is the inventor of Erlang and knows his subject inside out. One of the
more interesting bits of information was how Erlang allows an application
to easily scale over multicore processors and as multicore becomes more
common, then Erlang could become the language of choice for developing
applications in the future. Most applications today only know how to work
with single core CPUs and once we move to having hundreds of cores in
a processor, much of the CPU could be wasted.

that means 85% of us
are working on
failing projects
JUN 2008 | | 15{cvu}

The Haskell session from Simon Peyton-Jones was so full that every
available spot was occupied. Simon gave an excellent talk, spread over two
sessions, on the basics of Haskell, and walked us through some of the
implementation details of XMonad, an X server window manager, written
in about 500 lines of Haskell code. Personally, it’s not easy to get my head
around the programming style of Haskell (it reminds me a bit of Prolog
for some reason) but the ability of Haskell to enforce programming without
side effects (another session was devoted to this subject) was in itself very
interesting. As far as I can see, it still an academic language, but many of
the ideas behind it are sure to find themselves into mainstream
programming.

Day three

Interesting session this morning, from Schalke Cronje, on RPM package
management. One of those sessions that cover a subject I know something
about but have never had time to look at in depth. Schalke covered the basic
command line usage of RPM and then showed us how to create spec files
and build packages that could be distributed over multiple platforms.
Nothing stunningly new, but all explained clearly and it will certainly give
me the confidence to try packaging up some of my stuff with a few more
deployment features.
Later we had a BoF (Birds of a Feather) meeting about the ACCU website,
bringing together any members who had input on the ACCU website and
what direction it should be heading in. Lots of good ideas, and there
probably isn’t time to implement all of them, but we can make a list, put
the simple stuff into practice and then work out how to manage the more
advanced ideas. About a dozen people attended up, which was a good
showing. Stay tuned for more information and updates on this.
Later I went to a session by Astrid Byro on using Documentum to manage
the documentation for a large EU organisation. A great overview of how
an enormous paper consuming and producing machine like the EU handles
its documentation. Or rather, how it would like to handle it if they ever put
some of this into practice. There seem to be few organisational changes
needed as well as purely technical matters.

Day four

First session today was called ‘Is FP for me’ and covered the areas in which
functional programming might be useful. The session, given by Hubert
Matthews, provided an excellent overview of when and where to use a
functional programming language. He started by discussing the different
types of language, using as examples Fortran (for mathematical
c a l c u l a t i o n) , COB O L (fo r bu s i n e s s
applications) and Lisp (for more algorithmic
and abstract programming). Although all three
languages were created in the 1950s, they are
still with us today, COBOL having inspired the
creation of imperative languages such as C/
C++ and Smalltalk, Lisp providing ideas
which have developed into Haskell, OCaml
and similar. When asked which language
would give a neophyte a good introduction into
the techniques, Hubert suggested Haskell.
Second session, from Didier Verna, was on
Lisp programming and gave an interesting
look at the state of the art for Lisp in today’s
world. Didier is passionate about Lisp and
energetically set us straight on some of the
wrong impressions we might have had about
Lisp, such as performance, strong/weak typing, the object system (CLOS)
and optimisation. I first played around with Lisp many years ago and there
have been a lot of improvements since then. I’m tempted...
It was a very interesting conference and I took the opportunity to try and
attend all the sessions on functional programming and see if I could figure
out what it meant and what it was useful for. I can’t think of any projects
that I could use it on at the moment, but some of the ideas I’ve heard are
very useful in any programming toolkit, such as ‘no side effects’ in

functions. As I mentioned in an earlier, the specialised tracks at ACCU are
often on subjects that we can consider ‘emerging technologies’, in that they
are not mainstream but where there is a growing interest in them. When
there is strong interest in the tracks, as there were in this years ACCU, then
it’s a pretty good indication that this is a technology that is set to become
more mainstream in the next years. Keep an eye on Functional
Programming.

Anna-Jayne Metcalfe <anna@riverblade.co.uk>

A functional workout

If you’ve not come across it before, Erlang is a functional language
designed for concurrent programming. For someone from an object
orientated background it is quite a paradigm shift, and the syntax takes
some getting used to. Nevertheless, it is pretty obvious to me already that
this is a language with some real strengths.
One thing I didn’t realise during our preparation for the conference was
that Erlang was developed from Prolog – which may explain why parts of
it (pattern matching, for example) seemed strangely familiar. I studied
Prolog as part of a ‘Machine Intelligence’ course at Surrey University.
Haskell and Microsoft’s latest research language F# are aimed at the same
problem domain. It will be interesting to see how strong the take-up of such
functional languages is over the next couple of years, and whether we see
the start of a longer term trend of increasing adoption.
Having said all that, as a (primarily) user interface developer I have no idea
what practical use it is likely to be to us in the immediate future...but of
course you never know...

Value Delivery for Agile Environments [Tom Gilb]

The thrust of this session was that although agile methods are better at
organising development tasks than conventional methods, they do not
really focus on the needs of stakeholders. For example, they do not provide
guidance on the business value of each potential task. By contrast,
Evolutionary Project Management (EVO) is more focused on business
goals than tasks and iterations/sprints. An approach such as EVO can be
used together with agile approaches such as Scrum to great effect.
EVO is based on continuous measurement and reassessment of business
metrics, stakeholder requirements, budgets, goals, impact estimation (e.g.
via impact estimation tables), estimating, planning and tracking. Key
principles include:

Critical Stakeholders determine the
values a project needs to deliver
Values can and must be quantified
numerically (no matter what it is, the
chances are somebody has measured it in
some way. It is critical that agreement is
reached on how individual values are
measured).
Values are supported by a Value
Architecture (defined as ‘anything you
implement with a view to satisfying
stakeholder values’).
Value levels (the degree of satisfaction
of value needs) are determined by
timing, architecture effect and resources.
The required value levels can differ for

different scopes (e.g. where, which stakeholder). Setting value
levels too high can kill projects by delaying delivery and inflating
costs.
Value can be delivered early. Plan to deliver real value to
stakeholders as early as possible, and continue to deliver additional
value continuously.
Value can be locked in incrementally – deliver production quality
systems throughout, and not ‘quick fixes’.

the specialised tracks at
ACCU are often on subjects

that we can consider
‘emerging technologies’,

in that they are not
mainstream but where

there is a growing interest
in them
16 | | JUN 2008{cvu}

New values can be discovered by stakeholders in response to
delivered values. It therefore follows that developers must be in
direct contact with stakeholders.

My initial reaction was that EVO in its pure form may not be entirely
suitable for a small ISV due to the sheer quantity of analysis required;
however this is no different from the situation with any process/
methodology – Scrum (for example) doesn’t work particularly well in a
micro-ISV environment either. The lesson is to take the good bits, and
leave those which bring in more overhead than you need. That said, Tom
apparently has a case study involving a 3-person team which isn’t too far
removed from the micro-ISV world.
Either way, EVO is definitely an approach professional developers and
project managers should be aware of. The majority will of course carry on
in blissful Waterfall-esque ignorance as always...

Santa Claus and Other Methodologies [Gail Ollis]

Gail is an active member of the ACCU South-Coast group, and a very
entertaining and thought provoking speaker.
‘I don’t believe in methodologies’
Methodology is strictly the study of methods etc. rather than their
application, but the use of the name in conjunction with development
processes can (unfortunately) lend them ‘instant’ credibility in the eyes of
some – the ‘follow this and everything will be perfect’ delusion. The real
world is not like that – any ‘process’ is only going to work well if you buy
into it and tailor it to your own needs. If you follow a process blindly, it
will almost certainly fail you.
Gail followed her introduction with a brief historical foray into a long dead
software development ‘methodology’ called RTSAD, and a project
development process called Goal Directed Project Development (GDPM),
outlining the failures of both when applied within an organisation to
illustrate her point.
New methodologies offer new buzzwords, which can lead companies to
adopt them for the wrong reasons. Particular groups of people seem to be
most susceptible to this:

Budget holders
Seekers of the ‘One True Way’
Advocates of the ‘latest big thing’
Grand planners

(the first and last are often managers; the second and third are often
developers).
At the end of the day, although these are people problems – and not process
problems – persuading people to change the way they work is all too often
exceptionally hard.
The lesson is not to look at the solution (e.g. ‘adopting <Methodology X>
will solve all our problems’), but at the real problem. Once the problem
has been identified, potential solutions can be visualised and investigated.
Some questions we could (for example) ask about a potential solution
include:

How does this address our specific problem?
What does this step/artifact/process do for us?
What demands does it make of us?
Can we integrate this step/artifact/process and its tools smoothly
with what we have?
Does it impede continuous improvement?

As ever, there is (unfortunately) no magic bullet.

Robots Everywhere [Bernhard Merkle]

We met Bernhard for the first time last year when he ran a very interesting
session on architectural analysis tools. This year he has turned his hand to
looking at the world of robotics.

Bernhard started the session with a fascinating illustrated summary of the
state of the art today, including competitive events such as RoboCup (robot
football) and the DARPA Grand Challenge (autonomous vehicles).
Concurrency and (naturally) functional programming are fundamental to
robotics. Although there are a number of established players in this field,
Microsoft are now targeting the emerging home and educational markets
with Microsoft Robotics Studio (MSRS) and the parallel computing
initiative.
Microsoft apparently learned that typically 80% of the development time
on robotics project is currently being spent on developing limited use
frameworks, and the MSRS effort is in part aimed at generalising these
sorts of efforts. A secondary aim is obviously to support adoption of the
.NET Framework within robotics applications. MSRS has a heavily
concurrent and distributed architecture, which Bernhard spent some time
describing in depth. It was also interesting to see that C# was being used
rather than the (I would have thought) more well suited F# functional
language.
All in all this is a fascinating subject, and no doubt one which will become
more and more prominent.

A Tale of 2 Systems [Pete Goodliffe]

This session looked humorously at the long term impact of design on a
software system, using two real examples. Pete’s assertion is that the
quality of a project is determined mostly by the quality of its design.
Good designs should be:

Easy to modify
Easy to extend
Flexible enough to
accommodate change without
stress
Fit for purpose
Easy to understand

Pete gave examples of two similar
systems he had worked on to illustrate
these principles:
The Messy Metropolis T hi s w as a
spaghettified mess, the code for
which had grown ‘organically’ over
time with very little thought. Pete
rather appropriately illustrated it with a picture of a turd! We’ve all seen
systems like this, so I’m sure I don’t need to elaborate further ...
Eventually, such systems grind to a halt and effectively force a complete
rewrite – whereupon the cycle can all too often repeat, and at huge cost.
Design problems can be caused by company culture (e.g. empire building,
not giving developers time to rectify smells in the design) and poor
development processes with insufficient thought given to design issues.
Pete ably described the problems this particular projects caused within the
company at every level from support to sales, marketing, customer support
and manufacturing. It (not surprisingly) eventually ended up in a costly
rewrite – which is a high risk proposition in its own right.
Design Town This project was different from the outset. The project was run
by a small, flat team with a clear roadmap and following a defined process
(XP in this case, but we won’t hold that against them.).
Perhaps crucially, the design was limited to that which was sufficient to
meet the requirements (a key agile principle, in my view) without
attempting to include detailed provision for possible future requirements.
In this system, the design made it far easier to add new functionality. It
was straightforward to locate where specific functionality lay, and new
functionality gravitated naturally to the right place. Bugs were also easier
to locate and fix. Most importantly, the software developers took
responsibility for the design. This last point is (in my view) fundamentally
important – some developers I meet are sadly lacking in the essential
motivation to do this.

Pete explains a tricky problem
through the medium of

interpretive dance
JUN 2008 | | 17{cvu}

So, what lessons can be learnt from these two projects?

Design matters, but it does not happen without conscious effort

People are key (this touches on Gail’s session earlier)

The team must be given (and accept) responsibility for design

Good project management

How then can we improve a bad design?

First of all, we can’t improve it unless we understand it. There is
always information in SCC, documents etc. which can reveal
aspects of the history of a project, so why not go digging and see
what you can find?

Describe the process which seems appropriate to deal with the state
of the existing design (run away, re-write, refactor etc.)

Plan a new design based on the requirements and constraints we
know now (as opposed to those we thought we knew at the outset)

Plan a roadmap for how to take the codebase to where we want to
be, and continuously refine it as you proceed along the route.

May You Live in Interesting Times [Andrei Alexandrescu]

This session was a humourous illustration of the ideas and issues involved
in the C++ 0x language design, and how tricky it can be to design a modern
language.

Andrei illustrated that in such a large language there are so many domains,
that no one person is likely to be an expert in all – and C++ is such a big
language that this is almost inevitable. Even the most simple problem –
writing an identity() function which returns its value – is not as simple
as it seems in C++ if all use cases are considered.

He also described some of the more notable new language features in C++
0x:

Higher order functions

Closures

Lambda functions (a recent addition to C++ 0x). If you use
functional languages you will appreciate the significance of this!

Variadic templates (templates with variable parameter lists)

Types of types (which introduce structure to types and allow type
interfaces to be documented)

Concepts

Threads (based on boost::threads)

The bottom line is that if you work with C++ code and haven’t taken a look
at what is coming in C++ 0x, you probably should...

C++ Refactoring [Peter Sommerlad]

This session focused on TDD and C++ refactoring in Eclipse. Peter’s
group at the Institute for Software has produced some very interesting C++
refactoring and unit testing plug-ins for Eclipse CDT. We have been
talking to Peter about static analysis tools for Eclipse during the week, so
this was a great chance to see the tools his group have developed in action.

Peter gave a brief introduction to TDD for anyone who wasn’t too familiar
with it, before firing up Eclipse to demo the CUTE plug-in. At first glance,
the plug-in seems similar in concept to TestDriven.NET, but with a better
user interface. For example, it has a comprehensive tool window (a little
reminiscent of the NUnit GUI) which shows not only the tests but the
console output from the tests themselves. One very nice feature of the
CUTE plug-in is that it will generate stub tests and test suites within the
IDE automatically.

Peter spent most of the session going through a couple of examples using
the CUTE plug-in. Unfortunately we didn’t have time to look at the
refactoring plug-in in depth, but what we did see certainly looked quite
comprehensive – possibly more so than that provided for Visual Studio by
Visual Assist.

Seven Deadly Sins of Debugging [Roger Orr]

Roger is a member of the ISO C++ Standards Committee, and a specialist
in the field of debugging. Having attended one of his sessions last year,
we had a pretty good idea that this keynote would be both entertaining and
informative.

Roger started by stating the obvious – that the best bugs are those which
do not occur, and that by learning to apply techniques to reduce problems
up front (e.g. good design, unit testing, code analysis, defensive
programming etc.) we can reduce the risk of bugs occurring. None of this
should be news to anyone attending the conference. After using such
techniques to remove the obvious bugs, we are left with everything else.
Debugging is quite obviously here to stay.

It has been stated that better programmers can be 20 (?) times better at
finding bugs, spend less time fixing them and put fewer new bugs in by
doing so. The obvious question this then raises is ‘Why is there such a
differential, and what prevents so many of us from learning?’ Enter the
Seven Deadly Sins of Debugging.

Inattention can lead us to not look closely enough at what we are doing,
miss the obvious patterns (‘what are the real symptoms of the bug?’), and
repeat the same mistakes again and again. Details are very important in
debugging – logfiles, configuration information etc. can all yield crucial
information, so the more information which can be automatically
generated the better. Collecting this information up-front can also save you
from having to generate the information you need while actually
investigating the bug.

Debugging also requires very focused concentration, so taking adequate
breaks is essential. There is nothing less productive than staring at a
debugger with a deadlocked or clueless mind– and yet all too often
developers attempt to debug in exactly that way.

Keeping checklists (e.g. our own lint configuration triage procedure) can
also help greatly, since it is all to easy to miss something obvious when
you are under pressure to fix a critical bug. Similarly, the insight afforded
by a second pair of eyes can also help, so we should never be afraid to ask
for help.

The corresponding virtue is observation, which leads us to ask interesting
questions such as:

What is our strategy for observing program behaviour?

What tools are available to give us the information we need?

How can we make this easier at the design stage?

Pride can lead to higher quality code in the first place, but when mis-
applied it can also unfortunately:

Prevent us from asking for help when we are trying to fix a bug

Lead to a refusal to admit that a bug is our problem (and because it
isn't our problem we won't look for better ways to prevent bugs).

Keep us following a wrong debugging hunch rather than stepping
back and re-examining the evidence.

Lead to inappropriately clever code, and lead us to writing things
from scratch when we should reuse existing solutions.

The opposite of pride is humility. Questions such as "I could be wrong",
"What have I missed?" and "Who can I ask, and how?" can lead to the
insights you need to fix that troublesome bug.

Naivety tends to prevent us from learning from our mistakes, and lead us
to make mistaken assumptions about where the problem lies. On the plus
side, the simplest fix for a bug is likely to be the right one. The
corresponding virtue is wisdom, e.g. standing back to reflect on how the
bug happened, why, and how we can prevent it happening again.

Anger needs no introduction. It can cloud our judgement, cause us to miss
obvious clues, and to deny the implications of the evidence we have.

Sloth can lead us to try to avoid ‘unnecessary’ work while we are writing
code in the first place. When the resultant bug surfaces, we poke around
in the debugger in vain. It also results in ignorance – a failure to read around
18 | | JUN 2008{cvu}

the subject or fully understand the technology. Sadly, this is all too
common.
The corresponding virtue is diligence – by learning enough about the
system to understand how it behaves, we dramatically increase our chances
of identifying the cause of bugs in a timely manner.
Diligence also leads to other positive effects – for example spending time
upfront to save even more time later. By writing scripts, adding logging
etc. we can often make a real difference when investigating a bug. Another
often overlooked technique is to make error codes unique enough to look
up in a search engine.
Blame – As the saying goes, a bad workman blames his tools, users, tests,
third-party components, ... anyone but themselves! Blame doesn’t fix the
problem, but may lose you some allies. Even if you can blame another
system, you still have a bug to fix. The corresponding virtue is quite
obviously responsibility.
Vagueness is fatal to effective fault finding. ‘What exactly is the bug?’ and
fixing a bug, but not ‘the’ bug can both intervene to mess things up.
However, precision greatly improves bug hunting. If something seems to
be breaking repeatedly, focusing on what you are doing, making error
messages more useful, and so on can all help.
The bad news is that debugging is hard, and is not likely to get any easier:

There are more distributed systems
The trend is towards an increasing mix of technologies and
languages
Higher security requirements
More dependencies and faster time to market

The more effective we can be at preventing, identifying and fixing bugs
the less time we will spend unnecessarily in front of the debugger.

Researching a Problem and Getting Meaningful Results [Alan
Lenton]

If you’re on an obviously failing project, how do you get management to
listen?
That was the question posed by this session. One obvious answer is to
quantify it in a form they understand and will therefore listen to. This
actually dovetails rather closely with Tom Gilb’s EVO session earlier this
week, albeit from a different perspective.
Fortunately, with a bit of work you can quantify just about anything
(technical debt anyone?). There is however a danger that by quantifying
things doing so becomes an end in itself, rather than a tool to solve a
problem. Once you quantify a problem, the presentation method of choice
for managers is the spreadsheet, which also provide a simple way to present
the results graphically if appropriate.
A financial cost estimate is key for this target audience. Once you have an
idea of how long an issue would reasonably take to fix, it is straightforward
to calculate this based on time to fix and hourly cost including (or
excluding, for maximum impact when you add them in later!) overheads.
If you are planning to make a financial case it is also worth remembering
that capital costs and labour costs do not always compare directly, since
the former can (certainly in the UK) have an impact of profit margins but
the latter will not (you find this sort of stuff out when you set up your own
company, believe me!).
A key question is how to quantify a failing project, rather than just one part
which can be fixed? The obvious metric is ‘how much is the company
spending per month on this project?’.

The Complete Guide To C++0x [Alisdair Meredith]

Alistair Meredith of Codegear is a member of the C++ Standards
Committee, and this session was a lightning tour of the changes in C++
2009 (otherwise known as C++ 0x. Alistair stated that they are aiming for
a 2009 release – the first full C++ standard release since C++ 1998. As
such, it is a major update.

Alistair first of all described the features which will (unfortunately) be
missing from this release: e.g. library features beyond TR1, C++ modules,
maths binding, and garbage collection have been deferred until TR2 (due
in 2012?) or will be incorporated into separate standards.
The final release candidate of the standard should be out in September
2008 – which would mean that all comments will be received by January.
So what’s new? In short:

50 new language features
New libraries
A wider set of standards
Revisions to existing libraries
The incorporation of features from C99 + TC1 + TC2 + Unicode TR
ECMAscript regular expressons
Threading

Some of the most fundamental changes are (as is to be expected) in the
area of concurrency. Notably, C++ 2009 will finally define a modern
memory model, which should lead to less uncertainty in defining what is
and is not acceptable in multi-threaded code. The biggest impact of this
change is in defining which fundamental assumptions can and cannot be
made by optimisers, so it should be largely transparent for most.
Other changes in this area include the addition of defined atomic
operations (there is a new atomic keyword), intrinsic threads and locks,
and (possibly) futures. Thread pool support has been deferred to TR2,
which is a shame but understandable given the volume of change already
proposed.
Alistair talked at length and in detail about the new and changed language
features, but did not have time to discuss the corresponding library
changes. I can’t even begin to do everything justice, so here's an editted
list of the changes he described:

The meaning of the auto keyword has been changed to a type
deduction specifier (a.k.a. dynamic languages).
Template aliases (non specialised template typedefs)
Raw string literals
UTF8 string literals
Delegating constructors (allows constructors to delegate object
initialisation to another constructor)
Inheriting constructors
Lambda expressions
nullptr

Variadic templates
Perfect forwarding in templates (deals with the explosion of
overloads where const is involved)
Move semantics, through rvalue references
... and 40 more ...

And that’s just the compiler...!

The State of the Practice [Tom Gilb, Hubert Matthews, Russell
Winder, Peter Sommerlad and James Coplien]

The subject of this panel was in effect: ‘Are we barking up the right tree?
So many developers have no idea of basic good practice. Discuss..’
While I can’t even begin to do the ensuing discussion justice, the responses
of the panel members to the opening question give an interesting insight
into the discussion :
Tom Gilb: ‘There is not enough focus on delivering value to our
stakeholders.’

Hubert Matthews: ‘We have forgotten the human element and reward
structures reflect that.’

Russell Winder: ‘Polarisation. There is (unfortunately) a lot of dross out
there.’
JUN 2008 | | 19{cvu}

Peter Sommerlad: ‘The state of practice is partly a reflection of past failure
in academia. It is now too easy for lay people to produce badly written
software.’

James Copelien: ‘This is a wicked problem without clear cause and effect.’

Garry Bodsworth <garry.bodsworth@gmail.com>
Disclaimer: These are my interpretations of what I learnt from the talks
rather than a transcription of what they said. This means that I probably
misheard and misinterpreted some parts which may be hazardous to your
health.

My employer, DisplayLink, were very generous and allowed me to attend
the ACCU 2008 conference this year. I chose to go for Wednesday’s and
Thursday’s talks, but next time I plan to attend the whole conference.
Overall it was well worth spending the time at the conference, meeting a
variety of interesting people. I know people always say you learn more in
the bar afterwards but I would say there would have to be some pretty
intense knowledge exchanges to beat the information I picked up over the
two days.

Value Delivery For Agile Environments [Tom Gilb]

I can sum up the talk in three words ‘Measure Measure Measure’. Tom
Gilb used his keynote to explain EVO, an envelope framework to surround
a smaller development-centric process, which was in this case Agile. He
sees Agile as deficient in that it is a development process geared for
delivery, but less thought is put into what you actually deliver.

The problem comes then with what do you measure, how you measure,
and then how do you interpret those metrics. By doing this and combining
it with a fast deliverable methodology like Agile then you end up with
constant iterations with feedback able to deal with the changing nature of
the world (most probably defined by requirements).

I felt that the talk had an implicit feeling of ‘How To Survive’. You need
to identify your stakeholders, the people that determine the success and
failure of your project and make sure that the needs of the most important
and influential ones are met. If they like what you are doing by meeting
and possibly exceeding their needs then you are more likely to gain extra
resourcing as you are then seen as a successful group.

Bits And Mortar [Ric Parkin]

Like an extended episode of Grand Designs we were taken through an
analysis of buildings. Well, no not really, but some of the theories that we
are using in computer science have been looked at before and not only
recently, in a completely different problem domain, and this field is
architecture and the evolution of buildings.

I’m not the world’s biggest fan of analogies because pedants always want
to poke holes in it and take it off course thus negating any benefit from
using it. I wish I never used analogies but I am like a lemming following
everyone else. Luckily there was a thoughtful audience and the core was
suitably abstract to avoid those problems.

The basis of the talk was the work of architect Christopher Alexander. He
posited the theory of patterns which obviously directly relates to what
engineers are doing right now, and sometimes he doesn't even refer to
architecture and buildings. Due to my ignorance all of this was completely
new to me, and I could take a lot away from the talk because a lot of the
ideas of the evolution of a building (and therefore design) is directly
applicable to the realm of computer science. If you look at a building as a
finished fixed product after it has been completed then you forget about
the lifetime of the building and how it evolves, much like a codebase.
Knowing when to rebuild or rip-down parts requires suitable knowledge
of what you are doing and you can also apply patterns other people have
proved to be successful subsequently.

Unfortunately for Ric the talk will be forever remembered as the place he
uttered in public ‘I don’t mind introducing bugs’.

Practical Multi-Threading [Dietmar Kuehl]

This talk covered the basics of the new C++ standard. It was a packed room
so a lot of people are interested in this area.

It certainly looks like writing multi-threaded applications will be much less
code in C++ than it has traditionally been. I like getting more functionality
for less code. Items like condition variables will be supported in the C++
Standard Library. There was also a brief part about some of the TR2
features (C++0x + 1), such as futures, which makes using concurrent
processing of independent blocks of code even easier and simplifying the
synchronisation. This will be helped even more by the lambda expressions,
as I can see some simple operations can be kicked off and calculated
independently in a single line.

There was some coverage of Intel’s Threading Building Blocks which
provides concurrent containers and concurrent algorithms like
parallel_for or parallel_reduce. This all provides some higher
level semantics for expressing the concepts of multiple threaded
processing.

When Good Architectures Go Bad [Mark Dalgarno]

This was more of an interactive session where people’s experiences fed
directly into the talk, so it means each time you would hear a write-up about
it there would be a different opinion. Luckily my group had some
interesting anecdotes. I do wonder why we all stay working in computers
if we suffer this much abuse!

We used our experiences of the world to come up with examples of where
the architecture had begun to ‘smell’ and what this represented. Looking
at case studies we attempted to identify and find potential solutions to
eliminate these smells. For my example of a system that had been going
for a very long time through so many different platforms, teams, languages,
I said to cancel it because it was not making enough money to warrant its
existence. The most frightening solution to architectural decay, which also
came up at the SPA conference, was to ‘Kill The Architect’. I thought I
was cynical.

This was a talk where you got more out of it if you put more into it.
Hopefully Mark will put up some of the responses he got from the audience
on his blog [or later in this very article – Ed.]. In fact, he could probably
write a very frightening book about it.

The Future Of Concurrency In C++ [Anthony Williams]

Anthony is the maintainer of the Boost.Threads library. He went through
some of the more complex parts of the upcoming C++0x and C++0x TR2,
as well as what is available through Boost.Threads now.

One of my favourite parts of the entire thing is the concept of thread-local
storage as a built-in keyword. No more GetTLS and the suchlike. I could
immediately see a use of a static member of a class that is per-thread in
order to create a memory allocator for STL containers which would
allocate via only the thread’s heap. If you know that some information is
local to a single thread then you won’t have any memory contention (in
the program – I am not thinking about the hardware or underlying
implementation) to slow down the memory access. You have to have a
clear design and use of this though otherwise you could blow your
program’s brains out, but also that design works very nicely with thread
pools...

Unfortunately some of the higher level concepts will take until probably
the next standard TR2 to get to compilers. Of note are thread pools and
futures. Futures mean you can run a thread for a calculation, start it off in
a single statement, check the result after doing some more work, and it will
wait until the result is posted. The result will then propagate any exceptions
that had occurred on the calculation thread.

A large portion of the C++0x threading implementation is available
through Boost.Threads thanks to Anthony’s sterling efforts for 1.35, so
you can already have a play.
20 | | JUN 2008{cvu}

Adobe Source Libraries : Overview And Philosophy [Sean Parent]

I can think of worse things to be remembered for, but I hope that Sean
Parent is not only thought of as Alexander Stepanov’s boss. He heads up
the Software Technologies Lab at Adobe that creates generic libraries
which are used in all Adobe’s products. This talk was divided into two
sections, one concentrating on the data structures and generic
programming, and the other about declarative UI.
A very interesting part of the talk was the way he said he was using
Alexander Stepanov’s skills, basically ‘Write a book defining generic
programming’. The research for this has lead to lots of leaps forward for
Adobe’s programming technologies.
This talk started a little above my head by defining Regular Types which
are very similar to the definitions and rules that can be derived for
functional programming except you can have side-effects. This then
provides the basis for generic programming.
We had a close look at the ideas behind the Move library currently
maintained by Adobe but could go (back) into Boost. This library uses
Return Value Optimisation to minimise and eliminate copies, and I was
surprised to learn this was through the use of passing by value rather than
by reference.
There was also a look at the copy_on_write functionality which means
on object is only copied when it is written to. This provides the platform
for Adobe’s history tool in Photoshop and minimises memory impact.
There was a look at the Forest container which approaches the binary tree
in a very tidy way. They also have a string library that uses the move library
so concatenations are much more efficient.
They are the right tools to solve certain datatype problems in a very concise
and efficient fashion. The idea behind it all is to only use small pieces of
code as building blocks towards the larger solutions. What they want to
do is reduce the number of lines of code defining their applications by a
very large factor (like from 3 million to 30,000).
The second half of the talk was based around declarative UI and the
structures Adobe have put in place to solve problems that still exist to this
day. I’ve looked at the two main libraries involved, Adam and Eve, before.
Both really amount to being constraint solvers, one solving the data and
one solving the layout.
The layout library is probably the simplest to explain as it works out, from
the size algorithms you provide, the layout that follows the guides that have
been set up. This also means that it can scale the layouts with relative ease.
The property library is used to solve data dependencies (a lot of which are
typically cyclic) for user interfaces.
The papers and documentation on the Adobe site can probably explain all
this much better then I ever could, but they are all interesting building
blocks for solutions to some overlooked problems.
Overall I enjoyed the talk, particularly the first half as their practical
approach to implementing generic programming with real benefits, was
quite eye opening. Unfortunately the talk was really badly attended as both
halves were up against some tough competition (especially about
functional programming), but hey they all missed out on some really good
stuff.

Olve Maudal <oma@pvv.org>
Just back from 7 days in Oxford attending the ACCU conference. Around
300 delegates, interesting program, very suitable conference location and
excellent organising comittee lead by Giovanni Asproni. The conference
was packed with people that really care about programming like myself
and they all behaved as if we were long time friends. It was this feeling
of… feeling of… coming home. The conference was a superb experience.
I just wish I knew about this conference years ago and I will definitely try
to go next year as well.
On Tuesday (Day 0) I attended a one-day tutorial about Erlang – the
programming language. I do believe that we are about to see a paradigm
shift in the way we think about programming computers. Declarative and
functional languages might soon play an important role, also in the

industry. The tutorial was presented by Joe Armstrong, Mr Erlang himself.
I enjoyed the tutorial very much. I hope to get more time to do play around
with Erlang soon.

Tuesday night a group of us went out for a curry at Chutneys. Highlight:
The bill. Why? As someone proudly announced: ‘Hey folks. This is
fantastic! We are 23 geeks and the bill is exactly 529 pounds!’. When
everybody around you smiles and finds that amusing – then you know you
are among friends.

Day one

Wednesday started with a keynote by Tom Gilb. Tom was concerned about
delivering real business value to all stakeholders in a project. He proposed
to add an ‘agile envelope’ around the agile methodology and lean
principles. Several in the audience were provoked when Tom insinuated
that agile practitioners are not really trying to deliver business value… and
you know that you are at the right conference when someone just stands
up in anger and shouts (something like) ‘Tom, what you are saying is
wrong!’. He continues to promote the Impact Estimation Table, and, as
usual, his solutions involves measuring and quantifying stuff – which
makes me sceptical.

Roger Orr talked about writing programs in a networked world. I found
the talk interesting even if it was not too much new for me here. Having
worked with networked applications for over a decade, most of the stuff
was known. At the same time, it is always useful to get reassurance on
things that you think you know. Key messages:

Good networking interfaces are the key to good support and
maintenance.

Prefer higher level abstractions, allowing for multiple potential
transport protocols.

Make sure that you handle versioning issues.

Security usually conflicts with other goals (eg, supportability) and it
is often not possible to add proper security late to a product.

How to become Agile was a talk by Jutta Eckstein about introducing agility
to a project or to an organization. The key idea was that a successful
transition is impossible without involving management. But at the same
time, introducing agility top-down does not work – trust is lost at the
beginning. People are often looking for recipes, which is kind of opposite
to what agile methods is all about. It is useful to identify and empower
change agents that can assist the process. The change agent is often
someone from inside, but they might need some support from outside at
first. People tend to listen more to external people than internal people even
if the message is the same. As most agile experts seem to agree upon, Jutta
claimed that doing retrospectives is the most important agile technique. It
is a big mistake to skip the retrospective sessions. Between projects you
might need to use a whole day, while an hour might be sufficient between
iterations.

Perhaps the most entertaining talk at the conference was Robot Wars by
Ed Sykes and Jan-Klaas Kollhof. They believe that there is an exciting
robotics market about to evolve, and they have been looking into different
development tools. They demonstrated how to use Microsoft Robotics
Studio to program Lego NXT robots. Then we got a demo of free
alternatives for robot programming. For their final demonstration, Ed and
Jan-Klaas added a camera purchased from mindsensors.com to show how
a robot could chase another using a very simple application. I have an NXT
myself and I thought this was really great stuff.

Day two

There is something in the air… said Simon Peyton-Jones, Mr Haskell
himself, during his opening keynote on Thursday. His talk was about
‘Caging the Effects Monster’ – the next decade’s big challenge. The key
message was that in order to improve and reach nirvana in programming
we need to be able to control the effects and implement large parts of our
programs without any side-effects. Simon demonstrated some really nice
examples and rationale for functional programming. He also presented
JUN 2008 | | 21{cvu}

strong indicators showing that functional languages are attracting
substantially more attention these days.
‘The Selfish Object’ was a talk by Kevlin Henney. The key idea was that
instead of focusing on what an object can use or be given, you should focus
on what it wants. Need and want is not the same thing. The same goes for
object interfaces. When extracting interfaces, focus on the usage and not
on the implementation, for example do not name the interface after the
implementation, but find a name based on client usage. Avoid singletons,
there is never a real need for them, you can always parameterise from
above (PfA) instead. Don’t use approaches like Template Method (NVI).
Through techniques for controlling dependencies, such as PfA,
dependency inversion, role-based naming, and more, you might end up
with a better radial architecture (onion ring) than the more traditional one-
way architecture (layer cake). Later same day, John Lakos summarized
nicely: ‘I want to depend on the interface, the whole interface, and nothing
but the interface. So help me Kevlin.’
Just after lunch there was a BoF session about local ACCU groups. Since
I am involved in a lot of geek activities in the Oslo area, I was interested
to hear what kind of things local ACCU groups were discussing. How to
get speakers and how to attract people to the events was discussed.
Apparently getting a location for events is difficult. In Oslo we often use
pubs for small events (up to 120 people), this seems to be more problematic
in the UK for some reason (perhaps there are not that many pubs in the
UK?). The ACCU group in London have had success with borrowing
meeting rooms from the big banks. Another group had managed to use the
computer section of a book store, a really nice idea. Recording of
presentations was also discussed. But, first of all recording introduces a
lot of work and also the speaker and audience is less likely to interact and
engage in interesting discussions if recorded. This aspect is also true for
the ACCU conference. Recording the sessions removes the magic.

John Lakos ran through 562 slides
in his talk: ‘Toward a Common
Intuition and Reusable Testing
Methodology’. It was an excellent
presentation, but it was deep stuff
and I have to admit that was not
able to absorb all the ideas – it was
like drinking from a fire hose. But
there was a very interesting and
solid discussion about what it
means to be ‘the same’ and what
the salient attributes of something
are. In C++ a lot of errors arises due
to ignorance to these subjects.
John, what about dividing this talk
into two, where the first is named
‘The same? What the hell do you
mean?’, that would be more like
sipping a superior single malt.
The next session I attended was
about ‘Memory Allocation’ by

Andrei Alexandrescu. The main message was: If you try to write your own
allocator, you will fail. Over and over again, we see that the best general
purpose memory allocator outperforms a special purpose memory
allocator. If you have identified, through proper profiling, that you indeed
have some specific needs, then you should use a reaps allocator (regions
with free-list), otherwise go for the Doug Lea memory allocator.
The last session of Thursday was a special version of ‘Just a Minute’ hosted
by Ewan Milne. Funny, but perhaps not so useful. As I did not know about
the ‘Just a Minute’ concept, I thought (for some reason) that we would get
some sort of Lightning talk session. We have used this format (1-10
minutes talks) successfully at several events in Oslo. I would love to see
a session of lightning talks at ACCU next year.

Day three

The opening keynote on Friday was presented by Andrei Alexandrescu.
He talked about fundamental challanges in programming languages, and
briefly introduced Stepanov’s litmus test: If you can’t implement max,
swap or linear search properly, what are your chances to implement really
complex stuff? To kind of underline the point, Andrei demonstrated an
even more fundamental problem, even implementing the identity()
function is really complex in C++. Fortunately, with C++0x we are
apparently moving in the right direction.
Despite being a dedicated Emacs power user, I have to admit that I
sometimes envy the tools that Java developers have available – Eclipse
being one of them. I wish I could use Eclipse on C++ code as well. For the
last few years I have been downloading the latest version of Eclipse CDT
once in a while to give it a go. For now, I do not see that it adds any value
to my C++ development environment, but I am still optimistic because I
can see improvements every time. When I saw that Peter Sommerlad was
giving a talk about C++ Refactoring and TDD with Eclipse CDT I thought
I might learn more about the state of CDT – and I did. Some of the new
refactoring tools that have been added look interesting, but I got the
impression that they are still quite fragile for variable C++ coding styles.
Testing is a way of showing that you care. This was a key message from
Kevlin Henney in his talk ‘Know Your Units’. There are many testing
techniques – unit testing being only one of them. But it is important that
you distinguish between what is a unit test and what is not. A test is not a
unit test if it uses external resources or if it require a particular order of
execution. By focusing on doing unit testing correctly, you will often be
forced into making sound design and architectural decisions. Tests that are
not unit tests according to the definition might also be very useful but they
serve another purpose – often they focus on finding bugs. A useful
technique when writing unit tests is to prefix the test name with ‘require’
as in ‘require_that_sqrt_of_4_is_2()’ rather than ‘test_sqrt_4_is_2()’.
Your tests should look like requirements and this naming style will guide
you into writing better unit tests. Other guidelines:

The more general a method gets, the less useful it is for a particular
application.
Get rid of your singletons, they make your code untestable.
Don’t ever invite a vampire into your house, you silly boy – it
renders you powerless.

Before the Speakers Dinner, two teams met at the squash court to settle
the long term debate of whether braces should be aligned:
 if (is_ready())
 {
 do_foo();
 do_bar();
 }

or disaligned:
 if (is_ready()) {
 do_foo();
 do_bar();
 }

John Lakos considers taking on his
entire audience.

Kevlin Henney entertains a packed room
22 | | JUN 2008{cvu}

w a s (n a t u r a l l y) p l a y i n g fo r t h e
‘disaligned’ team and it was a fierce
competition for about an hour and a half
before we gave up… failing to declare a
winner. It was decided to bring in more
combatants and do a boat race later in the
evening to settle the debate. If I remember
correctly the ‘disaligned style’ team lost,
but as you know, in a boat race having
most supporters and the biggest team is
not an advantage…

Day four

I would have liked to see Roger Orr presenting the keynote on Saturday
morning, especially since I later was told that it was a really good one. But
I did not get to bed before 5am Saturday morning and sometimes you have
to prioritize hard.
Detlef Vollman gave a talk about ‘C++ for Embedded Systems’. This was
a particularly useful session for me since it is exactly what I do for a living.
Some messages:

In embedded systems, power consumption is often the biggest
problem.
Immutable strings make sense, so you might need to implement your
own string class.
In low-level classes you should not use dynamic memory allocation.
Don’t fall into the OOAD trap where you only analyse a system top-
down, for embedded systems you must also use a bottom-up Lego
approach.
C++ is a multi-paradigm language, which is very useful for
embedded systems.
Only use OO if it really gives you some benefit.

For the last year I have been following the C++0x process closely, so felt
I had to attend C++ 2009 in 90 minutes by Alisdair Meredith. I already
heard about most of the things that are going into the new standard, but
my knowledge is superficial. For example, when I first saw the proposal
about rvalue references I realized how useful they are for making dead
hard quiz questions, but after Alisdair’s talk I understand more about why
some of these things are important additions to the language.
Finally, there was a panel debate about the ‘State of the Practice’ lead by
Giovanni with Tom Gilb, Hubert Matthews, Russel Winder, Peter
Sommerlad and James Coplien in the panel. They all seem to agree that
as an industry we have really screwed up badly. Sure there were a lot of
good points made, but I suspect they have a somewhat biased experience
base. Big names like these guys are often brought in to fix stuff in failing
projects rather than watching successful projects completing a
masterpiece. In addition, it is always comfortable to be the one criticizing
instead of being optimistic – being a pessimist is the safe bet in all things
with a large degree of uncertainty. But at the same time, the session was
indeed interesting. Some stuff that was discussed:

Are there too many lay programmers out there?
Do we need to become a registered profession?
Perhaps we must split CS into displines like telecoms, banking,
military, and so on?
Are we going into a cultural rot?
Is software development a normative discipline?
Do customer buy a service or a product?
Does better compilers make it just easier for lay people to write bad
software?
Will making a registered profession have impact on free and open
source software development?
Is the free market for software working?

And then the conference was over.

Sunday morning. 6am. Three alarms go off. Must not be late for my flight
back to Oslo. Looking out of window. England covered in snow. Wow!
Prepared for a really bad trip home. Luck. Flight was just a few hours
delayed. Wife and two kids. It’s always nice to come home…

Mark Dalgarno <mark@software-acumen.com>

Value Delivery for Agile environments [Tom Gilb]

Tom Gilb kicked-off the ACCU conference on Wednesday with a
controversial keynote, for some, arguing that Agile methods do not have
enough focus on delivering value to the people who pay the wages.
Tom began by claiming that agile methods are too self-centred in process
and methods. This makes them good for focusing on programming tasks
but they need to be supplemented with other methods in order to manage
value delivery.
Perhaps unsurprisingly Tom suggested his own EVO method as the ideal
method for doing this, although he noted that you could also use DSDM
or RUP – both of which look more closely at value than Agile methods.
Tom cited several recent examples of work done by Ryan Shriver of
Dominion Digital on wrapping SCRUM with an EVO envelope. Ryan’s
findings provide evidence that this combined approach provides both a
method for managing value delivery and a method for managing
programmers.
A fundamental problem with XP and SCRUM (for example) is that they
don’t provide guidance on the highest-value/lowest-cost work packets.
They have no alignment with higher-level business goals, argued Tom, and
consequently no measurement can be performed with respect to business
goals. This provoked some audience heckling but a full debate couldn’t
be carried on in the keynote.
Tom proposed the following framework for making smart decisions:

Measure progress towards goals – burn rate (stories) isn’t a good
metric
Get a better understanding of time, budget, people
Are we using these in smart ways?
How good are we at exploiting gathered information on the next
iteration?
Analyse this frequent feedback and adapt processes to correct and
improve

Agile methods are very feature-driven – but according to Tom this doesn’t
help us work in terms of business goals – so there is a problem in deciding
how to maximize the value to business. The key solution to this is to
quantify business, technical, and organisational values.
Tom suggested that the main take-away from his talk was the use of impact
estimation tables to measure value delivery/costs. These give a clear
understanding of options. There’s more on these in his book Competitive
Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage.
Using Evo concepts – budgets, goals, design ideas, impact evaluation,
requirements spec. with Planguage, estimation, planning and tracking
estimation to wrap Scrum concepts gives a complete environment for
delivering value to stakeholders – not just the customer. Agile methods are
too-focused on the customer. As an example medium-sized projects have
40 stakeholders – 50% internal, 50% external. They are stakeholders
because they have requirements and need value to be met. Another take
away point– are you identifying all important stakeholders in your
projects? Someone has to analyse values and needs of all stakeholders. If
critical stakeholders are denied what they want they can probably destroy
project.
Systems are all about building potential to realise stakeholder value – if a
system isn’t used then no value can be generated.
As an aside, Tom took a straw poll of use of agile methods in the audience
– Scrum was much more popular than XP – suggesting that XP is on the
way out?

Seb Rose celebrates another
victory over Jez.
JUN 2008 | | 23{cvu}

Tom described 10 principles to help get business value from projects.
1. Critical stakeholders determine the value.
2. Values can and must be quantified. (Useful to get to actual values

e.g. robustness that can be agreed. Use as clear targets for
architecture, design etc.)

3. Values are supported by Value Architecture. (Architecture design is
an optimisation problem – most architectural decisions impact
multiple values.)

4. Value levels are determined by timing, architecture effect and
resources.

5. Required value levels can differ for different scopes (where, who).
– (Different stakeholders have different needs, these also change
over time.)

6. Value can be delivered early. (Intentionally target the highest
priority stakeholders and their highest priority value area – deliver
them value early and continuously.)

7. Value can be locked in incrementally. (Give the system to real users
– they won’t give it back if they benefit.)

8. New values can be discovered. (Expect to discover new
stakeholders and new stakeholder values. Developers must be in
dialogue with stakeholders/users. This partly arises because
stakeholders will come to believe that you can help.)

9. Values can be evaluated as a function. (Tracking stories and burn
rates is the only feedback you get in Agile methods. But productivity
is defined as reaching goal levels of organisation.)

10. Value delivery will attract resources. (If you are good at delivering
value you can expect more funding. Managers like to be credited
with success.)

Higher adaptability in a system/organisation is an investment viewed as
something that returns value over a longer-term period – Tom argued that
this long-term view totally absent from agile. There are however some
responsible corporations e.g. HP – in that in those environments you can
do this sort of long-term thing without too much debate.
Often nobody has the responsibility that the value be realised – Tom
proposes a Chief Value Officer to have this responsibility. Unfortunately
he didn’t have enough time to go into this in more detail…

Snowflakes and Architecture - Layers considered harmful [Steve
Love]

Steve Love’s session at the ACCU Conference was billed as taking a
‘suspicious look at the traditional layered architecture, and suggest[ing]
some ways it can be improved upon, resulting in an ‘architecture’ that
resembles a snowflake more than it does a cake’.
Steve was straight in with the boot beginning by noting that the main
difficulty with layer diagrams is that the diagrams are often only what you
get.
Layers are created to separate concerns but often business logic leaks into
different layers – this leads to untestable code due to unintended
dependencies between layers e.g. the business application that must be
tested with a GUI. Another problem is that sometimes a layer is there only
to pass data through to lower layers.
Steve’s talk described a different, more granular, approach to making a
more adaptable architecture by design and looked at the mutual influence
of architecture and design.
Robert Martin notes that bad design is rigid, fragile (due to knock-on
effects of local changes) and immobile (can’t move things around for
reuse, can’t disentangle software). Booch suggests that instead of layering,
we arrange applications into smaller grained components that
communicate together. So good design is cohesive, decoupled and layered,
Steve questioned whether these qualities are enough…
What a user sees as quality is different from what developer sees as quality.
His claim is that simplicity in software architecture is key, is easy to

mea su re , bu t i s no t
straightforward to achieve.
To illustrate what he meant
Steve introduced concept of
Dependency Hor i zon ,
which is the number of steps
you need to bring in for a
par t i cu la r dependency
(think of it as the number of
steps between components,
packages or modules if you
will). A far dependency
horizon can become hard to
manage and can increase
chance o f c i r cu l a r
dependencies.
Decoupling, e.g. through
intermediate objects or
i n t e r f ace s , i mprove s
maintainability. This can be
done by i den t i fy ing
abstractions and pulling out
pu r e i n t e r f ac es . T h i s
shortens the dependency horizon and so maintainability is improved.
A key concept here is the Dependency Inversion Principle

High level modules should not depend upon low level modules.
Both should depend upon abstractions.
Abstractions should not depend upon details. Details should depend
upon abstractions.
This allows abstractions to depend on each other, but not on their
implementations.
The Dependency Inversion Principle is layering in the small.

The Singleton pattern came in for a lot of bashing in Steve’s talk. Singleton
is the counter-example of DIP – it is the antithesis of detail depending on
abstraction. The pattern has lots of problems – hard-wired dependency,
dependency from within, testing is difficult, rigid/fragile/immobile,
unpredictable ownership, unpredictable lifetime, difficult to handle when
multiple threads are present. Conclusion – Singleton pretty much violates
all of Martin’s design principles.
Steve’s answer is Unsingleton – code should work with what it wants, but
don’t let it take it for themselves. What client code doesn’t know about the
implementation of a service can’t hurt it. Steve’s solution to many of the
problems was to Design to an Interface. This can be realised in different
ways in different technologies:

Interface keyword in some languages
COM/CORBA - IDL
C++ pure virtual base class
Duck-Typing (ducking the whole idea of typing) - C++ Templates,
Ruby, Python
C# and Java Generics

The key thing about interfaces is their substitutability.
Inheritance is the tightest form of coupling possible. Inheritance –
polymorphism by dynamic despatch and virtual functions.
Genericity – polymorphism by generics and duck typing –
Containers, Iterators and algorithms, Traits and Policy classes.
Overload – polymorphism by overloaded functions – member
function overloading, global functions and operators. Can be
particularly powerful in creating interfaces.
Coercion – polymorphism by conversion, implicit casting,
constness.

Testability is an essential property.
You must be able to Test independent parts independently

The conference prepares to settle one of
today’s thorny programming problems while
Tom Gilb considers the value proposition.
24 | | JUN 2008{cvu}

Interfaces give substitutability – if software under test depends on
database etc. then change it so that it must depend on interfaces to
the database, this lets you mock or replace the database
Substitutability underpins Mockability. Gives you ability to mock
out services that might only available on target device (e.g. a pda or
phone) and do debugging on the development PC.
Design to an interface.

 (A quick aside: When I first started programming I didn’t think about this
very much – we weren’t taught it and nobody around me considered it as
a property that could be designed in. As I read more about software
development I began to take more notice of this and began to look for
testability in design documents. Debuggability is a related concept that
supports testability e.g. I built a logging add-on for some quite complex
database code I inherited and this really let me get to the bottom of some
quite complex client-server interaction problems.)
Parallel Development.

Working to interfaces enables parallel development, continuous
integration, testing
Also supports outsourced development
Adaptability – when using interfaces plugging in a new component
just like an existing one is trivial.

I did have a question in my mind about how much effort and knowledge
is required in order to develop these interfaces. Does one need to have
written the interfaces a few times in order to get them right?
Flexibility, Generality and Reuse

The false idols of OO?
Usually done with inheritance but these led to big class hierarchies
which were unusable rather than reusable.
Interfaces provide the means of reuse. - component architecture
provides the means of flexibility – make stuff talk to a wire feed
rather than the UI say
Generality – can be reused in different context

Fat interfaces are less useful than small interfaces since they bring in
unwanted dependencies. They must be designed according to what client
code wants, not what it can use. Small, specific interfaces allow better
reuse. Parameterize-from-above is also part of the solution. ‘Don’t call us,
we’ll call you.’
Alistair Cockburn propose Hexagonal architectures – promoting the idea
of the application as a service, with ports and adapters. A port defines the
contract for adapters – this leads to pluggability. Making adapters with
their own ports leads to software as a collaborating set of components.
Steve notes it’s an attractive design but that it requires discipline and can
lead to circular dependencies. At the back of his mind he did seem to be
worried about the danger of replacing spaghetti code with spaghetti
interfaces. One suggestion was to try and organise interfaces into layers
to help. The key here he suggested is to break layering down into its
constituent interfaces. We would still layer components but we don’t make
them depend on being in a layer. This allows decoupling within layers.
So – what about the snowflakes? Look for Steve’s slides on the conference
web site and you’ll get the picture (pun intended).

When Good Architecture Goes Bad [Mark Dalgarno]

I’m writing this two weeks to the day since I stood up in front of just over
30 people to lead my session ‘When Good Architecture Goes Bad’.
My plan was to present some examples of architectural decay, to collect
some examples from the participants and to explore how things could be
improved. I was particularly interested in the value and cost of work done
to prevent architectural decay. It seems that developers agree that
preventing such decay is a good thing but I was hoping to collect some
examples that could make the financial side of things a little clearer as it
seems to me that there is a disconnect between developers and managers
in this area. It wasn’t too clear from the session description in the

programme that this would be a workshop so first up I offered anyone who
just wanted to sit and listen the chance to leave the room – there were no
takers…
After a few introductory slides the first exercise asked participants to
discuss examples of architectural decay from their real-life experience. I
collected these on a flipchart:
Examples of architectural decay

A single class used as a dumping ground
Cancerous wart – ever increasing coupling between modules,
packages etc.
The number of programming languages used on the project
increasing over time
New interfaces added over time, but old interfaces still maintained
(and never deprecated)
Lots of code clones (copies and near-identical copies)

I then presented some examples of architectural smells (problems in
package/class/subsystem/layer relationships, overgeneralization, etc.) and
whiffs. Whiffs are subtle smells – no one on the team can tell you what
the intended architecture is, time to implement changes increases, etc. The
second exercise asked the group to come up with their own examples:
Architectural smells associated with these (and other) examples:

Mismatch between documentation and software, mismatch between
comments and code
No clear responsibility for the architecture
Implementation = specification

Use of a proprietary language compiler
Pile of s**t from the start of the project
Clone and own as the main way of doing reuse
Insufficient decomposition
Knowledge of architecture held by a decreasing number of people

The bulk of the session was taken up by two case studies. In the first case
study an outsourced project had run into problems over a period of years.
The company detected a considerable decrease in productivity over this
time and the participants were asked to decide whether architectural decay
could have caused the decrease in productivity and what they thought of
the company’s proposed solution.
Participants’ observations included:

Communication needed to maintain architecture
Management needed to maintain architecture
Someone required to shepherd the new team before they can get
going
Insufficient knowledge transfer process when software first
outsourced.
Team selection is important when assigning new roles.
Unclear when productivity decline happened. Why didn’t company
pick it up sooner?
Who owned the software & the architecture – tests.

A second case study looked at a situation where a software system had been
developed in three separate sites but the company had just closed two of

Richard Harris’s presentation was a masterpiece of understated genius.
Subtly made and yet profound, this modest intellectual leviathan
questioned our assumptions of the very nature of the universe. In a
dazzling 90 minutes, this renowned mathologist exploited his
supernatural mastery of PowerPoint to transform complex mathematical
concepts into simple visualisations that even we mere mortals could
follow. No more shall we curse the manufacturers of headphones,
knowing as we now do that their products are doomed to tangle by the
fundamental laws of reality.
Oh, and there were some folks talking about C++.

Richard Harris BSc, MSc ... PhD writes
JUN 2008 | | 25{cvu}

the sites. Participants were asked whether moving maintenance to a single
team at one site would cause the software architecture to decay.

This time participants’ observations included:

Fewer people, resourcing could contribute to decay

Knowledge transfer/must learn new bits – again could cause
problems

Subtle differences between architectures of the different parts could
cause problems – initially it’s a comprehension task
Domain expertise was lost when two sites closed – could indicate
significant loss of architectural knowledge

What were the future plans – is there an implied refactoring?

This situation needs management to go into the project with open
eyes – non one was convinced this was the case

There might be an urge to change the architecture which could be
risky

Not-invented here/cultural differences could lead to problems

The motivation of the new team was questioned, skills drain could
occur

What was the background motivation for the change? This could set
the tone for future work.

If you would like to try these yourself, the case studies are available at:
http://www.software-acumen.com/articles-and-essays/

I then asked participants to travel back in time and come up with some ideas
for maintaining architectural integrity in their previously noted problem
projects:

Encourage people not to do clone and own – but how to do this?
Change the development process (again how viable is this, would
management back it?)

Embed a culture of refactoring (again but what if management won’t
allow it?) (and note – some developers may want too much
refactoring, be too keen to rewrite)
Visualize the technical debt – detect architectural decay using tools
Make responsibilities clearer.

Add automated (architectural) checks.
Cancel the project (earlier).

Rewrite (earlier)
Kill the architect (as noted by SPA 2008 participants also)

Spread architectural knowledge.

Spread the architectural work.

Have frequent communication between whole group – up to three
times a day.

The session covered some of the same ground as Tom Gilb’s keynote
‘Agile Methods Lack result management’, Steve Love’s session on
‘Snowflakes as architecture’ and (it later emerged) Dirk Haun’s session
‘Rewriting not recommended’.

Michael Foord <fuzzyman@voidspace.org.uk>
I’m writing this having just returned from the ACCU Conference in
Oxford. Last year Mark Shuttleworth was one of the keynote speakers, and
the year before that the eminent Guido Van Rossum – so after my talk was
accepted I was expecting quite an academic and ‘high powered’
conference (in other words I was very nervous about speaking there and
didn’t know what to expect).

Of course in reality it turns out that although they do have some very good
speakers, it really is a community organised event with some fun and down
to earth people. One thing that was a real challenge to my mindset was to
spend a bit of time with a genuinely intelligent person (Dirk Griffioen) who
chooses to program in C++.

First things first, my talk on IronPython and Dynamic Languages on .NET
went very well. I had a good audience (around fifty people I guesstimate)
who were very responsive and asked a lot of questions. About half were
.NET programmers and half Python programmers. They seemed to like
Resolver One, our Python programming spreadsheet, and were impressed
by first class functions and decorators in Python.
My favourite part of the talk was my deliberately provocative statement
on static typing:
In statically typed languages, it turns out that a significant proportion of
language ‘infrastructure’ (boiler-plate) is there for the sake of the compiler
rather than the programmer.

In C# this includes delegates, interfaces, generics and type declarations
which are all obsoleted by a dynamic type system.

Fortunately this was taken with a smile by most people there.
The Thursday keynote was ‘Caging the Effects Monster’, on controlling
side effects in programming, by Simon Peyton-Jones, the creator of the
GHC Haskell Compiler. He wasn’t just advocating pure functional
programming languages, but was encouraging developers to change their
programming habits. He did a great job of explaining how to do this, but
whilst he mentioned parallelism I didn’t feel he explained why very
clearly.
This was followed by Joe Armstrong talking about Erlang and then Simon
doing a three hour tutorial session on Haskell – I spent the whole day
learning about functional programming! Simon’s examples were using
Haskell for shell scripting (!) and the xmonad window manager – he was
very much touting Haskell as a general purpose programming language.
He demonstrated using Monads for IO and was easy to follow, although
by the end of three hours my brain was starting to hurt. I have, though,
promoted Haskell higher up the list of languages I would like to learn.
One of Simon’s early examples in his tutorial was writing a Haskell
function to traverse a graph of atoms to find neighbours (the ‘n-shell’). The
function was fantastically simple, but was exponential. Simon commented
that this could be solved by using memoize. Inspired by this, in my talk I
showed how easy it was to write a memoize decorator in a few lines of
Python.
Whilst chatting to Dirk, he tried to convince me that memory allocation
in C++ is simple these days, and that most people who have had painful
experiences of C++’s complexity are remembering an older C++ which is
now much improved. Unfortunately the Friday keynote, by Andrei
Alexandrescu (a C++ expert and a collaborator in the specification of
version 2.0 of the D Programming Language), did much to convince me
of the opposite. This was an hour and a half of examining, in detail, the
terrible problems of trying to implement general purpose identity (lambda
x: x in Python for all cases), min and max functions in both the current
standard of C++ and C++ 0x (the forthcoming standard). This includes
dealing with rvalues, lvalues, passing and returning arrays, consts and non
const values. Even at the end of Andrei’s presentation of the identity
function – which he said took virtually a day to work out – someone in the
audience pointed out a corner case it couldn’t handle. What a lot of awful,
terrible, unnecessary complexity.
I also got a chance to demonstrate Resolver One to Simon Peyton-Jones,
who was particularly impressed with the fact that cell ranges are iterable.
This means that you can have formulae like =SUM(val for val in A1:D8
if val > 10), or use the filter function with a lambda predicate and a cell
range: =SUM(filter(lambda x -> x > 10, A1:D8)). He says he has been
trying to get features like this into Excel for years. Yay for us!

Pete Goodliffe <pete@cthree.org>

Day one

Wednesday kicked off with a keynote by Tom Gilb. This was a provocative
talk on his thoughts on software development process and his Evo
methodology. He managed to tread on the toes of the agile contigent, and
interestingly suggested using Evo as envelope around an agile process.
One of his beautifully inflamatory statements was that ‘agile programming
26 | | JUN 2008{cvu}

does not attempt to quantify the value of various pieces of work, so you are
not able to pick the pieces of work that have the highest value, and so agile
processes fail to deliver (as much) value’. Or something like that. I’m not
sure I agree.
Ric Parkin’s talk on software design walked us through Alexander’s
seminal architectural books and considered their applicability to software
design. Not new ground, but very though provoking. Jez and I on the back
row took this to the logical conclusion and came up with ‘Grade 1 listed
software’ – the kind of thing that should not be touched without written
planning consent.
Ric’s most amusing quote, which will be repeated back to him many, many
times in the future was ‘I don't mind introducing bugs’. Thanks for that Ric.
I can’t dig him too much, though – he did give my book a free plug.
Day two of the ACCU 2008 conference... another barrage of technical
information and geeky entertainment.
Thursday’s timetable had a refreshing functional programming track,
which was headlined by Simon Peyton-Jone’s keynote: ‘Caging the
Effects Monster’. Great stuff. I can only admire the man for being a fellow
bare foot presenter! Simon took us on an entertaining journey into
functional programming and how it can be used to minise the risks of
‘effects’ (or rather, dangerous side-effects) in our software.
We saw how the ‘useful but dangerous’ languages are gaining more ‘pure’
functional capabilities and the ‘useless but safe’ pure functional languages
are gaining ‘side-effects’ to get actually stuff done.
The functional programming track continued with Joe Armstrong (self-
confessed quirky Englishman) explaining the motivation for Erlang, and
finishing with an eleven minute introduction to the language syntax
delivered in five minutes.
Favourite Armstrong quotes:

The operating system is for the stuff they forgot to put in the
programming language
Designing code for fault tolerance is the same things as designing
code to scale
No one’s ever done an MRI scan of the brain whilst you’re writing
a concurrent program
I’ll do the 11 minute introduction to Erlang in about 5 minutes, and
then do a 1 minute encore
Defensive programming is evil – you don’t do any defensive
programming in Erlang

Later the day included John Lakos on a heroic romp through 564 slides in
90 minutes whilist providing a classification model for objects, in order to
aid testing, and to validate the new C++ scoped allocator model.
The conference sessions closed with a geeky version of ‘Just a Minute’.
Great fun, and I’m obliged to mention it mostly because not only was I on
the panel, I won :-)

Day three

So is it Friday or Wednesday yet? We’ve been held captive in a zoo of
programmers for far too long, and the toll is starting to show. We’re all
going slowly mad, or technical, or both.
Friday at ACCU 2008 was just as rammed full of tech as the previous days,
with another full track of functional programming sessions nestling
alongside the traditional C++ talks, as well as sessions on rewriting code,
packaging with RPM, development process issues, and more, and more.
Highlights for me included Andei Alexandrescu’s talk on grafting
functional support on top of an imperative language – an excellent trip into
the D language’s core facilities that support programming in a functional

style in the same codebase as imperative code. If you’re even slightly
interested by that concept, or by language design, I highly recommend you
check his material out. Towards the end of Andrei’s talk I was left
disappointed by the design of invariant constructors which didn’t seem
anywhere near as neat and regular as the clever use of the D type system
to enable the functional and imperative code to coexist and share state. It
seems that the design is still in flux, and it’ll be cool to see how it develops.
Kevlin Henney gave a typically amusing and insightful talk on software
testing. An excellent Henney quote: ‘In failure the software will reveal itself’.
That is, when it goes wrong, you will learn about the structure and nature
of a software system.
The day finished, and the night began (and – as ever – it was a looooong
night) with the speakers dinner – another excellent ACCU tradition. That
was rounded off with another new ACCU tradition, the boat race which
solved once and for all which brace placement style is the One True Way
– a score that the squash players earlier had spectacularly failed to settle.
K&R lost, and so it has now been
 void established::that()
 {
 this->is_the_only(way, 2);
 do
 {
 it();
 }

And now we can all sleep at night. Except that they didn’t shut the bar,
and very few people did.

Day four

Saturday. More of the same – but with slightly fewer people attending on
the Saturday it’s a bit easier to get at the wireless network.
Many people are looking a little bleary eyed from last night’s fun, and
regaling us with tales of John Lakos’ 41 one-armed push ups in the hotel
bar at 4am.
Roger Orr’s keynote on debugging showed us the seven deadly sins of
debugging. and the seven (deadly?) corresponding virtues.
That’s a flavour of the sessions, but so much of the conference takes place
away from the PowerPoint projector. The conversations over coffee,
dinner, and beer (that stretched very, very late into the night) are the high-
point of the conference.

Jez (again)
There you have it – a view of the ACCU 2008 conference. Our thanks, as
always, go to Giovanni and the conference committee, the speakers, to
Julie and her team at Archer Yates, and, indeed, to the conference
delegates. Hope to see you there next year!

Just a programming minute!
JUN 2008 | | 27{cvu}

Desert Island Books
Kevlin Henney shares his desert island reading list.

evlin Henney is no stranger to any regular on accu-general and
probably no stranger to any ACCU member who attends the
conference or reads CVu or Overload (and of course that’s all of us,

isn’t it?).

If you asked him, Kevlin would tell you that he is an independent consultant
and trainer with an interest in software development techniques and
programming languages and that he has written two books. But of course
there’s more to the man than that. The main thing that stands out for me is
that he always finds time to help everyone and to contribute.

It’s obvious from speaking with Kevlin and reading his work that his interests
do not only lie within programming. As he describes below, he also has a
healthy interest in Science Fiction and reasonable taste in music. Although,
I could never agree that Wish You Were Here was Pink Floyd’s finest album.

Kevlin Henney
I guess there a quite a few of us who, as children, fantasised about being
cast away on a desert island, living the life of Robinson Crusoe and other
adventure stories. And now I’m being given the opportunity to revisit this
dream with adult sensibilities and a geekish twist!
Alas, growing older is associated with some degree of self knowledge, a
set of acquired habits and a whole load of other
mental baggage, not all of which would prove
useful in a castaway situation. For example, I
know that I’m a complete town mouse. For me,
the countryside is filled with strange animals,
stranger people and lots of green stuff
(although perhaps not as much as there used to
be). It’s where you go on holiday. It’s where
you pass through by car or by train to get to
somewhere else. It’s certainly more beautiful
and pleasant than the banal surrealism of edge
cities and suburbia, but it involves more
separation from people than I’m normally
comfortable with – I grew up in London and
now live in Bristol (which is probably about as
country as I can manage).
So what am I to make of being stranded on a desert island? Well, at least
the weather will be better than living on this island. Sunshine! The gentle
lapping of the waves on the beach! Living off nature’s bounty! There’s also
the tropical storms, wild animals and poisonous plants to take into account,
as well as the obvious lack of restaurants, convenience stores and 24-hour

dial-up wild
an ima l
catchers. Oh, and a
h i gh p ro b a b i l i t y o f
solipsism and sunburn. Well,
the good news is that in my retreat
from civilisation I should be reasonably
well provided for. I can take five books and one or two albums. The flotsam
and jetsam of the twenty-first century washing up on the beach will
undoubtedly cater for a number of my town-mouse expectations
(pollution, tinned food, Ikea furniture, etc.).
In terms of technical books, one I would definitely take is Grady Booch’s
Object-Oriented Analysis and Design with Applications, which I bought
when it came out in 1993. To be precise, the second edition. The first
edition, which preceded the second by a couple of years, had a focus that
was slightly narrower as just Object-Oriented Design with Applications.
The first edition was, for me, quite ground-breaking, but the second was
more polished, comprehensive and definitive. Looking back at it, it is
surprising how much of it still seems fresh and how much people could

still learn from it, from little gems to deep
insights. The book has a view of objects that is
both sound in theory and robust in practice,
using a mix of C++ code and Booch notation
to make its points and walk through non-toy
examples. In this book you will also find early
discussion of design patterns and simple
policy-based design, al l ahead of the
publications that later elaborated and
popularised these ideas.
The first edition used a mix of languages,
which is definitely a point for rather than
against it, but the overall effect of the second
book, reflecting a maturer, deeper and more
integrated view of OO development, is enough

to make it my favoured edition. Recently a third edition was published. It
employs UML and a host of coauthors. I have a copy on my shelf, but I
suspect it will probably never get read. Ahead of their time, the first two
editions were of their time and reflected a clear and consistent approach.
After such a long break, bringing in coauthors to enhance a work that
reflected one person’s world view is likely to result in something that is
less than the sum of its parts, a potential disappointment for fans of the
original. I had this experience with the original and recent editions of
Glenford Myers’ Art of Software Testing. Maybe the new OOAD book will
be as good as the old ones. Maybe not. Either way, it is not the third edition
that will be accompanying me to the desert island.
There are a number of OO and other ‘-ology’ books that would have been
good candidates for the trip. The Gang-of-Four’s Design Patterns,
Bertrand Meyer’s Object-Oriented Software Construction (first edition)
and Michael Jackson’s Software Requirements & Specifications (not
exactly a thriller (Paul: Pun intended?) of a title, but the nature of the book
is better communicated in its subtitle, a lexicon of principles, practices and
prejudices) have all moved my thinking on in some significant way.
Ultimately, however, it’s Booch that first got me interested in reflecting
on my problem and solutions thinking above the level of the code, much
to the benefit of my code. I first stumbled across OO in a book on Ada by
Booch. At the time I was doing Fortran (actually, it was long enough ago
that it was definitely FORTRAN) and the more considered and expressive
approach to organising code offered by OO thinking and, specifically, his

K

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

there are a number of
books on programming

languages and
programming technique
that are good candidates

for enjoying in the shade of
a palm tree
28 | | JUN 2008{cvu}

{cvu}

articulation of it was a complete revelation. This earlier inspiration
probably influences my preference for his OOAD book.
Focusing on code, there are a number of books on programming languages
and programming technique that are good candidates for enjoying in the
shade of a palm tree. Looking across my bookshelf there are perhaps too
many possibilities. The C Programming Language by Brian Kernighan
and Dennis Ritchie (both old and new testament) still stands as a
programming and language classic. Likewise, Alfred Aho, Brian
Kernighan and Peter Weinberger’s Awk Programming Language is a little
gem of a book, often overlooked. Books such as Brian Kernighan and Rob
Pike’s Practice of Programming, Andy Hunt and Dave Thomas’s
Pragmatic Programmer, Jon Bentley’s Programming Pearls (both first
and second edition), Kent Beck’s Smalltalk Best Practice Patterns and
Martin Fowler’s Refactoring are well-written, exemplary exponents of
technique and, importantly for the castaway, each one is a jolly good read.
But the ticket to the island probably has to go to The Elements of
Programming Style by Brian Kernighan and P J Plauger.
As an aside, looking over that list of candidates and the chosen book, I
reckon that I ought to be able to blag honorary membership of the Brian
W Kernighan fan club. There does seem to be a deeper pattern here: Jez
took a copy of Kernighan and Plauger’s Software Tools off to his desert
island in the last issue. (There’s a thought, I wonder if it’s actually the same
island I’m on, just running in a different VM instance or time slice? Maybe
it would be possible to communicate by opening up some kind of port or
pipe? A bamboo one, probably. Or perhaps having such thoughts suggests
that I’ve been drinking just a little bit too much sea water?)
Anyway, what makes the chosen book (as opposed to Brian Kernighan)
so special? Before all the other books I mentioned came along, there was
The Elements of Programming Style. Ideas that I have recently seen
branded by some as fashionable are all in here, clearly motivated and
clearly described: sparing use of comments; avoiding temporary variables;
refactoring common code into functions; testing a program in small units;
and so on. This book dates from the 1970s, which is not a decade known
for its fashion. The example code is in PL/1 and Fortran IV, but the timeless
quality of the advice is apparent, and helps to differentiate the substance
of style from the fluff of fashion.

The Elements of Programming Style (second edition –
I’ve never come across a copy of the first edition) is a
slim and unassuming volume, weighing in at around
170 pages with the title dominating the otherwise plain
white cover. This brevity and unpretentiousness
reflects the book after which it was patterned, The
Elements of Style by Strunk and White. The Elements
of Style offers readable advice for authors (a book worth
getting but, as a matter of preference, I would
recommend the third edition over the fourth edition). I

first read The Elements of Programming Style when I was working with
FORTRAN. I came across it again a few years later, borrowing it from a
colleague. A few years ago, when I started working for myself, I realised
that although I quoted and referred to it extensively, I no longer had access
to a copy. Some Internet trawling (and surrendering of credit card details)
soon sorted that out.
I consider both books chosen so far to be classics. In common with many
things that are branded classic, these books are, in computing terms, old.
I’ve also read both of them. And although the Booch book is just under
the 600-page mark, the Kernighan and Plauger is a short (re)read. If I’m
stuck on a desert island it would be nice to have something to read that
was mostly new to me and took a little longer to read. This is the motivation
for my third book choice: Beautiful Code, edited by Andy Oram and Greg
Wilson, contains over 30 contributions from a number of authors
(including, yes, a certain Brian Kernighan). I have dipped into it and what
I’ve read so far convinces me that this is one to take away and that it is
destined to become a classic. I’ve found a diverse potpourri of perspectives
and examples, good quality writing, some degree of convergence of
opinion on what constitutes elegant and simple design, as well as the

comfort of reinforcing many of my own opinions –
such confirmation always tends to endear a book to
the reader!
Beautiful Code draws on a broad range of authors,
which helps to guarantee that you get a good mix of
examples, large and small, from Rob Pike’s svelte
grep to Google’s MapReduce architecture, from the
world of testing to the world of language design,
from algorithms to operating systems. All too often
we talk about learning from our mistakes (which we rarely do as well as
we should, which is itself a mistake), but all too often we fail to learn from
successes. This is a book of successful designs presented in a way that will
leave the reader’s mind enlightened and broadened.
Speaking of incompletely-read anthologies, ACM Turing Award Lectures
was a close runner up for the island. It contains the papers presented by
Turing Award winners from 1966 to 1985 on receipt of their award. It lost
out to Beautiful Code because, as its more prosaic title suggests, its tone
tends to be much drier. However, this book is still worth a mention because
it includes insights from people like Tony Hoare, Dennis Ritchie, Ken
Thompson, John Backus, Edsger Dijkstra, John McCarthy, Donald Knuth
and many more. And for anyone who feels the uncontrollable urge to use
the term ‘multi-paradigm programming’, Robert Floyd’s ‘Paradigms of
Programming’ is a must-read. To say of a general-purpose language that
it is multi-paradigm is an unsurprising and trivial observation that has little
value in distinguishing it from other general-purpose programming
languages. This paper provides a useful antidote and course correction to
the narrow and casual use of ‘multi-paradigm’ by being clear about what
it means by ‘paradigm’ (something most users of the word fail to do), and
outlines the value of a diverse vocabulary of patterns and styles.
But I digress. If I had been nominating individual papers and articles to
take to the island, this would be a different (and even longer) article!
OK, so two books left to choose, one of which needs to be a novel. Rather
than choose another book about code and development practice before
hitting the fiction, I’m choosing a book that I found profoundly thought
provoking and inspiring. It’s still geeky, but it’s far from being a regular
development book or straight computer science tome: Gödel, Escher,
Bach: An Eternal Golden Braid by Douglas Hofstadter.
The additional caption on the cover hints at the breadth of the book, but
perhaps not at its depth or its other qualities: ‘a metaphorical fugue on
minds and machines in the spirit of Lewis Carroll’. I was first shown and
recommended the book by a girlfriend’s father – a significant improvement
over the traditional shotgun monologue – and eventually got my own copy
when I was at university. It is a book of many parts, many perspectives
and many narratives, which is probably why for the longest time I used to
just dip into it and explore it out of sequence. Eventually, following
university, I got around to reading it properly from cover to cover. The way
that cognition, computation, philosophy, art, music, mathematics,
miscellanea and much (much) more besides are presented is both engaging
and enlightening.
Reading the patterns issue of IEEE Software last year, Grady Booch used
what I realised was the perfect quote from Gödel, Escher, Bach to
accompany the discussion of pattern compounds we had in POSA5:
‘Fugues have that interesting property, that each of their voices is a piece
of music in itself; and thus a fugue might be thought of as a collection of
several distinct pieces of music, all based on one single theme, and all
played simultaneously. And it is up to the listener (or his subconscious) to
decide whether it should be perceived as a unit, or as a
collection of independent parts, all of which harmonize.’
The only problem being that the ship had already sailed:
it was the July/August issue of IEEE Software and
POSA5 was published in April. Anyway, that’s the thing
about Gödel, Escher, Bach: there is always a new
perspective to be found.
In terms of non-fiction, Gödel, Escher, Bach had some
stiff competition for the island: How Buildings Learn by
JUN 2008 | | 29

Stewart Brand, The Timeless Way of Building by Christopher Alexander,
To Engineer is Human by Henry Petroski, The Design of Everyday Things
by Donald Norman, The Diving Bell and the Butterfly by Jean-Dominique
Bauby and A Moveable Feast by Ernest Hemingway. The last two are a
little different to the others: they are non-fiction, but they are also non-
technical. They would have been candidates for my final book choice,
except that no matter how I twisted words and looked for loopholes, all
my dictionaries are agreed that a novel must be fiction!
In some ways the choice of novel is perhaps the hardest. There’s a lot to
chose from, and I’ve had different interests over time. My habits,
preferences and, sadly, time for reading fiction have changed a great deal.
The range of good stuff is also a lot broader. To be frank, a lot of technically
focused books see and raise Sturgeon’s Law (in its abbreviated form: 90%
of everything is crap). The functional goal of such books often inspires
triteness and poor writing, which makes the good books stand out all the
more. Fiction is a more subjective but also less tolerant field.
So, is it to be Hemingway? The Old Man and the Sea and A Farewell to
Arms are great books, but there is something about the ease and situation
of A Moveable Feast that I particularly like, so if A Moveable Feast isn’t
going to make it to the island, these others won’t either. In terms of great
American novels, Jack Kerouac’s beat classic On the Road and the more
understated Dharma Bums are favourites that fit the escapist feel of the
island nicely, as do The Rum Diary by Hunter S Thompson, Zen and the
Art of Motorcycle Maintenance by Robert Pirsig and The Dice Man by
Luke Rhinehart.
I am also tempted by John Fowles’ The Magus, a book that has sufficient
intrigue and substance to while away the tropical nights. I first came across
John Fowles when someone gave me A Maggot, a book that almost
deserves to be taken to the island solely on the grounds that I think there
is more there than I appreciated when I first read it. The Collector is a
memorable and compelling classic, but such a depressing one that it’s
definitely staying behind. As I only read it in translation, I am not sure how
I would feel about choosing Milan Kundera’s The Unbearable Lightness
of Being. Perhaps the issue of translation is irrelevant, because it was the
whole approach that I found refreshing and inspiring. Although good,
don’t be distracted by the film if you are thinking about this book – quite
a different proposition that, by necessity, leaves out a lot of what makes
the book the book it is. More recently, Yann Martel’s Life of Pi is a
contender, especially given the castaway situation!
I used to read a lot of science fiction. While there’s a lot that I can’t see
myself revisiting, there are a number of books that stand out. I particularly
enjoy Iain M Banks’s ‘Culture’ novels. They are well crafted from the
sentence level up to the whole book. The Player of Games and Use of
Weapons definitely deserve a reread. The ‘Mars’ trilogy by Kim Stanley
Robinson – and in particular Red Mars – paints a rich picture of something
that I used to dream about. A lot of that dreaming was inspired by the
writing of the late Arthur C Clarke. Although it had a great effect on me
as a child, I don’t think that Islands in the Sky is something I could return
to: more likely Childhood’s End, The City and the Stars or A Fall of
Moondust. Other notables include Stand on Zanzibar by John Brunner,

Ender’s Game and Speaker for the Dead by Orson
Scott Card and The Dispossessed by Ursula Le Guin
(this last one recommended to me, as it happens, by the
girlfriend whose father recommended Gödel, Escher,
Bach).
So what’s it to be? As I said, this was possibly the
hardest choice. On balance, I think John Fowles’ The
Magus – but a last minute repacking is quite possible!
And so to music. I can take one or two albums, which
is, as far as I’m concerned, just another way of saying that I can take two
albums. It’s a desert island, which means sunshine. For me this evokes cold
beer, coffee (more than usual), a plausible excuse to wear dark glasses, hay
fever and the sounds of Jimi Hendrix, Santana, Led Zeppelin, Placebo,
Soundgarden and Jane’s Addiction, among others. Something to wake up
the island and scare a few animals, basically. Jane’s Addiction’s Nothing’s
Shocking is a stunning album that still reminds me of when I first saw them
live (mumble) years ago. They were just a support act, but I was blown
away. However, Placebo’s eponymous first album and Without You I’m
Nothing, their second album, are the frontrunners by the breadth of a vinyl
groove. It’s a difficult choice because overall I think Placebo’s first album
is slightly better, but Pure Morning, the first track on the second album,
is a masterpiece that just tips the balance in favour of Without You I’m
Nothing.
But there’s more to music than disturbing the neighbours. Something else
is needed that has a bit of space. Something to complement rather than
overwrite the mood of the island; at sunrise, in the lazy afternoon and at
sunset. The whole situation puts me in mind of Talk Talk’s Spirit of Eden,
a wonderful and off-beat album that is as far from their earlier chart-
friendly sound as my desert island is from civilisation. However, the album
is also perhaps too eventful to fulfil the particular role I had in mind.
Something with more ambience is needed.
The gradual fade-up of Pink Floyd’s Wish Your Were Here gently
introduces what is perhaps their finest album. There is no denying that The
Dark Side of the Moon is a great album, but the overall effect of Wish You
Were Here puts it ahead and on the short list. Dead Can Dance’s Serpent’s
Egg is a work of brilliance and an album of the evening. It is easy to
imagine the splendour of the opening track, ‘Host of Seraphim’, as a
postlude to the sunset. That soundtrack feel puts me in mind of Philip
Glass’s Koyaanisqatsi. I’m not as keen on his vocal compositions, but his
primarily instrumental work is wonderfully immersive. In a similar vein,
Steve Reich’s Music for 18 Musicians is enough of a favourite that I have
two different recordings of it. It’s evolving rhythm is something I can both
lose myself in and work to. Something else I find easy to work, read or
zone out to is Brian Eno’s Thursday Afternoon. It is so gentle that almost
nothing happens. Almost. It’s brilliant. It’s also my second album choice.
Right, I’m off down to the beach to see if I can score some Nike trainers,
a satellite dish and a bottle of something decent to drink!

Next issue: Allan Kelly (not the Scottish one) picks his desert island books.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in
Overload, and by a newcomer.

For further information, contact the editors: cvu@accu.org or overload@accu.org
30 | | JUN 2008{cvu}

Code Critique Competition 52
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry.

Readers are also encouraged to comment on published entries, and to
supply their own possible code samples for the competition (in any
common programming language) to scc@accu.org.

Last issue’s code
I’ve written a simple program to count words and it works fine, but when my
friend tries it she says it won’t compile. Her compiler complains that count
is ambiguous [at (1)] and no matching operator++ found [at (2)]. What’s
wrong with the compiler?

Can you help answer the question? The code is shown in Listing 1.

Critique

Seweryn Habdank-Wojewódzki <shw@agh.edu.pl>

The first thing in all such situations (like this program) is I am using g++
with additional options: "-Wall -W -ansi -pedantic". That, many
times, helps.
There are two problems in the code. The first one is that programmer put
using namespace std; in global scope. This is evil! That’s why count
class is ambiguous – there exists std::count algorithm.
The second problem is that std::set::value_type is constant. This
is written in Jossutis: The C++ Standard Library: A Tutorial and
Reference in section 6.10.1 – container::value_type. The most
important point is that only for std::set is value_type constant.
So there is no way to execute operator++ on that value. This is also
highlighted by the compiler. The following line simulates what exactly is
done in this stage:
 Words::value_type const & w = (*it);

So of course ++(*it) cannot be done.
There are several possible solutions, here is one that works correctly:

#include <iterator>
#include <map>
#include <string>
#include <iostream>

std::ostream & operator<< (std::ostream& os,
 std::pair<std::string, size_t> const & w)
{
 return os << w.first << ": " << w.second;
}

int main()
{
 typedef std::map<std::string,size_t> Words;
 Words words;
 std::string curr;
 while (std::cin >> curr)
 {
 Words::iterator it = words.find (curr);
 if (it == words.end())
 {
 words.insert(std::make_pair(curr,1));
 }

 else
 {
 ++((*it).second);
 }
 }
 Words::const_iterator const end
 = words.end();
 for (Words::const_iterator i
 = words.begin(); i != end; ++i)
 {
 std::cout << *i << '\n';
 }
}

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

#include <iterator>
#include <set>
#include <string>
#include <iostream>

using namespace std;

class count
{
 int i;
public:
 count() : i() {}
 void operator++() { ++i; }
 operator int() const { return i; }
};

class word : public string, public count
{
};

ostream& operator<<(ostream& os,
 word const & w)
{
 return os<<string(w)<<": "<<count(w); // (1)
}

int main()
{
 set<word> words;

 word curr;
 while (cin>>curr)
 {
 ++(*words.insert(curr).first); // (2)
 }
 copy(words.begin(),words.end(),
 ostream_iterator<word>(cout,"\n"));
}

Listing 1
JUN 2008 | | 31{cvu}

Peter Hammond <Peter.Hammond@baesystems.com>

Compiling the original code with GCC (3.4.4 on Cygwin) gives me the
following errors:
 scc51.cpp: In function `std::ostream&
 operator<<(std::ostream&, const word&)':
 scc51.cpp:22: error: no matching function for
 call to `count(const word&)'

 scc51.cpp: In function `int main()':
 scc51.cpp:32: error: passing `const word' as
 `this' argument of `void count::operator++()'
 discards qualifiers

The first is simply a name clash; the std namespace has been ‘used’ and
so std::count (from algorithm) is visible, causing the conflict. It is
simply avoided by either removing the using namespace std or by
explicitly scoping ::count (w).
The second is more interesting. The compiler is telling you that you are
trying to call the non-const method operator++ on a const object. This
is because the iterator returned by std::set::insert does not permit
modification of the key. A set, like all associative containers, must manage
the ordering of its content, which would not be possible if the values could
be changed externally though non-cont references. As it happens, you
don’t actually want to modify the key, but it is a side effect of treating word
as both a string (the key) and a count (the value). Now, public inheritance
should only be used to model an ‘is-a’ relationship in an object oriented
system. Say to yourself ‘a word is a count’. Does that make sense? Not to
me it doesn’t. What you are trying to do is to associate a count with each
word, which immediately suggests the use of a map. The following version
uses a map to manage counts for each word:

#include <iterator>
#include <map>
#include <string>
#include <iostream>

typedef std::map<std::string, int> WordCount;

std::ostream& operator<<(std::ostream& os,
 WordCount::value_type const & w)
{
 return os<< w.first <<": "<< w.second;
}

int main()
{
 WordCount words;

 std::string curr;
 while (std::cin >> curr)
 {
 words[curr]++;
 }

 std::copy(words.begin(),words.end(),
 std::ostream_iterator<WordCount::value_type>
 (std::cout,"\n"));
}

The typedef just makes it slightly easier to refer to the map’s types. The
C++ standard [1] requires that a new value created by operator [] is default-
initialised (23.3.1.2), which is zero-initialised for an integer (8.1-5), so it
can be safely incremented as shown. This all looks nice and neat, with
reasonable OO design. The only problem is, it does not compile. It churns
out a huge list of template errors pertaining to the fact that
ostream_iterator<WordCount::value_type> cannot find the
operator<< that it needs.

At this point in any real-world job I would probably abandon using
ostream_iterator and use an old-fashioned for loop, and I am not
alone [2]. In this case the resulting code is considerably shorter, and also
the WordCount typedef is localised to a smaller scope:

#include <map>
#include <string>
#include <iostream>

int main()
{
 typedef std::map<std::string, int>
 WordCount;
 WordCount words;

 std::string curr;
 while (std::cin >> curr)
 {
 words[curr]++;
 }

 for (WordCount::iterator i = words.begin();
 i != words.end(); ++i)
 {
 std::cout << i->first << ": " << i->second
 << "\n";
 }
}

Often, however, it is desirable to provide the operator<< in a reusable
place, and using the more modern, declarative idiom with the copy
algorithm can make the code clearer in some cases. So, if you really feel
the need to do it that way, you have to put the operator into the standard
namespace, where ostream_iterator can find it through argument-
dependent lookup:

namespace std
{
 std::ostream& operator<<(std::ostream& os,
 WordCount::value_type const & w)
 {
 return os<< w.first <<": "<< w.second;
 }
}

With this modification, the example above works correctly.
References
[1] The C++ Standard (BS ISO/IEC14882:2003), Wiley, 2003.
[2] Verity Stob, ‘Out of the (C++) Loop’, The Register, 2006. http://

www.regdeveloper.co.uk/2006/08/08/cplusplus_loops/

David Pol <david@metadev.info>

We will first analyze the roots of the specific compilation problems and
look at possible ways to solve them. After that, we will examine the overall
design of the program and discuss an alternative implementation based on
the use of std::map.
I compiled the given program with MVC++ 9, g++ 4.1.3 and Comeau
Online 4.3.9. While MVC++ compiled it with no errors, both g++ and
Comeau Online gave the same two errors our friend got in her compiler.
Which compiler is right? Well, the answer is that all three are right. The
problem lies in the code itself, which was not written with portability in
mind.
The first error is easily detectable if you are familiar with the standard
library function std::count(), and is a clear example of the problems
you are potentially being exposed to when writing using namespace
std; – even in a .cpp file – as a lot of identifiers are brought into the
global scope (according to 17.4.4.1/2, ‘a C++ header may include other
32 | | JUN 2008{cvu}

C++ headers’, so the contents of the standard library that are effectively
made available to the global scope at some point by including a standard
library header and writing using namespace std; depend on the
implementation – in our case, for example, g++ standard library’s header
<string> happens to include <algorithm>, where the definition of
std::count() resides). Using-directives help reduce typing, but can
potentially create confusion for maintainers and compile-time conflicts
due to name clashes. As we have just experienced!
So what can we do? We have several options:

Change the name of the count type. Or maybe not define this type at
all (more on this later).
Explicitly tell the compiler we want to use the count function that
belongs to the global namespace (not the most elegant thing to do,
from my point of view):

 // ...
 return os << string(w) << ": " << ::count(w);
 // ...

Prefer using-declarations to using-directives, or directly avoid
using-directives and explicity qualify identifiers with std::.

Regarding the second error, it is necessary to say that the standard
de l ega t e s t he t ypes o f std::set::iterator and
std::set::const_iterator to the implementation (23.3.3/2).
While some implementations may provide both const and non-const
iterators for std::set, others do only provide const iterators. So this
code
 ++(*words.insert(curr).first);

fails to compile on those compilers with a standard library implementation
that only provides const iterators for std::set. But we may really need
to modify an element in a std::set in a portable way (more precisely,
a non-key part of an element in a std::set, as altering a key part of the
element could break the sortedness of the container).
So, what can we do now? Again, we have several options:

Use const_cast (but remember that casts are dangerous and it is
better to avoid them whenever possible):

 ++(const_cast<word&>
 (*(words.insert(curr).first)));

Make the member variable i inside count mutable and define
count’s operator++ as a const member function (this illustrates
the fact that code that works does not always make sense at all; in
our case, I consider this to be a non-solution and a clear indicator
that std::set is very probably not the way to go).
Use the safe way of changing elements in a std::set described by
Meyers in Effective STL. It consists on locating the element to
modify, make a copy of it, erase the element from the container,
modify the copy and insert it into the container [*]:

 // ...
 while (std::cin>>curr)
 {
 std::set<word>::const_iterator it =
 words.find(curr);
 if (it != words.end())
 {
 word temp(*it);
 words.erase(it++);
 ++temp;
 words.insert(it, temp);
 }
 else
 {
 words.insert(curr);
 }
 }
 // ...

[*] Note that we would also have to initialize the member variable i
inside count to 1 in this case.
Separate the element type into a const part that determines the
ordering (the key) and a mutable part that does not determine the
ordering (the value), and use a std::map that maps keys to values.

Now that we have discussed ways to make the code portable across
compilers, we proceed to question its current design. We want to count
words, so we clearly need an association between a given word and its
number of occurrences. Does not that make you think almost immediately
about std::map? We are not really getting that much from using
std::set, as we need to create two additional classes, one of them
publicly inheriting from std::string for convenience (although
standard library container classes are not intended to be publicly derived
from and it is usually preferred to use composition or private inheritance
instead).
Using std::map, our program looks like this:

#include <iostream>
#include <map>
#include <string>

int main()
{
 typedef std::pair<std::string, unsigned int>
 word_occ_pair;
 typedef std::map<std::string, unsigned int>
 word_map;
 word_map words;

 std::string current_word;
 word_map::iterator it;
 while (std::cin >> current_word)
 {
 it = words.find(current_word);
 if (it != words.end())
 {
 words[current_word] = ++(it->second);
 }
 else
 {
 words.insert(word_occ_pair(
 current_word, 1));
 }
 }

 word_map::const_iterator end_it =
 words.end();
 for (word_map::const_iterator it =
 words.begin();
 it != end_it; ++it)
 {
 std::cout << it->first << ": "
 << it->second << std::endl;
 }

 return 0;
}

We can see that we are able to avoid major sources of problems by using
the right container from the beginning.

Ivan Uemlianin <ivan@llaisdy.com>
Overview of the problem – two sets of problems

The purpose of the submitted program is to take some text from standard
input and output a list of word counts. It compiles under MS Visual C++
and works correctly, but g++ will not compile it. We are asked, ‘What is
wrong with the compiler?’ Obviously it is the compiler which is at fault.
JUN 2008 | | 33{cvu}

There are two sets of problems with this code. The first is to do with
compiler sensitivity: the program will compile under at least one compiler,
but not with at least one other. The second, more fundamental, set of
problems, of which the first is probably a symptom, is to do with choice
of central data structure.
Problem 1: compiler sensitivity

The program will compile and operate correctly under MS Visual C++, but
g++ will not compile it, reporting errors on two lines. One possible
response to this would be to say, ‘Well, VC++ is obviously a better
compiler, and I only want to run on Windows anyway.’ Or perhaps we
could run a survey of C++ compilers and see ‘empirically’ how the
majority of compilers treat this code.
C++ compilers do behave differently, and comparison is often worthwhile.
However, most code should compile perfectly well on all compilers. If
code this simple is showing compiler sensitivity, then the problem is more
likely to do with the code than with the compiler. So, where does g++ have
a problem?
count(w)
The first error is on line 24 in the operator<<() overloading:
 ostream& operator<<(ostream& os,
 word const & w) {
 return os<<string(w)<<": "<<count(w); \\ (1)
}

g++ says:
on cygwin:

 no matching function for call to 'count(const
 word&)'

on linux:
 reference to count is ambiguous
 candidates are: class count
 /usr/include/c++/4.2/bits/stl_algo.h:424:
 error: template<class _InputIterator, class
 _Tp> typename
 std::iterator_traits::difference_type
 std::count(_InputIterator, _InputIterator,
 const _Tp&)

count(w) seems to be a simple typo for int(w), as count::int() is
not used anywhere else in the program, and the point of count(w) in line
24 is to return the int i. The line will compile under g++ with int(w)
in the place of count(w).
How come it compiles under VC++? This is mysterious to me. I imagine
VC++ is treating count(w) as a cast (and (count)w as the same effect
here). The word w is cast to a count, the only printable part of which is the
int. However, I haven’t been able to find any worthwhile documentation
on casts in VC++.
words.insert
The second error raised by g++ is on line 39 in main():
 while (cin>>curr)
 {
 ++(*words.insert(curr).first); // (2)
 }

This is equivalent to:
 while (cin>>curr)
 {
 pair<set<word>::iterator, bool> p =
 words.insert(curr);
 ++(*p.first);
 }

And, on g++, it is the second line of the loop which fails, with:
 passing 'const word' as 'this' argument of
 'void count::operator++()' discards qualifiers

If we replace (*p.first) with (p->first), we get a more informative
error from g++:
 base operand of '->' has non-pointer type
 'std::pair<std::_Rb_tree_const_iterator<word>,
 bool>'

So under g++ the first element of the pair is actually a const iterator – not
so under VC++ (although of course p->first still raises an error).
I don’t know how to fix this, but in any case fixing compiler sensitivity is
not the way to fix the program.
Problem 2: the wrong data structure

The main problem with this program is that it uses the wrong data structure.
The purpose of the program is to collect frequencies of words in a text, in
other words to provide a mapping between a word and its frequency. For
this task the correct data structure is a map, not a set. Much of the
complexity of the program is caused by the programmer trying to cope with
this fundamental error.
Correcting the data structure
Using <map> instead of <set> the program becomes much simpler:

#include <iterator>
#include <map>
#include <string>
#include <iostream>

using namespace std;

void output(map<string, int>& words)
 // cribbed from tc++pl p481
{
 typedef map<string, int>::const_iterator ci;
 for (ci p = words.begin(); p != words.end();
 ++p)
 cout << p->first << ": " << p->second
 << \n";
}

int main()
{
 map<string, int> words;
 string curr;
 while (cin>>curr)
 ++words[curr];
 output(words);
}

No classes, no operator overloading, and the output function is cribbed
(from a reputable source [1]). The program is clear and concise, and VC++
and g++ both compile it without complaint.
Conclusion

This program started going wrong when the choice was made to base the
solution on sets. From that false step, complications pile on complications.
Look after the data structures, and the algorithms will look after
themselves.
References

[1] Stroustrup, B. (2000) The C++ Programming Language Addison-
Wesley, ISBN: 0201700735.

Nevin :-] Liber <nevin@eviloverlord.com>
What's wrong with the compiler?

I don’t know if there is or is not anything wrong with the compiler. In this
case, the code, not the compiler, is the problem.
Issue (1): using namespace std;
This has a very powerful effect: every symbol in std that is used in this
translation unit (file) can be used without having to qualify it with std::.
34 | | JUN 2008{cvu}

In <algorithm>, there is a function named std::count. Now, while the
author isn’t directly including it, some (but not all) implementations of std
library components do include it, hence causing the ambiguity.
Issue (2): In order to maintain sorted order, the members of set<Key>
are of type const Key, and non-const member functions (such as
operator++) cannot be called on it.
A better solution:

#include <map>
#include <string>
#include <iostream>

int main()
{
 typedef std::map<std::string, int> Words;
 Words words;
 Words::key_type curr;
 while (std::cin >> curr)
 ++words[curr];
 for (Words::const_iterator i =
 words.begin(); i != words.end(); ++i)
 std::cout << i->first << ": " << i->second
 << '\n';
}

A few notes:
1. I used a map, not a set, to allow modification of the count. The

negative to this is writing an explicit for loop for output.
2. Instead of a using statement, I fully qualify all my uses of things

from namespace std. Another alternative would be a using
statement for each of the types one wished to use, as in:

 using std::map;
 using std::string;
 using std::cin;
 using std::cout;

Commentary

I’m glad to see that reverting to the more usual C/C++ code critique seems
to have attracted more interest.
This problem is interesting because there are two different compiler-
specific problems with the code. It can be very hard to detect in advance
places where you’ve relied on compiler-specific behaviour and it can be
quite hard to resolve the resultant problems. This is something where
greater experience helps, and also using a high compiler warning level.
As a rule, if you are writing code that needs to be portable, the best
technique is to compile from the outset with a wide range of compilers.
This finds problems up front, but also educates you about potential trouble
spots.

The Winner of CC 51

It was hard to pick a winner this time – partly because there was a lot of
overlap between the entries. Thank you to you all for contributing to this
column! I particularly liked Ivan’s use of the output helper function which
I thought helped make his solution very clear.
I have awarded this issue’s prize to David Pol – in my view his critique
best provided both clear explanations of what was wrong and also listed a
good variety of possible solutions.

Code Critique 52
(Submissions to scc@accu.org by Jul 1st)
I am having problems getting a template to work. The code below is
supposed to print out the range of the data points, but the range function
isn’t producing the right answer for the WDatum class. Someone told me it

was because I needed a virtual destructor – but that made it worse. I’ve even
got rid of all the compiler warnings I had. Can you help me understand what’s
gone wrong?

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline)
o r f rom the ACCU webs i t e (h t t p : / /
www.accu.org/journals/). This particularly
helps overseas members who typically get the
magazine much later than members in the UK
and Europe.

// Simple datum
class Datum {
 float payload;
public:
 Datum(float value = 0)
 : payload(value) {}
 float getValue() const
 { return payload; }
};

// Weighted datum, simple by default
class WDatum : public Datum {
 float weight;
public:
 WDatum(float value = 0, float weight = 1)
 : Datum(value), weight(weight) {}
 float getWeight() const
 { return weight; }
};

// Return range (max - min) of data
template <typename T>
float range(T * begin, T * end)
{
 float top = 0, bottom = 0;
 for (Datum *it = begin; it != end; ++it)
 {
 float v = it->getValue();
 if (!top && !bottom)
 top = bottom = v;
 else if (top < v)
 top = v;
 else if (bottom > v)
 bottom = v;
 }
 return top - bottom;
}

#include <iostream>

int main()
{
 static const int count = 4;
 Datum data[count] =
 { 1.3f, 1.2f, 1.4f, 1.7f };
 WDatum wdata[count] =
 { 1.3f, 1.2f, 1.4f, 1.7f };

 float drange = range(data, data+count);
 float wrange = range(wdata, wdata+count);

 std::cout << "range (expect 0.5)\n"
 << "Datum " << drange << "\n"
 << "WDatum " << wrange << std::endl;
}

Listing 2
JUN 2008 | | 35{cvu}

36 | | JUN 2008{cvu}

Regional Meetings
A round-up of the latest ACCU regional events.

ACCU London
Report from Steve Love (steve@essennell.co.uk)

The ACCU London chapter is now well established and holds regular
monthly meetings. Actually, our aim is to hold nine meetings a year with
a featured speaker, plus a Christmas social event but no meetings in August
(because it’s summer and everyone wants a holiday) and to skip the March
or April meeting depending on which is closest to the annual conference.
In the past year subjects have included: C++ 200x, what’s new in Java,
introducing Agile development, product management and the world of
recruitment consultants.
Meetings are usually held at the offices of 7 City training (http://
www.7city.co.uk) on Chiswell Street in central London (i.e. the City). We
are very grateful to 7 City for providing these excellent facilities for free.
As so many of our members (and potential members) work (or even live)
in the Docklands area, we aim to hold occasional meetings there. On these
occasions we rely on the hospitality of other institutions: so far both
Barclays Capital and Lehman Brothers have provided rooms and we are
grateful to both.
Meetings are normally held on the third Thursday of the month.
Occasionally we have to move the meeting to another date, but still we aim
to keep them on Thursdays. All meetings are open to members and non-
members alike – although we hope non-members will join – and are free
of charge.

Upcoming meetings are:
19 June: Microsoft, New Stuff in C# and Linq
17 July: Jason McGuiness and Colin Egan, The Challenges facing
Libraries and Imperative Languages from Massively Parallel
Architectures
August - no meeting
18 September: Andrew Holmes, Introduction to Value at Risk
16 October: TBA
20 November: TBA
12 or 19 December: Social event, TBC

To receive notices about upcoming ACCU meetings in London, subscribe
to the accu-london mailing list by sending an empty email with the subject
‘subscribe’ to accu-london-request@accu.org or by visiting http://
lists.accu.org/mailman/listinfo/accu-london. The list is open to non-
members and is very low volume.
More information and an up-to-date schedule are available on the ACCU
website: http://accu.org/index.php/accu_branches/accu_london
If you have any questions or suggestions – particularly for future speaker
or location – please contact either James Slaughter (slaughter@acm.org)
or Allan Kelly (allan@allankelly.net).

ACCU Cambridge
Report by Pete Goodliffe (pete@cthree.org)

Thursday 1st May 2008
It’s been a while since the last ACCU Cambridge meeting, and this one
was a definite return to form!
ACCU stalwart, Roger Orr (from sunny Londonshire) took us on a tour of
the joys, intricacies, and new toys coming with the forthcoming C++ "0x"
language standard. As you’d expect from Roger, the talk was interesting
and entertaining. The venue (again, the DisplayLink offices situated on the
nearest thing to a hill we have in Cambridge) was packed, almost
exclusively with C++ programmers who clearly wanted to know the new
ways they will be able to write fascinating bugs once compiler vendors
catch up with the ISO committee (because we all know what a breakneck
speed the ISO standards are produced at).
The evening concluded with traditional après-talk beers at the Castle.
It was another excellent evening – many thanks to Roger for speaking and
Ric for organising.

Eclipse and AspectJ
by Adrian Colyer, Andy Clement,
George Harley and Matthew
Webster; published by Pearson
Education, Addison Wesley;
 ISBN: 0-32-124587-3

Reviewed by Omar Bashir

Highly recommended.
One of the simplest ways of judging a
book on advanced concepts in
computer programming (like aspect
oriented programming) is to see how
early and how comfortably one can start
programming while reading that book. This
book certainly allows readers to start
experimenting with aspect oriented
programming very early and ensures that the
entire experience of getting accustomed to
aspect oriented programming is painless and
exciting.
The readers are expected to be familiar with
object oriented programming in Java and the use
of Eclipse as a Java IDE. It is an extremely well
structured book, divided into three main parts.
The first part introduces AspectJ as a language
to incorporate aspect orientation in Java. The
book proceeds with an explanation and rationale
of aspect orientation, installation of Eclipse and
the installation of AJDT (AspectJ Development
Tools) plugin for Eclipse. The second part of the
book provides a comprehensive AspectJ
language reference. Finally, the third part of the
book focuses on advanced topics, AspectJ
adoption strategies and aspect oriented design.
The book explains various concepts of AspectJ
using an example that is progressively refined as
the book progresses. The examples based on a
simple insurance applicatio, are mostly easily
understood. In addition to the source code,
authors also provide various UML diagrams
describing the structure and dynamics of the
application. Authors also describe and illustrate
the various facilities provided by Eclipse to
support AspectJ development, which include
various icons that appear on the classes,
methods, aspects, pointcuts and advices in the
Editor, Package Explorer and Outline views.
Additionally, a new Visualiser view is
introduced that provides a display of all the

classes in the project and the approximate
locations of advices and inter-type declarations.
One of the most interesting features of this book
is a fairly detailed recommendation of a process
of adoption of AspectJ in Java projects. The
process starts with individual adoption of AOP
and proceeds through aspect libraries shared and
reused within and across projects. At the
individual level, the aspects used are mostly
enforcement aspects that can be used to
implement rules within the projects. Moving
forward, infrastructure aspects can be used to
provide general cross cutting facilities within
the project. With more experience, core business
aspects can be added to the project and the final
phase of adoption of AOP is based on
developing aspect oriented architecture and
design of the systems being developed.
Advanced concepts in the book also touch upon
building aspect libraries, linking to compiled
class files and integration with Ant. Although
the book is not an aspect oriented design book,
the authors do provide a brief introduction to
aspect oriented design. This includes ways to
identify aspects within an application by
analyzing requirements.
A few examples in the book are based on
Hibernate and Spring. Although these
technologies are well known but it is not
necessary that most developers interested in
AspectJ are experienced in these technologies.
Thus, understanding these examples may
require understanding these technologies, which
may not be possible in cases.

This book is strongly
recommended as a
reference to
AspectJ and also as
a comprehensive
tutorial for
beginners in AspectJ.

Scaling Software Agility: Best
Practices for Large
Enterprises
by Dean Leffingwell, published by
Addison Wesley (2007),
ISBN 0-321-45819-2

Reviewed by Omar Bashir

This book is by far the most
interesting text I have read on
software development processes and methods.
The overall objective of this book is discussing
the applicability of agile methods in large
enterprises and projects. The book is based on
experiences of the author in applying agile
development processes and methods in projects
and organizations of varying sizes and
complexities.
The book is divided into three parts. The first
part describes the established and practiced agile
300 methods. The focus here is on identifying
aspects of these methods that enable and
promote agility and also towards highlighting
common features of these methods. Part two of
the book discusses all the agile team practices
that scale. Interestingly, with slight adaptations,
most agile practices can be applied to medium
and large sized projects. Finally, the third part of
the book discusses organizational issues in
implementing agility at an enterprise level.
Instead of diving straight into agile methods, the
author discusses the classical waterfall model
and the reasons for it not delivering quality
software in time and on budget. The author
describes at length the impact of prolonging the
release schedule on the variation of user
requirements. The author describes in detail how
most applications of the waterfall model
enhance the risk in the software development
process because of isolated development, late
integration, fewer (usually only one) release and
inadequate testing.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
JUN 2008 | | 37{cvu}

The author also counters various
misconceptions the general community has
about agile development. He stresses that agile
is not at all ad-hoc. On the contrary, success with
agility requires planning and managing the
development process. The text highlights that
agile is not also uncontrolled but iterations and
release cycles consist of definite activities that
need to be performed to achieve successful
delivery of the project. For successful agility
within a development organization, the
organization needs to evaluate each iteration and
release cycle to determine aspects in the process
that can be further improved. Furthermore, the
author also underlines the need for system
architectures that support agility. The most
interesting aspects of the book include
managing agility in large distributed teams,
topics that are not widely discussed in most other
agile development texts. The text tends to lean
more towards Scrum and RUP however it does
not disregard other methods. The author does
discuss the application of various practices from
other methods in specific contexts.
The book contains very relevant and descriptive
illustrations that are very helpful in explaining
the text. The author also explains various tools
that assist in applying agile methodologies. The
text is well written, focused and descriptive
without being verbose. The book includes
examples and case studies from author's
experience in implementing agility in a number
of different development environments and
enterprises.
I strongly recommend this book to all involved
in software development. Not only does it
provide an excellent introduction to agile
methods for beginners in the field but it also
highlights practices that can be applied to a wide
range of development environments. In fact
reading this book before reading text on any
other agile method may help the reader to
understand shortcomings of the method under
study.

Provably Correct Systems: Modelling
of Communication Languages and
Design of Optimized Compilers
by He Jifeng; C. A. R. Hoare; and Jonathan Bowen;
published by McGraw-Hill (1995), ISBN 0077090527

Reviewed by Colin Paul Gloster

This is not an unpleasant book to read but it lacks
outstanding attributes to compel you to read a
copy (unless you can acquire it cheaply and
easily). As with maybe any book, it has some
flaws (I leave it to you to decide whether you
would classify defining a sans serif T on page 86
to be false to be one of the book’s flaws, and
I assure you that that was not a typo), not least
of which is that the coauthors did not seem to be
clear as to what they were aiming to accomplish.
The subtitle may seem to indicate that you will
learn about how to write an optimizing compiler,
but instead a rapidly developed prototype
compiler is presented in the final chapter with
the suggestion that the ‘prototype compiler could

be used as a compiler checker to compare the
output generated by a particular compiler
implementation’. Nothing essential for writing a
compiler (even one which does not optimize)
can be learnt from this book. Why a compiler
implementer’s view is unimportant on page 84
is never explained: ‘Of course, in the actual
implementation of the compiler there may be
many internal interfaces, for example between
successive compilation passes and the loader.
Such interfaces are of no concern to any user of
the compiler, and are not treated in this book.’
Whether the coauthors really understood why
compilers are popular is doubtful: e.g. though
valid reasons are listed as to why to use a high-
level language (HLL) instead of machine code
(often called ‘machine language’ in this book),
two of the most important were omitted viz. a
person writes the same quantity of lines of code
per day independently of language whereas a
compiler will typically generate more than one
machine code instruction per HLL line; and
compilers often optimize. Furthermore, the
presented unfinished compiler checker is not
proven to be correct, despite the title and the
promise in the blurb.
In the final chapter, Prolog’s backtracking was
claimed to be efficient (!); early in the chapter
there is some interesting advocacy of logic
programming instead of functional
programming (which seems to have been
forgotten by the end of the chapter when Prolog
is compared only with imperative languages);
along with some unintentional bad
advertisements of Prolog such as Prolog source
code must be delicately laid out such that
‘variables are properly instantiated before the
checking clauses are invoked’.
Section 8.2 Compilation of Expressions
contains an unintentional formal error in ‘The
most commonly used arithmetic operators in
programming are +, -, * and \’ (i.e. \ instead of
/). The remarkably uncommon opinion ‘The
richness of a programming language is
determined by its operators’ was espoused by
coauthor He Jifeng in Chapter 8. Operators were
not among the highlights chosen for the section
1.1 Why ML? of the book Elements of ML
Programming even though ML is much more
advanced in this regard than mainstream
languages and Prolog’s support for user-defined
operators is even more advanced than ML’s and
put to good use in Chapter 10 by coauthor
Jonathan Bowen, but I disagree that a language
is characterized overall by its operators.
Coauthor C. A. R. Hoare’s renowned reputation
is bolstered by predictions which he made in his
chapter which came true but is blemished by
mistakes on page 3. He incorrectly claimed
value_after > value_before ‘describes
the behaviour of any piece of code which does not
decrease the value’. It does not hold for an
identity such as getBankBalance(). On that
page he nobly but naively claimed ‘Since all
kinds of failure are to be avoided, there is no need
to make fine distinctions between them, or to give

accurate predictions of the behaviour after
failure’. Fault-tolerance is a major issue in
aerospace and I had been offered two Ph.D.
positions including one scholarship for
concentrating on one specific type of error
which was discovered due to a fine distinction.
Elsewhere in his chapter, Hoare used two pages
to explain why we should resign ourselves to the
notion of tolerating non-determinism. The
justification is not clear until near the end of the
two pages, by which time it is almost
convincing.
The index is useless.

SAMS Teach Yourself Django in 24
Hours
by Brad Dayley, published by SAMS
(2008), 507 pages, ISBN
067232959X

Reviewed by Ivan Uemlianin

Highly recommended
I was recently forced to be
away from my computer
for a week or so (not on holiday!), but knew that
on my return I should be working on Django, the
Python web development framework [1]. I
found this book in a local bookshop and bought
it despite the variable reputation of SAMS’
books.
I’m glad I bought it. I found it very readable and
clear and despite ‘life’ happening around me I
got a good grasp of Django theory and practice.
Now I’ve been working on Django a bit I still
find this book handy. Even though Django’s
own documentation is very good indeed, I
highly recommend this book as a quick start
guide, especially if you’re offline or you just
prefer paper.
The 24 ‘hours’ of the title are the 24 chapters of
the book, each of which is supposed to take an
hour to read and work through. This is either a
swizz, corny or quite clever depending on your
mood – and on how good the book turns out to
be.
The first 12 chapters cover material essential to
understanding Django, describing the way
Django uses ‘models’ and ‘views’, and how to
implement a basic Django web application.
Chapters 13-23 discuss various common but not
stricly essential features like user sessions and
security, cookies, caching, internationalisation,
etc. The final chapter covers deploying Django
under a web server like apache. It’s quite
appropriate to have this at the end, as most
development and testing of a Django app. is
done under Django’s own lightweight web
server.
Chapters have ‘Try it yourself’ sections (more in
the early chapters) which guide you by the hand
through implementing the procedures
described. These are not exercises with
questions and answers (although there are
‘quizzes’ at the end of each chapter) – you are
told exactly what to do, and full listings show
exactly what you should end up with.

[continued on back page]

38 | | JUN 2008{cvu}

accu ACCU Information
Membership news and committee reports
View From The Chair
Jez Higgins
chair@accu.org

Each year at the AGM, ACCU
has the opportunity to confer
honorary membership to those
who have made a particular and
long-standing contribution to
the organisation. This year the AGM recognised
Ewan Milne, for his work as conference chair.
Giovanni Asproni, our current conference chair,
delivered a warm appreciation of Ewan’s work
for ACCU. Ewan chaired the conference
committee for four years, from 2004 to 2007,
delivering strong programme after strong
programme. He was instrumental in bringing
many high profile speakers to the conference,
some rarely seen outside the US. He also
oversaw the introduction of the pre-conference
tutorials, which have given many people
opportunities to learn from some of the best in
our industry at extremely reasonable cost. Ewan
was my predecessor as ACCU Chair, a position
he held between 2003 and 2006. His honorary
membership is richly deserved.
Many thanks to those who were able to attend
the AGM. On behalf of the officers and
committee I would like to thank you for electing
or re-electing us, and for the confidence you
show in us. As he notes in his own report, Allan
Kelly has taken over from John Merrells as
Publications Officer. John held that post for a
number of years, and is also a former editor of
Overload. Allan suggests the position is one of
long periods of nothing punctuated by the
occasional crisis. John’s good in a crisis and I
would like to thank him for his help over the
years. I’m sure Allan has an equally safe pair of
hands.
In fact, it’s change all round for our publications.
Alan Griffiths, another former Chair, recently
handed the Overload editorial reins to Ric
Parkin. In my time on the committee, Alan has
quietly and reliably got on with Overload,
overseeing solid issue after solid issue. As Chair,
I’ve valued his sensible and helpful
contributions to committee discussions. Here in
CVu, we’re looking for a new editor to take over
from Tim. Tim has done a cracking job on CVu,
and he is leaving it in a very healthy state.
ACCU is very lucky, I think, to have the benefit
of people like Ewan, John, Alan, and Tim. We
don’t always express our appreciation as often or
as vocally as we should, and I include myself in
that. As an individual member, I’d would like to
publically thank them all for their work. Their
help has made me a better programmer. As
Chair, I would like to thank them on behalf of the
membership for making ACCU a better
organisation for all of us.

Membership Report
Mick Brooks
accumembership@accu.org

I enjoyed the chance to speak to
many members at this year’s
conference. I asked some of you
about what you value about your
ACCU membership, and about
your experiences introducing the organization to
friends, colleagues and employers.
Overwhelmingly, members were enthusiastic
about the community aspect of the organization:
they feel that by subscribing to ACCU they
support, and become a part of, a group that
stands for constant learning and improvement.
This intangible benefit was mentioned far more
often than the tangible magazines and mailing
lists, and even the conference discount.
However, this is clearly a more difficult sell to
others (particularly employers), something a
number of you found, and of which I know I
don’t make the most when talking to prospective
members.
Not everybody can make it to the conference,
and there’s not enough time between sessions to
speak to the majority of those that do. I’m keen
to hear all your ideas about how best to promote
ACCU and grow the membership, and any of
your experiences of trying to do so; please email
me (accumembership@accu.org) with your
thoughts. I’m also interested in how we can help
you to introduce us to the people you know (if
you want to give it a go, I usually have spare
journals and flyers that can help).
As ever, contact me for any questions about
membership, journal addressing and renewals.

Publicity Officer Report
David Carter-Hitchin
publicity@accu.org

It’s been a good month or two
for publicity. We have been
approached by Bernard Opic
and Art Mealer to setup new
ACCU chapters in their
countries (France and USA
respectively). If you are reading
this and you are outside the UK, then please
think about ways to promote the ACCU in your
country. I can provide some help and advice, so
please mail me. The work that Bernard and Art
are doing is great news for the ACCU. Bernard
is also going to translate some articles which
will help with the language barrier. Hats off to
Bernard and Art.
I recently emailed all our student members and
a leaflet should be on their college notice boards
now. Nearly everyone I emailed responded
positively, but I’m acutely aware that this is only
a fraction of the overall student population. If
you are a student and haven’t been in touch with
me then please do so and I’ll tell you how you

can help. If you know any students who are not
ACCU members but could put up some leaflets,
then let me know.
On the other side of the academic coin, the
information about Computer Science/Physics/
Engineering/Maths courses and tutors in the UK
has been assembled and I’m about to mail out
our publicity letter. This is a big undertaking,
with the letter being sent to about 250
academics.
In the next year I want to see an ACCU leaflet
up in every library in the UK. This sounds like a
massive task, but it’s relatively easy, actually.
All I need is one or two volunteers in each
county/region. Please send me an e-mail about
this and I’ll tell you the next steps. Basically
ALL you will need to do is talk to your local
library and ask them if they can distribute
leaflets to all the other libraries in your county,
and if so how many they need. The leaflets will
then be sent to you to give to your library. I’ll
keep track here of which counties have been
covered. Easy! Please volunteer for this by
sending me a quick email NOW.
Finally, I’d like to mention conferences and the
visibility of the ACCU at them. In an ideal
world, we would all have tons of time and
money to go along to other programming and IT
conferences, but sadly we live in a world very
much constrained by time and money. This said,
if you are going to a conference, please arrange
to bring along, at the very least, a bunch of flyers
that could be put on an information table. Also,
if you are speaking, make sure to mention the
ACCU! Please mail me with any conferences
you know about at which would be good to find
members.
Finally, did I ever mention that you should put
http://www.accu.org/ in your e-mail signatures?

Publications Officer
Allan Kelly
publications@accu.org

As those of you who attended the ACCU AGM
will know, I was elected to the sleepy backwater
post of Publications Officer. I agreed to accept
the nomination for this post because I knew, or
thought I knew, just how little work this post
entailed. Apart from sorting out the occasional
publication production glitch or finding a new
journal editor every couple of years there is
nothing to the job. After all, the hard work is
done by the CVu Editor, the Overload Editor and
our fantastic Production Editor, Alison. Little
did I know…
Alan Griffiths was already in the process of
handing Overload over to Ric Parkin before
anyone mentioned Publications Officer to me. In
a way I’ll not be sorry to see Alan go from
Overload, he’s done sterling work for the last
few years as editor but I’ve missed his articles. I
hope he’ll now find the time to return to writing.
JUN 2008 | | 39{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

Secondly, from time to time it is worth changing
editors to keep the journals fresh. Alan has
outlasted two CVu editors. I am confident that
Ric is going to make an excellent editor.
What I didn’t know (until too late) was that Tim
Penhey also wants to step down as CVu editor.
Since taking the job, Tim has relocated back to
New Zealand, taken on a demanding (paid) job
and, recently, signed a book contract so perhaps
it’s understandable that his time has come.
Personally I’m sorry to see Tim go, under his
editorship I think CVu has reached new highs,
for me it has never been better.
Tim mentioned to me that he was disappointed
not to have had more feedback from readers
about CVu. He once hoped to start a letters page
but it never got very far. I have sympathy with
Tim here. During the years I’ve been writing for
the ACCU (those with long memories may recall
that I contributed to almost every issue of
Overload between mid-1999 and mid-2004) I
have had very little feedback or comments from
readers. In fact, I can confidently assert that I
don’t need all my fingers to count the letters,
e-mail and comments I received.
Now I make an effort to send a thank you e-mail
to writers when I particularly enjoy their articles
– especially when they are first time writers. I
hope that more members will try to follow this
example. If you enjoy something just send a
‘thank you’ note.
And if you read something that makes you think,
please let the author know and send a letter to the
journal editor with your comment. I’m sure we
could easily fill a letters page if we tried.
We now need to find a new CVu editor. If you
are interested please let me know. For the next
few issues we have decided to try something

new. Tim has agreed to stay on for a while as the
Executive Editor while a number of different
people take a go at being guest editor. Jez
Higgins, Guy Bolton-King, Gail Ollis and Roger
Orr have all offered to guest edit an issue. So
again, if you are interested in guest editing an
issue please get in touch.
I hope that one of our guest editors will
eventually take over a full time editor. Indeed, if
we have many volunteers to guest edit we may
even appoint a new editor and continue with
guest editors.
There is only one rule I will lay down for
editorial appointments on my watch: you cannot
have held the job before. As I said above, I think
a new editor should bring something fresh.
To me one of the great things about the ACCU
is that we are constantly asking our members to
step up and contribute. Whether by writing for
the journals, editing the journal, joining the
committee, organising the conference or
running a mentored developer project there are
always opportunities to contribute. To an
outsider it might look like we are short of
contributors but I don’t see it that way, to me we
are long on opportunities.
So if an ACCU hand taps you on the shoulder
one day and says ‘Have you ever thought of….’
just remember that someone has noticed you and
thinks you have what it takes to make a
contribution. In making that contribution you
will grown; you will learn and you will improve.
I digress, there is another change on my plate
even bigger than the CVu editorship we need to
discuss.
Currently the ACCU publishes twelve journals a
year: these come in pairs every six months. More

and more people have been wondering why we
don’t publish one a month. At conference I
spoke to a lot of people concerned with journal
production and everyone felt the time was ripe to
change. So we are going to change.
The current plan is to delay the October CVu by
one month, make it a November CVu. From then
on, Overload will continue to appear in
February, April, June, August, October and
December, while CVu appears on the alternate
months. This also means that March CVu can
become a ‘Pre-conference special’ issue.
This will cost the ACCU more money, both
production costs and postage costs, but I am not
alone in thinking this is worthwhile. First of all,
there will be more advertising slots to fill so we
should find more revenue. Second we will give
our members a regular reminder that we are here
and help grow our membership. Finally I think
it will help the journals assert their own identity
further.
Some people have asked why we have two
journals, why not have one? Well we might
decide to do that in future but right now the
simple answer is: we have two journals because
we have two journals. It might be that in time the
journals converge and we decide to merge them.
That would create more work for one editor;
with two journals we split the work between two
people.
I hope this will be my first and last report as
Publications Officer and in a month or two it can
revert to a nice backwater post. With that said
please get in touch if you would like to edit or
guest edit CVu and please, if you like an article
send a thank you e-mail to the author (the journal
editor might appreciate one too!)
40 | | JUN 2008{cvu}

I found typo and broken code density to be
remarkably low. The prose is simple and direct,
without the self-consciouness of ‘Dummies’-
type books. Using the book was straightforward,
and I feel I understand the material.
It could be argued that the full listings and
copious screenshots act to pad out what is really
a fairly slim book. It didn’t feel like that to me.
As a reader, I felt mollycoddled – in the best
sense of the word. The amount of scaffolding
and safety nets meant I could just relax, read and
absorb. Too many computer books are badly
written, incoherent and just hard work to
decode.

This is a very good first book on Django. It will
happily fit into whatever space you have in your
life, and it will take you from knowing nothing
to being able to write an application for yourself,
or to set up one of the many documentation-less
Django projects on the web.
[1] http://www.Djangoproject.com

Book Reviews (continued)

	ACCU vs. Open Source
	Garbage Collection in C and C++
	Write Less Code!
	Custom Iterators in C++
	ACCU Conference 2008
	Desert Island Books
	Code Critique Competition 52
	Regional Meetings
	View From The Chair
	Membership Report
	Publicity Officer Report
	Publications Officer

