

APR 2008 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

ACCU – what’s it all about?
don’t know about you lot, but I tend to enthuse about ACCU when I’m around
other technical people. Then I get hit by the question “What’s it all about then?”
This is where I normally go, um... ah... professionalism in programming. What

does that really mean though? I feel that we need something a bit more than that
in order to explain what ACCU is all about.
So here I am, sitting talking with my wife, trying to work out exactly what ACCU
gives you. Well obviously it gives you C Vu, and Overload if you pay that little
bit extra. There are mailing lists, but to be honest, there are heaps of places
that have mailing lists. ACCU has a conference – a damn fine conference if
you ask me. Unfortunately things didn’t work out for me this year and I was
not able to make it. I’ve heard that ACCU has a good standing with several
technical book publishers as we tend to write good quality book reviews.
We are getting more local meetings, and that’s a really good thing. And
that is close to where I start losing it.
Unfortunately books will only be sent to reviewers in the UK, and if you
can’t get to the conference it seems like there isn’t a huge benefit. I
personally find myself very connected to ACCU, but I just can’t seem to
pass that connectedness on to people that I talk to about it. Why is that?
Are they stupid? Don’t they get it? I think the answer is “No, they don’t
get it” but we don’t seem to be very good at helping them get it.
After more talking trying to identify what I felt was the crux of ACCU, we
came up with this. ACCU is about getting around other people who are
technically as good as, or better than, you. Being around people like this makes
you realise that you still have a lot to learn and a lot of space to improve. Some
people really don’t care about improving in their profession, and those people
we can’t really help. But the people who do want to improve, those who do care,
these are the people we need to reach out to. Let them know that there is a whole
community of other people like them, and they can be found in the bar^W^W^W
at accu.org.

I
Volume 20 Issue 2
April 2008

Editor
Tim Penhey
cvu@accu.org

Contributors
Silas Brown, Pete Goodliffe,
Paul Grenyer, Thomas Guest,
Derek Jones, Roger Orr,
Peter Pilgrim, Tim Penhey and
Adam Petersen.

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

2 | | APR 2008

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 20.3: 1st May 2008
C Vu 20.4: 1st July 2008

IN OVERLOAD
Stuart Golodetz continues his ‘Watersheds and Waterfalls’
series and Richard Harris introduces a new problem to his
Model Student series: ‘A Knotty Problem’.

DIALOGUE
20 Desert Island Books

Paul Grenyer introduces
the choices of Jez
Higgins.

22 Code Critique Competition
This issue’s competition
and the results from last
time.

25 Bookcase
The latest roundup of
ACCU book reviews.

28 ACCU Members Zone
Reports and membership
news.

FEATURES
3 The Town Planner’s Triumph

Pete Goodliffe concludes his mini series on software
design.

6 Fixing Compiler Warnings the Hard Way
Thomas Guest listens when his compiler grumbles, but
ignores its suggestions.

8 Lisp for the Web
Adam Petersen shows Lisp is still a contender.

14 Operator Names Influence Operator Precedence Decisions
(Part 2 of 2)
Derek Jones hopes for more volunteers in the future.

16 Evolving the Java Language: Open Source and
Open Standardisation
Peter Pilgrim discusses the community process.

18 Future-Proofing your Python Scripts
Silas Brown keeps your scripts working.

19 Storm in a Teacup
Tim Penhey introduces the wonders of Storm.

Professionalism in Programming # 49
PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

The Town Planner’s Triumph
Pete Goodliffe concludes his mini-series on software design.

ou can’t have too much of a good thing. If you have too much fun,
you get tired. If you have too much alcohol, you fall over. If you
smoke, you get cancer. If you travel on gas-guzzling transport, you

cause global warming. If you eat too much fine food and sweet puddings,
you get fat. If you have too much cheese, you can’t sleep. If you’re too
selfish, you have no meaningful relationships. If you have chemotherapy,
you lose your eyebrows. If you tap dance in the centre of a department
store, you get funny looks.
Life is hard, isn’t it? We’re constantly trading off one thing for another.
This holds for design as much as anything else. Design is a process of
making tradeoffs between competing forces, and trying to trick the laws
of nature into allowing you to craft the sublime out of the complex. It’s
hard work.
This explains why so much bad design exists. It explains why I’ve never
yet seen a teapot that doesn’t drip. And it explains why some people sitting
in a stadium will always have their view obscured by a pillar.
Some people have an innate flair for design: the Apple corporations and
the Isambard Kingdom Brunels of this world. Some people clearly do not.
Some people are the Vivienne Westwoods, Ralph Laurens, or Gianni
Versaces of design – they set the fashions and open up whole new worlds
of design. Others are not so original and will imitate another’s style, but
can still come up with novel designs within those constraints. And others
shamelessly copy: less haute couture, more Top Shop.
In the realm of software design, as in many other spheres of design,
designers require flair and elegance. Often we have to solve complex
problems with harsh, competing forces. We aim to craft the most elegant,
and least complex solution. Sometimes the designed solution is necessarily
complex. It’s hard to come up with a very simple solution to a complex
problem.
Sadly, though, a lot of software out there is a complex solution looking for
a problem to solve. I think you know what I mean. It takes real design flair
to create a simple solution to a complex problem. You know that the design
is ‘right’ when it seems so simple and so obvious that it looks like it didn’t
need design at all.
In the last column [1] we looked back at the consequences of a bad design;
we saw how a complex solution was crafted around a relatively simple
problem. It was called The Messy Metropolis. We considered software
design akin to town planning (and in many ways that is a quite logical
extension of the software ‘architecture’ analogy). We saw what a badly
designed software conurbation looks like and how you can accrete one of
your very own.
Now let’s look in the other direction. Let’s see what the town planners can
do when they really try...

Design Town
The Design Town software project was superficially very similar to the
The Messy Metropolis. It too was a consumer audio product written in
C++, running on a Linux operating system. However it was built in a very
different way and so the internal structure worked out very differently.
The prologue: I was involved with this project from the very start. A brand
new team of capable programmers had been assembled to build it from
scratch. The team was small (initially four programmers) and like the
Metropolis, the team structure was flat. Fortunately there was none of the
inter-personal rivalry apparent in the Metropolis project, or any vying for
positions of power in the team. The members didn’t know each other well

beforehand, or how well they’d work together. But they were
all enthused about the project and relished the challenge.
So far so good.
Linux and C++ were early decisions for the project, and that
shaped the team that had been assembled. From the outset
the project had clearly defined goals – a particular first
product and a roadmap of future functionality that the
codebase had to accommodate. This was to be a general-
purpose codebase that would be applied in a number of product
configurations.
The development process employed was eXtreme Programming (XP) [2]
which, on the face of it, eschews design: code from the hip and don’t think
too far ahead. But this is a common mis-belief. XP does not discourage
design; it discourages work that isn’t necessary (this is the YAGNI – You
Aren’t Going To Need It principle). However, where up-front design is
required XP requires you to do so. It also encourages rapid prototypes
(known as spikes) to flesh out and prove the validity of designs. Both of
these were very useful and contributed greatly to the final software design.
The YAGNI principle in particular paid off greatly, it encouraged us to
design what we needed to early on, and defer the remaining decisions until
later – when we had a clearer picture of the actual requirements and how
best to fit them in to the system. This is an immensely powerful design
approach, and quite liberating. One of the worst things you can do is design
something you don’t yet understand.

First steps
Early in the design process we established the main areas of functionality
(these included the core audio path, content management, and user control/
interface). We considered where they each fitted in the system and an
initial architecture was fleshed out, including the core threading models
that were required to achieve performance requirements.
The relative positions of the separate parts of the system was established
in a conventional layer
diagram, a simplified
part of which is shown
in figure 1. Although
the system design was
intentionally flexible
an d wo u l d g ro w
‘organically’ as pieces
of functionality were
added to the system,
this initial architecture
proved a solid basis for
growth. Whereas the
Met ropo l i s had no
overall picture and saw
functionality grafted
(or bodged) in wherever was ‘convenient’, this system had a clear model
of what belonged where.

Y

Figure 1
APR 2008 | | 3{cvu}

A lot of initial design time was spent on the heart of the system: the audio
path. It was essentially an internal sub-architecture of the entire system.
To define this, we considered the flow of data through a series of
components and arrived at a filter-and-pipeline audio architecture, similar
to figure 2. The products involved a number a number of these pipelines,
depending on their physical configuration.
We also made an early choice of supporting libraries the project would
employ (for example, the Boost C++ libraries [3] and a set of database
libraries). Decisions about some of the basic concerns were made at this
point to ensure that the code would grow easily and cohesively, such as:

the top-level code structure,
how we’d name things,
a ‘house’ presentation style,
common coding idioms,
the choice of unit test framework, and
the supporting infrastructure (e.g. source control, a suitable build
system and continuous integration).

These ‘fine detail’ factors were very important: they allied closely with the
software architecture and, in turn, influenced many later design decisions.

The story unfolds
Once the initial design had been established, the Design Town project
proceeded following the XP process. Design and code construction was
either done in pairs (see [4] for more on pair programming) or carefully
reviewed to ensure that work was correct.
The code developed and matured over time, and as the story of Design
Town unfolded, these were the consequences:

With a clear overview of the system structure in place from the very
beginning, new units of functionality were consistently added to the
correct functional areas of the codebase. Sometimes this was a
harder job than simply bodging them into a more convenient, but
less tasteful, place. So the design sometimes made developers work
harder. The payoff for this extra effort was a much easier life later
on, when maintaining or extending the code – there was very little
cruft to trip over.
The entire system was consistent. Every decision at every level was
taken in the context of the whole design. The developers did this
intentionally from the outset so all the code produced matched the
design fully, and matched all the other code. Over the project’s
history, despite many changes ranging across the entire scope of the
codebase – from individual lines of code to the
architectural design – everything followed the original
design template.
The good taste and elegance of the top-level design fed
down to the lower levels. Even at the lowest levels, the
code was uniform and neat. This was helped by code construction
techniques like pair programming, code reviews, and common code
standards. However, a clearly defined software design ensured that
familiar design patterns were used throughout, familiar interface
idioms were adopted, and that there were no unusual object lifetimes
or odd resource management issues.

Some entirely new functional areas appeared in the ‘big
picture’ design – storage management and an external
control facility, for example. When this occurred the
design, like the code, was considered malleable and
refactorable [5]. One of the development team’s core

principles was to stay nimble – that nothing should be set in stone –
and so the design, just like the code, should be changed when
necessary. This encouraged us to keep our designs simple and easy
to change. Consequently the code could grow rapidly and maintain
a good internal structure. Accommodating these new functional
blocks was not a problem.
One of the core decisions about the codebase (which is also
mandated by XP development) was that everything should be unit
tested. Unit testing brings many advantages, one of which is the
ability to change sections of the software without worrying about
destroying everything else in the process. Some areas of the Design
Town internal structure received quite radical re-work whilst the
unit tests gave us confidence that the rest of the system had not been
broken. For example, the thread model and inter-connection
interface of the audio pipeline was changed fundamentally. This was
a serious design change relatively late in the development of that
subsystem, but the rest of the code interfacing with the audio path
continued executing perfectly. The unit tests have us capability to
change the design.
This kind of ‘major’ design change slowed down as Design Town
matured. After an amount of design rework, things settled down, and
subsequently there were only minor design changes. The system
developed quickly, in an iterative manner, with each step improving
the design, until it reached a relatively stable plateaux.
Another major benefit of the unit tests was their remarkable shaping
of the code design; they practically enforced good code structure.
Each small code component was crafted as a well-defined entity that
could stand alone – as it had to be constructible in a unit test without
requiring the rest of the system to be built up around it. Writing unit
tests ensured that each module of code was internally cohesive and
loosely coupled from the rest of the system. The unit tests forced
careful thought about each unit’s interface, and ensured that its API
was meaningful and internally consistent.
The quality control (pair programming, design and code reviews,
unit tests) ensured that the system never had an incorrect, badly
fitting change applied. Anything that didn't mesh with the software
design was rejected.
Design Town development was fairly pragmatic. As deadlines
approached, a number of corners were cut to allow projects to ship
on time. Small code ‘sins’ or design warts were allowed to enter the
codebase either to get functionality working quickly or to avoid
high-risk changes near a release. However, unlike the Messy
Metropolis project, these fudges were marked as ‘technical debt’
and scheduled for later revision. This highlights an important
attitude: the developers believed in the design, and considered it
important enough to protect. They took personal responsibility for
the design.
The development timescales were neither too long nor too short (just
like Goldilock’s porridge). Given too long, programmers often tend
to create a magnum opus (the kind of thing which will always be

almost ready, but never quite materialises). A little pressure is a
wonderful thing, and a sense or urgency helps to get things done.
However, given too little time it simply isn’t possible to achieve any
worthwhile design, and you’ll only get a half-baked solution rushed
out. Good project planing really helps good design!

Fi
gu

re
 2

The good taste and elegance of the top-
level design fed down to the lower levels.

The developers believed in the design and
considered it important enough to protect
4 | | APR 2008{cvu}

The development team dynamics followed the code design. Project
principles mandated that no one ‘owned’ any area of the design, that
any developer could work anywhere in the system. Everyone was
expected to write high quality code, and to provide a complete suite
of unit tests for their work. Whereas the Metropolis was a sprawling
mess created by many uncoordinated, fighting programmers,
Design Town was clean and cohesive, created by closely co-
operating colleagues. In many ways, Conway’s Law [6] came into
effect and the team gelled together as the software did.
The design was sufficiently well documented. There were no slavish
design documents (again, this is something XP does not encourage).
A good understanding of the overall code structure was provided by
the design overview. Following this, the code was required to be its
own documentation, both by mandating clear, simple code that
clearly expresses its intent – using code structure devices (like
namespaces, enumerations and classes), and clear names – but also
by marking up interfaces with literate comments using the Doxygen
tool [7]. Doxygen produces excellent documentation that, when
used well, can reveal the code structure clearly and is accurate, too
– it reflects the actual code not some out-of-date snapshot of it when
a design document was last updated.
Whilst the codebase was large, it was coherent and easily
understood. New programmers could pick it up and work with it
relatively easily. There were no unnecessarily complex
interconnections to understand, or weird legacy code to work
around.
Since the code has generated relatively few problems, and is still
enjoyable to work with, there has been very, very low turnover of
team members. This is due, in part, to the developers taking
ownership of the design and continually wanting to improve it.

After a length of time, the overall Design Town architecture looked
something like figure 3. That is, it was remarkably similar to the original
design, with a few notable changes – and a lot more experience to prove
it was right. A healthy development process, a smaller, more thoughtful
development team, and an appropriate focus on ensuring consistency lead
to an incredibly simple, clear, and consistent design. This simplicity
worked to the advantage of the Design Town, leading to malleable code,
and rapidly developed products.

Where is it now?
At the time of writing, the Design Town project has been alive for three

years. The codebase is still in production use and has spawned a number
of successful products. It is still being developed, still growing, still being
extended, and still being changed daily. It’s design next month might be
quite different to how it looks this month. But it probably won’t – most of
the major changes have already been made.

Let me make this clear: the code is by no means perfect, it has areas of
technical debt that need work, but they stick out against the backdrop of
neatness, and will be addressed in the future. Nothing is set in stone: thanks
to the adaptable design and flexible code structure these things can be
fixed. Almost everything is in the right place, because the design is sound.

Conclusion
Good design is the product of many factors, including (but not limited to):

Actually doing intentional up-front design. (Many projects fail in
their design at this stage)
The quality and experience of the designers. (It helps to have made
a few mistakes beforehand to point you in the right direction next
time! The Metropolis project certainly taught me a thing or two.)
Keeping the design clearly in view as development progresses.
The team being given, and taking responsibility for the overall
design of the software.
Never being afraid of changing the design: nothing is set in stone.
Having the right people on the team: including designers,
programmers, and managers. Ensure the development team is the
right size. Ensure they have healthy working relationships, as these
relationship will inevitably feed into the structure of the code.
Making design decisions at the appropriate time, when you know all
the information to be able to make them. Deferring design decisions
you cannot yet make.
Good project management, with the right kind of deadlines.

So an intentional design, a good set of design decisions, and a healthy
development approach can result in a vastly superior software structure.
That leaves you with one less thing to worry about.
Before you turn the page and move on to the next article in this magazine
stop and think about your own experience. Think about the software
projects you have worked on. Which one had the worst design – and what
caused it to end up like that? And which project in your past had the best
design? Why? It’s a good idea to reflect on your own experience and see
what you can learn. (And a good moan is wonderfully cathartic.)
And just in case you were wondering, the names in these articles have been
changed to protect the innocent. And the guilty.

Endnotes
[1] The previous column. In last C Vu. Look on the shelf. Or in the

drawer. Or in the bin.
[2] XP is a lightweight, agile, development process.

See http://www.extremeprogramming.org
[3] Boost is an set of excellent C++ libraries, many of which have fed

into the next revision of the C++ standard library.
 See http://www.boost.org

[4] Pair programming is a development approach where two
programmers sit together at the same computer and work on the code
together. See http://www.extremeprogramming.org/rules/pair.html

[5] Refactoring is the process of improving the internal design or
structure of a codebase without changing its external behaviour.
Read more at Fowler’s website http://www.refactoring.com

[6] Conway’s Law states that team structure will follow code structure.
For example, if you design a five-stage compiler, you’ll create five
teams to work on it.

[7] http://www.doxygen.org

Pete’s book, Code Craft, is available in all good
bookshops. And some shoddy ones too. It’s quite well
designed.

Check it out at www.nostarch.com

Fi
gu

re
 3
APR 2008 | | 5{cvu}

Fixing Compiler Warnings the Hard Way
Thomas Guest listens when his compiler grumbles,

but ignores its suggestions.

GCC makes a suggestion
he build server CC’d me on an email. Good old GCC, grumbling
about operator precedence again. But Hey! – at least it had a positive
suggestion to make.

 From: buildmaster@example.com
 To: lem.e.tweakit@example.com
 Cc: developers@example.com
 Subject: Broken build
 Version: svn://svnserver/trunk@999
 Platform: Linux, GCC 4.0.1
 Build Log:

 Warning: suggest parentheses around arithmetic
 in operand of ^

I looked at the code. Listing 1 shows a simplified version, with the problem
line in darker type. GCC warns:
 $ gcc -Wall -c unpack_bits.c
 unpack_bits.c: In function `unpack':
 unpack_bits.c:12: warning: suggest parentheses
 around arithmetic in operand of ^

Setting a precedent
Needless to say, the actual offending code was buried in a longer function,
indented more deeply, and with a few more indirections [1] – so it was
indeed tempting to take GCC’s advice and whack in a couple of brackets.
Clearly the author meant to write:
 bit = byte & (2^pos);

Why else omit spaces around the ^?
Fortunately I live by my own rule, to avoid unnecessary parentheses, so I
wasn’t about to add any here without asking why. Worse than my stubborn
principles, ̂ , the exclusive or operator, has lower precedence than bitwise
and, &, so to keep GCC happy and retain the original behaviour we’d have
to write:
 bit = (byte & 2) ^ pos;

This looks very bizarre code. Had it ever been exercised?
GCC was right, the code was wrong, but its diagnostic showed the wrong
way to right things. On this occasion GCC should have been proscriptive,
not prescriptive, and left the fix in the hands of the programmer. [2]

Don’t mix bits and arithmetic
My personal rule of thumb is to avoid mixing bitwise and arithmetic
operations. Although integral types support both kinds of operation, it
generally feels like a type-mismatch to combine them in a single
expression, or even sequence of expressions. An array of bits isn’t a
number, and vice-versa.

Of course there are some treasured bit-twiddling tricks [3] which exploit
the mapping between binary arithmetic and machine level register
operations. So we can, for example, calculate 2 raised to the power of 19
with a simple left-shift, 1 << 19, or test if v is a power of 2 with !(v &
(v - 1)) && v. I’m not suggesting we blacklist these ingenious hacks
– in fact, anyone off to an interview for a job with an embedded systems
company might do well to study them. But I would say they need tucking
into well-named functions.
On occasion, then, bitwise operations may legitimately be used for fast
arithmetic, but the reverse, using arithmetic to pack bits, is rarely
necessary. This line of code is probably wrong [4]:
 r = h << 4 + 1;

The programmer probably intended the (bitwise) shift to happen before the
(arithmetic) addition, like this.
 r = (h << 4) + 1;

If we stick to bitwise operations, things become clear. I’ve written the 1
in hexadecimal as a hint it’s being used as a bit pattern – sadly there’s no
way of writing a binary literal directly in C.
 r = h << 4 | 0x1;

Anyway, the problem line in unpack() adheres to my rule of thumb: &
and ̂ are indeed both bitwise operations. But after some puzzling I realised
the author of the code intended 2^pos to mean 2 to the power of pos, not
for its arithmetic value, but for its bit pattern – which, as every programmer
knows, is a 1 followed by pos 0s. That is, a 1 left-shifted pos times.
Listing 2 is what I thought the fix should be. Note, incidentally, that I’ve
used ~0 rather than 255, because it clearly says ‘set every bit’. I’m also
using unsigned integers throughout – always a good idea when working
with bits.
Despite the absence of documentation, this is now at least a coherent
function. It’s a biterator which steps through a collection of bits (packed
into bytes, the smallest memory units C offers). Each time it encounters a
set/clear bit, it sets/clears all the bits in the next byte in the output buffer.
That is, it expands each bit value to fill a whole byte.
This is exactly the kind of function which is surprisingly fiddly to write
but simple to unit test. As already mentioned, though, the function didn’t

T
void
unpack(unsigned char const * bits, int n_bits,
 unsigned char * buf)
{
 unsigned char bit, byte, pos;
 int b;

 for (b = 0; b != n_bits; ++b)
 {
 byte = bits[b / 8];
 pos = 7 - (b % 8);
 bit = byte & 2^pos;
 buf[b] = bit == 0 ? 0 : 255;
 }
}

Listing 1

THOMAS GUEST
Thomas is an enthusiastic and experienced programmer.
He has developed software for everything from embedded
devices to clustered servers. His website is
http://www.wordaligned.org and you can contact him at
thomas.guest@gmail.com
6 | | APR 2008{cvu}

actually exist in the form shown, and the tests were all at the module level.
The responsible way for me to proceed was to create a module test which
exposed the defect, then make my candidate fix, confirm it did indeed fix
the defect, then check the change in.

Unit test
Listing 3 shows how simple a unit test for unpack() could be. It may be
longer than the function it’s testing, but it’s less complex. And with just a
couple of test cases, it manages to cover several interesting corners of the
functionality. Better still, it passes! [5]
This is white-box testing: the test knows enough about the implementation
of unpack() to expose potential problems. In this case, there’s something
unusual about the way the pos counter goes down as the bit counter b goes
up, so we make sure that the bits we’re unpacking form asymmetric
patterns.

Refactoring
Should we extract this tested unpack() function from its surrounding,
larger, more complex function? Is it safe to do so? Have we time to spend
making changes with no externally visible results? Should we tweak
unpack() for efficiency (after all, it doesn’t need to use the division and
modulus operators each time round the loop)?
These are important questions. eXtreme Programmers refactor mercilessly
[6], confident their extensive test frameworks will provide a safety net.
Java programmers select the code block in their IDE then click the ‘extract
method’ button. C and C++ programmers have less advanced tools, but
Michael Feathers’ Working Effectively with Legacy Code offers practical
advice on how to transform code safely – that is, how to put it under test.
In the real world, we judge each case on merit. A nag email from the build
server shouldn’t necessarily trigger mass refactoring, even if the test
infrastructure is in place. I think Feathers is right though, that poorly tested
code is on its way to becoming legacy code: hard to adapt, unpleasant to
work with, and a drag on continuing development.

Lessons
This new story repeats the same old lessons.
Set up a build server. Listen to it. Compile on multiple platforms.
Think! Compilers are concerned with syntax, not semantics. A C compiler
reads your code in order to rewrite it for the machine’s benefit; it doesn’t
understand it, that’s your job.
Write small functions. Unit test them.
Integers and bit arrays are different. Be careful using bitwise operations
as arithmetic shortcuts. Avoid using arithmetic for bit packing.
Oh, and in C, don’t mistake ^ for exponentiation!

Notes and references
[1] http://c2.com/cgi/wiki?ThreeStarProgrammer
[2] I’m not complaining about GCC which did an outstanding job of

flagging a genuine problem in perfectly well-defined and valid code.
The other compiler frequently used on this project, MSVC V8.0,
compiles this cleanly, at the same time warning standard C string
functions are unsafe and deprecated!

[3] http://graphics.stanford.edu/~seander/bithacks.html
[4] I’ve taken this example directly from Andrew Koenig’s C Traps and

Pitfalls. This is a nice little book which expands on the ideas
presented in a paper of the same name
(http://www.literateprogramming.com/ctraps.pdf).

[5] One thing I recommend, though, is to temporarily reverse the logic
in the assertions and check they then fail. Unit test frameworks often
provide hooks to do this reversed-result test, which confirms the test
cases are actually being run.

[6] http://www.extremeprogramming.org/rules/refactor.html

void
unpack(unsigned char const * bits,
 unsigned n_bits, unsigned char * buf)
{
 unsigned char bit, byte;
 unsigned b, pos;

 for (b = 0; b != n_bits; ++b)
 {
 byte = bits[b / 8];
 pos = 7 - b % 8;
 bit = byte & 1 << pos;
 buf[b] = bit == 0 ? 0 : ~0;
 }
}

Li
st

in
g

2 void
test_unpack()
{
 // Start with a varied bit-pattern.
 // Ensure each byte differs from its
 // reversed self.
 unsigned char const bits[2] =
 {
 1 << 7 | 1 << 5 | 1 << 4 | 1 << 0,
 // 10110001 binary
 1 << 6 | 1 << 5 | 1 << 3 | 1 << 0,
 // 01101001 binary
 };
 unsigned char expected[2 * 8] =
 {
 ~0, 0, ~0, ~0, 0, 0, 0, ~0,
 0, ~0, ~0, 0, ~0, 0, 0, ~0
 };
 unsigned char buf[3 * 8] = { 0 };
 unsigned char buf_copy[3 * 8] = { 0 };

 size_t const buf_size = sizeof(buf);

 // Fill the buffer with a pattern of 1s and 0s.
 // Unpack nothing and check nothing changes.
 memset(buf, 0xa5, buf_size);
 memcpy(buf_copy, buf, buf_size);
 unpack(bits, 0, buf);
 assert(memcmp(buf, buf_copy, buf_size) == 0);

 // Unpack some of the bits and check the
 // results.
 // Also check the remainder of the buffer is
 // undamaged.
 unpack(bits, 13, buf);
 assert(memcmp(buf, expected, 13) == 0);
 assert(memcmp(buf + 13, buf_copy + 13,
 buf_size - 13) == 0);
}

Listing 3
APR 2008 | | 7{cvu}

ADAM PETERSEN
Adam Petersen is a programmer and part-time psychology
student. Besides spending way too much time reading tech
books, Adam also has somewhat healthier hobbies like
music, martial arts, modern hisotry and good literature.

Lisp for the Web
Adam Petersen shows Lisp is still a contender.

ith his essay ‘Beating the Averages’[1], Paul Graham told the
story of how his web start-up Viaweb outperformed its
competitors by using Lisp. Lisp? Did I parse that correctly? That

ancient language with all those scary parentheses? Yes, indeed! And with
the goal of identifying its strengths and what they can do for us, I’ll put
Lisp to work developing a web application. In the process we’ll find out
how a 50-year-old language can be so well-suited for modern web
development and yes, it’s related to all those parentheses.

What to expect
Starting from scratch, we’ll develop a three-tier web application. I’ll show
how to:

utilize powerful open source libraries for expressing dynamic
HTML and JavaScript in Lisp,
develop a small, embedded domain specific language tailored for
my application,
extend the typical development cycle by modifying code in a
running system and execute code during compilation, and
finally, migrate from data structures in memory to persistent objects
using a third-party database.

I’ll do this in a live system transparent to the users of the application.
Because Lisp is so high-level, I’ll be able to achieve everything in just
around 70 lines of code.
This article will not teach you Common Lisp (for that purpose I
recommend Practical Common Lisp [2]). Instead, I’ll give a short
overview of the language and try to explain the concepts as I introduce
them, just enough to follow the code. The idea is to convey a feeling of
how it is to develop in Lisp rather than focusing on the details.

The Lisp story
Lisp is actually a family of languages created by John McCarthy 50 years
ago. The characteristic of Lisp is that Lisp code is made out of Lisp data
structures with the practical implication that it is not only natural, but also
highly effective, to write programs that write programs. This feature has
allowed Lisp to adapt over the years. For example, as object-oriented
programming became popular, powerful object systems could be
implemented in Lisp as libraries without any change to the core language.
Later, the same proved to be true for aspect-oriented programming.
This idea is not only applicable to whole paradigms of programming. Its
true strength lays in solving everyday problems. With Lisp, it’s
straightforward to build-up a domain specific language allowing us to
program as close to the problem domain as our imagination allows. I’ll
illustrate the concept soon, but before we kick-off, let’s look closer at the
syntax of Lisp.

Crash course in Lisp
What Graham used for Viaweb was Common Lisp, an ANSI standardized
language, which we’ll use in this article too (the other main contender is
Scheme, which is considered cleaner and more elegant, but with a much
smaller library).

Common Lisp is a high-level interactive language that may be either
interpreted or compiled. You interact with Lisp through its top-level. The
top-level is basically a prompt. On my system it looks like this:
 CL-USER>

Through the top-level, we can enter expressions and see the results (user
input is highlighted):
 CL-USER>(+ 1 2 3)
 6

As we see in the example, Lisp uses a prefix notation. A parenthesized
expression is referred to as a form. When fed a form such as (+ 1 2 3),
Lisp generally treats the first element (+) as a function and the rest as
arguments. The arguments are evaluated from left to right and may
themselves be function calls:
 CL-USER>(+ 1 2 (/ 6 2))
 6

We can define our own functions with defun:
 CL-USER>(defun say-hello (to)
 (format t "Hello, ~a" to))

Here we’re defining a function say-hello, taking one argument: to. The
format function is used to print a greeting and resembles a printf on
steroids. Its first argument is the output stream and here we’re using t as
a shorthand for standard output. The second argument is a string, which
in our case contains an embedded directive ~a instructing format to
consume one argument and output it in human-readable form. We can call
our function like this:
 CL-USER>(say-hello "ACCU")
 Hello, ACCU
 NIL

The first line is the side-effect, printing Hello, ACCU and NIL is the
return value from our function. By default, Common Lisp returns the value
of the last expression. From here we can redefine say-hello to return
its greeting instead:
 CL-USER>(defun say-hello (to)
 (format nil "Hello, ~a" to))

With nil as its destination, format simply returns its resulting string:
 CL-USER>(say-hello "ACCU")
 "Hello, ACCU"

Now we’ve got rid of the side-effect. Programming without side-effects is
in the vein of functional programming, one of the paradigms supported by
Lisp. Lisp is also dynamically typed. Thus, we can feed our function a
number instead:
 CL-USER>(say-hello 42)
 "Hello, 42"

In Lisp, functions are first-class citizens. That means, we can create them
just like any other object and we can pass them as arguments to other
functions. Such functions taking functions as arguments are called higher-
order functions. One example is mapcar. mapcar takes a function as its
first argument and applies it subsequently to the elements of one or more
given lists:
 CL-USER>(mapcar #'say-hello (list "ACCU"
 42 "Adam"))
 ("Hello, ACCU" "Hello, 42" "Hello, Adam")

W

8 | | APR 2008{cvu}

The funny #' is just a shortcut for getting at the function object. As you
see above, mapcar collects the result of each function call into a list, which
is its return value. This return value may of course serve as argument to
yet another function:
 CL-USER>(sort (mapcar #'say-hello
 (list "ACCU" 42 "Adam"))
 #'string-lessp)
 ("Hello, 42" "Hello, ACCU" "Hello, Adam")

Lisp itself isn’t hard, although it may take some time to wrap one’s mindset
around the functional style of programming. As you see, Lisp expressions
are best read inside-out. But the real secret to understanding Lisp syntax
is to realize that the language doesn’t have one; what we’ve been entering
above are basically parse-trees, generated by compilers in other languages.
And, as we’ll see soon, exactly this feature makes it suitable for meta-
programming.

The Brothers are history
Remember the hot gaming discussions 20 years ago? ‘Giana Sisters’ really
was way better than ‘Super Mario Bros’, wasn’t it? We’ll delegate the
question to the wise crowd by developing a web application. Our web
application will allow users to add and vote for their favourite retro games.
A screenshot of the end result is provided in Figure 1.
From now on, I start to persist my Lisp code in textfiles instead of just
entering expressions into the top-level. Further, I define a package for my
code. Packages are similar to namespaces in C++ or Java’s packages and
help to prevent name collisions (the main distinction is that packages in
Common Lisp are first-class objects).
 (defpackage :retro-games
 (:use :cl :cl-who :hunchentoot :parenscript))

The new package is named :retro-games and I also specify other
packages that we’ll use initially:

cl is Common Lisp’s standard package containing the whole
language.
cl-who [3] is a library for converting Lisp expressions into
XHTML.
hunchentoot [4] is a web-server, written in Common Lisp itself,
and provides a toolkit for building dynamic web sites.
parenscript [5] allows us to compile Lisp expressions into
JavaScript. We’ll use this for client-side validation.

With my package definition in place, I’ll put the rest of the code inside it
by switching to the :retro-games package:
 in-package :retro-games)

Most top levels indicate the current package in their prompt. On my system
the prompt now looks like this:
 RETRO-GAMES>

Representing games
With the package in place, we can return to the problem. It seems to require
some representation of a game and I’ll choose to abstract it as a class:
 (defclass game ()
 ((name :initarg :name)
 (votes :initform 0)))

The expression above defines the class game without any user-specified
superclasses, hence the empty list () as second argument. A game has two
slots (slots are similar to attributes or members in other languages): a name
and the number of accumulated votes. To create a game object I invoke
make-instance and pass it the name of the class to instantiate:
 RETRO-GAMES>(setf many-lost-hours
 (make-instance 'game :name “Tetris”))
 #<GAME @ #x7213da32>

Because I specified an initial argument in my definition of the name slot,
I can pass this argument directly and initialize that slot to “Tetris”. The

votes slot doesn’t have an initial argument. Instead I specify the code I
want to run during instantiation to compute its initial value through
:initform. In this case the code is trivial, as I only want to initialize the
number of votes to zero. Further, I use setf to assign the object created
by make-instance to the variable many-lost-hours.
Now that we got an instance of game we would like to do something with
it. We could of course write code ourselves to access the slots. However,
there’s a more lispy way; defclass provides the possibility to
automatically generate accessor functions for our slots:
 (defclass game ()
 ((name :reader name
 :initarg :name)
 (votes :accessor votes
 :initform 0)))

The option :reader in the name slot will automatically create a read
function and the option :accessor used for the votes slot will create
both read and write functions. Lisp is pleasantly uniform in its syntax and
these generated functions are invoked just like any other function:
 RETRO-GAMES>(name many-lost-hours)
 "Tetris"
 RETRO-GAMES>(votes many-lost-hours)
 0
 RETRO-GAMES>(incf (votes many-lost-hours))
 1
 RETRO-GAMES>(votes many-lost-hours)
 1

The only new function here is incf, which when given one argument
increases its value by one. We can encapsulate this mechanism in a method
used to vote for the given game:
 (defmethod vote-for (user-selected-game)
 (incf (votes user-selected-game)))

The top-level allows us to immediately try it out and vote for Tetris:
 RETRO-GAMES>(votes many-lost-hours)
 1
 RETRO-GAMES>(vote-for many-lost-hours)
 2
 RETRO-GAMES>(votes many-lost-hours)
 2

A prototypic back end
Before we can jump into the joys of generating web pages, we need a back
end for our application. Because Lisp makes it so easy to modify existing
applications, it’s common to start out really simply and let the design
evolve as we learn more about the problem we’re trying to solve. Thus,
I’ll start by using a list in memory as simple, non-persistent storage.
 (defvar *games* '())

Figure 1
APR 2008 | | 9{cvu}

The expression above defines and initializes the global variable (actually
the Lisp term is special variable) *games* to an empty list. The asterisks
aren’t part of the syntax; it’s just a naming convention for globals. Lists
may not be the most efficient data structure for all problems, but Common
Lisp has great support for lists and they are easy to work with. Later we’ll
change to a real database and, with that in mind, I encapsulate the access
to *games* in some small functions:
 (defun game-from-name (name)
 (find name *games* :test #'string-equal
 :key #'name))

Our first function game-from-name is implemented in terms of find.
find takes an item and a sequence. Because we’re comparing strings I tell
find to use the function string-equal for comparison (remember, #'
is a short cut to refer to a function). I also specify the key to compare. In
this case, we’re interested in comparing the value returned by the name
function on each game object.
If there’s no match find returns NIL, which evaluates to false in a
boolean context. That means we can reuse game-from-name when we
want to know if a game is stored in the *games* list. However, we want
to be clear with our intent:
 (defun game-stored? (game)
 (game-from-name (name game)))

As illustrated in Figure 1, we want to present the games sorted on
popularity. Using Common Lisp’s sort function this is pretty
straightforward; we only have to take care, because for efficiency reasons
sort is destructive. That is, sort is allowed to modify its argument. We
can preserve our *games* list by passing a copy to sort. I tell sort to
return a list sorted in descending order based on the value returned by the
votes function invoked on each game:
 (defun games ()
 (sort (copy-list *games*) #'> :key #'votes))

Let’s define one more utility for actually adding games to our storage:
 (defun add-game (name)
 (unless (game-stored? name)
 (push (make-instance 'game :name name)
 games)))

push is a modifying operation and it prepends the game instantiated by
make-instance to the *games* list. Let’s try it all out at the top level.
 RETRO-GAMES>(games)
 NIL
 RETRO-GAMES>(add-game "Tetris")
 (#<GAME @ #x71b943c2>)
 RETRO-GAMES>(game-from-name "Tetris")
 #<GAME @ #x71b943c2>
 RETRO-GAMES>(add-game "Tetris")
 NIL
 RETRO-GAMES>(games)
 (#<GAME @ #x71b943c2>)
 RETRO-GAMES>(mapcar #'name (games))
 ("Tetris")

The values returned to the top level may not look too informative. It’s
basically the printed representation of a game object. Common Lisp allows
us to customize how an object shall be printed, but we will not go into the
details. Instead, with this prototypic back end in place, we’re prepared to
enter the web.

Generating HTML dynamically
The first step in designing an embedded domain specific language is to find
a Lisp representation of the target language. For HTML this is really simple
as both HTML and Lisp are represented in tree structures, although Lisp
is less verbose. Here’s an example using the CL-WHO library:

 (with-html-output (*standard-output* nil
 :indent t)
 (:html
 (:head
 (:title "Test page"))
 (:body
 (:p "CL-WHO is really easy to use"))))

This code will expand into the following HTML, which is output to
standard-output:
 <html>
 <head>
 <title>Test page </title>
 </head>
 <body>
 <p> CL-WHO is really easy to use </p>
 </body>
 </html>

CL-WHO also allows us to embed Lisp expressions, setting the scene for
dynamic web pages.

Macros: fighting the evils of code duplication
Although CL-WHO does provide a tighter representation than raw HTML
we’re still facing the potential risk of code duplication; the html, head,
and body tags form a pattern that will recur on all pages. And it’ll only
get worse as we start to write strict and validating XHTML 1.0, where we
have to include more tags and attributes and, of course, start every page
with that funny DOCTYPE line.
Further, if you look at Figure 1 you’ll notice that the retro games page has
a header with a picture of that lovely Commodore [6] and a strap line. I
want to be able to define that header once and have all my pages use it
automatically.
The problem screams for a suitable abstraction and this is where Lisp
differs from other languages. In Lisp, we can actually take on the role of
a language designer and extend the language with our own syntax. The
feature that allows this is macros. Syntactically, macros look like
functions, but are entirely different beasts. Sure, just like functions, macros
take arguments. The difference is that the arguments to macros are source
code, because macros are used by the compiler to generate code.
Macros can be a conceptual challenge as they erase the line between
compile time and runtime. What macros do is expand themselves into code
that is actually compiled. During their expansion macros have access to
the whole language, including other macros, and may call functions, create
objects, etc.
So, let’s put this amazing macro mechanism to work by defining a new
syntactic construct, the standard-page. A standard-page will
abstract away all XHTML boiler plate code and automatically generate the
heading on each page. The macro will take two arguments. The first is the
title of the page and the second the code defining the body of the actual
web-page. Here’s a simple usage example:
 (standard-page (:title "Retro Games")
 (:h1 "Top Retro Games")
 (:p "We'll write the code later..."))

Much of the macro will be straightforward CL-WHO constructs. Using the
backquote syntax (the ̀ character), we can specify a template for the code
we want to generate (Listing 1).
Within the backquoted expression we can use , (comma) to evaluate an
argument and ,@ (comma-at) to evaluate and splice a list argument.
Remember, the arguments to a macro are code. In this example the first
argument title is bound to “Retro Games” and the second argument body
contains the :h1 and :p expressions wrapped-up in a list. In the macro
definition, the code bound to these arguments is simply inserted on the
proper places in our backquoted template code.
The power we get from macros become evident as we look at the generated
code. The three lines in the usage example above expands into Listing 2
10 | | APR 2008{cvu}

(note that Lisp symbols are case-insensitive and thus usually presented in
uppercase).
This is a big win; all this is code that we don’t have to write. Now that we
have a concise way to express web-pages with a uniform look, it’s time to
introduce Hunchentoot.

More than an opera
Named after a Zappa sci-fi opera, Edi Weitz’s Hunchentoot is a full
featured web-server written in Common Lisp. To launch Hunchentoot, we
just invoke its start-server function:
 RETRO-GAMES>(start-server :port 8080)

start-server supports several arguments, but we’re only interested in
specifying a port other than the default port 80. And that’s it – the server’s
up and running. We can test it by pointing a web browser to http://
localhost:8080/, which should display Hunchentoot’s default page. To
actually publish something, we have to provide Hunchentoot with a
handler. In Hunchentoot all requests are dynamically dispatched to an
associated handler and the framework contains several functions for
defining dispatchers. The code below creates a dispatcher and adds it to
Hunchentoot’s dispatch table:
 (push (create-prefix-dispatcher
 "/retro-games.htm" 'retro-games)
 dispatch-table)

The dispatcher will invoke the function, retro-games, whenever an
URI request starts with /retro-games.htm. Now we just have to
define the retro-games function that generates the HTML:
 (defun retro-games ()
 (standard-page (:title "Retro Games")
 (:h1 "Top Retro Games")
 (:p "We'll write the code later...")))

That’s it – the retro games page is online. But I wouldn’t be quick to
celebrate; while we took care to abstract away repetitive patterns in
standard-page, we’ve just run into another more subtle form of
duplication. The problem is that every time we want to create a new page
we have to explicitly create a dispatcher for our handle. Wouldn’t it be nice
if Lisp could do that automatically for us? Basically I want to define a
function like this:
 (define-url-fn (retro-games)
 (standard-page (:title "Retro Games")
 (:h1 "Top Retro Games")
 (:p "We'll write the code later...")))

and have Lisp to create a handler, associate it with a dispatcher and put it
in the dispatch table as I compile the code. Guess what, using macros the
syntax is ours. All we have to do is reformulate our wishes in a defmacro:
 (defmacro define-url-fn ((name) &body body)
 `(progn
 (defun ,name ()
 ,@body)
 (push (create-prefix-dispatcher
 ,(format nil "/~(~a~).htm" name) ',name)
 dispatch-table)))

Now our ‘wish code’ above actually compiles and generates the following
Lisp code (macro arguments highlighted):
 (PROGN
 (DEFUN RETRO-GAMES ()
 (STANDARD-PAGE (:TITLE "Retro Games")
 (:H1 "Top Retro Games")
 (:P "We'll write the code later...")))
 (PUSH (CREATE-PREFIX-DISPATCHER
 "/retro-games.htm" 'RETRO-GAMES)
 DISPATCH-TABLE))

There are a few interesting things about this macro:
1. It illustrates that macros can take other macros as arguments. The

Lisp compiler will continue to expand the macros and standard-
page will be expanded too, writing even more code for us.

2. Macros may execute code as they expand. The prefix string “/retro-
games.htm” is assembled with format during macro expansion
time. By using comma, I evaluate the form and there’s no trace of it
in the generated code – just the resulting string.

3. A macro must expand into a single form, but we actually need two
forms; a function definition and the code for creating a dispatcher.
progn solves this problem by wrapping the forms in a single form
and then evaluating them in order.

Putting it together
Phew, that was a lot of Lisp in a short time. But using the abstractions
we’ve created, we’re able to throw together the application in no time.
Let’s code out the main page as it looks in Figure 1 (see Listing 3).
Here we utilize our freshly developed embedded domain specific language
for defining URL functions (define-url-fn) and creating standard-
pages. The following lines are straightforward XHTML generation,
including a link to new-game.htm; a page we haven’t specified yet. We

(defmacro standard-page ((&key title)
 &body body)
 `(with-html-output-to-string
 (*standard-output* nil :prologue t :indent t)
 (:html :xmlns "http://www.w3.org/1999/xhtml"
 :xml\:lang "en"
 :lang "en"
 (:head
 (:meta :http-equiv "Content-Type"
 :content "text/html;charset=utf-8")
 (:title ,title)
 (:link :type "text/css"
 :rel "stylesheet"
 :href "/retro.css"))
 (:body
 (:div :id "header" ; Retro games header
 (:img :src "/logo.jpg"
 :alt "Commodore 64"
 :class "logo")
 (:span :class "strapline"
 "Vote on your favourite Retro Game"))
 ,@body))))

Li
st

in
g

1

(WITH-HTML-OUTPUT-TO-STRING
 (*STANDARD-OUTPUT* NIL :PROLOGUE T :INDENT T)
 (:HTML :XMLNS "http://www.w3.org/1999/xhtml"
 :|XML:LANG| "en"
 :LANG "en"
 (:HEAD
 (:META :HTTP-EQUIV "Content-Type"
 :CONTENT "text/html;charset=utf-8")
 (:TITLE "Retro Games")
 (:LINK :TYPE "text/css"
 :REL "stylesheet"
 :HREF "/retro.css"))
 (:BODY
 (:DIV :ID "header"
 (:IMG :SRC "/logo.jpg"
 :ALT "Commodore 64"
 :CLASS "logo")
 (:SPAN :CLASS "strapline"
 "Vote on your favourite Retro Game"))
 (:H1 "Top Retro Games")
 (:P "We'll write the code later..."))))

Listing 2
APR 2008 | | 11{cvu}

will use some CSS to style the Vote! links to look and feel like buttons,
which is why I wrap the list in a div-tag.
The first embedded Lisp code is dolist. We use it to create each game
item in the ordered HTML list. dolist works by iterating over a list, in
this case the return value from the games-function, subsequently binding
each element to the game variable. Using format and the access methods
on the game object, I assemble the presentation and a destination for
Vote!. Here’s some sample HTML output from one session:
<div id='chart'>

 Vote!
 Super Mario Bros with 12 votes

 Vote!
 Last Ninja with 11 votes

</div>

As the user presses Vote! we’ll get a request for vote.htm with the
name of the game attached as a query parameter. Hunchentoot provides a
parameter function that, just as you might expect, returns the value of
the parameter named by the following string. We pass this value to our
back end abstraction game-from-name and binds the result to a local
variable with let:
 (define-url-fn (vote)
 (let ((game (game-from-name
 (parameter "name"))))
 (if game
 (vote-for game))
 (redirect "/retro-games.htm")))

After a vote-for the requested game, Hunchentoot’s redirect
function takes the client to the updated chart.
Now when we’re able to vote we need some games to vote-for. In the
code for the retro-games page above, I included a link to new-
game.htm. That page is displayed in Figure 2. Basically it contains an
HTML form with a text input for the game name (Listing 4).
As the user submits the form, its data is sent to game-added.htm
(Listing 5).
The first line in our URL function should look familiar; just as in our vote
function, we fetch the value of the name parameter and binds it to a local
variable (name). Here we have to guard against an empty name. After all,
there’s nothing forcing the user to write anything into the field before
submitting the form (we’ll see in a minute how to add client-side

validation). If we get a valid name, we add it to our database through the
add-game function.

Expressing JavaScript in Lisp
Say we want to ensure that the user at least typed something before
submitting the form. Can we do that in Lisp? Yes, actually. We can write
Lisp code that compiles into JavaScript and we use the ParenScript library
for the task.
Unobtrusive JavaScript is an important design principle and ParenScript
supports that too. But in Lisp this becomes less of an issue; I’m not actually
writing JavaScript, everything is Lisp. Thus I embed my event handler in
the form:
 (:form :action "/game-added.htm" :method "post"
 :onsubmit
 (ps-inline
 (when (= name.value "")
 (alert "Please enter a name.")
 (return false)))

This code will compile into the following mixture of HTML and
JavaScript:
 <form action='/game-added.htm' method='post'
 onsubmit='javascript:if (name.value == "") {
 alert("Please enter a name.");
 return false;
 }'>

Persistent objects
Initially we kind of ducked the problem with persistence. To get things up
and running as quickly as possible, we used a simple list in memory as

(define-url-fn (retro-games)
 (standard-page (:title "Top Retro Games")
 (:h1 "Vote on your all time favourite retro
 games!")
 (:p "Missing a game? Make it available for
 votes "
 (:a :href "new-game.htm" "here"))
 (:h2 "Current stand")
 (:div :id "chart" ; For CSS styling of links
 (:ol
 (dolist (game (games))
 (htm
 (:li
 (:a :href (format nil "vote.htm?name=~a"
 (name game))
 "Vote!")
 (fmt "~A with ~d votes"
 (name game)
 (votes game)))))))))

Li
st

in
g

3 (define-url-fn (new-game)
 (standard-page (:title "Add a new game")
 (:h1 "Add a new game to the chart")
 (:form :action "/game-added.htm"
 :method "post"
 (:p "What is the name of the game?" (:br)
 (:input :type "text"
 :name "name"
 :class "txt"))
 (:p (:input :type "submit"
 :value "Add"
 :class "btn")))))

Listing 4
Figure 2

(define-url-fn (game-added)
 (let ((name (parameter "name")))
 (unless (or (null name)
 (zerop (length name)))
 (add-game name))
 (redirect "/retro-games.htm")))

Listing 5
12 | | APR 2008{cvu}

‘database’. That’s fine for prototyping but we still want to persist all added
games in case we shutdown the server. Further, there are some potential
threading issues with the current design. Hunchentoot is multithreaded and
requests may come in different threads. We can solve all that by migrating
to a thread-safe database. And with Lisp, design decisions like that are only
a macro away; please meet Elephant!
Elephant [7] is a wickedly smart persistent object protocol and database.
To actually store things on disk, Elephant supports several back ends such
as PostgreSQL and SQLite. In this example I’ll use Berkeley DB, simply
because it has the best performance with Elephant.
The first step is to open a store controller, which serves as a bridge between
Lisp and the back end:
 (open-store '(:BDB "/home/adam/temp/gamedb/"))

Here I just specify that we’re using Berkely DB (:BDB) and give a
directory for the database files. Now, let’s make some persistent objects.
Have a look at our current game class again:
 (defclass game ()
 ((name :reader name
 :initarg :name)
 (votes :accessor votes
 :initform 0)))

Elephant provides a convenient defpclass macro that creates persistent
classes. The defpclass usage looks very similar to Common Lisp’s
defclass, but it adds some new features; we’ll use :index to specify
that we want our slots to be retrievable by slot values. I also add an initial
argument to votes, which I use later when transforming our old games
into this persistent class:
 (defpclass persistent-game ()
 ((name :reader name
 :initarg :name
 :index t)
 (votes :accessor votes
 :initarg :votes
 :initform 0
 :index t)))

The Elephant abstraction is really clean; persistent objects are created just
like any other object:
 RETRO-GAMES>(make-instance 'persistent-game
 :name "Winter Games")
 #<PERSISTENT-GAME oid:100>

Elephant comes with a set of functions for easy retrieval. If we want all
instances of our persistent-game class, it’s a simple as this:
 RETRO-GAMES>(get-instances-by-class
 'persistent-game)
 (#<PERSISTENT-GAME oid:100>)

We can of course keep a reference to the returned list or, because we know
we just instantiated a persistent-game, call a method on it directly:
 RETRO-GAMES>(name (first (get-instances-by-class
 'persistent-game)))
 "Winter Games"

We took care earlier to encapsulate the access to the back end and that pays
off now. We just have to change those functions to use the Elephant API
instead of working with our *games* list. The query functions are quite
simple; because we indexed our name slot, we can use get-instance-
by-value to get the matching persistent object:
 (defun game-from-name (name)
 (get-instance-by-value 'persistent-game
 'name name))

Just like our initial implementation using find, get-instance-by-
value returns NIL in case no object with the given name is stored. That
means that we can keep game-stored? exactly as it is without any
changes. But what about adding a new game? Well, we no longer need to
maintain any references to the created objects. The database does that for
us. But, we have to change add-game to make an instance of

persistent-game instead of our old game class. And even though
Elephant is thread-safe we have to ensure that the transactions are atomic.
Elephant provides a nice with-transaction macro to solve this
problem:
(defun add-game (name)
 (with-transaction ()
 (unless (game-stored? name)
 (make-instance 'persistent-game
 :name name))))

Just one final change before we can compile and deploy our new back end:
the games function responsible for returning a list of all games sorted on
popularity;
 (defun games ()
 (nreverse (get-instances-by-range
 'persistent-game 'votes nil nil)))

votes is an indexed slot, so we can use get-instances-by-range
to retrieve a sorted list. The last two arguments are both nil, which will
retrieve all stored games. The returned list will be sorted from lowest score
to highest, so I apply nreverse to reverse the list (the n in nreverse
indicates that it is a destructive function).

Remembering the games
Obviously we want to keep all previously added games. After all, users
shouldn’t suffer because we decide to change the implementation. So, how
do we transform existing games into persistent objects? The simplest way
is to map over the *games* list and instantiate a persistent-game
with the same slot values as the old games:
 RETRO-GAMES>(mapcar
 #'(lambda (old-game)
 (make-instance 'persistent-game
 :name (name old-game)
 :votes (votes old-game)))
 games)

We could have defined a function for this task using defun but, because
it is a one-off operation, I go with an anonymous function aka lambda
function (see the highlighted code above). And that’s it – all games have
been moved into a persistent database. We can now set *games* to NIL
(effectively making all old games available for garbage collection) and
even make the *games* symbol history by removing it from the package:
 RETRO-GAMES> (setf *games* nil)
 NIL
 RETRO-GAMES> (unintern '*games*)
 T

Outro
This article has really just scratched the surface of what Lisp can do. Yet
I hope that if you made it this far, you have seen that behind all those
parenthesis there’s a lot of power. With its macro system, Lisp can
basically be what you want it to.
Due to the dynamic and interactive nature of Lisp it’s a perfect fit for
prototyping. And because Lisp programs are so easy to evolve, that
prototype may end up as a full-blown product one day.

References
1 Paul Graham, ‘Beating the Averages’, http://www.paulgraham.com/

avg.html
2 Peter Seibel, Practical Common Lisp, ISBN-13: 978-1590592397
3 CL-WHO, http://weitz.de/cl-who/
4 Hunchentoot, http://weitz.de/hunchentoot/
5 ParenScript, http://common-lisp.net/project/parenscript/
6 Commodore 64, photo by Bill Bertram
7 Elephant, http://common-lisp.net/project/elephant/
8 The source code for Retro Games, http://www.adampetersen.se/

articles.htm
APR 2008 | | 13{cvu}

Operator Names Influence Operator
Precedence Decisions (Part 2 of 2)

Derek Jones hopes for more volunteers in the future.

Introduction
his is the second of a two part article describing an experiment carried
out during the 2007 ACCU conference, with the first part being
published in the previous issue of C Vu [1]. This second part

discusses the remember/recall assignment statement component of the
experiment. See part 1 for a discussion of the experimental setup.
Children as young as four have been found to use categorization to direct
the inferences they make about the world they live in [2], and many
different studies have shown that people have an innate desire to create and
use categories. By dividing items in the world into categories of things,
people reduce the amount of information they need to learn [3] by
effectively building an indexed data structure that enables them to lookup
information on an item they may not have encountered before (by
assigning an item to one or more categories and extracting information
common to previously encountered items in those categories). For
instance, a flying object with feathers and a beak might be assigned to the
category bird, which suggests the information that it lays eggs and may be
migratory.
Do developers make use of category information when trying to remember
and recall information about a sequence of identifiers?
The memory for assignment statements experiments performed at the 2004
[4] and 2006 ACCU conferences [5] provides a format for testing the
impact of categorization on some aspects of information storage and recall.
The 2007 experiment used identifiers that were words belonging to the
same category (e.g., names of trees), except for one word that did not
belong to that category. That is, in the 2007 experiment a specific kind of
semantic information was varied. The previous experiments attempted to
measure subject's ability to remember assignment statement information
over a short period of time when identifiers of different length or whose
spoken form sounded alike were used. That is they varied the quantity and
similarity of sound in an identifier (i.e., an identifier’s spoken form).
The format of the task performed in this part of the experiment shares many
features of the memory for assignment statements portion of the
experiment performed in 2004 and 2006, and the write-ups of those
experiments provide the common details omitted here.

Characteristics of human memory
Studies have found [6] that long term memory subsystems are meaning
based, and meaning is the subject of the 2007 experiment. Most human
languages are sound based and people have a short term memory
subsystem dedicated to storing sounds, the subject of the 2004 and 2006
experiments.
Studies have found a wide range of factors that effect subject performance
of memory for lists of information (see previous experiments for
references).
Spotting the identifier that did not appear in the earlier list of assignment
statements is a recognition problem, while remembering the value
assigned in a recall problem. Studies have found that recognition and recall
memory have different characteristics [6].

Ecological validity
Do sequences of categorically related identifiers occur in source code?
There are a number of programming language constructs which associate

one or more identifiers with each other, e.g., the fields of a structure type
or the members of an enumeration. Developers are often exhorted to use
meaningful identifiers and it is to be expected that sometimes a set of
associated identifiers would be given names that reflected a shared degree
of common meaning. The extent to which categorically related identifiers
occur together in source code is not known.
Other issues involving ecological validity are discussed in the 2004 and
2006 articles.

Generating the assignment problems
The problems and associated page layout were automatically generated
using a C program and various awk scripts to generate troff, which in
turn generated postscript. The identifier and constant used in each
assignment statement was randomly chosen from the appropriate set and
the order of the assignment statements (for each problem) was also
randomized. The source code of the C program and scripts is available
from the experiments web page [7].

Selecting identifiers and integer constants

Many categories can be placed in a hierarchical relationship, Rosch [8]
proposed three levels of abstraction. The highest level of abstraction being
called the superordinate-level – for instance, the general category
furniture. The next level down, called the basic-level, is the level at which
most categorization is carried out – for instance, car, truck, chair, or table.
The lowest level is the subordinate-level, denoting specific types of objects
– for instance, a family car, a removal truck, a kitchen table. Rosch found
that the basic-level categories had properties not shared by the other two
categories; adults spontaneously name objects at this level and it is also
the level that children acquire first. The categories used in this experiment
were taken from the basic-level and subordinate-level.
The first requirement for a subject to make use of category information is
that they be able to recognise that a set of identifiers belong to a category.
Thus easily recognised, unique, categories are needed.
Sources for the categories selected were the top level of the Open Directory
project (http://www.dmoz.org/) and Wikipedia categories (http://
en.wikipedia.org/wiki/Help:Category).
A sufficient number of sets of identifiers were used that subjects would
rarely encounter the same sequence. In all 20 different categories were
chosen and three representative (as decided by your author) words
appearing within each category (in the two sources listed above) selected;
see Figure 1. This meant that the same identifiers would start to repeat after
every set of 20 problems.
Observation of the category/words list after it had been used found some
potential overlap between members of some categories.

The names of trees (e.g., oak, chestnut, elm) is sometimes shared
with the name of the fruit they bear (e.g., apple, pear, banana).

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk
14 | | APR 2008{cvu}

The names of countries (e.g., france, germany, sweden) sometimes
has a close association with the language spoken by natives of that
country (e.g., english, dutch, mandarin).

The following is the list of 23 words, not belonging to any of the categories,
used as the not seen identifier in the recall list.

Assignment problems were created in groups of 20. Each group of 20 used
one of the rows of identifiers belonging to one of the categories. The
identifiers used in each assignment problem were selected by randomly
choosing a row that had not already been used for the current group of 20.
The recall list contained an additional identifier (the not seen identifier)
that was not a member of the category (see second list above).
The impact of word categories is the primary concern and we want to
maximise the impact of differences due to this factor. This means
minimising the impact of other kinds of information (mostly integer
constants) on subject performance. A good approximation to short term
memory requirements is the number of syllables contained in the spoken
form of the information. Choosing single digit integer constants containing
a single syllable minimises their impact on short term memory load.
The integer constants were selected using the same algorithm used to
generate them for the 2006 experiment.

Threats to validity
An experiment that uses semantics as the control variable depends on
subjects recognizing the appropriate semantic content in the problem being
answered. A failure to find a semantic effect in the results may be a
consequence of subjects not recognizing the semantics rather than their
failure to make use of this information.
When asked to list the strategies they used one subject listed a strategy that
suggested they had noticed the semantic similarity between the words in
the identifiers used. The experiment did not include any mechanism to find
out whether other subjects had noticed and used category information.
Other threats to validity are discussed in the write-ups of the 2004 and 2006
experiments [4,5].

Results
Unfortunately the small number of subjects (six) who took part in the
experiment was not sufficient to produce enough data to draw any
statistically significant conclusions from the results. The following
provides a summary of the headline results.
The average professional experience of the subjects was 14.5 years.
The answers for two subjects (i.e., 33% of all subjects) showed a close to
100% of would refer back.
It was hoped that at least 30 people (on the day, 6; in 2006, 18) would
volunteer to take part in the experiment and it was estimated that each
subject would be able to answer 20 problem sets (on the day, 23.2) in 20–
30 minutes (on the day, 20 minutes).
A total of 559 answers to individual assignments were given. The average
number of individual answers per subject was 93.2 with standard deviation
28.1 (95.3 in 2006, sd 38.8), the average percentage of answers where the
subject would refer back was 36% with sd 47.5 (26.3% in 2006, sd 26.7),
and the average percentage of incorrect answers was 6.8% with sd 7.5
(8.9% in 2006 sd 9.5).
The average amount of time taken to answer a complete problem was 51.7
(50.4 in 2006) seconds. No information is available on the amount of time
invested in trying to remember information, answering the parenthesis

sub-problem, and then thinking about the answer to the assignment sub-
problem (i.e., the effort break down for individual components of the
problem).
The raw results for each subject are available on the 2007 experiment’s
web page [7] (they are in the file results.ans; information on subject
experience has been removed to help maintain subject anonymity).

Subject strategies

Discussions with subjects who took part in the 2004 experiment uncovered
that they had used a variety of strategies to remember information in the
assignment problem. The analysis of the threats to validity in that
experiment discussed the question of whether subjects traded off effort on
the filler task in order to perform better on the assignment problem, or
carried out some other conscious combination of effort allocation between
the subproblems. To learn about strategies used during this experiment,
after ‘time’ was called on problem answering, subjects were asked to list
any strategies they had used (a sheet inside the back page of the handout
had been formatted for this purpose).

The responses given to the strategies question generally contained a few
sentences. Four of the six responses mentioned both the assignment and
precedence problem.
The strategies listed consisted of a variety of the techniques people often
use for remembering lists of names or numbers. For instance, sorting the
sequence presented into a regular pattern (e.g., alphabetical) and inventing
short stories involving the words and numbers.
From the replies given it was not possible to work out if subjects give equal
weight to answering both parts of the problem, or had a preference to
answering one part of the problem.

atom chapter comb engine exterior

fence grass hair hot kettle

lizard membrane occult pencil pancil

petrol plastic propeller report room

saddle snake string tail tangent

wax wheel wood

blue red green

chair table sofa

france germany sweden

venus mars jupiter

cow sheep pig

fly wasp bee

robin blackbird sparrow

apple pear banana

second hour minute

oak chestnut elm

january june october

heart lung liver

poker scrabble solitaire

english dutch mandarin

noun adjective verb

shirt trousers dress

spoon knife fork

river stream canal

plumber painter builder

hammer saw screwdriver

Figure 1

An experiment that uses semantics
as the control variable depends on

subjects recognizing the
appropriate semantic content
APR 2008 | | 15{cvu}

Operator Names Influence Operator Precedence Decisions (continued)

The World View of a Java Champion # 3
Conclusion
Because of the small number of subjects who took part in the experiment
is not possible to draw any statistically significant conclusions from the
results (although running the experiment on a Friday seems to be a poor
idea).

Further reading
For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley. An undergraduate level discussion of some
of the techniques people use to solve everyday problems is provided by
Simple Heuristics That Make Us Smart by Gerd Gigerenzer and Peter M.
Todd. An advanced introduction to the use of categories is given in
Classification and Cognition by W. K. Estes. An excellent introduction to
many of the cognitive issues that software developers encounter is given
in Thinking, Problem Solving, Cognition by Richard E. Mayer.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment and those involved in organising the ACCU
conference for making a conference slot available in which to run it.

References
1 D.M. Jones, ‘Operand Names Influence Operator Precedence

Decisions’, C Vu, 20:1 pp5–11, Feb 2008.
2 S. A. Gelman and E. M. Markman, ‘Categories and induction in

young children’, Cognition, 23:183–209, 1986.
3 E. M. Pothos and N. Chater, ‘Rational categories’ in Proceedings of

the Twentieth Annual Conference of the Cognitive Science Society,
pp 848–853, 1998.

4 D. M. Jones, ‘Experimental data and scripts for short sequence of
assignment statements study’, http://www.knosof.co.uk/cbook/
accu04.html, 2004.

5 D. M. Jones, ‘Experimental data and scripts for developer beliefs
about binary operator precedence’, http://www.knosof.co.uk/cbook/
accu06.html, 2006.

6 J. R. Anderson, Learning and Memory, John Wiley & Sons, Inc,
second edition, 2000.

7 D. M. Jones, ‘Experimental data and scripts for operand names
influence operator precedence decisions’, http://www.knosof.co.uk/
cbook/accu07.html, 2008.

8 E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson and P Boyes-
Braem, ‘Basic objects in natural categories’, Cognitive Psychology,
8:382–439, 1976.
Evolving the Java Language: Open Source
and Open Standardisation

Peter Pilgrim discusses the community process.

am writing this article during the recent QCon Conference in London.
Please accept my apologies, if you have been waiting a long time for
the third article in the series.

Last year, I reported on the news from the JavaOne conference. Sun
announced it was returning to innovating on the desktop, especially with
its new rich media language, JavaFX. This year,
it is clear that many experienced folks are
diversifying away from Java. Some people are
migrating away from the Java language and
platform to an alternative technology like Ruby,
because of the Ruby-on-Rails phenomenon.
Others are still living technically on the Java
Virtual Machine (JVM) platform, because they prefer to code in Scala,
Groovy, Jython or JRuby. What is happening here? Well, in my personal
opinion, a lot of the migration is just curiosity, developers wanting to learn
a new exciting language, rumours and news stories. A lot of the time, it is
demanding real-world problems that cause good engineers to look beyond
Java. Other languages like Groovy and Ruby, of course, already offer
closures and dynamic types (so called duck typing: if it walks like duck,
quacks like a duck, then it probably is a duck). A language like Scala can
support functional programming and also the actor model for concurrency.
As a Java Champion, I felt privileged to be on a recent conference call to
hear James Gosling, vice president and creator of Java, talk about the ‘Feel
of Java, Revisited’. In the lecture at Sun’s Santa Clara Campus auditorium,
he described the early foundation of the Green project that would
eventually become Java. The philosophy of language was originally a
programming language designed for blue-collar workers. Gosling
described the dichotomy his team faced bridging the gap between
designing an easy-of-use scripting language (e.g. like the then

AppleScript) versus hard-core computer science compiler language type
(e.g. Lisp / C / C++ / SmallTalk).
It was rather amusing and ironic, now, that Mr. Gosling used the term
scripting language in his presentation in California. If you think back to
1995, then not having to deal with system header files and object linkage

was rather decent. Add to the fact, there was a
portable virtual machine that could interpret
byte-codes, a built-in garbage collector and a set
of core library APIs available by default for any
supporting operating system with a runtime-
environment. There was also rudimentary
networking over sockets, again built-in, being

embeddable in a HTML page, and some semblance of security then it was
all then pretty revolutionary. It is clear that Java was winner, and Gosling
even quipped, ‘Getting bankers to use G.C. Wow! One of the achievements
that I am most proud of’.
So what has caused the migration away from Java? What is the reason that
engineers have decided to move beyond Java in recent times? The platform
was very successful for enterprises and corporations, especially on the
server-side and web applications. There was innovation happening all
around with software islands and third party repositories, examples such
as the Apache Software Foundation, which was open sourced. There were
early interest in server side and mind-share on development. Java was and

I

PETER PILGRIM
Peter is a Java EE software developer, architect, and Sun
Java Champion from London. By days he works as an
independent contractor in the investment banking sector.
Peter can be contacted at peter.pilgrim@gmail.com

if it walks like duck,
quacks like a duck, then

it probably is a duck
16 | | APR 2008{cvu}

{cvu}

is popular today with enterprise computing. Businesses trusted the
platform to run critical operations and vendors created products that ran
on or with Java. There was one crucial arbiter here, a standardisation body
was created in 1997. It was called the Java Community Process.
The Java Community Process is the international body that standardises
new APIs and extra functionality for the Java platform. JCP consists of at
least three Executive Committee groups (ECs), which are composed of
representatives from Sun and non-Sun companies. EC also includes an
individuals or two, who for the most part are independent of any company.
The JCP manages hundreds of Java Specification Requests (JSRs). Each
JSR is managed by specification lead (spec-lead). There can more than one
spec-lead and some are individuals independent from any company.
Anybody, can submit a JSR, which is approved or rejected by one of the
Executive Committees. JSRs take a long time to be completed, because
there is a lot of documentation, protocol and design and requirement to
build a reference implementation and test kit for standardisation. There are
JSRs for almost everything you can think of in Java, for example JSR-275
is about adding a Measurements and Units API as standard to the Java
platform.
Here is the problem: The JCP was not open enough in the earliest days of
Java, circa 1998, it was dominated by employees from very powerful
companies, obviously Sun Microsystems, but also including IBM, BEA,
Oracle, HP and others. Individuals and representatives of open source
project have found it very difficult to influence genuine change in Java.
Because corporations have had their own vested interest in their customers
and profit lines, they have politically not supported or shunned
technologies that were often de-facto, popular or open source. Most of time
these libraries existed outside the JCP body. This has lead to detriment of
support for the JCP, and developers voting with their feet to use de-facto
technologies or follow movements. For instance there were a progression
to not use earlier EJB specifications and associated application servers.
Other engineers innovated with lightweight equivalents such as Spring
Framework and Hibernate for their operational requirements.
So let me bring this story up to date: I am sitting in the QCon conference
where I was invited to participate on a panel discussion of the JCP and its
association with open source and openness. The current chair person,
Patrick Curran, who is a Brit living in Silicon Valley, seems very keen to
introduce change into the standards body. There were a lot ideas that were
exchanged in our session and also at our BOF later in the evening. I
suggested some of my own ideas: make the JCP easier for ordinary
developers and engineers to join. I borrowed one idea that came from
ACCU, perhaps encourage users group through companies to sponsor
standardisation meetings for some of the JSRs. (ACCU supports the ISO
C++ committee with meetings in London.)
The JCP, in my humble opinion, has to be open going forward or else other
companies may decide to form there own standards committee. The JCP
already conflicts with the OSGi Alliance for modularisation and dynamic
extensions JSR 277 and 294. Some corporations have already decided to
do their own thing, such as Google calling its similar language, a Dalvik
executable and neatly circumventing the licensing costs for Java Micro-
Edition for every single popular mobile phone in the market. (See the

Android platform for further details on that.) With the Android platform,
I think that a warning shot has probably already been fired across the bows
of the JCP frigate, that a group of corporations could get together and
decide to develop a successor to Java independently from Sun. With that
they can add an implementation of Closures, Control Abstractions or any
other extensions they can dream up. Unfortunately they cannot call it Java,
because of licensing and intellectual property rights issues, but I fear that
this could have a serious split of the future Java platform, if there is not
enough openness in the Java Community Process.
For the record, there is currently a lot of debate on closure syntax for Java.
I think many Java developers can understand the benefits of anonymous
functions and closures when they are described sufficiently or experienced
in other languages that already have them. There are three prominent Java
closure specifications (BGGA, FCM and CICE). However, closures are
radical department from C++ blue collar language of 1995. There are many
corporations who would love to see it in the JDK 7 or maybe 8, but until
Sun and Google decide to commit real human resources to it, then it is hard
to see this feature appearing any time soon on the Java platform.
Finally, we have reach end of yet another world view. I look forward to
meeting you at the ACCU Conference 2008 in person.
Postscript: The one thing that Sun does have in a favour is the Java Virtual
Machine. Most Java experts consider the JVM the crown jewels of the
entire platform. Sun has hired JRuby developers and has this year recruited
major Python developers , Tim Leung and Frank Wierzbicki (Python on
the Java VM project). This is probably, because Sun also bought MySQL
earlier this year.

References
Here are the URLs:
http://openjfx.org/
https://java-champions.dev.java.net
http://www.jcp.org/ (Java Community Process)
http://www.jcp.org/en/procedures/jcp2 (JCP Procedures)
http://www.jcp.org/en/jsr/detail?id=275 (Measurements and Units

Specification 3.1)
http://www.jcp.org/en/jsr/detail?id=318 (Enterprise Java Beans 3.1)
http://weblogs.java.net/blog/cayhorstmann/archive/2008/03/

feel_of_java_re.html (Feel of Java, Revisited)
http://jaoo.dk/london-2008/conference/
http://jaoo.dk/london-2008/presentation/

Panel%3A+Open+Source+and+Open+Standards
http://www.javac.info/ (Closures for the Java language, BGGA)
http://www.jroller.com/scolebourne/entry/fcm_prototype_available

(First Class Methods closures proposal)
http://jruby.codehaus.org/
http://www.pythonthreads.com/news/latest/sun-invests-into-python-

scripting---hires-jython-developers.html
http://fwierzbicki.blogspot.com/2008/02/jythons-future-looking-

sunny.html (Frank Wierzbicki Blog)
http://www.jython.org/ (Jython project)

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in
Overload, and by a newcomer.

For further information, contact the editors: cvu@accu.org or overload@accu.org
APR 2008 | | 17

18 | | APR 2008{cvu}

Future-Proofing your Python Scripts
Silas Brown keeps your scripts working.

his article briefly outlines how to make your Python code ready for
Python 3 while still able to work on Python 2. As Python 3 is not yet
complete, this cannot be authoritative, but I hope these suggestions

are helpful.
Avoid the print statement, because it’s going to become a
function, so there’s no way to write code that will work in both
Python 2.x and Python 3 (unless you want to introduce multiple
versions of your code).
You can use sys.stdout.write() instead, and remember to
include the newline. (But if you’re using print for logging then
consider writing to sys.stderr, or using the ‘logging’ library that
has been present since Python 2.3.)
dict.keys(), dict.values() and dict.items() will
return ‘views’ (generators) instead of lists. If you must have lists
then you can still get them by saying list(dict.keys()), and
the code shouldn’t run much slower than it does already in either
Python 2 or 3. dict.iterkeys() etc should be replaced by
dict.keys() to work in both versions, albeit at the expense of a
slow-down in version 2.
(Note that in Python 2.4 and up you don’t need to convert a
dictionary to a list just to sort it, because you can use the sorted()
built-in function and that will continue to work in Python 3. But
there are still a lot of current Mac OS X machines out there whose
Python version is 2.3, so I still like to be Python-2.3 compatible if
possible.)
The same goes for range() (xrange will go), and zip()
(iterzip will go). But changing all your existing xrange() calls
into range() calls could give quite a performance hit in Python
2.x, so I suggest doing the following at the start of your code:

 # map xrange to range if it doesn't exist
 #(Python 3)
 try: xrange
 except: xrange = range

file.xreadlines will be called file.readlines. But
changing existing code to say file.readlines() could cause
problems in Python 2.x if the file is very large or is piped output
from a program.
If they don’t keep xreadlines as a backward-compatibility alias,
then you might need to do something like this:

 def xreadlines(fileObj):
 func = getattr(fileObj, 'xreadlines',
 fileObj.readlines)
 return func()
 ...
 for line in xreadlines(
 popen("some-command")): ...

which should work, because you can return an iterator.
dict.has_key will go. Instead of writing dict.has_key(5),
you need to write 5 in dict – and you can start doing this in
Python 2.x.

Make sure you’re not using <> as an alias for !=, because it will be
dropped
There will be no more classic classes. I don’t know whether the
syntax class X: will be modified to make a new-style class, or
whether it will raise an exception. However, ‘new-style’ classes
have been around since Python 2.2, so you can start using new-style
classes now. Simply change class X: to class X(object):
and you should be safe. (The new-style classes also let you do other
things like static methods and computed properties; see the
documentation for details.)
Support for string exceptions will be removed. If you use raise
"message", change it to raise Exception("message") (or
even better, define your own class). This will work in Python 2.x
and 3.
If you do have your own exception types, in Python 3 they must
inherit from BaseException, which doesn’t exist in all 2.x
versions. However, the class Exception does exist in 2.x versions
and will inherit from BaseException in Python 3, so if you now
make sure all your exception types inherit from Exception, you
should be OK.
Dividing an int by an int will return a float. This could break
code that assumes it will be rounded down to an integer.
You need to check all your divisions and see if you need to add
int() around any of them (or consider using shift operators if
you’re dividing by a power of 2, which will give a speed advantage
if the program is to be run on machines with emulated floating
point).
sys.exc_type etc will go, but sys.exc_info() will stay so
switch to using that.
Other things to watch out for: apply, buffer, coerce and input
will all need to be re-written in other ways as they will be deleted.
(You can still use raw_input.)

It’s worth doing the above, especially if you distribute scripts with
 #!/usr/bin/env python

at the top – in the future you will have no idea whether that will invoke
Python 2 or Python 3.

T

SILAS BROWN
Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of computer science at Cambridge University,
where he enjoys the diverse international community and its cultural
activities. Silas can be contacted at ssb22@cam.ac.uk

APR 2008 | | 19{cvu}

Storm in a Teacup
Tim Penhey introduces the wonders of Storm.

torm[1] is an object-relational mapper (ORM) written in Python.
The purpose of an ORM is to provide a simple interface between an
object oriented programming language, python in this case, and a

relational database. One thing that Storm is not is a tool that generates the
SQL schema for you from class definitions.
The Storm website[1] lists the following design benefits:

Clean and lightweight API offers a short learning curve and long-
term maintainability
Storm is developed in a test-driven manner. An untested line of code
is considered a bug
Storm needs no special class constructors, nor imperative base
classes
Storm is well designed (different classes have very clear boundaries,
with small and clean public APIs)
Designed from day one to work both with thin relational databases,
such as SQLite, and big iron systems like PostgreSQL and MySQL
Storm is easy to debug, since its code is written with a KISS
principle, and thus is easy to understand
Designed from day one to work both at the low end, with trivial
small databases, and the high end, with applications accessing
billion row tables and committing to multiple database back-ends
It’s very easy to write and support back-ends for Storm (current
back-ends have around 100 lines of code).

And the following features:
Storm is fast
Storm lets you efficiently access and update large datasets by
allowing you to formulate complex queries spanning multiple tables
using Python
Storm allows you to fall-back to SQL if needed (or if you just
prefer), allowing you to mix ‘old school’ code and ORM code
Storm handles composed primary keys with ease (no need for
surrogate keys)
Storm doesn’t do schema management, and as a result you’re free to
manage the schema as wanted, and creating classes that work with
Storm is clean and simple.
Storm works very well connecting to several databases and using the
same Python types (or different ones) with all of them
Storm can handle obj.attr = <A SQL expression>
assignments, when that’s really needed (the expression is executed
at INSERT/UPDATE time)
Storm handles relationships between objects even before they were
added to a database
Storm works well with existing database schemas
Storm will flush changes to the database automatically when
needed, so that queries made affect recently modified objects.

These are bold claims indeed. In this article I’m only going to cover some
simple Storm usage, however I think that it would be great if someone else
(or two) would take up a challenge to either prove or disprove some other
of these claims.

Getting Storm
I am not aware of any packages at this stage to install Storm (on any
operating system). Storm is available as a Bazaar[2] branch from
Launchpad[3]. As long as you have a relatively up-to-date Bazaar client
(1.0 or later), you can get the storm branch using:
 bzr branch lp:storm

This will create a directory called storm in the directory that you executed
this command. In this directory there are the normal files that you expect
to see in open source software, such as LICENSE[4], NEWS and README.
You will also find a directory called storm that is the Python module, and
a python script called test, along with a tests directory. Running
./test took around 19 seconds on my somewhat slowish VAIO laptop
and executed the 1845 test cases and the 131 doctests, so I can attest to the
claim that the code is tested, but I can’t say what the coverage is like.

Trying out Storm
Before we go much further, it is worth checking that we can import Storm.
For these examples I’m just running the python interpreter from the
directory that was created when I grabbed the code. Alternatively you
could add that directory to the PYTHONPATH environment variable.

 >>> import storm
 >>> storm.version
 '0.12'

For a database I’m going to use an in-memory SQLite[5] database. To get
the python bindings for SQLite (for Ubuntu at least) install the python-
sqlite package.
A number of the code examples shown here are taken from the Storm
tutorial[6]. We will start by defining a Person.

 >>> from storm.locals import *
 >>> class Person(object):
 ... __storm_table__ = "person"
 ... id = Int(primary=True)
 ... name = Unicode()

Storm requires the classes to be ‘new style’ as it uses descriptors internally,
and descriptors do not fully work with old style classes. Looking at the
class definition above, i t looks fairly normal except for the
__storm_table__ member. This is a special member variable that
Storm looks for to identify the underlying table that is going to get new
rows when we store the instances. I used the term store deliberately as a
store is a core part of how the code interacts with Storm. The store is the
primary interface to the database, and it manages transactions with
commit and rollback, caching as well as other high-level functions
such as querying with find. A store is created with a database
instance, and a database is created with the create_database
method. Creating an in-memory SQLite database is very simple:
 >>> database = create_database('sqlite:')

S

TIM PENHEY
Tim is currently working for Canonical on Launchpad doing
interesting things with Python, Zope and Bazaar. Tim lives in
New Zealand, supports the All Blacks, and doesn’t get
enough exercise. Tim can be reached at tim@penhey.net

An untested line of code is
considered a bug

Desert Island Books
Jez Higgins plans for a long stint alone.

 ll of us know Jez. Either personally or as ACCU chairman. He needs
little introduction, but I nagged him for a profile anyway.

Jez works in his attic, living the on-and-off life of a journeyman
programmer. He is currently teaching himself how to make
balloon animals. In April 2006, he became ACCU Chair. His
website is http://www.jezuk.co.uk/

I would add to that that Jez has been, and continues to be, one of the
significant people in my career and I owe him much. I thoroughly enjoyed
reading about his selection of books and he inspired me to buy the first
book he mentions.

Paul Grenyer

Jez Higgins
Da-da-da-deeee-da-da-deeee!
Stranded on a desert island with a handful of books and a couple of oggs
on a memory stick. It’s a prospect that’s both alarming and seductive.
Fingers crossed for a reasonably temperate island (although I guess that
might not meet the accepted definition of desert) because I’m not
desperately happy in the sun. I’m English, you know.
The first two books I’d grab are Software Tools in Pascal by Brian
Kernighan and P J Plauger [1] and Jon Bentley’s Programming Pearls [2].
If you are spending an indeterminate length of time on this island, you need
books you can read and re-read. Since I have already read and re-read both
books and look forward to reading them again, I reckon they’ll stand that
test.
Although I’d heard of and had flicked through both books beforehand, I
first encountered them properly a bit over 10 years ago. I was working for
Zuken-Redac, one of those world leading companies you’ve never heard
of. The work, on part of a PCB/MCM/EDA [3] suite, was both hard and
interesting. The code was in several layers, and the further down you went
the further back in time you traveled. At the top was the user interface and
user scripting layer, written in a proprietary Forth variant. Next to the Forth
interpreter was the heart of the application, which was based around a
Smalltalk-like object system, complete with virtual message dispatch,
meta-classes, and garbage collection, all written in C. That was
simultaneously very clever and highly confusing. Buried in a comment in
the depths of the source was a reference to the famous Smalltalk issue of
Byte [4], which had apparently inspired the whole thing. Somewhere else

A

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
20 | | APR 2008{cvu}

And creating a store for that database is also quite simple.
 >>> store = Store(database)

We can execute arbitrary SQL using the store, and we’ll do so to create
the person table.
 >>> store.execute('CREATE TABLE person '
 ... '(id INTEGER PRIMARY KEY, '
 ... ' name VARCHAR)')

This returns a result set that we can safely ignore (it actually contains a
single result of no values). Now we have somewhere to put our people,
let’s create one.
 >>> eric = Person()
 >>> eric.name = u'Eric the Viking'
 >>> print eric.id
 None

Eric initially has no id, as you’d expect from the code. To add Eric to the
database we use the add method on the store.
 >>> store.add(eric)
 <__main__.Person object at 0x82a2bac>

Getting Eric out of the database uses the store find method. The find
method returns a ResultSet. A ResultSet has a convenience method,
one, that extracts the sole item in the result set. Since the item being

searched for is in fact Eric, Storm is smart enough to return a reference to
the single instance of Eric.
 >>> rs = store.find(Person,
 Person.name == u'Eric the Viking')
 >>> rs.one() is eric
 True
 >>> eric.id
 1

Conclusion
Now that is just the briefest of tastes of Storm. There are many more things
that Storm can manage for you. If you want to see more, you can wait for
the next article, or get Storm yourself and have a play following the
tutorial.

Notes and references
[1] http://storm.canonical.com
[2] http://bazaar-vcs.org
[3] https://launchpad.net
[4] Storm is licensed under the GNU LGPL 2.1
[5] http://www.sqlite.org
[6] https://storm.canonical.com/Tutorial

Storm in a Teacup (continued)

{cvu}

there was an object persistence layer which stashed things into an Informix
database. That was written in C++. Right down in the bowels was a whole
load of genuinely pre-ANSI C. Regardless of any opinion you might have
formed of the code from this description, it was stable and worked really
well. Indeed, I believe it’s still in use. The code was also portable across
pretty much every flavour of Unix then around, regardless of integer size
or endianess. It was though, with the exception of that reference to Byte,
almost entirely undocumented. Of course. I spent the first two weeks on
the job writing Perl scripts to parse out the data structures that defined the
Smalltalky objects, building myself a nice little inheritance diagram. After
that I was able to cull out a load of unused classes left over from another
application, and things became a little clearer.
So it was fun, if rather tiring. Every couple of hours, my colleague Steve
(charged with porting the whole shebang to Window NT) and I would stroll
the length of the corridor to the Double-Decker and
coffee vending machines for a 10-second oil break.
The part of the building we were in was largely
deserted, and we rarely saw anyone else. One day,
though, we bumped into a lady as she emerged from
an adjacent door. She was, she revealed, the company
librarian and behind the door was the company library,
which we were welcome to use whenever we wished.
To be honest, most of the library’s books weren’t particularly scintillating:
old VAX manuals, ageing electronics text books, that kind of thing. There
was the odd little gem, if you looked hard enough, and that's were I first
found and read these two books.
Software Tools in Pascal stands re-reading because it has, unusually for a
technical book, a terrific narrative. It starts with a tiny task – copy
everything from the console input to the console output – and presents the
correspondingly tiny program. Step by step, program by program, you
arrive at the end of the book with an ex-like line editor, a roff-style print
formatter, and a macro processor. En route, you take in filtering, file
archiving, sorting, and regular expressions. Each incremental step seems
so logical and the code presented is so clear, that you just want to keep
reading. Ordinarily, I find large chunks of code in a book rather tedious,
but Kernighan and Plauger’s code is a joy. The lessons it imparts on
simplicity, clarity, efficiency, on tools and the Unix philosophy, in
common sense, how each decision effects the finished program – well, they
are at the core of what we do, and how we should think about programming.
Bentley’s book is similarly stimulating. Programming Pearls is a
collection of columns written for the ACM and so, while there are several
running themes, each one stands largely by itself. In each column, Bentley
presents some problem, and examines various solutions, before ending
with further questions for the reader. They’re not trick problems with a
single definite answer hinging on some detail of operator precedence or
something equally trivial. Instead, Bentley takes some field of
programming, often something quite common and that you will have
encountered, and picks it apart, illuminating the darker corners, revealing
the core of the problem. Like Kerninghan and Plauger, Bentley delights
in simplicity, elegance, clarity without ever jamming them down your
throat, and he writes with intelligence and a certain wit. Having read it
cover to cover, I still dip into it periodically for inspiration and it never
fails energise and enthuse.
I don’t know if my choosing two books written over 25 years ago says
anything about me, or about the state of the programming books, or simply
reflects badly on my technical library. I’m not aware, with the exception
of Kernighan’s other work, of similar books. I’d welcome suggestions for
when I make it back to civilisation.
Philip and Alex’s Guide To Web Publishing [5] is my third choice. I’ve
built web interfaces but I’m not a web designer. I’ve build a number of
e-commerce apps but I’d never describe myself as a web programmer. I
have a website but I wouldn’t say I was a web publisher. Nonetheless, I
really enjoy this book. Greenspun is clever, and cocky, and funny, and he
talks a lot of sense about building websites. Alex is his dog. It a good
looking book too, it’s probably the only technical book you can leave out
on your coffee table.

I’m assuming that I was washed up on this island with some kind of
computer and development environment. Perhaps a little Asustek EEE[6]
with a little solar panel. Maybe a jerry-rigged Trevor Baylis-style
clockwork gizmo for when it’s raining. My off-hours project for the past
couple of years has been writing an XSLT processor in C++[7]. If I’m
going to have some serious time to spend on it, I might as well go the whole
hog and have a crack at an XSLT 2.0 processor, which makes my fourth
choice the XPath 2.0/XSLT 2.0/XQuery specifications. There aren’t a
huge number of XSLT 2.0 processors around, and so it’d be nice to come
back and join that little club. There’s also something stimulating yet
relaxing about coding up a standard. I can’t quite explain why – it’s
something to do with trying to implement something that can be quite
rigorous and challenging, whilst secure in the knowledge that the
requirement isn’t going to change once you’ve done it.

My choice of novel is Don DeLillo’s Underworld [8].
I bought the book a few years ago, stashing it on my
pile of stuff to read. Several of my friends had copies
and were raving about how good it was, although it
subsequently emerged not all of them had actually read
it. I kept putting it off too – its 800+ page bulk is rather
daunting. Some time later, I saw my then boss had a
copy on his desk. He confirmed he had read it and when
I asked what it was like, he didn’t reply directly saying

“it’s the kind of book you read at a particular time in your life”. Having
read it, being stuck on an island might be the time to read it again.
Pete Seeger’s Song and Playtime [9] and Bob Mould’s Workbook [10] are
my album choices. I like to sing, but I don’t have any great range and my
ability to hold a tune varies on a day-by-day, sometimes hour-by-hour,
basis. Seeger, of course, is a towering figure in American folk and strongly
believes in the power of music and song as an agent of political and social
change. He never forgets, though, that music is fun. Song and Playtime is
a collection of children’s songs. The arrangements are very simple, often
simply Seeger’s voice, somet imes with banjo of hand-clap
accompaniment, but every one fizzles with sing-a-long energy. You just
can’t help but sing, or tap your foot, or dance. It’s a wonderful record. Bob
Mould’s appeal is, I grant you, not as universal. While his name might not
be familiar, it’s quite like you have things in your own music collection
that bear his influence. Me, I love the man dearly, and I’d take this
throbbing, angry, reviving album with me wherever I was stranded.

References
[1] Software Tools in Pascal by Brian W Kernighan and P J Plauger,

Addison Wesley Professional. ISBN 0-201-10342-7. Used copies
selling for pence on Amazon, around £20 new.

[2] Programming Pearls 2nd Ed by Jon Bentley, Addison Wesley. ISBN
0-201-65788-0. Around £20.

[3] Printed circuit board/multi-chip module/electronic design
automation – circut board layout and design tools.

[4] Extracts are available from http://www.byte.com/, including Larry
Tesler on ‘The Smalltalk Environment’ at http://www.byte.com/art/
9608/sec4/art3.htm.

[5] Philip and Alex’s Guide To Web Publishing by Philip Greenspun,
Morgan Kaufman. ISBN 1558605347. Available online at http://
philip.greenspun.com/panda/

[6] Assuming they ever get them back in stock.
[7] Arabica, http://www.jezuk.co.uk/arabica. You might have seen me

mention it before.
[8] Underworld by Don DeLillo, Picador. ISBN 0330369954.
[9] Pete Seegar’s Song and Playtime, originally released in 1960 was

remastered and release on CD by Folkways in 2001
[10] Workbook by Bob Mould, Virgin Records, 1989

Next issue: Kevlin Henney picks his desert island books.

it’s the kind of book
you read at a

particular time in
your life
APR 2008 | | 21

Code Critique Competition 51
Set and collated by Roger Orr.

book prize is awarded for the best entry.
Please note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to

comment on published entries, and to supply their own possible code
samples for the competition (in any common programming language) to
scc@accu.org.

Last issue’s code
I’m trying to sort a C# KeyedCollection generic class but I find
sometimes the sorting seems to hang. Can you suggest what I’m doing
wrong?

There are at least two major problems with the code but, as always, try to
help the writer help themselves. The code is shown in Listing 1.

Critique
There was only one critique this issue. Come on, readers, I’m sure that
more than one of you could have put fingers to keyboard and supplied a
critique of this code!

A

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

 for(int i=1;i<base.Count && sorted;i++){
 Collection<object> collection = this;
 object object1 = collection[i-1];
 object object2 = collection[i];
 object[] key1= GetKeyForItem(object1);
 object[] key2= GetKeyForItem(object2);
 for (int j=0; j<fields.Length; j++) {
 IComparable key =
 key1[j] as IComparable;
 if (key != null) {
 if (key.CompareTo(key2[j]) > 0) {
 base.RemoveAt(i);
 base.Insert(i-1, object2);
 sorted = false;
 break;
 }
 }
 else {
 throw new Exception();
 }
 }
 }
 }
 }
}
public class TestColl {
 private string firstname;
 private string lastname;
 public TestColl(string name) {
 this.firstname = name.Split(' ')[0];
 this.lastname = name.Split(' ')[1];
 }
 public override string ToString() {
 return string.Format("{0} {1}",
 firstname, lastname);
 }
 public static void Main(string[] args) {
 try {
 test();
 }
 catch (System.Exception ex) {
 System.Console.WriteLine(ex);
 }
 }
 private static void test() {
 FieldCollection coll = new
 FieldCollection(new string[]
 {"lastname", "firstname"});
 coll.Add(new TestColl("Roger Orr"));
 coll.Add(new TestColl("Alan Griffiths"));
 coll.Add(new TestColl("Tim Penhey"));
 coll.Add(new TestColl("Kevlin Henney"));
 // Doesn't sort if I add this one:
 // coll.Add(new TestColl("Jez Higgins"));
 coll.Sort();
 foreach (TestColl test in coll) {
 System.Console.WriteLine(test);
 }
 }
}

Listing 1 (cont’d)

using System;
using System.Collections.ObjectModel;
using System.Reflection;
public class FieldCollection :
 KeyedCollection<object[],object> {
 private string[] fields;
 public FieldCollection(
 params string[] fields) {
 this.fields = fields;
 }
 protected override object[] GetKeyForItem(
 object item) {
 object[] keys =
 new object[fields.Length];
 for (int i=0; i<fields.Length; i++) {
 string field = fields[i];
 FieldInfo fieldInfo =
 item.GetType().GetField(field,
 BindingFlags.Instance |
 BindingFlags.NonPublic |
 BindingFlags.Public);
 keys[i] = fieldInfo.GetValue(item);
 }
 return keys;
 }
 public void Sort() {
 bool sorted = false;
 while (!sorted) {
 sorted = true;

Li
st

in
g

1

22 | | APR 2008{cvu}

Simon Sebright <simonsebright@hotmail.com>

Cor blimey govenor, wot kinda language is this? Usually you come with
C or C++, this is a turn up for the books. Hmm, so what seems to be the
trouble, then?
The code? Did you? Aha, let’s have a look in the Inbox. Oh, it’s in the spam
folder! Anyway...
... Right, what do you want me to do?
Tell you what’s wrong! You must be joking! No, you are going to tell me
how to fix it, and fix it. Right, what is this code all about then?
OK, so you’ve got these objects you want to sort. How?
Oh, I see, you want to sort them based on the fields in the objects. What’s
all this KeyedCollection stuff, then?
Ah, so it’s in MSDN. Yes, but tell me what you are doing with it.
Ah, you found a base class for object which can be stored in a dictionary,
where the key for the dictionary is in the object. Clever, saves space, I
suppose.
Hmm, but you are not putting these things in a dictionary.
Yes, I see, you have written a sort function. And very good, you have some
test code. Super. So, what exactly is going wrong? It’s hanging? Hmm, I
don’t think so. What have you done about it?
Lazy so-and-so. Right , le t ’s see . How about you pop tha t
System.Console.WriteLine() stuff into your Sort() function
loop? Then you might see what is going on...
... Oh, hello, found anything with that? Ah, good, what’s happening?
Really, the values keep getting changed around in order? Hmm, that’s not
hanging is it? What do you think is going on?
Well, of course your Sort() function isn’t working! It can’t be much else,
can it? Students! Now, take a deep breath and tell me what it is supposed
to do. Sort, I know, but how?
Right, so you get this list of values from each object based on the field
names. I like that, a bit of reflection. Nice. What happens with these values?
What’s this outer loop doing? I must say, this sorted flag is rather naff. I
haven’t seen anything that bad since your last C assignment. Come on, let’s
have it out.
OK, that’s a loop till you’ve sorted it out. Ha ha, excuse the pun. So, getting
serious, we have a loop on i for the objects being sorted and a loop on j
for the fields in the objects. You appear to be moving through the fields
and swapping objects if they are in the wrong order based on the fields.
Hello?
Yes, not got it yet? What causes the problem? It’s this Jez Higgins fellow,
is it not? Why him? What problem is he exposing? Take a look at that print
out again – what’s happening every time round the while loop? Yes, Jez
and Kevlin are trading place. Why?
OK, which comes first, Jez or Kevlin? Right, Jez. Now, which comes first
Higgins or Henney? Right, Henney. So?
Yes, you are not giving precedence to any of these fields: when they are
in contradictory orders, they simply argue till the cows come home.
Woh, stop, halt! Not so fast. Let’s look at what you could have done better,
huh? Let’s face it, there’s some good stuff here, but also some code which
would make the coolest cucumber sweaty.
Do you like writing sort algorithms? Not me – it’s too easy to make a mess
of it, as you did. I’d have used something else to sort it for me. Perhaps
popped them into a SortedDictionary, or used Array.Sort.
I also think you could have used a better data set. Paul Simon and Paul
Smith, with John Smith lurking there as well. Then you would have had
to think about how to handle the ‘nested’ sort.
Hang on, what’s the rush? Don’t you think that GetKeyForItem() is a
b i t f i shy sending back an ob jec t a r ray? Wouldn’ t tha t be
GetKeysForItem()? How can an object array be a key?
Names, names, these youngsters don’t know what they can mean...

Commentary
It doesn’t seem from the response to this critique that there are a lot of C#
programmers in ACCU – or perhaps there are, but they are either busy or
shy.
The most ‘interesting’ piece of this code was the sort algorithm. I literally
laughed out loud the first time I saw this code (maybe I should get out
more…) As Simon points out, it is almost always better to use a standard
library for sorting than writing the code yourself. The original problem
presented by the writer is that adding another name to the list stops the
sorting working.
The first problem is that the inmost loop is supposed to the comparing the
keys, and swapping over the i and i+1 items. This the logic has one check
– checking if key1[j] is greater than key2[j] for each element of the
keys.
Let’s see how this works in the test program. If the first key is
("Henney", "Kevlin") and the second is ("Higgins", "Jez")
then the first comparison is false and the second is true ("Kevlin"
> "Jez"). The code swaps them over, and then starts again, this time
checking ("Higgins", "Jez") against ("Henney", Kevlin").
This time the first check is true, so the names are swapped – again!
The missing piece of the algorithm is that only if key[j] is equal to
key2[j] should the next element of the key be checked. Fixing the code
is easy, simply add an else clause as shown:
 IComparable key =
 key1[j] as IComparable;
 if (key != null) {
 if (key.CompareTo(key2[j]) > 0) {
 base.RemoveAt(i);
 base.Insert(i-1, object2);
 sorted = false;
 break;
 }
 else if (key.CompareTo(key[2]) < 0) {
 break;
 }

However the code is so inefficient and broken that I’m not sure I want to
fix it. Let’s unpack the algorithm. (1) The code loops until the collection
is sorted. (2) On each loop every pair of items is checked until the first pair
that is out of order. (3) This pair of items is swapped and the loop restarts.
This is a very poor sorting algorithm already but in addition the code to
fetch the key (GetKeyForItem) uses runtime reflection to get the key on
every invocation. Leaving aside whether this is a good idea or not, each
key is being fetched many times in the loop with an associated overhead.
The class as written is also broken: after inserting the first TestColl into
the collection the dictionary-like indexing method won’t find it again:
 object[] key = new object[]{"Orr", "Roger"};
 object found = coll[key];

This code throws a KeyNotFoundException which might surprise you
at first. The reason though is that using an object[] as a key is not really
viable – the Equals method on arrays just checks if the object references
are identical. We need to be able to compare keys based on the values.
So the first change is to create a Key class that holds the object[] and
provides a sensible Equals method, looking something like this:
 public override bool Equals(Object obj) {
 Key key2 = obj as Key;
 if (key2 == null) {
 return false;
 for (int i = 0; i != key.Length; ++i) {
 if (! key[i].Equals(key2.key[i])) {
 return false;
 }
 }
 return true;
 }
APR 2008 | | 23{cvu}

Then the FieldCollection can be changed to take a Key rather than
an object[].
Now we can think about a better way to do the sorting! The first refactoring
is to move the comparison of keys into the Key class itself:

 public int CompareTo(Object obj) {
 Key key2 = obj as Key;
 int result = 0;
 for (int i = 0; i != key.Length; ++i)
 {
 Object key = (IComparable)key[i];
 result = key.CompareTo(key2.key[i]);
 if (result != 0)
 break;
 }
 return result;
 }

This makes the sort code simpler, but let’s think about a better way.

The C# runtime includes a set of useful Sort methods in the
System.Array class. The one that fits best here is:
 public static void Sort (
 Array keys,
 Array items)

So the sort method becomes: create an array of the keys, create an array
for the items, sort the keys and items and then re-fill the collection with
the sorted values. Here is an example:

public void Sort() {
 Object[] items = new Object[Count];
 Dictionary.Values.CopyTo(items, 0);

 Object[] keys = new Object[Count];
 for (int i = 0; i != Count; ++i) {
 keys[i] = GetKeyForItem(items [i]);
 }

 Array.Sort(keys, items);

 Clear();
 foreach (object item in items) {
 Add(item);
 }
}

The resultant code is a lot simpler to understand, and also is a lot faster to
execute although it does require a little bit more memory during the sort.
For interest I sorted a collection of 1,000 names: it took less than 0.4s with
the new algorithm and over 3 hours with the old, fixed, one. I could
probably sort 1,000 names faster without a computer!

The Winner of CC 50
I liked the entry Simon supplied, which covered a lot of the problems with
the code and the programmer’s attitude while also being entertaining.
There being no other entrant I duly declare Simon the winner.

Code Critique 50
(Submissions to scc@accu.org by May 1st)
For a slight change I presented a C# critique last time in the hope that a
different language might encourage some new readers to attempt their first
entry, but as this failed I’ll revert the usual C/C++ !

I’ve written a simple program to count words and it works fine, but when
my friend tries it she says it won’t compile. Her compiler complains that
count is ambiguous [at (1)] and no matching operator++ found [at (2)].
What’s wrong with the compiler?

Can you help answer the question?
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <iterator>
#include <set>
#include <string>
#include <iostream>

using namespace std;

class count
{
 int i;
public:
 count() : i() {}
 void operator++() { ++i; }
 operator int() const { return i; }
};

class word : public string, public count
{
};

ostream& operator<<(ostream& os,
 word const & w)
{
 return os<<string(w)<<": "<<count(w); // (1)
}

int main()
{
 set<word> words;

 word curr;
 while (cin>>curr)
 {
 ++(*words.insert(curr).first); // (2)
 }
 copy(words.begin(),words.end(),
 ostream_iterator<word>(cout,"\n"));
}

Listing 2
24 | | APR 2008{cvu}

Beginning Google Maps Applications
with Rails and Ajax
Andre Lewis, Michael Purvis,
Jeffrey Sambells, Cameron Turner,
Apress, ISBN 1590597877

Reviewed by Simon Sebright

It took me a while to review this
book, as its topic is quite
specific and I didn’t know
enough of the technologies to make sense of it.
So, in the meantime, I got a couple of books on
Ruby and Rails, and then continued the review.
Google have published the API for their web-
based maps technology, allowing you create
your own web sites/applications. This book
takes you through the process of creating the
‘Hello World’ Google maps application, adding
interaction via Ajax, and goes on to cover some
advanced mapping concepts, which you may
need to produce a heavily-used site, or to
provide your own datasources. Geocoding is
covered, using a number of sources including
Google’s own and Yahoo’s.
Source code is provided online, although it
didn’t always match what was in the book, and
it wasn’t clear which stages of the chapter the
various folders referred too, but it did build and
run.
The positioning is that you know Rails and
therefore Ruby and are comfortable creating and
running Rails applications. They do give you
some guidance, and I managed to muddle
through. JavaScript and Ajax are introduced on
a more gentle basis, as is the Google maps API,
which is documented in more detail as an
Appendix.
Generally, I found the book competent, and
described the concepts well.
The different chapters sometimes build on the
previous ones, sometime start something new,
so you have to pay attention to what the code is
and where it is supposed to go.
Using some of the ideas, I had a play with a
couple of ideas I had and made some good
progress. A lot of bits and pieces are required for
these applications, particularly if you want them
to look good. There’s Rails, with Ruby, Rake,
etc. Then the maps API is JavaScript-based.

Then there’s CSS to present your pages, then
there’s more JavaScript to do some presentation
where CSS isn’t rich enough, some Ajax to talk
to the server, etc. For that reason, I sometimes
found myself a bit lost as to where to turn to
change something. As mentioned above, the
code online didn’t always tally with what was in
the book, and where all these bits and pieces
come together, that did make a difference.
Perhaps that illustrates a weakness of this type
of application.
Overall, though, if you are planning to produce
a website based on mapping concepts, this
would be an excellent book to start with. For
others, as it was for me, it’s an interesting topic
to read for its own sake, but doesn’t have enough
depth of any particular technology (ruby,
javascript, Ajax, etc.) to serve as a reference.
That said, if you have some knowledge of these
things, having them all put together to create a
working application might be something useful
to read about here.

Moving to Free Software
by Marcel Gagne, published by
Addison Wesley,
ISBN 0-321-42343-7

Reviewed by Ian Bruntlett

I’ve been putting free software
onto a mental health charity’s
(http://www.contactmorpeth.org.uk/) clients’
PCs for nearly two years now and shipped about
a hundred free PCs to them. I’ve personally built

up a small library of useful programs and so I
looked forward to reviewing this book and
discovering new F/OSS gems.
This book comes with a DVD of F/OSS
programs and, in general, it dedicates a chapter
to each program. Some exceptions are 1) all the
games are bundled together into one chapter and
2) OpenOffice isn’t completely covered (but it
does give chapters to Writer, Calc, Impress and
Base)
To cut a long story short, here are the subjects
and relevant programs that come with the book.

Internet: FireFox (web browser),
Thunderbird (email client), Gaim (IM),
Skype (VOIP), NVU (Web Site Design)
OpenOffice.org: Writer (word processor),
Calc (spreadsheet), Impress(similar to MS
PowerPoint), and Base (similar to MS
Access)
Audio: CDex (CD Ripper and Audio
Converter), Audacity (Podcasts), Juice
(Podcasts)
Graphics: GIMP (like MS Paint),
Inkscape (vector graphics), Scribus (DTP)
Utilities : 7-Zip, (compressing files),
SpyBot (anti-spyware), ClamWin
(antivirus)
Linux : Ubuntu Linux. One of the easier
Linux distros available.

To finish it off, the following games are
provided:
PlanetPenguin Racer, FreedroidRPG,
Armagetron Advanced , Super Tux, BZFlag,
Fish Fillets : Next Generation, Neverball and
Neverputt, SolarWolf and Flightgear

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops
The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
APR 2008 | | 25{cvu}

So that’s what the book is good at. What are its
weaknesses?
This book should mention:

which versions of Windows the programs
are compatible with
what are the minimum hardware
requirements
what other programs do they rely on
(GIMP relies on GTK)

The author really should have some way of
enabling readers/users of this book to contact the
author to tell him about incompatibilities and
share workarounds – possibly a web site with a
forum on. Don’t expect to give this book to a
non-technical friend and have all the programs
work. You’ll need to do some technical
handholding and an internet connection is
definitely needed to download apps that aren’t
fully on the disk (the DVD has GIMP on it but
not the GTK toolkit that GIMP requires).
Verdict: Recommended.

Fundamentals of Global Positioning
System Receivers: A
Software Approach
by James Bao-Yen Tsui, Published
by John Wiley & Sons, ISBN
0471381543

Reviewed by Colin Paul Gloster

This is a fairly small and
accessible book on the
techniques necessary for making your own
civilian GPS receiver. MATLAB is the
language used and though the principles are
transferable, the presented source code would
not be efficient enough to use in an embedded
product. The book’s code could probably be
used for verifying your own implementation,
though I have not checked whether the book’s
code really works. The emphasis in the book is
on explanations which are easy to understand in
preference to optimal algorithms.
Overall, the book’s aims seem to have been
achieved, though most of the equations contain
one- or two-letter variable names (many of
which are from ancient Greek) and the naming
policy for the MATLAB code is not much better.
For example, one variable is called rao which
is described in a comment as ‘the pseudo-range’
but the Greek letter rho is used for this in the
body of the book. Perhaps rao is a synonym for
rho but I have not found it in other books, and
anyway, pseudorange would had been a
better variable name. Another variable is named
erro and I do not know what benefit the author
perceived he was gaining by not typing error
instead. On page 30 a clue is given as to why
inappropriate names were used... an upside-
down question mark appears where a ‘less than’
sign was supposed to be (as this is the absurd
default treatment by LaTeX of the < character).
Section 2.14 is dominated by a discussion of
how to obtain optimum precision from an
unpopular less precise technique and does not

give the impression that it is computationally
easier. As mentioned above, I have not
scrutinized the programs. Nor have I scrutinized
the calculations. I did notice that it was
incorrectly claimed on page 51 that 2 divided by
0.683 is approximately 29.28 whereas 2 divided
by 0.0684 equals approximately 29.23 is closer
to the truth. Somehow, the order of magnitude
difference between 0.683 and 0.0684 did not
propagate through to the final answer. A similar
intermediary mistake leaving the final answer
unaffected is on page 34. Table 3.1 contains
mistakes but the associated text and numbers in
the main body of the chapter are fine. On page
34, something which could pedantically be
classified as a mistake is a measurement of a
solid angle (a three dimensional counterpart to
an angle) in degrees instead of steradians (as a
steradian is a unit of solid angle instead of angle,
it is different from a radian). It is fairly clear
though: it is like saying that the distance between
two towns is one hour.
The bulk of this review comprises of criticisms
partially because I was showing off. The book
is intended to be a practical introduction to the
principles underlying GPS receivers and this is
accomplished. So the practical necessity of
converting GPS coordinates to layman’s
geographic coordinates is mentioned but a map
of commercial value is something which you
would need to acquire or make yourself. Other
things are treated adequately but briefly, for
example fewer than three pages are given over
to distortions caused by the ionosphere. The
ionospheric part of the book is just for the typical
exploitation of GPS as a positioning system
instead of its alternative use as an instrument to
measure slant total electron contents through the
ionosphere.

C++/CLI in Action
By Nishant Sivakumar, published
by Manning, ISBN 1932394818

Reviewed by Seb Rose

Expert Visual C++/CLI:
.NET for Visual C++
Programmers
By Marcus Heege,
published APress,
ISBN 1590597567

Reviewed by Seb Rose

Both books are targeted at experienced Visual
C++ developers and they both have extensive
coverage of getting native and managed code to
interoperate. This is no surprise, since it’s
unlikely that many people will use C++/CLI to
write new code that targets .NET, due to the
added complexity and (relatively) poor support
from the Visual Studio IDE.
I read Heege’s book first and found it clear,
concise and very dry. There aren’t many jokes
in the 352 pages, but I don’t think I found a
redundant paragraph either.
The first chapter gives an overview of the .NET
landscape and how C++/CLI fits into it. He gets

right into details of source file and object file
compatibility and gives you a flavour of the
power and flexibility of this binding.
The next 5 chapters cover all aspects of the
managed environment. It’s not rocket science,
but is necessary to give an old-school C++
programmer enough knowledge to see what’s
going on. At the end of these chapters you will
be able to write managed C++/CLI programs.
Chapter 7 shows how to extend native Visual
C++ projects with managed code. There’s in
depth coverage of compilation models, compiler
switches and exception handling. There’s also a
handy step-by-step guide to modifying your
Visual Studio project to get it all working, which
includes trouble shooting tips that really help.
(Try finding Configuration Properties|Linker
|Advanced|CLR Thread Attribute on your own
when the CLR initializes the wrong COM
apartment!)
Chapter 8 shows you how to create hybrid types
that (appear to) have native and managed
members. It’s all smoke and mirrors (until/
unless the unification hinted at in Herb Sutter’s
Design Rationale gets implemented), but is
fairly simple to grasp. There are even some
lovely MFC macros that allow your native types
to handle managed events.
Chapter 9 dives deep into the mechanics of
interoperation, covering thunks, double
thunking and calling conventions (among
others). There are quite a lot of pretty pictures of
managed-unmanaged transitions and another
hefty dose of Common Intermediate Language
(CIL, latterly known as MSIL). He walks
through each transition type and, though you’ll
need to go back to it several times before it sinks
in, he makes it clear and comprehensible.
Chapter 10 covers wrapping native libraries so
that they can be accessed by managed callers. He
discusses design concerns that aren’t strictly
anything to do with C++/CLI or even .NET, and
touches on CLS compliance. There’s clearly
going to be a lot of marshalling going on as
objects make their way across the managed/
unmanaged boundaries and he covers the library
facilities that make this easier. This has all got a
lot neater in Visual Studio 2008 with the
template driven marshall_as library.
Chapter 11 introduces some techniques and
library facilities for managing resources
including IDisposable, Finalizers and the hugely
useful SafeHandle. He also covers how to
handle the various .NET asynchronous
exceptions in an approved way, which is
probably more than most developers need to
know.
By the time you get to chapter 12 (the last
chapter) you’d hope things were getting so
esoteric that you could just skim over it, but
you’d be wrong. Here he covers application
startup and describes the various idiosyncracies
of initializing the CRT depending on
compilation model and whether you’ve built a
DLL or an EXE.
26 | | APR 2008{cvu}

The first appendix is a really useful utility that
helps you modify machine settings so that you
can run mixed-mode applications from network
shares. The second appendix details a small app
he wrote to measure the performance of thunks.
Finally, the index is adequate, and APress offer
a PDF version of the book for US$10.
Having read Heege’s book a couple of times I
dived in Sivakumar’s. The style couldn’t be
more different. It’s conversational and
repetitive. Each section ends by summarising
what the next section is going to tell you. The use
of similes is (to my mind) excessive. I don’t
want to be told that “Doing X is like putting a
Chrysler Fender on a Ford Escort”, but that’s
exactly the sort of thing I was told – over and
over again.
The first chapter starts by setting the C++/CLI
scene but doesn’t really get into object/source
file compatibility and jumps into the syntax on
page 13, with the ubiquitous ‘Hello, world’. The
rest of chapter 1, and chapters 2 and 3 stick with
the C++/CLI extensions.
Chapter 4 tackles mixed mode programming
and mixed types. It also covers part of the
marshalling library that Heege omitted –
marshalling between function pointer and
delegates.
Chapter 5 continues covering marshalling and
talks about thunking, but not in any great detail.
It then goes on to cover wrapping a native library
and accessing COM objects. It’s all quite brief,
but you do feel that the ground has been covered.
Chapter 6 details mixing Windows Forms with
MFC.
Chapter 7 explains how to target WPF with C++/
CLI. It then goes on to show how you can host
WPF in a native C++ app and use a native
control in a WPF app.
Chapter 8 gives a brief tour of using the
Windows Communication Foundation (WCF)
from C++/CLI. It goes into some detail about
how to migrate a DCOM app to WCF.
The appendix gives a concise introduction to the
.NET framework.
As you’ll have gathered by now, I found
Heege’s book to be well worth reading and a
valuable resource. Sivakumar’s book, by
contrast, is a looser, lighter book, that seems
more interested in the latest ‘cool’ technologies,
rather than a deep understanding of what is
going on, but it does cover some material that
isn’t in Heege's book.

Foundations of Security
by Daswani, Kern, Kesavan;
published by Apress,
ISBN 1-59059-784-2 pp290

Reviewed by Mark
Easterbrook

Conclusion: Highly
Recommended.

Now that almost every device for which
developers are generating code is connected to
a network, and in most cases directly or
indirectly to the Internet, it is essential for
programmers to understand software security
and how to protect against attack. Yet hardly a
day goes by without a security incident of some
kind, indicating that there is still a severe lack of
security understanding in the software world.
This book goes a long way to addressing this
shortfall and should be essential reading for
every software developer. Part one covers
design principles: setting out the goals and how
to design towards them. It also covers the well-
intentioned but flawed approaches to security
that lead to a false sense of security. Part two
explores all the major forms of attack and
describes how to counter them including many
examples of secure, and not so secure, code. Part
3 is an Introduction to Cryptography and covers
the subject in enough detail for the diligent
designer to choose the correct encryption
method. Finally part 4 contains appendices and
references. The book is well written and
provides a broad subject matter while still
containing enough detail to go from beginner to
skilled practitioner.

User Interface Design
for Mere Mortals
by Eric Butow, published by
Addison Wesley 2007,
ISBN 0-321-44773-5

I personally would not
recommend this book to IT
professionals and probably not even to
university students in IT.
Let’s start from the cover of the book. The front
cover of the book states that it presents a
Software Independent Approach to user
interface design. On the back cover, the book is
categorized as a User Interface Design/Software
Design/Programming book. The book does not
contain a single line of code and it is arguable if
there is any software design in it at all.
Despite stating that the book is a software
independent introduction to user interface
design, web-based technologies are covered to
some minimal detail where as desktop GUI
development technologies like Visual Basic,
Visual C++, C# and Delphi are totally ignored.
The web technologies enumerated are only
vaguely and implicitly categorized into front-
end (browser-based) and back-end (server-side)
technologies. Interestingly, the book categorises
Java only as a web development technology
regardless of the fact that Java is actively being
used in visual desktop applications ranging from
enterprise solutions to advanced military
simulations
User interface prototyping has only been
described with paper-based prototypes.
Currently a number of GUI RAD tools are
available that can help develop prototypes that
provide a realistic look and feel. Executable GUI
prototypes can be used in effective usability

studies very early in the system development
process thereby driving down the risk. In the
simplest case, the use of interactive presentation
tools for GUI prototyping provides better look
and feel and also some initial usability testing
than in case of prototyping with paper-based
prototypes. Unfortunately, GUI RAD tools or
techniques to develop interactive GUI
prototypes have not been discussed at all.
The author does discuss some interesting topics
like design patterns, principles and software
postures. His categorization of websites is
informative. There are also some useful tips on
developing a business plan to justify usability
testing and GUI development. However, this
book does not contain sufficient information to
allow readers to comprehensively understand
characteristics of user interfaces and be able to
design effective and user friendly interfaces.
Unfortunately it turns out to be a complex mix
of trivial and at times unrelated, inaccurate or
incomplete information.

The Official Damn Small
Linux Book, The Tiny
Adaptable Linux That
Runs on Anything
by Robert Shingledecker, John
Andrews, and Christopher Negus,
published by Prentice Hall,
ISBN 0132338696

Reviewed by Giuseppe Vacanti

Damn Small Linux (DSL) is one of the ‘tiny
Linux’ offerings available today. It was
developed as a live CD system, but it has since
been ported to boot from USB and compact
flash, run inside a virtual machine, and also
install itself on the hard drive. DSL packs a
complete desktop system in 50MB, quite an
achievement in comparison with what other
more mainstream distributions can do (I have
several times tried to do a minimal install of
some more mainstream distributions and never
been able to do it with less than 800MB).
This book is an extensive guide to DSL: one of
the authors is the creator of DSL, another is the
creator of DSL’s extension system.
The book is divided in five parts. Part 1 deals
with booting the live CD, configuring the
system, and installing extensions. Here the
authors explain in detail how to configure the
system, and what applications are available. The
description can be easily followed with very
limited Linux knowledge.
Part 2 addresses way to run DSL other than as a
live CD. From a pen drive, on a hard disk, or
embedded in a virtual machine running on
Windows: these and other possibilities are
described.
Extending DSL by creating new packages, and
making your own customized live CD are the
topics coverd in Part 3. Here the learning curve
gets steep for the Linux novice with details of
building and installing software packages,
editing the required configuration files,
APR 2008 | | 27{cvu}

28 | | APR 2008

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

If I could have stalled this View
for another week[1], I expect I
could be writing about the
invigorating effects of this
year’s conference. Right now, I just have
anticipation and preparation. There are things to
sort out for AGM, people I’d like to meet,
conversations to be had. I got caught on the hop
a little last year, and I’d rather avoid that if I can.
As an organisation, I believe ACCU has a great
deal to offer people. We have, though, not been
quite as good at letting people know as we might
have. That is changing, thanks in large part to
David’s efforts as publicity officer, and to the
work the groups in London, Cambridge, and
elsewhere are doing. Since the conference
sequesters so many of us in a hotel for four days,
it’s the obvious time to chew over what’s gone
on and to try a plan ahead. It’s the spring! [2] It’s
natural to look to the future in spring!
Although, by the time you read this, the AGM
will have passed and the committee and offices
elected or re-elected, if there’s something you
feel ACCU could or should be doing do speak
up. Want to publicise ACCU at your place of
work or university? Would like to be the new
Pete Goodliffe and write a column for CVu?
Toying with setting up your own local group?
Know of a project or organisation ACCU should
be supporting? Suggesting something new can

often seem daunting, but adapting to change is a
fundamental part of software. If I as the Chair,
or the committee as a whole, can make it happen,
then we will try to make happen.
[1] Although if I had, Tim would probably have
reached half way around the world to throttle
me.
[2] In my garden, at least.

Membership Report
Mick Brooks
accumembership@accu.org

I’ve just finished preparing the
reports which will be used to
produce a new, and long-
overdue, edition of the membership handbook.
By the time you’re reading this, I hope it will be
ready to go live on the website. I think it’s
important that members are able to contact each
other, and the handbook is one way to support
that (the mailing lists, conference, and the new
Facebook and LinkedIn groups are others). I
want to thank you all for responding to my
letters and emails asking you to update your
contact preferences in readiness for this change.
A small number of members were concerned
that, by taking inaction as permission to publish
your data in a new form, we weren’t treating
your contact information with proper respect.
We take our reponsibilities toward your data
very seriously. I’ve tried to contact every
member of the ACCU to ask them to update their

preferences. Where I’ve been unable to do so,
either because a member has withheld
permission for us to email them, or because an
email has bounced, I’ve removed permission for
their details to appear in the handbook.
A significant proportion of you have chosen to
opt-out of the new format handbook. This is
understandable, and I hope that some of you will
feel differently once you’ve seen exactly how
the information will be made available. One
advantage of the new system is that it can be
updated more frequently: if you do change your
mind, you won’t have to wait a whole year
before the change comes into effect.
If you want to comment on this (I’m particularly
interested to hear why those who chose to opt-
out did so), or need help with any aspect of your
membership, please email me at
accumembership@accu.org.

Advertising Officer Report
Seb Rose
ads@accu.org

Over the past few months, Tim Pushman of
Gnomedia and myself have been enabling the
ACCU website to accept paying advertisers. As
you may have noticed the system went live a
few weeks ago, with in house adverts as well as
a trial run for Perforce. We could really do with
more advertisers, so please consider
recommending the site to your employers and/or
business partners.

compiling a new kernel, and burning a new
bootable CD image.
In Part 4 we learn about complete DSL
installations for a specific goal (the authors call
these installations DSL projects): a music
server, a VOIP station, and an Apache-MySQL-
PHP server. This part will appeal to those
willing to quite literally hack a system together;
in fact the project descriptions start from the
selection of suitable old hardware, to the
installation of DSL, and the tweaking of various
scripts.
The final part contains the appendices, one of
which is the list of all packages available in DSL
version 3.3. The book comes with a CD and its
contents are described in the second appendix.
The CD can be run as a live system; it also

contains several other DSL boot images (all of
those described in the book), two versions of the
Windows-embedded version of DSL, various
scripts and the additional software and scripts
needed to work on the projects described in part 4.
The book is a comprehensive guide to DSL,
addressing both the novice and the more
advanced users.
Books of this type can become rapidly out of
date: the book covers version 3.3, whereas the
current DSL version is 4.2.4. The main concepts
described in the book are likely to apply to the
more recent DSL versions, although the details
are most likely to differ.

Book Reviews (continued)

	ACCU - what’s it all about?
	The Town Planner’s Triumph
	Fixing Compiler Warnings the Hard Way
	Lisp for the Web
	Operator Names Influence Operator Precedence Decisions (Part 2 of 2)
	Evolving the Java Language: Open Source and Open Standardisation
	Future-Proofing your Python Scripts
	Storm in a Teacup
	Desert Island Books
	Code Critique Competition 51
	View From The Chair
	Membership Report
	Advertising Officer Report

