

FEB 2008 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Volume 20 Issue 1
February 2008

Editor
Tim Penhey
cvu@accu.org

Contributors
Pete Goodliffe, Paul Grenyer,
Derek Jones, Steve Love,
Roger Orr and Ivan Uemlianin.

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

Why bother?
fter typing 20.1 a number of times in the many emails that fly around the review
team and between myself, Pete and Alison (the production editor), the
implication has only really just dawned on me. Twenty. Twenty years! That

is quite some time. I just hope that some original ACCUer doesn’t come back and
point out some numbering irregularity at the dawn of time and spoil my moment.
Why do we do this? Why does ACCU exist? Why do all the contributors to C Vu
and Overload do it? What about all the volunteers on the committees, the article
review teams for C Vu and Overload. Why get together at the conference and
at local ACCU meetings? Sure, alcohol is one reason, but surely it isn’t the
only one. You can go and get a drink anywhere.
I think a huge reason is ‘the people’. ACCU members like being around other
ACCU members. Like minded people. After being around other developers
at work who never seem to really care, it is good to get into more interesting,
occasionally lively, frequently highly technical, conversations (or email
exchanges) with people who think more like you do. Design matters. Testing
matters. And more importantly, elegance matters. Software development can
be an art, but many of those who call themselves software developers have the
artistic talent of a four-year-old who is inadvertently making a collage with
poster paint, cookie crumbs and their own hair.
You care about developing yourself, and you care about not stagnating. It’s been
said that if you are not moving forward, you’re moving backwards, there is no
standing still. If you are not learning anything new at work, best go and look for
it outside the workplace. This is why many contributors write articles. You learn a
huge amount when forced to write stuff down. As you organise your thoughts into
something that others can read, you find gaps in your own knowledge. You go and
find out, then write that down too. Writing is an amazing way to learn.
Do you care enough to write? C Vu and Overload could both be bigger, and have
more diverse content, if more people decided to put their thoughts down and learn
something in the process. I dare you. I dare you to try to write an article and not learn
something new. Do it!

A

2 | | FEB 2008

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 20.2: 1st March 2008
C Vu 20.3: 1st May 2008

IN OVERLOAD
‘Watersheds and Waterfalls’ by Stuart Golodetz, more from the
‘PfA Papers’ by Kevlin Henney and part 2 of ‘The Regular
Travelling Salesman’ by Richard Harris, plus much more.

DIALOGUE
21 Desert Island Books

Paul Grenyer starts a new
series.

22 Code Critique Competition
This issue’s competition
and the results from last
time.

25 Book Reviews
The latest roundup from
the ACCU bookcase.

32 ACCU Members Zone
Reports and membership
news, including details of
the AGM.

FEATURES
3 An Introduction to Town Planning

Pete Goodliffe exposes war wounds and contrasts
software designs.

5 Operand Names Influence Operator Precedence Decisions
Derek Jones plunges into the depths of operators.

12 Installing Apache and Subversion
Paul Grenyer makes Subversion accessible.

15 Personal Bazaar
Steve Love has a round-up of techniques for making
Bazaar do what you want.

18 A Simple Calculator in Tkinter and wxPython
Ivan Uemlianin compares two python GUI toolkits.

Professionalism in Programming # 48
PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

An Introduction to Town Planning
Pete Goodliffe exposes war wounds and contrasts software

designs.

Build up, build up, prepare the road!
Remove the obstacles out of the way of my people.

Isaiah 57:14

xperience is a great teacher. Other people’s experience is even better
– if you can learn from other people’s mistakes then you will save
yourself a lot of pain. In this column we’ll look at the consequences

of good and bad design decisions (or the lack of them). We’ll see how
important it is to consider software design up-front.
We’ll do this by contrasting two real world systems written by different
teams of programmers in different companies. These are two comparable,
reasonably large systems. Each software ecosystem was mature and had
gone through many product releases. Both were for consumer audio
products, and whilst ‘embedded’ in nature, both involved fairly large
Linux-based C++ software applications. They turned out very differently.

Exhibit A: The Messy Metropolis
The first software system we’ll look at is known as The Messy Metropolis.
I’ve mentioned this system in a previous professionalism in programming
column [1]. It’s one I look back on fondly – not because it was good, or
because it was enjoyable to work with, but because it taught me a valuable
lesson about software development when I first came across it. Our
tentative delve into the guts of this software ‘design’ should be regarded
as a cautionary tale. I’m exposing one of my war wounds.
My first contact with the Messy Metropolis was when I joined the company
that created it. It initially looked like a promising job; I was to join a team
working on a Linux-based ‘modern’ C++ codebase that had been in
development for a number of years. Exciting stuff, if you have the same
peculiar fetishes as me.
The work wasn’t plain sailing at first, but you never expect an easy ride
when you start to work in a new team on a new codebase. But it didn’t get
any better as the days (and weeks) rolled by. The code took a fantastically
long time to learn; there were no obvious routes into the system. That was
a warning sign. At the micro-level, looking at individual lines, methods,
and components, the code was messy, and badly put together. There was
no consistency, no style, and no unifying concepts drawing the separate
parts together. That was a warning sign. Control flew around the system
in unfathomable and unpredictable ways. That was a warning sign. There
were so many bad ‘code smells’ [2] that the codebase was not just putrid,
it was a pungent land-fill site on a hot summer’s day. A clear warning sign.
The data was rarely kept near where it was used. Often extra baroque
caching layers were introduced to try to persuade it to hang around in more
convenient places. That was a warning sign.
As I tried to build a mental picture of the Metropolis, no one was able to
explain the structure; no one knew all of its layers, tendrils, and dark
secluded corners. In fact, no one actually knew how any of it really worked
(it was actually by a combination of luck and heroic maintenance
programmers). People knew the small areas they had worked on, but no
one had an overall comprehension of the system. And, naturally, there was
no documentation. That was a warning sign. What I needed was a map.
This was the sad story I had become a part of: the Metropolis was a town
planning disaster. Before you can improve a mess you need to understand
that mess, so with much effort and perseverance we pulled together a map
of the ‘architecture’. We charted every highway, all the arterial roads, the

uncharted back roads, and all of the dimly
lit side passages, and placed them on one
master diagram. For the first time we
could see what the software looked like.
Not a pretty sight. It was a tangle of blobs
and lines. In an effort to make it more comprehensible we colour coded
the control paths to signify their type. Then we stood back.
It was stunning. It was psychedelic. It was as if a drunk spider had stumbled
into a few pots of poster paint and then spun a chromatic web across a piece
of paper. And then it became clear. We had all but drawn a map of the
London Underground. It even had the circle line. It looked something like
this (it’s a simplified version, with details changed to protect the guilty):

Tha t ’ s no t a ‘good ’
architecture by any metric.
The Metropolis’ problems
actually went beyond the
architectural level, right up
to t he de ve l opme n t
process and company
culture. This fact actually
explained a lot of the
architectural problems.
Th e co de ha d g ro wn
‘organically’ over a period
of years. This is a polite
way to say that no one had

performed any architectural design of note and that various bits had been
bolted on over time without much thought. No one had ever stopped to
impose a sane structure on the code. This was an example of a system with
no architectural design. But a codebase never has no architecture. It just
has a very poor one.
The Metropolis’ state of affairs was understandable (but not condonable)
when you looked at the history of the company: it was a start-up with heavy
pressure to get many new releases out rapidly. Delays were not tolerable
– they would spell financial ruin. The software engineers were driven to
get code shipping as quickly as humanly possible (if not sooner). And so
the code had been thrown together in a series of mad dashes.
The lack of clear design had these consequences:

As you can already see, the Metropolis’ architecture had lead to a
system that was remarkably tricky to comprehend and practically
impossible to modify. The bad design encouraged further bad design
to be bolted onto it – in fact it literally forced you to do so – as there
was no way to extend the design in a sane way. The path of least
resistance for the job in hand was always taken.
New recruits coming into the project (like myself) were stunned by
the complexity and unable to get to grips with what was going on.
This partially explains why very few new recruits stayed at the
company for any length of time – staff turnover was very high.

E

FEB 2008 | | 3{cvu}

The system’s components were not at all cohesive. Where each one
should have had a single, well-defined role, they each contained a
grab-bag of functionality that wasn’t necessarily related. This made
it hard to determine why a component existed at all, and hard to
work out where a particular piece of functionality had been
implemented.
Both functionality and data were located in the wrong place in the
system. Many things you’d consider ‘core services’ were not
implemented in the hub of the system but were simulated by the
outlying modules (at great pain and expense). Further software
archaeology showed why: there had been
personality struggles in the original team
and so a few key programmers had begun
to build their own little software empires.
They’d grab the functionality they
thought was cool and plonk it into their
module, even if it didn’t belong there. To
deal with this they would then make
ever-more baroque communication
mechanisms to stitch the control back to
the correct place.
There was no clear layering. The dependencies between modules
were not unidirectional; coupling was often bidirectional.
Component A would hackily reach into the innards of component B
to get its work done for one task. Elsewhere component B had hard-
coded calls onto component A. There was no bottom layer, or
central hub to the system. It was one monolithic blob of software.
This meant that the individual parts of the system were so tightly
coupled that you couldn’t bring up a skeletal system without
creating every single component. This made low-level testing
impossible. Not only were code-level unit tests impossible to write
but component-level tests could not be constructed as every
component depended on almost every other component. Of course,
testing had never been a particularly high priority in the company
(we don’t have anywhere near enough time to do that), so this
‘wasn’t a problem’. Needless to say, the software was not very
reliable.
The problems with bad top-level design had worked their way down
to the code level. Problems beget problems (see the discussion of
broken windows in [3]). Since there was no common design and no
overall project ‘style’, no one bothered with common coding
standards, the use of common libraries, or employing common
idioms. There were no naming conventions for components, classes
or files. There was even no common build system: duct tape, shell
scripts, and perl glue nestled alongside makefiles and Visual Studio
project files. Compiling this monster was considered a rite or
passage!
More software archaeology showed why: the Metropolis started out
as a series of separate prototypes that got tacked together when they
should have been thrown away. The Metropolis was actually an
accidental conurbation.
The problems weren’t contained in the codebase. We’ve seen that
they had spilled out into the development team, but they also
affected the people supporting and using the product:

Support engineers had an awful time working out the intricate
behavioural differences between relatively minor software
releases.
An external control protocol was developed for other devices to
control the Metropolis remotely. Since it was a thin veneer over

the guts of the software it reflected the Metropolis’ architecture,
which means that it was baroque, hard to understand, prone to
fail randomly and impossible to use.

The design was almost completely irredeemable. The amount of
effort required to re-work, refactor, and correct the problems with
the code structure had become prohibitive. A rewrite wasn’t a cheap
option, as support for the old control protocol was a requirement.

As you can see, the inevitable consequence of the Metropolis’ ‘design’ was
a diabolical situation that could only get worse. It was so hard to add new
features to that people were just applying more bodges, sticking plasters

and calculated fudges. No one was enjoying
working with the code any more, and it was
heading in a downward spiral. The lack of
design had led to bad code, which led to bad
team morale and increasingly lengthy
development cycles, which eventually led to
severe financial problems for the company.
Eventually the management acknowledged that
t he Messy Me t ropo l i s had become

uneconomical to maintain and it was thrown away. This is a brave step for
any organisation, especially one that is constantly running ten paces ahead
of itself whilst trying to tread water. With all the C++ and Linux experience
the team had gained form the previous version, the system was rewritten
in C# on Windows.

The upshot
Bad architecture can have a really profound effect and severe
repercussions. The lack of foresight and architectural design in the Messy
Metropolis lead to:

a low-quality product with infrequent releases
an inflexible system which couldn’t accommodate change or the
addition of new functionality
pervasive code problems
staffing problems
a lot of messy internal politics
lack of success for the company
many painful headaches.

Next time
So after that inspiring look at what happens when software takes a turn for
the worse, we’ll conclude this series with a happy contrast – the town
planner’s triumph. We’ll look at a more successful system and see the
consequences of a better software architecture. I bet you can’t wait.

Endnotes
[1] Pete Goodliffe. Professionalism in Programming #21: Software

Architecture. In: C Vu Volume 15, Issue 4.
[2] Martin Fowler. Refactoring: Improving the Design of Existing Code.
[3] Andrew Hunt and David Thomas. The Pragmatic Programmer.

Chapter 1, Section 2.

Pete’s book, Code Craft, has chapters on design and
architecture, and a whole load more painful war stories.
It’s also full of monkeys.

Check it out at www.nostarch.com

Bad architecture can
have a really profound

effect and severe
repercussions
4 | | FEB 2008{cvu}

Operator Names Influence Operator
Precedence Decisions (Part 1 of 2)

Derek Jones plunges into the depths of operators.

Introduction
he 2006 ACCU experiment [1] threw up a surprising result; in 33%
of cases experienced developers failed to correctly parenthesis an
expression containing two binary operators to reflect the binding of

operands to operator (i.e., the relative operator precedence). The result was
surprising because if carried over into actual software development it
would result in almost 1% of all expressions contained in source code [2]
being wrong (i.e., they would evaluate to a value different from that
intended by the author, for instance the author or a subsequent reader of
the expression x & y == z might incorrectly expect it to behave as if it
had been written in the form (x & y) == z.
Four possibilities spring to mind:

1. Subject’s performance on the problem presented in the experiment
is not a good approximation of their performance when writing code
in real life.

2. When writing complicated expressions developers do make many
precedence mistakes, but most of these are fixed before software
goes into production use.

3. The source code measurements of parenthesis usage made in
connection with the 2006 ACCU experiment (which show that
developers often do not use parenthesis to specify the intended
binding of operands to operators; see Table 3 & 4 of the write-up
[1]) are not representative of other source code. The claim your
author often hears in face-to-face discussion with developers is that
they always make use of parenthesis to specify the intended
precedence in complicated expressions.

4. When reading complicated expressions developers make use of
additional information that is available within the context in which
the expression occurs (e.g., what the expression is calculating, the
names of the variables appearing in the expression, or the amount of
spacing between operators and operands [3]).

The 2007 ACCU experiment was designed, among other things, to
investigate one case involving the fourth of these possibilities.
This is the first of a two part article that reports on an experiment carried
out during the 2007 ACCU conference investigating both impact of
operand names on binary operator precedence selection and the
consequences of a limited capacity short term memory on subjects
performance in recalling information about assignment statements. This
first article provides general background on the study and discusses the
results of the relative precedence selection problem, while part two
discusses the assignment problem.

The hypothesis
Developers are often encouraged to use meaningful names for identifiers.
The expectation is that meaningful names will provide information to
subsequent readers of the code that will reduce the effort needed to
comprehend that code. For instance, the name flags suggests an entity
that denotes one or more on/off states.
The meaning associated with a name might also lead to an expectation
about the kinds of operators used to manipulate variables having that name.
For instance, an identifier having the name flags might be expected to

appear much more often as the operand of a bitwise or logical operator than
an arithmetic operator.
A name might have meaning to a developer because of its English language
usage or because of being frequently encountered in a given context within
source code. It is assumed here that presented with a problem involving
source code, subjects will primarily make use of their experience of name
usage in source code rather than any English language usage (i.e.,
occurrences in source code is used as a measure of context rather than
occurrences in English prose).
Binary operators found in many programming languages might be divided
into three broad categories.

1. Arithmetic operators. The operands of these operators can take on a
range numeric values. Variables appearing in arithmetic operands
might also appear as operands of relational or equality operators.

2. Bitwise operators. The operands of these operators are treated as a
sequence of bits. A common mapping is for a bit to denote some
quantity having one of two values and a sequence of bits to denote a
set of such distinct quantities. These operands might also appear in
equality tests, but their semantics is such that they are unlikely to
appear in relational tests.

3. Logical operators. The operands of these operators essentially have
two possible values, zero and non-zero. The semantics of these
operators makes it possible that they may appear in equality against
a literal zero, but are unlikely to appear in an equality test against a
variable operand (testing two variables for non-zero cannot be
simply mapped to a single equality test). They are unlikely to occur
in relational tests.

The hypothesis being tested by the parenthesis problem is that the names
of identifiers, appearing as operands in an expression, can have a
significant impact on subject’s selection of operator precedence to be
applied within that expression. For instance, when attempting to
comprehend an expression such as a + b & c readers have to decide
whether b is added to a or bitwise ANDed with c. This experiment
manipulates the name of the operand that has two operators with which it
could bind. Possible naming impacts include:

1. The name does not appear to provide any information that readers
might use to help make a precedence decision.

2. The name is chosen such that readers might make use of their
experience of identifier naming conventions, along with knowledge
of English language usage, when making an operator precedence
decision. This naming information can be experimentally
manipulated to:

increase the probability that the correct precedence decision is
made,
decrease the probability that the correct precedence decision is
made (e.g., if b is replaced by flags then a reader may be
influenced to believe (incorrectly) that flags is ANDed with c
and the result added to a.

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk
FEB 2008 | | 5{cvu}

What meaning context might a name have?

A name can acquire meaningfulness to a person through repeated
encounters in a given context. There are a number of situations in everyday
life that require the use of arithmetic and binary concepts (e.g., switch light
on/off, change mind and flag an error, and measurements confirm that
words and phrases commonly used in human conversation are carried over
into identifier names.
To maximise the effect that operand names have on subject’s decision
making the names need to be highly representative of the kinds of names
that appear within source code in the various operator contexts. The
selection was based on your authors intuition (i.e., they were made before
any source code measurements were available). See Table 7 for
information on the names chosen and their frequency of occurrence in the
measured source code.

There are situations where an identifier name belonging to one category
might appear as the operand of an operator in another category. For
instance, there are algorithms that use bitwise operators to more efficiently
perform an arithmetic operation (e.g., shift left to multiply by a power of
2), and it is possible that an arithmetic variable appears as the operand of
a logical operator because the author omitted an explicit equality test
against zero (because the language specifies that an implicit test is
performed).
It is straightforward to assign a context to many of the binary operators
(see Table 2). The only context that makes sense for the relational
operators is an arithmetic one (source code measurements showed the
same names appearing frequently as the operands of both kinds of
operator). While there might be situations where meaning can be assigned
to a relational comparison of bitwise or logical operands, these are likely
to be rare. The equality operators might be applied to operands having any
context and are classified as anonymous operators, which means that they
do not provide any information that might be used to decide whether a
particular operand binds to them or another operator.

Related work

Most of the operator/operand categorization techniques place restrictions
on what are considered to be legitimate combination of pairs of operands,
or operator/operand combinations. Possibilities include:

most languages do not support the unrestricted mixing of operands
of different types in an expression. For instance, arithmetic
operations cannot be performed between an integer and string (some
languages attempt to support this by performing implicit
conversions). There are languages that support sophisticated typing
mechanisms which allow developers to create new types which
cannot be mixed with operands of a different type.
in scientific calculations, dimensional analysis restricts the
mathematical operations that can be performed on values denoting
some physical quantity (because no physical meaning can be given
to the operation). For instance, adding a distance to a time value has
no meaning while dividing distance by time yields the velocity.
Tools that check scientific software for consistent use of physical
dimensions are available [4].

The names of the operands are not part of these categorization techniques.
Information on these restrictions is explicit specified as part of a language
or application specification and not something that a developer might
subconsciously pick up over time.
In a study by Bassok, Chase and Martin [5] subjects were asked to create
mathematical problems involving named everyday objects. The results
showed that subjects often made use of semantic relationships between the
named objects. For instance, given apples and baskets the problems
generated by subjects might involve dividing the number of apples by
baskets, but rarely involved adding them.

Measuring operand name usage
This subsection discusses measurement of names appearing as or in the
operands of some binary operators within in the visible source of a number
of large C programs (e.g., gcc, idsoftware, linux, netscape, openafs,
openMotif, and postgresql). The visible, rather than the preprocessed,
source was used as the basis for measurement because we are interested
in what a reader of the source sees and has to make decisions about, and
not what the compiler has to analyse.
The contents of preprocessor directives were not included in the
measurements.
The source code constructs included in these measurements were all the
ones in which the C grammar permitted an expression (a full expression
to use the C Standard’s terminology) to occur (excluding preprocessor
directives).
When the operand was a function call the identifier denoting the function
was used, when the operand was an array access the identifier denoting
the array was used, when the operand was a structure or union member
selection the identifier denoting the member was used (e.g., in p.q the
identifier of interest was taken to be q).
Operands whose value was obtained by applying the indirection operator
(i.e., unary *) were not counted.
A variety of conventions are used to create the character sequence in an
identifier name. Developers extract information from identifiers by
recognising character sequences that have meaning to them. These
character sequences might be words, abbreviated words, acronyms or
sequences of two or more of these.
There are three common conventions for explicitly highlighting the
boundary between two character sequences:

1. Use of the underscore character (i.e., _). For instance,
mumble_flags.

2. Writing the first character of a new sequence in upper case. For
instance, mumbleFlags.

3. Relying on reader expertise to work out where the character
sequence boundary exists. For instance, mumbleflags.

These measurements applied the first two conventions to extract names
from identifiers. In the case of the second point above: any sequence of
digit characters was treated as a break-point between two names; and a run
of two or more upper case letters was treated as a single name (i.e., the last

Names and literals that your author believed, when creating the text of
the problems, to most likely to occur as the operands of bitwise, logical
and arithmetic operands. The last column contains names that are
believed not to provide any information that can be used to help decide
which operator context they might belong.

bitwise
operands

logical
operands

arithmetic
operands

anonymous
operands

error mask count resource

flags finished num val

state flag offset field

bits done rate n

options started length temp

0xff TRUE 2 7

Binary operators and their associated context. The left operand of a
shift operator has a bitwise context, while the right operand has an
arithmetic context and the result has a bitwise context.

bitwise operator
context

logical operator
context

arithmetic
operator context

anonymous
operator context

& | ^ && || x * % == !=

+ -

< > >= <=

<< >> << >>

Ta
bl

e
1

Ta
bl

e
2

6 | | FEB 2008{cvu}

upper case letter was not regarded as being the start of a name using the
second convention given above).
An identifier name created by joining together two or more words might
be viewed as part of a sentence or a compound word. For instance,
mumble_flags might be interpreted as two or more flags associated with
mumble (and probably occurring in a bitwise or logical context), while
num_flags might be interpreted as an abbreviated form of the phrase
number of flags (and probably occurring in an arithmetic context). These
measurements do not attempt to deduce the interaction between any words
appearing in an identifier considered to contain two or more words.

There were 136,127 identifiers that appeared as the operand of one of the
binary operators of interest in this study, from which 30,683 unique names
were extracted. Table 3 lists the 10 most commonly seen names, Table 4
the 10 most commonly seen names in a bitwise context and Table 5 the 10
most commonly seen names in a logical context (in this case the majority
of all occurrences requirement was relaxed to the requirement that the
percentage occurrence in a logical context be greater than any other
context).
An application domain specific name might be frequently used in one
program but not in any other, e.g., inb in Table 4. Unless a developer has
experience working on that program they might not be aware that in some
domains it has a common usage in a given context. The Programs column
lists the number of different programs containing at least one instance of
a name.

Given the results of the 2006 experiment (i.e., 33% of answers given by
subjects were incorrect) measurements based on the assumption that the
author of the expression a + b & c expected b to be the operand of an
arithmetic operation could be significantly inaccurate. The operand name
measurements given here are restricted to those subexpressions where the
intended binding is considered to be unambiguous. For instance, when
brackets delimited a single binary operation (e.g., (a + b) & c or when
an expression contained a single binary operator (the simple assignment
or compound assignment operators were not treated as binary operators for
the purposes of these measurements). This restriction did not have a
significant impact on the amount of data obtained. As Table 6 shows, most
expressions contain either zero or one of the binary operators of interest.

Occurrence of names used in the problems

Table 7 lists the number of occurrences of each name used in the
parenthesis problems along with the percentage occurrence as the
identifier (or part of an identifier) in the operand of arithmetic, bitwise,
logical or equality operators. The measurements show that your author’s
intuition is not always a reliable indicator of what constitutes common
usage of names in some contexts.

The top 10 most common names appearing as or in identifiers as the
operands of binary operators in the visible source of .c files.
Programs the number of programs containing an instance of the
identifier having or containing the name, Occurrences the number of
occurrences of the name, Arithmetic the percentage of occurrences in
an arithmetic context, Bitwise the percentage of occurrences in a
bitwise context, Logical the percentage of occurrences in a logical
context, Equality the percentage of occurrences as the operand of an
equality operator.

Programs Occurrences Name Arithmetic Bitwise Logical Equality

7 35627 i 86.3 5.7 0.4 7.7

7 25201 null 0.1 0.1 0.1 99.7

7 14821 size 79.9 7.7 0.4 12.0

7 14121 type 8.3 8.4 2.4 81.0

7 12160 flags 0.5 97.4 0.2 1.9

7 12091 len 87.3 3.7 0.5 8.5

7 9396 count 78.2 4.7 1.2 15.9

7 9345 max 88.0 2.4 0.2 9.4

7 8668 code 7.0 3.8 0.6 88.6

7 8462 status 16.9 56.9 0.5 25.7

The top 10 names appearing with greater that 50% frequency as or in
identifiers as the operands of bitwise binary operators in the visible
source of .c files.

Programs Occurrences Name Arithmetic Bitwise Logical Equality

7 12160 flags 0.5 97.4 0.2 1.9

7 8462 status 16.9 56.9 0.5 25.7

7 5854 mask 6.4 89.0 1.1 3.6

7 4815 read 20.6 50.8 1.5 27.0

7 4162 f 25.0 53.5 3.1 8.3

7 2827 val 28.7 50.8 0.8 19.6

7 2270 stat 14.5 71.0 0.8 13.7

7 2322 flag 3.8 70.6 6.4 19.3

1 1764 inb 2.2 83.7 0.1 14.1

7 1346 active 9.6 50.7 4.2 35.5

The top 10 most common names, where the percentage occurrence in a
logical context is greater than any other context, appearing as or in
identifiers as the operands of logical binary operators in the visible
source of .c files.

Programs Occurrences Name Arithmetic Bitwise Logical Equality

7 2631 is 2.4 18.4 55.5 23.7

6 963 user 20.6 9.6 38.8 31.0

4 329 operand 21.6 20.1 27.4 31.0

5 280 constant 15.0 15.7 26.4 42.9

3 251 reload 16.7 6.4 31.1 45.8

5 227 template 13.2 0.4 26.0 60.4

3 213 charset 10.3 4.2 36.2 49.3

3 191 put 22.5 11.5 59.7 6.3

7 182 after 9.3 13.7 26.9 50.0

3 165 pthread 5.5 0.0 12.7 81.8

Percentage of expressions containing a given number of binary
operators in their visible source code. Note that function call, direct and
indirect member selection, and assignment operators are not included
here as binary operators (although the arguments of function calls and
array subscript expressions are counted as separate expressions).

Binary operators % occurrence Binary operators % occurrence

0 92.82 3 0.62

1 5.28 4 0.14

2 0.86 5 0.13

Actual occurrences, in the visible .c files, of the names used (Table 1) in
the parenthesis problem. The Other operands entry is included to
provide supporting information on TRUE context usage. See Table 3 for a
description of the columns.

Name Programs Occurrences Arithmetic Bitwise Logical Equality

arithmetic operands

count 7 9396 78.2 4.7 1.2 15.9

num 7 7905 81.1 3.3 0.5 15.1

offset 7 5889 79.5 10.9 0.8 8.9

rate 5 528 62.9 17.6 0.4 19.1

length 7 5097 77.4 6.5 0.4 15.7

bitwise operands

error 7 2960 12.1 21.8 1.4 64.7

flags 7 12160 0.5 97.4 0.2 1.9

Ta
bl

e
3

Ta
bl

e
4

Table 5
Table 6

Table 7
FEB 2008 | | 7{cvu}

Arithmetic operands. All of the names used in the arithmetic
context problems occurred much more frequently in this context
than any other context.
Bitwise operands. Two of the names used in the bitwise context
problems occurred much more frequently in this context than any
other context and two occurred just over twice as frequently in this
context as an arithmetic context. One name bits appeared most
often in an arithmetic context, although the singular form (i.e., bit)
occurred more frequently in a bitwise context (see Table 8).
Logical operands. All of the names used in the logical context
problems occurred much more frequently in other contexts. The
name TRUE was actually more common in an arithmetic context and
less common in a bitwise context. Using this name as an operand
was probably a mistake because in a real logical operand context
within source it would effectively create dead code. However, it did
occur in the problems seen by subjects and given that the
corresponding name FALSE occurred most commonly in a logical
operand context, this name maintained its logical context
classification. The semantics of the logical operators (for the
languages of interest here) specifies that each operand is implicitly
compared against zero. Because of the implicit comparison there is
a common developer practice of omitting an explicit comparison.
For this common usage case the operands of the logical operators
might be expected to have names that imply an arithmetic or bitwise
usage. The source code measurements in Table 5 bear this out.
Names appearing in the operand of a logical operator also frequently
occur in operands of arithmetic and bitwise operators. As Table 2 in
the 2006 article [1] shows, the logical operators occur sufficiently
often in source code that if operator context specific names were
commonly used they would show up in the source measurement
counts.
Anonymous operands. There is no consistent pattern of usage.,
with some occurring twice as frequently in one context as another.
By far the most common occurrence of the name n was in an
arithmetic context and its use was reclassified as such.

Some names appearing in the source might be considered to be variant
spellings of a name appearing in a problem. Table 8 lists various character

sequences found in the source which might be considered to denote the
same name, along with number of occurrence information.
Some of the possible variant spellings appearing in Table 8 are actually
more common than the names actually used (e.g., compare value vs. val
in Table 7). Any future experiments based on these problems might like
to use the more common variant name.
When analysing the results the names were reclassified according to the
findings of the source code measurements (see Table 9).

The experiment
The experiment was run by your author during a 45 minute lunchtime
session of the 2007 ACCU conference (http://www.accu.org) held in
Oxford, UK. Approximately 290 people attended the conference, 6 (2%)
of whom took part in the experiment. Subjects were given a brief
introduction to the experiment, during which they filled out brief
background information about themselves, and they then spent 20 minutes
working through the problems. All subjects volunteered their time and
were anonymous.

state 7 5723 5.6 29.2 0.8 64.4

bits 7 2934 59.3 27.5 0.2 12.9

options 6 543 13.4 74.6 2.8 9.2

logical operands

mask 7 5854 6.4 89.0 1.1 3.6

finished 6 50 46.0 8.0 0.0 46.0

flag 7 2322 3.8 70.6 6.4 19.3

done 7 578 14.5 29.9 4.5 51.0

started 4 91 16.5 61.5 2.2 19.8

TRUE 7 735 2.7 0.0 0.7 96.6

anonymous operands

resource 3 481 33.9 15.8 0.0 50.3

val 7 2827 28.7 50.8 0.8 19.6

field 7 523 18.7 32.3 4.2 44.7

n 7 5141 78.8 6.4 0.6 14.1

temp 7 1588 30.5 45.0 1.0 23.5

Other operands

FALSE 7 1046 0.0 0.1 0.4 99.5

Name Programs Occurrences Arithmetic Bitwise Logical Equality Actual occurrences, in the visible of .c files, of the names used (Table 1)
in the parenthesis problem. See Table 3 for a description of the columns.

Name Programs Occurrences Variant Arithmetic Bitwise Logical Equality

error

7 2013 err 21.2 31.1 0.4 47.2

3 175 errors 54.3 20.6 0.6 24.6

flag

2 1024 cflag 0.0 90.5 1.1 8.4

state

5 291 states 6.9 89.7 0.7 2.7

bits

7 2399 bit 35.0 48.2 4.5 12.3

4 200 bitmap 42.5 15.0 1.0 41.5

options

6 453 option 16.6 48.3 3.5 31.6

finished

5 81 finish 27.2 1.2 3.7 67.9

started

7 4565 start 76.2 10.6 0.6 12.7

count

6 305 counter 79.0 7.2 0.0 13.8

num

7 1922 number 56.7 9.9 0.4 33.0

offset

7 1255 off 69.3 13.9 1.6 15.2

2 137 offs 92.0 0.0 0.0 8.0

length

7 12091 len 87.3 3.7 0.5 8.5

val

7 4006 value 36.3 24.4 3.8 35.4

7 492 retval 43.9 13.6 0.0 42.5

field

5 90 fields 55.6 0.0 3.3 41.1

temp

7 2223 tmp 49.8 27.8 0.8 21.7

Ta
bl

e
7 (

co
nt

’d
)

Table 8
8 | | FEB 2008{cvu}

The problem to be solved

The problem to be solved followed the same format as an experiment
performed at a previous ACCU conference and the details can be found
elsewhere [6].
The following is an excerpt of the text instructions given to subjects:
The task consists of remembering the value of three different variables
and recalling these values later. The variables and their corresponding
values appear on one side of the sheet of paper and your response
needs to be given on the other side of the same sheet of paper.

1. Read the variables and the values assigned to them as you might
when carefully reading lines of code in a function definition.

2. Turn the sheet of paper over. Please do NOT look at the
assignment statements you have just read again, i.e., once a
page has been turned it stays turned.

3. At the top of the page there is a list of five expressions. Each
expression contains three different operands and two different
operators. Insert parenthesis to denote how you think the
operators will bind to the operands (i.e., you are inserting
redundant parenthesis).

4. You are now asked to recall the value of the variables read on the
previous page. There is an additional variable listed that did not
appear in the original list.

if you remember the value of a variable write the value down
next to the corresponding variable,
if you feel that, in a real life code comprehension situation,
you would reread the original assignment, tick the "would
refer back" column of the corresponding variable,
if you don't recall having seen the variable in the list appearing
on the previous page, tick the "not seen" column of the
corresponding variable.

Figure 1 is an example of one of the problems seen by subjects. One side
of a sheet of paper contained three assignment statements while the second
side of the same sheet contained the five expressions and a table to hold
the recalled information. A series of X’s were written on the second side
to ensure that subjects could not see through to identifiers and values
appearing on the other side of the sheet. Each subject received a stapled
set of sheets containing the instructions and 40 problems (one per sheet of
paper).
The parenthesis insertion task can be viewed as either a time filler for the
assignment remember/recall problem, or as the main subject of the
experiment. In the latter case the purpose of the assignment problem is to
make it difficult for subjects to keep track of answers they had given to
previous, related operator pair, problems.
Subject’s performance on the parenthesis task is discussed in this article
(the first of two).

The parenthesis problems

Based on the results of the 2006 ACCU experiment [1] it was anticipated
that on average subjects would answer around 20 complete questions. This
gave an estimated 100 answers per subject (subjects actually averaged
123.5 answers).
The selection of operands and operators followed the same procedure as
the 2006 experiment, with the following exceptions (using the name
contexts given in Table 1 and operator contexts given in Table 2):

The name of the first operand was chosen from the set of names
considered to have the same context as the first operand and
similarly for the name of the third operand with respect to the second
operator.
The name of the second operand (i.e., the one that might bind to
either operator) was selected (randomly with equal probability)
from either the set of names having the same context as the left
operand or the set of names having the same context as the right
operand.

The name of the middle operand was never the same as that of the
first or third operand.
There was a 10% probability that the letters of any operand were
converted to upper case.

Results
Source code measurements showed that the names originally used in the
creation of experimental problems (Table 1) did not always occur in the
expected context. The findings of the source code measurements were used
to reclassify some names as belonging to a different context, see Table 9.

Subject experience

The average subject experience was 14.5 years (standard deviation 9.0).
Because of the small number of subjects it is not possible to draw any
statistically significant correlations between subject experience and other
quantities.
Fortunately C, C++, C#, Java, Perl, and many other languages use the same
relative precedence for those operators used in this experiment, so there is
no need to worry about the possibility of subjects (attending the
Association of C and C++ Users conference) getting confused about which
language an expression might be written in.

Names and literals with their associated context, recategorised based
on measurements of C source code.

bitwise
operands

logical
operands

arithmetic
operands

anonymous
operands

error count resource

flags num val

state offset field

bits rate temp

options length 7

0xff TRUE n 2

mask

flag

finished

done

started

--------------------- first side of sheet starts here ----------------------
 propeller = 6;
 sofa = 5;
 chair = 4;
--------------------- second side of sheet starts here ---------------------
0xff | rate * num
field < rate ^ flags
error & 2 < count
done || finished | 0XFF
field != 7 ^ started

remember would refer back not seen

chair = _____ _____ _____

table = _____ _____ _____

sofa = _____ _____ _____

propeller = _____ _____ _____

Figure 1
Table 9
FEB 2008 | | 9{cvu}

Analysis of results

The 6 subjects gave a total of 697 answers to the operator precedence
questions, an average 116.2 per subject (standard deviation 35.0, with
123.5 in 2006. The lowest number of problems answered was 75, highest
number 174.
If subjects answered randomly the total number of answers expected to be
correct would have a Binomial distribution. With such a distribution there
is a 15.9% probability that more than 55% of answers would be correct,
2.3% probability that more than 60% of answers would be correct, and a
0.1% probability that more than 65% of answers would be correct
In this experiment 65.3% (standard deviation 8.7) of answers were correct
(66.7 in 2006), poorest performer 51.2% correct (45.2 in 2006), best
performer 77.8% correct (80.5 in 2006).
If the results support the hypothesis, then in some cases the name of the
operand will have a significant impact on the percentage of correct answers
given. There are two main possibilities, one of which has four
combinations:

1. Both of the operators in the expression seen by a subject have the
same context. In this case the name of the operand does not provide
any additional information to subjects (or at least those used in these
problems do not). Table 10 shows that this occurred in 114 (16.4%)
answers, with subjects being correct in 76.3% of cases (356 answers
with 71.3% correct in 2006) This is higher than the 65.3% average
and while it suggests that subjects might have more accurate
knowledge of the relative precedence of operators that belong to the
same context, but Table 11 tells a different story.

2. The operators do not share the same context and:
a) the operand has the same context as the operator with the highest

precedence (i.e., the operator to which the operand will bind).
This occurs in 251 answered problems and the answer was
correct in 72.5% of cases.

b) the name of the operand has the same context as the operator to
which precedence does not bind it. This occurs in 129 answered
problems and the answer was correct in 43.4% of cases.

c) the name of the operand does not have the same context as either
operator. In this case the name of the operand does not provide
any additional information to subjects (or at least those used in
these problems do not). This occurs in 177 answered problems
and the answer was correct in 64.4% of cases.

d) the name of the operand has the same context as both operators
(this can only occur for a shift operator). In this case the name
of the operand does not provide any additional information to
subjects (or at least those used in these problems do not). This
occurs in 26 answered problems and the answer was correct in
61.5% of cases.

It is possible for the identifier TRUE to be treated as having a bitwise or
logical context (It was originally assigned to the logical context). Analysis
of the answers show that the results are very similar whichever context it
is treated as having.
The combination Match higher/match lower only occurs when of the
operators is a shift operator.
The combination Not match higher/Not match lower only occurred when
of the operators was either a relational, equality or a shift operator.
Table 10 suggests (first row) that subject performance is much better when
the precedence decision involves operators having the same context
compared to when the operators come from different contexts. However,
a break-down by operator context (see Table 11) shows that this difference
is primarily attributable to significantly better performance with arithmetic
operators.

Discussion
Source code measurements confirmed that distinct operand names are
commonly used for arithmetic (Table 3) and bitwise operators (Table 4).

However there was no obvious distinct naming used for the operands of
logical operators (Table 5).
Subject performance was significantly better when both operators were
arithmetic. Arithmetic operators occur together much more often in source
code, compared to bitwise operators occurring together and logical
operators occurring together (see Table 3 of the 2006 article [1]). Subjects
who had followed a numerate academic path will also have significantly
more experience with arithmetic operators than other operators. So
significantly better performance when both operators are arithmetic is to
be expected.
The results, Table 10, show that the name of the operand can significantly
increase or decrease the number of correct answers, depending on whether
the name context is the same as the operator to which it does or does not
bind. Compared to an approximate 64% correct answer rate when the name
context matches both or neither operator contexts the percentage of correct
answers either increased to 72.5% or decreased to 43.3%.
The use of numeric values as operands introduced unnecessary
complications for little benefit. If you author had the chance to rerun the
experiment they would probably be removed.

Further work

Beginner programmers are often told to use meaningful names, often
without being told what constitutes a meaningful name. Naming
conventions are therefore something that has to be picked up by
experience. Experiments using subjects who are just about to graduate and
subjects a year or so after graduating (with and without extensive software
development experience during that time) could provide the data needed
to calculate the impact on performance of formal training and experience
with source code.
Within an expression containing only arithmetic operators (or an
expression containing only bitwise operators), do developers make use of
operand name information to make precedence decisions? For instance,
the study by Bassok, Chase and Martin [5] found that subjects often used
some name combinations (e.g., apples and baskets) prompted a division
operation.
This experiment used English language names. What operand names are
commonly associated with arithmetic and bitwise contexts in other human
languages? Are developers who speak English as a second language as
sensitive to naming context as native English speakers?

Numbers of answers for various combinations of operator/operand
context. Match higher occurs when the operand context matches the
context of the operator with the high precedence (i.e., the one to which
it binds). Match lower occurs when the operand context matches the
context of the operator with the lower precedence (i.e., the one to which
it does not bind). For example, Match higher/Not match lower refers to
the case where the operand context matches that of the operand with
the higher precedence and does not match the context of the operand
with the lower precedence.

Operator/operand context match
status

Total answers % correct % wrong

Both operators have same context 114 76.3 23.7

Match higher/Not match lower 251 72.5 27.5

Match higher/match lower 26 61.5 38.5

Not match higher/Not match lower 177 64.4 35.6

Not match higher/match lower 129 43.4 56.6

Break-down of percentage of correct answers, by operator context and
year of experiment, when both operators have the same context. Value
in parenthesis is the total number of answers.

Year Arithmetic Bitwise Logical

2007 96.2 (53) 56.5 (46) 58.3 (12)

2006 85.5 (172) 60.6 (137) 50.0 (40)

Table 11
Table 10
10 | | FEB 2008{cvu}

A replication of the same experiment would be very useful, perhaps with
some changes to the format. Also measurements of source code written in
other computer languages might find context differences in operand
naming and operator usage.

Conclusion
The hypothesis that developers make use of context information contained
in identifier names, when deciding which operator an operand binds to,
was supported by the results of this experiment. The impact of naming
information on precedence decision making was significant.
Subject precedence performance to significantly better when an
expression only contained arithmetic operators, compared to when it
contained operators from other contexts (mixed or other context).
Source code measurements showed that distinct operand naming only
occurs for arithmetic and bitwise operators and that there was no obvious
distinct naming for logical operators.

Acknowledgements
The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making a conference slot
available in which to run it. Thanks to Les Hatton for comments on an early
draft.

Notes and References
[1] D. M. Jones, ‘Experimental data and scripts for developer beliefs

about binary operator precedence’ http://www.knosof.co.uk/cbook/
accu06.html, 2006

[2] Only 1.9% of expressions in source code contain two or more binary
operators.

[3] D. Landy and R. L. Goldstone ‘The alignment or ordering and space
in arithmetic computation’ in Proceedings of the Twenty-Ninth
Annual Meeting of the Cognitive Science Society, pages 437–442,
Aug. 2007

[4] G. W. Petty ‘Automated computation and consistency checking of
physical dimensions and units in scientific programs’ in Software-
Practice and Experience, 31(11):1067–1076, Sept 2001.

[5] M. Bassok, V. M. Chase and S. A. Martin ‘Adding apples and
oranges: Alignment of semantic and formal knowledge’ in Cognitive
Psychology, 35(2):99–134, Mar. 1998.

[6] D. M. Jones, Experimental data and scripts for short sequence of
assignment statements study. http://www.knosof.co.uk/cbook/
accu04.html, 2004.
FEB 2008 | | 11{cvu}

ACCU 2008
The registrations for the ACCU 2008 conference are now open. It
promises to be yet another great event in the best ACCU tradition,
with keynotes from Tom Gilb, Andrei Alexandrescu, Simon Peyton-
Jones, and Roger Orr, and a line-up of outstanding speakers including
John Lakos, Jim Coplien, Nico Josuttis, Jutta Eckstein, Kevlin
Henney and many others.
As a special treat, this year’s event includes a special track on
functional programming, the hot topic of the moment, featuring,
among others, the inventor of Haskell, Simon Peyton-Jones, and the
inventor of Erlang, Joe Armstrong.
Also, if you want to have ‘Fun with Erlang’ with Joe Armstrong or
want to learn more about Evolutionary Project Management from
Tom Gilb or understand if SOA is for you by listening to what Nico
Josuttis has to say about it, have a look at the pre-conference tutorials
on Tuesday 1 April. This is an unique occasion to learn from the
masters at a bargain price!
Finally, this year there are four sponsored places – thanks to Hubert
Matthews and Paul Grenyer – as already announced in the December
2007 issue of CVu .
I’m looking forward to seeing you all in Oxford next April.

Giovanni Asproni
Conference Chair

The ACCU Conference is a fabulous, entertaining and
stimulating place to be. It is, without doubt, the jewel in the
ACCU’s crown. Nowhere else can you meet so many interesting
and notable people in our field. It should, therefore, be on every
techie’s calendar. Not everyone, however, can attend. For
some people it is too far away or they are too busy; for others
there are financial barriers. To encourage this last group, four
one-day tickets for the 2008 conference are on offer.

The conditions are:

1. The candidate must be proposed by a full ACCU member
who is expected to accompany the candidate for that day.

2. The candidate must not have been to an ACCU
conference before.

3. The candidate must be at least 18 years old.

Application process
Any ACCU member wishing to put someone forward for a place
should email accuplaces@oxyware.com before 31 Jan 2008
with a short description (maximum 250 words) of why they
believe the candidate would benefit from coming to the
conference. The four successful candidates will be informed by
the end of February and the remainder will be placed on a
waiting list.

Conditions
1. The offer covers only the entrance to the conference.

Travel, accommodation and subsistence are not covered.

2. In the event of a candidate not being able to take up a
place, the place will be offered to those on the waiting list.

3. In the event that the proposer cannot accompany the
candidate, they may either find a substitute ACCU
member to do so or offer the place to the waiting list.

4. A candidate can only receive one free place.

Sponsored Conference Places

Windows Development Environment Server # 1
Installing Apache & Subversion
Paul Grenyer makes Subversion accessible.

very software development project needs a good development
environment before it can even think about being successful. I’m not
talking about Microsoft Visual Studio, Eclipse or any of the other

Integrated Development Environments (IDEs). I am talking about the
project wide resources such as:

Version Control
Continuous Integration
Bug Tracking
Wiki

These resources are there for everyone to use and allow a team to
collaborate. Traditionally these sorts of services would run on some sort
of *nix server, but Windows servers are getting better and many teams are
using Windows exclusively now. I recently joined a startup that is using
Windows exclusively and set about installing all the required services. It
was quite an involved process and, as usual, I made some quite extensive
notes. As I formalised these notes, the setup of each service gradually grew
into material for an article.
The internet is full of setup instructions for Apache [1], Subversion [2] and
combinations of the two. The Subversion book [3] also has extensive setup
information and I’ll refer to it quite a lot in this article (although it does
not cover domain authentication). So why bother to write yet another
article on Apache and Subversion? I wanted to setup domain
authentication so that new starters could gain access to Subversion
repositories with the minimal of configuration. The set of instructions I
found on the internet for setting up domain authentication were quite good,
but left out some vital details. The article addresses that with step by step
instructions and actually shows what entries in the various configuration
files should look like for both domain authentication and basic HTTP
authentication.

Prerequisites

Hardware

I setup Apache and Subversion on an PC with a 2.0GHz AMD Athlon™
2400+ processor and 1GB of RAM. Performance during setup was
acceptable, but could have been better. I would recommend this as a
minimum. All new PCs should be much faster. Lots of RAM is always a
good thing. A network connection with a connection to the internet is also
required (unless the applications are downloaded and transferred to the
machine via another method).

Software

Apache and Subversion can be setup up on any modern Windows version
(e.g. Windows XP, Vista, Windows Server 2003). I used a fresh install of
Windows XP Professional with Service Pack 2 (SP2) and all updates
applied.
All machines running Windows should be regularly updated and all
patches applied. New releases of Apache and Subversion will rely
Windows being up-to-date.

As well as the Windows operating system, some form of anti-virus, such
as AVG [4], should be installed. Even on an internal network a firewall is
a good idea. I’ll be describing how to configure the Windows Firewall, but
other firewalls, such as ZoneAlarm [5] can also be used.

Installing Apache Webserver

Download and install

Download the latest Win32 Apache webserver (HTTP server) MSI from
the Apache website. There are a number of mirrors. Pick one close to you
if possible. The file name will be along the lines of:

 apache_2.2.6-win32-x86-no_ssl.msi
or

 apache_2.2.6-win32-x86-open_ssl-0.9.8e.msi
There is a version that includes OpenSSL [6] and a version that doesn’t.
The Subversion book discusses SSL:

Businesses that need to expose their repositories for access outside the
company firewall should be conscious of the possibility that
unauthorized parties could be ‘sniffing’ their network traffic. SSL makes
that kind of unwanted attention less likely to result in sensitive data leaks.

If a Subversion client is compiled to use OpenSSL, then it gains the
ability to speak to an Apache server via https:// URLs. The Neon library
used by the Subversion client is not only able to verify server certificates,
but can also supply client certificates when challenged. When the client
and server have exchanged SSL certificates and successfully
authenticated one another, all further communication is encrypted via a
session key.

It’s beyond the scope of this book to describe how to generate client and
server certificates, and how to configure Apache to use them. Many
other books, including Apache’s own documentation, describe this task.
But what can be covered here is how to manage server and client
certificates from an ordinary Subversion client.

Installing Apache is easy. Simply run the .msi and click through the
installation wizard. The only required input is the server information. The
network domain is only relevant if your development environment server
is on a domain. According to the Subversion book:

Subversion makes use of the COPY request type to perform server-side
copies of files and directories. As part of the sanity checking done by
the Apache modules, the source of the copy is expected to be located
on the same machine as the destination of the copy. To satisfy this
requirement, you might need to tell mod_dav the name you use as the
hostname of your server. Generally, you can use the ServerName
directive in httpd.conf to accomplish this.

So when installing Subversion for use with Apache (as we will) it is
important to specify the Server Name. The Apache documentation
describes the fields (shown in Figure 1) as:

1. Network Domain. Enter the DNS domain in which your server is or
will be registered in. For example, if your server’s full DNS name is
server.mydomain.net, you would type mydomain.net here.

2. Server Name. Your server’s full DNS name. From the example
above, you would type server.mydomain.net here.

3. Administrator’s Email Address. Enter the server administrator’s
or webmaster’s email address here. This address will be displayed
along with error messages to the client by default.

Accept the default All Users setting on port 80.

E

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. . He can be contacted at paul.grenyer@gmail.com
12 | | FEB 2008{cvu}

The webserver is
s t a r t ed when the
installation wizard is
completed.
To test that it works
open a browser on
the machine where
Apache is installed
and enter: http://
localhost

That should bring up
t he m es s ag e It
works!

Firewall configuration

Now try it from another machine on the network using the Apache
machines name, e.g:
 http://devenv

or its IP address, e.g:
 http://192.168.0.103

If the the Windows firewall or another firewall is installed and running on
the Apache machine, this should fail as access to the webserver is not
granted by default. To grant access through the Windows firewall:

1. Go to the Windows Control Panel.
2. Double click Windows Firewall.
3. Go to the Exceptions tab, click Add Program and then Browse.
4. Browse to the Apache bin directory (usually C:\Program

Files\Apache Software Foundation\Apache2.2\bin) and
select httpd.exe.

5. Dismiss the remaining dialogs by clicking OK.
Figure 2 shows httpd added
to the list of Exceptions.
Now t ry to acces s the
development environment
se rve r f r om a r e mo te
machine again. This time it
should work.
For some final feel good
f ac t o r mo d i fy th e
index.html file (found in:
C:\Program
Files\Apache Software
Foundation\
Apache2.2\htdocs) and
check that the changes are
reflected both locally and
remotely.

Installing Subversion version control system

Download and install

There are two different releases of version 1.4.5 of Subversion. One with
binary compatibility for version 2.0 of Apache and one with binary
compatibility for version 2.2 or higher of Apache. As we’re using the latest
Apache version we need the version 2.2 or higher release of Subversion.
Unfortunately, this release doesn’t have an msi installer and therefore the
zip file containing the Win32 binaries must be downloaded from the
Subversion site.

1. Unzip the Subversion Win32 binaries
(e.g.: C:\Program Files\svn-win32-1.4.5).

2. Add the Subversion bin directory to your path environment variable
(C:\Program Files\svn-win32-1.4.5\bin).

3. Move the mod_authz_svn.so and mod_dav_svn.so Apache
modules from the Subversion bin directory (C:\Program
Files\svn-win32-1.4.5\bin) to the Apache modules directory
(C:\Program Files\Apache Software Foundation\
Apache2.2\modules).

Creating a repository

A repository is needed before Subversion can be configured for use with
Apache. An easy repository to create is an infrastructure repository that
could be used to store configuration files for Apache and Subversion.

1. Create a repositories directory to store all repositories (e.g.
C:\Repositories).

2. Open a command prompt and type:
 svnadmin create c:\repositories\infrastructure

Configuring Apache

There are two basic methods of accessing Subversion over a network:
svnserve and Apache. The advantages of using Apache, according to the
Subversion book, are:

Allows Subversion to use any of the numerous authentication
systems already integrated with Apache (including Windows
domain authentication).
No need to create system accounts on server.
Full Apache logging.
Network traffic can be encrypted via SSL.
HTTP(S) can usually go through corporate firewalls.
Built-in repository browsing via web browser.
Repository can be mounted as a network drive for transparent
version control.

It states that the disadvantages are:
Noticeably slower than svnserve, because HTTP is a stateless
protocol and requires more turnarounds.
Initial setup can be complex.

I have never found Subversion access via Apache too slow, but there is
always room for improvement and, as we’ll see below, initial setup need
not be complex.
To configure subversion for use with Apache open httpd.conf (found
in C:\Program Files\Apache Software Foundation\Apache2.2\
conf) and add the following lines to the end:

 LoadModule dav_module modules/mod_dav.so
 LoadModule dav_svn_module modules/mod_dav_svn.so
 LoadModule authz_svn_module modules/
 mod_authz_svn.so

This tells Apache to load the modules required for Subversion. After this
add the following:

 <Location /svn>
 DAV svn
 SVNParentPath "C:/Repositories"
 SVNListParentPath on
 </Location>

This tells Apache where the Subversion repositories are stored and that
they should be accessed as http://<servername>/svn/
<repositoryname> and to pass the handling of those URLs onto the
Subversion DAV Layer. SVNParentPath tells Apache that all
repositories are located in C:/Repositories. Therefore only one
Location block is required to serve several repositories. Setting
SVNListParentPath to on l ists all the repositories in the

Fi
gu

re
 1

Fi
gu

re
 2
FEB 2008 | | 13{cvu}

SVNParentPath when accessing the http://<servername>/svn/
URL.
Save httpd.conf and restart the Apache service (Control Panel →
Administrative Tools → Services). To test the configuration try and
access the infrastructure repository. For example:
 http://devenv/svn/infrastructure/

This should bring a page resembling the following:
 Revision 0: /

 Powered by Subversion version 1.4.5 (r25188).

TortoiseSVN

Checking files into a Subversion repository via the command line soon
becomes very tedious. TortoiseSVN [7] is tool that integrates into
Windows Explorer and provides a GUI for common Subversion
commands, such as check-in and check-out and provides colour overlays
to indicate the modified status of checked out files.

Configuring Domain Authentication

The simple Subversion configuration described above allows anyone who
can access the Apache and Subversion server to access the Subversion
repositories. This is probably fine for small organisations using the server
internally but larger organisations or those wanting to use Subversion over
the Internet require authentication.
Apache can be configured to control access to Subversion via Windows
Domain Authentication. This is useful if the organization already has its
users on a domain and doesn’t want to have to add new users to Subversion,
who are already on the domain. (If you don’t have a domain, see Basic
HTTP Authentication below for an alternative).
Open httpd.conf again and add the following under the mod_dav.so,
mod_dav_svn.so and mod_authz_svn.so module load statements:

 LoadModule dav_module modules/mod_dav.so
 LoadModule dav_svn_module modules/mod_dav_svn.so
 LoadModule authz_svn_module modules/
 mod_authz_svn.so
 LoadModule sspi_auth_module modules/
 mod_auth_sspi.so

The mod_auth_sspi.so module is used by Apache for the Domain
Authentication. Add the following to the location block.

 <Location /svn>
 DAV svn
 SVNParentPath "C:/Repositories"

 AuthName "SVN Server"
 AuthType SSPI
 SSPIOfferBasic On
 SSPIAuth On
 SSPIAuthoritative On
 SSPIDomain MYDOMAIN

 Require valid-user
 AuthzSVNAccessFile "conf/svnaccess.conf"
 </Location>

A brief description of each entry is given below:

There are more details for most of the above settings in the Subversion
book.
Save httpd.conf, restart Apache and try to access the repository via a
browser again. You should receive a ‘Forbidden’ message. This is because
there is no file containing details of user permissions on the repository.
Create a file called svnaccess.conf in the conf directory (C:\Program
Files\Apache Software Foundation\Apache2.2\conf). Open the
file and add:
 [infrastructure:/]
 MYDOMAIN\user.name = rw

Substitute MYDOMAIN for the name of your domain (in upper case) and
user.name for the user name of a user within that domain.
Save svnaccess.conf and restart Apache. Assuming the user specified
is logged into the domain on the machine trying to access the infrastructure
repository, access should be allowed.
Don’t forget to check svnaccess.conf into the repository.
There must be an entry for each repository. As many users as required can
be added, each on a separate line. The first word inside the square brackets
is the name of the repository you are setting user permissions for.
Following the colon is the path to the repository relative to
SVNParentPath. The next line contains the domain and user name of
the user being given permissions and rw indicates read and write
permissions.
More details of the types of permissions and how to setup groups can be
found in the Subversion book.

Configuring basic HTTP authentication

If you don’t have a domain there is a basic authentication system supported
by Apache. The system allows users to be created with passwords. The
Subversion book includes detailed information on how to do this, so I will
only cover the basics here.
Start by creating a user. Open a command prompt and type:

 cd C:\Program Files\Apache Software Foundation\
 Apache2.2\bin
 htpasswd -cm ..\conf\svn_auth_file paul
 New password: *******
 Re-type new password: *******
 Adding password for user paul

This will create a file called svn_auth_file, containing the user name
and an encrypted password for a user called Paul, in the conf directory
(C:\Program Files\Apache Software Foundation\Apache2.2\
conf). The c command line argument creates a new file and the m
argument forces MD5 encryption of the password. Further users can be
added by dropping the m command line argument:

 htpasswd.exe -m ..\conf\svn_auth_file charlotte
 New password: ****
 Re-type new password: ****
 Adding password for user charlotte

AuthName An arbitrary name that you give for the
authentication domain. Most browsers will
display this name in the pop-up dialog box
when the browser is querying the user for his
name and password.

AuthType Type of authentication system to use.

SSPIOfferBasic When set to on allows non-Internet Explorer
based clients to access the repository.

SSPIAuth When set to on to activates SSPI
authentication.

SSPIAuthoritative When set to on prevents other authentication
methods being used if SSPI fails.

SSPIDomain The name of the domain to authenticate
against. The domain name must be in
capitals.

Require When set to valid-user, tells Apache that all
requests require an authenticated user.

AuthzSVNAccessFile Specifies a file containing the permissions
policy for repositories.
14 | | FEB 2008{cvu}

The Bazaar Approach # 3
Personal Bazaar
Steve Love has a round-up of techniques for making Bazaar do

what you want.

n a couple of previous articles [1] [2], I talked about how to use the
Bazaar Version Control System [3] (or bzr for short) for regular tasks
associated with version control – checking out, branching, merging,

checking in. In this article I want to explore a little way off the beaten path,
and look at some of the more advanced features and facilities of bzr. That’s
not to say that these features aren’t regular version control tasks, though;
only that bzr does some things differently and sometimes more
comprehensively than other similar tools.
The behaviour of most bzr commands is most easily changed from the
command line; most bzr commands accept one or more arguments which
augment their behaviour. Sometimes, however, more persistent changes
are needed, and bzr looks to its configuration files for those things you
can’t be bothered remembering to type in each time you run a bzr
command. We’ll take a short tour of the various configuration options
understood by the bzr command line.
Sometimes, even with command line arguments and config file entries, bzr
doesn’t quite do what you need, and so bzr supports the concept of a plug-

in, which might enhance the feature set, change some existing feature or
add a completely new feature to bzr. There are some plug-in components
which are indispensable to any serious undertaking, so a section on plug-
ins is similarly mandated.
It’s quite common for project admins to configure a version control system
with notifications when important events – such as check-ins – occur. bzr
manages this with hooks. A hook-handler is special kind of bzr plug-in,
which gives you great flexibility and expressiveness in what can be
achieved easily.
But before we get to any of this, let’s have a look at the output from bzr log.

History revision

The output shown in Listing 1 is the log from a branch with a single check-
in. In common with many version control systems, it shows the revision
number, the time of the check in, who made it, and the message associated
with that commit. By default, bzr uses a combination of your login name
and the host name of your machine to generate a committer name (See
sidebar).
 revno: 1
 committer: steve <steve@salisbury>
 branch nick: paperclip
 timestamp: Tue 2008-01-15 17:15:48 +0000
 message:
 Initial project

I

 STEVE LOVE
Steve Love is an independent developer constantly
searching for new ways to be more productive without
endangering his inherent laziness. He can be contacted at
steve@arventech.com

Each time you make a check-in, it is logged against your ID and
email address, which shows up in the log output. This ID can be
configured either globally, or for a specific branch, so in theory you
could have different credentials for different projects. The command
bzr whoami "Steve <steve@arventech.com>" sets my
global ID and email address, and will be used for all branches where
the ID hasn’t been specifically set to something else. The command
bzr whoami --branch "Steve <steve@arventech.com>"
sets the ID for just the current branch, overriding the globally set
value. To display the ID which will be used for the next check-in, use
bzr whoami.

Your Bazaar Identity
Installing Apache and Subversion (continued)
 Open httpd.conf and add the following to the location block:
 <Location /svn>
 DAV svn
 SVNParentPath "C:/Repositories"
 AuthName "SVN Server"
 AuthType Basic
 Require valid-user
 AuthUserFile conf/svn_auth_file
 </Location>

Save httpd.conf and restart Apache. Try accessing the infrastructure
repository again. A dialog box asking for a user name should be displayed
(Figure 3). Enter the user name and password of one of the users in your
password file. Click OK and access the repository as normal.

Where next?
That’s all there is to it. The Apache
home page can be customized as
needed or better still a Wiki installed
for team collaboration. Subversion If
needed, more repositories can be easily
added to Subversion and accessed from
any number of client machines.
In the next few issues I’ll be describing
how to install a Wiki, bug tracking
software and an instant messaging
client.

References
[1] http://httpd.apache.org/
[2] http://subversion.tigris.org/
[3] http://svnbook.red-bean.com/
[4] http://free.grisoft.com/
[5] http://www.zonealarm.com/
[6] http://www.openssl.org/
[7] http://tortoisesvn.tigris.org/

AuthName An arbitrary name that you give for the authentication
domain. Most browsers will display this name in the
pop-up dialog box when the browser is querying the
user for his name and password.

AuthType Type of authentication system to use.

Require When set to valid-user, tells Apache that all requests
require an authenticated user.

AuthUserFile Specified the location of the password file.

Figure 3
FEB 2008 | | 15{cvu}

The log output becomes a bit more interesting when there have been
commits and merges from different branches of the project.
Figure 1 shows two further branches made from Steve’s branch. In fact,
the branch being worked on by Sally was branched from Dave’s branch,
then Dave merged Sally’s changes, and lastly Steve merged Dave’s
branch, which included the changes made by Sally.
What’s interesting about the log is the visible indication – by the power of
indentation – of the branching history. This indentation is also reflected in
the output from bzr status in Steve’s branch, after merging from Dave,
but before committing it.
The ‘pending merges’ section shows not only what changes have just been
merged, but an idea of the ancestry of those changes.

Bazaar behaviour
There are a number of ways to get bzr to do what you want it to do. The
first and most obvious is via the command line, as shown in the previous
section, where you either invoke a particular command – like bzr
whoami – to explicitly set an option.
The second common way is to set an environment variable. The syntax for
exactly how to do this will differ from system to system, and so I’ll just
mention some of the common variable names here.

BZR_HOME sets what bzr thinks of as the home directory. This is
where bzr will look for plug-ins (see a later section), and the main
configuration file (covered next).
BZR_EMAIL sets the email address for the current user. It has the
same content as the payload for bzr whoami.
BZR_PLUGIN_PATH sets the directories bzr looks in for plugins
explicitly.
BZR_EDITOR sets the path to an editor which will be used if no -m
argument is provided for a commit.

Finally, bzr also looks in its configuration files to determine if you’ve
decided you want it to do something different from the defaults. bzr has
two main configuration files, which may be overridden on a per-branch
basis.
The global config files are in $BZR_HOME/.bazaar on a Linux or Unix
sys t em (o r $HOME i f $BZR_HOME i s no t s e t) , and i n
%APPDATA%\Bazaar\2.0 on Windows (%APPDATA% is usually
C:\Documents and Settings\<user name>\Application
Data) [4]. The main configuration settings are in bazaar.conf and a
file named locations.conf can be used for specific branch locations.
Each branch can have its own local configuration, which will be in the
.bzr/branch/branch.conf file.
This file can contain settings for the email (which is overridden by setting
the BZR_EMAIL environment variable), the path to the editor (also
overridden if set in the environment), settings for signing commits,
emailing merge requests, and a whole slew of other bits and pieces,
including information used by some plug-ins (we’re getting to that,
honestly!).
You can also set up aliases for commands here, so that if you decide that
typing bzr whoami is too boring, you can set an alias so that bzr echo-
my-email-address does the same thing. Aliases can also be used to
make existing commands do different things. For example, the bzr
commit command has a --strict argument which will refuse to make
a check-in if there are unknown files in the branch. Setting an alias can
make this behaviour the default rather than having to specify that argument
each time, by adding the following to the bazaar.conf file (adding the
[ALIASES] section if it doesn’t already exist):
 [ALIASES]
 ci=ci –-strict

This can be a very powerful way of customising bzr to your own
preferences.
Some other interesting aliases you may want to try out, and maybe tweak
to your own needs:
 lastlog=log –r-2..-1
 ll=log -–line –r-10..-1
 make_repo=init-repo --no-trees –-default

Custom paint job
Sometimes configuring bzr’s existing behaviour just isn’t enough, and you
want to make it do something entirely different by adding your own
commands – or even repurposing existing commands to do something else.
It is beyond the scope of this article to go into the details of writing your
own plug-ins for bzr; if you’re interested, the bzr documentation is quite
comprehensive on the subject. Just briefly, plug-ins are written in Python,
the native language of bzr, and so the full flexibility and power of the
language and libraries, coupled with the bzr library, is at your disposal.
Instead, we’ll take a quick look at some of the more common plug-ins that
any bzr installation would be, frankly, embarrassed to be without. All of
these plug-ins are available from [5].

Bzr tools – the basic kit

This plug-in contains several common utilities to enhance bzr with useful
stuff. Highlights include a facility to clean-up a branch, removing
unversioned files and ignored items, and the ability to ‘shelve’ changes in
a revision for later retrieval.

revno: 2
committer: Steve <steve@salisbury>
branch nick: paperclip
timestamp: Wed 2008-01-16 11:17:35 +0000
message:
 Merged from Dave

 revno: 1.1.2
 committer: Dave
 branch nick: paperclip_dave
 timestamp: Wed 2008-01-16 11:17:23 +0000
 message:
 Merged from Sal

 revno: 1.1.1.1.1
 committer: Sal
 branch nick: paperclip_sally
 timestamp: Wed 2008-01-16 11:17:08 +0000
 message:
 Started work on the docs

 revno: 1.1.1
 committer: Dave
 branch nick: paperclip_dave
 timestamp: Wed 2008-01-16 11:16:42 +0000
 message:
 Started work on the build

revno: 1
committer: steve <steve@salisbury>
branch nick: paperclip
timestamp: Tue 2008-01-15 17:15:48 +0000
message:
 Initial project
added:
 build/
 doc/
pending merges:
 Dave 2008-01-16 Merged from Sal
 Sal 2008-01-16 Started work on the docs
 Dave 2008-01-16 Started work on the build

Li
st

in
g

1

16 | | FEB 2008{cvu}

Diff tools – beyond the built-in Diff

Typing bzr diff at the command prompt generates the classic unified
diff format output which, while useful for many things, is largely
incomprehensible to a human reader. What it’s most useful for is a sane
input to a variety of graphical diff tools. The diff-tools plug-in allows you
to configure a diff tool of your choice.

External merge – beyond Diff!

Graphical diff tools are great for viewing the difference between two files,
or two revisions of a file, but some go even further and provide facilities
for managing merge conflicts. When a file is conflicted as a result of a
merge, there are commonly four versions of that file in operation: the
conflicted file, the revision of the file causing the conflict, the base revision
of each of those, and the final, resolved, output version. This plug-in allows
bzr to call such an external program (my personal recommendation is
Kdiff3 – which despite appearances runs perfectly happily on MS
Windows. See [6]).

Qbzr – Cute Tools

This plug-in has various graphical extensions for viewing the revision
history log, a graphical diff tool, setting some of the configuration
variables and browsing the contents of a branch.

Installing plug-ins
Installing new plug-ins could hardly be easier in bzr. The system-wide
plug-ins directory is a plugins sub-directory of wherever bzr is installed
(on MS Windows, this is %ProgramFiles%\Bazaar). Plug-ins can
also be installed on a per-user basis, and the location for this is $HOME/
.bazaar/plugins on Linux/Unix, and %APPDATA%\bazaar\
2.0\plugins on MS Windows (the plugins sub-directory here may
need to be created manually). Beyond knowing where to put the plug-ins,
all that remains is to download one that takes your fancy and drop it in.
No, really!
Some plug-ins require configuration (for example, the extmerge plug-in
mentioned above needs an entry in the bazaar.conf file to tell it the
full path to the merge tool you wish to use).
The presence of a correctly installed plug-in can be checked using the bzr
plugins command, and they will also be listed in bzr help
commands. Each plug-in integrates nicely with the bzr command line
help, so, for example, bzr help extmerge gives help on the external
merge tool plug-in.

Running errands
It’s fairly common in large teams, or those working in a truly distributed
manner, to arrange for the versioning system to notify some or all of the
team when a commit occurs, or something else that changes the repository
like a rollback. bzr’s commit hooks are special types of plug-in, written in
Python as plug-ins are, giving you great power about what to do for your
notifications.
The standard hooks are:

pre_commit occurs before a check in has completed
post_commit occurs after a check-in is committed
post_uncommit occurs after an uncommit has finished
post_push occurs after a push has occurred
post_pull occurs after a pull has happened
set_rh occurs whenever any change to revision history happens –
commit, push, pull and uncommit all change the revision
history.

You install the hook handler in the same way as for a plug-in. The bzr
documentation explains clearly what is needed, but I’ll reproduce the
simple example from that documentation here:

 from bzrlib.branch import Branch

 def post_push_hook(push_result):
 print ("The new revno is %d"
 % push_result.new_revno)

 Branch.hooks.install_hook(
 'post_push', post_push_hook)
 Branch.hooks.name_hook(
 post_push_hook, 'My post_push hook')

(From [7]). This shows exactly how simple it is to install a hook handler
for your repository.
In this simple example, the idea is to print the new revision number of the
remote branch after a push has occurred from the current branch.
Create a file called post_push.py in your plug-ins directory (see
‘Installing plug-ins’), and add the lines of Python script above.

 The new revno is 6
 All changes applied successfully.
 Pushed up to revision 6.

That is all you need! Test your hook by pushing changes to a different
branch. You should see output similar to that shown. The first line of the
output was generated by the hook, and the latter lines are the regular output
from the push command. Of course, for a real one, you would probably
want to do something more interesting – but then, you have the whole of
Python available to you, so be creative!

Recap
So after all that, have you tried bzr yet? As a learning tool for those new
to revision control, it is ideal because it works straight out of the box, with
no services or configuration to perform. A single command – bzr init
– is all that is required.
bzr is at version 1.1 at the time of writing, and has therefore passed its
‘version one’ milestone. It is a very stable, performant and mature tool,
gaining favour in the open-source community quickly. Distributed Version
Control isn’t necessarily for everyone, and bzr even manages to cover that
base with dedicated shared repositories and centralised workflow
integrated completely with bzr’s distributed nature.
Features such as off-line working, smart merging, simple plug-in
development, indented log files and all the others are more than just ‘neat’
and ‘nifty’; these things are designed to make the gap between the
developer and tool much smaller, to support the user instead of getting in
the way.
For such a small tool, it handles a big job – The Version Control Job – with
ease.

Acknowledgement
Many thanks to Tim Penhey for his comments and suggestions on initial
drafts of this article.

Notes and references
[1] Steve Love, ‘The Bazaar Thing’, CVu August 2007
[2] Steve Love, ‘The Version Control Job’, CVu October 2007
[3] http://bazaar-vcs.org
[4] For MS Windows users: it seems to be a little known fact that you

can enter cd %APPDATA% at the command line, and even just
%APPDATA% in the Windows Explorer address bar to go straight to
this location.

[5] http://bazaar-vcs.org/BzrPlugins
[6] http://kdiff3.sourceforge.net/
[7] http://doc.bazaar-vcs.org/bzr.dev/en/user-guide.index.html
FEB 2008 | | 17{cvu}

A Simple Calculator in Tkinter and wxPython
Ivan Uemlianin compares two python GUI toolkits.

Overview
his article describes my experiences writing a very simple calculator
GUI – the ‘Hello World!’ of GUI development – in two of the main
GUI toolkits for Python: Tkinter and wxPython. Even with such a

simple applcation I found it possible to evaluate the toolkits relative to each
other.
In order to try and follow ‘best practice’ (and to avoid evaluating my own
programming ability) I sourced initial implementations externally: my
Tkinter-based calculator is based on the two calculator GUIs given in
Chapter three of Python and Tkinter Programming [11], my wxPython-
based calculator is based on several demo calculators from the web [1].
Figure 1 shows screenshots of the two calculators at launch.
There is also an informal, objective, though obviously biased, discussion
of TKinter and wxPython at the wxPython wiki [2].

Requirements and downloads
The following scripts require Python, Tkinter and wxPython. On most
linux systems, the package management software will install these for you
(on Debian they are called python, python-tk and python-wxtools, and
there is a handful of other packages available). On Windows, you have to
install Python yourself: download a .msi from the Python website [3].
This includes Tkinter. For wxPython, go to the wxPython website and
download their .msi [4].

Although not a requirement, the Boa Constructor IDE [5] is useful for
debugging scripts which use wxPython widgets, as it catches and reports
on wx exceptions.
This article and all the calculator scripts are available from my website [6].

Code overview
myCalc.py contains the class AbstractCalculator, which is a
superclass for TkCalc (in myTkCalc.py) and WxCalc (in
myWxCalc.py). I’ve aimed to put everything that the other two can hold
in common into AbstractCalculator, making it easier to compare the
two widget toolkits by comparing TkCalc and WxCalc. TkCalc and
WxCalc con t a in t he s ame me thods : __init__ (s e l f) ,
buttonPress(self, event), getDisplay(self), setDisplay(self,
value), and quitApp(self).
In the last three of these, the difference between Tkinter and wxPython is
purely lexical. Setters, getters and quitters are shown for comparison in
Table 1.
I discuss the differences between init and buttonPress below.

Known bugs
In practice, the term ‘known bug’ seems to refer to a bug that no-one can
be bothered to fix. The bugs I list here are not central to my purpose for
writing these scripts (which was to compare Tkinter and wxPython).
Fixing them is left as an exercise for the reader.

Display
The display displays operators as well as numbers (e.g. 123 + 45),
only refreshing after an = or C/CE. Of course, real calculators don’t
do this.
The toggleSign() method
The toggleSign() method (triggered by pressing the +/- key) just
prepends/removes a - at the beginning of the display. This is too
primitive (see Table 2).

Comparison of Tkinter and wxPython

SLOCs

The two scripts are about the same size.

Imports

The Tkinter and wx packages are imported slightly differently:
 >>> from Tkinter import *
 >>>
but:
 >>> from wx import *

T

Display toggleSign (Display)

123 -123

-23 123

123 -45 -123 -45 # should be 123 + 45

IVAN UEMLIANIN
Ivan is a self-employed software developer. His background
is in academic linguistics, psychology and philosophy, and
his current focus is on speech technology. He has an
irrational desire to learn C++. He can be contacted at
ivan@llaisdy.com

Fi
gu

re
 1

AbstractCalculator TkCalc WxCalc

def getDisplay(self):
 return self._display
def setDisplay(self, value):
 self._display = value
display = property(getDisplay,
 setDisplay)
def quitApp(self): pass

def getDisplay(self):
 return self._display.get()
def setDisplay(self, value):
 self._display.set(value)
display = property(getDisplay,
 setDisplay)
def quitApp(self): self.quit()

def getDisplay(self):
 return self._display.GetValue()
def setDisplay(self, value):
 self._display.SetValue(value)
display = property(getDisplay,
 setDisplay)
def quitApp(self): self.Destroy()

Ta
bl

e
1

Table 2
18 | | FEB 2008{cvu}

 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 AttributeError: 'module' object has no
 attribute '__DocFilter'
 >>> import wx

 >>>

Note that from module import * is discouraged, especially on
Windows and Mac platforms [7].

buttonPress()

Because of the design of the superclass (see above), I have had to overload
only five methods, and these show only minor idiomatic differences.
buttonPress() is the method bound to key-press events and, although
the two versions differ only a little, it demonstrates the different approach
to key events in the two toolkits (see Table 3).
In Tkinter, event objects of any kind have a standard set of attributes [8]
including (for keyboard events) char, keycode and keysym. keycode
is a code relating to the key pressed (not the ASCII character code), while
char and keysym both return strings: for alphanumerics both return the
string of the key pressed; for other keys (e.g., =, <left-ctrl-key>, or
Return) keysym returns a description (i.e., equal, Control_L,
Return). Note that two-key combinations (e.g., shift-8) count as two
keypress events: keycode will give the same code for both events; keysym
and char show the effect of the combinations (i.e., with shift-8 keysym
returns Shift_R then asterisk).
In wxPython, there are three different kinds of keypress events [9]:
wx.EVT_KEY_DOWN, wx.EVT_KEY_UP and wx.EVT_CHAR. These
event types have the same methods, the relevant one here being
GetKeyCode(), which returns the ASCII value of the key pressed, or a
wxWidgets constant [10] for non-alphanumerics. However,
wx.EVT_CHAR.GetKeyCode() shows combination effects (like
keysym above), while wx.EVT_KEY_DOWN/UP.GetKeyCode() do
not.

__init__()

The __init__() method is where the two calculators differ most. See
Table 4 for a side-by-side comparison.
The toolkits differ in the way they add widgets to the main frame. Both
use the first parameter of a widget’s __init__() for the widget’s parent.
However, wxPython uses an explicit sizer to place a widget inside the
parent (i.e., with sizer.Add() methods); Tkinter uses the widget’s
pack() method to place it. Similarly, in Tkinter commands can be bound

to widgets as part of their initialisation, while wxPython calls a separate
Bind method (see the loops to set up the buttons in the listings).
Because the documentation was not 100% comprehensive (see below) and
because I decided to limit the time spent on these GUIs, there are a couple
of minor details which remain mysterious:
For the calculator display, I found it necessary to use read-only text entry
boxes to disable the user from entering text directly into the display (i.e.,
a disabled Entry on Tkinter, and a READONLY TextCtrl on wxPython).

The documentation points to Label or Panel widgets as being more
appropriate, but I couldn’t get these to work properly (e.g., Tkinter Label
insisted on central justification, whatever I specified in initialisation).
In wxPython, the lambda function bound to each Button – lambda e,
k=key: self.keyAction(k) – must carry the first argument e for the
event object, even though it’s not used (the Tkinter lambda is otherwise
identical).
Once the GUI has been initialised, both toolkits use a mainloop method
to set it going, and waiting for events. Here again, wxPython is slightly
more complicated. In wxPython the mainloop is not run by the GUI
object itself, but by a separate application object (in WxCalc, the
application object wx.PySimpleApp is attached to the calculator at the
beginning of __init__()). This helps abstract overall management of
the application away from particular software objects or GUI widgets.

Documentation
Each toolkit has a book devoted to it published by Manning: Tkinter has
Python and Tkinter Programming [11]; wxPython has wxPython in Action
[12]. The two books are quite different in style. I found the book on Tkinter
quite inspiring in its approach to Python in general, beyond GUI coding.
The wxPython book is a huge FAQ: it’s well-written and very useful, but
not an inspiring read. On the other hand, the Tkinter book has 250 pages
of fairly comprehensive appendices and a 30 page index; the wxPython
book does not attempt to be comprehensive, has no appendices, and only
six pages of index.
For wxPython, the book is nice to get started, but you really have to use
the online documentation [13]. This is comprehensive but it’s not actually
wxPython documentation: the wxPython online docs page is actually a
frame wrapped around the wxwidgets online docs page. Translating
between C++ and Python is a bit of a drag but fairly trivial – for example,
the class and method names and parameters and all the semantics are the
same.
Tkinter also has good online documentation [14]. I haven’t used it much,
as [11] answers most of my questions.

TkCalc WxCalc

keysym2label = {'plus': '+',
 'minus': '-',
 'asterisk': '*',
 'period': '.',
 'slash': '/',
 'equal': '=',
 'Return': '=',
 'Delete': 'C',
 'BackSpace': 'C',
 'q': 'OFF'
 }

def buttonPress(self, event):
 k = event.keysym
 if k not in '1234567890':
 k = self.keysym2label.get(k)
 self.keyAction(k)

keyCode2label = {wx.WXK_RETURN: '=', # return
 wx.WXK_BACK: 'C', # backspace
 wx.WXK_DELETE: 'C', # delete
 17: 'OFF' # q
 }

def buttonPress(self, event):
 c = event.GetKeyCode()
 k = chr(c)
 if k not in '1234567890+-*/.=':
 k = self.keyCode2label.get(c)
 self.keyAction(k)

Table 3
FEB 2008 | | 19{cvu}

The documentation for neither system was fully reliable, so I occasionally
had to use the absolute default and spend some time with Google. This
seems to be par for the course with most software these days, open or
closed source.

Conclusion
For simple GUIs I have found Tkinter easier to work with: less code is
needed, there are fewer idiosyncracies, there is more/better
documentation. WxPython seems to be designed with at least the
possibility of more complex applications in mind. For example, Tkinter
does not provide a tree widget (e.g., for browser GUIs), and Grayson has
to code one up (in Example_8_10.py); wxPython provides TreeCtrl,
a direct wrapper around the C++ wxWidgets class wxTreeCtrl.
Consequently, for more complex GUIs I use wxPython. Presumably any
porting from Python to C++ would be simpler from wxPython than from
Tkinter, but I have yet to investigate porting a wxPython application to
wxWidgets.

References
[1] Simple calculators in wxPython:

http://wiki.wxpython.org/index.cgi/CalculatorDemo
http://pythonwise.blogspot.com/2006/05/wxpython-calculator-in-
50-lines-of.html
http://www.devshed.com/c/a/Python/Designing-a-Calculator-in-
wxPython/

[2] http://wiki.wxpython.org/Choosing_wxPython_over_Tkinter
[3] http://www.python.org
[4] http://www.wxpython.org
[5] http://boa-constructor.sourceforge.net/
[6] http://www.llaisdy.com/tech/python/calc.html [TODO]
[7] http://www.python.org/doc/current/tut/

node8.html#SECTION008410000000000000000
[8] pythonware doc ch7. Events and bindings
[9] wxPython/wxPython-2.6.3.2/docs/wx/wx_wxkeyevent.html
[10] wxPython/wxPython-2.6.3.2/docs/wx/wx_keycodes.html
[11] Grayson, J. (2000) Python and Tkinter Programming. Manning.

ISBN: 1-884-77781-3. http://www.manning.com/grayson.
[12] Rappin, N & Dunn, R. (2006). wxPython in Action. Manning.

ISBN: 1-932394-62-1. http://www.manning.com/rappin.
[13] http://www.wxpython.org/onlinedocs.php
[14] http://www.pythonware.com/library/tkinter/introduction/index.htm

TkCalc WxCalc

def __init__(self):
 AbstractCalculator.__init__(self)

 Frame.__init__(self)
 self.pack(expand=NO, fill=NONE)
 self.master.title('Simple Tk Calc')
 self.master.resizable(0,0)

 self._display = StringVar()
 self._display.set('0')
 Entry(self, justify=RIGHT, relief=SUNKEN,
 disabledforeground='black',
 disabledbackground='white',
 state=DISABLED,
 textvariable=self._display).pack(side=TOP,
 expand=YES, fill=BOTH)

 for row in self.keyLayout:
 rowFrame = Frame(self)
 for key in row:
 Button(rowFrame, text=key,
 command=lambda k=key: self.keyAction(k),
 width=4).pack(side=LEFT, expand=NO,
 fill=NONE)
 rowFrame.pack(side=TOP, expand=YES,
 fill=BOTH)

 self.bind('<KeyPress>', self.buttonPress)
 self.focus_set()
 self.mainloop()

def __init__(self):
 AbstractCalculator.__init__(self)
 self.app = wx.PySimpleApp()

 wx.Frame.__init__(self, None, -1,
 "Simple WxP Calc")
 sizer = wx.BoxSizer(wx.VERTICAL)

 self._display = wx.TextCtrl(self, -1, '',
 style = wx.TE_READONLY | wx.TE_RIGHT)
 sizer.Add(self._display, 0, wx.EXPAND)

 gsizer = wx.GridSizer(4, 4)
 for row in self.keyLayout:
 for key in row:
 b = wx.Button(self, -1, key)
 b.Bind(wx.EVT_BUTTON,
 lambda e, k=key: self.keyAction(k))
 b.SetFocus()
 gsizer.Add(b)
 sizer.Add(gsizer, 1, wx.EXPAND)

 self.SetSizer(sizer)
 sizer.Fit(self)

 self.Bind(wx.EVT_CHAR, self.buttonPress)
 self.display = '0'

 self.Show()
 self.app.MainLoop()

Ta
bl

e
4

We’d love to hear from you!
If you read something in C Vu that you particularly enjoyed, you disagreed with
or that has just made you think, why not put pen to paper (or finger to keyboard)
and tell us about it? Send your thoughts to editor@accu.org
20 | | FEB 2008{cvu}

FEB 2008 | | 21{cvu}

Desert Island Books
Paul Grenyer starts a new series by explaining his

own selections.

 thought this was going to be easy as I had no doubt what my first main
book would be, but then it got harder. A lot harder. Do I choose a design
patterns book? What about a process book? Or a technique book? Or

more straight language books? This is how I got on.

Programming books
The C++ Standard Library: A Tutorial and Reference
by Nicolai M. Josuttis, published by Addison Wesley
ISBN-10: 0201379260 ISBN-13: 978-0201379266
This book more than any other changed my career for the better. I was fresh
out of university, had my first C++ job and only knew a little C. A number
of ACCUers spear headed by Phil Nash and John Crickett were guiding
me to better things. Phil Nash in particular persuaded me to invest in better
books. When I got Josuttis I read it pretty much cover to cover. It’s the
book I go back to the most (when I’m doing C++) and I wouldn’t be without
it. Reading this book and learning about the C++ standard library allowed
me to be the only candidate to complete a programming test for new
position I went for and they gave me the job off the back of that.
C++ Templates: The Complete Guide
by David Vandevoorde and Nicolai M. Josuttis, published by Addison
Wesley
ISBN-10: 0201734842 ISBN-13: 978-0201734843
This is where it gets difficult. For my second choice I couldn’t decide
between Scott Meyers’ Effective Series, Herb Sutter’s Exceptional Series
and Vandevoorde and Josuttis’ templates book. The Effectives and
Exceptionals have no doubt made me a much better C++ programmer, but
I mostly absorbed the information as I read and don’t gt back to them so
often. If I was on a desert island I’d want the templates book as I love the
power that templates give C++ and, when programming in C++, constantly
go back to the templates book for reference. That’s the one I’d want on a
desert island.
Design patterns : elements of reusable object-oriented software
by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
published by Addison Wesley
ISBN-10: 0201633612 ISBN-13: 978-0201633610

There are a number of
technique books that I could
have chosen. Such as Test Driven
Deve l opmen t by Ken t Beck ,
Refactoring by Martin Fowler or Working
with Legacy Code by Micheal Feathers. However, these books confirmed
stuff I’d mostly worked out for myself and I don’t generally go back to
them unless I want to look up the name of something. Although I never
had the eureka moment with patterns than many others have described, the
Gang of Four is a book I go back to again and again and really should be
on my desert island book shelf.
Extreme Programming Explained: Embrace Change
by Kent Beck and Cynthia Andres, published by Addison Wesley
ISBN-10: 0321278658 ISBN-13: 978-0321278654
The final book is probably the most difficult book of all to choose. I’ve
learnt so much from a few process and practice books including the
Pragmatic Programmer (series) by Andrew Hunt and David Thomas, The
Practice of Programming by Brian W. Kernighan and Rob Pike and Lean
Software Development by Mary Poppendieck and Tom Poppendieck. They
all have good common sense advice and I’ve learnt new stuff from them.
However the book that has had the most impact on my career and the
quality of my development skills was Extreme Programming by Kent
Beck. It could be argued that a book about making teams work better
together isn’t much use when you’re on your own on a desert island, but
there is a lot that can be applied even by loan programmers.

The novel
Redemption Ark
by Alastair Reynolds, published by Gollancz; New Ed edition
ISBN-10: 0575073845 ISBN-13: 978-0575073845
I only discovered Alastair Reynolds about eighteen months ago and I’m
hooked. I’ve always loved science fiction (and a little bit of fantasy).
Reynolds’ ‘space opera’ is dark, at times addictively complex and beats
the likes of Arthur C. Clarke, Asimov and Tolkien hands down. I’d take
all of his books given the chance, but Redemption Ark is the one I’ve
enjoyed the most so far.

The albums
The Crimson Idol by WASP
Misplaced Childhood by Marillion
Choosing my favorite two albums from the hundreds (1000+) that I own
was easy. Had I had to choose one I’d have had a serious problem (but it
probably would have been Misplaced Childhood). I discovered both
Marillion and WASP in my late teens and listened and still listen to these
two albums over and over. Specifying just one thing that makes either of
these albums great is near impossible. They both have superb lyrical
content. Fish and Blackie Lawless excel themselves as both describe deep
emotional pain they’ve been through. The guitar and drum work on The
Crimson Idol is something else and includes the best guitar solo in the
world. Misplaced Childhood incorporates superb guitar, keyboard and
vocals and take you through emotional highs and lows.

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Jez Higgins picks his desert island books.

Code Critique Competition 50
Set and collated by Roger Orr.

book prize is awarded for the best entry.
Please note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to

comment on published entries, and to supply their own possible code
samples for the competition (in any common programming language) to
scc@accu.org.

Last issue’s code
I’m frustrated by the map class in the standard because the indexing
operator isn’t const. So I’m trying to made my own class – cmap – which
has a const friendly operator[]. It almost works, but I sometimes get the
wrong value output – can you help me?

As always, try to go beyond simply solving the initial problem. The code
is shown in Listing 1.

Critiques

From Chris Main <chris@cmain.entadsl.com>

When I first started using std::map, I too found it irritating that the
notational simplicity of operator[] was unavailable for const maps.
With more experience I have found that the need to check whether a key
was found in a const map is more common than not.
In the common case, the STL design of returning an iterator is an
elegant solution. There are, though, other cases where I think the proposed
extension would be useful. It serves a similar purpose to a default branch
of a switch statement. So I do not reject this attempt to extend the
interface of an STL component out of hand.
std::map is a public base class of cmap. This is risky because the STL
containers do not have any virtual functions, and in particular they do not
have virtual destructors. cmap is therefore exposed to the dangers of
slicing and memory leaks. The version submitted avoids those dangers by
not overriding anything in the base class and by not having any member
variables respectively. I think this is worth documenting in a comment.
The submitter has provided a failing test case, which is very helpful. The
failing implementation has a C-style cast which casts away the const. There
is no need to take such a brute force approach, as it can be implemented
quite easily with the available const member functions:
 const base::const_iterator i = find(k);
 if (i == end()) {
 static V v;
 return v;
 } else {
 return i->second;
 }

This implementation is also more efficient than the original. It only
searches the base class map once (in find()) rather than twice (in
count() and operator[]).
The tests pass with this implementation. Because test(map, 3) has
inserted a default value for the key 3, it is worth adding ctest(map, 4)
to exercise the case when there is no value for a key

passed to the const operator[]. This additional case also passes with
the new implementation, so job done. Moral of the story: don’t use casts
when you don’t need to.
But if you are as curious as I am, you will want to know why the original
implementation didn’t work. To get to the bottom of it, I split it up into its
component parts:

A

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

// cmap.h
#include <map>
using namespace std;
// map that has a const operator[]
template <typename K, typename V>
class cmap : public map<K,V>
{
 typedef map<K,V> base;
public:
 using base::operator[];
 const V& operator[](K const &k) const
 {
 if (count(k) == 0)
 {
 static V v;
 return v;
 }
 return ((base)(*this))[k];
 }
};
// test_cmap.cpp
#include "cmap.h"
#include <iostream>
#include <string>
void test(cmap<int, string> & m, int idx)
{
 cout << "m[" << idx << "]="
 << m[idx] << endl;
}
void ctest(const cmap<int, string> & m,
 int idx)
{
 cout << "const m[" << idx << "]="
 << m[idx] << endl;
}
int main()
{
 cmap<int, string> map;
 map[0] = "Zero";
 map[1] = "One";
 map[2] = "Two";
 test(map, 2);
 test(map, 3);
 ctest(map, 2);
 ctest(map, 3);
}
//Example output when it goes wrong
// (const m[2] should be Two):
//m[2]=Two
//m[3]=
//const m[2]=
//const m[3]=

Listing 1
22 | | FEB 2008{cvu}

 //return ((base)(*this))[k];
 base map((base)(*this));
 const V &value = map[k];
 return value;

In the debugger, I could see that the correct value was being assigned from
map[k], but it was being lost in the return statement. I re-wrote the code
to use a pointer:
 base *map((base *)(this));
 const V &value = (*map)[k];
 return value;

This worked OK. Nearly anything you can do with pointers you can do
with references, so:
 base &map((base &)(*this));
 const V &value = map[k];
 return value;

This also worked OK, so it finally became clear to me that the one line
answer is:
 return ((base &)(*this))[k];

The missing ampersand meant that the map was being copied into a
temporary local variable which was destroyed when the function exited.
The reference returned by the function was to a value in this destroyed
variable, not to a value held in the cmap, and so it was invalid.
The submitter obviously understands that it is invalid to return a reference
to a local variable from a function because a static variable has been used
for the case when there is no value in the map for a particular key. The
problem was that the use of casting obscured the fact that a reference to a
local variable was being returned.
There are a couple of further modifications which may be worth
considering. Using a static variable for the case when there is no value in
the map for a key is fine in a single threaded application. If cmap needs
to be used in a multi threaded application, a more useful implementation
is to hold the default value as a member variable of cmap. That, though,
means that cmap inheriting publicly from std::map is more of an issue.
To be on the safe side, cmap should then inherit privately from std::map
(or contain a std::map member variable) and provide forwarding
functions for all the public member functions of std::map.
If cmap is modified to have the default value as a member variable, it may
be useful to allow different default values from the default constructed
value. For example, the string "Not found" or "Undefined" may be
preferred to the empty string in some cases. This functionality could be
provided by the constructor and/or an explicit setter:
 cmap(const V &defaultValue = V());
 set_default_value(const V &v = V());

From David Carter-Hitchin < david@carter-hitchin.clara.co.uk>

The first thing I notice is that there are no header include guards, i.e.
 #ifndef CMAP_H_20071128_324234
 #define CMAP_H_20071128_324234
 ... header stuff...
 #endif

I always put the date and a random sequence of digits to be absolutely sure
you don’t mistakenly exclude another header with the same guard string.
I was once told a story of a debugging session which was a total nightmare
and was caused by duplicate header guard symbols.
Another no-no is using namespace std in the header. This is bad
enough in cpp files but in headers it’s evil. It means that you’ve got the
entire std namespace even if you don’t want all of it. This could actually
be a show stopper for your customers, and even if you don’t have
customers, then it can still cause you problems. Best to fully qualify
symbols in the header, e.g. std::string, but if that’s too onerous then
using std::string; is better, but can still cause problems.
The essential problem is this line in cmap::operator[]:
 return ((base)(*this))[k];

This returns a const reference to some object as defined in the
implementation of std::map, this object is not necessarily going to exist
by the time the library function has done its job of looking up the key’s
value in the map, and returned control to the caller. In Visual Studio 2005,
if I assign this to a string variable then I can see it’s a BadPtr, presumably
because it now points to memory which has been cleaned up. On some
implementations you might find that this does return a decent address, but
obviously you can’t be sure. One solution is right before us, a few lines
up, namely to create a static variable, assign the key’s value to that and
return it:
 const V& operator[](K const &k) const
 {
 if (count(k) == 0)
 {
 static V v;
 return v;
 }
 static V retVal;
 retVal = ((base)(*this))[k];
 return retVal;
 }

Another possibility, is to return a const copy of the object, rather than a
reference:
 const V operator[](K const &k) const
 {
 if (count(k) == 0)
 {
 static V v;
 return v;
 }
 return ((base)(*this))[k];
 }

This fix is for the lazy – a deletion of one character (the ampersand after
the return value)! Of course, returning by copy could be expensive, so this
may not be the best solution for all cases (perhaps this could then present
a case for template specialisation, but that approach would require some
maintenance). Other things to think about include inlining as the code is
quite small and thread safety (adding a mutex to prevent multiple access).

Commentary
Code like this has, to me anyway, what Martin Fowler in Refactoring calls
a ‘bad smell’. My concern over this example, independent of whether there
are known bugs in it, is that the writer has extended a class that is not
designed to be base class. However, your mileage may vary as Stroustrup
does something similar in The C++ Programming Language [p780 of 3rd
edition] where he derives a class Vector from std::vector. The two
main dangers with this are (as Chris points out) deleting via a pointer-to-
base and inadvertent slicing when, for example, an object from the derived
class is passed to a function taking a reference to the base class. Although
in this case these dangers are missing they could easily be introduced by
future code changes.
The ‘interesting’ side of the bug is that it is extremely hard to spot from
the syntax – just a missing ampersand – and it also seems hard for
compilers to detect the problem.
Two of us once spent nearly two days trying to find a problem very similar
to this one where a cast created a temporary. What makes this sort of
problem hard to track down is the dangling reference generated may
remain valid some of the time – it depends on the specifics of the compiler,
the runtime and the pattern of usage of memory.
Good advice in this particular case is to stop using C-style casts wherever
possible. In the case shown the cast is being used to access the non-const
operator[]. If a const_cast is used rather than the C-style cast then most
compilers will reject the code: for example MSVC 8.0 gives the error
message ‘Conversion requires a constructor or user-defined-conversion
operator, which can’t be used by const_cast or reinterpret_cast’. I’m
FEB 2008 | | 23{cvu}

waiting for an (optional) compiler switch to give me a warning for all C
style casts.
I note that at least one compiler provides a warning for the construction of
static V v; not being thread-safe. The good news is that the
forthcoming C++0x standard should contain a standard way to ensure the
construction is thread-safe. Interested readers can google for ISO C++
committee paper N2382: ‘Dynamic Initialization and Destruction with
Concurrency’. Less interested readers will probably ignore the problem –
if they are lucky they may also escape being a victim of the problems that
can ensue! Of course, even if the static is constructed in a thread-safe
fashion its use will require that read access to the variable is thread-safe.
Mutable instances of the cmap class will also require external
synchronization if they are to be accessed by more than one thread. (Note
that David’s first solution is implicitly single-threaded as the static V
retVal is shared among all users of the class.)
Finally there is a potential performance issue with the original code – it is
searching the map once in count() and once in operator[]. One of
the strengths of the C++ STL is the use of iterators in the API to the
collection classes that allows code to avoid searching collections twice.
There is a slight learning curve as the array-like access using operator[]
is much more intuitive but practice in using find() gives confidence
using the more efficient style. To me this is an example of avoid premature
pessimisation when using C++, in the same way that many people use
const references by default rather than copying objects.

The winner of CC 49
I thought Chris did a good job of both fixing the problem and explaining
the steps he took to understand the underlying cause, so I have awarded
him the prize.

Code critique 50
(Submissions to scc@accu.org by 1st March 2008)
For a slight change here is a C# critique. Perhaps a different language will
encourage some new readers to attempt their first entry? There are at least
two major problems with the code (Listing 2) but, as always, try to help
the writer help themselves.
I’m trying to sort a C# KeyedCollection generic class but I find sometimes
the sorting seems to hang. Can you suggest what I’m doing wrong?

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website

(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

 public void Sort() {
 bool sorted = false;
 while (!sorted) {
 sorted = true;
 for(int i=1;i<base.Count && sorted;i++){
 Collection<object> collection = this;
 object object1 = collection[i-1];
 object object2 = collection[i];
 object[] key1= GetKeyForItem(object1);
 object[] key2= GetKeyForItem(object2);
 for (int j=0; j<fields.Length; j++) {
 IComparable key =
 key1[j] as IComparable;
 if (key != null) {
 if (key.CompareTo(key2[j]) > 0) {
 base.RemoveAt(i);
 base.Insert(i-1, object2);
 sorted = false;
 break;
 }
 }
 else {
 throw new Exception();
 }
 }
 }
 }
 }
}
public class TestColl {
 private string firstname;
 private string lastname;
 public TestColl(string name) {
 this.firstname = name.Split(' ')[0];
 this.lastname = name.Split(' ')[1];
 }
 public override string ToString() {
 return string.Format("{0} {1}",
 firstname, lastname);
 }
 public static void Main(string[] args) {
 try {
 test();
 }
 catch (System.Exception ex) {
 System.Console.WriteLine(ex);
 }
 }
 private static void test() {
 FieldCollection coll = new
 FieldCollection(new string[]
 {"lastname", "firstname"});
 coll.Add(new TestColl("Roger Orr"));
 coll.Add(new TestColl("Alan Griffiths"));
 coll.Add(new TestColl("Tim Penhey"));
 coll.Add(new TestColl("Kevlin Henney"));
 // Doesn't sort if I add this one:
 // coll.Add(new TestColl("Jez Higgins"));
 coll.Sort();
 foreach (TestColl test in coll) {
 System.Console.WriteLine(test);
 }
 }
}

Listing 2 (cont’d)

using System;
using System.Collections.ObjectModel;
using System.Reflection;
public class FieldCollection :
 KeyedCollection<object[],object> {
 private string[] fields;
 public FieldCollection(
 params string[] fields) {
 this.fields = fields;
 }
 protected override object[] GetKeyForItem(
 object item) {
 object[] keys =
 new object[fields.Length];
 for (int i=0; i<fields.Length; i++) {
 string field = fields[i];
 FieldInfo fieldInfo =
 item.GetType().GetField(field,
 BindingFlags.Instance |
 BindingFlags.NonPublic |
 BindingFlags.Public);
 keys[i] = fieldInfo.GetValue(item);
 }
 return keys;
 }

Li
st

in
g

2

24 | | FEB 2008{cvu}

C++
Algorithms in C++ (3rd Edition)
by Sedgewick and Van Wyk

Reviewed by Colin Paul Gloster

I have written this review as
the ACCU reviewer for April
2002 was too kind. Like other
authors, Robert Sedgewick
seems to have become so
respected that future editions are not denigrated
for being inferior to his earlier editions. (The last
time I read a book on algorithms by him in
Pascal was in the previous century and I no
longer have it so I can not reliably say whether
an earlier edition truly was better.) This book is
aimed at beginners to programming, but it is too
dangerous for inexperienced programmers. For
example, the following function
int factorial(int N)
{
 if (N == 0) return 1;
 return N*factorial(N-1);
}

is supposedly proven to be correct on the next
page, but the supposed proof contained no
restriction that N must be greater than or equal
to zero. Someone who did not know through
experience that too many programmers continue
with bad habits for years learnt early on might
forgive many deliberately error-prone
techniques in the book (such as not using a
vendor’s implementation of the algorithms)
because, as the authors themselves admitted,
this book does not present dependable code for
real use, merely education, but declaring N as int
N instead of unsigned int N can not be explained
away in this manner. The factorial function is
not the only recursive function in the book which
should have had this trivial defensive
programming style. Even if a beginner uses this
book despite using a different language, this
would probably not be safe as that language
would probably be Java which does not have an
unsigned type. One reason to study algorithms
is for efficiency, so an economical embedded
product might use a small 8-bit processor whose
stack could easily be corrupted by excessively

deep recursion but unfortunately no warning of
this was given.
I rarely have anything but contempt for
diagrams, but I was actually impressed by many
of the graphs the chapters on sorting as they
genuinely do make good use of the medium to
show characteristic differences between
alternatives.
The topic is difficult enough already, and I
suspect that oxymorons might serve more to
confuse than motivate beginners. E.g. ‘The study
of algorithms is interesting because it is a new
field (almost all the algorithms that we study are
less than 50 years old, and some were just
recently discovered) with a rich tradition (a few
algo-rithms have been known for thousands of
years)’ and another example is: ‘There are
several reasons for studying these simple sorting
algorithms [..] Second, these simple methods are
actually more effective than the more powerful
general-purpose methods in many applications
of sorting. Third, several of the simple methods
extend to better general-purpose methods or are
useful in improving the efficiency of more
sophisticated methods.’

This book was coauthored by Van Wyk as a C++
consultant. One wonders how an ordinary
programmer can master several languages and
attain a practical level of confidence with
algorithms while a Princeton University
professor of computer science needed a C++
consultant.

Sometimes, something is referred to which
might not have been covered yet and it is not
always clear (I wondered did I forget something
or whether it was about to be shown in a few
pages). Fairly harmless examples of this
abound, e.g. Property 6.2 is mentioned five
pages early, but the term ‘sentinel’ appears for
the first time without explanation on page 229
and next appears on page 275 accompanied by
a fairly unhelpful explanation (bearing in mind
this is a beginners’ book, this is bad).
I remember many not particularly clever
classmates were utterly baffled by a perfect
explanation of big-Oh notation (nothing by
Sedgewick was used on the course). A textbook
should provide a way for students to practise
exercises so that they will finally understand.
This textbook contains no answers so cannot be
used (unless a lecturer provides answers) and the
questions in the big-Oh section are too few and
unvaried to help struggling students. (The book
Schaum’s Outline of Theory and Problems of
Essential Computer Mathematics by Seymour
Lipschutz published by McGraw-Hill
inexcusably contains no big-Oh notation.)
The valid point that a fast computer running a
slow algorithm is unlikely to compensate for a
slow computer running a fast algorithm is made.
The point that abstraction interferes with speed
is made a number of times and should be heeded
by supposed software engineers. E.g. ‘When
comparisons are expensive–for example, when
the keys are strings–then insertion sort is much
faster than each of selection sort and bubble sort.
The blurb contains ‘the implementations by Van
Wyk and Sedgewick [..] exploit the natural match
between C++ and ADT implementations’ which

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

BookshopsThe following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
FEB 2008 | | 25{cvu}

was clearly written by someone else as this is
contradicted on page 235.
In the preface, all languages are treated as being
equivalent for an algorithm. This is in contrast
to the body of the book. High-level languages
are disparaged on page 418 for awkwardness of
bit banging; and on page 589 for needing
explicitly casting of a string to an integer. The
only languages recommended other than C++
are: ‘machine-language’ (machine code) on page
448; exploiting ‘assembly or machine language’
is actually recommended on page 332 instead of
expending effort on further algorithmic
improvements; and PostScript (which is the only
‘Language, programming’ pointed to by the
index).
Not recommended for undergraduates who have
studied for less than four semesters.
Recommended with reservations for more
experienced programmers.

The Design and Evolution of C++
By Bjarne Stroustrup, published by
Addison-Wesley 1994, ISBN
0201543303

Reviewed by Colin Paul Gloster

This chronicle should be read by
everyone involved in
standardizing any language,
regardless of one’s opinion of C++. The lesson
that a good, convincing theoretical argument can
be used to advocate anything (even something
bad) but support for even genuinely good ideas
might be retracted after unpleasant experiences
(e.g. 11.2.2 Ambiguity Control; 11.2.4 The
overload Keyword; 13.9 Protected Members;
and 16.6 Resumption vs. Termination) should
be heeded. Stroustrup’s tolerance of
programmers who do not make much of an effort
to improve in a timely manner is remarkable,
and though this led to C++’s popularity, it has
resulted in many flaws. The opposition to
introducing reserved words which he
documented in this book is not unique to C++.
A modicum of what Stroustrup had written in
this book is at odds with better advice in
Kernighan’s and Pike’s book The Practice of
Programming but overall such discord is not
representative of these books. A major influence
on the unpleasant nature of C++ is that in order
to gain popularity, it was based on a language
whose creators opted for mutilation instead of
consistency. Of the examples in the book on this
theme, I am most fond of ‘C experts’ not being
able to reach a consensus on how to interpret the
consequences of an ANSI C rule for
enumerations. Instead, Stroustrup seems to have
been more struck by the following: ‘I am still
amazed, though, by the rule that accepts the
result of any constant expression evaluat-ing to
0 as the null pointer. This rule makes 2-2 and ~-
1 null pointers.’ However, the book’s most
commonly repeated complaints of C++’s
‘warts’ from C are implicit int; ‘irregularities in
C’s confusing variety of precedences’; ‘messy
anarchic conversions’; and syntax (not that all of

C++’s unhelpful syntax can be blamed on C).
Francis Glassborow claimed in his review of
Kim Bruce’s book Foundations of Object-
Oriented Languages: ‘Many of us recognize that
within C++ there is a simpler and yet more
powerful language trying to escape and this book
[..] serves to confirm that feeling’. That also
applies to this book.
Overall, Stroustrup’s attitude seems to be fairly
uniform throughout the book. However, perhaps
germane to his guiding philosophy of not rigidly
adhering to purists’ idealism, one topic which he
has not treated strictly uniformly should be
reconsidered: i.e. his principle of trusting the
programmers to not make mistakes. Stroustrup
perceived ‘idealists prone to ignore experience
and experiment that inconveniently clashes with
dogma’ yet C++’s ability to have a drastic
difference of meaning by mistyping a single
character are legendary; it used to be common
for an article in ‘C/C++ Users Journal’ to be
followed the next month with a warning that its
source code contained typos when that
magazine used to be still in print (and CVu has
had many typos, though maybe not in source
code); all three printings of The Design and
Evolution of C++ have incorrect source code;
other typos are present in the book; and he has
documented mistakes with software (some his
own) in e.g. 3.6.2 Members and Friends; 3.7
References; 11.3.3 Retrospective; 11.4.4
Memberwise Copy; page 273 (‘The warnings
didn’t help – I even forgot my own rules and got
caught’); and 13.9 Protected Members. I do not
know of a human being who is not prone to
perpetrate an accident due to habit. A
disconcertingly large proportion of
programmers are human. People are too reckless
to drive a car safely and to vote sensibly so they
cannot be expected to program computers
attentively. Stroustrup may have been briefly
aware of this as he correctly noted in 17.4.4
Using Namespaces to Manage Releases ‘I might
encourage users not to derive from my library
classes in this way, but they’ll do it anyway and
complain about having to recompile even when
they have been warned’ which is almost exactly
what happened with the FreeType library
approximately ten years later.
WWW.research.ATT.com/~bs/dne_errata.html
does not contain just errata: it has more notes
which are worth reading. Even more notes can
be found in the supplement at
WWW.research.ATT.com/~bs/DnE2005.pdf
during the long wait for the second edition.
Stroustrup has been justifiably pleased with the
accuracy of predictions he has made with
regards to C++, but parts of 7.4.3 Expectations
and Attitudes do not seem to be accurate for Perl
and Java, but neither are they systems
programming languages.
I am grateful to Dr. Jeremy A. Jones for
recommending this book to me.

.NET
Understanding .NET, Second Edition
by David Chappell, published by
Addison-Wesley, ISBN:
0321194047

Reviewed by Albrecht Fritzsche

Are you one of those always
wondering what .NET actually
means? What all these buzz
words like ADO.NET,
ASP.NET, etc stand for? How to get a first
understanding of the capabilities of Microsoft’s
framework? Then this book might be the right
choice for you – providing answers to all those
questions and giving a very good overview in
just 300 pages.
The very concise style, e.g. already during the
introduction you get an understanding why a VB
program will exhibit roughly the same
performance as a similar C# program, makes
this book a good choice for professional
developers and managers wanting to gain an
initial understanding of .NET, its fundamentals
and capabilities.
In the following chapters you will be taken on a
tour through the Common Language Runtime,
some .NET languages like VB, C#, and C++/
CLI, the framework’s class library, ASP.NET,
ADO.NET and distributed applications. The
given examples are always complete and still
rarely take up half of a page. The whole edition
is updated for .NET framework 2.0.
The book is clearly structured, and the lucid
style of the author is easy to read. An
exceptionally good idea seemed to me that all
subjective comments of the author are clearly
separated from the rest of the book in greyed-out
boxes, reaching from ‘Are generics worth it?’ and
‘Is C# just a copy of Java?’ up to ‘The revenge of
hierarchical data’ and ‘The short happy life of
.NET My Services’.
All in all this book serves as a good and concise
introduction into this huge framework and gives
you within days a good first impression of what
.NET actually means.
Recommended.

Miscellaneous
Painless Project Management with
FogBugz
By Mike Gunderloy, published by
Apress, ISBN-10: 159059486X
ISBN-13: 978-1590594865

Reviewed by Tom Hughes

FogBugz, from Fog Creek
Software, is a web based tool
for bug tracking and project management based
largely on the ideas of it’s co-creator, Joel
Spolsky (well known for his Joel on Software
blog).

[continued on back page]
26 | | FEB 2008{cvu}

accu ACCU Information
Membership news and committee reports
View From The Chair
Jez Higgins
chair@accu.org

This time last year, I publicly
resolved to get half of my View
From The Chairs to Tim before
the deadline. Didn’t manage it.
Wasn’t even close.
Happily for me, I can avoid further enumerating
my many failures and talk about the conference
instead, because booking are now open for
accu2008. As you may know, Giovanni Asproni
took over as conference chair when Ewan
stepped down after last year’s conference. For
his first conference he’s secured some real
heavyweights with this year’s keynote speakers
including process giant Tom Gilb and Haskell
big-brain Simon Peyton Jones. Many other
conference favourites return, including Andrei
Alexandrescu, James Coplien, Kevlin Henney,
and astonishingly energetic and generous John
Lakos. No doubt the hotel will also be pleased to
welcome Mr Lakos again.
Last year, two of my favourite sessions were
given by debuting speakers, Ric Parkin and
Richard Harris, and I’m looking forward to what
they have this year. I’m sure that this year’s new
speakers will acquit themselves equally as well.
The approaching conference also means, of
course, the approaching AGM. While you can
get involved in the running of ACCU at pretty
much anytime, the AGM is the obvious jumping
on point. Is there something you feel ACCU
should be or could be doing? If so, put yourself
in a position to do something about it, and join
the committee. As a volunteer run organisation
ACCU cannot exist without the efforts of the
committee, and there’s only so much time that
people have to give. I’m not asking for your
sympathy, by the way, because I find it all quite
good fun (with the exception of this letter which
is intensely difficult). Of course, you needn’t
necessarily need to come whirling in filled with
revolutionary zeal. I initially joined the
committee on whim, if I’m honest, just to see
what went on. I subsequently rationalised this by
suggesting it’s always useful to have people
around who know what’s going on and who can
pitch in where necessary. By getting involved
you can help shape the future of the
organisation. Drop me a line if you’d like to
discuss your idea or to find out more.

Membership Report
Mick Brooks
accumembership@accu.org

This time of year sees a peak in
both the number of new
members joining the association
and the number of existing
members whose renewals are
becoming due. This is obviously linked to the

extra awareness of ACCU generated by the
annual conference, and, of course, the sign-up
incentive provided by the member’s discount on
conference attendance rates. Now is a great time
of year to mention your membership of ACCU
to friends and colleagues, and to do your bit keep
the peak healthy.
For those of you with expiry dates at the end of
February, a reminder email will be being sent at
about the same time that this magazine reaches
you, and will contain full details of the renewal
process. It describes the payment methods
available (credit and debit cards are accepted via
the website, or you can pay by standing order or
cheque), how you can get an invoice or a receipt
for your payment, and how you can resign your
membership. (I’m always sad to lose a member,
but am always happy to hear about the reasons
for that decision, so I’d encourage you to let me
know.) The email should explain things clearly,
but don’t hesitate to contact me if you have any
questions or problems. Some of you will have
opted out of receiving those messages, but you
can of course contact me to request more
information.
While you’re renewing, I’ll just remind you that
it’s also a good time to review the information
that we store about you. You can get access to
your mailing details etc. by logging into the
website, where you can modify them if
necessary. As always, don’t hesitate to contact
me if you have any questions.

Publicity Officer Report
David Carter-Hitchin
publicity@accu.org

The 2008 campaign is gathering
momentum, but before I talk
about that WHERE ARE
THOSE SIGNATURES?! I
couple of CVu’s ago, I pleaded
with you all to put a link to the ACCU in your e-
mail signatures. Now some of you may have
heard my plea, but many haven’t as I can see
from accu-general (mentioning no names). My
signature reads, simply:

ACCU - Professionalism in programming –
http://www.accu.org/

So you know who you are, fire that e-mail client
up and set your signature!
So, 2008. A generic publicity letter has been
written now and a list of universities has been
drawn up (there are about 150 univerisities and
colleges out there in the UK alone). Now I need
to get the names of the heads of department for
the various departments (C.S., C. Graphics,
Physics, Maths, Engineering and so on) and this
consists of visiting each website and tracking the
information down. It’s a very laborious task, and
if anyone could lend a hand then that would be
great – please contact me, publicity@accu.org.
Even if you could just manage a handful of sites

that would be a great help. Equally important
will be to target the students (thanks to Allan
Kelly for reminding me of this). So if anyone
knows of contact names for programming clubs
or similar then please let me know. I think this
information might be harder to find from
websites so any ‘inside contacts’ would be
appreciated. On another note, we have set up a
reciprocal arrangement with the Code
Generation folk, whereby ACCU members will
have a 10% discount to their 2008 conference
(Cambridge, UK from June 25th-27th, http://
www.codegeneration.net/conference/
index.php) in exchange for some marketing on
our side. They have also put some links and
ACCU logos on their site to ours. This kind of
reciprocal agreement is very valuable to us and
if anyone out there knows of other conferences
which would be interested in similar
arrangements then please contact me. For
example, I contacted SD West 2008 (http://
www.sdexpo.com/) but didn’t get a response –
maybe I can try from another angle. Finally, I
have contacted BBC Radio Oxford to see if
they’d be interested in doing something either
before or during the conference.
The recent London meeting deserves a mention
as this was very popular and will help raise the
profile of the ACCU. The talk given was by
Roger Orr on C++0x and was recorded by 7City
Learning. The recording should go onto the
ACCU website soon, for anyone who couldn’t
make it or those outside London. It's good to see
that we're multimedia capable!

The 20th AGM
Alan Bellingham
secretary@accu.org

Notice is hereby given that the 20th Annual
General Meeting of The C Users’ Group (UK)
publicly known as ACCU will be held during the
lunchtime break on Saturday 5th April 2007 at
the Paramount Oxford Hotel, Godstow Road
Oxford, OX2 8AL, United Kingdom.

Current Agenda

1 Apologies for absence
2 Minutes of the 19th Annual General

Meeting
3 Annual reports of the officers
4 Accounts for the year ending 31st

December 2007
5 Election of Auditor
6 Election of Officers and Committee
7 Other motions for which notice has been

given.
8 Any other Annual General Meeting

Business (To be notified to the Chair
prior to the commencement of the
Meeting).
FEB 2008 | | 27{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

The attention of attendees under a Corporate
Membership is drawn to Rule 7.8 of the
Constitution:

... Voting by Corporate bodies is limited to
a maximum of four individuals from that
body. The identities of Corporate voting
and non-voting individuals must be made
known to the Chair before commencing the
business of the Meeting. All individuals
present under a Corporate Membership
have speaking rights.

Also, all members should note rules 7.5:
Notices of Motion, duly proposed and
seconded, must be lodged with the

Secretary at least 14 days prior to the
General Meeting.

and 7.6:
Nominations for Officers and Committee
members, duly proposed, seconded and
accepted, shall be lodged with the
Secretary at least 14 days prior to the
General Meeting.

and 7.7:
In addition to written nominations for a
position, nominations may be taken from
the floor at the General Meeting. In the
event of there being more nominations than
there are positions to fill, candidates shall
be elected by simple majority of those

Members present and voting. The
presiding Member shall have a casting
vote.

For historical and logistical reasons, the date and
venue is that of the last day of the ACCU Spring
Conference. Please note that you do not need to
be attending the conference to attend the AGM.
(For more information about the conference,
please see the web page at http://accu.org/
conference.)
More details, including any more motions, will
be announced later. A full list of motions and
electoral candidates will be supplied at the
meeting itself.
28 | | FEB 2008{cvu}

This book covers version 4.0 of FogBugz,
although by the time I received it version 5 had
already been out for some time, and version 6 is
currently in the process of being released. A
second edition with coverage of the new features
in FogBugz 6 has recently been published.
The first chapter is a high level overview of
FogBugz, including general information on the
approach to bug tracking and project
management favoured by FogBugz and a
number of case studies showing how cases move
through the system.
Chapter two provides a detailed description of
how to get new cases into the system and the
information that can be recorded for a case. It
also shows how to work with lists of cases and
use filters and sorting to slice and dice your way
through the cases in the system.
The next chapter covers the customisation of
FogBugz for a particular environment – how to
setup lists of projects, versions and priorities as
well as the security model and how to set up
users and assign permissions to them.
Chapter four continues where chapter two left
off, with the process of working on a case and
using features such as time estimates, due dates
and escalation reports to monitor progress. It
finishes with coverage of resolving cases and
using FogBugz to record changes and create
release notes.
The final two chapters cover using FogBugz to
communicate with customers (both on a one to
one basis using its email integration features,
and on a one to many basis using the builtin
system of web based discussion groups) and
integrating FogBugz with source code control
systems to allow cases to be linked to related
changes in the source.
There are no obvious problems with the book,
and it provides good coverage of the features of
FogBugz and its philosophy of project
management and bug tracking and I would

certainly recommend it to anybody intending to
use FogBugz and wanting to know more about it.
My only reservation would be that FogBugz is
largely so simple to use that you probably don’t
really need a book, even if you’re acting (as I do)
as an administrator for FogBugz!

Practical MythTV
By Stewart Smith and Michael
Still, published by Apress, ISBN:
1590597796

Reviewed by John Lear

MythTV, in case you haven’t
come across it, is an Open
Source Personal Video
Recorder (PVR) system. In addition to watching
and recording television, it can be extended to
include a digital music system, photo viewer,
news and weather information, games and even
an Internet phone. With the full set of plugins it
can easily provide all the functionality required
of a Home Media Server. However setting up
such a system from scratch requires a lot of
planning and thought. To provide the best user
experience the correct mix of hardware as well
as software must be combined and this is where
this book endeavours to help out.
Practical MythTV covers setting up a system
completely from scratch. The first two chapters
cover the pre-requisites; hardware selection and
supporting software. MythTV runs on Linux
and as a consequence it is important to choose
Linux friendly hardware. Hardware
compatibility is less of an issue these days but
the choice of Video Capture card is the most
important. It was good to see that the book
provides an in depth discussion of the factors to
consider when choosing the hardware for your
system. A step-by-step guide to installing and
configuring Ubuntu and the requisite supporting
packages then follows. In this chapter and
throughout the rest if the book no previous
knowledge of Linux is assumed. After

installation, a small section details a number of
steps that can verify hardware and that
supporting software is working correctly before
MythTV is installed.
Chapters 3 and 4 then cover the installation and
the basics of recording TV. What I found most
useful while progressing through the installation
steps were the large and well-printed
screenshots. This made it easy to understand
what was being discussed in the accompanying
text. These first four chapters are almost a third
of the book (345 pages in total), which shows the
importance and the amount of detail given over
to setting up the basic system.
The remaining chapters describe advanced
recording functionality, display themes,
exporting recorded video to DVD, plus the
additional plugins that can be added to the base
system to extend functionality. Each chapter
goes into the same level of detail and screenshots
showing various on-screen displays.
One thing I would have liked to have seen was
a troubleshooting section. With a large number
of moving parts it can be tricky to track down
where a problem lies and its resolution. A
troubleshooting guide, even one that aided the
user in simply tracking down the most likely
module at fault would have been a welcome
addition.

Conclusion

Practical MythTV gives a good step-by-step
guide to building a PVR from scratch. It also not
just a simple PVR either but able to compete and
surpass some of the commercially available
systems while being completely open. While
some of the information is probably available on
the Internet, Practical MythTV would be
invaluable to resource to anyone building such
a system from scratch for the first time.
Recommended

Book Reviews (continued)

	Why bother?
	An Introduction to Town Planning
	ACCU 2008
	Operator Names Influence Operator Precedence Decisions (Part 1 of 2)
	Installing Apache & Subversion
	Personal Bazaar
	A Simple Calculator in Tkinter and wxPython
	Desert Island Books
	Code Critique Competition 50
	View From The Chair
	Membership Report
	Publicity Officer Report
	The 20th AGM

