
Reports & Opinions
Editorial 4
Reports

View From the Chair, Secretary’s Report, Membership Report, Standards Report, Website Report 5
18th AGM Announcement 8

Dialogue
Student Code Critique Competition - entries for #37 and code for #38 9
Letters 14
Francis’ Scribbles 15

Features
We Own All Your Computers Alan Lenton 16
Silas’ Corner by Silas Brown 17
Professionalism in Programming #36 by Pete Goodliffe 18
On Killer Apps by Ian Bruntlett 20
Interview with Charles Moir, Xara by Paul Johnson 21
Idiomatic Expressions in C by Adam Petersen 24
Uses Cases by Phran Ryder 28
AI - Expert Systems by Steve Hopley 30
F2C - Is It A Practical Solution? by Derek M. Bloor 35

Reviews
Bookcase 41

Copy Dates
C Vu 18.2: March 1st 2006
C Vu 18.3: May 1st 2006

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Thaddaeus Frogley
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:
Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Paul F. Johnson <cvu@accu.org>

Before I start, may I wish everyone reading this
edition a warm welcome to 2006. Okay, I know
by the time you’ll be reading this, it will be
February with thoughts of the Conference just
around the corner and where to get the best beer
and curries from while there, but it’s 2nd Jan in
Haydock, so Happy New Year folks!

Bad Manners
We live in a world where most large
organisations have access to such simple things
like email, word processors, spreadsheets and
computers in general. We have faxes, we have a
plethora of instant messenger systems, we have
VoIP and any number of other modes for
communication; it has never been so easy to say
“hi” to someone a thousand miles away at little
or no real cost. Even the computer “geeks” of
days gone by have shed their train spotter type
image with this positive boon in communication
as there is now no excuse for being a recluse,
sitting in a room away from other humans and
generally being unsociable.

In Autumn 2005, I embarked on searching for
a new job (I’m no longer happy where I am and
would even consider moving from my beloved
Merseyside for the chance to do something
which doesn’t fill me with dread for facing
another day). I have plenty of copies of my CV
and am on quite a few recruiters mailing lists and
cardexs around Manchester. I also look closely
for any teaching positions having qualified last
summer for anything post 16.

The applications began in earnest and I started
to notice something on all application forms (and
also when dealing with agencies) – they very
rarely tell you anything about the application
progress and take the approach that if you hear
nothing, you get nowhere. It is even worse when
you have that sort of treatment from your own
employer!

There is nothing inherently wrong – it saves
them time, but I doubt for one second that they
even bothered to think the effect that has on
applicants. It shows, in my opinion, nothing
more than a complete disrespect for the applicant
and makes the applicant’s self esteem drop as not
only have they not heard anything, but more
over, any form of feedback.

Now, I’m not saying that every applicant
should have a 5 minutes conversation with the
HR departments or agency bod, but how much
effort would it be to set up a list on whatever
email client they use to send out a bulk email
saying “thanks, but no thanks” and for those on
the short-list, a more detailed email saying where
they went wrong or how to improve next time
around.

Of course, not everyone applying for jobs to
organisations (rather than through agencies) has
email and so the standard line of providing a
SAE is fine. The point is, despite the voluminous
number of ways to communicate, HR people and
agencies seem not to be able to create an email

list or talk directly to a candidate. That, to me,
smacks of sheer bad manners and is probably one
of the reasons why people shrug their shoulders
after applying for goodness knows how many
jobs and resign themselves to working in a place,
completely demotivated, and because of that not
being bothered over the quality of their
performance.

Just for fun, I created a list last night from the
ACCU manual of 200 random email addresses
in Evolution. It didn’t take long and if they had
been added as applications arrived, it would have
been a very trivial matter. This negates any sort
of “too much work involved” excuse.

Agencies are even worse though. One
moment they’re all nice, the next, complete
silence. Alright, I know that agencies are there to
make money and do so by just passing on details,
but that’s still no real excuse for the lack of
respect they seem to pay to prospective
employees of the companies they represent.
Don’t get me wrong, I actually know quite a few
people who work for agencies, and they are
mostly really nice, but it does grate.

Does your CV Suck?
It seems that CV writing changes as often as
most people change their socks! My original was
about 10 pages long, which (when I was taught
how to do it in the late 1980s) was the right way
of doing it. Then it was down to a max. of 4
pages. Then 2 pages, up to 3 pages and then at a
stretch 4 again (as long as it’s really required).

Content also changed. Originally, personal
details > qualifications (chronological order) >
employment > extra > referees. Then the
qualifications moved, employment was set out
differently, emphasis on aspects moved, “extra”
was dropped, brought back in, moved, changed,
removed and finally placed back with a big red
bow around it.

I think it’s time CV writing was submitted to
ECMA for documenting and standardising,
together with application forms.

Don't Get Me Started on Application
Forms!
Oh, okay then...

One thing which has interested me is the
variation in information required on application
forms from different employers. Not necessarily
from different sectors, but from different
organisations. Around St. Helens, there are a
large number of Colleges of Further Education,
and for the Merseyside ones, I’ve either been a
pupil of or an employee of them all. About a year
back, one a bit further out
advertised for a position
so I downloaded the
application form and read
through it. Now, the form
was pretty standard for the
most part. Where it
differed was in the health
section.

It was so intrusive that
I refused to fill that section
in other than for the

pertinent aspects of my health (believe it or not,
they wanted to know about my parents’ health as
well). I also enclosed with the application a note
detailing why I had failed to fill it in and where
they had gone over the mark with respect to
confidentiality. Needless to say I heard nothing
back, but it does highlight a problem – what is
too far and what can a prospective employer ask?

In my case, because of a partial stomach
collapse in 2000 and the NHS doing very little
about it for five years, my attendance record at
work was not that amazing (it is now a lot better –
since my operation in March, I’ve had 2 days off
and that was down to food poisoning) and so that
has to go down on the application form. The
employer doesn’t bother looking at the reason, they
just see that in 2004 - 2005, I had around 9 weeks
off (6 was after the operation in recuperation).

Tell the Truth...
There is a post in Wakefield I’m considering
applying for and I’ve hit a dilemma. The closing
date is 2nd Feb which is about 8 months after my
op. Do I turn around on the application and tell
a little white lie (after all, the two days in 8
months is actually closer to what I would expect)
and give 3 days as the total time off in the year
or do I tell the truth and say 7 weeks, but just over
6 was due to my stomach complaint?

At the end of the day, I guess what I do is down
to what I can live with combined with what I can
reasonably get away with, so if I ignore that little
voice on my shoulder, I think I can swing it.

Your Turn
Alright, time to tell the truth now. Other than
those who work for themselves, who, in their
entire employed life can stand up, put their hand
on their heart and say that they have never
embellished the truth on an application for a job
– or better than that, never embellished and been
appointed?

I’m pretty sure that everyone, at one time or
another, has exaggerated the truth in order to get
what they want. I’m not calling anyone a liar or
anything like that, but it would be interesting to
know. Well, I think so at least.

Don’t Drink and Code
An interesting idea came to me over the
holidays.

Every year, the Government runs a “don't drink
and drive” campaign. I thought it would be a bit of
fun to see if that would apply to programming and
set about designing three tasks which should test
me and also three different levels of intoxication.

Beverage Mistakes Crashes Compile Quality of code
(per 100
lines code)

Sober 2 1 3 Nice and clean

2 pints 3 0 4 Clean, but stringy

¾ l Martini 8 4 6 Don't call us

Coffee 3 1 4 Nice and clean,
but looks rushed
in places

5CVu/ACCU/Reports & Opinions

The tasks : debug some C++, write a small, text
base calculator which takes everything from a text
file on disc in C, design – on paper – a front end
for my C#/MySQL series and then prototype it.

All three C languages are thereby covered.
The levels of being drunk : stone cold sober,

2 pints of Theakston’s Old Peculiar and having
drunk ¾ of a litre of Martini. For the tests, they
were conducted 3 hours after eating.

The outcome is based on time to code,
number of mistakes, number of crashes, code
quality and number of times it takes to actually
get the code to compile. It made for interesting
reading – especially when compared to a 4th test
based on consuming strong black coffee.

What is interesting is that in my, admittedly
unscientific, test having a couple of pints yields
code of roughly the same quality as when I drunk
just coffee.

That’s my excuse for not turning things in on
time – you get your own!

Paul F Johnson

View From the Chair
Ewan Milne <chair@accu.org>

Happy New Year, and welcome to the first C Vu
of 2006. Of course such seasonal greetings will
be rather late by the time they reach you, but as
I write it is the first week of January. It is freezing
cold outside, and I am slotting together the final
pieces of the conference programme, with the
help as always of the conference committee. You
will now (meaning as you read this) be able to
see the programme for yourself at
www.accu.org/conference, and will I am
sure agree that, once more, we have a great line-
up to offer. Our keynote speakers are Herb Sutter,
Guido van Rossum, Helen Sharp and Hubert
Matthews, and we are also featuring Michael
Feathers, Peter Sommerlad, Jutta Eckstein and
Nico Josuttis. Plus, hopefully, one or two very
exciting names that I can’t mention at the moment.
As well as the return of the Python and Evolution
of C++ tracks, we also focus on Distributed
Collaboration, and Dynamic Languages.

On the Saturday of the conference we will as
usual be holding the ACCU AGM. One of the
main items on the agenda is the election of
officers and committee. This will the first AGM
under updated rules which allow nominations for
posts to be lodged both in advance and from the
floor at the meeting itself. See section 7 of the

constitution for full details. If
you wish to make a nomination
in advance, please contact the
Secretary at least 14 days before
the meeting: that is by the 8th
April.

As a reminder, the committee
consists of the following
officers:
● Chair
● Secretary
● Treasurer
● Membership Secretary
● Electronic Communications
● Publications
● Public Relations

In addition, there should be six or
seven more committee members,
depending on the number of
members at the time of the
meeting, plus several co-opted
members. At the current time, all
the officers have indicated that
they are happy to continue in
their posts. With one notable
exception that is: as I indicated a
little while ago (C Vu 17.2 in
fact), I will be standing down as
Chair. I am happy to report that at
least one person has expressed a
strong interest in taking over in this role. My
intention is to remain a committee member, and
looking ahead, to concentrate on preparations for
the 2007 conference.

Ewan Milne

Membership Report
David Hodge <membership@accu.org>

At the end of 2005 we had 846 members, of which
109 were new members during 2005. We have
members in 39 countries with the ones outside UK
with over ten members being USA, Germany,
Denmark, Australia, Switzerland, Sweden and
The Netherlands. If you would like to reduce your
membership fee by 5.00 pounds, then ask me for
details on setting up a standing order.

I will be standing down from the Membership
Secretary position at the 2007 AGM so if anyone
would like to take over, or would like to find out
what has to be done, please email me. It is
intended to have a membership module on the

website which will take care of most of the day
to day operations.
Please address all queries on journals not
received to me as I hold a small stock of spare
journals.

David Hodge

Secretary’s Report
Alan Bellingham <secretary@accu.org>

November, and now firmly back on track after
the summer’s languors, your committee met for
the last time in 2005, in Nottingham at the house
of Alan Griffiths.

As usual, we started with the reports,
consideration of previous actions and the like. This
included a quick overview of the forthcoming
conference which is looking, yet again, very
promising, with a full programme already.
After that, we had three items to consider.

The first is the redesign of these journals. We
now have a new production editor (hi, Alison),
and the page layout software being used is being

Advertise In
C Vu & Overload

80% of Readers Make Purchasing Decisions
or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.org

6 CVu/ACCU/Reports & Opinions

switched from, if I remember correctly, Quark to
Adobe Framemaker. This would seem like an
ideal point to refresh the layout: it may be more
work than just changing tools, but if so, it’s likely
to be only a little more. However, the redesign
needs some more input from the ACCU, and the
switch will not happen until the redesign has been
completed and signed off on. Hence, the issue you
are reading will look like the previous ones.

Secondly, we had been asked to consider the
Microsoft Safer C libraries. Now, this is a
somewhat strange thing for your committee to talk
about, as your representatives, but a motion had
been raised and we had been asked to denounce
the initiative as being detrimental to the C++
community. After some discussion, the consensus
was reached that, misguided and regrettable as we
as individuals might consider it, the committee
does not have any moral right as a whole to have
the society take a stance on this issue, but that
individuals as individuals (and letter writers,
article writers or even editors) should make their
views known in these pages.

The third issue was the most important one for
this society. As has previously been reported (both
here and at the 2005 AGM), the ACCU web site
is grievously out of date, and we have had plans
to update it. These plans involved a company
named Turtle Networks. Unfortunately, we have
decided to part company with them on this project
and pursue other options. Allan Kelly’s report
elsewhere covers this in more detail.

Our next meeting is currently scheduled for the
18th February, which will be our last before the
AGM.

Alan Bellingham

Standards Report
Lois Goldthwaite <standards@accu.org>

My original intention for this column was to
consider (1) whether C++ is already too
complicated for its own or anyone else’s good and
(2) whether it is still worth spending time on C++
standardisation. To cut the debate short, the
answers are (1) possibly, or possibly even
probably (but there’s more to it than that), and (2)
yes (but there’s more to it than that).

But current events suggest we should consider
a different aspect of complication. At the time of
writing, the C++ panel at BSI is studying a
document which has been submitted for fast-track
balloting to become an ISO/IEC standard. This
standard from an ECMA Technical Group is
called C++/CLI, and deals with extensions to
standard C++ to enable writing powerful
programs in a CLI environment. CLI stands for
Common Language Infrastructure and is more
commonly known as .Net from Microsoft.

At the time this effort was launched in 2003,

participants described it as an attempt to develop
a “binding” of C++ to CLI, and “a minimal (if still
substantial) set of much-more-focused
extensions” to support that environment, as
compared with the earlier Managed C++ with its
ugly __extended __keywords.

CLI, like Java, provides a virtual machine
which interprets semi-compiled byte code and
manages memory resources through garbage
collection. Among its objectives are making it
easier to combine modules written in different
languages into a single application. It also aims to
simplify the use of technologies such as XML,
web services, and distributed programming.

Some of the fundamental decisions in the
design of CLI show a different mindset from the
traditional C/C++ programming model. Had I
been the decider, some of them would probably
have been different, but no doubt the authors had
well-considered and defensible reasons for their
choices. To achieve the objective of enabling C++
code to communicate with the CLI environment
and its different model, certain – shall we call
them – adaptations became necessary. One such
is the invention of new keyword gcnew to allocate
memory which will eventually be garbage
collected. That doesn’t look too unreasonable, as
a platform-specific extension. Most compilers
(g++ and Borland spring immediately to mind,
also any tool for embedded programming) offer a
certain number of extensions of their own, and
people targeting the environments supported by
those compilers often find them useful.

The group developing this “binding” called
C++/CLI have been careful to guarantee that
standard-conforming C++ code will compile and
run correctly in this environment (though perhaps
not taking full advantage of CLI’s new features).
This is much to be applauded.

HOWEVER, the BSI C++ panel opposes the
plan to grant worldwide endorsement to C++/CLI
as an international standard on the same par as
ISO/IEC 14882 C++. The name is too similar, and
the differences too immense. We believe C++/CLI
has effectively evolved into a language which is
almost, but not quite, entirely unlike C++ as we
know it. And continuing to identify both
languages by the same name (even with the all-
too-often-dropped qualifier) will cause
widespread confusion and damage to the industry
and the standard language.

Now that is a strong statement, and is meant to
be. C++/CLI adds at least two dozen new
keywords to the 63 already in standard C++. It
adds new syntax for some existing keywords
(such as using new to indicate that a member
function does not override an inherited one of the
same name), and it gratuitously changes the
meaning of various bits of currently-valid C++
syntax. The rules for determining which semantics
should be invoked for any given line of code in a

single translation unit are subtle and will add a
very large amount of complexity to the intellectual
burden of writing and understanding C++.

Perhaps a brief code example will illustrate
why we are concerned.

// Example A – this is C++
class Base {
virtual void f1(int i);
int f2();

};

class Derived : Base {
int x;
public:
void f1(string s);
int f2(){ return x; };

};

// Example B – this is C++/CLI
interface class Base {
virtual void f1(int i);
int f2();

};

ref class Derived : Base {
int x;
public:
void f1(string s);
int f2() { return x; };

};

In Example A, the member functions of Base are
(by default) private, concrete functions, and f1()
is virtual but not f2(). In Example B, the only
visible code difference is the new keyword
interface, but (by default) all member functions
are public, abstract, and virtual (even if not
identified as such).

In Example A, because Derived has the
keyword class, not struct, it has private
inheritance from Base and therefore cannot be
implicitly converted to Base. In example B,
because Base is a CLI class and not a native C++
one, it confers public inheritance on Derived.

In C++, Derived().f1(42); would fail
at compile time, because the declaration
Derived::f1(string); hides the inherited
function with the same name but different
parameter. In C++/CLI, all inherited overloads are
visible and callable; it is up to the programmer to
beware whether she has unintentionally
duplicated a name lurking much higher in the
ancestry.

In C++/CLI, calling a virtual function in a
constructor or destructor invokes the most-derived
matching overload from a descendant, which may
not be validly constructed when a base’s ctor or
dtor is running. In standard C++, virtual calls are
shallow during construction and destruction.
Speaking of destructors, a C++/CLI ref class can

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

7CVu/ACCU/Reports & Opinions

have a finaliser as well, to be invoked by the
garbage collector, and both the finaliser and
destructor must be written so they can be executed
multiple times and on objects that have not been
fully constructed.

Would you want to explain these things to a
class of novice programmers, who yet have only
the haziest notion that C and C++ are not the same
language, or that Windows is not the only target
platform?

We feel that much of the functionality of
C++/CLI could have been achieved without doing
so much violence to standard syntax. I believe this
is valid code for C++/CLI, and merely states
explicitly what is now implied:

interface class Base {
public:
virtual void f1(int i) = 0;
virtual int f2() = 0;

};

ref class Derived : public Base
{
int x;
public:
using Base::f1;
void f1(string s);
int f2() { return x; };

};

Apart from the interface and ref keywords,
the same class definitions are valid C++ syntax,
and their meaning will not surprise a C++
programmer. To subvert the expectations of
millions of trained C++ programmers merely to
save typing a few characters now and then (which
in any case could be generated by an editor macro
or CLI-aware IDE) is unconscionable.

The real damage to C++ and the industry will
come not from this or that minor syntax difference
or surprising corner case, but from the massive
confusion which will be created in the minds of
the programming community (and their
managers!) over what constitutes valid C++ code.

This confusion is already much in evidence in
Microsoft’s web pages. The company’s online
documentation for Visual C++ contains many
code examples identified as “C++” – NOT
“C++/CLI” or even “C++.Net” – which will fail
to compile in a Standard C++ environment. It
takes no time at all to find many examples
showing parallel code for “C#”, “Visual Basic”,
and “C++” (without qualifier).

An article on “New C++ Language Features”
contains this paragraph:

The following table lists new keywords that have
been added to the C++ language. Note that some
keywords consist of two words separated by
white space.

The page goes on to list what are officially context
dependent identifiers, but it refers to them baldly
as new keywords also, ignoring the subtle
difference buried in the draft standard.

Note the statement that keywords have been
added to the C++ language (no mention that it only
applies to this new variant of C++). There is no
indication that using any of these new keywords
renders code completely non-portable to other
environments.

These pages consistently fail to distinguish
clearly between Standard C++ syntax and

extensions/adaptations for the CLI environment.
Microsoft is not the only source of articles in which
C++ and C++/CLI are considered equivalent, but
they invented this new language and if they cannot
tell the difference, it does not create confidence that
average programmers will be able to do so.

C++ already has a reputation as a complicated
language which is difficult to learn and use
correctly. If this incompatible language also called
C++ becomes an ISO/IEC standard, it will be
perceived that C++ has suddenly become about
50% more complex. The hugely increased
intellectual effort would almost certainly result in
many programmers abandoning the use of C++
completely.

Future development of the standard language
will be damaged, as there will be massive market
resistance to adding any additional complexity on
top, such as the changes planned for C++0x now
undergoing development in WG21.

The C++/CLI draft is not a product of WG21,
which maintains the holy document ISO/IEC
14882, but comes from a Technical Group in a
different standards organisation called ECMA. A
few other companies are involved, but the prime
mover in this effort has been Microsoft, with the
motivation of supporting its .Net environment. By
contrast, joint meetings of WG21 and ANSI J16
(counterpart to the BSI C++ panel) consistently
draw participation from 50 or 60 national experts
in an international cross section of C++ vendors
and customers who work with many different
systems and application environments.

If the national standards bodies of ISO/IEC
JTC1 should approve C++/CLI as an international
standard, it would continue to be maintained by
the separate, small ECMA committee and it and
Standard C++ will inevitably diverge even more
through maintenance. This would compound the
already serious damage. The BSI C++ panel will
urge that ECMA withdraw its application and if it
must re-submit it, find a new name for the
language which will not cause confusion.

A parallel to this situation can be found in the
history of C++ itself. As related by Bjarne
Stroustrup in The Design and Evolution of C++,
the language in its early days was known as “C
with Classes”, but he was asked to call it
something else: The reason for the naming was that
people had taken to calling C with Classes ‘new C,’
and then C. This abbreviation led to C being called
‘plain C’, ‘straight C’, and ‘old C’. The last name, in
particular, was considered insulting, so common
courtesy and a desire to avoid confusion led me to look
for a new name.

This column should not in any way be taken
as an allegation that there is a sinister plot by
Microsoft to usurp or subvert the standard. Other
people may think that, but I do realise that the
folks at Microsoft are sincere in what they are
trying to accomplish and do have persuasive (to
them) reasons why they think these are good
ideas. As with their deprecation in VC++8 of
standard-conforming but in their opinion “unsafe”
code, I think they misunderstand what is
important to other people.

Lois Goldthwaite

Website Report
Allan Kelly <allan@allankelly.net>

As some of you may know we have recently
suffered a setback on the website redevelopment.

I have deliberately not written anything for C Vu
about the website for the last couple of issues
because the situation was difficult. So here is the
story so far.

My first attempt at writing this article was to
produce a timeline of what happened. This would
have told you what happened and when it
happened but would not have given any real
understanding and depth. Anyway, much of the
project history is already documented in previous
issues of C Vu. Instead I think I should discuss the
issues with only the basic chronology.

In January 2005 we held an open bidding
contest to find a company to redevelop the ACCU
website. We called this work Stage 1 and it was
be quickly followed by Stage 2. Essentially this
stage was to deliver a new server, a Content
Management System (CMS) and port our existing
content over.

Stage 1 was delivered in May 2005 and at first
looked good. But really it was just the old site on
new technology with a slightly new look. At the
conference in April Tony Barrett-Powell had
accepted the position of Web-editor. However it
soon became apparent that the tools available in
the CMS system were lacking for our needs. At
the time we thought we could address this by
accelerating Stage 2 but in retrospect I don’t think
our subcontract ever really appreciated the
difficulties we encountered. Maybe we didn’t
communicate clearly enough.

We issued a specification for Stage 2 and this
is where the problems really began. The
subcontractor spent an inordinate amount of time
before replying to this specification with a tender.
In the meantime I took my eye off the ball as I
tried to arrange a new database system for the
book reviews. And somewhere along the line
summer happened and everything slowed down.

When the ACCU decided to redevelop the site
and award contracts we were scared of cost. We
tried to deal with this through a specification and
a fixed-price contract. However we always knew
the specification was weak. We hoped that by
building piece by piece with extra specs, and
fixed-price contracts we could do the job
incrementally.

We selected the subcontractor on the basis of
price. We chose an organisation that did not
understand the ACCU, the values and the way we
work.

Our specification-work-repeat approach was
bad for several reasons. It made more work for us
as we wrote the specifications and attempted to
make them whole – if not watertight. The process
required group discussion and group decision-
making. As a voluntary organisation that seldom
meets face-to-face it is a difficult and slow process
to have such discussions and make such decisions.

As a result our expectations were different to
those of supplier. They were good enough to keep
working when they started to make a loss on the
contract but they didn’t tell is that this was so. And
that meant we didn’t understand their position.
Quite naturally our work was put to the back of
their queue, we didn’t know this and perceived
them as responding slowly.

The choice of CMS was wrong too. Four out
of five original bidders proposed using a custom
CMS, only one proposed using an off-the-shelf
(Open Source) system. This proprietary system
caused several difficulties.

Firstly the system was light on functionality.

So we found the need to request more features
to be added – something neither side had
appreciated upfront – and that added to the
subcontractor’s costs. The system had, from
what we could tell, only been used internally by
the supplier before we came along. We wanted
more control over the system and it didn’t
support that.

Secondly: the system had not been as widely
used, tested and debugged as a COTS system
would have been.

Finally, as the project had problems we became
more concerned about the propriety nature the
system. If we had to move our site to another
supplier it would be a big job and, it would only
get bigger the more we worked with this system.

By the end of August it was clear there were
problems. In September we regrouped and said:
we know there have been problems let’s try and
give it one more go. We set October as our “go
live” date and went for it. Our intention was to
rebuild our relationship with the supplier over a
few weeks and give ourselves the confidence to
authorise Stage 2.

October became November but we were
close. Then our content went missing, our
administration rights disappeared and we
received confusing messages from the supplier.
The trust we had been working to build up over
the last two months was gone.
At this point Tony and myself spoke to Ewan

Milne (ACCU chair), some things were clear:
1. We no longer trusted them.
2. If their support and service was good we

could live with the poor CMS, conversely, if
the CMS system was good we delivered poor
service. As it was, neither was good.

3. The ACCU is a voluntary organisation, the
time we spend on association activities comes
from our free time. We outsourced the website
because there was too much work for us to do
on this basis. But we found we were spending
increasing amounts of our time managing the
outsourcing.

Given this, we felt we had no choice but to
change. This wasn’t an easy decision as it meant
writing off close to £4000 of members’ money.
However, there is no point throwing good money
after bad. One should only ever base investment
decisions on future expenditure and not on sunk
costs, that money was gone.

(The committee briefly discussed action to
recover the money but quickly came to the
conclusion this was unlikely and would absorb
our time, energy and probably cost more money
than we would recover.)

I made contact with the company that came
second in our bidding process. Coincidentally
not only was this the only bidder to suggest a
COTS CMS but it was one of only two bidders
with ACCU membership. Luckily for us they

were still interested, and amazingly, they could
started at once.

In mid-November we started over again, this
time with Gnomedia and Tim Pushman. Some of
you will know Tim from his articles in C Vu and
Overload, others may have met him at ACCU
conferences.

This time things are looking better. We learnt
from the first time and are doing things
differently this time around. Specifically:
● We have our website editor, Tony, in place

from the start. He is working with Gnomedia
on design and content from day one.

● We are working with a subcontract who
knows the ACCU and shares our values.

● Gnomedia are working on a time and
materials basis. This puts more risk on the
ACCU but also gives an incentive to the
supplier to be open with those and prompt
with the work.

● We are using an existing, off-the-shelf, Open
Source CMS called Xaraya. So far this looks
impressive and appears to offer functionality out
of the box that surpasses the previous system.

● We haven’t written a detailed requirements or
specification this time but our goal is clear: a
replacement website built on a technology
that allows for easy updating.

This may lack preciseness of a requirements
document or a rigorous specification but it is
something we can all understand very easily.
Rather than arguing about details we have a
shared vision. This is only possible because we
share an understanding and value system with
our subcontractor.

We have been working – well Tim and Tony
really – actively for about three weeks at the time
of writing and things are going well.
Communication is much freer, plentiful and
productive. Problems are being overcome much
easier and faster.

The ACCU is not the first organisation to be
caught out like this. In fact we were determined
to avoid the mistakes we have seen elsewhere:
we knew the problems with fixed-price contracts,
we knew the problems the specification is, we
knew the problem of outsourcing but we went
ahead and made many of them. Simply knowing
about things that can go wrong doesn’t stop one
making the same mistakes.

Of course there are lessons here we can all
learn, perhaps even relearn: fixed-price contracts
are difficult, outsourcing is difficult, even
outsourced projects require some management,
avoid the temptation to create your own new
technology, I could go on.

We could have chosen not to redevelop the
website. We could have given up when the first
project failed. We could have navel-gazed and
wondered about our failures. Instead we did not
do these things, we picked ourselves up and
started over again.

If the ACCU cannot produce a new website
then we’re in danger of becoming irrelevant. If
we cannot accept failure we will never try to
change anything. What choice do we have really?

I am sorry we spent members money and
have nothing to show for it, I wish it could have
been otherwise. I give you my personal apology.
However I do feel it is better to have tried and
failed the never to have tried.

Allan Kelly

8 CVu/ACCU/Reports & Opinions

Alan Bellingham
<secretary@accu.org>

Notice is hereby given that the 18th Annual
General Meeting of The C Users' Group (UK)
publicly known as ACCU will be held during
the lunchtime break on Saturday 22rd April
2006 at the The Randolph Hotel, Beaumont
Street, Oxford, OX1 2LN, United Kingdom.

Agenda
1. Apologies for absence
2. Minutes of the 17th Annual General Meeting
3. Annual reports of the officers
4. Accounts for the year ending 31st December

2005
5. Appointment of Auditor
6. Election of Officers and Committee
7. Other motions for which notice has been

given.
8. Any other Annual General Meeting Business

(To be notified to the Chair prior to the
commencement of the Meeting).

The attention of attendees under a Corporate
Membership is drawn to Rule 7.8 of the
Constitution:

... Voting by Corporate bodies is limited to a
maximum of four individuals from that body.
The identities of Corporate voting and non-
voting individuals must be made known to the
Chair before commencing the business of the
Meeting. All individuals present under a
Corporate Membership have speaking rights.

Also, all members should note rules 7.5:
Notices of Motion, duly proposed and
seconded, must be lodged with the Secretary

at least 14 days prior to the General Meeting.

7.6:
Nominations for Officers and Committee
members, duly proposed, seconded and
accepted, shall be lodged with the Secretary at
least 14 days prior to the General Meeting.

and 7.7:
In addition to written nominations for a
position, nominations may be taken from the
floor at the General Meeting. In the event of
there being more nominations than there are
positions to fill, candidates shall be elected by
simple majority of those Members present and
voting. The presiding Member shall have a
casting vote.

As usual, the date and venue is that of the last
day of the ACCU Spring Conference. Please
note that you do not need to be attending the
conference in order to attend the AGM.

(For more information about the conference,
including location, please see the web page at
http://accu.org/conference.)

As far as business is concerned, we are likely
to have at least one piece of constitutional
business, which will not surprise those who
attended last year. On the other hand, since that
motion is only intimated and not yet submitted,
I cannot actually list it yet.

More details, including any more motions,
will be announced in the next issue.

Alan Bellingham
Secretary, ACCU

The 18th AGM - Announcement

9CVu/ACCU/Dialogue

Dialogue
Student Code Critique
Competition 38
Set and collated by Roger Orr

Prizes provided by Blackwells Bookshops &
Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers'
comments and criticisms of published entries are always welcome, as are
possible samples.

Before We Start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/). This is aimed at people
living overseas who get the magazine much later than members in the UK
and Europe.

Student Code Critique 37 Entries
Here is a student’s attempt at a simple class to provide access to a single
database table, ADDRESS. Please critique the code and suggest what
problems there may be with this class when using it in a larger application,
and any issues with the simple test harness.

import java.sql.*;
class Scc37 {
String[] drivers = {
"sun.jdbc.odbc.JdbcOdbcDriver" };

String database = "jdbc:odbc:ADDRESS";

void setDrivers(String[] drivers) {
drivers = drivers;

}

void setDatabase(String database) {
database = database;

}

String selectAddress(String query) {
try {
for (int idx = 0;

idx != drivers.length; ++idx)
Class.forName(drivers[idx]);

} catch (Exception e) {
System.out.println(e);

}

String userName="";
String password="";

// Get connection

Connection con = null;
try {
con = DriverManager.getConnection(
database,userName,password);

} catch(Exception e) {
System.out.println(e);

}

// Execute query
ResultSet results = null;
try {
results =
con.createStatement().executeQuery(
"SELECT * FROM ADDRESS WHERE "
+ query);

} catch (Exception e) {
System.out.println(e);

}

// Get all results
String retVal = "";

try {
ResultSetMetaData rsmd =
results.getMetaData();

int numCols = rsmd.getColumnCount();
int i, rowcount = 0;

// break it off at 50 rows max
while (results.next() && rowcount<40) {

// Loop through each column, getting
// the data and displaying
for (i=1; i <= numCols; i++) {
if (i > 1) retVal = retVal + ",";
retVal = retVal +
results.getString(i);

}
retVal = retVal + "\n";
rowcount++;

}
} catch (Exception e) {
System.out.println(e);

}
return retVal;

}

/** Test harness – 'args' list drivers */
public static void main(String[] args) {
Scc37 scc37 = new Scc37();
scc37.setDrivers(args);
System.out.println("Found:" +
scc37.selectAddress(
"name LIKE '%Hardy'"));

}
}

From Thomas Hawtin

<tackline@tackline.plus.com>

I will start by covering the obvious errors and move on towards matters
of style and how problems of larger applications may be addressed.
setDrivers and setDatabase do nothing - the parameter hides the
member variable. The name should be qualified with this. to specify
the member variable instead of the parameter. To avoid peculiar
behaviour, mutable values such as arrays should have a defensive copy
made.

void setDrivers(String[] drivers) {
this.drivers = drivers.clone();

}

The drivers and database member variables are accessible throughout the
package. It is a good idea to limit accessible scope. Variables should almost

10 CVu/ACCU/Dialogue

always be private. As these variables need to be set only once, they can be
initialised from the constructor and made final.
There are many ways of configuring data sources and drivers. For web apps
and EJBs, JNDI is the obvious choice. From Java SE 6 standalone
applications can have drivers configured within their jar manifest. For test
harnesses, system properties make a good choice.

Configuration is a peripheral issue, so I suggest hardwiring for a short
piece of code like this. After hardwiring the class is left with no useful state,
so there is no need to construct an instance of it. We can make sure no
instances of the class are constructed by making it abstract and replacing
the default constructor with a private version that always throws an
exception.

The exception handling appears to be the minimum to keep the compiler
happy. Consider what happens when Connection.createStatement
really does throw an SQLException as promised. The exception is caught
and the results variable remains as null. The following code will throw
a NullPointerException. In this case that exception will again be
caught and a misleading value returned from the method.

Static exception checking is there to help. Try to be as precise about
which exceptions are handled and almost never catch Exception. If an
exception is thrown, do not just swallow it and carry on. In this short
example an exception should be displayed to the developer and the program
exit, which can easily be accomplished by declaring selectAddress and
main methods as throwing SQLException.

Connections, Statements and ResultSets are resources which
must be closed, whatever the circumstance. The code does not close the
resources, even in the happy case. The general form of resource usage
is:

acquire resource
try {

use resource
} finally {

release resource
}

The Java syntax pushes programmers towards muddling resource and error
handling. Do not be tempted into moving the resource acquisition to within
the try block.

The String returned from selectAddress is created by twice as
many concatenations as there values read. Each concatenation allocates
and copies the entire string so far. That is an O(n^2) algorithm. With
increasing data it will very rapidly become extremely slow. The standard
solution is to use a StringBuilder and only convert to a String at the
last moment.

There is a more convenient idiom for building strings with separators
than checking the loop index. Initialise a separator variable with an empty
string. Assign the separator string within the loop at some point after the
append. No condition is required.

There are a few comments that are a substitute for breaking the
selectAddress into pieces. // Get connection marking out a call to
getConnection, for instance. It is better to split into methods and
JavaDoc each. The comment: // break it off at 50 rows max is
incorrect, as the limit is 40. That is not a helpful comment. More useful
would be to make the while loop into a very conventional looking for
loop. The odd feature is the call to results.next. In order to prevent
potential unnecessary loading of an additional batch of rows, the &&
operands should be reversed.

The row loop uses the Java, 0-based convention for the index variable.
The column loop uses the SQL, 1-based convention. At least be consistent.
I prefer to keep to the Java conventions in Java, translating at the last
moment.

The variable for the column loop can be moved into the for loop itself.
Variable scopes should be as narrow as possible. As we have two loops
rather than use i, we can match the row variable name with col (or
column).

If the selectAddress method is passed a null argument, then it
attempts to execute nonsense SQL. In order for errors to be detected as
close to their source as reasonably possible, check that arguments are legal
at the start of methods.

selectAddress returns may than one record (or none), so should be
plural. Also “select” reflects the implementation in SQL. A better prefix is
“find”.

The class name itself uses initials. The convention for initials is to use
the same case for all. It is more readable to use the full expansion – there
is no need to be overly terse. If it is reasonable to use a full word, then don’t
abbreviate it. There is little point in replacing index with the less readable
idx.

import statements give an idea as to what types the reader should be
looking out for. So import * should be avoided unless a large number of
types from one particular package are to be used.

It is a good idea to avoid SELECT *. If the fields returned change, then
your code may well break. You may cause unnecessary work returning
fields that are not required. Instead explicitly list precisely what you
require.

I am a bit confused as to what the ADDRESS table is supposed to
represent. What is the meaning of an address name? For the sake of
argument, I am going to assume that the table holds customer records.
Similarly I assume the database is the customer database.

Dynamically creating SQL is generally discouraged. Failing to
correctly escape user supplied strings can allow SQL injection attacks. I
have spotted production code very obviously with this problem. The usual
solution is to use a PreparedStatement, and set the values before
execution.

The problem here is identifying what the required functionality is. When
it comes to providing an open-ended search interface, that can be a
problem. What I have done in my correction is to allow dynamic building
of the where clause expression, but still use a prepared statement for
values. Another interpretation is that the functionality required is to search
for a surname, in which case name could be replaced by surname and other
fields.

Avoiding copy and paste coding with SQL can be tricky. Move the
ResultSet dumping code to its own method. It is also straightforward to
pass SQL and arguments into the method. Less obvious is how to arrange
for the JDBC handling method to call a non-hardwired method to process
the ResultSet. The way to do that, is to pass in a callback handler object
(ResultSetHandler). As well as being able to alter member variables of
itself, it is useful for the result set handler object to be able to pass back a
value through the JDBC handling code.

I have left the JDBC handling code in one big method. In larger
applications this would be split. For instance, we would want to keep the
connection across multiple statement executions and there are many more
things we can do with a Statement.

The class contains code working at different levels. As it grows, that
should naturally split. In particular the test code can go in a separate source
directory from the production code.

An Object-Relational Mapping tool, such as Hibernate or an EJB3
persistence implementation, would get out most of the repetitive JDBC and
SQL.

In order to save space, I have indented only two spaces and elided the
JavaDocs.

import java.sql.ResultSet;
import java.sql.SQLException;

interface ResultSetHandler<RESULT> {
RESULT resultSet(
ResultSet results

) throws SQLException;
}

abstract class StudentCodeCritique37 {
private void StudentCodeCritique37()
throws Throwable {
throw new Error();

}

private static String
findCustomersWithNameEnding(
String nameEnding

) throws SQLException {
if (nameEnding == null) {
throw new NullPointerException();

}

return findCustomers(

11CVu/ACCU/Dialogue

"name LIKE ?", '%'+nameEnding
);

}
private static String findCustomers(
String whereExpression, Object... args

) throws SQLException {
if (whereExpression == null) {
throw new NullPointerException();

}
String customerFields =
"name, street, town, county, postcode";

return executeQuery(
new Querier<String>() {
public String resultSet(
ResultSet results

) throws SQLException {
return resultSetToString(results,
40);

}
},
(
"SELECT "+customerFields+
" FROM customer WHERE
"+whereExpression

),
args

);
}

static <RESULT> RESULT executeQuery(
ResultSetHandler<RESULT> handler,
String sql,
Object... args

) throws SQLException {
if (sql == null || args == null) {
throw new NullPointerException();

}

java.sql.Driver driver =
new sun.jdbc.odbc.JdbcOdbcDriver();

java.sql.Connection connection =
driver.connect(
"jdbc:odbc:CustomerDB",
new java.util.Properties()

);
try {
java.sql.PreparedStatement statement =
connection.prepareStatement(sql);

try {
int argNum = args.length;
for (
int argCt=0; argCt<argNum; ++argCt

) {
statement.setObject(
1+argCt, args[argCt]

);
}
ResultSet results =
statement.executeQuery();

try {
return handler.resultSet(results);

} finally {
results.close();

}
} finally {
statement.close();

}
} finally {
connection.close();

}
}

private static String resultSetToString(

ResultSet results, int rowLimit
) throws SQLException {
if (rowLimit < 0) {
throw new IllegalArgumentException();

}

java.sql.ResultSetMetaData metaData =
results.getMetaData();

int colNum = metaData.getColumnCount();

StringBuilder buff = new StringBuilder();
for (
int row=0;
row<rowLimit && results.next();
++row

) {
String sep = "";
for (int col=0; col<colNum; ++col) {
buff.append(sep);
buff.append(results.getString
(1+col));
sep = ",";

}
buff.append('\n');

}
return buff.toString();

}

public static void main(
String[] args

) throws SQLException {
System.out.println(
"Found:\n" +
findCustomersWithNameEnding("Hardy")

);
}

}

From Jim Hague

< jim.hague@acm.org>

The preamble to this problem begins by describing the problem as a Java
problem. I think this understates the problem. The task requires Java to
interact with a database via the standard basic Java mechanism for working
with SQL database, JDBC. JDBC deals with the nitty-gritty of how to
connect to a database, send SQL commands to the database, receive the
results, and make use of them from within Java. It requires you not only
to know at least some SQL as well as Java.

Often, of course, it also requires you to be able to configure the entire
environment to test the program. You have to be able to identify and install
the correct JDBC drivers and to configure the database to authenticate and
accept commands from JDBC programs. Assuming the code sample
compiles, runs and produces at least one address (I can’t test it right now),
the student has surmounted several hurdles and produced what might be
called a ‘Hello, world’ JDBC program. Kernighan and Ritchie noted in The
C Programming Language that successfully compiling and executing a
program requires knowing how to work the local compiler and linker, a
task where the author of a book can provide steps for specific systems but
can’t hope to cover all extant systems. Connecting to database adds an extra
layer to the problem. The student is due some credit for overcoming those
hurdles.

I’ve not been working on Java code daily for while now, and on a first
glance my impression was relief. It’s easy to follow what the code is doing,
and there are even a few comments to help you on your way. It would be
nice if each method had a proper Javadoc comment, and some folk deplore
wildcards in imports. But something else nags...

Ah! There are no access specifiers. Not on the class, not on the
member variables, or the member functions. Java has 4 access
specifiers: private, protected, public and default of ‘package
private’. This isn’t the place for a full description of access specifiers;
I’ll just say that judging by the code the intention is that the class
should be generally available, and that the setDrivers,
setDatabases and selectAddress methods should be generally

12 CVu/ACCU/Dialogue

callable. In that case, they should each have their declarations prefixed
public.

public class Scc37 {
// ...
public void setDrivers ...
public void setDatabase ...
public String selectAddress ...

}

In larger programs, classes are further categorised into packages. When the
student is finished reading up on access specifiers, they should turn to
coverage of packages.

The next thing I noticed was the error handling. Inside the main
selectAddress() method, each step along the way is wrapped in a
try..catch block and if any exception occurs it is reported by printing
it. Execution then proceeds to the next section of code, which is almost
certain to fail too as a consequence of the previous failure. Meanwhile, the
caller of selectAddress() never sees any of these exceptions, and is
unable to tell whether getting an empty result is due to errors (e.g. can’t
load driver/access database, invalid SQL) or simply because there are no
records in the table which match the selection criterion.

What to do when errors strike is never an easy question, and it’s one
of the big things that separates ‘Hello, world’ programs from Real Code.
In this case, my feeling is that the selectAddress() method simply
can’t have any knowledge about what would be an appropriate response
to an error. Should it exit? Should it retry the operation? In any event, the
calling code has to be told when an error occurs rather than no data is
found. My initial inclination is to chuck the whole problem upstairs by
not fielding exceptions at all. Change the declaration to indicate that an
SQLException may be thrown, and remove all the try...catch blocks
from the code.

public String selectAddress(String query)
throws SQLException

{
...
}

While on the subject of things better handled by the calling code, I next
want to talk about the first two operations selectAddress(). It first
loads the JDBC driver, and then requests a connection to the database.
The connection is assumed not to require username/password
authentication.

Opening a connection to a database is a heavyweight operation when
compared to doing a simple SELECT. Connections are relatively
precious resources, and your application performance – and quite
possibly you if your database admin catches you – will suffer if you
open a connection on every SELECT. In the ‘Hello, world’ case it
doesn’t matter; we’re only doing the one query. Larger programs often
keep a pool of connections, doling a connection out to code that needs
one and receiving it back when that code has finished its business with
the database, but keeping the individual connections open as long as
the application needs them. So here a class intended for a larger
application should rely on the application to supply the connection. That
in turn means that it is the application’s responsibility to load the JDBC
drivers and worry about authentication, so the class now shrinks to just
the one method.

public class Scc37 {
public String selectAddress(Connection

con, String query)
throws SQLException

{
...
}

}

Having removed about a third of the lines in selectAddress(), I now
want to make a few points about the remaining code that executes the query
and makes up the result.

The first point is that the exact results obtained are very dependent on
the table declaration in the database. I think SQL will return the columns

in the order in which they are declared in the table if requested to SELECT
*. This may be fine; the requirement for selectAddress() may indeed
be just that it returns all information in ADDRESS comma-separated in a
string. More usually, though, calling code is after specific bits of
information, like the town or postcode. In that case, you should either
specify the order in which columns should be returned (e.g. SELECT NAME,
ADDRESS1, ADDRESS2, TOWN, POSTCODE), or use the alternate version
of ResultSet.getString() which takes the name of the column to
return (for example, retVal = results.getString("POSTCODE")).
From memory the former is slightly more efficient.
The second point is the code that returns data only for the first 40 rows
found. In general, if you find yourself writing any code that discards data
returned from a SQL query, that is the time to learn a bit more SQL to
see if the SQL query could have been formulated to omit that data. In this
case, consider what will happen if the query runs against an address table
and matches 10 million entries. The database will dutifully pick out and
return the data from 10 million records. This isn’t going to happen quickly
and if as is usually the case the database is on a different machine you’re
going to be schlepping a lot of data across the network unnecessarily. I’m
no SQL guru, so I’ll just mention that on MySQL at any rate the LIMIT
command achieves what we want here. Oh, and one more thing here.
Why set the cap at 40 rows? Calling code may want 100, or it may want
one.

Finally, I note that the documentation for ResultSet.getString()
says it returns ‘null’ if the column contains SQL NULL. This ‘null’ will
cause trouble when building retVal. You need either to ensure that the
column can’t contain NULL, or look out for and handle getting ‘null’.

We’re now left with a class with one method, a main() test method and
no member variables. Furthermore, the code calling the
selectAddress() routine must supply a query parameter that is a
legitimate WHERE clause for the main query, and as the test shows that
clause is going to have to know about the table structure. So, all in all, the
class isn’t buying us a great deal; Java code has to know about the
underlying table because of that WHERE clause, and can’t pick specific bits
of address information out of the result. And this brings me to a
fundamental design point. The class doesn’t abstract addresses. It’s a small
wrapper around querying a table. I feel that in any real-world application
the design would be better separating out addresses from their handling.
For a UK-centric application something like:

public class Address
{

public String getName();
public String getAddress1();
public String getAddress2();
public String getTown();
public String getCounty();
public String getPostcode();

};

public class AddressTable
{

public Address[] getByNames(String name,
int first, int max);

public Address[] getByNamesLike(String
pattern, int first, int max);

}

Finally, a quick word on testing, the student has included a simple test
routine in a main() routine. Good. It’s a start. Unfortunately, there is
no way apart from examining the program output to determine if the
test has passed or failed. Fine for a small one-off, but not so good if
we’re testing a lot of queries – will you always spot the error output?
And fatal if we want to run the test in an automated suite. At a
mimimum I would recommend giving an appropriate System.exit()
value. From there the student can proceed to a study of JUnit and
similar.

Commentary
I thought it would be interesting to break with tradition and use some
Java sample code, but this didn’t actually seem to produce any more
critiques than usual – unless it was simply everyone was away on
holiday.

13CVu/ACCU/Dialogue

I can’t believe so few members of ACCU are competent to write code
critiques, so I thought I’d use some of the commentary to talk about the
process of writing a critique and hopefully encourage some more SCC
entrants in the future.

What can entering the Student Code Critique do for you? The first thing
is that you move from being a passive consumer of the magazine to actively
working with the example code. This is a good skill to practice whenever
you are reading (and not just in IT!) – being actively engaged in the subject
matter helps you to learn more and avoid unquestioning acceptance of what
may be incorrect or less than ideal.

By engaging in looking for problems in the published code you can
hopefully improve your skill at reviewing code – which is an important
component of many programming methodologies. (However, don’t think
this only applies to the student code critique column, you can be thinking
critically about all the code you read in the computer press. Just because
you see the code in print does not mean it has no faults!)

Then you must try to turn your critique into prose that can ‘stand on its
own’ without you being present to explain what you meant to the
magazine’s readers. As those of you who try this have probably found, it
can be hard at first but again it is a good skill to seek to improve.

The beauty of a competition is the best entry (or sometimes the only
entry…) wins the prize, so you don’t necessarily need to produce the
‘perfect’ entry, even should such a thing exist. However we also hope that
some of those who write a critique might then extend their writing further
to produce an article for C Vu or Overload.

The prize – ah yes – a free book. How many of us read as much as we
should about IT? [Apart from Francis, perhaps] If you choose well your
book should teach you something of value that will broaden your
knowledge of this ever-increasing world of computing.

So, why not give it some thought this issue if you’ve never before
attempted an entry for the student code critique?

To return to the Java sample code, the critiques above have covered most
of the problems with the code.

The basic syntax problem where a member variable has the same
name as an argument is of course relatively obvious in very short
methods like this example – but can be hard to track down in larger
methods. The problem of arguments matching member variables can
sometimes be detected at compile time by use of final on the
arguments – this will at least catch attempts to assign to the variable
where assignment to the member variable was expected. It always
puzzles me slightly that Java allows local variables and arguments to
hide member variables but doesn’t let you nest variable names inside
scopes:

int aValue = 1;
{
int aValue = 2; // OK in C++, not OK in Java

}

The only additional problem with exception handling in the code that I’ll
mention is with the for loop in selectAddress. Since the exception
handler is outside the for loop it means that any exception will terminate
the loop early. This sort of bug can be hard to detect.

The final issue – that of configuring the database sources – seems to be
getting more complicated with each release of Java. Since it depends on
the environment in which your code is running (stand-alone, in a Web
server, etc) the key item is to try and localise any code with any knowledge
of this configuration – Jim’s solution of passing in the database connection
is an example of this approach.

The Winner of Student Code Critique Competition 37

The editor’s choice was very hard to make as both entrants where very
clear in their approach and where the problem was. I hereby wave my
editorial wand and say that both deserve the prize on condition that they
get a review of it to me for a future edition of C Vu.

Please email francis@robinton.demon.co.uk to arrange for your
prize.

Student Code Critique 38
(Submissions to scc@accu.org by Mar 1st)

The student wrote “I’m getting a compilation error with this program,
something about the instantiation of invArg; I think the type checking is
too strong; any suggestions?”

#include <iostream>
#include <cstdlib>
using namespace std;

template<class T>
class invArg
{
public:
invArg(T& arg):inv(arg){}
virtual void Write()const{cout << inv
<< endl;}
private:
T inv;
};

template<class T>
class Exp
{
public:
T operator()(const T& base,
T exp)throw(invArg<T>)
{
if(exp<0)
1/operator()(base,exp);
else if(base==0)
throw invArg<T>(base);
else
{
T ret=1;
for(;exp--;)
base*=exp;
return ret;
}
}
};

int main()
{
for(;;)
{
try
{
long double base,exp;
cout << "Enter a base and an exponent: "
<< endl;
cin >> base >> exp;
cout << base <<"^" << exp << "=" << fixed
<< Exp<long
double>()(base,exp) << endl;
}
catch(invArg<long double>& inv)
{
inv.Write();
}
system("PAUSE");
return 0;
}
}

Good luck!

14 CVu/ACCU/Dialogue

Letters to the Editor
There is a line in one of the Christmas songs which goes “well, I wish it
could be Christmas everyday”. While I'm not advocating such an activity
(not unless I get a healthy pay rise and have a guaranteed 360 days off a
year), I must say that the Yuletide has brought in more letters (well, emails)
to me than since I took over 2 years back.

Book Reviews
Quite a few have expressed that they think the idea of not putting the prices
of books next to the books a good idea. The consensus is that because of
the variance of prices between traditional booksellers and the likes of
Amazon, it seems pointless to have the prices printed on paper or online
as they are pretty much useless, even as a guide.

There has also been some disquiet over the swap over after the sad loss
of Chris last year, the majority being the slow update on the website. As
you've seen in the Officer's reports section, Allan Kelly has given an insight
into the problems we are currently experiencing with the site. Be assured
though, everything is being done to try and solve this problem.

Finally on books, early last year a review was set in motion about the
whole book process. This has been restarted and I should (hopefully) have
something to report in the next issue.

Debuggers
The piece on Undo seems to have caused the following from Terje Slettebo

Debugging is obsolete!
If you find yourself doing a lot of debugging, you're probably doing something
wrong. The reason for the lack for interest in debugging I think has much to
do with the increased interest in agile development, including the practice
of Test-Driven Development. The following article is a good introduction to
that (http://www.phpbuilder.com/columns/baker20040202.php3):
"After two years of coding this way, if I am ever in that interview I will give
a different answer now. "Test, code then design" If they ask me what
happened to the debug phase I have only one answer... "What's
debugging?" "
As Robert C. Martin says in his blog at Artima: "Debuggers are a wasteful
Timesink" (http://www.artima.com/weblogs/viewpost.jsp?thread=23476).
If you have to single-step through the code, either manually or with the help
of a debugger, to understand what a program does, rather than being able
to understand it by looking at the code, then it's a sign that the code is not
as clear as it should be, and/or you have insufficient tests. The solution is
then to refactor, and/or add tests, not single-step.
I've found over the years that I spend less and less time debugging, and
more time on "massaging code into shape" (refactoring), doing continuous
refactoring/design. Typically, when you clean up code, what used to be a
hidden (maybe even latent) bug, tends to jump out at you, when the code
becomes clearer.
Maybe the real "debugging scandal" is that way too much time is spent
doing debugging, rather than properly designing programs (such as with
refactoring). As "Uncle Bob" says in his above mentioned blog:
"And yet, for all their power, debuggers have done more to damage software
development than help it. [...] IMHO a debugger is a tool of last resort. Once
you have exhausted every other avenue of diagnosis, and have given very
careful thought to just rewriting the offending code, *then* you may need a
debugger."

In order to address these points, I asked Greg Law of Undo.
I have heard the "debuggers considered harmful" argument several times,
and it will not surprise you to hear that I do not agree with this position.
In an ideal world, it is of course better to write bug-free programs than poorly
crafted code that is debugged later. Alas, real world constraints often make
this impossible. Here are just a few examples:
1.Bad assumptions. If you as the programmer have a misapprehension
about your program's environment (e.g. a library routine's behaviour), then
no amount of thorough design will prevent your bug. Note, I'm not talking
about when you realise that you don't understand the environment. It's
when you think you understand it but are mistaken that things get tricky. In
other words, it is by definition impossible to foresee unforeseen problems!
2.Someone else's code. If you've never been asked by your boss to fix a
bug in someone else's code, then you're in a very small minority. Likewise,
if rewriting that shoddy code-base is a viable alternative, you're also lucky.
Any tools that can help here are extremely valuable.
3.Difficult or poorly defined problems. Often you don't understand the true

nature of the problems you need to solve until you've already written some
of the code. The waterfall development model looks great on paper, but we
all know it works in practice only for the simplest of projects.
I would however agree with the statement "debugging should be the last
resort" (as opposed to "a debugger should be the last resort"). It is always
desirable to eliminate bugs as early as possible, and so much the better if
this can be at the design stage. But sadly, all too often code does need to
be debugged. Once we arrive at this sorry state, we need all the help we
can get. This means refactored code, better tests and, yes, tools such as
debuggers.

SCC
It's not often that I hear anything about the SCC (except when Roger emails
me the submission). However, null references seems to have triggered this
from Fazl Rahman.

Can we stop talking about null references in the context of c++ please..
Thank you.
In the Dec 2005 C Vu, Jim Hyslop (talking about "null references" on p.7)
recommends "Do your best not to accidentally create them, and never, ever
deliberately create them." This puzzled me as my mental model of a C++
reference is a 'pointer that automatically dereferences at each use'. In this
model, one cannot create a null reference, deliberately or accidentally, as it
requires dereferencing a null pointer.
Here is a thread from comp.std.c++ in Google on this topic:
http://tinyurl.com/bzhfx with the likes of Pete Becker
discussing this, where the following appears:
The Standard addresses this in 8.3.2/4, which includes
Note: in particular, a null reference cannot exist in a well-defined program,
because the only way to create such a reference would be to bind it to the
"object" obtained by derefencing a null pointer, which causes undefined
behavior.

I checked this on my copy, found it and asked Jim..
Keep in mind the key phrase in that quote from the standard: "in a well-
defined program." This does not mean that it is impossible to create a null
reference, only that it is impossible to create a null reference *in a well-
defined program.* While this may seem to be splitting hairs, it is an important
distinction: your compiler cannot always detect when a program is ill-
defined.
Consider this program:

// file1.cpp
void g(int&);
void f(int * ptr)
{
g(*ptr);

}

// file2.cpp
int main()
{
f(0);

}

This program creates a null reference, and so is ill-formed. But I'm willing
to bet no compiler currently available will diagnose the error, so the compiler
will happily compile and link the program. Even if a compiler could diagnose
that error, it would be almost impossible to diagnose if f() is passed a pointer
whose value is set at run-time, which may or may not be null.
So until and unless the language evolves to the point where it is impossible
to create them, I'm afraid we can not stop talking about null references in
C++, and my advice stands. C++ programmers must be aware of the issues,
and know how to avoid falling into that trap.

And yes, there *are* programmers who believe that creating null references
is OK: for every person like the one who asked the question in
comp.std.c++ there is at least one programmer who says "It works,
therefore it must be OK" (or worse, "COM does it, so it must be OK").

That's all the postbag for this edition. Please remember, the dialogue section of
C Vu is as much for you as it is for the regular contributors and committee. Have
you voice heard. Email cvu@accu.org if you have anything to say about the
magazine, contents or what you would like to see in future editions.

15CVu/ACCU/Dialogue

Francis’ Scribbles
by Francis Glassborow <francis@robinton.demon.co.uk>

Thoughts for a New Year

I am writing this on the first day of 2006. I started to think about how the
world of computers and programming has changed over the years and the
ways in which it has not.

The computer I am writing this article is more powerful than the most
powerful machines of the mid 1970s. Since then I have become comfortable
with using a keyboard to do my writing, and regularly turn out printed text that
is better presented than much of the professionally laid out material of that time.

Computers have changed the way that most of us write, but how much
have those teaching writing skills changed their teaching? I suspect the answer
is 'not much.' I think that those changes that have happened are often for the
worse. Word-processors should allow students to focus on the process of
writing rather than the mechanics of doing so. Do our children's teachers
require that change of focus or are they still ploughing along with the old ways
dressed up in some superficial new clothes? For example, are they still focused
on rules for presentation that were designed for hand-written or typed text?

Most people still consider that computers are mathematical tools; so
why is it that much maths being taught today is essentially uninspiring and
taught by uninspired teachers? Yes, there are many good teachers in the
classrooms of the world but too many of them are having their work
destroyed by curricula that offer the pupil nothing.

Computers are magnificent tools for both creative writing and
mathematical investigation but it is much easier to teach routine material
which can be assessed by some objective criteria. Teaching has not got
better over the last fifty years, the apparent improvement in the examination
results is, in my opinion, almost entirely due to the revamping of
examinations so that it is possible to train pupils to get good grades.
Teaching that way may produce excellent performance assessments for the
teacher and the school, but such teaching is stultifying and brain numbing.

Most of us understand that giving others the tools and knowledge to
feed themselves is much more effective in the end than giving them food.
So why are we so poor at feeding young minds?

As is often the case when I sit down to write, I find myself writing
something very different from what I had planned. I intended to write about
how programming has failed to change with the hardware.

Many programmers are still locked into tools that are 25 or more years
old in concept and design. For example, most programmers use mono-
spaced fonts and text editors that use simple ASCII coding. Mono-spaced
fonts were a combination of what teletypes produced and the need to keep
track of the columns (for example a traditional punched card had 80
columns; in FORTRAN IV columns 1-6 were for labels and columns 73-
80 were for the card sequence number – useful when you dropped your
card deck). I have heard a variety of arguments put forward for continuing
with mono-spaced fonts. The strongest being that all the third party tools
for processing source code require files that are in a simple format. With
respect, even that is plain stupid. It is easy to make a word-processor that
generates parallel files with text in one and format in the other. Human
beings can then have the source code presented for easy reading, and the
development tools can have the simple text that they need.

This reminds me of the struggle I first had with a keyboard. In my early
days of programming, I wrote the first draft of my source code in long hand,
and then keyed it in to some computer readable form. Eventually I found
that I could dispense with the hand-written stage. (These days the problem
is learning to use speech recognition methods. I may eventually learn to
dictate my source code to my computer.)

If the only problem with programming was the use of unimaginative
tools I suppose I could shrug my shoulders and put up with it, but the more
fundamental problem is in the programming languages we are using. They
are inherently designed to support software development for a machine
with a single processor. There has been hardly any development of
language features for computers that have more than one processor (or core
in a multi-core CPU) running at a time (yes, I do know about languages
such as OCCAM). I have listened with increasing dismay to the
explanations of others about how clever compilers, instruction schedulers
etc. mean that human beings do not need to worry their little minds with
parallel execution of code.

Those responsible for languages like C and C++ are honest enough to
admit that those languages are based on the assumption of sequential
execution. The problem is that this assumption is buried very deep in

computing. The tools for multi-threaded programs still assume that there
is just one processor that switches between threads. In other words if one
thing is being done, nothing else will be executed at the same time.

However the newer languages such as Java, C# and Python have the
same assumption, it just has not been so clearly stated. The popular
programming languages assume that things like multi-threading are done
by a form of task switching. When that is not the case because different
threads are running on different cores (and if they are not your program is
not making effective use of the hardware) you have serious problems
waiting to manifest at the worst possible time.

The assumption that only one instruction is executed at a time is not
true any longer. I was recently talking with some of Symbian's (responsible
for the Symbian OS used on many mobile phones) staff when the subject
of the C++ abstract machine came up. What shocked me was to learn that
the next generation of mobile phones will use multi-core processors. At
least that company was aware that this change had fundamental impact on
their programming methods.

Software is steadily taking over the world. That means that getting it wrong
has an ever increasing potential for disaster. Your wireless, your TV, your MP3
player etc. are all essentially software supported by some hardware.

The world has changed in ways that many have not noticed. Most people
see the outward changes but completely miss the changes in how the task
is carried out. If programmers cannot adapt to the changing world of
software and silicon what hope has the rest of the human race?

Global warming may create a disastrous climate change but I suspect
that our inability to handle our changing technology is just as big a threat.
We need to break away form our comfortable belief that it will all work
out in the end. Only when we accept that we have a problem and do not
know what we are doing will we be in a position to do something about it.

Commentary on Problem 23/24
I am republishing this problem because no one responded. I know that some
readers have an idea as to what the problems are. I also have an SQL
problem which I will publish next time.

Problems with initialisation have been of concern to those responsible
for working on the next version of the C++ Standard. Have a look at the
following code and comment on any possible surprises.

#include <iostream>
struct X {

int i;
X(){}

};
struct Y: struct X{

int j;
Y(): X(), j() {}

};
Y y = Y();
int main(){

std::cout << y.i << std::endl;
return 1;

}
Please focus on the interaction of an explicit constructor that does not
initialise all the member data and the rules for global initialisation.

The second problem with the code is that while the Standard guarantees
the result of returning zero from main(), it does not guarantee what will
happen if you return any other integer value.

Cryptic clues for numbers
Last issue's clue

Help! Looks like a sailing dinghy. Hawaiian police series number 5. (3 digits)
The answer is 505 (I have not had any entries, so that saved me finding a prize.)

This issue's clue

On reflection, this issue is still the same prime. (3 digits)
If you wish to take part in this competition, please remember that you

have to supply an alternate question for the same answer before you can
claim the prize!

Francis Glassborow
Francis Glassborow is a freelance computer consultant and long-term member

of BSI language panels for C, C++ and more recently Java and C#. He is a regular
member of the UK's delegations to WG14 and WG21. He is also the author of 'You
Can Do It!' and “Introduction to programming for novices”.

16 CVu/ACCU/Features

Features
We Own All Your
Computers...
Alan Lenton <alan@ibgames.com>

Media Police! FREEZE! Move your hands slowly away from the keyboard,
keeping them visible at all times. Do not attempt to touch your mouse...

It all started when Mark Russinovich ran a series of regression tests on a
security program he was working on. To his amazement the program
reported that a rootkit was installed on the computer.

A rootkit is a program designed to hide the existence of other programs
from the owner of the computer. The main users of rootkits are virus,
spyware, and other malware writers – and, of course, malicious hackers
covering their tracks.

Eventually, after some sleuthing Russinovich discovered that the
rootkit had been installed by a SonyBMG CD – VanZant’s ‘Get With The
Man’. In this case the purpose of the rootkit was to hide the fact that the
offending CD had changed the configuration of the operating system
(Windows) by installing a new device driver. The CD was using a copy
protection product called XCP written by a British company called
First4Internet.

Most of the tools used by hackers have legitimate uses as well as
malicious ones. Rootkits, though, are one of the few programs that don’t
fall into this category. There are no legitimate uses for a rootkit. Once a
rootkit is installed, anyone who knows about it can use it to hide things
from the computer’s owner. You can easily imagine the alarm this news
generated when Russinovich reported his findings in his blog!

But finding the rootkit was only the start. When he tried to remove
the driver he discovered that Sony had failed to provide an uninstaller,
and that when the driver was removed manually, the computer stopped
being able to access the CD drive. Worse, an examination of the driver
code revealed that removing the driver could completely crash the
computer.

Sony’s response to the revelation that they had been illicitly tampering
with their customers’ computers was summed up by a comment from
Thomas Hesse, President, Global Digital Business, Sony BMG Music
Entertainment: Most people, I think, do not even know what a rootkit is, so why
should they care about it?

To make things worse for Sony, it was then discovered that the software
was contacting Sony when you played the CD. Sony promptly issued a
denial that there was any code to contact them. This was followed by an
equally prompt number of posts on the web containing detailed transcripts
of the software communicating with a Sony server. Oops!

At this stage Sony backtracked and admitted that the software did
indeed phone home, but that it was only to see if there was any updated
artwork to display. I’d guess that was probably true, but by now, who was
going to believe anything Sony told them?

Needless to say, the sounds of class action lawyers sharpening their
knives could be heard throughout the internet, though Sony seemed to be
oblivious to the noise.

By now the news of Sony’s rootkit had spread far and wide and hackers
were starting to sit up and take notice. First off the blocks were World of
Warcraft Online hackers who developed a version of their cheat software
that used the rootkit to hide their cheats from World of Warcraft’s security
program.

Under attack from all sides – the story had by now reached the
mainstream media – Sony produced an uninstall program to remove the
rootkit, but not the driver itself. If you wanted to remove the driver you
had to go to the Sony web site, jump through hoops and provide Sony with
all sorts of information it had no right to ask for.

Within another day or so the first viruses using the rootkit had appeared,
and Sony belatedly began to realise that they couldn’t just wait for this to
go away. They announced that they had halted production of music CDs
with this particular protection, and that they would re-examine all aspects
of our content protection initiative. Even so, they still didn’t plan to recall all
the CDs with the rootkit on.

By now a number of interesting sub-themes had emerged from this fiasco.
For instance at one stage Sony was trying to claim that users had agreed
to having the rootkit installed because it was in the end user license
agreement (EULA). This caused a lot of argument about whether that was
the case or not, though my feeling is that it wasn’t. That debate, however,
completely missed the main issue – since when have you had to agree to
an end user license to listen to a music CD?

Another other sub-theme that ran through the discussion – particularly
in the blogs – was that of a conspiracy to seize control of people’s
computers by the big media companies. I’m sure big media would love to
do that, but I don’t think this was such an attempt. Never impute malice
when greed and incompetence is sufficient!

One little covered aspect of the affair was that you could defeat the copy
protection by putting gaffer tape (duct tape for my US readers) onto the
outer edge of the disk. I don’t really recommend you do that, since disabling
the autorun facility of the computer’s CD drive will also stop the rootkit
and DRM from autoloading, after which you can play the music with any
software you choose.

And finally, of course, those who bought legitimate CDs drew lessons
from this affair that were very, very, worrying to the big media companies.
The legitimate owners of the music had their computers made more
vulnerable to malware and had made the operating system less stable.
Those who obtained pirate copies over the net and didn’t pay anything
suffered no problems, and were OK.

All this would have been bad enough, but the following week further
revelations completely undermined all Sony’s efforts at damage control.

A number of people had been looking at Sony’s code a little more
closely, and what do you think they discovered? Nothing less than code
taken from an open source MP3-encoder called LAME – in violation of its
LGPL copyright license. And all this in the name of enforcing Sony’s own
copyright...

By now even Microsoft had noticed what was going on. They let it be
known that they had decided to classify the XCP copy protection system
as spyware, since it met the ‘objective criteria’ Microsoft uses to assess
potentially malicious programs. Being on the side of the good guys must
have been quite a novel experience for Microsoft!

While all this was going on Sony came under attack from a completely
different direction – allegations of Internet ‘price-rigging’. It emerged that
Sony and other manufacturers have been accused of asking online retailers
for 10-15 per cent more for wholesale electronic goods than they charge
their bricks and mortar counterparts! Sony is already facing investigations
by the UK’s Office of Fair Trading (OFT) and the European Commission
over its pricing strategy.

Meanwhile, back at the ranch, Sony finally bowed to consumer pressure
and agreed to withdraw and replace all the CDs affected by the rootkit.
According to Sony about 4 million copies had been manufactured, and
some 2.1 million sold.

But What of the Compromised Computers?
Well, Sony eventually issued an ‘uninstaller’.

Hooray!
Errrrrr, no actually. Security researchers soon discovered that the cure was
even worse the disease. In this case the cure took the form of an Active X
control installed via Internet Explorer. Unfortunately, the settings in the
control will cause viewing a maliciously crafted web site to compromise
the viewing computer.

Those of you holding stock in First4Internet, purveyors of fine
rootkits to media giants, may like to consider disposing of it as rapidly
as possible :)

By Christmas, Sony was facing a slew of class-action suits, a possible
action in Italy, and an action from the State of Texas. And to cap it all, one
of its other copy protection programs, MediaMax, was also under the
microscope and revealing its own set of problems.

Eventually, in the hiatus between Christmas and the New Year details
of the class action settlement in New York State slipped out. It was pretty
harsh, and deservedly so. There was compensation for affected buyers of

[concluded at foot of next page]

17CVu/ACCU/Features

Sony CDs, software utilities to remove the offending copy protection, the
recall of the XCP CDs and no manufacture of MediaMax CDs for at least
two years. On top of this there were also a series of other measures agreeing
not to collect personal information, and a waiver of rights obtained through
the use of the EULA .

I’m assured that rumours that Mr Hesse, quoted earlier, is retiring to
spend more time with his rootkits, are totally unfounded.

But the real unanswered question from this fiasco is one that the
mainstream, and even the technical, press have been noticeably
reluctant to ask. Why didn’t the Anti-Virus companies spot this rootkit?
It’s not as though rootkits are some sort of never before seen new-
fangled attack – they are old hat in the security world. Where were
Symantic, McAfee, Computer Associates and their ilk while Sony was
installing its rootkit?

You can take your choice of answer here – incompetence or collusion
with Sony. If just one or two of them had missed it I would have gone for
incompetence, using Occam’s Razor as a justification. However, in this
case the fact that they all failed to report it to their paying customers
smacks of collusion. If I were one of their customers, I would be
demanding that the legal eagles look into the A-V companies’ role in this
affair.

Finally the whole affair raises to a high profile one of the most
fundamental questions. Who owns your computer? You may think that
having paid for it, you own it, but there are other contenders for this honour.
In fact there are three completely different groups that lay claim to your
computer – Microsoft, the media conglomerates, and last but not least, you.
Waiting in the wings for an opportunity to put in its own claim is your
government.

The problem is, you see, that general purpose computing machines are
just that – general purpose – and this means they can be configured to do
just about anything. This is great from your point of view as the owner,
but a total nightmare for all the others. Microsoft relies on being able to
control the operating system to lock you into its products. The media
companies rely on control of the creative assets to make lots of money,
and the government is generally uneasy about what you might do with
all that computing power – look at the struggle over encryption, for
instance.

This three-way (maybe four-way in the not too distant future) struggle
isn’t going to be resolved in a hurry. And really it’s only the latest
episode in an saga going back to at least mediaeval times when control
over people’s lives was contested for by monarchs, trade guilds and the
mob.

As the Christian Bible so aptly puts it: ...and there is no new thing under
the sun.1

...Alan John Lenton, you are charged with the possession of an unregistered
computer running the illegal Linux operating system.You, and your computer,
will be taken from this place to the Portmeirion High Security section of our
Tremadog Bay interrogation facility. Once you have confessed, you will be
sent to the Epsom Salt Mines and subjected to an intellectual property
rehabilitation program.

"Alan, Alan, wake up, it's time to get up!"

Alan Lenton

1 The Book of Ecclesiastes, Chapter 1, verse 9

[continued from previous page]

Silas’ Corner
Silas S. Brown <ssb22@cam.ac.uk>

Putting Old Modems to Use

Most technical people are moving to broadband or faster Internet
connections, and may be throwing away their old dial-up modems. But if
you still have a landline then you may occasionally find that old modem
useful apart from giving you a slow Internet connection.

Fax
This is perhaps the most obvious application, since so many modems are
sold as “Fax Modems” with the ability to send and receive faxes. Using
the modem to send a fax will save printing a hard copy and may also save
purchasing a fax machine, especially if you need to send faxes only
occasionally (email will do nearly all the time nowadays). Sending a fax
from your modem may also be useful if for some reason you need to send
a fax that’s so sensitive you don’t even want your own receptionist to see
it (but of course I’m not suggesting the theft of company resources).

Modems usually come equipped with DOS or Windows software to do
faxing. Of the Linux software that’s available, perhaps the simplest to set
up is “efax”; alternatives include “hylafax” and “sendfax”. If you are
sending internationally then you may wish to use one of the many
companies that provide discounts, in which case you will need to instruct
the software to dial their numbers first and to pause for long enough.

SMS
This may be a very useful application for some organisations. Using the
SMS (Short Message Service) on mobile phone networks to send “text
messages” is possible from just about any modem. The software needs to
dial the number of a mobile company’s SMS message centre and to speak
its protocol. This call will cost something, but it’s not much more than a
short call to a mobile phone, and if you have several messages to send then
you can often combine them in one call. The Linux package “smsclient”
seems to be the most reliable approach; there are also various Windows
programs that claim to be able to do it.

Textphone
The UK Textphone service is a text-based telephony service for people
who can’t use voice telephones (usually because they are deaf). Many

organisations have a textphone number. If you have deaf friends, or you
are an organisation that wants to be reachable by textphone, or if you
temporarily lose your hearing and need to talk to a doctor about it, then
you may wish to use this protocol. If you have a permanent need then
you should be able to get a real textphone, which is a special kind of
telephone that has a built-in keyboard and display. But for temporary
or occasional use, you can use your modem. A textphone is simply a
300-baud V21 modem (yes, 300 baud; these things have a long history),
so if you set your communications program to enforce 300 baud and to
give you local echo (since the remote side will not echo the characters
you type), you will be all set to make and answer textphone calls
directly with the other caller’s unit (there are no message centres or
other intermediary servers in the textphone protocol). Textphones have
only 1-line displays so carriage returns are meaningless; if your
software has a word wrap option then enable it. If your software asks
which terminal to emulate then set it to something simple such as
VT100.

Please do not use the textphone protocol just because you fancy
having an IRC-like chat with an organisation instead of calling them.
Organisations with textphone numbers tend to have far more voice
operators than they have text operators, and there might be someone
with a genuine need for the text line that you’re on. You should use this
protocol only if you or the other person (or both) cannot use voice. You
also need to be familiar with the common abbreviations; the most
important one is GA for Go Ahead (equivalent to “over” in 2-way
radio).

Other Uses
If you share a modem with a voice line then you could use the modem to
dial your voice calls if there’s some reason why you can’t do so yourself.
Just remember to tell the modem to disconnect as soon as it has dialled.
You could also get your modem to page you on your mobile (ring it a
couple of times) to indicate that some significant event has happened,
although a text message may cause less confusion.

And then there’s always using the modem for a dial-up Internet
connection. Many rural areas are still not covered by broadband, so if you
yourself don’t have a need for the modem any more then you may well
know someone who does.

Silas Brown

18 CVu/ACCU/Features

Professionalism in
Programming #36

Together We Stand (Part Three)
by Pete Goodliffe <pete@cthree.org>

Coming together is a beginning, staying together is progress, and working
together is success.

Henry Ford
We’re a long way into our voyage of teamwork discovery. We’ve
established a practical backdrop for good teamwork, and looked at the
characteristics of failing projects. Of course, not every team is doomed. So
now let’s see how to make some sense of this mess and how to Do Things
Right.

In this final instalment, we’ll come into dock by defining the
principles of good collaborative software development, and
investigating the life cycle of a healthy development team.

Teamwork Principles
First, let’s look at techniques that will improve our software
development teams. Although the tools and technology we
discussed in part one do help to improve productivity, the largest
gains are related to the human aspects of relationships between
people, and their work.

First, here are Pete’s Practical Principles for Programming Performance:
a few key principles that, once absorbed into your group’s DNA, will
change the way you write software. But remember: for these to be effective
you must make a purposeful change towards them; don’t just agree they’re
good ideas and carry on coding as you always have.

Code Ownership
Many programmers are territorial about their work. This is natural:
programming is a very personal, creative act. We’re proud when we craft
an elegant module and don’t want anyone to trample all over it, destroying
our masterpiece. That would be sacrilege.

But effective teamwork demands that we shed egos before entering the
software factory. Don’t complain that “Fred fiddled with my code”. It’s a
team effort; the code is not ‘owned’ by you, it’s ‘owned’ by the team.
Without this attitude, each programmer builds their own empire, not a
successful system.

With this culture in place, the team immunises itself from the danger of
little Programmer Kings, each ruling their own islands of code. If no one
has ever been allowed to see their code, what happens when they leave the
project? Losing a local expert will severely disadvantage the team.

It’s not wrong to feel a sense of parental responsibility for the code you
produce, to be protective of it, and to want to nurture it. But this must be
married to a healthy team focus. Instead of ownership, consider code
stewardship. Stewards don’t ‘own’ their charge, they are appointed to
maintain on behalf of the owner. A steward has primary responsibility for
a piece of code’s upkeep, weeding it and tending the borders. Usually the
steward makes all changes, although trusted team members can also make
changes, which would ultimately be verified by the steward. This is a
constructive approach to your code and one that will serve the team well.

Respect Other People’s Code
Even in an enlightened development culture without code ownership, you
must still respect other people’s code. Don’t tinker with it at whim. This holds
especially true if they’re working on it right now. You can’t change something
under another programmer’s feet; it will cause them untold confusion.

Respect for other’s code means that you should honour the presentation
style and design choices currently in place. Don’t make gratuitously
inappropriate modifications. Honour the method of error handling.
Comment your changes appropriately.

Avoid making quick hacks that you’d be embarrassed to see in a code
review. They slip in when you need to get your code working quickly and
one small tweak elsewhere makes your stuff compile. If you forget to tidy
the tweak then you’ve just degraded someone else’s code. Even temporary
modifications must show respect.
Before you modify code, ask the steward’s permission and let them know
what you’re going to do. If you don’t, you must definitely tell them
afterwards so they can review the change, and won’t be surprised by it.

Code Guidelines

For collaborative development to produce reasonable code your team must
have a set of code guidelines. These are dictates on the standard of code a
programmer can write, ensuring that everything in the system reaches a
certain minimum quality.

It’s not important to stir arguments over code layout (although it is better
if all code follows one style). However there must be consensus on the
standard and mechanism for code documentation, for language use and
common idioms, for the act of interface creation, and architectural design.

Teams that get by without such guidelines still do have them: just as
unwritten conventions. The problem with such implicit knowledge is that
a new team member’s code won’t match the existing codebase until they
are integrated into the code culture.

Define Success
To feel like they’re achieving something and that they’re working well
together, the team need a clear set of targets and goals. This must be more

than milestones on a project plan, although milestones can be a
good motivator – define lots of small milestones as short-term
goals, and celebrate when you hit them.

You must define the criteria for success, so the team knows
what it looks like and how to reach it. What does ‘success’mean
for your current project? Is it work delivered on time, to a

certain ‘quality’1, with a satisfied customer, bringing in a particular
revenue, or with a certain bug count? Prioritise these factors, and
let the programmers know the main motivator behind this piece

of development work. It will change what they do and how they do it.

Define Responsibility
All effective teams have a well-defined structure with clear responsibilities.
This doesn’t mean that your team has to be hopelessly hierarchical with a
strict pecking order and multiple levels of management. The team structure
must just be clear and recognisable.
● Who has the final say on important decisions: who maintains the budget,

who makes hire/fire decisions, who prioritises tasks, who approves
designs, signs off code releases, manages the schedules, etc.? These are
not all necessarily roles within the team, but they are all roles that the
team must know about.

● Where does the buck stop, and whose head will roll if the project is an
unmitigated disaster?

● What is each member’s responsibility and accountability? What have
they been assigned individual authority for, what is expected of them,
and to whom are they accountable?

Avoid Burnout
No team should have impossible goals. Sanity check the project you’re
embarking on – there’s nothing less motivating than knowing you’re going
to fail before you begin.

Watch how the work is split between programmers. Avoid giving all the
difficult work, or all the high risk work, to a few individuals. This is a common
fault, especially when a team cultivates Programmer Kings. If they burn
themselves out working many extra hours, or worrying about the implications
of a mistake, they’ll jeopardise the project and demoralise the team.

Congratulate the team when they do well and work hard. Do it publicly.
Keep feeding them praise and encouragement. It’s surprising how
refreshing some support and enthusiasm is.

Mix people’s jobs up; don’t force someone to repeatedly do the same
kind of task until they get bored and give up. Give everyone a chance to
learn and to grow new skills. “A change is as good as a rest”: even if there’s
no chance to slacken the development pace, a little variety can prevent
programmer burnout.

The Team Life Cycle
It’s important to see our software teams in the light of their entire life.
Teams don’t spring out of holes in the ground, and they don’t last forever.
There are four distinct stages of a team’s life. At each stage the focus of
activities is different. We’ll look at these in turn below:
1. creation,
2. growth,
3. work, and
4. closure.

1 And how will you measure this?

19CVu/ACCU/Features

Sometimes you might iterate through these a few times in different orders, but
every team will go through each stage. Subteams within the main development
project team will undergo a similar process; this is a recursive model.

Team Creation
There is a new project looming. It needs a development team. On your
marks. Get set. Go... A leader is appointed by the powers that be, and it is
his responsibility to pull the team together. Members may be drawn from
other teams, or hired specifically for this project. Wherever people come
from, they have to fit together as an effective team – the success of the
project (and the leader’s job) depends on it!

So it all starts here. Formation establishes the core team members. At
this early stage the team has not begun working in earnest yet, nor has it
jelled together properly. There are a number of important considerations
as the team is forged:
● You must establish where the team sits in the organisational food chain.

Which other teams will it interface with? Set up communications
channels with them, so it’s clear how work will flow between
departments and who the contacts are.

Think about this carefully, and try to minimise communication
across team boundaries to make work as simple as possible. At this stage
you can design your team to have the most chance of success by
eliminating unnecessary bureaucratic overhead.

● To be effective the team requires competent, talented members who
have potential to become a single high-performance unit. They must
cover all critical areas of experience and expertise before it’s needed,
otherwise development will stall whilst another person is sought. Plan
to grow the team as required, and work out when you’ll need to start
looking for more people.

● Chose and communicate an appropriate team-work model, otherwise
the team will adopt an ad-hoc structure and chaotic working practices.
Arrange the team structure to eliminate management overhead and
internal communication paths, keeping things as nimble as possible.

The initial aim when forming a team is to create more than a mere group.
We don’t need another collection of people or a little social club; we need
a cohesive, a working unit who are motivated and aiming towards a single
common goal.

Don’t bring a team together until you really know what it exists to do.
If people are drafted in and then start by sitting on their hands, waiting for
their instructions, then the team’s long term ethos will be to hold back;
there will forever be untapped potential. If the team can’t begin working
from the outset, don’t bring it together yet.

Team Growth
After creation, once the team is populated with core staff, the project will
begin to gain momentum. The team must grow to accommodate the increased
workload. There are several facets to this: the team must grow in numbers,
but also in experience and in vision. It must grow outwards and grow inwards.
Inward Team Growth

As they work together, the members get to know each other on a personal
and professional level. The team settles into a work pattern and a coding
culture is established. At first, this must be subtly guided so the culture is
healthy and will serve the team structure and goals.

This stage aligns personal and team objectives, and determines the
individual roles and relationships. The team’s ‘feel’ at this point sets the
tone for the whole project, so watch out for scepticism or bad will.

If it hasn’t already been provided, the team infrastructure is laid down
as the work builds up. Tools like source control and groupware are
deployed. The project specifications are written, objectives are solidified,
and the scope of the work is determined.

Outward Team Growth

Outward growth sees the accretion of more members – this is the visible
kind of team growth. At it’s zenith, the team contains each of the following
roles. These are not necessarily individual job titles; it depends on the size
of the team. In a small team, individual members take on more than one
role, either full or part time. Large projects may have whole departments
per role.
● Analyst – also called a problem domain specialist, this is the liaison

between the programming team and the customer. He studies and
understands the Real World problem well enough to write a
specification that the developers can implement.

● Architect – a high level design authority who devises a system structure
based on the analyst’s requirements.

● Database administrator – designs and deploys the database
infrastructure for the project.

● Designer – works below the architect to design components of the
system. This is often a facet of the programmer’s job.

● Programmer – naturally the most important person on the entire team!
● Project manager – takes overall responsibility for the project, making

crucial decisions. The manager balances contending project forces (e.g.
the budget, deadlines, requirements, feature set, and software quality).

● Project administrator – supporting the manager, deals with the day-to-
day running of the project team.

● Software quality assurance engineer – produces QA plans and ensures
the code produced is of an appropriate standard

● User educator – writes product manuals, ensures marketing is accurate,
draws up training schedules, etc.

● Product delivery specialist – or release engineer, plans how to package,
manufacture, distribute, and install the final product.

● Operations/support engineer – supports the product ‘in the field’, once
it’s in the hands of end users.

A successful project must make sure that all these activities are covered.
As the need for each role is felt, people must be brought in before the need
is acute. Appointing members needs management insight, both of a
candidate’s personality type, their technical skill, and the job requirements.
Now the team is established, new people must match the working practices
and compliment existing team members.

The difference in quality of developers has been shown to be very large,
so try to get good people and pay them accordingly.

Work
This is the point of performance, when the team is functioning fully with
everyone in place. The cogs turn and the software construction process
grinds relentlessly onwards.

The majority of a team’s life is spent in this phase, working out the
project’s objectives. To do this, the single large task is decomposed in to a
series of smaller tasks. Team members are assigned their own work
packages, and kept synchronised (perhaps by a project meeting, or by close
communication). Their work is integrated as it’s completed. Slowly the
software takes shape.

Although working to a predetermined development process, the team must
adapt to changes as they arise, handling unforeseen problems, changes in the
team, or the dreaded Shifting Requirements Syndrome. As work progresses
each member must identify and manage outstanding issues and risks.

The team must get into a development groove – finding the appropriate
pace of work, and meeting targets at each step of the way. However, you must
prevent the grove from turning into a rut. Don’t be frightened to shake up
working practices – if required – to ensure that the team doesn’t get complacent
or lazy, or to counter ineffective team members who might jeopardise progress.

Closure
Eventually, even the most delayed project will come to an end. That end
might be successful software that makes the customer happy; it might be
a doomed product and prematurely abandoned development. Either way,
the project concludes and the team is removed from it.

From the very beginning of development, a clear end point must be in
sight. No team can continue forever, or plan to work indefinitely. A
successful project expends huge amounts of energy; you can’t continue
like this, or it will lead to burnout or boredom. The lure of completion
actually motivates people, and many programmers won’t invest much effort
until confronted with a hard deadline.
For this reason every team must plan to disband, dissolve, or transition to
a different kind of team (perhaps a maintenance or support team) upon
project completion. This plan must cover both normal and abnormal
completion conditions.

Team disbanding doesn’t happen suddenly. Projects don’t halt without
warning; they slowly ramp down. Usually we transition people off a project
gradually as they become surplus to requirements. No team needs people
kicking around doing nothing, absorbing resources. As each person leaves the
team, ensure that all their important knowledge and work products are captured.
It’s easy for information to leak between the cracks of a splitting team.

What happens once a team gets to the end of a project? The next step
could be to:
● move the team into support mode, maintaining the product,

[concluded at foot of next page]

20 CVu/ACCU/Features

● start some new development work (perhaps a new version of the same
software),

● instigate a post mortem if the project was a failure, or
● split the team up to work on separate projects (or release them if their

contract expires).
Whether a team is recycled or disbanded is a difficult choice, and one that’s
often made badly:
● Just because a team was successful on one project doesn’t mean that

they will be on the next. A new project may require a different mix of
skills, or a different development approach.

● However, it’s wise to keep a good team together. Well integrated teams
with competent members and an effective work culture are rare. Don’t
throw them to the wind needlessly.

When there’s a choice, it should be made based on the characteristics of
the next project. Sometimes this choice is made for you, though: in small
development organisations the project team is the whole development team.
It’s simply not possible to mix and match programmers and you are forced
to use same people on the next project.

People Power!
Finally, here are a few simple guidelines for leading a team of software
developers. Without programmers you don’t get programs, so we need
techniques that release the potential in people and help them to work
together. Even if you’re not in a leadership position right now, you can use
these as a simple yardstick to judge how your team is run and how people
are treated. They distil a lot of the wisdom we’ve already seen into practical
bite-sized chunks.
● Use fewer, and better people. Larger teams require more

communication, and are harder to share vision with.
● Fit tasks to capability, and also to motivation. Avoid the Peter Principle:

excellent programmers get promoted to managerial positions to which
they are not suited, and not interested.

● Invest in people. You’ll get more out of them if you build something into
them. Technology moves fast; don’t leave their skills out of date. Otherwise
they’ll move somewhere where they will gain better experience.

● Don’t cultivate experts. It’s dangerous when one programmer becomes
the only expert in a certain area. They are a single point of failure. Some

people actively try to become a Programmer King, others are forced into
it, not being allowed to work on anything else. When your expert needs
a new challenge, he’ll leave. How will you maintain the software now?

● Select complementary people. The team can’t all be world-class experts.
They equally can’t all be inexperienced programmers. You need a
healthy skills mix. You also need a healthy interpersonal mix, with
personalities that gel and work together well.

● Remove failures. Someone who doesn’t fit should be removed. It’s not
easy to do, but a rotten part can quickly spoil the whole – the
consequences of procrastination can be dire. Don’t wait to see how
things will pan out, or just hope they’ll improve. Deal with the problem.

Conclusion
As programmers, we care about writing good code, so does all this matter?
Yes: the health and structure of our software teams has a direct affect on
the health and structure of our code. They are inextricably linked. Software
is written by humans. Just as the software components have to fit together,
communicate well, and form a cohesive structure, so must the programmers
building it.

Good teamwork comes from more than a well-defined process or a fixed
structure. Good teamwork stems from good individuals. “The whole is
greater than the sum of its parts”, or so the saying goes. This is, of course,
only true if the all parts are working well. If any single part is failing then
the whole will be compromised. Our individual attitudes affect the quality
of our teams, and therefore the code produced. We must address these
attitudes to create good code. Understanding your natural attitudes and
responses will help to improve your programming skills.

A ‘professional’programmer has to be able to work in a team. Alongside
technical skills, they must be able to create a piece that will fit into the
larger jigsaw. This means being able to communicate and work with others.
It means understanding your role, and carrying it out appropriately, working
to the best of your ability. It means cooperating with other team members;
being team-focused, not self-focused.

Pete Goodliffe

On Killer Apps
Ian Bruntlett <ianbruntlett@hotmail.com>

I have been thinking and reading avidly about three topics – thinking,
creativity and schizophrenia. All of a sudden they unified into a common
ground and I noticed that they explained the presence and absence of Killer
Apps (ground breaking IT systems that changed things forever) in I.T. projects.

Lateral Thinking, Creativity.
In the 80’s a friend of mine, observing me working noted that I was
employing “lateral thinking”. Later on, when I wasn’t so broke, I
discovered Edward de Bono’s books and that got me to think about thinking
which later on diversified into thinking about creativity. The magazine New
Scientist (NS) has run a number of special issues this year, digging deep
into how we think and how we create. A few things caught my eye. First
NS stated that the creative process applies as much to science as it does to
the arts. A bit obvious, maybe, but it caught my eye.

Schizophrenia
Secondly, NS noted that creativity is the flip side of the coin marked
schizophrenia. Since about 2003 I’ve been scouring the internet and libraries
for information about schizophrenia – what it is, why have I got it, how to
cope with it and how come evolution hasn’t driven it out of the gene pool?
Both in the hospital and in the literature, creativity has been linked with
psychiatric disorders. One of the killer problems with schizophrenia is that
sometimes when you think you are making sense, in fact your arguments come
across as rather confused. I wonder how this article rates for lucidity.

Creativity – Immersion, Obsession.
I’ve read and thought long and hard about this. If you want to be creative in
a field of endeavour, you need to build up a breadth of experience (immerse
yourself) and dig deep into the problem domain (obsession) – for every
success there can be 99 failures – but you don’t notice the failures, you just

keep on working. And you also need to take inspiration from a multitude of
sources, not just those that are similar to what you already know.

Programming and Killer Apps
I’ve worked on a couple of killer apps in the past. The fundamentals of
creativity (immersion, obsession), applied to programming, are needed to
get the project off the ground. However, the economic opportunity to employ
the creative programming skills is also needed. To summarise, you need:
1 A fertile technology base.
2. The economic opportunity to shine.

With a technology base and no economic opportunity you end up on a
plateau, peering over the edge, wondering what to do with all the
technologies and skills you have acquired – this isn’t so bad because you
can beaver away, waiting for the economics to fall into place.

With a poor technological base and good economic opportunities,
you’re in for an awful time and the sooner you can escape these
circumstances, the better. Looking back, when I’ve experienced that, I
should have briefed my manager about the technology gap and work with
them to close that gap. Sadly, I was too busy coding my way out of a
problem instead of thinking my way out.

With (1) and (2) in the bag, you have the opportunity / sweet-spot for a
killer app. You may be too busy to notice it, though.

At one point in my career, I would go for a drink with friends after
work, nestling a copy of Charles Petzold’s Programming Windows 95
under my arm and spend evenings working on infrastructure to port an
established product (public libraries search engine) to Win32 – if you’re
working that hard, you should also set aside time to take a break from
work.

If you are working on an established killer app, you need to take time
out to learn new technologies and to revitalise existing products and
develop new products. Good luck.

Ian Bruntlett

Look out for Pete's forthcoming book, released in 2006!
Watch this space for details.

[continued from previous page]

21CVu/ACCU/Features

Interview with Charles Moir,
Xara
Paul F. Johnson <cvu@accu.org>

Xara is a well known company in the field of vector graphics for its ground
breaking art package bearing the same name as the company. Its products
have been marketed around the world (for a while, by Corel) and are a
common feature on many desktops having captured the end user with
(relatively) inexpensive licences, fantastic backup and a background of
innovation and reliability.

Xara is not a new company; for many years it was known as Computer
Concepts where it made its fortune in the Acorn market, starting with the
BBC B and moving onto the RISC OS 32 bit platforms. It also managed
to stump Acorn itself by releasing its desktop publisher, Impression, at the
same time as Acorn.

Recently, Xara decided to release the source code for its Xara art
package into the public domain (under the GPL licence) to enable Linux
and Mac users to take advantage of this formerly Windows only
application.

In this interview with Charles (held over email), we discussed the
development of this and why this bold decision has been made.

About the Company
Xara originally started its life as Computer Concepts, a company writing

software for the Acorn market (back in the days of the BBC B, later
progressing to the 32 bit Acorn machines). How big a decision was it to
stop producing software for the RISC OS platform and move over to the
PC world and what were the key factors governing this decision?

We had a lot of flack from die-hard Acorn enthusiasts who saw us as selling
out, but it was plain obvious from a commercial point of view that Acorn
were not going to make it, so we had to move platform. Plus the fact that
the main reasons for us developing only on the Acorn platform in the first
place were being eroded quite rapidly (It was the first 32-bit RISC platform,
so from a programmers point of view it had a nice linear address space.) At
the same time the DOS / Windows / Intel and even the Mac world were
dealing with the horrors of segmented address space and 16-bit
architectures. Even the Mac that was using a nice processor (68000) was
hindered by a very primitive OS – you couldn’t, for example, allocate more
than 64K of memory. People forget just how nasty it all was back then. On
top of that the Acorn platform had the most advanced Windows GUI of the
time, and the best graphics, the best font system, I could go on. If I’d told
my guys that we’re stopping 32-bit programming and going to work on the
Intel processor, 16-bit segmented, DOS-based world, they probably would
have walked out. The fact was that we were (and have always been)
successful at doing what we find interesting, not what might generate the
most income. Had we been entirely commercially orientated we’d have been
working on IBM PC when it came out. But really, it was just so bad from just
about every technical point of view you could think of, that I had no interest
in it at all.
By 1990 it was pretty clear Acorn were going to lose it, and a few years later
it was inevitable, so we had to switch. At the same time Windows machines
were getting a lot better. Graphics capabilities were coming on leaps and
bounds. Windows NT was coming (at last a real operating system that has
protected memory processes, multi-threading, 32-bit linear address space.
No more segmented world.)
So it was a huge and complete change. One day were all programming on
Acorn RISC platform, and then almost overnight it was mass migrate to
Windows programming, albeit that we never had to mess with the
segmented DOS world.
Oh, I should just say that I’ve always been a fan of Apple. But in the early
nineties when we had to make the switch from Acorn, Apple looked as if
they’d lost the plot completely. Jobs was no longer there. Apple was
producing terrible beige boxes. They had no clear strategy. CEOs came and
went. Ask anyone at the time where Apple would be in five or ten years and
the universal answer was ‘dead’. So, much as we would have liked to switch
to Mac, it seemed as if that would be suicidal. Of course that was not
counting that Jobs would come back, and sort them out, as he has done.
So with hindsight we, I, made the wrong decision. We should have moved
to the Mac (Linux didn’t exist back then).

Did the move to the world of Windows change the mode of development
and the primary languages used?

Although many modern programmers can’t understand this, until the mid-
nineties all our programming was 100% assembly language. We created
very large, complex, mainstream applications such as desk-top-publishing
applications, graphics applications (Artworks the predecessor of the current
Xara Xtreme), programming languages, databases, utilities – just about every
type of software you can think of – all 100% assembly language.
Part of the reason we could do this, it has to be said, was that programming
in ARM assembly language was a lot, lot easier than in Intel assembly
language.And I should say that, even though it was all assembler that didn’t
stop us programming in an a modular, even object orientated fashion. The
core techniques of these approaches, such data hiding and encapsulation,
can all be applied just as well to assembly language as C++.
But we knew we had to move to a C or C++ based world. And it was a
complaint we had about the Acorn platform, that they couldn’t get their C
compiler act together – when they did, it was too late.
So we switched to C++. It gives enough low-level control for people who
come from an assembly background, but isn’t too high a level language (say
like Java or C#) that is so removed from the actual hardware and processor,
that you feel you have little control or knowledge about the machine code
being produced (not that it matters so much nowadays).

How did the change of operating systems affect the number of employees
of Xara and did it offer any great financial security than the RISC OS
platform?

Well we could all see Acorn were doomed, so we had to switch. So in that
sense it provided security. We decide to focus on just one application, that
was a re-write of Artworks, the graphics program, which was to become
Xara Studio. We put a huge amount of time and effort into this. I think we
spent two to two and half years, 20+ developers, so it was a huge project.

About the Software
CC was known for a number of products, most notably the Impression family

and Artworks. With the change from CC to Xara, Artworks was continued
and developed in the Xara art package. Xara and Corel linked up to
produce Corel Xara. How did this come about?

We targeted Corel. They were the dominant player in the graphics market
for Windows. Something like 90% market share. CorelDRAW was a good
product, great value for money, so they deserved to be where they were.
But we knew we could produce a better product (and had already done so
in Artworks on the Acorn platform). So Corel were the enemy that we had
to beat. We all had a simple goal – create a better product than CorelDRAW
(and Adobe Illustrator – which was very easy as Illustrator was very
backward indeed in those days.)
Xara has always tried to produced the best technical products. The highest
performance, the easiest to use – that’s why we were so successful in the
Acorn market and you can see this today in our products still. But we knew
even in 1995 that we were not the organisation to market the product – we
didn’t have the world-wide clout. So we imagined it was probable that we’d
sell it to Microsoft, or IBM or some other large world-wide distributor.
As we were getting near to completing Xara Studio we were getting previews
of the product in the press, and they were very complimentary and started
to say things like “at last here's a product that can topple Corel”. Well Corel
noticed. So they sent a bunch of execs on a plane and were told not to come
home until they had a deal with us.
So to cut a long story short – we sold to Corel, the company we’d just spent
a few years competing against. BUT we knew this was dangerous, so we
were careful in the contract and did not sell the technology. We came to a
pure marketing agreement whereby they’d sell the product under the Corel
brand, and pay us to continue to develop it. We did not give them access to
our source code. They wanted to buy the company – we didn’t want to sell.
We made sure it was financially a good deal that we couldn’t lose by, even
if Corel failed at marketing it as they said they would.
So for the next five years it was a Corel product.

How important was the link up with Corel and did it cause any problems
when the partnership was dissolved?

We had to find someone to sell the product around the world. We’d spent
nearly all our money developing the product and did not have the resources
to market it on the scale the product deserved. We were actually talking to
Microsoft and others, but Corel were the most aggressive and so did the
deal with us first.
By the end of the nineties Corel were going through some tough times, and
so the fact they were still paying us was hurting them. On top of that it was
obvious that in fact their strategy was to control a competitor and threat to

22 CVu/ACCU/Features

CorelDRAW and so were not marketing our product as they should have
been (our deal anticipated this possibility), and that was very frustrating of
course. We both wanted out of the deal, so it was pretty easy really. We’d
get all the marketing rights of the product back, and they’d stop paying us.

Was there any plans to continue Impression for the PC market?
Ha, yes. Impression was our very popular DTP product for the Acorn platform.
It was very Quark-like in many ways (better in quite a few). In fact Xara
Studio (known as Camelot internally) was designed to be an Impression and
Artworks combined , a DTP and drawing program in one. Even today I see
no reason why you should have to use a separate DTP program from your
graphics program. And if you look at modern graphics products such as
Corel, Freehand and others, they have a lot of DTP-like capabilities. And
high-end DTP products have a load of graphics capabilities, even being able
to create lines, fills, basic drawing and gradient fills, and of course provide
a load of photo handling capabilities.
DTP and illustration packages share a lot in common – they are both really
publishing tools. If you look at the page describing the basic architecture of
Camelot here http://www.xaraxtreme.org/developers/
basics.html you’ll see lots of DTP-esque features and terminology,
such as spreads, chapters and more. The problem is that we’ve never
actually managed to get around to implement most of these features, so
right now it’s more a pure vector illustration tool, and rather less a DTP
product. In fact the text handling capabilities of Camelot are rather poor,
which is sort of ironic given the very powerful text handling features of
Impression. In my very early days I developed (I think it might have been the
very first) check-as-you-type spell checker for Wordwise, a word processor
I wrote (this would have been 1985 type of timescale), and yet here we are
20 years later and we still don’t have that feature in Xara Xtreme – and I
really need it.

Xara Xtreme is the new product. Tell us what sets it aside from other vector
graphics applications.

The key characteristics that have defined Xara software from the beginning.
Performance, simplicity, ease of use. We have the fastest, most powerful
vector graphics rendering engine in the world today. It offers a very wide
range of graphic capabilities, and yet looks a very simple product – relatively
few dialogs, menus etc. It has a clean, orthogonal feature set and
architecture. So, for example, all objects on the page are treated the same.
So you can, say, colour a photo the same way you colour any object. You can
feather the edge (give a soft blended edge) to some text, a photo or any
vector graphic, using the same tool.
We’ve also pioneered some user-interface concepts that you’ll be seeing a
lot more of, not just from us. So we’ve always tried to go for live preview.
That is where things happen in real-time as you drag or select things, and
usually ‘on-canvas’, in the main document, and not in separate dialogs. So
for example if you adjust the transparency, colour or feathering of objects
on the page – these change on the page as you adjust the values. Live
interactive preview.
We were doing this 10 years ago – check out the new Office 12 from
Microsoft. They have finally woken up to the concept, and use it to huge
effect in Office 12, and it’s great. We should, and will, be doing more of this.
Once you’ve used live-preview tools, you’ll never go back, and everything
else seems positively crude and clunky.

Moving to Open Source
Xara Xtreme is being dual licenced; one chargeable (Windows) and a GPL

version for Linux and MacOS. What has brought this change about?
Two parts to this; Why the change to open-source?
The answer to that is because we face greater competitive threats now than
at any time in our history. There is a consolidation amongst the big players
(Adobe, the current number one player has acquired the number 2 player
Macromedia), and a battle is looming between Adobe and Microsoft who
have decided, for the first time in 25 years, to get into this space (vector /
photo graphics software).
We do not want to get squashed or side-lined out of existence by the giants.
And for those companies it’s not about the technical merits of a product, but
more about marketing clout. They both throw millions, tens, hundreds of
millions of dollars promoting their products. We can’t compete against that
sort of money. We can more than compete on a technical front.
At the same time there is a very large gap in the Linux and open-source
world for good graphics applications. In fact there is less choice and
competition in the graphics market for Linux now than there was 15 years
ago in the Acorn market (which was a fraction of the size). That’s weird, and

an opportunity. Add to the fact that within the last year or two the Linux
desktop has evolved enormously, so that now it’s a very good, high quality,
effective desktop platform.
So why not just port the product, as a commercial product, to Linux?
People have tried and failed. If you want true mass-market adoption in the
Linux market, it’s simple, it has to be open-source and preferably using the
GPL license.So that got us thinking about whether we could somehow do
this and still have a business.
At the same time being open-source does have quite a few possible
advantages. One, for the customers and users, it means the product can
never be eliminated (as is happening to Macromedia Freehand – a fine
product with thousands of users who are just about to lose their tool).
Secondly it might give us larger technical resource to better compete against
the giants, Microsoft and Adobe. It hopefully is a way in which we can create
a good Linux and Mac versions, which otherwise we’d not be able to afford
or justify ourselves. So the ideal scenario is a win-win for everyone. The
Linux and open-source community get a great, very slick, stable,
commercial-quality graphics product, that’s GPL, so they can do what they
like with it. We get a Linux and Mac port of the product. We hope that the
combined resources of Xara and open-source developers will progress the
product to create a really competitive alternative to Microsoft’s new graphics
products and Adobe’s. We hope that we can continue to sell commercial
version into the Windows market (and perhaps, if there’s enough demand,
into the Linux and Mac market as well).
Anyway we came to a decision that the potential upside was worth the risk.
The risk is that we lose control of the product and we lose revenue by ‘giving
the product away’ as it were. These are very real and substantial risks.
So, we hope to survive as a business, by going for a dual license, so we can
continue to sell commercial versions, probably mostly into the existing
Windows market as we have, and a GPL version for Linux and open-source
platforms.

How do you intend to protect the value of the Xara Xtreme software (for
example, as the source is GPL and based on wxWidgets, there would be
nothing to stop someone recompiling for Windows)?

That is the key risk. There’s nothing to stop anyone using the GPL code we
release, and creating a Windows version and competing against us. And if,
as a result, our Windows income decreases, and we can’t make it up any
other way, then we’ve got a problem.The whole experiment and the gamble
could well be a failure. So although we can’t stop it, we hope that most
developers will be more interested in creating Linux, BSD, Mac, Solaris, or
RISC OS even, ports, than they would creating a Windows version. We
already have a Windows version and it costs only $79 (less than £50) and
so it’s, frankly, just a waste of effort creating a Windows port when that same
developer effort could go into adding a new feature that benefits everyone
– and makes it more competitive against the Microsoft equivalent.
Our commercial version does have benefits. The money gets you things like
a CD, manual, and a bunch of licensed third party plug-ins and closed-source
features (that we can’t open source anyway), and customer support and
other things.

As with the likes of the Fedora Core / Red Hat Enterprise Linux relationships,
will developments from the Open Source version be ploughed back into
commercial version (and where possible, vice versa) and if that is
happening, what protection is there on both sides against patent and
copyright problems?

That’s the plan. Right now we’ve got full-time programmers working on
porting this product to try and make it cross-platform and open-source. If,
as a business, we continue, perhaps even thrive, we’ll continue to invest
more into the development of the product. Right now all bug fixes and
features added to the Windows build are immediately reflected in the open-
source code base. The plan, and it’s probably the only practical goal in the
end, that we have one code-base that covers all platforms, so that when
anyone adds a feature it appears, with as little effort as possible, on all
platforms.
As to the patent issue, this is a bugbear of mine. We’ve innovated for 25
years or more, with dozens, probably hundreds, of ideas, techniques that
we pioneered or invented. Imagine if I’d patented spell-check-as-you-type,
– well it’s a ridiculous idea (was at the time, nowadays people seem to think
they should have a monopoly on ideas, almost all of them incredibly obvious
ideas to experienced software developers – hasn’t stopped them being
patented, at least in the US). We are gracious enough to understand that
everything we do – indeed ALL software is built on what went before. All
software is an evolution – taking the existing ideas and improving on them,

23CVu/ACCU/Features

by inventing new ways to do things to improve on existing techniques. I
believe it's the principle job of software engineers to solve problems, by
inventing solutions, and the concept that they should keep those ideas to
themselves is absurd and, well, offensive.
Software patents are a government granted monopoly. Monopolies are bad
– it’s that simple. They are bad for users and customers, bad for innovation,
bad for competition. Patents stifle competition – and competition is what’s
driven the huge growth and success of the entire IT industry for the last 25
years. Some people (mostly lawyers with vested interests) want to stop this.
For almost the entire history, a period of explosive growth, of the software
industry, everyone shared their ideas. There were no software patents and,
as a result, we got the IT revolution. Now people are trying to stop this with
software Patents.
(That is not the same as copyright – copyright is very different. Everyone
should have the right to keep their actual writing or expression of their ideas
to themselves. That’s what the copyright law gives everyone. That’s
completely different to the patents, which try to monopolise the ideas itself).
So of course we fully respect, and our entire business is build around, the
copyright law.)

Why are you using the GPL and not one of the other Open Source licences?
Two main reasons. It’s the most accepted open-source license, and secondly
what’s sometimes referred to as the copyleft aspect of this license.The GPL
licence prevents our commercial competitors using our source code against
us. They can’t use any of our code in their products, without making all their
source code of this product open and public as well. That’s not going to
happen at Adobe or Microsoft. They are public companies with shareholders
and simply could not afford to do this. So this stops commercial companies
using our code and technology to compete against us.

Programming
What form of version control software do you use and why?
Subversion.We looked around and the general consensus was that this was
better than say CVS.

Which language is Xara Xtreme programmed in and what was the main
driver behind using wxWidgets instead of (say) Qt?

We needed a cross-platform UI framework that was as native as we could
get on each platform, that was open source, that has as few commercial
restrictions as possible (bearing in mind that we’re creating commercial
versions of Xara Xtreme). That pretty much narrows it down to wxWidgets.
GTK is certainly not there yet. Qt is a serious alternative, but sort of emulates
the native look on some platforms, which we’re not so keen on, and it also
has commercial developer costs that simply do not exist for wxWidgets. Now
wx is not perfect by any means – it has more than a few rough edges and
it looks as if we’re going to have to be doing quite a lot of custom widget
work, which we’ll put back into wxWidgets if it’s any use to others, in order
to get the really slick, best possible native look and feel that we need.
It’s almost all C++ and we’re trying to make it as compiler portable C++.
There were / are some assembler chunks of code in the Windows version.
Obviously this is not portable and not going to help our plans to make this
cross-platform, and so we’ve put a lot of effort into creating C versions of
this code, and this is what’s being made open-source. There is some
performance hit, about 20% in some cases, but it shows modern compilers
are very good. In fact for some specific cases on the Centrino chip we’ve
found the compiled C code runs faster than our hand-tuned assembler code.
That was a surprise.

Do you use any form of agile techniques in your company?
Not really. I’m hoping that some of this will come as a natural consequence
of going open-source. Having said that, we have always worked in a iterative
manner. We learned a long time ago that you can never specify everything
up-front, especially when it comes to user interface matters. Often it’s only
when you’ve got a feature working or half working that you realise better
ways of doing it, so you go around the loop again.
Oh and we’ve always followed some agile-like ideas. We don’t have large
separate testing teams or departments. We test as we go, ‘we eat our own
dog food’ as the saying goes and use the current build to do real work.
Developers are primarily responsible for their own testing.We fix bugs before
we move on to new features, that type of thing. We implement features
largely because we’d like to see them, because we want to use them, rather
than being driven totally by customer demand. Oh and I’m a great believer
in the KISS principle, for just about everything from coding to design to user-
interface work. Developers often over-engineer solutions, when there are

nearly always simpler ways of doing things when you think about it. Simple
is always better.

What does Xara look for in a potential employee? Does “worldly experience”
count over academic qualifications?

Worldly experience any day. Over the 20 years we’ve employed hundreds
of developers and there is often little resemblance between qualifications
and skill. We’ve had the most qualified PhDs, with fantastic theoretical
knowledge, but who when it came down to the practicalities of getting things
done barely know how to work a computer, and completely lacked common
sense to solve the most mundane day-to-day programming problems. You
know you get some academics, in all disciplines, who get engrossed in the
pure academic side of things and start to leave the real-world behind
because they have so little real-world experience.
On the other hand I know some very, very talented developers who hardly
have any qualifications. Some people just have a natural talent.Having said
that, the situation has changed over the years. 20 years ago it was a lot
more common not to have university education. So nowadays we do look
for university graduates, and preferably from a good university. But if anyone
has a track record and can demonstrate the talent, then lack of qualifications
does not stand in the way at all.

To you, which is more important – clarity of code or clarity of thought?
They go together do not they not?
I certainly prefer simple, more verbose code than ‘clever’ code that might
be more compact code, but less immediately understandable. The ability to
stand-back and take in the whole picture and the overall goals is a rather
rare talent. I find most developers (probably true ofmost engineering) over-
engineer solutions, when there is nearly always a simpler and thus better
approach to be taken.

How does XaraXtreme fit in within the open source market? There are other
vector graphics packages (such as Inkscape and Sodopi) with a large
following already.

Well it’s not yet in the open-source market because it’s not yet at state that
it’s useful even. But we’ll see when we’ve got a finished product (by which
I mean the same standard as the commercial Windows version). But that is
one difference we expect to see; products such as Inkscape and many open
sourced product are in such a continual state of development that they are
not always the most stable and just never get to the same stable ‘finished’
state that commercial products do. The urge of the developers is always to
move on to the next most interesting thing, which is fair enough, but that
discipline is different to releasing very, very stable commercial products.
We hope that by combining the Xara commercial release approach and our
standards we can get the best of both worlds. Our developers, because they
are paid, work on what we believe is the most important for a stable
commercial release, and that is often far from interesting work. Chasing
bugs down that to most people are not that important – are that important
to us.Whereas most developers usually get something to the point that they
think ‘that’s good enough’ we almost always do not think is good enough
and, at least for our paid developers, ask them to go back and continue
working on it in order to get it to a higher better standard than ‘just good
enough’.
Secondly we can plan and implement major architectural changes to the
product that is sometimes difficult to get done in the open source world.
Jobs that do not provide instant, or even near term gratification that most
open source developers like to work on.
Thirdly Inkscape, for example, is dramatically better on Linux than it is on
Windows. This is not surprising because almost all the developers are Linux
users. They’ve had serious bugs on Windows platform that have been there
for months, that no one has the incentive to fix. Users can work around it
with difficulty, so it just doesn’t get fixed. That standard of work would be
unacceptable and untenable for any professional quality commercial product
(users would be asking for their money back – they don’t of course because
it’s free, but I believe most users therefore reduce their quality expectations
because of this.) We hope and would like to aim that not just the Window
version (that’s where all our paying customers are), but also the Mac version
are as slick, as tested as ‘finished’ as we can make it. Of course saying that
is one thing, we’ll have to see how we get on to see if it turns out that way.
One things that I find rather surprising, is that comparing the market with
the early days of the Acorn Archimedes, there is less choice of graphics
software on Linux than there was for the Acorn machine 15 years ago, and
when there was perhaps only a hundred thousand users on the platform.
Why is it that Linux has so little choice? But the fact that there might be two

[concluded at foot of next page]

Idiomatic Expressions in C
By Adam Petersen <adampetersen75@yahoo.se>

Patterns exist at all levels of scale. At their lowest level they are referred
to as idioms, as they depend upon the implementation technology. This
article will present a collection of such idioms for the C language.

The Evolution of Idioms
As a language evolves, certain efficient patterns arise. These patterns get
used with such a high frequency and naturalness that they almost grow
together with the language and generate an idiomatic usage for the
practitioner of the language. The resulting idiomatic expressions often
seem peculiar to a newcomer of the language. This holds equally true for
both natural and computer languages; even a programmer not using the
idioms has to know them in order to be efficient at reading other peoples’
code.

The idioms at the lowest levels are useful in virtually every non-
trivial C program. Unfortunately idioms at this level are seldom
described in introductory programming books and more advanced
literature already expects the reader to be familiar with the idioms. The
intention of this article is to capture some of these common idiomatic
expressions.

Idiom Description Form
Because of their relative simplicity, devoting an article using a full-blown
pattern form to a single one of these idioms would be to complicate it. On
the other hand, simply listing the idioms would overemphasize the solution
aspect. Therefore, each idiom will be introduced with a code sketch that
illustrates a certain problem context, where after the idiom is applied to the
code in order to solve the problem. This before-after approach also
identifies certain code constructs as candidates for refactoring towards the
idiomatic construct.

The idioms presented here are of two, overlapping categories:
● Idioms for robustness: The idioms in this category arose to avoid

common pitfalls in the C language. For example, the idiom
INITIALIZE COMPOUND TYPES WITH {0} provides a tight and
portable way to initialize structs and arrays.

● Idioms for expressiveness: Writing code that communicates its intent
well goes hand in hand with robustness; making the code easier to
understand simplifies maintenance and thereby contributes to the long-
term robustness of the program. For example, the idiom ASSERTION
CONTEXT makes assertions self descriptive.

SIZEOF TO VARIABLES
Problem Context

In the C language, generality is usually spelled void*. This is reflected
in the standard library. For example, the functions for dynamic memory
allocation (malloc, calloc, and realloc) return pointers to allocated
storage as void* and do not know anything about the types we are
allocating storage for. The client has to provide the required size
information to the allocation functions. Here’s an example with
malloc:

HelloTelegram* telegram =
malloc(sizeof(HelloTelegram));

Code like this is sneaky to maintain. As long as the telegram really stays
as a HelloTelegram everything is fine. The sneakiness lies in the fact that
the malloc usage above contains a subtle form of dependency; the size
given must match the size of the type on the left side of the assignment.
Consider a change in telegram type to a GoodByeTelegram. With the code
above this means a change in two places, which is at least one change too
much:

/* We must change the type on both sides of
the assignment! */
GoodByeTelegram* telegram =
malloc(sizeof(GoodByeTelegram));

24 CVu/ACCU/Features

good drawing programs on Linux is not a problem for us or anyone.
Other difference are that Inkscape is fundamentally tied to the SVG file
format and its features are dictated by that file spec.Well SVG is not popular
on other platforms and probably never will be (in my opinion). So our
ambitions are far greater, both in terms of feature set and in terms of
universal cross-platform support PDF is native vector formaton Mac and
Adobe Illustrator is the industry standard vector format. So we have to
support those as well as we possibly can. Again Linux users care a lot less
about these types of things.
We are not bound or restricted to any file format and will add and extend
the capabilities of our program as we see fit. We always have and have a
history of leading the industry standards. We introduced such things as
vector anti-aliasing, vector transparency and a load more years before others
took it up – even though they are now industry standards. The same will be
true for things like vector soft shadow and feathering, embedded JPEGs,
on-the-fly (zero memory) image processing, graduated transparency. We’re
shipping features like this today that are simply beyond the state of the
industry standard and any industry standard file specification.

Given that the commercial version has aspects which are not releasable
(such as Pantone support), how much of XaraXtreme will be available as
a whole to the Open Source arena?

Well I think I’m right in saying the only third party licensed code that we
can’t open source are a bitmap conversion library we use (easily replaceable
with rather better open source ones), our PDF import / export filters, Pantone,
and a range of example Live Effects Photoshop plug-ins that we license from
various developers. Other than our current intention is to release all of Xara
Xtreme source code. But that process will be a staged process.

You’ve now tasted Mac and Linux development and development
techniques. How does this compare with how you have seen Windows
software development take place?

Well it has to be said our Windows developers feel that MSVC is a better
more productive development environment than they’ve found on Linux or

the Mac for that matter. But perhaps part of that is simply what they are
used to. Right now it also looks, I’m afraid to say, that the GCC compiler is
not a match for the Visual C++ Microsoft compiler in terms of the
performance of the resulting code. It’s early days, but there are signs that
for some areas MSVC produces a lot faster code.

Have you given any thought to using C# as a full cross platform alternative
(compile once, run on all scenario)?

Yes, and personally I really like the looks of the C# language. At the same
time be rather wary of any interpreted byte-code based language. No matter
how good your JIT compiler is, it ain’t the same as C or C++. Remember
we have a background in assembler programming and the further removed
you are from the hardware the more dangerous in many ways. I’m already
very aware that ‘modern’ programmers who only learn high level languages
really have no concept of what’s going on ‘under the hood’. And I certainly
find that very few developers nowadays have any concept of just how fast
their processors really are or what should be possible. Our DTP product on
the ARM was as fast on a 10Mhz ARM as many modern equivalents are on
1000Mhz processors, and that’s including a full GUI desktop and outline
fonts and the lot.
Only by being an assembler programmer with an inherent understanding of
memory bandwidth, cache, instruction sets etc. do you really appreciate
what is possible (and also explains why what most programmers regards
as ‘very fast’ I usually regard as very slow.) There should be a law, there
probably is, that says “developers always use all the space (RAM) and speed
(MHz) you’re given, and then just a bit more, to do the same job”.
Having said that, if I was starting a new project now (Xara Xtreme is not new
so it’s not an option), I’d almost certainly do it using C#. Mono is a great
project and deserves complete support in the Linux community. If only a
good Mac C# (and associated libraries) existed then I think this would be
the best high-level, most productive language around.

Charles, thanks for your time in doing this interview.
Paul Johnson

[continued from previous page]

25CVu/ACCU/Features

A failure to update both places may have fatal consequences, potentially
leaving the code with undefined behaviour.

Applying the Idiom
By following the idiom of SIZEOF TO VARIABLES the dependency is
removed. The size follows the pointer type being assigned to and the
change is limited to one place. The original example now reads:

HelloTelegram* telegram = malloc(sizeof
*telegram);

But wait! Isn’t the code above dereferencing an invalid pointer? No,
and the reason that it works is that sizeof is an operator and not a
function; sizeof doesn’t evaluate its argument and the statement
sizeof *telegram is computed at compile time. Better yet, if the
type of telegram is changed, say to a GoodByeTelegram, the
compiler automatically calculates the correct size to allocate for this
new type.

As telegram is of pointer type, the unary operator * is applied to it.
The idiom itself is of course not limited to pointers. To illustrate this,
consider functions such as memset and memcpy. These functions achieve
their genericity by using void* for the pointer arguments. Given only the
void* pointer, there is of course no way for the functions to know the size
of the storage to operate on. Exactly as with malloc, it is left to the client
to provide the correct size.

uint32_t telegramSize = 0;
memcpy(&telegramSize, binaryDatastream,
sizeof telegramSize);

With SIZEOF TO VARIABLES applied as above, the size information
automatically matches the type given as first argument. For example,
consider a change in representation of the telegram size from 32-bits to
16-bits; the memcpy will still be correct.

INITIALIZE COMPOUND TYPES WITH {0}
Problem Context

Virtually every coding standard bans uninitialized variables and that with
very good reasons. Initializing a basic type such as int or char is
straightforward, but what is the correct way of initializing a compound type
like an array or struct? A dangerous but unfortunately common practice
is shown below:

struct TemperatureNode {
double todaysAverage;
struct TemperatureNode* nextTemperature;

};

struct TemperatureNode node;

memset(&node, 0, sizeof node);

The problem is that memset, as its name indicates, sets the bits to the given
value and it does so without any knowledge of the underlying type. In C,
all bits zero do not necessarily represent floating-point zero or a NULL
pointer constant. Initializations using memset as above result in undefined
behaviour for such types.

The alternative of initializing the members of the struct one by one is
both cumbersome and risky. Due to its subtle duplication with the
declaration of the struct, this approach introduces a maintenance challenge
as the initialization code has to be updated every time a member is added
or removed.

Applying the Idiom
Luckily, the portable solution provided by the INITIALIZE COMPOUND
TYPES WITH {0} does not only ensure correctness; it also requires less
typing. The code below guarantees to initialize all members (including
floating-points and pointers) of the structure to zero. The compiler
guarantees to do so in a portable way by automatically initializing to the
correct representation for the platform.

struct TemperatureNode node = {0};

At the expense of creating a zero-initialized structure, memcpymay be used
to reset an array or members of a structure later. Because it works by
copying whole bytes, possible padding included, memcpy does not suffer
from the same problem as memset and may safely operate on the structure
in our example.

const struct TemperatureNode zeroNode = {0};
struct TemperatureNode node = {0};

/* Perform some operations on the node. */
...

/*Reset the node (equal to node = zeroNode;)*/
memcpy(&node, &zeroNode, sizeof node);

Using memcpy for zeroing out a struct sure isn’t the simplest possible way.
After all the last line above could be rewritten as node = zeroNode while
still preserving the same behaviour. Instead the strength of this idiom is
brought out when applied to an array. It helps us avoid an explicit loop over
all elements in the array as memcpy now does the hard and admittedly
boring task of resetting the array.

const double zeroArray[NO_OF_TEMPERATURES]
= {0};
double temperatures[NO_OF_TEMPERATURES] = {0};

/* Store some values in the temperatures
array. */
...
/* Reset the array. */

memcpy(temperatures, zeroArray,
sizeof temperatures);

ARRAY SIZE BY DIVISION
Problem Context

The C language itself does not provide much support for handling its built-
in arrays. For example, when passing a certain array to a function, the array
decays into a pointer to its first element. Without any specific convention
and given only the pointer, it simply isn’t possible to tell the size of the
array.

Most APIs leave this book-keeping task to the programmer. One
example is the poll() function in the POSIX API. poll() is used as an
event demultiplexer scanning handles for events. These handles, which
refer to platform specific resources like sockets, are stored in an array and
passed to poll(). The array is followed by an argument specifying the
number of elements.

struct pollfd handles[NO_OF_HANDLES] = {0};

/* Fill the array with handles to poll, code
omitted... */

result = poll(handles, NO_OF_HANDLES, INFTIM);

The problem with this approach is that there is nothing tying the constant
NO_OF_HANDLES to the possible number of elements except the name.
Good naming does matter, but it only matters to human readers of the code;
the compiler couldn’t care less.

Applying the Idiom
By calculating ARRAY SIZE BY DIVISION, we are guaranteed that the
calculated size always matches the actual number of elements. The
calculation below is done at compile time by the compiler itself.

struct pollfd handles[NO_OF_HANDLES] = {0};
const size_t noOfHandles
= sizeof handles / sizeof handles[0];

This idiom builds upon taking the size of the complete array and dividing
it with the size of one of its elements (sizeof handles[0]).

26 CVu/ACCU/Features

MAGIC NUMBERS AS VARIABLES
Problem Context
Experienced programmers avoid magic numbers. Magic numbers do not
communicate the intent of the code very well and may confuse anyone
trying to read or modify it. Traditionally, some numbers like 0, 1, 3.14 and
42 are considered less magic than others. Consider a variable that is
initialized to 0. A reader immediately expects this to be a default
initialization and the variable will probably be assigned another value later.
Similarly, culturally acquainted people know that 42 is the answer to the
ultimate question of life, universe, and indeed everything.

The problem with all these not-so-magic numbers is that they build
upon assumptions and expectations. These may be broken. One
example is struct tm, which is used to represent the components of
a calendar time in standard C. For historical reasons and in grand
violation of the principle of least astonishment, assigning 0 to its
tm_year member does not represent year 0; tm_year holds the years
since 1900. Sigh.

Pure magic numbers are of course even worse. Consider the code
fragment below:

startTimer(10, 0);

Despite a good function name, it is far from clear what’s going on. What’s
the resolution – is 10 a value in seconds or milliseconds? Is it a value at all
or does it refer to some kind of id? And what about this zero as second
parameter?

Applying the Idiom
A step towards self documenting code is to express MAGIC NUMBERS AS
VARIABLES. By applying this idiom to the code construct above the
questions asked do not even arise; the code is now perfectly clear about its
intent.

const size_t timeoutInSeconds = 10;
const size_t doNotRescheduleTimer = 0;

startTimer(timeoutInSeconds,
doNotRescheduleTimer);

Of course the whole approach may be taken even further. By writing

startTimer(tenSecondsTimeout,
doNotRescheduleTimer);

the code gets even more clear. Or does it really? The problem is that to the
compiler the variable tenSecondsTimeout is really just a name. There
is no guarantee that it really holds the value 10 as an evil maintenance
programmer my have changed the declaration to:

const size_t tenSecondsTimeout = 42;
/* Original value was 10 */

Such things happen and now anyone debugging the program will be
unpleasantly surprised about how long ten seconds really are. They may
feel like, hmm, well, 42 actually.

An idiom cannot be blindly applied and MAGIC NUMBERS AS
VARIABLES is no exception. My recommendation is to use it extensively
but avoid coding any values or data types into the names of the variables.
Values and types are just too likely to change over time and such code gets
unnecessarily hard to maintain.

NAMED PARAMETERS
Problem Context

As we expressed MAGIC NUMBERS AS VARIABLES the code got easier
to read. That is, as long as the names of the variables convey meaning
and finding good names is hard. To illustrate this, let us return to the
previous example where a timer was started and extend it to include the
start of two timers. I am rather happy with the name timeoutInSeconds
and would have a hard time finding a second name that helps me
remember the purpose of the variable equally well. Instead of going
down the dark path of naming by introducing communicative obstacles
such as timeout1 and timeout2, I try to reuse the existing variable

by removing its const qualification and re-assign it for the second
timer.

size_t timeoutInSeconds = 10;
const size_t doNotRescheduleTimer = 0;

notifyClosingDoor =
startTimer(timeoutInSeconds,
doNotRescheduleTimer);

timeoutInSeconds = 12;
closeDoor = startTimer(timeoutInSeconds,
doNotRescheduleTimer);

This is a tiny example, yet it’s obvious that the code doesn’t read as well
as before. The extra timer is part of the story, but there’s more to it. By re-
using the timeoutInSeconds variable, a reader of the code has to follow
the switch of value. As the right-hand sides of the expressions starting the
timers look identical, the reader has to span multiple lines in order to get
the whole picture.

Applying the Idiom
By naming parameters, it is possible to bind a certain value to a name at
the immediate call site. C doesn’t have language support for this construct,
but it is possible to partly emulate NAMED PARAMETERS.

size_t timeoutInSeconds = 0;
const size_t doNotRescheduleTimer = 0;

notifyClosingDoor =
startTimer(timeoutInSeconds = 10,
doNotRescheduleTimer);

closeDoor = startTimer(timeoutInSeconds = 12,
doNotRescheduleTimer);

The timeoutInSeconds variable is still re-used to start the timers, but
this time directly in the function call. A reader of the code is freed from
having to remember which value the variable currently has, because the
expression now reads perfectly from left to right.

As neat as this idiom may seem, I hesitated to include NAMED
PARAMETERS in this article. The first time I saw the idiom was in a Java
program. It felt rather exciting as I realized it would be possible in C as
well. Not only would it make my programs self-documenting; it would
also bring me friends, money, and fame. All at once. After the initial
excitement had decreased, I looked for examples and possible uses of
the idiom. I soon realised that the thing is, it looks like a good solution.
However, most often it’s just deodorant covering a code smell. Most of
the examples of its applicability that I could come up with would be
better solved by redesigning the code (surprisingly often by making a
function more cohesive or simply renaming it). All this suggests that
NAMED PARAMETERS are more of a cool trick than a true idiomatic
expression.

That said, I still believe NAMED PARAMETERS have a use. There are cases
where a redesign isn’t possible (third-party code, published APIs, etc.). As
I believe these cases are rare, my recommendation is to rethink the code
first and use NAMED PARAMETERS as a last resort. Of course, comments
could be used to try to achieve the same.

closeDoor = startTimer(/* Timeout in seconds */
12, /* Do not reschedule */ 0);

Because I believe that such a style breaks the flow of the code by
obstructing its structure, I would recommend against it.

ASSERTION CONTEXT
Problem Context

Assertions are a powerful programming tool that must not be confused with
error handling. Instead they should primarily be used to state something
that due to a surrounding context is known to be true. I use assert this
way to protect the code I write from its worst enemy, the maintenance
programmer, which very often turns out to be, well, exactly: myself.

27CVu/ACCU/Features

Validating function arguments is simply good programming practice and
so is high cohesion. To simplify functions and increase their cohesion I
often have them delegate to small, internal functions. When passing around
pointers, I validate them once, pass them on and state the fact that I know
they are valid with an assertion (please note that compilers prior to C99
take the macro argument to assert as an integral constant, which requires
programmers to write assert(NULL != myPointer); for well-defined
behaviour).

void sayHelloTo(const Address* aGoodFriend)
{
if(aGoodFriend) {
Telegram friendlyGreetings = {0};

/* Add some kind words to the telegram,
omitted here... */

sendTelegram(&friendlyGreetings,
aGoodFriend);

}
else {
error("Empty address not allowed");

}
}

static void sendTelegram
(const Telegram* telegram,
const Address* receiver)
{
/* At this point we know that telegram
points to a valid telegram... */
assert(telegram);

/* ...and the receiver points to a valid
address. */
assert(receiver);

/* Code to process the telegram omitted...*/
}

In the example above assert is used as a protective mechanism decorated
with comments describing the rationale for the assertions. As always with
comments, the best ones are the ones you don’t have to write because the
code is already crystal clear. Specifying the intent of the code is a step
towards such clearness and assert itself proves to be an excellent
construct for that.

Applying the Idiom
The idiom ASSERTION CONTEXT increases the expressiveness of the code
by merging the comment, describing the assertion context, with the
assertion it refers to. This context is added as a string, which always
evaluates to true in the assertion expression. The single-line assertion is
now self describing in that it communicates its own context:

assert(receiver && "Is validated by the
caller");

Besides its primary purpose, communicating to a human reader of this code
that the receiver is valid, ASSERTION CONTEXT also simplifies debugging.
As an assertion fires, it writes information about the particular call to the
standard error file. The exact format of this information is implementation-
defined, but it will include the text of the argument. With carefully-chosen
descriptive strings in the assertions it becomes possible, at least for the
author of the code, to make a qualified guess about the failure without even
look at the source. As it provides rapid feedback, I found this feature
particularly useful during short, incremental development cycles driven by
unit-tests.

A drawback of ASSERTION CONTEXT is the memory used for the
strings. In small embedded applications it may have a noticeable impact
on the size of the executable. However, it is important to notice that assert
is pure debug functionality and do not affect a release build; compiling
with NDEBUG defined will remove all assertions together with the context
strings.

CONSTANTS TO THE LEFT
Problem Context
The C language has a rich flora of operators. The language is also very
liberal about their usage. How liberating the slogan “Trust the programmer”
may feel, it also means less protection against errors and some errors are
more frequent than others. It wouldn’t be too wild a guess that virtually
every C programmer in a moment of serious, head aching caffeine
abstinence has erroneously written an assignment instead of a comparison.

int x = 0;

if(x = 0) {
/* This will never be true! */

}

So, why not simply ban assignments in comparisons? Well, even if I
personally avoid it, assignments in comparisons may sometimes actually
make some sense.

Friend* aGoodFriend = NULL;
...

if(aGoodFriend = findFriendLivingAt(address))
{

sayHelloTo(aGoodFriend);
}
else {

printf("I am not your friend");
}

How is the compiler supposed to differentiate between the first, erroneous
case and the second, correct case?

Applying the Idiom
By keeping CONSTANTS TO THE LEFT in comparisons the compiler will
catch an erroneous assignment. A statement such as:

if(0 = x) {
}

is simply not valid C and the compiler is forced to issue a diagnostic. After
correcting the if-statement, the code using this idiom looks like:

if(0 == x) {
/* We’ll get here if x is zero – correct! */

}

The idiom works equally well in assertions involving pointers.

assert(NULL == myNullPointer);

Despite its obvious advantage, the CONSTANTS TO THE LEFT idiom is
not completely agreed upon. Many experienced programmers argue that it
makes the code harder to read and that the compiler will warn for
potentially erroneous assignments anyway. There is certainly some truth
to this. I would just like to add that it is important to notice that a compiler
is not required to warn for such usage. And as far as readability concerns,
this idiom has been used for years and a C programmer has to know it
anyway in order to understand code written by others.

Summary
The collection of idiomatic expressions in this article is by no means
complete. There are many more idioms in C and each one of them is solving
a different problem.

Idiomatic expressions at this level are really just above language
constructs. Thus, the learning curve is flat. Changing coding style towards
using them is a small step with, I believe, immediate benefits.

Acknowledgements
Many thanks to Drago Krznaric and André Saitzkoff for their feedback.

Adam Petersen

28 CVu/ACCU/Features

Uses Cases
Phran Ryder <phran@agilenorth.org.uk>

Requirements

Many organizations will be uncomfortable with the way requirements are
gathered in Agile methodologies. For example, XP (eXtreme
programming) uses small cards that can be prioritized and stuck to wipe
boards. There are many reasons for this discomfort; tradition being,
perhaps, the strongest. But there are practical reasons such as the personnel
involved in a project being on multiple sites.

So what are the alternatives? The Rational Unified Process (RUP)
defines requirements as Use Cases. But what are they? How do you write
effective use cases? And can they be used in an agile way?

Alistair Cockburn
I have been writing use cases on and off for about a decade. During that
time I never felt comfortable doing so, I never felt I was doing it well. When
I discovered XP I was much happier writing requirements as user stories
on cards. But I recently read the book “Writing Effective Use Cases” by
Alistair Cockburn [1] and as a consequence I now feel I know how to write
use cases. This article summarises Alistair’s approach – but to get a real
understanding, you need to read the book and do it.

The article also adds a little extension of my own that makes it easy to
trace requirements.

I am not saying that use cases are the best way to write and manage
requirements. I am saying that should you find yourself writing use cases,
this is a very good way to do it.

Actors with Goals
Use cases define the requirements of a system; they define the desired
behaviour of that system. They break down the description into a number
of cases of when the system is used to achieve (or at least attempt to
achieve) some goal. The use case name is some short description of that
goal e.g. ‘Set Up Profile’.

Each use case describes the activities involved in reaching that goal.
The people or systems that can perform these activities are referred to as
actors. For each use case there is a primary actor who has the goal.

When writing use cases, the word system is used for two purposes. We
have the system that the requirements define, and the systems acting parts
in the solution. Cockburn refers to the former as the System under
Discussion (or SuD) and I will do too.

So that seems simple, actors with goals. Shortly I will go into more
detail but before then I want to dispel a myth.

Not Use Case Diagrams
Please, please, please note well, understand, and absorb…a use case is not
the same as a use case diagram. A use case diagram contains stick men
(representing actors) connected to bubbles that contain text describing a
goal that the actors are involved in reaching.

If you have several use cases, use case diagrams are useful in that they can:
1. Show the relationships between the actors and several use cases
2. Provide an overall view of the desired system behaviour
3. Illustrate the context and boundaries of the system.
But that’s it. Beyond that they provide little value. The true, deep,
useful value comes from the text in the use cases. This article
summarises how to write and structure the text so that it provides real
value to a project.

Too many people start requirements gathering by drawing stick men.
But that is the wrong thing to do. Use case diagrams are useful for high
level information, but you can easily get by without them, and they are
certainly not the place to start. I’ll not mention them again.

Value in the Words – and Their Structure
The table on the right is my current preferred way of structuring use cases.
Cockburn suggests others and suggests you find one that suits you.

The left hand column contains names for use case parts. The part of
initial interest is the Main Success Scenario. These contain the steps that
are completed in order to reach the goal. Cockburn recommends that you
write these as simple, single sentences of the form:

Subject…verb…direct object…prepositional phrase
For example:

Any User logs onto the SuD and adds the user with an empty profile.

The main success scenario describes one set of actions in the SuD. Of
course there are always alternatives.

Alistair’s Trousers
The main success scenario is likely to be one of a number of scenarios that
can take place when trying to reach a goal. A use case is in reality a
collection of scenarios. The alternative scenarios are recorded as extensions
to the main scenario. If something different can happen in an action step,
the extension records the condition that leads to the alternative followed
by the steps that would then take place for that scenario.

Some of these extensions are success scenarios that result in the goal
being reached, while some are failure scenarios that result in the goal not
being reached (thus the action steps might be recovery actions).

Amusingly, Cockburn views these as a pair of stripy trousers. Each strip
is a scenario with success scenarios go down one leg and failure scenarios
go down the other leg.

Stakeholders with Interests
Each system will have a number of stakeholders. When building the system
it is essential to ensure the interests of ALL the stakeholders are met. And
a system meeting those interests will be produced sooner if their interests
are considered early. It is too easy to think of just the actors, their goals
and the business requirements. Considering the interests of all stakeholders
helps to ensure the requirements are thorough and complete.

Related to the scenarios and stakeholder interests are the following use
case parts:
1. Preconditions: what we expect the state of the world to be
2. Minimal Guarantees: the interests protected on any exit
3. Success Guarantees: the interests satisfied on a successful ending
4. Trigger and Frequency: the action that starts the use case and how often

it occurs

Use Case #2 Set Up New Profile

Context of Use A new user, along with the access they have, is
added to the SuD.

Scope SuD

Level Primary Task

Primary Actor Administrator

Stakeholders Managers: Some text describing their
and Interests interests

Users: ditto
Audit: ditto
Security: ditto

Preconditions Required authority level has been provided for
the primary actor.

Minimal Guarantees Changes to profiles are logged.

Success Guarantees User’s profile is modified.

Trigger and Frequency Ad Hoc.

Main Success Scenario

1. HR register user with Active Directory

2. Any User logs onto the SuD and adds the user
with an empty profile.

3. SuD Adds Change To Access Profile Log
recording the addition of a new profile.

4. Administrator logs on to the SuD and Modifies
Profile

Extensions

1 User is already registered with Active Directory
The registration system prevents re-registration

2 User to be added already has a profile
The SuD prevents re-adding
User to be added is not registered with Active
Directory
The SuD prevents addition of user.

2-3 SuD cannot be accessed
SuD will be accessed another time

Open Issues

1 Can some of the data be derived

29CVu/ACCU/Features

Onions have Layers – Ogres have Layers

And so do use cases.
Requirements aren’t really defined or written. They evolve. They evolve

as the understanding of the problem area increases and as that problem area
changes. An important principle in software development is to concentrate on
activities that provide best value to the business. This is true when writing
requirements as use cases. Cockburn refers to this as ‘Managing your energy’.

In the initial stages of requirements gathering, we are not interested in
detail, in alternatives, in error conditions, in issues. We want a high level
understanding of the problem area. For this Cockburn suggest getting
started with usage narratives – a situated example of the use case in
operation. This is a good place to start as you are creating a first set of use
cases that scope the SuD.

As you add detail you can move onto Use Case Briefs. These are two
to six sentence descriptions mentioning only the most significant success
and failure scenarios.

As understanding of the requirements increases, additional use case
parts can be added (Stake holders, guarantees etc.) along with more detail
and additional scenarios.

A further tool for managing energy, and concentrating on providing
value, is the open issues use case part. This can be used to record scenarios,
problems, risks etc. that you don’t want to forget about but don’t want to
look into at that point.

As the use cases grow, they may come a point when a use cases will
warrant being split and further new use cases will be spawned that go into
greater detailed. When this happens we need a mechanism for referencing
use cases that ‘call’ each other to provide the detail. This is done simply
by underlining the text of the used use case. In table 1, Modifies Profile is
a reference to another use case.

Cockburn uses named goal levels to help manage the
granularity of use cases. The main levels are:
1. User goals: define elementary business processes.
2. Summary Level: link several uses cases providing an

overview and context.
3. Sub functions: these are goals required to carry out the user

goals and often appear in several User goals

As the requirements evolve it is often the case that a use
case no longer warrants existing on its own so it is merged
back into a higher level. At other times similar use cases will
be found that can be merged into one that has parameters.
This is merging and splitting of use cases is of course akin
to re-factoring of code. Because of this well written use
cases can be very robust to change and, to a certain extent,
re-usable.

Agile developers might argue that all this requirements
defining activity hasn’t actually produced anything. Certainly
no code has been produced but there is no point in producing
code if it is not the most valuable thing to do. Producing use
cases might be the most valuable thing to do in large
organizations or on large projects that are likely to cost several
million. In this situation the most valuable thing for business
is to understand what they really want and need, along with a
good idea of the costs, risks, benefits and alternatives.

Having said that, when we view the use cases as a
collection of scenarios (stripes on the trousers) we can see how
use cases can be used in an agile development process. As we
manage our energy and concentrate on providing value, we
start by defining the main success scenarios. These tracer
bullet [2] scenarios are the most important and we could
implement them at this point – if it is valuable to do so.

Phran’s Addition
The use case template I currently use places the use case part
in a table. The reason for this is that it makes it easy to trace
the use cases back to high level requirements and/or forward
to estimates or implementation, unit tests or whatever.

The amount of tracing you do depends on the process you
have. CMM generated processes seem to require high levels of
tracing while Agile processes keep tracing to a minimum. The
approach described here allows you to e.g.
1. Show that higher level requirements are being met
2. Show that an estimate covers all the requirements

3. Easily see how removing or adding requirements affects the estimate
4. To trace the functional tests to the requirements thus proving that the

solution satisfies the requirements.

This is done simply by introducing further columns to the right (see below).

Conclusion
Use cases written in this way have many advantages:
1. They make it easy to manage your energy and allow you to focus on

providing value to the business.
2. They focus on the interests of stakeholders.
3. They can evolve iteratively and incrementally, and provide early

opportunities for implementing early.
I will say again: I am not saying that use cases are the best way to write
and manage requirements. I am saying that should you find yourself writing
use cases this is a very good way to do it.

Phran Ryder

References
1 Cockburn, Alistair (2001) Writing Effective Uses Cases Addison-Wesley

ISBN 0 201 70225 8
2 Hunt, Andrew and David Thomas (2000) The Pragmatic Programmer

Addison-Wesley ISBN: 0 201 61622 X

Phran Ryder is Chairman of AgileNorth.org.uk – a non profit organisation for
technical and business staff who wish to learn and share experience of becoming
and being agile – details at: www.agilenorth.org.uk.

Use Case #2 Set Up New Profile Tracing

Context of Use A new user, along with the access they have, is
added to the SuD.

Scope SuD

Level Primary Task

Primary Actor Administrator

Stakeholders Managers: Some text describing their
and Interests interests

Users: ditto
Audit: ditto
Security: ditto

Preconditions Required authority level has been provided for
the primary actor.

Minimal Guarantees Changes to profiles are logged.

Success Guarantees User’s profile is modified.

Trigger and Frequency Ad Hoc.

Main Success Scenario

1. HR register user with Active Directory 2.1

2. Any User logs onto the SuD and adds the user 1.1, 3.3
with an empty profile.

3. SuD Adds Change To Access Profile Log 4.5
recording the addition of a new profile.

4. Administrator logs on to the SuD and Modifies 4.6, 4.7
Profile 4.8

Extensions

1 1. User is already registered with Active Directory
a. The registration system prevents re-registration

2 1. User to be added already has a profile 2.2
a. The SuD prevents re-adding

2. User to be added is not registered with Active
Directory
a. The SuD prevents addition of user.

2-3 1. SuD cannot be accessed
a. SuD will be accessed another time

Open Issues

1 Can some of the data be derived

30 CVu/ACCU/Features

AI – Expert Systems
Steve Hopley <shopley@sthelens.ac.uk>

A simple definition of a human expert is a person who knows a great deal
about a subject and who can give sensible advice on it. It takes ages to
attain this level of knowledge, so experts are few and far between and as
such are rather like the proverbial Time Lord – not always there when you
need them.

Due to this lack of experts, people decided to teach computers to
become experts. These experts are always on hand, never need to rest, don’t
go on strike and best of all, really do know what they’re talking about. The
problem is that if you ask them something on a subject they’re not trained
in, they’re as dumb as a sack of rocks! Why? Computers have to be
programmed step wise and logically.

For programmers to understand how to create an “expert system”, they
needed to look at how an expert works. It would be pointless to take a very
complex problem, so the simplest of problems known was used (it doesn’t
matter what the problem is either – the following fits anything).
1. Take in the available information on the current task
2. Compares this information with previously stored information and looks

for a match
3. Reports if there is a match and acts on it.

For this, all that is required is nothing more than a simple database – the
sort of thing which could be written in MySQL in a couple of minutes.
Great for those who can use SQL, useless for humans as humans don’t
speak SQL. What would be required is a system which would accept entry
in the speakers native language (flowchart 1).

(In reality, an actual expert system will have a user interface and the
knowledge engine in the background – this can be a database or commonly,
something written in LISP)

To keep things simple, for now, I’ll stick to a fixed input format. So that
you can visualise the problem in hand, we will look at recognising animals
by the sound they make.

For this, it is simple enough to create two arrays of data, q (for the
sounds) and a (for the animals). This is then followed by a simple
comparison between the entry (sound) and the contents of q in turn. This
is a trivial matter to create and I will leave it up to the reader to devise such
a program.

Branching
The above example is a very simple one: there is only one question and
one answer. In reality, far more complex problems are posed and until a
series of questions have been asked, an answer cannot be found.

A case in point is a broken down car. You have placed the key in the
ignition, turned it and ... click! Question is, why has this happened?
There are a number of possible reasons for this:
● Flat battery
● Bad connections
● Switch broken

● Starter jammed
● Starter broken
● Solenoid broken

To find the cause, a process of elimination is used.
● Is the ignition light on?

If it isn’t, then there is no power at the switch, so any of the top three
possibilities are likely. This can be narrowed down further.

● Do the lights work correctly?
If they do, then obviously the battery is fine and it must be correctly

connected to the light switch. It looks like the switch is duff. Whip it
out and replace. If the lights don’t work, check the connections.

● Are the battery connections OK?
If they are, the battery is flat and you need to push it.

A sequence of checks could be made to deal with a situation where there
is power but no starter mechanism (the last 3 possibilities).

The simplest way to program this is using a branching structure using
a series of IF / THEN tests (see left). Again, not rocket science to program
(so I won’t bore you with it here!).

This is, of course, a very cumbersome method. As more choices are
given, the lack of efficiency (in terms of application running) of this top
down method becomes apparent.

Pointers
Why bother with such an inefficient method when a far more flexible (and
efficient) method is to place the text into arrays and use a pointer to direct
to the next question or reply, according to if “yes” or “no” has been entered
by the operator to the current question (flowchart 3).

The format for entering the data for each branch point is
(TEXT), (Pointer for “Yes”), (Pointer for “No”)

The first question was
Is the ignition light on? (Y/N) ... 1

If the answer was “N”, then the second question is asked
Do the lights work correctly? (Y/N) ... 2

INPUT
NOISE

MATCH
QUESTION

INSERT INTO
SENTENCE

OUTPUT
ANSWER

ALL
CHECKED

OUTPUT
"SORRY"

YES

NO

NO

YES

Flowchart 1

IGNITION
LIGHT ON

YES

DO LIGHTS
WORK?

YES

ARE
CONTACTS

OK?

YES

REPAIR
CONTACTS

CHARGE
OR PUSH

REPLACE
SWITCH

YES

YES

YES

Flowchart 2

31CVu/ACCU/Features

Otherwise you continue with the other part of the diagnosis.
For this to work, 3 arrays are used; one for the output text and two for

the pointers to the next answer (y and n). To make life simple, an int
variable, np, is used for the number of questions available (in this case, 7).
Here is where the programming becomes slightly more sticky. You need
more of a linked list with the following structure

char text[]
pointer->yes
pointer->no

It’s not quite a linked list as there isn’t a pointer to the next question (in the
list) as the next question depends on the answer. The two pointers can either
be the array index or real pointers in a list. For example, in pseudo code
terms it may look like this

char question[][1] = “Do the lights work
correctly ? (Y/N)”;
int yes = 3;
int no = 4;

The running routine for this procedure is very simple. We set up a pointer
for the current position, cp, which is initially set to 1 (you’ll see why in a
moment) and the first text outputted. The end of the routine is when
yes[cp] = 0 (very unlikely if cp = 1!). At the end of the run routine,
cp is reset to 1. Failing that case, the next text[cp] (where cp equals
either the yes or no pointers).

Of course, this approach, while it is becoming far more efficient in terms
of code and logic, still requires a very step wise approach. Nothing wrong
in that, but as with the basic “expert” system, unless the problem is trivial,
the code can become very hairy! As an alternative to the systematic
approach, another is available.

Parallel Approach
The parallel approach differs from the sequential approach in that it asks
all of the possible questions before it reaches its conclusions. The method
takes longer than following the efficient tree structure, but is more likely
to produce a correct answer as no points of comparison are omitted.

Using a comparison of forms of transport, this becomes easier to
understand. I’ll consider eight features and mark them with a 1 or 0 for the

presence or absence of these in each of our five modes of transport (see the
table below). The pattern in the results shows that because of the variety,
it must be possible to decide which mode of transport has been selected.

As before,
we can set up
as 2 arrays;
one for each
of the vehicles
and one for
the choices
(though again,
a linked list
would
probably be a
far more efficient method of storage – for the purposes of this piece, I’ll
keep to arrays). A simple driver program starts with the first question (does
it have wheels?). If the answer is yes, then instead of another specific
question being asked, all of the available vehicles with wheels are given
(flowchart 4).
If “Y” was answered to the wheels question, then the expected output
would have been bicycle, car, train and plane. However, if we had said “N”,
then only horse would have been given.

This does though demonstrate a problem with the parallel approach.
Even though the horse was correctly identified as being the only mode
without wheels, the program still insisted on asking each question before
it would decide on the correct answer.

While on the surface that seems wasteful, if you answered yes to the
next question (does it have wings?), the machine will refuse to believe in
flying horses.

In code terms we would have something like figure 1 (overleaf).
By having the questions as a separate function, we can test for all of the

questions in turn (see flowchart 5 on following page). We simply change
the if (truth[c][0] ...) to read if (truth[c][questions]
...).

This is now starting to resemble a form of an expert system. The
machine can now respond correctly to identify a limited set of transport
modes based on a fixed series of questions.

The problem with the above approach is that it prints out a list of
matches for each question asked, but isn't actually going to give an
authoritative result based on which data set gave the best overall match.

That is fixed by adding a score to the routine. Again, this is in the form

SET CURR.
POSITION

(CP=1)

OUTPUT

YES
POINTER

= 0?

ENTER
RESPONSE

"Y"

CP POINTED TO
BY Y(CP)

NO

YES

NO

YES

CP POINTED TO
BY N(CP)

HorseBicycle PlaneTrainCar
Wheels

Chain
Windows

Tyres
Rails

Engine
Wings

Steering

1

1
0

11
0
0

1

1

0
1

1
0 0

0
1

1
0
1
0
1
1
0
0

1 0
1 0
1 0
1 0
0
1

0

0
0
0

1 1

Flowchart 3

WHEELS?

AN=1

"N"

AN=0

MATCH FIRST
FEATURE?

OUTPUT
CORRECT

ALL OBJECTS
CHECKED

NO

NO

NO

Flowchart 4

32 CVu/ACCU/Features

of an int array which is incremented when the match is found for that
particular dataset (flowchart 6).

If a complete match is found then S(N) will be 8 with anything less
meaning that matches were found, but it may not be the correct answer.

The problem is, what actually is the right answer. It can be argued that
the question “Is it steerable” may not apply to a horse. It’s a matter of
opinion.

By using the scoring method, this sort of problem doesn’t matter as the
highest value of S(N) is probably going to be the right answer anyway –
the only caveat to this is that the answers are all equally weighted.

Can this system be improved upon and if so, how?
We can optimise the code as there are 8 questions and assuming a byte

length of 8 bits, it means we can use binary to store the truth table
(opposite). This means that instead of having a number of large arrays, we
have a single char which contains all of the truth table for each choice.

Asimple bitwise test (if (x & position) ...) is then performed with the
resulting decimal number being placed into the scoring array (flowchart 7).

You should have spotted something by now. We only need to keep track of
the total number produced (S) by adding the binary values of the yes answers;
we have no
need to
continually
loop through
and check
each part of
the array
contents time.
The only
information
that we need
to provide to
the program
is the decimal value for a 100% correct
answer and when all the questions have
been asked, check against the decimal
values (which we found by converting the
binary to decimal – flowchart 8 on next
page). Suddenly, we’re starting to get code
which is efficient, fast, more flexible and
becoming more of an expert. Remember
though, binary only works of expert
systems that just perform yes/no questions.

We have saved a lot of memory and
time as each array only takes a small
number of bytes. The downside is that we
now need this binary to decimal
conversion, which also gives no clues as
to when a complete match is found (you
cannot take the nearest decimal value
here as the the value depends on the
position).

Dynamic Learning Systems
Now that you have the basics under your
belt and hopefully have followed this,
let’s move this up a notch and see if from
a very simple expert, we can make our
expert think for itself.

This is not as difficult as it may seem
either – we just have to figure out how to
move from a rigid “rules” based system
to one whereby the program “learns”
from its mistakes.

The key to this transition is enabling
the program to work out the decision
rules for itself and provided the human
tells the machine when it has gone wrong
(though not where it has happened).
Why? Well there is nothing to say you
know what the rules are exactly yourself!

#define MODES 5

char vehicles[][MODES]={"Bicycle", "Car",
"Tram", "Plane", "Horse"};
bool truth[MODES][7]={1, 0, 0, 1, 0, 0,
1, 1},{/*other answers */};
char questions[][7]={"Does it have wheels",
"Does it have wings", /* other questions */};

void questions(int question)
{

char answer;

int an = 1, c;
printf("%s (Y/N) ? ", questions[question]);
scanf("%s", answer);
if (answer == 'N')
an = 0;

for (c = 0, c < MODES, ++c)
{

if (truth[c][0] == an)
printf("%s\n", vehicles[c]);

}
}

Figure 1

INCREMENT
ARRAY POINTER

(AP)

AN=1

"N"

AN=0

MATCH
F(N, AP)

OUTPUT
OBJECT

YES

YES

NO

NO

NO
YES

ALL OBJECTS
CHECKED

Flowchart 5

YES

NO
YES

NO

ALL OBJECTS
CHECKED

MATCH
F(N, AP)

OUTPUT
OBJECT

INCREMENT
SUCCESS S(N)

Flowchart 6

INPUT
FEATURE

AN=1

"N"

AN=0

AN=1

SCORE=
SCORE+

BINARY VAL

INCREMENT
BINARY VALUE

YES

YES

NO

NO

HorseBicycle PlaneTrainCar
Wheels

Chain
Windows

Tyres
Rails

Engine
Wings

Steering

1

64
0

88
0
0

1

128

0
4

32
0 0

0
128

1
0
4
0
16
32
0
0

1 0
2 0
4 0
8 0
0

32
0

0
0
0

128 128
Sum total 201 173 53 175 128

Flowchart 7

33CVu/ACCU/Features

Let us start out with a
series of features
which enable us to
distinguish between
the different objects,
but without the
predefined yes/no
pattern (or the
decision rule) to
guide. Instead, we
allow the program
itself to calculate
what the pattern
should be.

If we stick with the
transport example, we
have a familiar basis.
This time though, we
alter the program so

that we have some new variables. FE is the number of features (in our case,
8), a char array, F, which contains the names of the features, an int array,
FNwhich holds the values you give to each feature as input at any given point
(0 or 1) and a final int array, R, which will hold the current overall values
of the decision rule of the feature.

#define FE 8
char F[][FE] = {"Wheels", "Wings", "Engine",
"Tyres", "Rails", "Windows", "Chain",
"Steering"};
int FN[FE], R[FE];

Now, consider each feature in turn (flowchart 9) as it requires some
explaining. First the current feature value is set at 0 for the initial cycle and
the first input is requested. If the response back is “Y”, then the value
element FN(N) is set to 1. This produces the pattern which describes the
object in the FN array.

Next, the decision variable, DE, is set to zero. It is then recalculated as
the sum of the current value of DE, plus each of the feature values entered,
FN(N), multiplied by the current decision rule, R(N).

Nothing hard there. But there is a fly in this ointment.

Which is Which?

Let’s consider the simplest situation where there are only two possibilities
– a bicycle or a car. Initially, the distinction between them is fairly arbitrary
by saying that if the final value of DE >= 0, then it’s a bicycle – anything
less than 0 and it’s a car. It doesn’t actually matter that this is not really
true as the system will correct itself. When the program has made a decision
based on the value of DE, confirmation of the result is asked for.

There are three possible courses of action according to if the decision
was correct – each course results a weighting, WT.
1. If the decision is correct, effectively no action is taken (WT = 0). The

program loops back for another go.
2. If DE>=0 and the computer was wrong, then WT = -1
3. If DE<0 and the computer was wrong, the WT = +1

The effect of WT is to modify the values in the rule array, pulling them down
if they are too high and pulling them up if they’re too low. This can be
demonstrated thus. The program is written and the following data entered.

The program returns with DE = 0 as
this is the initial value and no
modifications have yet taken place. As
DE = 0, the system assumes that the
object is a bicycle and asks for
confirmation. As it is a bike, the

confirmation is “Y”. If you were to look at the R array, all of the values
will still be zero as nothing has changed.

Next, the following is entered for a car.
DE is still 0, so the wrong conclusion

is reached and the answer when
confirmation is asked about if it is a
bicycle is now “N”. As a mistake as
been made, the decision rule is modified
by subtracting one from each value in R

where a “Y” answer was given. The contents of the rule array will therefore
now be as shown on the right.

If you now were to re-enter the
values which describe a car, the
program comes up with the correct
answer (Is it a car?). DE = -5. Okay,
the program is giving the correct
answer for a car, but if you enter the values for a bicycle (just as a check),

OUTPUT
SCORE

MATCH
DECIMAL
VALUES

OUTPUT
OBJECT
MATCH

ALL
CHECKED

Flowchart 8

CURRENT
FEATURE
VALUE = 1

"Y"INPUT
FEATURE

DECISION
VALUE = 0

ALL CHECKED

UPDATE
DECISION

VALUE
ALL CHECKED

OUTPUT
DECISION

VALUE

>=0 BICYCLE? "Y"

"Y"CAR?

OUTPUT
RULE UPDATE RULE

WEIGHT=0

WEIGHT=1

ALL CHECKED

NO

YES

NO
YES

YES

YES

NO

YES

NO

YES

NO

YES

NO

NO

Flowchart 9

Wheels

Chain
Rails
Engine

Y

SteeringY
N
N

Wings
Tyres
Windows

N
Y
N
Y

Wheels

Chain
Rails
Engine

Y

SteeringN
N
Y

Wings
Tyres
Windows

N
Y
Y
Y

Wheels

Chain
Rails
Engine

-1

Steering0
0
-1

Wings
Tyres
Windows

0
-1
-1
-1

the machine gives the wrong answer. Why? Let's look at the input and the
array R

DE = -3, as it is less than 0
the computer thinks that it is a
car. All is not lost though. The
positive features which are
common to the car and bike are
now increased by one, so that if you repeat the sequence, the correct answer
is given (DE = 1). The machine can now correctly distinguish between a
car and a bicycle.

Again, a test is performed for a car and the final result of DE = -2 is
given. If you look at the rule array values, you’ll see that these correspond
in both the number and position to the unique features which distinguish
these objects (Chain for bicycle, Engine and Windows for car).

We can see that the machine has learned by its mistakes and is making
a decision as to what an object is for itself. Not exactly earth shattering
though. Any 6 month old kid can do that – but that’s part of the problem
with anything to do with AI, we’re comparing it to too high a life form. At
best, AI is at the 100 – 1000 braincell level (a slug is a good example), but
we’ve made a start.

Let’s see if we can expand on this system to deal with a wider number
of possibilities (flowchart 10). To start with, let’s define the number of
objects we want to recognise, OB and place those objects as before into a
char array. Next, set up a decision rule array, R[FE][OB] which holds the
rules for each object and finally a decision array, D(n), to hold the decision
values for each object.
The process for the program required follows this form
1. All of the decision variables are initialised to 0.
2. The values for each feature are entered in the same way as the examples

above.
3. Each element of D(n) is updated according to the status of the entered

values FN(n) and the contents of the appropriate rule element, R[n][m].

4. We need to look to see if any of the decision values for any of the objects
D(n)>=DE. If this is true, set a top score variable, TS, equal to the
number of the object producing the best match, N.

5. As the best guess of the system is that this is the correct answer, the
machine asks for confirmation and returns for a new input without
making any changes if the answer was correct.

6. If it is the incorrect answer, the names and numbers of all of the objects
are outputted and the user is asked for the number of the correct answer,
CR. (The program limits the values of CR to prevent crashes.

7. The next check is whether the decision value of each object, D(n), is
greater than or equal to the overall decision value, DE and whether the
object being considered is not the correct answer. If both are these are
true, update the rules by subtracting the overall feature values, FN(n),
to bias favour of the correct answer.

8. The correct feature values for FN(N) are added to the rule array for the
correct object to bias in the opposite direction

9. At the end, the rules are outputted.
To demonstrate this, consider what would happen with the following input:

The program concludes that this is
horse, so you tell it (via the keyboard)
that the conclusion is incorrect. Next
the program asks if it is a bicycle, you
say “Y” as it is.

Was it a horse? N
1 Bicycle
2 Car
3 Train
4 Plane
5 Horse
Which was it? 1

34 CVu/ACCU/Features

Wheels

Chain
Rails
Engine

Y

SteeringY
N
N

Wings
Tyres
Windows

N
Y
N
Y

0

0

0
0

0
-1

-1

1

ZERO DECISION
VALUES

ZERO FEATURE
VALUE

OUTPUT
FEATURE "Y" FEATURE

VALUE = 1

ALL
CHECKED

UPDATE
DECISION

VALUE

ALL
CHECKED

ALL
CHECKED D(N) >= DE?

DE = D(N)
TS = N

WAS IT
O(TS)? "Y"

OUTPUT
OBJECT

LIST
WHICH? VALID?

ALL
CHECKED UPDATE RULES N != CR D(N) = DE?

OUTPUT
D(N), DE,

CR

UPDATE RULES ALL
CHECKED

OUTPUT
RULES

YES

NO

NO

YES

YES

NO

NO

NO

YES

NO

NO

YES

YES

YES

NO

NO

YES

NO
NO NO

Flowchart 10

Wheels

Chain
Rails
Engine

Y

SteeringY
N
N

Wings
Tyres
Windows

N
Y
N
Y

[concluded at foot of next page]

35CVu/ACCU/Features

The status of the various decision and rule arrays are
now given (right and below) for your information

You should be able to see that the features which
have caused alterations in the rule arrays are wheels,
tyres, chain and steering (which are all defined as bicycle
features, but which aren’t found in horses). Additionally,
that all the values for the bicycle are +1, with everything
else either 0 or -1.
Next, the features for the car are given. As the machine

doesn’t have a clue what a car is, only
the values it has learned, it mistakes the
car for a bicycle which the user then
corrects. Note that the rule arrays for
the bicycle and car (below) are
amended to take into account the
provided information.

Was it a bicycle? N
1 Bicycle
2 Car
3 Train
4 Plane
5 Horse
Which was it? 2

This is repeated for a plane. Again, the machine has no idea what a plane
is and guesses that it is a car and is then corrected.

Was it a car? N
1 Bicycle
2 Car
3 Train
4 Plane
5 Horse

Which was it? 4
The rules are corrected and so we decide to give a train. Which for some
reason best known to the machine, it thinks is a plane!

Was it a plane? N
1 Bicycle
2 Car
3 Train
4 Plane
5 Horse
Which was it? 3

Finally, the last object is a horse. Surely, it must
get this one right – I mean, what else can it be
other than a horse? You guessed it – a plane!

Was it a plane? N
1 Bicycle
2 Car
3 Train
4 Plane
5 Horse
Which was it? 5

This will continue for as long as you wish to enter data and eventually, the
expert system will have learned enough to give the correct answer every
time. How long it takes depends on the number of differences between the
objects and on the order the object are presented to the expert. It can take
a long time before the system becomes a true expert.

The final state of our 5 object system in the
decision array shows the following (at the foot
of the page) – and given the range of values, you
can surmise how long it took to reach.

This has been a very simplistic demonstration
on how an expert program may learn by its
mistakes. In reality, masses of data would be
automatically fed into the system and left for a
long time to generate the correct answers.

However, the approach taken here does mean that via a distributed network,
many machines can plough through the data and arrive at an expert system.

Steve Hopley

DE CR
0

0
0
0
0
0

0
0
0
0

1

1
1

1
1

D(N)

Wheels ChainWindowsTyres RailsEngineWings Steering
1
-1

0 0

0
0
0000
00

-1
-1

-1
-1

-1
-1-1-1

1 11

-1
-1
-1

-10
00

0 0

0
0
0

0-1
-1
-1

0 Horse

Bicycle

Train
Plane

Car

Wheels

Chain
Rails
Engine

Y

SteeringN
N
Y

Wings
Tyres
Windows

N
Y
Y
Y

DE CR
3

-3
-3
-3
-3
3

-3
-3
-3
-3

2

2
2

2
2

D(N)

Wheels ChainWindowsTyres RailsEngineWings Steering
0
0

0 -1

0
0
1010
-10

-1
-1

-1
-1

-1
0-10

0 01

-1
-1
-1

-10
00

0 0

0
0
0

0-1
-1
-1

0 Horse

Bicycle

Train
Plane

Car

Wheels

Chain
Rails
Engine

Y

SteeringN
N
Y

Wings
Tyres
Windows

N
Y
Y
Y

Wheels

Chain
Rails
Engine

Y

SteeringN
N
Y

Wings
Tyres
Windows

N
Y
Y
Y

Wheels

Chain
Rails
Engine

Y

SteeringN
N
Y

Wings
Tyres
Windows

N
Y
Y
Y

Wheels ChainWindowsTyres RailsEngineWings Steering
1
-1

0 -1

0
1
1-114
-20

-2
-1

-2
0

-2
0-20

1 03

-1
-1
-2

-10
06

-1 1

0
-1
2

0-1
-2
0

0 Horse

Bicycle

Train
Plane

Car

[continued from previous page]

F2C – Is it a Practical
Solution?
Derek M. Bloor, University of Salford

Derek was a colleague of mine during my time within the School of Chemistry at
the University of Salford. At some point during our final year there, we began
investigating if there was any value in using f2c as an alternative to re-writing all
of our research source code directly into C (the reason being that the F77 compiler
we had been using was no longer up to the job and as the project was unfunded,
we could not move over to another product).

In January 2003, Derek sadly passed away – many years before his time should
have been.The work was mostly finished by the time we both left.What is presented
here is the majority of the work covered with my notes completing the picture. I
have removed some of the more Chemistry based aspects (very complex maths).

I must thank Derek's widow for her help in this and allowing me access to his
notes.

Paul Johnson

Rationale

FORTRAN is a simple mathematical computer language designed for high
level maths processing and calculation manipulation. It is ideally placed
for many Physical Chemistry based applications where number crunching
and manipulation forms an integral aspect of the design and primary
investigation basis. It is an invaluable tool in the prediction of behaviour
for given parameters.

FORTRAN however is not a simple language to program in and
therefore when factoring in the manpower costs for a research proposal,
this time has to be taken into account. A simple FORTRAN program may
take less than 200 lines of code, yet because of the specialisation required
to use both the language and the compiler, a C program may be cheaper
despite being many times longer (and potentially slower) due to the
availability of C programmers.

The problem arises though with highly specialised code currently
running and written in either pure or a variant of FORTRAN (for ease,
FORTRAN will from now be known as F77) and what to do with it. To
analyse this, three points have to be taken into consideration

36 CVu/ACCU/Features

1. Would the code generated using a package called f2c be a viable
alternative in terms of maintainability, readability and speed of
operation?

2. The length of time (and therefore cost to the project) required to rewrite
the F77 code by someone competent in both F77 and C

3. The age old maxim, if it’s not broken – why fix it?

Analysis
For the analysis of this, I am using two small applications and one large
application, all three currently written in standard F77. The applications
are
● A linear regression analysis program
● An elliptic integral solver
● MOPAC 6

The level of complexity rises as you proceed down the list, with MOPAC
being a highly specialised molecular orbital package (with a source archive
of around 1Mb).
For the purposes of this demonstration, only the linear regression source
will be considered.

Linear Regression Source Code – F77
C Linear regression utility

PROGRAM LINREG
COMMON/SETUP/X,Y,N

COMMON/SIGMAS/SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,A
VEX,AVEY

COMMON/BIGGIES/XLINE,YLINE,GRADIENT,STDDEV,R2
DOUBLE PRECISION

SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,AVEX,AVEY
DOUBLE PRECISION

XLINE,YLINE,GRADIENT,STDDEV,R2
DOUBLE PRECISION X,Y
DIMENSION X(100),Y(100)
INTEGER L,N
WRITE(*,*)
WRITE(*,'('' LINEAR REGRESSION

PROGRAM'')')
WRITE(*,*)
WRITE(*,'('' OCTOBER 1998'')')
WRITE(*,*)
WRITE(*,'('' VERSION 1.02.'')')
WRITE(*,*)
WRITE(*,'('' THIS PROGRAM WILL CALCULATE

THE LINE OF BEST'',
1/ ,'' FIT FOR UPTO 100 DATA POINTS.'')')
WRITE(*,*)
WRITE(*,'('' LETS BEGIN!'')')
WRITE(*,*)
DO 1 L=1,100
WRITE(*,'('' ENTER X,Y (OR -999 ON X TO

START) : '',$)')
READ *,X(L),Y(L)
IF (X(L).EQ.-999.) GOTO 2

1 CONTINUE
2 N=L-1
WRITE(*,*)
WRITE(*,'('' OKAY, I WILL DO THE MATHS

NOW'')')
CALL CALCSIGMAS()
CALL CALCOTHERS()
WRITE(*,*)
WRITE(*,'('' ANSWERS : '')')
WRITE(*,*)
PRINT *,'INTERCEPT ON X ',XLINE
PRINT *,'INTERCEPT ON Y ',YLINE
PRINT *,'GRADIENT ',GRADIENT
PRINT *,'STANDARD DEVN ',STDDEV
PRINT *,'R SQUARED ',R2
END

C SUBROUTINE CALCULATE SIGMAS
C CALCULATES ALL THE BITS REQUIRED FOR THE
MAIN PROGRAM

SUBROUTINE CALCSIGMAS()
COMMON/SETUP/X,Y,N

COMMON/SIGMAS/SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,S
IGMAXY,AVEX,AVEY

INTEGER LL,N
DOUBLE PRECISION X(100),Y(100)
DOUBLE PRECISION

SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,AVEX,AVEY,SIGMA
XY

DOUBLE PRECISION SX,SY,SXY,SX2
C SIGMAX22 IS THE SAME AS (SIGMA X)^2

SX=0.D0
SY=0.D0
SXY=0.D0
SX2=0.D0
DO 1 LL=1,N
SIGMAX=SX+X(LL)
SIGMAY=SY+Y(LL)
SIGMAXY=SXY+(X(LL)*Y(LL))
SIGMAX2=SX2+(X(LL)**2)
SX=SIGMAX
SY=SIGMAY
SXY=SIGMAXY
SX2=SIGMAX2

1 CONTINUE
SIGMAX22=SIGMAX**2
AVEX=SIGMAX/N
AVEY=SIGMAY/N
RETURN
END

C SUBROUTINE CALCULATE THE OTHERS
C CALCULATES ALL THE USEFUL BITS SUCH AS THE
GRADIENTS ETC

SUBROUTINE CALCOTHERS()
COMMON/SETUP/X,Y,N

COMMON/SIGMAS/SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,S
IGMAXY,AVEX,AVEY

COMMON/BIGGIES/XLINE,YLINE,GRADIENT,STDDEV,R2
INTEGER LL,N
DOUBLE PRECISION

XLINE,YLINE,GRADIENT,STDDEV,R2
DOUBLE PRECISION X(100),Y(100)
DOUBLE PRECISION

SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,AVEX,AVEY,SIGMA
XY

DOUBLE PRECISION M,C,S,YEYC2,YEYC
DOUBLE PRECISION

XX,SIGMAXXBYYB,RDBIT1,RDBIT2
DIMENSION

YEYC(100),XXBYYB(100),XXB(100),YYB(100)
DOUBLE PRECISION XXBYYB,XXB,YYB

C OKAY, LET'S DO THE GRADIENT
M=(SIGMAX*SIGMAY)-(N*SIGMAXY)
GRADIENT=M/(SIGMAX22-(N*SIGMAX2))

C INTERCEPT ON Y
C=(SIGMAX*SIGMAXY)-(SIGMAY*SIGMAX2)
YLINE=C/(SIGMAX22-(N*SIGMAX2))

C INTERCEPT ON X
XLINE=-YLINE/GRADIENT

C THESE ARE THE BRUTES!
C STANDARD DEVIATION

M=GRADIENT
C=YLINE
YEYC2=0
XX=XLINE
DO 1 LL=1,N
YEYC(LL)=Y(LL)-(M*X(LL)+C)

37CVu/ACCU/Features

YEYC(LL)=YEYC(LL)**2
1 CONTINUE
DO 2 LL=1,N
YEYC2=YEYC2+YEYC(LL)

2 CONTINUE
S=YEYC2/(N-2.)
STDDEV=DSQRT(S)

C R^2
DO 3 LL=1,N
XXB(LL)=X(LL)-AVEX
YYB(LL)=Y(LL)-AVEY
XXBYYB(LL)=XXB(LL)*YYB(LL)

3 CONTINUE
SIGMAXXBYYB=0
DO 4 LL=1,N
SIGMAXXBYYB=SIGMAXXBYYB+XXBYYB(LL)

4 CONTINUE
RDBIT1=0.D0
RDBIT2=0.D0
DO 5 LL=1,N
RDBIT1=RDBIT1+XXB(LL)**2
RDBIT2=RDBIT2+YYB(LL)**2

5 CONTINUE
R2=SIGMAXXBYYB/DSQRT(RDBIT1*RDBIT2)
IF(R2.LT.0.) R2=R2*(-1)
RETURN
END

On the surface, this is quite a simple piece of code which should not cause
too many problems. Some aspects though are not that easy to convert over
to C without knowledge of how much of how F77 works.

COMMON/SETUP/X,Y,N
COMMON/SIGMAS/SIGMAX,SIGMAX2,SIGMAY,SIGMAX22,S
IGMAXY,AVEX,AVEY
COMMON/BIGGIES/XLINE,YLINE,GRADIENT,STDDEV,R2

COMMON works in a very similar way to storage on the heap with an
identifier and some variable names, all separated with a /. The problem
comes in that the storage types are not fixed (X is both a DOUBLE
PRECISSION as well as an array – the method of declaration is similar to
that used in C89 whereby a typical prototype would be int foo(a, b)
double a, int b { ... }) and also the types can differ within the
COMMON block (X, Y and N do not all need to be of the same type).

The main problem occurs when passing values between functions. In
C, this can be achieved by either passing by value or by placing data on
the stack via a global struct. Global variables can also be used, but this
then has a performance overhead.

Use of f2c
The use of f2c is a happy medium. It rewrites the F77 source automatically
and links to its own library and any standard C compiler should be able to
handle the code as long as the f2c library is available.

Using f2c has problems though
● The code generated, while readable, doesn’t make very much sense and

without knowing what the f2c functions do, the code may not be
maintainable.

● It requires compilation for the target platform and the libf2c dynamic
library needs to be shipped to any co-researchers and again, if they are
not operating on the same platform, they will need to compile libf2c for
their own system.

● There is an increase in both source size and final binary. This does not
greatly affect the operating speed of the application (based on time trials
of native F77, f2c code and hand written C).

Due to these aspects, f2c may provide an alternative, but is it viable?

Sourcecode – Linear Regression – f2c Version
/* Linest.f -- translated by f2c*/
#include "f2c.h"
/* Common Block Declarations */

struct {

doublereal x[100], y[100];
integer n;

} setup_;

#define setup_1 setup_

union {
struct {

doublereal sigmax, sigmax2, sigmay,
sigmax22, avex, avey;

} _1;
struct {

doublereal sigmax, sigmax2, sigmay,
sigmax22, sigmaxy, avex, avey;

} _2;
} sigmas_;

#define sigmas_1 (sigmas_._1)
#define sigmas_2 (sigmas_._2)

struct {
doublereal xline, yline, gradient, stddev,

r2;
} biggies_;

#define biggies_1 biggies_

/* Table of constant values */

static integer c__5 = 5;
static integer c__1 = 1;
static integer c__9 = 9;

/* Linear regression utility */
/* Main program */ int MAIN__(void)
{

/* Builtin functions */
integer s_wsle(cilist *), e_wsle(void),

s_wsfe(cilist *), e_wsfe(void),
s_rsle(cilist *), do_lio(integer *,

integer *, char *, ftnlen),
e_rsle(void);

/* Local variables */
static integer l;
extern /* Subroutine */ int

calcsigmas_(void), calcothers_(void);

/* Fortran I/O blocks */
static cilist io___1 = { 0, 6, 0, 0, 0 };
static cilist io___2 = { 0, 6, 0, "('

LINEAR REGRESSION PROGRAM')", 0 };
static cilist io___3 = { 0, 6, 0, 0, 0 };
static cilist io___4 = { 0, 6, 0, "('

OCTOBER 1998')", 0 };
static cilist io___5 = { 0, 6, 0, 0, 0 };
static cilist io___6 = { 0, 6, 0, "('

VERSION 1.02')", 0 };
static cilist io___7 = { 0, 6, 0, 0, 0 };
static cilist io___8 = { 0, 6, 0, "(' THIS

PROGRAM WILL CALCULATE THE LI"
"NE OF BEST', / ,' FIT FOR UPTO 100

DATA POINTS.')", 0 };
static cilist io___9 = { 0, 6, 0, 0, 0 };
static cilist io___10 = { 0, 6, 0, "('

LETS BEGIN!')", 0 };
static cilist io___11 = { 0, 6, 0, 0, 0 };
static cilist io___13 = { 0, 6, 0, "('

ENTER X,Y (OR -999 ON X TO START)"
" : ',$)", 0 };

static cilist io___14 = { 0, 5, 0, 0, 0 };
static cilist io___15 = { 0, 6, 0, 0, 0 };
static cilist io___16 = { 0, 6, 0, "('

OKAY, I WILL DO THE MATHS NOW')",

38 CVu/ACCU/Features

0 };
static cilist io___17 = { 0, 6, 0, 0, 0 };
static cilist io___18 = { 0, 6, 0, "('

ANSWERS : ')", 0 };
static cilist io___19 = { 0, 6, 0, 0, 0 };
static cilist io___20 = { 0, 6, 0, 0, 0 };
static cilist io___21 = { 0, 6, 0, 0, 0 };
static cilist io___22 = { 0, 6, 0, 0, 0 };
static cilist io___23 = { 0, 6, 0, 0, 0 };
static cilist io___24 = { 0, 6, 0, 0, 0 };

s_wsle(&io___1);
e_wsle();
s_wsfe(&io___2);
e_wsfe();
s_wsle(&io___3);
e_wsle();
s_wsfe(&io___4);
e_wsfe();
s_wsle(&io___5);
e_wsle();
s_wsfe(&io___6);
e_wsfe();
s_wsle(&io___7);
e_wsle();
s_wsfe(&io___8);
e_wsfe();
s_wsle(&io___9);
e_wsle();
s_wsfe(&io___10);
e_wsfe();
s_wsle(&io___11);
e_wsle();
for (l = 1; l <= 100; ++l) {

s_wsfe(&io___13);
e_wsfe();
s_rsle(&io___14);
do_lio(&c__5, &c__1, (char *)&setup_1.x[l -

1], (ftnlen)sizeof(
doublereal));

do_lio(&c__5, &c__1, (char *)&setup_1.y[l -
1], (ftnlen)sizeof(

doublereal));
e_rsle();
if (setup_1.x[l - 1] == -999.f) {

goto L2;
}

/* L1: */
}

L2:
setup_1.n = l - 1;
s_wsle(&io___15);
e_wsle();
s_wsfe(&io___16);
e_wsfe();
calcsigmas_();
calcothers_();
s_wsle(&io___17);
e_wsle();
s_wsfe(&io___18);
e_wsfe();
s_wsle(&io___19);
e_wsle();
s_wsle(&io___20);
do_lio(&c__9, &c__1, "INTERCEPT ON X ",

(ftnlen)15);
do_lio(&c__5, &c__1, (char

*)&biggies_1.xline,
(ftnlen)sizeof(doublereal))

;
e_wsle();
s_wsle(&io___21);
do_lio(&c__9, &c__1, "INTERCEPT ON Y ",

(ftnlen)15);
do_lio(&c__5, &c__1, (char

*)&biggies_1.yline,
(ftnlen)sizeof(doublereal))

;
e_wsle();
s_wsle(&io___22);
do_lio(&c__9, &c__1, "GRADIENT ",

(ftnlen)15);
do_lio(&c__5, &c__1, (char

*)&biggies_1.gradient, (ftnlen)sizeof(
doublereal));

e_wsle();
s_wsle(&io___23);
do_lio(&c__9, &c__1, "STANDARD DEVN ",

(ftnlen)15);
do_lio(&c__5, &c__1, (char

*)&biggies_1.stddev,
(ftnlen)sizeof(doublereal)

);
e_wsle();
s_wsle(&io___24);
do_lio(&c__9, &c__1, "R SQUARED ",

(ftnlen)15);
do_lio(&c__5, &c__1, (char

*)&biggies_1.r2, (ftnlen)sizeof(doublereal));
e_wsle();
return 0;

} /* MAIN__ */

/* SUBROUTINE CALCULATE SIGMAS */
/* CALCULATES ALL THE BITS REQUIRED FOR THE
MAIN PROGRAM */
/* Subroutine */ int calcsigmas_(void)
{

/* System generated locals */
integer i__1;
doublereal d__1;

/* Local variables */
static integer ll;
static doublereal sx, sy, sx2, sxy;

sx = 0.;
sy = 0.;
sxy = 0.;
sx2 = 0.;
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

sigmas_2.sigmax = sx + setup_1.x[ll - 1];
sigmas_2.sigmay = sy + setup_1.y[ll - 1];
sigmas_2.sigmaxy = sxy + setup_1.x[ll - 1] *

setup_1.y[ll - 1];
/* Computing 2nd power */

d__1 = setup_1.x[ll - 1];
sigmas_2.sigmax2 = sx2 + d__1 * d__1;
sx = sigmas_2.sigmax;
sy = sigmas_2.sigmay;
sxy = sigmas_2.sigmaxy;
sx2 = sigmas_2.sigmax2;

/* L1: */
}

/* Computing 2nd power */
d__1 = sigmas_2.sigmax;
sigmas_2.sigmax22 = d__1 * d__1;
sigmas_2.avex = sigmas_2.sigmax /

setup_1.n;
sigmas_2.avey = sigmas_2.sigmay /

setup_1.n;
return 0;

} /* calcsigmas_ */

/* SUBROUTINE CALCULATE THE OTHERS */
/* CALCULATES ALL THE USEFUL BITS SUCH AS THE

39CVu/ACCU/Features

GRADIENTS ETC */
/* Subroutine */ int calcothers_(void)
{

/* System generated locals */
integer i__1;
doublereal d__1;

/* Builtin functions */
double sqrt(doublereal);

/* Local variables */
static doublereal c__, m, s;
static integer ll;
static doublereal xx, xxb[100], yyb[100],

sigmaxxbyyb, yeyc[100], yeyc2,
rdbit1, rdbit2, xxbyyb[100];

/* OKAY, LET'S DO THE GRADIENT */
m = sigmas_2.sigmax * sigmas_2.sigmay -

setup_1.n * sigmas_2.sigmaxy;
biggies_1.gradient = m /

(sigmas_2.sigmax22 - setup_1.n *
sigmas_2.sigmax2);

/* INTERCEPT ON Y */
c__ = sigmas_2.sigmax * sigmas_2.sigmaxy -

sigmas_2.sigmay *
sigmas_2.sigmax2;

biggies_1.yline = c__ / (sigmas_2.sigmax22
- setup_1.n * sigmas_2.sigmax2)

;
/* INTERCEPT ON X */

biggies_1.xline = -biggies_1.yline /
biggies_1.gradient;
/* THESE ARE THE BRUTES! */
/* STANDARD DEVIATION */

m = biggies_1.gradient;
c__ = biggies_1.yline;
yeyc2 = 0.;
xx = biggies_1.xline;
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

yeyc[ll - 1] = setup_1.y[ll - 1] - (m *
setup_1.x[ll - 1] + c__);
/* Computing 2nd power */

d__1 = yeyc[ll - 1];
yeyc[ll - 1] = d__1 * d__1;
}
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

yeyc2 += yeyc[ll - 1];
}
s = yeyc2 / (setup_1.n - 2.f);
biggies_1.stddev = sqrt(s);

/* R^2 */
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

xxb[ll - 1] = setup_1.x[ll - 1] -
sigmas_2.avex;

yyb[ll - 1] = setup_1.y[ll - 1] -
sigmas_2.avey;

xxbyyb[ll - 1] = xxb[ll - 1] * yyb[ll - 1];
}
sigmaxxbyyb = 0.;
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

sigmaxxbyyb += xxbyyb[ll - 1];
}
rdbit1 = 0.;
rdbit2 = 0.;
i__1 = setup_1.n;
for (ll = 1; ll <= i__1; ++ll) {

d__1 = xxb[ll - 1];
rdbit1 += d__1 * d__1;
d__1 = yyb[ll - 1];

rdbit2 += d__1 * d__1;
}
biggies_1.r2 = sigmaxxbyyb / sqrt(rdbit1 *

rdbit2);
if (biggies_1.r2 < 0.f) {

biggies_1.r2 = -biggies_1.r2;
}
return 0;

} /* calcothers_ */

/* Main program alias */ int linreg_ () {
MAIN__ (); return 0; }

It is now possible to analyse how f2c converts the F77 to something which
resembles C, but is not quite C. The code is understandable to those who
use C enabling code to be altered and maintained.

Further analysis though does present problems which may have been
overlooked.
● Code is only stored on the heap which is easily corrupted
● Input and output to the program does not make sense
● Errors in the final application may not be down to the binary, but down

to f2c
The final alternative is to write your own implementation of the routine in
C. As previously discussed though, for anything which is other than trivial
(and is not reliant on any third party extension – such as NAG), this will
cause difficulties.

Sourcecode – Linear Regression – “pure” C Version

#include <stdio.h>
#include <math.h>

struct {
double x[100];
double y[100];
int n;

} data;

struct {
double sigmax;
double sigmax2;
double sigmay;
double sigmaxy;
double sigmax22;
double avex;
double avey;

} params;

struct {
double xline;
double yline;
double gradient;
double stddev;
double r2;

} ans;

void calcsigmas()
{
double sx = 0, sy = 0, sxy = 0, sx2 = 0;
int l;
for (l = 0; l < data.n; ++l)
{
params.sigmax = sx + data.x[l];
params.sigmay = sy + data.y[l];
params.sigmaxy = sxy + (data.x[l] *

data.y[l]);
params.sigmax2 = sx2 + (pow(data.x[l],

2));
sx = params.sigmax;
sy = params.sigmay;
sxy = params.sigmaxy;
sx2 = params.sigmax2;

}
params.sigmax22 = pow(params.sigmax, 2);

40 CVu/ACCU/Features

params.avex = params.sigmax / data.n;
params.avey = params.sigmay / data.n;

}

void calcothers()
{
int l;
double m, c, xx, yeyc2 = 0, sigmaxxbyyb = 0,

rdbit1 = 0, rdbit2 = 0;
double yeyc[100], xxbyyb[100], xxb[100],

yyb[100];
m = (params.sigmax * params.sigmay) -

(data.n * params.sigmaxy);
ans.gradient = m / (params.sigmax22 -

(data.n * params.sigmax2));
c = (params.sigmax * params.sigmay) -

(params.sigmay * params.sigmax2);
ans.yline = c / (params.sigmax22 - (data.n *

params.sigmax2));
ans.xline = -ans.yline / ans.gradient;
// standard deviation
m = ans.gradient;
c = ans.yline;
xx = ans.xline;
for (l = 0;l < data.n; ++l)
{
yeyc[l] = data.y[l] - (m * data.x[l] +

c);
yeyc[l] = pow(yeyc[l], 2);
yeyc2 = yeyc2 + yeyc[l];

}
ans.stddev = sqrt(yeyc2 / (data.n - 2));
// r2
for (l = 0; l < data.n; ++l)
{
xxb[l] = data.x[l] - params.avex;
yyb[l] = data.y[l] - params.avey;
xxbyyb[l] = xxb[l] * yyb[l];
sigmaxxbyyb = sigmaxxbyyb + xxbyyb[l];
rdbit1 = rdbit1 + pow(xxb[l], 2);
rdbit2 = rdbit2 + pow(yyb[l], 2);

}
ans.r2 = sigmaxxbyyb / sqrt(rdbit1 *

rdbit2);
if (ans.r2 < 0)
ans.r2 = ans.r2 * -1;

}

void enterdata()
{
data.n = 0;
while (data.n < 100)
{
printf("Point : %d. Enter X, Y (or -999

on X to end) : ", data.n);
scanf("%f%f", &data.x[data.n],

&data.y[data.n]);
if ((int)data.x[data.n] == -999)

break;
data.n++;

}
}

void printanswers()
{
printf("Answers\n\n");
printf("Intercept on x : %f\n", ans.xline);
printf("Intercept on y : %f\n", ans.yline);
printf("Gradient : %f\n",

ans.gradient);
printf("Standard devn : %f\n", ans.stddev);
printf("R squared value: %f\n", ans.r2);

}

int main()
{
printf("Linear regression utility - C

version\n");
enterdata();
calcsigmas();
calcothers();
printanswers();
printf("Job done\n");

}

Again, the data is stored on the heap rather than in a memory block or as
discreet global variables. It is, however, far simpler to understand, alter and
maintain than the f2c or F77 versions.

Comparison of Source and Binary Sizes
The binary size is based on being linked to dynamic rather than static
libraries and were compiled under Red Hat 7.3 Linux using gcc.
Sourcecode was written using a simple text editor rather than any form
of IDE.

MOPAC was not re-written in pure C due to the initial source side and the
time involved. It would not be impossible due to the code not requiring any
proprietary libraries.

Non-Obvious Problems with f2c
Despite the code being generated from the same code and the generated
maths code being virtually identical, compiling and running the binary does
show an interesting problem which will directly influence if f2c is even
worth bothering with. The data values produced are not the same. This can
be demonstrated by entering data into the second test program which
generates the elliptic integral of the second kind (incomplete) via the contact
and vapour pressures.

It is not a simple matter to find the problem if the generated source is
the cause of the problem or the precision used with the standard C libraries.
A further complication is that the pure C version of the code gives again a
different set of values from both the f2c and F77 versions (the values though
were closer to the F77 version than the f2c version which for values closer
to the transition point [smaller values] could have been down to rounding
errors).

A further factor which would not have been apparent is that for given
architecture (ARM as opposed to x86), the results are again different, but
still follows the general form shown for x86 machines.

Financial Costs
For trivial code (such as findee9 and linest), the cost of rewriting and
testing is negligible and would not be usually factored into the research
proposal costings. However, for more complex applications and
conversion, the time required would have to factor into the final proposal
and justifications made.

For larger scale applications, such as MOPAC, the case for using f2c
grows with the additional benefit that smaller sections can be written and
tested as part of the current stable code.

Conclusion
From the evidence seen here, the use of f2c, while a useful tool in the
regeneration of F77 to C, would not be a suitable alternative for long term
purposes. It does have its uses for a quick and dirty replacement, but
should not be seen as reason to avoid code rewrites if that is what is
required.

Derek Bloor

Binary sizes Source sizes

Program F77 f2c C F77 f2c C

Linest 12.3k 9.9k 7.9k 3.7k 8k 2.7k

Findee9 21.7k 22.8k 18.6k 27.8k 39.4k 17.5k

MOPAC 2Mb 2.3Mb N/A 1.1Mb 2.0Mb N/A

41CVu/ACCU/Reviews

Reviews
Bookcase
Collated by
<accubooks@progsol.co.uk>

The Editor Writes
It seems that the dropping of the book prices has
been met with just about complete acceptance, so I
will be carrying on with that from now.

If you want to review a book, your first port of call
should be the members section of the ACCU website
which contains a list of all of the books currently
available. If there is something that you want to
review, but can't find on there, just ask. It is possible
that we can get hold of it.

You will notice some of the books listed on the
website are getting a tad long in the tooth. These are
pretty much pointless to review and so the following
will happen. After the dates below, books will be
dumped.

Those in 2004 will be disposed of on May
1stThose in 2005 will be disposed of on November
1st.

After you've made your choice, email me and if
the book checks out on my database, you can have
it. I will instruct you from there. Remember though,
if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating,
you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop
for their continued support in providing us with
books.

Paul
The following bookshops actively support ACCU
(offering a post free service to UK members – if you
ever have a problem with this, please let me know –
I can only act on problems that you tell me about).
We hope that you will give preference to them. If a
bookshop in your area is willing to display ACCU
publicity material or otherwise support ACCU, please
let us know so they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk

C++
Beyond the C++ Standard
Library by Bjorn Karlsson
ISBN 0-321-13354-4,
Addison-Wesley 388 pp
Reviewed by Francis
Glassborow
I expect most readers of this
review are already well aware

of Boost and the work it has been doing for the
last ten years to develop robust and well-
designed libraries for C++. Quite a number of
these have been further refined and released in
the Library Technical Report. Even more of
them are likely to be added to the next full
release of C++ (due circa 2009).

In theory you do not need this book because
you can get all the documentation you need

from the Web. However, in practice many
people like documentation in book form and
this book covers 12 of the Boost Libraries. It
starts with a chapter on the Smart Pointer
library and ends with one on Signals. It covers
a good deal of ground in between including
chapters on Regex (regular expressions and
Lambda.

Each chapter starts with a short piece on
how the author thinks this library (the one
being covered in the chapter) will improve
your programs. It then covers the substance of
the library. In each case you will acquire
enough knowledge to decide whether you
should look at the library in detail be collecting
it from the Boost website.

The introduction to the book gives very
brief notes on many other Boost libraries.

Unless you are already well familiar with
what Boost has to offer, taking time to read this
book will be an excellent investment.
Unfortunately, there are still software shops
who reject all libraries that have not been
written in house. We can do little about them
except to repeatedly tell them that the result is
not a cost effective use of their employees.
Others happily use the libraries that come with
their development tools, assuming that this will
be of high quality, yet still refuse to
countenance use of such free libraries as those
provided by Boost. The rest of us know that the
most thoroughly designed, implemented and
tested libraries are those from Boost.

Every self-respecting C++ programmer
should be familiar with Boost and have more
than a passing knowledge of its major libraries.
This book makes acquiring such knowledge
easy. If you are not yet familiar with what
Boost has to offer, buy this book.

C++ Primer, Fourth Edition by
Stanley B. Lippman, Jos?e
Lajoie & Barbara E. Moo ISBN
0-201-72148-1, Addison
Wesley, 885 pp
Reviewed by Nicola Musatti
Highly recommended.

This is the fourth edition of one of the
oldest and most popular introductory books on
C++. Since the last edition came out in 1998
C++ as a language hasn't changed much; what
has changed is the way the language is used,
even at the beginner to intermediate level. The
increasing acceptance of the standard library
has modified the role of features such as
pointers and arrays from fundamental to
advanced. This is reflected in the structure of
the book, where std::string, std::vector and
std::bitset are introduced before null-terminated
strings, arrays, pointers and bitfields. These
standard library classes are also preferred to
their traditional counterparts in most examples,
even the very first ones.

The book is opened by an introductory
chapter and is then divided in five parts: The
Basics, which describes fundamental types and
constructs, as well as a few items from the
standard library; Containers and Algorithms;

Classes and Data Abstraction; Object-Oriented
and Generic Programming and Advanced
Topics, which presents exception handling,
namespaces and other advanced constructs.
These are followed by an appendix on the
standard library. Each chapter is opened by a
short introduction and is closed by a summary
and a very convenient glossary of the terms
defined within the chapter.

The text is complemented by boxes that
contain notes, tips and cautions and by a wealth
of exercises for which, however, solutions
aren't provided. Material for a companion
tome, perhaps.

I found "C++ Primer" well written and easy
to understand. It may not be exactly a step-by-
step, hand-holding guide but it is certainly
suited for people with some programming
experience in other languages. I'm convinced
that it would also be of use to many C++
programmers, both as a reference and as a
means to brush up their knowledge of the
language.

I didn't find any major defect in this book.
There are a few issues on which I disagree with
the authors' point of view, but I have to say that
I always found theirs reasonable. This being a
first printing it contains a few typographical
errors here and there, though not as many as in
other recent technical books.

C# and Java
C# for Experienced
Programmers by Deitel &
Deitel ISBN 1-13-046133-4,
Prentice Hall
Review by Paul Thomas
Give it a miss.

With a title like this, it's not
unreasonable to expect that a developer
experienced in C++ or Java could learn about
the differences fairly quickly and move on to
more advanced topics to get a feel for the
language. Instead page after tedious page
details the "if" keyword or what inheritance is.
The pretty diagram inside the back cover
recommends novices read their introductory
title first. I can't imagine how annoyed I'd be if
I had.

To be fair, a Java programmer only really
needs an A4 sheet with keyword and class
replacement tables. The language was that
badly ripped off that it would be hard to pad a
thirteen hundred page book like this. This
reviewer isn't a Microsoft Hater, but he is a
Microsoft sycophant hater. Books like this give
you the impression that before the .NET
platform, we were all just grubbing around
with registers.

There is some useful material contained and
it appears to be well researched and checked,
the problem is accessing it. Its torturous to read
a book like this and the format makes it
impossible to simply hunt down the
information you need. The over use of bold
type reminds me of revising college students
that highlight every other sentence in their

Programming in the .NET Environment by
Damien Watkins, Mark Hammond & Brad
Abrams ISBN 0-201-770186-0, Addison-
Wesley 523pp Reviewed by Alan Lenton

C# Programmers Cookbook by Allen Jones
ISBN 0-7356-1930-1, Microsoft
Reviewed by Paul F. Johnson

Python
Python Essential Reference, 2nd Ed. by David,
M. Beasley, ISBN 0-735-71091-0, New Riders.

Python in a Nutshell by Alex Martelli ISBN 0-
596-00188-6, O'Reilly.
Reviewed by Ivan Uemlianin

Python and Tkinter Programming by John, E.
Grayson ISBN 1-884-77781-3, Manning.
Reviewed by Ivan Uemlianin

Linux
LINUX DEVICE DRIVERS 3E by Jonathon
Corbet, Alessandro Rubini & Greg Kroah-
Hartman. ISBN 0-596-00590-3, O'Reilly.
Reviewed by Ian Bruntlett.

Software development
eXtreme Programming in Action by Martin
Lippert, Stefan Roock, Henning Wolf ISBN 0-
470-84705-0, Wiley 232 pp
Reviewed by Joe McCool

Adopting the rational unified process
(success with the RUP) by Stefan Bergstr,
Lotta R ISBN: 0-321-20294-5, Addison-
Wesley
Reviewed by: Michel Greve

The Build Master by Vincent Maraia ISBN 0-
321-33205-9, Addison-Wesley 249 pp
Reviewed by Francis Glassborow

The Software Development Edge by Joe
Marasco ISBN 0-321-32131-6, Addison-
Wesley, 308 pp
Reviewed by Francis Glassborow

Miscellaneous
RFID Field Guide Bhuptani et al. ISBN 0-13-
185355-4, Prentice Hall 263 pp
Note by Francis Glassborow

The Man Behind The Microchip - Robert
Noyce and the invention of Silicon Valley by
Leslie Berlin. ISBN 0-19-516343-5.
Reviewed by Ian Bruntlett

42 CVu/ACCU/Reviews

notes. Like somehow all of it will be
rememebered better.

My other major problem with this book and
many like it is that it cannot separate C# from
visual studio. This would be fine in a book with
a different name but is just misleading here. A
more cynical person might think the name was
made up purely for product differentiation.

Beginning Java 2 SDK 1.4
Edition by Ivor Horton. ISBN:
0764543652,Wrox Press.
1156 pp.
Reviewed by Frances
Buontempo
Highly Recommended

This book is aimed at a Java beginner,
though it would also provide good reference or
revision for someone with some knowledge of
Java programming. For a complete novice, it
talks through step by step from the start,
though you need to be prepared to read the
material slowly and carefully as it is very
detailed. If you have no experience of
programming this will get you started, giving
you a solid foundation provided you work
through the examples.

As the cover says, We assume no previous
programming experience, although progress
will be easier if you have programmed before.?
Some readers may find the examples dry, text
book stuff, but this provides a solid foundation
in the subject.

The book covers working with the basics:
numbers and strings, classes, packages,
exceptions, streams and files, and collections. It
then moves on to a selection of available utility
classes, writing graphical user interfaces,
concentrating on swing, printing and finally xml.

My only reservation is that it claims to give
an ?explanation of Object Oriented
programming?. This explanation is not so
thorough and the book really just shows how to
write classes and use inheritance in Java. If you
want to know everything there is to know about
OOP, buy a book about that: this book will
teach you how to start programming in Java
properly, and probably provide an invaluable
reference thereafter.

Mac OS X for Java Geeks by
Will Iverson ISBN 0-596-
00400-1, O'Reilly
Review by Paul Thomas
Highly recommended

For a small book, this
covers a surprising amount of
material. The main apple

extensions are actually quite small, just a few
event handlers and utilities, but the book covers
everything from the directory structure of the
Java framework to setting up application
servers. The details of the extension classes has
changed since publication, but it's a simple
matter to lookup the new class names and the
semantics are the same.

Just about everything you could need is
here, albeit in an introductory form. The
chapter on tools discusses some of the
available editors and build tools but I would
have liked to have seen more in-depth
information on using Xcode (then Project
Builder). Later chapters detail converting JAR
files to OS X application form or delivering
with Java WebStart.

The book deals with more than just Mac
peculiarities. It serves as a guide to cross
platform development in general. This might
sound odd given the "write once, run
anywhere" promise of Java, but there's more to
it than that. The fashion for Java applications
that look the same on all platforms is long
gone, and the pluggable look and feel
architecture has its own problems. If you
develop in a windows environment, you are
likely to find that your application looks nasty
when dropped onto a Mac.

The basic extension mechanism given is a
plugin architecture to isolate the platform
specific code. This is used to good effect with a
few examples of how an application is
integrated into the OS X desktop. Later
chapters introduce some of the more interesting
APIs such as QuickTime and the Speech API.

The final chapters introduce more enterprise
level subjects such as how to set up Tomcat and
JBoss. JDBC development is covered with
instructions on using MySQL or PostgreSQL. I
can't vouch for the accuracy of any of this, but
it appears to have been given a clear and

concise treatment.
All in all, a very neat little introduction to

all things Java on OS X.
Highly recommended if you are a Java

developer (of any level) and the Mac is one of
your target operating systems.

SWT/JFace in Action
byMatthew Scarpino et al
ISBN 1-932394-27-3,
Manning
Reviewed by Paul Thomas
Recommended

I didn't like the writing
style but the layout is

excellent. The writing is patchy in the
important introductory chapters and it seems
unable to decide who the target audience are -
sometimes novices, sometimes developers of
JFace itself. Each chapter follows that
irritatingly popular structure of preview,
content, review that student psychologists are
so fond of. When well executed, this structure
can be effective in guiding students through a
subject. Here it has been followed
dogmatically. Despite this, the presentation of
the content is incredibly clear and easy to
follow or reference. The worked examples
should be used as examples themselves in how
to write programming books.

The content, with the sole exception of the
chapter on events, is superb. The treatment of
the text widgets in particular does a great job of
getting the point across without swamping the
reader in details. I think the depth is just about
right. Anything not covered in the book can
easily be looked up, but those parts that need
explaining are covered. Events always seem to
be the hardest part to explain.

I never intend to use SWT unless I get
sucked into the IBM collective that is Eclipse,
but I'm glad I read this book for an alternative
view on GUI toolkits. I don't like how SWT is
implemented and the use of yet another set of
jargon is irresponsible. None of that reflects
badly on this book though. Recommended even
if you don't need it.

Due to lack of space, not all book reviews could be printed in this issue.
Reviews of the following books are available on the website (www.accu.org) and will be printed in the next issue if space permits.

