
Reports & Opinions
Editorial 4
Reports

View From the Chair, Secretary’s Report, Membership Report, Standards Report 5

Dialogue
Student Code Critique Competition 36 (and the entries for #35) 7
Francis’ Scribbles 9

Features
J2SE 5.0 New Features by Dave Salter 10
db4objects - Innovating Object Databases with Open Source by Paul Johnson and Roberto Zicari 12
Setting up a Subversion Server for Remote Use by Craig Ringer 14
Pointer Reversal: An Algorithm Design Technique by Atul Khot 18
The Agile Manifesto Explained (and a First Amendment) by Phran Ryder 19
Patterns in C - Part 5: REACTOR by Adam Petersen 21
When Worlds Collide 2 - Circuit Switch Telephony and Packet Switch Networks by Mark Easterbrook 25
Tracking Exceptions in Web Services with GUIDs by Matthew Skelton 28
Professionalism in Programming # 34 by Pete Goodliffe 32
Let’s Do C# and MySQL - Part 1: MySQL by Paul Johnson 35
Silas’s Corner by Silas Brown 39

Reviews
Bookcase 40

Copy Dates
C Vu 17.6: November 1st 2005
C Vu 17.7: January 1st 2006

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Thaddaeus Frogley
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:
Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Paul F. Johnson <cvu@accu.org>

A Disaster Waiting to Happen

It’s Sunday night. The compiler is happily
running in the background and all seems right in
the world. The phone rings and all hell breaks
loose. I’m not talking about the latest science
fiction blockbuster here either. A friend’s
computer has gone belly up and the world’s most
fantastic article has vanished without trace.

Now, if this had happened a couple of weeks
earlier, the problem would not be so significant.
However, with less than a week until the editorial
deadline, it poses a problem. Now, I could just run
a previous article or ring a friend to see if they can
knock something together, but that would be unfair
– I mean, how often does someone phone you up
to say “Hey, can you bash out 2000+ words for the
end of the week for me and make it good?” or I
could write something myself – which in itself is
problematic as I only have a finite amount of time
to do unimportant things like actually living.

I suppose this really is the problem with any
form of publication which is reliant on
submissions from the readership rather than
having an established team of writers. Looking
back on the issues I’ve edited, quite a number of
articles are from non-ACCU members. Yep, you
read that right. I’m calling in favours from
various mailing lists and friends in order to give
ACCU members a damned fine read every other
month. However, there are only so many favours
and times you can ask for submissions and they
are starting to dry up – rapidly.

This edition has been the hardest so far in
getting quality articles. It may be that you have
never written for a magazine before and you find
it daunting. Don’t worry – I don’t bite and offer
friendly advice on whipping submitted material
into shape. It may be that you don’t have anything
interesting to say. I find that hard to believe given
the diversity of members and the range of
experience there is. We have company directors to
students to freelance programmers to people who
are interested but don’t really know that much.
What I would love to see are four “strands”
1. C++ for beginners (this could also be C#,

Java, Python or C)
2 Project management
3. Defensive programming
4. Libraries
Other than (4), I can’t recall ever seeing the other
three in C Vu. There must be project managers
out there, and those who understand defensive
programming techniques or even someone who

can deliver a basic set of tutorials on a language.
In a recent conversation with a couple of
prominent academics in UK universities, I asked
them what they thought of both C Vu and
Overload. I was amazed when they replied with
a shrug of the shoulder as they had never heard
of either the ACCU or its publications. Luckily, I
had a couple of copies as PDF files and they read
them over. Other than a few niggles, they did
comment that there was a lack of anything they
could use in techniques, libraries or for those
coming into universities where the student had
never used a language before. Sure, they looked
good, but it wasn’t something they could sell.

As a responsible editor (and someone who
wants C Vu and Overload to be as widely read as
possible), it is important that these criticisms are
addressed – but to do that requires a team effort.
If you’re happy to keep things the way they are
where we are writing for us, then fair enough. If
though you want to see the magazines more
widely read, then you know what you have to do.

Come on folks – I know you’re out there. I
can hear you breathe!!!!

Where Did They Go?
Over time, people become disaffected and stop
their subscriptions. There is nothing much that can
be done about that, but it would be interesting to
find out why they decided to leave the fold. If you
know anyone who falls into that category and who
wouldn’t mind answering a couple of questions,
then please let me know so I can contact them.

I am interested in why people left. While there
is always a small number which can be termed
under the unfortunate title of “natural wastage”,
I would be interested in seeing if there is
anything that can be done to entice them back in.

Conference Report
You’ve probably noticed that over the past
couple of editions, I’ve been giving space to up
and coming conferences.

One I didn’t mention was the annual DNSCon
meeting. As the name suggests, the conference was
primarily concerned with network and software
security, but also covered other interesting aspects,
such as developments in surveillance techniques.
From my point of view, the talks on how to use a
buffer overrun to compromise a remote machine
(demonstrated on a Win2000 laptop running
VMWare with both Linux and BSD box all on the
same machine!) and the use of fluorescent lights
to bug rooms were of the greatest interest.
It was a somewhat strange conference which
lasted one day in Blackpool. Due to very poor
weather, the “fling an AOL CD” competition and
prize sandcastle competition was cancelled as

was the “most radioactive sandcastle”
competition (the conference was in Blackpool
and was won last time by very dubious means!).

One aspect which did puzzle me though. As
you are possibly aware, it is possible to read what
is on a PC’s monitor by differences in magnetic
patterns. Nothing new in that. What was good
though was that a piece was presented on the
problems of monitoring a TFT monitor. Given the
amount of electromagnetic radiation of the correct
wavelength given off, it is damned near impossible
to see what is on one of those screens. It can be
done (it was revealed outside of the conference and
over a number of pints that a UK security body had
demonstrated it live), but how? I thought at 4am of
the day of the conference I had it, but though very
bleary eyes, spotted the mistake in my maths. Oh
well, it only took me 4 hours worth of sleep!

On a sadder note (in one respect), it was
announced that this would be the final
conference at Blackpool – mainly as it is a pain
to get to and that the 2006 conference would be
in central Manchester around Christmas. Yay!

Z88DK & Pud Pud
You may remember a few editions back that I was
complaining that programming was no longer
simple and that for us to get anything now requires
large manuals, a compiler and lots of time to
debug. I then later just about retracted it in a small
piece which answered a number of points from the
ACCU general list. Well, I’m resurrecting the
subject again. Why? Because of a Z80 cross
compiler and an AVI of a BBC programme called
“Commercial Breaks” (broadcast in 1984).

The TV programme was a strange piece of TV
history as while filming, the Liverpool based
software company Imagine went under and the
camera crew was there. Other than a historical point
of view, it’s not that significant. What was
important was that there was a 17 year old who had
been programming for about a year on a Spectrum
and over 7 weeks had developed a multi-level game
called Pud Pud. This was a high resolution game,
with sound (well, burps), colour an addictive level
of play – all of which was in Z80 machine code.

How many people, in the space of a year, can
not only learn machine code and then in 7 week
create a big selling game? Alright, the processor
was an 8 bit Z80 and there was no time frame
given for the number of hours spent in front of a
TV set learning, but given the age of the chap,
I’d guess at 3 hours a night and 6 of a weekend
(12 hours in total).
Okay, you can cover a fair amount in 3 hours a
night, especially with a simple 8 bit processor.
I’m sure though that you’ll all accept the
achievement was considerable.

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

5CVu/ACCU/Reports & Opinions

What has this got to do with Z88DK?
Z88DK is a Z80 cross compiler which allows

you to target just about any Z80 based machine
(from a ZX81 to a TI89 calculator to even
embedded Z80 based systems). Source code is
easy to read and understand – take the following
for example:

#include <graphics.h>
#include <stdio.h>
#include <stdlib.h>
struct window mine;
/* Window structure */
int main()
{
int j,i;
clg();

/* Draw a series of
* concentric circles in the
* centre of the screen
* these go off the screen
* but don't generate an
* error - very cool! */

for (i=90 ; i!=0; i--)
{
circle(128,96,i,1);
if (i < 25) i--;

}
draw(0,0,255,63);
/* Draw a diamond - weak,
* but it demonstrates
* relative drawing! */
plot(200,32);
drawr(10,10);
drawr(10,-10);
drawr(-10,-10);
drawr(-10,10);

}

It’s almost BASIC! Compilation is a case of
running zcc followed by a flag for the target
machine. Very simple and very effective. Perhaps
it’s a good way to go to start people learning to
program again. Sure, it’s not as simple as having
a built in interpreter, but it’s a start.

Anyway, that’s enough for this issue. As
always, your views and comments are always
welcome. Please feel free to contact me .

Paul F. Johnson

Late News!
I don’t normally receive news at 7 minutes past
midnight on the day after editorial copy is due, but
this one is somewhat useful to those who write
software in C# that needs to interface with SQL or
PostgreSQL databases. I wouldn’t normally give
so much room (I do get quite a number of releases
about how wonderful such and such is), but this is
different as it is a cross platform approach which
is offering everyone the opportunity to participate
without cost and learn from experts to boot.

ODBMS.ORG Launches Educational Portal
on Object Databases

db4objects, providers of the leading object database
for Java and .NET, today announced the launch of
ODBMS.ORG, the Internet’s most up-to-date
educational and research portal on object database
technology. The initiative was made possible
through contributions of a group of high-profile
software experts, lead by Prof. Roberto Zicari. It is
the first of its kind in nearly two decades, since first-
generation object-oriented databases emerged in the
early 1990s and subsequently fell dormant.

The open source community has created a new
wave of enthusiasm that’s now fueling the rapid
growth of second-generation, native ODBMSs
and demand for appropriate education. The new
portal is designed to meet this fast-growing need
for educational and research resources focusing
on object database technology and the
integration of object-oriented programming and
databases.

ODBMS Growth Boom

Object databases (ODBMS) have long been
recognized as a solution to one of the biggest
dilemmas in modern object-oriented
programming (OOP): the object-relational (OR)
impedance mismatch. Now that OOP languages
like Java and .NET are finally becoming
mainstream, this problem rests at the heart of
information technology.

Thus object databases are increasingly
established as a complement to (not a replacement
for) relational databases for efficient resolution of
the OR mismatch. ODBMSs are flourishing as
embeddable persistence solutions in devices, on
clients, in packaged software, in real-time control
systems, and to power websites.

Expert Resources

The ODBMS.ORG portal features open source
software, lecture notes, tutorials, papers and
other resources for free download. It is
complemented by listings of relevant books and
vendors to provide a comprehensive and up-to-
date overview of available resources on object
database technology.

The portal’s editor, Roberto Zicari, is
Professor of Database and Information Systems
at Frankfurt University and representative of the
Object Management Group (OMG) in Europe.
His interest in object databases dates back to his
work at the IBM Research Center in Almaden,
CA, in the mid ?80s, when he helped craft the
definition of an extension of the relational data
model to accommodate complex data structures.
In 1989, he joined the design team of the Gip
Altair project in Paris, later to become O2, one
of the world’s first object database products.

The Expert Section contains exclusive
contributions from internationally recognized
experts including Scott Ambler, Michael Blaha,
William Cook, and Carl Rosenberger.

Scott Ambler is a consultant with Ontario-
based Ambysoft and thought-leader of the widely
recognized Agile Modeling (AM), Agile Data
(AD), and Enterprise Unified Process (EUP)
methodologies.

William Cook, professor at the University of
Texas, and Carl Rosenberger, chief software
architect at db4objects, have contributed their
ground-breaking joint paper on Native Queries
(NQ), which discusses the use of programming
languages like Java or .NET to express database
queries that are 100% typesafe, 100% refactorable
and 100% object-oriented. Native queries are
poised to become the unifying standard for object-
oriented queries in the same way that SQL has
standardized the query interface for relational
databases - replacing earlier, non-native attempts
such as ODMG and JDO.

Michael Blaha, co-inventor of UML and co-
author of the seminal book Object-Oriented
Modeling and Design with UML (with James R.
Rumbaugh), has contributed a new paper on

“The Dilemma of Encapsulation Versus Query
Optimization.”

View from the Chair
Ewan Milne <chair@accu.org>

This edition’s View from the
Chair is a departure from the
usual cut and thrust, but has a
more sombre note as it is my
unfortunate duty to have to
report the untimely passing of
Christopher Hill (1955 –
2005), a long-standing ACCU
member and book reviews
collator, who died suddenly of a stroke in July.

Christopher had many interests in his life, and
enjoyed a wide-ranging career. An electrical
engineer by training, he worked for Marconi Radar
Systems before becoming Computer Manager for
the company that organized evangelist Billy
Graham’s mission to London in 1989. After this he
joined a theological college for a time, with the
intention of taking Holy Orders. This, however, was
not to be and he returned to development work. He
joined ACCU in 1997, and from 2000 ran his own
consulting company. Two years ago he responded
to requests for a volunteer to collate the book
reviews for C Vu and the website, and carried out
the task with admirable efficiency and
conscientiousness. In recent years Christopher was
also a dedicated member of the BSI C++ panel, and
his contribution to both the panel and the ACCU
will be sadly missed.

Ewan Milne

Membership report
David Hodge <membership@accu.org>

The peak period for renewals has just gone by.
Some members said that they didn’t receive the
first reminder which was sent out by email in
July, and only responded to the second reminder
in early September.

If you keep an eye on the journals shipping
slip you will find that the expiry date of your
membership is always listed. All journals
previous to this have had a label printed by me,
and then stuck on by our mailing organisation
(AbleTypes in Oxford). From this issue I am
supplying a file of addresses to AbleTypes who
will then print the addresses themselves. If you
spot any problems that this new process creates,
please let me know.

David Hodge

Secretary’s Report
Alan Bellingham
<secretary@accu.org>

There is always a long gap between the first and
second committee meetings of the year. This is
due to the presence of the summer holiday period:
it’s not hard to see that a meeting in mid August is
not going to attract as many of the committee as
desired. Hence this year’s second meeting took
place on the 17th of September, actually after the
supposed deadline for this issue of CV u.

This time the venue was in Moseley,
Birmingham in the English Midlands. Moseley
is the home town of Jez Higgins, and he’d found
a meeting room directly next door to a
recommendable eating place, and somewhat
further from the tornado alley that is where he
actually lives. As is the custom, we met
beforehand in the eaterie, and discussed some of

6 CVu/ACCU/Reports & Opinions

the topics that would be addressed during the
meeting.

At the meeting itself, we as-per-usual checked
the minutes of the previous occasion. With the four
month gap since that previous meeting, a good
number of the actions had been cleared, which is
good news. This was followed by the officers’
reports which should pretty closely match what
those officers have reported in this issue.

Next followed the first non-routine item on the
agenda - how we should deal with the treasurer’s
role. As I mentioned last time, this post has
historically been a problematic one, and we may
not yet have settled it correctly. Long term
attenders at the AGMs will know the perennial
attempts of treasurer after treasurer to try to get
more up-to-date with the approval of the accounts,
and this does indicate that we are possibly
approaching the whole issue in the wrong way.
Also, despite his reservations, Stewart Brodie has
yet to be fully allowed to depart his post.

This is not a satisfactory long term situation,
but Jez Higgins has volunteered to try to put in
place a new system, to cover this financial year
onwards. For the moment, Stewart will remain
one of the signatories (changing signatories on the
organisation’s bank accounts is a very long and
drawn out processs), but we hope to reduce his
immediate role to that of receiving invoices and
sending out payments, while Jez takes over the
acting Treasurer’s role.

A late addition to the agenda was that of
whether the ACCU should offer a special reduced
membership rate to the unwaged. We currently
have one for students. The constitution prevents us
instituting a new membership type, but the
committee’s conclusion was that yes, the existing
discount for students could be made a
concessionary rate applicable to students, unwaged
and other suitable candidates. In other words, we
didn’t have to invent a new membership type.

The final, and longest, item on the agenda was
that of the website. This is a major project, second
only to running the conferences, and it affects the
public face of the ACCU. Some of you will have
been wondering what has happened to it. What
has been happening is that work has been taking
place, on a separate devlopment server. What
hasn’t happened is a big bang - there’s just too
much to do all at once for that to work. There has
been a bit of a lull in the development, which may
be due to our taking our eyes off the ball and not
riding the developers closely enough. However,
we decided to stick with it, and progress should
resume. We hope that by the time of the next
meeting, the new site will be ready to be unveiled.

And with that, we wound up the meeting. The
next one will take place (circumstances
permitting) on the 19th November. Deadlines
allowing, the report on that meeting should be in
the next issue.

Alan Bellingham

Standards Report
Lois Goldthwaite <standards@accu.org>
C Vu has received several letters asking just what it
is that ‘the standards people’ do. In response to
popular demand, here are a few words about how
things work and how you can become a part of them.

Everyone knows that the C and C++ language
standards are written by committees of language
experts from many nations. These committees,
called Working Groups, meet twice a year for a
week each time, to discuss any problems that have
been discovered in the current standard and to work
on new provisions for inclusion in a future revision
of the document. Why?, you might ask. Isn’t writing
a standard a one-shot effort, after which everyone
can pat themselves on the back and go home?

Well, ... no. Even defect-free standards (which
these are not) need maintenance, just like software
programs need maintenance. Neither one will wear
out from use, as engine parts wear out, but the world
changes, requirements change, and they need to
evolve to address that. Remember Turbo Pascal? For
those who don’t, I will say only that it was a very
nice tool for writing a single file of source code and
compiling it into a .COM program to run in less than
64K of memory on a PC running MS DOS. (If that
sentence makes no sense to you, find the oldest
veteran programmer you know and ask for a
translation.) I still hold Turbo Pascal in very high
esteem, but I don’t use it any more. Now that I need
to write more ambitious programs, which not only
process large amounts of data but are composed of
thousands of lines of source code, I reach for tools
which address those requirements. C++ in particular
is intended for use in developing large systems.

The C and C++ Working Groups are jointly
sponsored by ISO (the International Organization
for Standardization) and IEC (the International
Electrotechnical Commission). The language
experts are sponsored by their respective national
standards body – in the UK it is BSI, in the US it
is ANSI, in Germany it is DIN, and so on.

And who are these ‘experts’who take part in the
Working Groups? For the most part, they are
working programmers like you and me. Yes, there
are people like Bjarne Stroustrup, who invented
C++, and at least half a dozen other people whose
books are filling up your must-read shelf. But be
aware that ‘expert’ in this context is just a title –
that’s what national standards bodies call their
delegates to all international meetings. Anyone who
volunteers to represent the UK at WG21 can
become an officially accredited UK expert on C++.
That plus 99p will get you a cup of tea at most
company cafeterias.

Another thing to be aware of is that when the
UK sends ‘experts’ to these meetings, they are not
expected to carry the Brain of Britain burden all
by themselves. They can call on the expertise of
the entire BSI standards panel, which is (at latest
count) approximately 50 people interested enough
in C++ to follow the issues and express their
opinion. The C++ panel meets face-to-face six

times a year, but attendance is not compulsory and
much of the discussion takes place via email
reflector. During Working Group meetings, the
delegates are in constant email communication
with the folks back home, whose comments can
then be inserted into the Working Group
discussions in real time. (And mouthing these
insightful comments makes those of us in
attendance look really smart!)

One reason why the UK contributions are valued
by WG21 is because our panel does consist of
working programmers, whereas many of the
committee members from other countries represent
compiler vendors or library providers, not
programmers in the trenches. Our youngest member
is in university, our oldest is retired. There is no
entrance exam to get accepted, and no charge to
participate. (Unfortunately there is no remuneration
either, other than the enjoyment of deeply technical
discussions.) If you would like to join the C++ panel
– even for a trial period – or just to visit a meeting in
London (the final one this year is Nov 14) please do
not be shy. Everyone is welcome. And it’s a great
opportunity to improve your C++ knowledge. Write
to standards@accu.org for details.

There is also a BSI C panel. Neil Martin has
recently been appointed convenor of this group.
If you are interested in working on C issues,
please write to standards@accu.org and I will put
you in touch with Neil.

International standards can come from other
sources, too. ECMA (originally the European
Computer Manufacturers Association) is one such
standards development organisation; various
industry consortia, such as IETF, W3C, Oasis, and
the Open Group, are some others. Sometimes their
standards are adopted as ISO/IEC standards via a
‘fast-track’ process, in which national standards
bodies vote on the final document. (In contrast,
standards developed by a Working Group go
through several votes on their drafts.)

The BSI standards panels have some input into
the UK vote on adopting these standards, and
sometimes can take a (limited, unfortunately) hand
in their development. We currently are considering
revised ECMA standards for C# and CLI (the
standardese name for what is commonly known as
the .Net infrastructure). And we also are soliciting
comments on ECMA’s standard for Eiffel in the
.Net environment. Please get in touch (see address
above) if you are interested in these topics.
Here are some URLs of standards organisations if
you want to read further:

www.iso.ch
www.iec.ch
www.bsi-global.com
www.ietf.org/
www.w3c.org
www.oasis-open.org
www.opengroup.org/

Lisa Goldthwaite

Advertise in C Vu & Overload
80% of Readers Make Purchasing Decisions

or recommend products for their organisation.
Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.org

7CVu/ACCU/Dialogue

Dialogue
Student Code Critique Competition 36
Set and collated by Roger Orr
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers’
comments and criticisms of published entries are always welcome, as are
possible samples.

Before We Start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/). This is aimed at people
living overseas who get the magazine much later than members in the UK
and Europe.

Student Code Critique 35 Entries
Here is a C++ header file with a number of potential problems. Please
critique the code to help the student identify the problems and to help them
to provide some better solutions.
Note: the class Report is not shown. It contains a large amount of data,
which can be explicitly deleted by a call to ClearAll.

// Reports : vector of reports
class Reports : public map<Data*, Report>
{
public:
Reports() : nIndex(0) {}
void ClearAll()
{
for (iterator iter=begin();

iter != end(); iter++)
(*iter).second.ClearAll();

}

Report& GetReport(int nReport)
{
int nSize = size();
assert(nReport < nSize);
if (nIndex == 0 || nIndex > nReport ||

nIndex >=(nSize-1))
{
iter = begin();
nIndex = 0;

}

for (; iter != end(); iter++, nIndex++)

{
if (nIndex == nReport)
return iter->second;

}
// keep compiler happy
return *((Report*)0);

}

protected:
int nIndex;
iterator iter;

};

From Simon Farnsworth <accu@farnz.org.uk>
Firstly, I should apologise for the poor quality of this critique. I’ve only
recently started using the STL, so my understanding is limited. I’m looking
forward to seeing and learning from more expert critiques.

My immediate reaction upon seeing this code was confusion: the comment
says that Reports is a vector, but the code indicates that it is a map. While
both are containers, map is associative (in which you reference elements
by a key), while vector elements are referenced by position. Given the
presence of GetReport(int nReport), I shall assume that the comment
is right, and that the code is an attempt to induce map to behave like
vector.

It is possible that the goal is to have a type that is a map in some contexts,
and a vector in others. If this is the case here, the student would perhaps
be better advised to write a container which includes a map and a vector
as elements, and provides those operations on map and vector that are
needed.

If this was intended as a vector, not a map, then changing the code
to begin: class Reports : public vector<Report> removes the
need for GetReport(); vector provides operator[] to retrieve
items.

GetReport() is a mess: it permits nReport to be negative, but does
not handle this case (nReport should probably be unsigned, not int). It
also relies on the fact that map is a sorted associative container to ensure
that a report’s number does not change regularly; since there are no
guarantees about the values of the keys used, this could lead to unexpected
behaviour. Finally, it uses casts to trick the compiler into returning a bad
reference. The comment implies that this was done to silence a compiler
warning; in this case, the warning is generated since GetReport() can
fail to return a report. However, vector’s operator[] will handle this
case for us.

Finally, a couple of style notes: (*iter). is better written as iter->,
and preincrement is generally preferred to postincrement, as the code is
slightly simpler (although the optimizer should fix this for you).

Putting this all together results in the following code:

// An exception thrown whenever a requested
// report cannot be found

class NoSuchReport {
private:
unsigned report_number;

public:
NoSuchReport(unsigned nReport) :
report_number(nReport) {}

unsigned getReport()
{ return report_number; }
// Compiler can safely autogenerate the
// big four.

};

// Reports : vector of reports
class Reports : public vector<Report>
{

void ClearAll()
{

for(iterator iter = begin();
iter != end(); ++iter)

{
iter->second.ClearAll();

}
}

};

Should GetReport be needed for legacy reasons, it is easy enough to
implement as follows:

Report &GetReport(unsigned nReport)
{

return (*this)[nReport];
}

8 CVu/ACCU/Dialogue

Commentary

This code looks relatively innocuous on a first reading, but repays further
thought as there are many problems lurking within this relatively short
piece of code.
To my mind the two most serious problems are (1) the confusion about
whether this class contains a map or a vector and (2) ownership issues.

The first criticism concerns access to the objects of the class. Does
Reports represent an array or an associative container? It may be both,
but there is a fundamental asymmetry about the class as currently coded
since all the associative behaviour comes form inheritance and the array
like behaviour by an additional method. My inclination is to suspect the
inheritance from map and I would prefer the class to contain a map as
member data and provide methods to manipulate it.

There are several ownership issues. Firstly, the default copy
constructor and copy assignment operator make it possible to copy the
data structure. This is probably not behaviour the writer expected and is
likely to be expensive; as the map contains the reports each one will be
copied. There are two standard solutions to this particular issue: either
provide a private definition of these two methods (but no
implementation), or inherit from a non-copyable class such as
boost::noncopyable.

The second ownership issue concerns the member data nIndex and
iter. These members seem to be designed to optimise iteration over the
elements of the class by keeping state between successive calls to
GetReport but this is unreliable if the collection changes between calls
to this function. I am also unhappy that member data like this is made
protected rather than private. If the performance of the iteration
actually is an issue (as determined by some performance measurements)
then a better solution would be to provide an array-like iterator for the class
following the usual STL pattern.

The third question I have about ownership is the onus seeming to be on
the user of this class to call ClearAll() before the Reports object is
destroyed. I would prefer this to be linked to the class’s destructor for
safety.

The final comment I would wish to raise with the writer of the code
at this point would over the return of a null reference when GetReport
fails. References never should be null, and returning one makes the code
non-portable and well as unreliable. It would probably be better to
indicate failure by throwing an exception, perhaps
std::out_of_range, rather than twisting the language simply to
remove the compiler warning.

The Winner of SCC 35

The editor’s choice is:
Simon Farnsworth
Please email francis@robinton.demon.co.uk to arrange for

your prize.

Student Code Critique 36
(Submissions to scc@accu.org by Nov 1st)

Here is a C program generating a couple of prime numbers as part of an
exercise on encoding/decoding with public and private keys. There are two
bugs with the program: it produces the same output each time it is run with
one compiler (MSVC) and it loops forever with another (gcc). Please
critique the code to help the student resolve both these problems with the
algorithm. Additionally suggest any improvements to the coding style and
point out any other issues with the algorithms used. You can also broaden
the critique to include a C++ solution if this may assist the student with
their original task.

#include <stdlib.h>
#include <stdio.h>
int main()
{

//need to generate number, then find out
//whether it is a prime, twice.
//then need to generate e and see if it is a
//factor of n.
int i1, rem1, i2, rem2, i3, rem3, rem4;
int p, q;
int n, phi, e;

//These are the two prime numbers output
int m, d;

i1 = 0;
i2 = 0;
i3 = 0;
while(i1!=1)
{
p = 100 + 99*rand()/((double)RAND_MAX+1);
//p is random number between 100 and 200.

i1=p-1;
rem1 = p%i1;

//find out whether the number is prime
while(rem1!=0)
{
i1--;
rem1 = p%i1;

}
}

while(i2!=1)
{
q = 100 + 99*rand()/((double)RAND_MAX+1);
i2=q-1;
rem2 = q%i2;
while(rem2!=0)
{
i2--;
rem2 = q%i2;

}
}

n = p*q;
phi = (p-1)*(q-1);
// phi is the number of primes less than n!

//e picked such that gcd(e, phi) = 1
while(i3!=1)
{
e = phi*rand()/((double)RAND_MAX+1);
//e is a random number between 0 and phi.

i3=e;
rem3 = phi%i3;
rem4 = 1;

//this loop finds the highest value of i3
//which divides both numbers. It needs to
// be 1, so they are relatively prime
while(rem4!=0)
{
i3--;
rem3 = phi%i3;

if(rem3==0)
rem4 = e%i3;

}
}

//the loop will find the value of m such
//that e*d mod phi = 1.
m = 0;

while((e*d)%phi !=1)
{
d = (m*phi+1)/e;
m++;

};
printf("(m,d) is (%i,%i)\n", m,d);
return 0;

}

9CVu/ACCU/Dialogue

Francis’ Scribbles
by Francis Glassborow <francis@robinton.demon.co.uk>

Multi-threading

Several years ago Gary Lancaster implemented my Playpen library. The
implementation worked well and did exactly what I wanted. We fixed a
couple of bugs and added a bit to it.

One day I added my own default palette, which I implemented by with
a function. The obvious place to call this was from within the constructor
for playpen. At that time, everything seemed to continue to work.

Then I noticed that on some machines the screen incorrectly updated
when a program first constructed a playpen instance. It was not a big
problem and seemed relatively harmless. I mentioned it to Gary but he
could not see a cause and assumed that it must be something I had tweaked.
At that time, I had forgotten that I had added a function call to the
constructor. I left it and simply warned users that there was a harmless bug
lurking in the initialisation of a playpen window.

A couple of months ago I was running a quick test and happened to
write:

int main(){
playpen paper;

}
In other words a bare minimum program using a playpen to which I
intended to add some more test code.

To my surprise, the computer seemed to lock up. After about a minute
it recovered and displayed an error message about a misbehaving
application.

This is no longer a matter that could be ignored. I experimented a bit to
discover what I had to do to avoid this lock-up. In the end I discovered that
doing almost anything that stopped the program from closing immediately
solved the lock-up problem.

I still did not understand the problem but I could see a simple solution,
insert a call to a wait function in the constructor of playpen. [It was then
that I realised that I had altered Gary’s code by adding the call to the
function that provided my default palette.]

Now, that fixed the other problem as well, the screen updated correctly
when a program created a playpen Window.

I reported my experience and fix to Gary. Now that gave him enough
of a clue to really fix the problem, which was in the original code.

You may be wondering what this has to do with your code. My playpen
type relies on using multi-threading. Effectively it implements all the
special simple GUI functionality as a distinct thread. The underlying
problem was that programs were returning from constructing a graphics
window too quickly, before Windows had finished.

This only shows up on modern fast hardware, where the CPU speed is
high enough to beat some other process.

This is a good example of the problems of multi-threading. You cannot
check your code is correct by testing (actually, you never can do that). Your
code may work perfectly for years and then start to fail occasionally. You
are certain that the code is OK because it has worked for so long and
assumes that the problem is somewhere else. However increased hardware
performance begins to make a real problem manifest.

By hindsight, I can see how the symptoms should have pointed me to
the cause. The added function in the constructor was trying to update the
palette definition while the Playpen window as still being constructed.
However, had I tested a truly minimal program much earlier I would have
got a much better clue, because trying to destroy a window before it has
finished being created is sure to provide a recognizable symptom.

Never ignore little irritants, and test code incrementally starting with
the simplest program you can write. Even a little extra may hide a real
problem.

I would be very happy to hear your comments on this and other aspects
of problems revealed by higher performance hardware.

Commentary on Problem 21
Consider:

class x;
class xyz {
public:
xyz();
~xyz();
static int const elements(100);

// rest of interface
private:
x * pointers[elements];

};

xyz::xyz(){
for(int i(0); i != elements; ++i){
pointers[i] = 0;

}
}

xyz::~xyz(){
for(int i(0); i != elements; ++i){
delete pointers[i];

}
}

Is there a better way to implement the constructor? Of course there is, and
I know some of you know it but do you?

Let us have a look at the code before dealing with the problem.
The first point is that it looks as if the design intends that xyz instances

own the items pointed to by the elements of pointers. If that is the case,
why did I use an array of raw pointers? In addition, why did I use a fixed
size array? That seems to make very little sense.

Without some idea as to what xyz is supposed to do (and the name is
not exactly helpful), it is hard to see why I did not use something such as
std::vector<x> or std::deque<x>. However consider the case where
x is not a copy constructable, nor copy assignable type. If it also lacks a
default constructor, we do not have many options left.

While testing the code I got a rude shock. First, this is what I was
looking for:

xyz::xyz(): pointers() {};

While we cannot explicitly initialise an array, we can force default
initialisation. In general, that gains us nothing, because that would happen
anyway. The default action for the fundamental types is to do nothing; we
can force zero initialisation with the above syntax.

Now to the rude shock:
static int const elements(100);
is ill-formed. The compiler considers it an attempt to declare a static

member function and requires that an in class initialisation be written as:
static int const elements = 100;

Problem 22
Well the problem is that I have run out of a ready supply of little coding
surprises and problems. It is time that you got involved. Please send in at
least one coding surprise. If you do not have any then I guess you do not
actually do much programming.

The surprise can be in any of the programming languages that are used
regularly for application programming (C, C++, C#, Java, Python etc.)

Cryptic clues for numbers
Neil Horlock sent in this clue for last issues number (471, which is 20 more
than 451 which was the title of a Ray Bradbury novel about a post
catastrophe world where books were burned as evil.) The first part of my
clue references the issue of C Vu in which it appeared (17.4)

Roundabout a maximum break, a thousand less than the number of the
last caller.

I like his idea of using ‘roundabout’ to clue rotating the digits, however
I think the second part of the clue could do with a bit more polish. Anyone
like to propose improved wording based on the same idea (for those from
elsewhere in the World, 1471 is the number for recovering the number of
the last person who called you.)

This issue’s clue
One for love too? Sounds like the right day for it!
Provide your clue for the solution to my clue. No prizes, just a warm

fuzzy feeling of seeing your name in the next issue.
Francis Glassborow

Francis Glassborow is a freelance computer consultant and long-term member
of BSI language panels for C, C++ and more recently Java and C#. He is a regular
member of the UK’s delegations to WG14 and WG21. He is also the author of ‘You
Can Do It!’ and introduction to programming for novices.

10 CVu/ACCU/Features

J2SE 5.0 New Features
by Dave Salter <david@dividsalter.co.uk>

J2SE 5.0 has been available for download since the end of 2004. This new
release included many changes and enhancements to the Java platform such
as speed and stability. Additionally, some changes were made to the Java
language itself. These fairly major changes made to the language are:
● Generics
● Enhanced for loop
● Annotations (sometimes called metadata).
● Autoboxing and unboxing
● Typesafe enumerations
● Variable arguments (varargs)
● Static imports

Using these new language features in your applications can have a big
effect on your code, so this article aims to provide an overview of these
new features so that you can start leveraging them in your code. As a Java
developer I make extensive use of these features now and find that they
bring the Java language much more upto date.

Getting the JDK
The latest version of J2SE can be downloaded from Sun’s website if you
are a Windows/Linux developer or from Apple’s website if you are an
Apple developer. I’m not going to provide details about how to install the
JDK as this is primarily an article about the new J2SE 5.0 features. Before
you start developing however, its worth checking that you have the correct
version of Java installed. Running java -version should produce output
similar to the following.
C:\>java -version
java version "1.5.0_03"
Java(TM) 2 Runtime Environment, Standard
Edition (build 1.5.0_03-b07)
Java HotSpot(TM) Client VM (build 1.5.0_03-b07,
mixed mode, sharing)

Generics
What are generics? Generics are akin to templates in C++ in that they allow
developers to write type safe code that operates on different types of
objects. This is very useful when dealing with collections as it is no longer
necessary to cast objects to specific types when extracting them from
collections. This therefore eliminates the potential for getting
ClassCastExceptions and makes code much easier to read.

In this trivial example, consider a collection of Strings (it doesn’t have
to be strings however, you could have a collection of any type of object).
Prior to Java 5, if you wanted to extract the contents of a collection, you
would use code such as that below:

import java.util.*;

public class Generic {

public static void main(String[] args) {
// Create a collection and add some items to
// it.
Collection languages = new ArrayList();
languages.add("Java");
languages.add("C#");
// Now get the items from the collection.
Iterator iterator = languages.iterator();
while (iterator.hasNext()) {
System.out.println(

(String)iterator.next());
}

}
}

Notice that to extract objects from the collection, we have to explicitly cast
the retrieved objects to be Strings (or whatever class the collection consists
of), potentially allowing us to get the dreaded ClassCastException if
we had inadvertently added the wrong type of object to the collection in
the first place. Also, its difficult to see from looking at the code what the
collection contains. If there was an API method like the following, what
exactly would the collection contain?

public doStuff(Collection items)

Using generics, our simple application can be re-written to get rid of the
cast and made type safe.

import java.util.*;

public class Generic2 {
public static void main(String[] args) {
// Create a collection and add some items to
// it.
Collection<String> languages =

new ArrayList<String>();
languages.add("Java");
languages.add("C#");
// Now get the items from the collection.
Iterator iterator = languages.iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());

}
}

}

You can see that the collection has been explicitly declared to contain only
String objects. Also note, that there is no cast required to extract items
from the collection. The VM knows exactly what type of object is in the
collection and knows how to return it to the calling application. If we tried
to put something into the collection that isn’t of the required type (in our
small example, anything other than a String), then the code will simply fail
to compile.

If we now re-wrote our rather obscure method doStuff, it may look
something like the following. Here we can see exactly what type of object
the collection contains.

public doStuff (Collection<String> items)

Enhanced for Loop
The enhanced for loop construct available in Java 5 allows us to refine
this code even further and remove the need for using the Iterator to loop
through the collection. This construct allows our simple application to be
re-written, yet again, as:

import java.util.*;

public class Generic3 {
public static void main(String[] args) {
// Create a collection and add some items
// to it.
Collection<String> languages =

new ArrayList<String>();
languages.add("Java");
languages.add("C#");
// Now get the items from the collection.
for (String language : languages) {
System.out.println(language);

}
}

}

Features

11CVu/ACCU/Features

This new construct is declaring that the code should loop through each entry
in the collection languages. Each entry in the collection will be declared
as a String called language which is then printed out to the console.

Hopefully you’ll agree that these new features of Generics and the
enhanced for-loop allow Java developers to write cleaner and safer code.

Annotations
Annotations provide a new feature to the Java language that potentially
allow a vast amount of time to be saved when developing applications.
They’ve been available in C# from the beginning and are now available to
Java developers.

Annotations allow developers to add “hints” into their code (in a similar
fashion to Xdoclet or JavaDoc tags) that the compiler can interpret at
compile time. This allows the build process to do a variety of things such
as produce artifacts that would otherwise have to be manually created, or
to check that code complies with certain criteria.

There are 3 annotations that are supplied with J2SE 5.0, but developers
have the ability to write additional annotations if they desire. These 3 basic
annotations are @Override, @Deprecated and @Suppress.

@Override is applied to methods and is used by the compiler to check
that overridden methods are declared correctly. A simple example of this
would be to apply it to the toString() method of a class. @Override
checks that the method to which it is applied correctly overrides its parent
object. If the method is overridden incorrectly (e.g. it is spelt incorrectly
or has the wrong signature) then a compile time error will be generated.

public class Annotation1 {

@Override
public String toStrng() {
return "...";

}

}

In this code fragment above, the method toString() has been declared
incorrectly, e.g. public String toStrng() - note the deliberate spelling
mistake. The @Override tag causes an error to be issued at compilation
time.

C:\>javac Annotation1.java
Annotation1.java:3: method does not override a
method from its superclass

@Override
^

1 error

@Deprecated is applied to methods in a similar fashion to @Override.
This annotation will cause a compiler warning to be issued if a deprecated
method is used.

Finally, @Supress is used to tell the compiler to suppress specified
warnings.

The use of annotations is particularly of importance in the J2EE arena
and is becoming more important in the strive to make J2EE easier. A couple
of examples of this are Webservices (JAX-WS 2.0) and Enterprise Java
Beans (EJB 3). The J2EE 1.4 way of creating web service and EJBs
involves creating several different interfaces and various verbose XML
configuration files that describe the webservices and EJBs being developed.
With JAX-WS annotations, it will be possible to declare that a class should
be exposed as a web service simply by putting a @WebService annotation
before the class declaration. With EJBs its very similar. To declare a class
as a stateless session bean is simply a matter of putting the @Stateless
annotation before the class declaration. Of course there are more options
that can be added into web services and EJBs to control their behaviour,
but the fundamental principal is that all these options can be specified in
code as annotations.

Autoboxing / Unboxing
Autoboxing and unboxing allows Java code to automatically convert
between the basic primitive types (int, long, double etc) and their class
equivalents (Integer, Long, Double etc.) and vice-versa. Prior to Java 5,
if you needed to convert an Integer to an int, the code required would
look something like

public class Autoboxing {
public static void main(String[] args) {
int value = 10;
Integer newValue = new Integer(value);
Autoboxing ab = new Autoboxing();
ab.doStuff(newValue);

}
public void doStuff(Integer value) {
System.out.println(value);

}
}

In this code, the wrapper class newValue has to be directly instantiated
from the varible value to be passed into the method. With Autoboxing,
this is no longer required as the int will be converted into an Integer for
us:

public class Autoboxing2 {
public static void main(String[] args) {
int value = 10;
Autoboxing2 ab = new Autoboxing2();
ab.doStuff(value);

}
public void doStuff(Integer value) {
System.out.println(value);

}
}

Typesafe Enums
Enumerations are now available in Java just like they are in C++ or C#.
They are declared in a similar fashion using the enum keyword.

public class EnumTest {
private enum Language { Java, CSharp,

CplusPlus }
public static void main(String[] args) {
Language myFavourite = Language.Java;

}
}

Prior to Java 5.0, they recommended way of declaring enumerations like
this was to declare an interface which consisted of a set of hardcoded final
static integers. Not only did this force classes to implement unrequired
interfaces, but it made code fragile in that it wasn’t typesafe and you could
easily set a variable outside the range of the enumeration. The new
enumerations help solve these problems.

Varargs
Varargs allows methods to be written that take a variable number of
parameters that is not know at compile time. This is similar to C functions
such as printf() and scanf(). When used in combination with the new
for-loop syntax it is no longer necessary to pass collections of parameters
into methods and then use an iterator to loop through the parameters once
inside the method.

The vararg parameter(s) on a method are denoted by placing a “...”
postfix onto the variable type as shown in the following example:

public class Vararg {
public static void main(String[] args) {
Vararg vararg = new Vararg();
vararg.parseData("Java", "C#", "C++");

}
public void parseData(String... data) {
for (String item:data) {
System.out.println(item);

}
}

}

Static Import
Static imports are probably one of the least used features available to
Java 5. They allows you to specify static variables in another class without
having to specify the fully qualified name of the class being imported.
Members can be statically imported into a class using the import static
construct.

import static my.class.static.member;
[concluded at foot of next page]

12 CVu/ACCU/Features

Summary
Java 5 introduced new language features that allow developers to write
code that is more robust whilst at the same time reducing the amount of
boiler-plate code that needs to be written. If you’re new to Java or are still
using JDK 1.4, then its worth while investigating all the new features
provided in Java 5.

Dave Salter

Resources
Apple Java Website – http://developer.apple.com/java
EJB 3 - http://java.sun.com/products/ejb/docs.html
JAX-WS 2.0 Web Services - https://jax-rpc.dev.java.net/
Sun Java Website – http://java.sun.com
Xdoclet - http://xdoclet.sourceforge.net/xdoclet/

index.html

[continued from previous page]

db4objects – Innovating
Object Databases with
Open Source
by Paul F. Johnson <editor@accu.org>
and Roberto Zicari <roberto@zicari.de>

Many open source products and projects can easily be mapped to closed
source products and often match their scope, concept and capabilities.
Linux as an operating system, MySQL as a relational database, OpenOffice
as an office suite immediately spring to mind as examples of this. Their
main competitive advantage often is their license price being zero. As a
consequence, it is often claimed that open source is commoditising
software, driving down prices and giving buyers a direct alternative to often
monopolistic, high priced, closed-source products.

However, away from the limelight of the open source main street,
there’s also a series of open source products that are not followers but
leaders to the way we use and build software (such as Apache, Hibernate,
and db4o.)

db4objects?

db4objects is the creator of db4o, the leading open source object database
for Java and .NET. Open source since November 2004, it has seen an
impressive growth and is poised to change (or add to) the way we think of
persistence (a fancy way to say: database) in object-oriented programming
environments.

Recently, I had the chance to interview Christof Wittig, CEO of
db4objects (www.db4o.com).

Object databases have failed in the 1990s. Why would db4o’s open source
object database be more successful?

db4o is far more successful than any vendor has ever been to introduce a
persistence solution that simply fits object-oriented programming (OOP)
languages such as Java and .NET perfectly.
In just 8 month we have had over 250,000 downloads, built a user
community of more than 6,000 professional Java and .NET developers and
have signed commercial contracts with the likes of BMW, Hertz and Bosch.
The main reason for db4o’s successful launch is the fact that we’re open
source which gives us a powerful tool to enter the market at low cost, build
a large user base very fast, and outpace any closed source vendor in setting
de-facto standards.

So you just go open source and that makes the difference?

No. There are also differences in the market segment we target and the
advent of OOPs in the main stream.
When object-oriented databases came with great fanfare to market in the
early 90s, the protagonists saw them as a displacement for relational
databases in the data centre. We believe they targeted the wrong segment
with the right product.
In contrast to 1st generation object-oriented databases, db4o is the
embeddable persistence solution for all client-side Java and .NET
applications. As an example, Eastern Data in Hatfield Perevel, Northeast of
London, builds its future line of mobile PDA applications for field force
automation (FFA), e.g. for van deliveries of milk, with db4o. They enjoy
db4o’s zero-administration capabilities, reliability and fast performance. Not
only is it possible to bring products to market faster, but also to build more

object-oriented, better software which
is easier to re-factor and reuse in the
long run than when using relational
database technology.
We also benefit from the increased
adoption of Java and .NET. Today it is
clear that OOP are the future. Hence,
the so-called object-relational
mismatch, the inherent incompatibility
of OOP with relational databases has
become a real business problem, not
an academic challenge as it was in the
90s.
In addition, we were able to write our product in native Java and .NET which
makes the database even less intrusive than old-style databases written in
C, more easy to work with and to deploy in large numbers. After adding a
single JAR/DLL file to your project, it takes just one line of code to store any
object - no matter how complex your object model is!

Relational databases such as those of Oracle, IBM, or MySQL are the market
leaders. How do you want to compete with them?

They all also target the server side data storage and do a great job there.
But they fall short on clients, in zero-administration environments. The
reason for this is the inherent incompatibility of relational data models and
the object schema used by Java and .NET developers.
As a result, the big three, Oracle, IBM and Microsoft combined control about
85% of the overall relational DBMS market, while they command only 25.1%
of this embedded DBMS market. We believe that these facts prove that
customers seek specialized capabilities in various segments of the
embedded market, that go beyond what RDBMS can offer.

Let me play devils advocate: There’s a lot of data legacy. How do you want
to mitigate the immense efforts it takes to switch a database.

That’s a great question and surely another reason, why old-style, server side
OO databases failed: They weren’t able to provide a painless migration path.
This is totally different for db4o, the embeddable object database: There’s
no legacy in devices, on the client side. Every instance of a BMW car, for
example, that is shipped with db4o, has a fresh database instance running.
No data migration here. Also there’s no “legacy in mind” because we have
no DBA and his set of tools such as report writers. Usually you don’t write
ad-hoc reports against the database running in your game box, do you?

But what about object-relational mappers like open source Hibernate from
JBoss or closed-source Toplink? Aren’t they a solution for the object-
relational mismatch problem?

Object-relational mappers are a good solution on the server side where
resources are abundant and/or performance not critical. On the client side,
i.e. in packaged software, in mobile or gaming devices, and in real-time
control systems they are prohibitive. The reason is the lack of zero-
administration capabilities through the added complexity and the huge drain
on performance.
Open source benchmarks (www.polepos.org) have shown that db4o is up
to 44x faster than a MySQL + Hibernate stack, for instance.
However, we’re very happy about the immense growth of these platforms,
as they validate the extent of the object-relational problem in our industry.

Back to open source. We understand that you get a lot of hype. But how do
you make money?

We adopted the dual license model as pioneered by Berkeley DB and MySQL.
We provide our software in its entirety under two licenses, the GPL and a

Christof Wittig, CEO of

db4objects

13CVu/ACCU/Features

commercial license. The GPL licensed version is available for free download
from our website www.db4o.com. People can use it, evaluate it, getting
educated about db4o’s immense benefits.
However, the GPL has the obligation to open source your derivative work
under the GPL, too, if you start to redistribute it. Therefore the GPL is a no-
go as an input component to most commercial, product developing
companies. For these customers we provide an additional, affordable
commercial runtime licenses which frees them from this obligation and
enables them to ship closed source products with embedded db4o. To
commercial customers, we also provide direct support and vendor
relationship, e.g. to discuss product roadmaps, which are important criteria
when evaluating a platform as central as a database, in form of a db4o
Developer Network (dDN) membership subscription.
However, we do not provide engineering and anything other than product-
related support services. We focus on making the product easy to
understand rather than artificially building a complicated product that needs
expensive training and consulting to be deployed properly.
With db4o you are up and running in 5 minutes. A great interactive tutorial
guides you through the few basic APIs that help you to get most out of the
product. The number of users and customers asking us for training is
basically zero.

How affordable is your affordable pricing and how can it be sustained?

Affordable means up to 10x less expensive runtime prices than closed-
source vendors, such as IBM, Oracle, Sybase, and a long tail of smaller
vendors.
We can sustain to charge much less because the open source model
basically saves us a lot of spending for product, sales, and marketing.
It is a triple win situation: Commercial customers get better software at
lower prices, the community gets a great product for free, and we are able
to build a sustainable business. This is only bad news for conventional
companies with over bloated sales and marketing departments that will
suffer.
You mentioned product development. How does your development model

look like?

Product development is firmly embedded in the community of many 1,000s
of developers that use db4o and a few that are actively writing the core,
which are generally paid for by us.
These employees are recruited from within the community. They can be as
dislocated as Brazil, Siberia or Germany, but still work very efficiently
together.
We use extreme programming blended with open source collaboration
techniques and tools. Central communication is through our newsgroups,
but we also set up Skype sessions for voice interaction and a
Skype/TightVNC combination to run virtual pair programming sessions. Bi-
annually we meet face-to-face in destinations as exciting as San Francisco,
the Bavarian Alps, or Salvador de Bahia in Brazil to discuss the product
roadmap, design proposals, and build team spirit.
All this works with great success for us.We were not only able to commit the
smartest guys to our vision, such as Klaus Wuestefeld, author of Prevayler,
Rodrigo de Oliveira, author of Boo, and Dave Orme, Eclipse Visual Editor lead,
but we also managed to make them work with an efficiency that compares

with a 10x over what I know from old-style, collocated software fabs.
What do you look for in a new employee?

I am glad that you mention this. It is very important that each individual
software engineer starts to envision how he would fare in this new,
dislocated development model. Having experienced its power, I can hardly
imagine how siloed software fabs will be able to compete in the long run
against it. You can see IBM and others starting to embrace this model
already.
We look for individuals with
● outstanding, relevant accomplishments,
● team orientation and good communication skills, and
● the ability to self-manage.

Relevant accomplishments obviously will differ for each area of interest.
Someone who has build an open source object-relational mapper “for fun”
is certainly of great interest to us. We will look at the quality of the source
code and take into account the person has displayed a lot of passion for the
subject of our work.
Team orientation is essential. Lonely stars will be rejected by the team and
the community. There are great developers out there, but nothing matches
the power of a hot core team effectively interacting with a large, diverse
community. As a prerequisite, good communication skills, especially via
newsgroups and e-mail are required.
Being dislocated and working from your basement also requires a certain
discipline as to keep track of priorities and manage and balance life. It is a
great benefit for our employees that they can, beside work, take care of kids,
travel, live in remote areas, etc. Each of our developers has his reason why
he likes the dislocated model - be it the ability to move away from crime-
ridden Sao Paolo or to ski in the Alps whenever the weather permits.
However, all this requires self-management to bring life in pace with work.
We have no line managers but only very broad directives from senior
management. Evaluation happens by results not attendance and other
behavioural observations. So be sure to find your way to deliver in time.
And here is my advice to people seeking a job: When we hire, we want to
see proof of all of the above. We’re not training new employees in these

skills, we expect them to come with these skill. So think about
start building a track record of accomplishment in the open source
community that clearly shows proof of your ability to work in the
environment I described.
We recently rejected a very qualified candidate with an impressive
vita. His job description included extensive posting in newsgroups.
However, he didn’t have a newsgroup track record at all and the
few postings we saw were poor and not very supportive in its
nature. Why should we expect he would suddenly change when
hired by us? Remember that any code you contribute or any
posting you make in a newsgroup is stored by Sourceforge and
Google Groups forever. And recruiters will start to look at them
(or their absence)!

db4o has recently announced a new way of writing a database
query, called Native Queries, using entirely programming
languages such as Java and C#. What is the difference with
respect to the traditional SQL-way of query a database offered by
relational database systems?
Native Queries (NQ) are a new, additional API to db4o which uses
the programming language itself - Java or .NET - to query the db4o

database. Native Queries are based on Safe Queries as proposed by William
Cook, Prof. at University of Texas, at the 27th International Conference on
Software Engineering (ICSE).
Over the last 15 years, there was a lot of thoughts and proposals around
building a new OO query standard which would be the equivalent of SQL for
ODBMS and ORMs -- OQL and JDO are examples for this. None of them
have become mainstream and hence fail to be a standard.
We think that an embedded ODBMS doesn’t need an additional query
language such as SQL. SQL was mainly designed for DBAs that want to
query the database directly, e.g. for ad-hoc reporting. Embeddable
databases are in zero-admin environments. The only user of the API is the
developer who already knows and uses one language: The programming
language. So we decided to standardize on the standard he or she already
uses: Java or .NET.
As a result, using native queries, you can use a lot of the productivity
enhancements provided by your IDE. You get a 100% typesafe code (no

[concluded at foot of next page]

14 CVu/ACCU/Features

strings!), 100% refactorable code, and 100% object-oriented code, which
is easily optimizable.
We believe that this powerful, open concept will find wide industry adoption
and become the standard way to query databases in an OO way. db4objects
is the first industry player to adopt the standard and puts the power of the
open source model behind it. A preview version (V5 milestone 2) of the new
API is available for free download from our website. Also I invite to read the
free whitepaper by William Cook and Carl Rosenberger, available on
www.db4o.com/about/productinformation/whitepapers/#nq which
elaborates more on the design concept and goals and discussed advantages
and disadvantages.

db4o was originally started in Germany. How did you get to base your
business in Silicon Valley? What role does Europe and the UK play?

The product started in Germany, when Carl Rosenberger realized his dream
on 1/1/2000, to free OO developers from the OR mismatch.
The corporation started last year in Silicon Valley, the central trading place
for ideas and technologies. With private investors such as Mark Leslie,
founding CEO of Veritas, and Diane Greene, founding CEO of VMware we had
found the right people to put their names and resources behind the idea and
launch db4objects, Inc. While we don’t produce in Silicon Valley, we see it
as the place to do global marketing, sales and finance.
Europe is very strong for us, given our origins and the lead Europe has in
mobile applications, for instance. The UK are constantly ranking among the
top 5 countries for db4o, together with the US, China, Japan and Germany. On
September 29, we will host our first local event in London’s Imperial College,
where Glasgow University’s Professor Jim Paterson will introduce db4o (more
information on www.db4o.com/about/productinformation/
events/fall05rs).
Tell us about how you see the DBMS market evolve? What role does the

embedded DBMS play and how does this affect your business plans?

I leave this answer to the leading analysts.
According to IDC’s estimates, the embedded DBMS market grew 15% to
$1.86 billion in 2004, and is expected to blossom to $3.18 billion in 2009:
“Object-oriented DBMSs could well enjoy a second growth period as
embedded DBMSs due to the efficient and flexible data management they
offer object-oriented applications, and open source DBMSs are also
attractive as embedded DBMSs because of the technological control they
offer ISVs as well as flexibility in licensing,” says Carl Olofson, research
director for information and data management software at IDC. “db4objects
is in the interesting position of offering the benefits of object-oriented DBMS
technology and open source licensing, making its value proposition
appealing on two fronts.”
Chris Lanfear, director at Venture Development Corporation (VDC), says:
“Especially on the client side, such as in stand-alone devices and other zero-
administration environments, engineers look for innovative persistence
solutions that meet their immediate specifications and help them outrun the
competition. As a result, more than 50% of embedded and device software
developers still build their own database tools today. With the advent of
standardized object-oriented platforms, such as embedded Java and the
.NET CompactFramework, we expect object databases to become a
universal solution for OO persistence - with db4o’s open source offering
leading the charge.”
I have nothing to add to that!

Christof, thank you for your time in giving this interview.
Paul Johnson
Roberto Zicari

More information on db4objects can be found at:
http://www.db4o.com

[continued from previous page]

Setting up a Subversion
Server for Remote Use
By Craig Ringer <ringerc@scribus.info>

Revision control is a critical part of any significant development project.
Having secure full time access to your repository from wherever you are
can be important. In some environments, such as open source projects, it’s
absolutely crucial to the functioning of the development team.

My first exposure to the Subversion[1] revision control system was
when I was searching for something to replace CVS for the Scribus project,
whose CVS server I administer. There were a number of problems with our
use of CVS over ssh, namely server security concerns, cross platform
issues, and configuration complexity.

After some research, I decided that Subversion was a good candidate to
replace CVS. Subversion is a fairly new revision control system with the
stated goal of being a “better CVS than CVS.” One particularly attractive
feature is the use of HTTPs for a secure, fast, encrypted transport that
eliminates the need for an SSH tunnel. Additionally, Subversion is becoming
increasingly popular in the open source development community, so more
and more useful tools and graphical clients are becoming available.

I’ll be covering how to set up a Subversion server for your team, so
they can work on your code wherever they are without introducing major
security risks. Specifically, I’ll be explaining how to set up a Subversion
server configured for use with WebDAV over HTTPs, using SSL client
certificates for an additional layer of authentication. The goal is revision
control that’s fast, secure, and easy to use from anywhere. I’ll be assuming
that you’re using a UNIX variant, but it should be quite possible to set all
this up on Mac OS X or even Windows NT/2k/2k3 as well.

This article won’t try to explain how to use Subversion, why you might
want revision control, basic UNIX command line use, or any related topics.
We’re going to focus specifically on setting up reasonably secure remote
access to a subversion repository. As this article also avoids going into
extreme depth on the use of subversion and other finer points of its
configuration, it is strongly recommended that you examine the excellent
Subversion book[2] (freely available on-line) for more detail.

It is important to note that your author is not a security expert. I am an
experienced system administrator who has operated Internet-accessible

systems hosting public services for some time, but beyond that has no specific
security qualifications. This article does not provide some magic recipe for a
secure server configuration – but it should help you get started along the way.

Why use Client Certificates?
The use of client certificates provides an extra layer of authentication. A
user can’t even attempt to authenticate against your svn server until they’ve
provided a client certificate that you can verify is signed by your CA and
has not been revoked. For a bit of extra security, you can also store client
certificates separately from the client host – on a USB key or potentially
even a smart card – and remove them when not in use.

Client certificates are also useful for controlling access to more than
your source code repository. They can be used to help secure SSL/TLS-
based mail services such as encrypted IMAP, POP3, and SMTP. They are
also useful if you wish to offer controlled HTTPs-based remote access to
your organization’s intranet web server for roaming users. You can also use
the same client certificate infrastructure to permit users to encrypt and/or
sign email within the organization using S/MIME (though recipients who
have not imported your CA certificate won’t be able to verify signed mail).

What You’ll Need
First, you’ll need a server with the Apache 2 web server, the mod_dav_svn
Apache 2 server module, and the subversion tools installed. On Debian
GNU/Linux 3.1, just apt-get install apache2 libapache2-svn
subversion. For other platforms, if you’re unsure how to go about
installing Apache 2 or mod_dav_svn, the Subversion web site[1] has
plenty of information.

OpenSSL[3] will be required to create certificates, so unless you have
an existing CA and x.509 PKI scheme you’ll need to install that.

If you want to use your repository from anywhere, you’ll need an
Internet-accessible IP, or a port forwarded through your firewall. You can
use a VPN if you prefer to further limit the accessibility of your server.

Certificate Creation and Management
The creation and management of SSL certificates can be a complicated
business. Once it’s familiar you will find that it’s not generally an issue,
but the initial process can appear somewhat daunting.
If your organization has existing X.509 based PKI infrastructure, you may

15CVu/ACCU/Features

well be able to use your existing client certificates and CA certificate to
control access to your Subversion server. Should you be so lucky, you can
escape the need to deal with OpenSSL. Similarly, if you have an existing
server certificate, you can use that rather than creating your own. It doesn’t
have to be signed by the same CA as your client certificates.

To create your certificate authority, client certificates, and your web
server certificate, you can use the OpenSSL tools. There is not enough
space to discuss this in the detail it demands, but I can provide some brief
coverage of the procedure. Alas, OpenSSL is rather sparsely documented
(especially on the broader scale), and does not ship with any suitable
references for most tasks. Your author is no expert on SSL in general, or
on OpenSSL in particular, being just a lowly system administrator and
programmer. Errors are possible, so do be careful.

Some useful additional information can be found in the Apache
mod_ssl FAQ[4], at pseudonym.org[5], and for Windows at
stunnel.org[6].

I’ll be assuming that you have OpenSSL already installed, as per the
requirements above.

Creating a Certificate Authority
Before you can create client certificates, or useful server certificates, you
need to obtain a signing certificate. It is possible to buy such certificates
from SSL certificate vendors, but this is unnecessary if you only intend to
use the certificate scheme within your organization and with your own
users. You can simply create your own certificate authority with a self-
signed certificate. The only significant limitation of such a certificate is
that it must be installed in clients before they will recognise the validity of
certificates you have signed.

I suggest that you set up your certificate authority on a different host if
possible, and in as secure a location as you can arrange. Removable
external media may be worth considering.

First you need to create a suitable openssl.cnf, the configuration file that
will drive your CA. The OpenSSL distribution ships with a sample file that
you can customise. Alas, if you got your copy of OpenSSL through a
vendor package library, this could be almost anywhere on your system. If
you can’t find it, you can download a sample config file from the OpenSSL
project’s public CVS browser[7].

Now we need to make a directory to store your CA in, and put a copy
of openssl.cnf in it. I’m going to refer to this directory as CA hereafter.
With that done, openssl.cnf needs to be customised to your site. Start with
the section [CA_default], setting dir to the path to your CA directory. This
tells OpenSSL where to put (and look for) the various files and directories
used when managing your CA. I tend to use an absolute path, but if your
CA will be stored on removable media where the path may not be constant,
you can use . (the current directory) instead, then always work by changing
into the CA directory.

Next, under [req_distinguished_name], adjust the _default
parameters to suit your site. You can add _default parameters to options
that do not have them, or remove them if you don’t want to provide defaults
for a parameter.

To finish our preparation, create the structure to store the CA’s various
information by creating the subdirectories certs, newcerts, crl and private
within your CA directory, then create a file called serial (no extension)
containing only the digits 01, and create an empty file called index.txt
. Be sure to set the access permissions on private so that only the user who
will be managing the CA can see its contents or modify it.

It’s finally time to create the CA certificate that signs all your client
certificates and lets you verify them later. Pick a good pass phrase to use
on your CA’s key, and record it somewhere secure and offline. Now create
the self-signed certificate that you can use as your CA, supplying the pass
phrase you decided on when prompted:

openssl req -new -x509 -keyout private/cakey.pem
-out cacert.pem -days 365 -config ./openssl.cnf

When prompted to enter details for the certificate, you should enter the
details you wish to appear if a user queries the CA certificate (eg in a
browser). As such, Common Name should generally by set to the
organization name, not the name of the creator of the certificate. Note that
the certificate was created with an expiry date one year from today. You
can extend the expiry date of the CA certificate as it approaches expiry
with:

mv cacert.pem old_cacert.pem
openssl x509 -in old_cacert.pem -days 365

-out cacert.pem -signkey private/cakey.pem

Note that clients will treat certificates signed by an expired root certificate
as invalid, and must import the updated root certificate. As such, you may
wish to choose a reasonably long validity period.

You can examine your CA certificate by dumping a human-readable
version with:

openssl x509 -in cacert.pem -text
If that looks alright, you’ve created your CA. You’re now ready to start
creating and signing certificates. Make a backup of your CA directory
somewhere secure, safe, and off-line, then copy your CA certificate file
(but absolutely not the CA key) to somewhere that Apache 2 can access it.
Apache needs the CA certificate to verify that client certificates were really
signed by your CA.

For security reasons, it is crucial that you do not keep your CA key on
the Subversion server. Put it somewhere safe, preferably on encrypted
storage that’s not connected to the Internet. I favour the use of a small old
laptop that’s kept in a safe when not in use, but some might accuse me of
excessive paranoia. No matter where you store your CA, remember to keep
a backup somewhere safe and secure, such as on CD or tape.

Creating a Server Certificate
If you don’t have an existing SSL server certificate for the host you want
to run your Subversion server on, you need to create one. It is necessary
to first create a certificate request, then sign that request with your CA. Be
sure to provide the DNS name of your Subversion server in the common
name field of the request, otherwise clients will be warned every time they
try to connect to your server. You must use the publicly visible DNS name
of the server, rather than its internal host name. In the following, replace
new with your host name, eg myhostname_req.pem for new_req.pem.

Here I show the creation of a key without a pass phrase. This means
that the key can be used by anybody who obtains it. It is possible to use a
key with a password on a web server, but with Apache the password must
be entered interactively. This interacts rather poorly with log rotation
scripts, and means that if your server ever goes down it won’t come back
up without manual intervention. I dislike the use of an unencrypted private
key, but have found no viable alternative for my use. If you can afford the
possible issues involved with using an encrypted key, then I encourage you
to use one – simply add -des3 to the first command line below.

Create a private key (append -des3 to encrypt the key):
openssl genrsa -out new_key.pem

Create a certificate request using your key:
openssl req -new -key new_key.pem

-out new_req.pem -days 360
-config ./openssl.cnf

then sign it with your CA:
openssl ca -policy policy_anything

-out new_cert.pem -config openssl.cnf
-infiles new_req.pem

If all has gone well, you should have a server certificate. Check it with:
openssl x509 -in new_cert.pem -text

to ensure that it’s correct, then copy new_cert.pem and new_key.pem
to somewhere Apache can access them, and save backup copies somewhere
secure, safe, and off-line. Be sure to set the permissions on newkey.pem
so that only the Apache user can read the file, and nobody can modify it.
You can now discard new_req.pem.

Creating the Client Certificates
With a working CA established, you’re equipped to create and sign client
certificates for use by your users. While it’s possible to get users to make
their own certificate requests, I’ll assume you’ll be doing that for them then
supplying them with a pre-made certificate. The first stage of the procedure
for making a client certificate request is actually the same as that for the
server certificate described above, except that you should provide the user’s
name and email address for the common name and email fields,
respectively. You only need the certificate and key files temporarily, so
there is no need to save them anywhere.

Once you have the certificate for the user, created the same was as the server
certificate above, you need to convert them to PKCS#12 format, a “packaged”
certificate format that most clients understand. You can bundle the CA
certificate into this package so that it’s automatically imported by most client
software when it loads the PKCS#12 certificate. I suggest you save the
certificate with a suitable name that makes it easy to identify the owner of the
certificate later, such as firstname.lastname_at_domain.p12.

16 CVu/ACCU/Features

To do this, assuming your user’s temporary certificate and key files are in
new_key.pem and new_cert.pem respectively, run:

openssl pkcs12 -in new_cert.pem
-inkey new_key.pem -certfile cacert.pem -out
user_name.p12 -export -name "User's
Subversion certificate for MyOrganization"

If you encrypted the user’s key, you will be prompted for the password to
decrypt it. You will then be prompted for a password to encrypt their new
PKCS#12 file with. This is the password you will need to supply to the
user for them to use their new client certificate.

Once the PKCS#12 file has been created you can discard
new_cert.pem, new_key.pem, and new_req.pem.

Setting up a Test Repository
For the purposes of this article, it’s best if you create a new subversion
repository to work with. You should probably work on a dummy repository
before going live with your server even if you have an existing one or plan
to convert from CVS.

Setting up a new repository is simple. Assuming that you want it to live
in /var/svn:

mkdir /var/svn
svnadmin create /var/svn fsfs

Now let’s add a dummy module for testing. First, create the files to import
in some temporary directory:

mkdir testproject
echo 'It worked!' > testproject/test.txt

then import the temporary testproject directory into the new repository:
svn import testproject

file:///var/svn/testproject/trunk
-m "first import"

You can now discard the testproject directory.
The Subversion website has detailed documentation on how to create a

repository, import sources, or convert a CVS repository to Subversion using
cvs2svn, so I’m not going to discuss it in any more detail here. You might
want to look up the Subversion book[6] if you’re unsure how to proceed
when it comes time to get your project’s live code into svn.

Setting up the Web Server
When using client certificates, it is generally be best to set up your
Subversion server in a separate Apache 2 virtual host running on a non-
standard port. This is necessary because of limitations in the SSL
implementation of common clients.

Apache installations and configuration specifics differ a huge amount
across different OSes and even Linux distributions. Consequently I can
discuss the general configuration approach to take, but not necessarily all
of the specifics of what files to edit and what to put where. You may need
to adapt the sample configuration discussed below to suit your system.

In the following configuration I make the assumption that your
repository is in /var/svn, and you’ll use /var/www/projectname
for things like WebSVN[12]. You can use whatever paths you prefer, so
long as you configure Apache accordingly. First, it may be necessary to
add or uncomment the configuration directives to load mod_dav and
mod_dav_svn:

LoadModule dav_module path/to/mod_dav.so
LoadModule dav_svn_module path/to/mod_dav_svn.so
LoadModule authz_svn_module path/to/mod_authz_svn.so

The exact paths to the modules will vary depending on your Apache and
mod_dav_svn installation. If your Apache is not already configured for
SSL, you may also need to uncomment or add a directive such as:

LoadModule ssl_module path/to/mod_ssl.so
To actually configure the Subversion server you’ll need to add something
like this to your Apache 2 configuration:

Tell Apache to listen on port 4430 for connections
Listen 4430
And set up a virtual host to handle connection on
that port:
NameVirtualHost *:4430
<VirtualHost *:4430>
Set up SSL for the virtual host.
SSLEngine on
The CA certificate file that you'll be
validating client certificates against:
SSLCACertificateFile /path/to/your/cacert.pem

The server certificate the web server will
identify its self with. If you have an existing
SSL virtual host, you can use that certificate
for this virtual host too (just specify
the same path here). It need not be signed by
the CA specified above.
SSLCertificateFile /path/to/your/servercert.pem
Only set this if you have a separate key file
for your server certificate:
SSLCertificateKeyFile /path/to/your/serverkey
Require clients to have a certificate signed by
one of the CA certificates specified earlier:
SSLVerifyClient require
SSLVerifyDepth 1

Require a valid username and password to access
any part of this virtual host, and make the
default access control "deny".
<Directory />
Only talk to clients using SSL
SSLRequireSSL
Don't permit the use of .htaccess files to
override these settings
AllowOverride None
This tells Apache to use BASIC password
authentication. You can rely purely on client
certificates if you wish to – look up
FakeBasicAuth in the mod_ssl documentation.
You can also authenticate against a database,
or against LDAP, if you prefer – see the
Apache documentation. Here BASIC
authentication with a simple password is used.
AuthType Basic
AuthName "ProjectName SVN"
Your password file. Put this somewhere safe,
and outside the DocumentRoot configured below.
AuthUserFile /path/to/apache2/config/

projectname_svn_htpasswd
Reject access from users who give no / wrong
passwords.
Require valid-user
and, for the root directory, reject all
access. This is overridden in later
subsections.
Order deny,allow
deny from all

</Directory>

Tell Apache to look for files starting in
/var/www/projectname
DocumentRoot /var/www/projectname
And permit any authenticated user access to the
files under it.
<Directory /var/www/projectname>
Order allow,deny
Allow from all

</Directory>

Set up the Subversion server, giving it the
virtual location "/svn" in URLs.
<Location /svn>
Turn on the svn server
Dav svn
Tell it our repository is in /var/svn
SVNPath /var/svn
Uncomment the following line to enable Authz
Authentication
AuthzSVNAccessFile /etc/apache2/dav_svn.authz
Permit access to this location (still requires
valid user and client cert as specified
earlier).
Order allow,deny
Allow from all

</Location>

17CVu/ACCU/Features

Enable gzip compression if available
<ifmodule mod_deflate.c>
DeflateBufferSize 8096
DeflateCompressionLevel 9
SetOutputFilter DEFLATE
SetInputFilter DEFLATE
</ifmodule>

</VirtualHost>

You may need to edit the existing virtual host directives to explicitly specify
the port they listen on (80 for HTTP, 443 for HTTPs) using the same form
as shown above.

If you want to offer anonymous read-only access to your repository
(common for Open Source projects) then you can add a section like this to
your normal HTTP and/or HTTPs virtual host(s):

Anonymous read-only access to the repository
<Location /svn>
Dav svn
SVNPath /var/svn
<LimitExcept GET PROPFIND OPTIONS REPORT>
Order deny,allow
Deny from all

</LimitExcept>
</Location>

You will probably want to enable gzip compression as well, as shown in
the main configuration listing. Using gzip compression on the server saves
bandwidth and results in faster checkouts, but at the cost of some server
CPU time.

You should now be done configuring the web server. Test your
configuration’s syntax with apachectl -t (apache2ctl -t on some
systems) and restart Apache 2.

Final Server Configuration
Before you can test the newly configured Subversion server, you must
ensure that your repository is writeable by the web server. The exact
procedure for this depends on if you plan to offer access to your repository
using other methods too. Assuming that you’ll only be using the repository
via the Apache-based Subversion server and you’re running under a modern
UNIX, chown -R webserverid /var/svn (where webserverid is the
user ID your apache2 is running under) should do the job. If you’re not sure
what user ID apache is running under, the first column of the output of ps
aux | egrep '(http|apache)' should show you.

Red Hat Fedora users need to be aware of of SELinux, which can
interfere with the operation of your Subversion server. If you find that you
are getting “permission denied” or “403 Forbidden” errors that make no
sense, the chances are good that SELinux is involved. Reconfiguring
SELinux is beyond the scope of this article. For testing purposes only you
can disable it using setenforce Permissive as root. Consider
tweaking the SELinux configuration for Apache 2 rather than permanently
disabling SELinux, since SELinux provides additional isolation between
the various network services on your system.

Adding Users on the Server
Since you’re using HTTP BASIC authentication with a plain password file,
you need to add some users to the password file. To set up the password
file, use this command:

htpasswd -c /path/to/htpasswd_file username-to-add

where /path/to/htpasswd_file is the same as the path you gave in
your Apache 2 configuration. Now ensure that the file is readable but not
writeable by Apache:

chgrp apachegroupid /path/to/htpasswd_file
chmod 640 /path/to/htpasswd_file

and start adding more users with:
htpasswd /path/to/htpasswd_file

username-to-add

Setting up the Client
If all has gone well, you’re now ready to test out the new server by
connecting with a subversion client.

First, you need to install your PKCS#12 format client certificate. Exactly
how to do this depends on what subversion client you are using. With the
command line client on UNIX, I tend to put the certificate file into

$HOME/.subversion. I then edit $HOME/.subversion/servers,
adding a line like mysvn = hostname.of.my.svn.server to the
[groups] section, and add a new section for that server:

[mysvn]
ssl-client-cert-file = /path/to/client/cert/file.p12
If you want to have svn remember the password to
your cert file, set this. Since you’re using BASIC
auth as well, this is generally fine. Many GUI svn
clients don’t seem to be able to prompt for a
certificate password, so saving it here also helps
to avoid confusing those clients.
ssl-client-cert-password = yourPasswordToSave

At the time of writing the Subversion client did not appear to read the CA
certificate out of the PKCS#12 client certificate file. As such, you need to
provide cacert.pem to your users if you created your SSL server certificate
using your self-signed CA. This can be skipped if you bought a server
certificate from one of the major certificate authorities.

To install the CA cert, copy it to:
$HOME/.subversion/myorganization.pem

then edit the [global] section of $HOME/.subversion/servers
and add a line such as:

ssl-authority-files = /path/to/myorganization.pem

Testing
With that configuration done, you’re ready to check out the module you
created earlier. Using the command line subversion client:

svn checkout https://username@hostname:port/svn/
testproject/trunk testproject

Naturally you’ll need to adjust the URL above to use your user name in
the Apache password file, svn server host name, and server port.

You should be prompted for your password, then the checkout should
complete, leaving you with the same testproject/test.txt file you
checked in earlier. You can now work within your checkout directory as if it
was your usual local source tree, then commit changes back to the repository
with svn commit. Subversion will remember the repository URL, so you
don’t need to specify it when working within a checked-out tree.

If you install your client certificate into your web browser (in Firefox:
Edit->Preferences, Advanced, Manage Certificates, import, then edit
the CA cert under Authorities and mark it as trusted), you should be able
to explore the repository by visiting https://hostname:port/svn.
This can be useful when troubleshooting configuration problems.

Locking it Down
In the opinion of the author, there’s almost no such thing as enough
paranoia when securing your source code repository. That’s doubly true if
you’re making it accessible over the Internet. It’s well worth looking into
hosting the repository on a dedicated server or isolated OS instance,
limiting access by IP address, putting the server behind a VPN gateway,
storing client certificates on external media, etc. Naturally, you’ll also want
to keep the server and the clients up-to-the-minute with all security patches.
Don’t forget to make backups – and to periodically archive the backups.

Remember that your clients are important too. It’s easier to clean up
from an attacker committing to your repository through a client than it is
from a server compromise, but if their changes are not recognised as from
an impostor, you still risk shipping malicious code to users.

When it comes to server security, the more you can isolate the Apache
2 / Subversion service from whatever else might be running on the machine
the better. An entirely separate Apache 2 instance running under a different
user ID just for svn may be worth considering if your server also runs
Apache for other public services. A physically separate server or OS a
separate instance is even better. Linux users may wish to investigate Xen[8]
or VMWare[9] for isolating OS instances on the same hardware; Solaris
users may want to consider using zones[10]. The better your svn server and
repository are isolated from any other potential sources of attack, the less
impact a service compromise is likely to have.

There’s no such thing as a secure computer – especially when exposed
to the Internet – and this article can’t teach you even a fraction of how to
truly secure things. Don’t just follow what’s described here, but try to go
out and get help locking your server down as tight as possible.

There’s little worse than discovering that the system hosting your source
code repository has been compromised, so you should probably do everything
you can to make sure that it doesn’t happen, and that if it does you’re prepared

[concluded at foot of next page]

and able to quickly recover. “Sorry, we just shipped a rootkit/virus/trojan with
our last product” isn’t an announcement you ever want to have to make.

Subversion and the Scribus Project
The Scribus project is still using CVS+SSH. Our tests of Subversion were quite
successful, but many of the team want graphical merge and history browser
tools that they didn’t feel to be sufficiently mature. As the KDE project has
moved to Subversion, I’m hoping to see some improved svn clients available
soon, after which I hope it will be possible to migrate the project to Subversion.

Resources
1 http://subversion.tigris.org/

2 http://svnbook.red-bean.com/
3 http://www.openssl.org/
4 http://www.modssl.org/docs/2.8/ssl_faq.html
5 http://www.pseudonym.org/ssl/ssl_cook.html
6 http://www.stunnel.org/examples/

ms-ca-newbie.html
7 http://cvs.openssl.org/getfile/openssl/apps/

openssl.cnf?v=1.23.2.4
8 http://www.xensource.com/
9 http://www.vmware.com/
10 http://www.sun.com/bigadmin/content/zones/

Craig Ringer

18 CVu/ACCU/Features

[continued from previous page]

Pointer Reversal:
An Algorithm Design
Technique

by Atul Khot <atul.khot@gmail.com>

Why Do We Need Yet Another Algorithm Technique?

I came across the Schorr and Waite algorithm while studying garbage
collection in Knuth. (See algorithm E, section 2.3.5 of Knuth Volume I.) One
phase in garbage collection typically consists of marking nodes of a data
structure not in use. These data structures are Lists. Knuth defines Lists as “a
finite sequence of zero or more atoms or Lists”. Any forest is a List. Unlike
forests, Lists can have cycles. And just the way forests are represented as
binary trees, two links are used, each link with a different meaning.
There are three types of Nodes:
i) List Heads
ii) Atom Nodes
iii)List Nodes
An ATOM field is maintained, which is true for Atom nodes and false
for List nodes. For a List node, two links, DLINK and RLINK are maintained.
If ATOM is false and DLINK is non-null, it points to a List Head. If ATOM
is true, DLINK is irrelevant.

Given a collection of List Heads, you need to visits all nodes reachable
from each List Head and mark them. You need to keep track of where you
came from and so need to maintain a stack. But there might not be enough
memory to keep the stack!!!

To summarize, as memory goes too low, garbage collection could kick in,
but it in turn needs memory to maintain a traversal stack … Quite a catch-22.

The Schorr and Waite is an elegant algorithm that solves this problem.
It alters the pointer fields of the data structure itself to maintain the traversal
stack (Pointer Reuse ☺). Suppose Node A points to Node B and B points
to Node C. When the algorithm is executing and marking Node C, it
temporarily alters the pointers so that C points to B and B points to A.
Hence the name Pointer Reversal. When the algorithm pops the stack, it
restores (reverses back) the pointers to their original values.

The ATOM Trick
List Nodes have an ATOM bit which is used skip ATOM nodes, after they are
marked. For a List Node, this bit is always false. The algorithm uses this
bit again (in a context where it is known to be false) for remembering
state for Linked Nodes!! As pseudo-code

if (ATOM = true)
{
mark this node and skip rest of the
processing
}
else
{
if (we changed DLINK as a stack link)
ATOM = true

.....
/*Now here, when we want to reverse the link*/
if(ATOM = true)
{
we came over a DLINK (and hence changed

it)
}

else
{
we came over a RLINK (and hence changed

it)
}

}
The clever trick is manipulation of the ATOM bit. While processing a List
Node ATOM is false, so we set ATOM = true to remember one pointer
and ATOM = false (the default) to remember other.

Application to Binary Trees (And The Good Old Inorder
Traversal)
However, as it turns out, we don’t need this ATOM bit for binary trees… We
exploit the properties of binary trees (no cycles, all nodes are List nodes
etc.) and use the traversal property (inorder traversal) in place of the ATOM
bit.
The algorithm, in Knuthspeak, looks as below: (See notation below)

K1. Set P <- Root, T <- ^. [Root is root of binary tree, ^ stands for null
pointer].

K2. If LLINK(P) = ̂ goto K3. Otherwise, set R <- LLINK(P), LLINK(P)
<- T, T <- P [pointer reversed], P <- R and repeat this step.

K3. Set MARK(P) <- 1. If RLINK(P) = ^ goto K4. Otherwise, set R <-
RLINK(P), RLINK(P) <- T, T <- P, P <- R. Goto K2.

K4. If T = ^, the algorithm terminates. Otherwise, if MARK(T) = 0, Q <-
LLINK(T), LLINK(T) = P, P <- T, T <- Q and goto K3. Else, [parent is
marked], set Q <- RLINK(T), RLINK(T) <- P, P <- T, T <- Q and repeat
this step.

Notation: 1. = is equality operator (= =)
2. T <- P is assignment – T is assigned the value of P
3. LLINK(P) is really P->LLINK in C/C++

Step K2 reverses left pointer.
K3 reverses the right pointer.
K4 pops back (i.e. restores pointers)

Note that we are essentially traversing (marking nodes in) the tree in in-
order traversal. It is essentially an in-order traversal without any explicit
stack. Instead we need a MARK bit (but note that the MARK bit really need
not be explicitly maintained – you can use other contextual info).

Note that, in K3, when a node is marked, its left subtree (if any) is all
marked.

I tried the algorithm with boundary test cases (a binary tree with just
the root node, a degenerate tree with only left or only right nodes etc…).
It works correctly…

The Master Verifies…
This appears as an exercise in Knuth (2.3.5 – exercise 7). When I come up
with a solution, verifying it always teaches me something more… This was
a rare case where Don’s agreed with mine… Sometime back, I solved
exercise 10 and when tallied with the book solution, I came across a very
novel use of queues.

Over the years, as I keep reading Knuth I have grown a deep respect
and adoration for these volumes. The text is crisp, sharp and cracking the
exercises make you ecstatic. Nirvana, anyone?

Atul Khot

19CVu/ACCU/Features

The Agile Manifesto
Explained (and a First
Amendment)
by Phran Ryder <phran@agilenorth.org.uk>

Last Time

In my last article I set the scene for what I hope will be a series of
provocative and informative articles. In the article I described the plight of
Pete and his vain efforts to change development processes at his place of
work. Peter represented the type of people that will be interested in Agile
Software development – professionals who care, perhaps passionately, about
software development. As Pete Goodliffe points out: There is more to being
a professional than a trade or a methodology. It is more a state of mind.

So that’s my audience, what of the manifesto. In this article I will be
looking deeply into what I think the Agile Manifesto says.

The Manifesto
We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan
That is, while there is value in the items on the right, we value the items on
the left more.

The Manifesto Analysed
At first impression there is not much to it. 358 characters, 73 words, and
6 paragraphs. Oh and there are 4 bullet points, some indentation, and 10
of the words are in bold.

Lets take the first sentence:
We are uncovering better ways of developing software by doing it and
helping others do it.

Now lets take the first two words: We are. It does not say We have. This
says clearly that the work is not complete it is an on going evolving process.
Indeed I later I will, bravely, be suggesting a first amendment.

And what about the third word, uncovering rather than developing or
inventing. This is because there are a lot good agile software development
practices that are currently in use - you may well already being using many
of them without realisng how agile you are. This is a very comforting thought.
Agile software development is not magic, it is not necessarily a new way, it
might just be making better use of practices that we already have and that
we know work. Morevoer becoming and being agile is open to all, not just
the elite and gifted. Neither is contributing to the uncovering of better ways
– we can all contribute. Uncovering the new ways is “by doing it and helping
others” the helping of others takes many forms: magazines, consultancy,
conferences, courses, books, web sites, mail groups…you can, if you care,
contribute to many of these and thus contribute to the uncovering, growth
and improvement of software development.

So a simple, short first sentence sets the scene for never ending
improvement and shows we can all be involved. Next there is a preamble
leading us into the heart of the manifesto.

Through this work we have come to value:
I will draw your attention to the last word value. It is very undersated but,
108 words in, it is crucial as the whole manifesto is a statement of values
and it is a word I will return to later.

Next we have the significant formatting - four indented bullets with
some of the words in bold. These bullets are four statements of value. Each
statement mentions two related things of value with the word over used to
indicate that the first value, the one in bold, is of more value.

The bulleting draws the eye to this heart of the manifesto. But just incase
you missed the point the final sentence re-states the relationship between
each pair of values:

That is, while there is value in the items on the right, we value the items on
the left more.

This is very interesting. Why put these items in pairs and why emphasise
in three ways that one part of the pair is more important than the other?

Firstly, without the repeated emphasise it might be easy to conclude that
the manifesto says that the things on the right aren’t important at all. That
simply is not true. Secondly, the pairs are not chosen at random there is a

relationship between each side of the pair. My intepreation is that each pair
provides a morale or a warning - a warning to make sure you get your
priorities right.

For reasons I can’t explain I am going to call each pair a bi-attitude. In
the next sections I explain what I think the warnings are.

Warnings
Individuals and interactions over process and tool

Why are individuals and interactions important?
An organisation, team, or group are made up of individuals. In order

for the team, group or organisation to ‘work together’ and meet common
goals they have to interact. The nature of how they interact, and the
efficiency of the interaction, can severely affect the performance of that
team. Thus, it is worth spending effort making the interaction effective.
Now, some would argue that processes and tools can improve the quality
of interactions. I have sympathy with such an argument for I think so too.

So why are process and tools less important than individuals and
interactions?

In a nutshell “Tools support the process and the process supports the
interactions of the individuals”. That’s why they are there.

In a team of one, or a collocated few, you can get away with out much in
the way of a process, and the minimum of tools to build the system. As the
number of people involved, the complexity or size of the information, the
number of locations where the individuals are, the number of time zones,…
grows, defined processes and tools can help to stay on top of the situation.

A danger is that a tool might grow to control the process and/or the
process may grow to control the interactions of the individuals. Is that a bad
thing? Well it can be if it reduces the value that is provided to the business
by the interactions of the individuals. But there are often cases where a tool
controls a process and adds significant value. For example, if your
configuration management is complex a well chosen tool that drives the
process can prevent a myriad of problems. As a second example, Extreme
Programming [1] encourages heavy use of tools and process: “You will
perform daily builds; You will run all automated tests suites; You will…”

So, defined process and expedient use of tools is not a bad thing. So I’ll
ask a different question. Why are individuals and interactions more
important than process and tools? Sorry that is the same question. How
about, how can a process or a tool reduce the value? Or better, how can a
process or tool make it harder to add value?

At the heart of the problem is the fact that consultants and software vendors
(including those of an Agile persuasion) make their money by selling processes
and tools. It is, perhaps, too easy to take a process and/or set of tools without
consideration of the benefits that they can supply and without later seeing
whether any benefits have been supplied. To me this is the real purpose of this
beatitude - think hard before committing to what can be expensive tools and
processes. Very often an efficient team can improve the process at less cost.

The moral: Tools support the process and the process supports the
interactions of the individuals - and don’t you forget it!

Working Software over Comprehensive Documentation
Well obviously – duh! That was my reaction when I read this and I would not
be surprised if it was yours - so why include this bi-attitude in the manifesto?

This time I’ll start from the back end. Why have a go at comprehensive
documentation?

So many processes get carried away creating comprehensive
documentation and end up creating too much documentation. The creation
of that documentation adds cost to the work and introduces latencies to
feedback making it harder to respond to change and harder to collaborate
with the customer. The documentation often duplicates information again
adding to costs and latency of maintaining the information in two places.
The excess of documentation, if not maintained is soon out of date
diminishing its value. And oh even worse, out of date documentation can
obviously cause problems making its value negative. In short much of the
documentation either:
1.Adds only a little value
2.Adds value that is only short term value but is kept and maintained even

when its value has diminished.
3.Adds value is but is duplicated in other locations
4.Adds value but is not kept up to date

So there are a few reasons why documentation may not be needed. But
what documentation is needed? I’ll put that another way. What deliverables
provide long term value?

20 CVu/ACCU/Features

Requirements define what is needed from the software. Software is
working if it fulfils the requirements. Tests are used to prove the
requirements are fulfilled. In my mind that is what really matters in
software development: requirements, software and tests.

So what is all this comprehensive documentation malarkey that the
Manifesto refers to? It is High level designs, technical designs, user interface
design, standards, use case models, class diagrams, architecture….

Between us we could probably name a hundred different types of
documentation. Why do we need any of it? In my mind there are two key
purposes: understanding and communication.

When you are faced with a new system you want to be able understand
how you are going to solve the problem. You will be analysing and designing
a system. This is the forward engineering part of your work.

If you are not working alone you will want to communicate this incite
to others. The number and nature of individuals you have to interact in
order to make this communication will influence the nature and amount of
documentation created – but remember to consider how much will need to
be maintained.

In order to understand how you are going to solve the problem you will
need to understand what is already there. And you will want to
communicate this understanding to anyone who, in the future, wants to
evolve the system. This is the reverse engineering part of the work. In
summary it is an art of:
1. Understanding and communicating what is needed (forward

engineering)
2. Understanding and communicating what is there (reverse engineering)
To conclude, the manifesto is warning us against a costly pitfall in which we
strive to provide comprehensive documentation that does not provide value.

Customer Collaboration Over Contract Negotiation
To me this is the hardest bi-attitude to argue in favour of convincingly but
I’ll try – starting with the supplier consumer model that this alludes to.

The supplier consumer model for software development has a simple but
entrenched form. The consumer wants a system that does abc. The supplier
says that will cost you £xyz (or $xyz or xyz or…). If the consumer is happy
with the cost the supplier, well, supplies. Oh if only it were that simple!

In practice the definition of abc are not really known AND, even if the
definition of abc where known, the cost £xyz is not, AND even if the
requirements are understand there is a reasonable chance that they will
have to change, AND even if the costs are understood there is a reasonable
chance that the costs will change AND… It would be easy to rant on. I’ll
emphasise these perils by putting (some of) them in a list:
1. The requirements (abc) are not understood initially - a risk to the

consumer
2. The requirements (abc) are liable to change - a risk to the consumer
3. The costs (xyz) are not fully understood - a risk to the supplier
4. The costs (xyz) may change - a risk to the supplier
5. We can’t know if abc is what is needed until it is delivered an used - a

risk to the consumer
6. People delay because they are reluctant to sign of the definition of

requirements – (a cost to both parties)
7. It costs money to define (or redefine) the contract such that what is to

be delivered is understood - a risk to both parties
This last point is interesting. Even though it is difficult to be precise in your
definition of requirements, the consumer will not be happy parting with (or
committing to part with) money unless they know what they are going to
get. Equally the supplier will not be happy committing to deliver until they
know what they are supposed to produce. So in order to be sure of what they
are going to get/produce they define a contract. And then hope it is fulfilled.
So what is the alternative?
The problem, in my opinion, is that the requirements are part of the contract.
The solution is Feedback. This simple notion is so important I will say it
again – and louder. Feedback!
Instead of defining requirements fully up front and incorporating them into
a contract, the contract does not specify the requirements at all (or at least
not very much). Instead it specifies the approach. An approach that gives
both parties opportunities to adapt to the perils listed above (and others not
listed) while protecting the interests of both parties.

The work is then split into iterations. During each iteration, the
consumer and supplier work together to find out how best to give value to
the consumer for the money that will be spent during the next iteration. It
is a very simple proposition but it seems to work very well.

Short iterations allow BOTH parties to get FEEDBACK and examine

whether the requirements have been understood. If the requirements
change, the change can be incorporated into the next iteration.

Since the contract defines the approach it doesn’t have to change. But
it can have a clause in which the consumer can terminate if value is not
being provided or if they have enough value so far. This may not appeal to
some suppliers but early drop out clauses could be introduced. Forgive me,
I am acutely aware that I am not a lawyer and my contract speak is unlikely
to be correct, but I hope you get a feel for how it could work.

In summary, the contract defines the approach, the requirements are
defined by collaboration between the consumer and supplier, feedback is
used to help both parties provide maximum value to the consumer.

And you never know everyone could be happy.

Responding to Change over Following a Plan
A project manager, when presented with this bi-attitude might say. “If you
don’t follow the plan how will you deliver?” or “If you don’t follow the
plan your project will deteriorate to anarchy!”

But there is a simple counter to this: “If you follow the plan how do
make sure you are delivering what is needed?” Or put another way: “If you
don’t respond to change, how are you going to deliver what is needed? -
You may deliver something but that something may not be needed
anymore.”

Change is a major obstacle to delivering what is needed – a major
obstacle to providing value to the business. Many things can change during
the life of a project:
1. Requirements
2. Costs
3. Budget
4. Staff
5. Management
6. Stock market
7. Laws
8. Resources
9. Priorities
10.Understanding of the problem.
11.Sickness
I could easily list loads and loads more, anyone one of which could render
the plan invalid.

Let me get one thing straight. Planning is not a bad thing. Planning is a
good thing. It is such a good thing that you should do it all the time. The
problem is sticking to the plan rather than adapting the plan, re-planning,
in the face of change.

The morale:
If you are going to plan, plan often. That way it will be easy to make

sure you are providing value to the business. If you are
going to be planning often you need an approach to planning that is a

low overhead to the project.

A First Amendment
I have now given my view on what matters in relation to the four bi-attitudes,
what they mean and what I think the message is. Having done all that, there
is so much more that could be said. For example, I have given no indication
on how to provide a system in which you communicate your understanding
of the system without creating unnecessary documentation. To do would take
a book – fortunately such books exist, for example Fowler[2]

These bi-attitudes do not live in isolation – rather they are closely related
and interlinked.

Working Software is for me the most important. But the value of the
working software diminishes if it doesn’t quite do what the business would
like, thus we must respond to change. To respond to change we must
collaborate with the customer. And in doing all of this we have individuals
interacting while being supported by processes and tools.

Once again I am going to rephrase what I have said. Working Software
is for me the most important in the list. For I have a value that both links
them and sits above them.

Under Individuals and Interactions I talked about “the value that is
provided to the business by the interactions of the individuals”

Under working software I discussed the documentation and deliverables
that really add value to the consumer.

In customer collaboration I promoted the idea of “the consumer and
supplier working together to find out how best to give value to the
consumer for the money that will be spent”.

[concluded at foot of next page]

21CVu/ACCU/Features

In responding to change I mentioned “obstacles to providing value to the
business”.

There is a common theme. For me the most important is providing
(maximum) value to the consumer.

If I want to add this to the manifesto as an amendment I will have to
say what I value it more than.

I value it more than “on time on budget”.
Many organisations and process place emphasis on “On time on

budget”. But on time on budget is easy to fulfil. Give yourself lots of time
and lots of budget, whittle away both writing articles and playing Quidditch
and then provide a quality product that might be what the business wants.
But equally it might not be what the business wants and it may well not
provide maximum value for the money spent. The problem is that the
definition on time or on budget can and should be allowed to change.

So I would like to propose a first amendment to the manifest. A fifth bi-
attitude:

● Providing value to the business over on time on budget
So what is your favourite?

Phran Ryder
Phran Ryder is Chairman of AgileNorth.org.uk – a non profit organisation for

technical and business staff who wish to learn and share experience of becoming
and being agile – details at: www.agilenorth.org.uk.

References
1 Beck, Kent with Cynthia Andres, Extreme Programming Explained:

Embrace Change. Addison Wesley. 2004. ISBN: 0-321-27865-8
2 Fowler, Martin, Refactoring: Improving the Design of Existing Code.

Addison Wesley. 1999. ISBN: 0-201-48567-2

[continued from previous page]

Patterns in C – Part 5:
REACTOR
by Adam Petersen <adampetersen75@yahoo.se>

This final part of the series will step outside the domain of standard C and
investigate a pattern for event-driven applications. The REACTOR pattern
decouples different responsibilities and allows applications to demultiplex
and dispatch events from potentially many clients.

The Case of Many Clients
In order to simplify maintenance of large systems, the diagnostics of the
individual subsystems are gathered in one, central unit. Each subsystem
connects to the diagnostics server using TCP/IP. As TCP/IP is a connection-
oriented protocol, the clients (the different subsystems) have to request a
connection at the server. Once a connection is established, a client may
send diagnostics messages at any time.

The brute-force approach is to scan for connection requests and
diagnostics messages from the clients one by one as illustrated in the
activity diagram in Figure 1.
Even in this strongly simplified example, there are several potential
problems. By intertwining the application logic with the networking code
and the code for event dispatching, several unrelated responsibilities have
been built into one module. Such a design is likely to lead to serious
maintenance, testability, and scalability problems by violating a
fundamental design principle.

The Single Responsibility Principle
The single responsibility principle states that “a class should have only one
reason to change” [1]. The goal of this principle is close to that of the open-
closed principle treated below: both strive to protect existing code from
modifications. When violating the single responsibility principle, a module
gets more reasons to change and modifications to it become more likely.
Worse, the different responsibilities absorbed by a single module may
become coupled and interact with each other making modifications and
testing of the module more complicated.

The single responsibility principle is basically about cohesion. It is
useful and valuable on many levels of abstraction, not at least in a
procedural context; simply replacing the word “class” with “function”
enables us to analyze algorithms like the one above with respect to this
principle.

Violation of the Open-Closed Principle
By violating the single responsibility principle, the module in the example
above will be hard to maintain; it is code that one never wants to dig into in
the future. Unfortunately, on collision course with that wish is the fact that
the event loop above violates the open-closed principle [1]; new functionality
cannot be added without modifying existing code. Related to our example,
a diagnostics server typically allows a technician to connect and query stored
information. Introducing that functionality would double the logic in the
event loop. Clearly, this design makes the code expensive to modify.

From a Performance Perspective
To make things worse, the solution above fails to scale in terms of
performance as well. As all events are scanned serially, even in case
timeouts are used, valuable time is wasted doing nothing.

The potential performance problem above may be derived from the failure
of taking the concurrent nature of the problem into account. One approach
to address this problem is by introducing multiple threads. The diagnostics
server keeps its event loop, but the loop is now reduced to scan for
connection requests. As soon as a connection is requested, a new thread is
allocated exclusively for handling messages on that new connection.

The multithreading approach fails to address the overall design issue as
it still violates both the single responsibility principle and the open-closed
principle. Although the code for scanning and dispatching diagnostics
messages is moved out of the event loop, adding a new server-port still
requires modifications to existing code.

From a design perspective threads didn’t improve anything. In fact, even
with respect to performance, this solution may due to context switches and
synchronization actually perform worse than the initial single-threaded
approach.

The sheer complexity inherent in designing and implementing
multithreaded applications is a further argument for discarding this
solution.

Problem Summary
Summarizing the experience so far, the design fails as it assumes three
different responsibilities. This problem is bound to be worse as the design
violates the open-closed principle, making modifications to existing code
more likely.

Initialize server socket

Listen for connection request

Get first connected client

Get next connected client

Dispatch to client

Create client
connection

Scan client for diagnostic messages

[connection request]

[no new connection request]

[client exists]

[no message]

[incoming message (s)]

[no (more) client(s)]

A passive socket is used
by the server to listen for

connection requests

Figure 1: Eternal loop to scan for different
events

22 CVu/ACCU/Features

Reactor

+ Register (EventHandler *) : void
+ Unregister (EventHandler *) : void
+ HandleEvents () : void

«interface»
EventHandler

+* HandleEvent () : void
+* GetHandle () : Handle

Handle DiagnosticsServer

+ HandleEvent () : void
+ GetHandle () : Handle

DiagnosticsClient

+ HandleEvent () : void
+ GetHandle () : Handle

dispatches to

demultiplexes events on

*

owns

A handle is typically an
operating system resource .

*

1

Figure 2: Structure of the REACTOR Pattern

Summarizing the ideal solution, it should scale well, encapsulate and
decouple the different responsibilities, and be able to serve multiple clients
simultaneously without introducing the liabilities of multithreading. The
REACTOR pattern realizes this solution by encapsulating each service of
the application logic in event handlers and separating out the code for event
demultiplexing.

The REACTOR Pattern
The intent of the REACTOR pattern is: The REACTOR architectural pattern
allows event-driven applications to demultiplex and dispatch service requests
that are delivered to an application from one or more clients [2].
The roles of the involved participants are:
● EventHandler: An EventHandler defines an interface to be

implemented by modules reacting to events. Each EventHandler own
its own Handle.

● Handle: An efficient implementation of the REACTOR pattern requires
an OS that supports handles (examples of Handles include system
resources like files, sockets, and timers).

● DiagnosticsServer and DiagnosticsClient: These two are
concrete event handlers, each one encapsulating one responsibility. In
order to be able to receive event notifications, the concrete event
handlers have to register themselves at the Reactor.

● Reactor: The Reactor maintains registrations of EventHandlers
and fetches the associated Handles. The Reactor waits for events on
its set of registered Handles and invokes the corresponding
EventHandler as a Handle indicates an event.

Event Detection
In its description of REACTOR, Pattern-Oriented Software Architecture [2]
defines a further collaborator, the Synchronous Event Demultiplexer.
The Synchronous Event Demultiplexer is called by the Reactor in
order to wait for events to occur on the registered Handles.

A synchronous event demultiplexer is often provided by the operating
system. This example will use poll() (select() and Win32’s
WaitForMultipleObjects() are other functions available on common
operating systems), which works with any descriptor.

The code interacting with poll() will only be provided as a sketch,
because the POSIX specific details are outside the scope of this article. The
complete sample code, used in this article, is available from my homepage [6].

Implementation Mechanism
The collaboration between an EventHandler and the Reactor is similar
to the interaction between an observer and its subject in the design pattern
OBSERVER [5]. This relationship between these two patterns indicates
that the techniques used to realize OBSERVER in C [4] may serve equally
well to implement the REACTOR.

In order to decouple the Reactor from its event handlers and still
enable the Reactor to notify them, each concrete event handler must
correspond to a unique instance. In our OBSERVER implementation, the
FIRST-CLASS ADT pattern [3] was put to work to solve this problem. As
all concrete event handlers have to be abstracted as one, general type
realizing the EventHandler interface, void* is chosen as “the general

type” to be registered at the Reactor (please refer to the previous part in
this series - Reference [4] - for the rationale and technical reasons behind
the void* abstraction). These decisions enable a common interface for all
event handlers:

Listing 1 : Interface of the event handlers,
EventHandler.h

/* The type of a handle is system specific –
this example uses UNIX I/O handles, which are
plain integer values. */
typedef int Handle;

/* All interaction from Reactor to an event
handler goes through function pointers with
the following signatures: */
typedef Handle (*getHandleFunc)

(void* instance);
typedef void (*handleEventFunc)

(void* instance);

typedef struct
{
void* instance;
getHandleFunc getHandle;
handleEventFunc handleEvent;

} EventHandler;

Having this interface in place allows us to declare the registration functions
of the Reactor.

Listing 2 : Registration interface of the Reactor,
Reactor.h

#include “EventHandler.h”

void Register(EventHandler* handler);
void Unregister(EventHandler* handler);

The application specific services have to implement the EventHandler
interface and register themselves using the interface above in order to be
able to react to events.

Listing 3 : Implementation of a concrete event
handler, DiagnosticsServer.c

#include “EventHandler.h”

struct DiagnosticsServer
{

Handle listeningSocket;
EventHandler eventHandler;

/* Other attributes here... */
};

23CVu/ACCU/Features

/* Implementation of the EventHandler
interface. */
static Handle getServerSocket(void* instance)
{
const DiagnosticsServerPtr server =

instance;
return server->listeningSocket;

}

static void handleConnectRequest(void*
instance)
{
DiagnosticsServerPtr server = instance;

/* The server gets notified as a new
connection request arrives. Add code for
accepting the new connection and creating a
client here... */
}

DiagnosticsServerPtr createServer
(unsigned int tcpPort)

{
DiagnosticsServerPtr newServer =

malloc(sizeof *newServer);

if(NULL != newServer) {
/* Code for creating the server socket here.

The real code should look for a failure,
etc. */
newServer->listeningSocket =

createServerSocket(tcpPort);

/* Successfully created -> register the
listening socket. */

newServer->eventHandler.instance =
newServer;

newServer->eventHandler.getHandle =
getServerSocket;

newServer->eventHandler.handleEvent =
handleConnectRequest;

Register(&newServer->eventHandler);
}
return newServer;

}

void destroyServer
(DiagnosticsServerPtr server)

{
/* Before deleting the server we have to

unregister at the Reactor. */
Unregister(&server->eventHandler);

free(server);
}

REACTOR Registration Strategy
When implementing the concrete event handlers as a FIRST-CLASS ADT,
the functions for creating and destructing the ADT serves well to
encapsulate the registration handling. The advantage is the combination of
loose dependencies with information hiding as a client does not even have
to know about the usage and interactions with the Reactor.

Another attractive property is that the internals of the server, in our
example the handle, is encapsulated within the getServerSocket
function. Sure, we are giving the Reactor a way to fetch it, but the
Reactor is considered a well-trusted collaborator and we are actively
giving it access by registering our event handler. There is no way for any
other module to mistakenly fetch the handle and corrupt the associated
resource.

REACTOR Implementation
The details of the REACTOR implementation are platform specific as they
depend upon the available synchronous event demultiplexers. In case the

operating system provides more than one synchronous event demultiplexer
(e.g. select() and poll()), a concrete Reactor may be implemented for
each one of them and the linker used to chose either one of them depending
on the problem at hand. This technique is referred to as link-time
polymorphism.

Each Reactor implementation has to decide upon the number of reactors
required by the surrounding application. In the most common case, the
application can be structured around one, single Reactor. In this case, the
interface in Listing 2 (Reactor.h) will serve well. An application
requiring more than one Reactor should consider making the Reactor itself
a FIRST-CLASS ADT. This second variation complicates the clients
slightly as references to the Reactor ADT have to be maintained and passed
around in the system.

Independent of the system specific demultiplexing mechanism, a
Reactor has to maintain a collection of registered, concrete event handlers.
In its simplest form, this collection may simply be an array. This approach
serves well in case the maximum number of clients is known in advance.

Listing 4: Implementation of a Reactor using
poll(), PollReactor.c

#include “Reactor.h”
#include <poll.h>
/* Other include files omitted... */

/* Bind an event handler to the struct used to
interface poll(). */

typedef struct
{

EventHandler handler;
struct pollfd fd;

} HandlerRegistration;

static HandlerRegistration
registeredHandlers[MAX_NO_OF_HANDLES];

/* Add a copy of the given handler to the
first free position in registeredHandlers. */
static void addToRegistry(EventHandler*
handler);
/* Identify the event handler in the

registeredHandlers and remove it. */
static void removeFromRegistry(EventHandler*

handler);

/* Implementation of the Reactor interface
used for registrations.*/
void Register(EventHandler* handler)
{

assert(NULL != handler);
addToRegistry(handler);

}

void Unregister(EventHandler* handler)
{

assert(NULL != handler);
removeFromRegistry(handler);

}

Invoking the Reactor
The reactive event loop is the core of the Reactor and its responsibilities
are to control the demultiplexing and dispatch the detected events to the
registered, concrete event handlers. The event loop is contained within the
HandleEvents() function and is typically invoked from the main()
function.

Listing 5: Client code driving the reactor
int main(void){

const unsigned int serverPort = 0xC001;
DiagnosticsServerPtr server =

createServer(serverPort);
if(NULL == server) {

error("Failed to create the server");
}

24 CVu/ACCU/Features

/* Enter the eternal reactive event loop.*/
for(;;){

HandleEvents();
}

}

Before investigating the implementation, which include file should provide
the declaration of the HandleEvents() function? Unfortunately, adding it
to the file in Listing 2 (Reactor.h) would clearly make that interface less
cohesive; the registration functions models a different responsibility than the
event loop. Asolution is to create a separate interface for the event loop. This
interface is intended solely for the compilation unit invoking the event loop.

Listing 6: Interface to the event loop,
ReactorEventLoop.h

void HandleEvents(void);

Despite its simplicity, this separation solves the cohesiveness problem and
shields clients from functions they do not use. This technique of providing
separate interfaces to separate clients is known as the interface-segregation
principle [1].

Implementing the Event Loop
With the interface in place, we can move on and implement the event loop
itself. The listing below extends Listing 4.

Listing 7: Example of a reactive event loop,
PollReactor.c

#include “ReactorEventLoop.h”
/* The code from Listing 4 go here
(omitted)... */

/* Add a copy of all registered handlers to
the given array. */
static size_t buildPollArray

(struct pollfd* fds);

/* Identify the event handler corresponding
to the given descriptor in the
registeredHandlers. */
static EventHandler* findHandler(int fd);

static void dispatchSignalledHandles(
const struct pollfd* fds,
size_t noOfHandles)

{
/* Loop through all handles. Upon detection

of a handle signalled by poll, its
corresponding event handler is fetched and
invoked. */

size_t i = 0;
for(i = 0; i < noOfHandles; ++i) {

/* Detect all signalled handles and
invoke their corresponding event handlers. */

if((POLLRDNORM | POLLERR) &
fds[i].revents) {
EventHandler* signalledHandler =
findHandler(fds[i].fd);

if(NULL != signalledHandler){
signalledHandler-> handleEvent
(signalledHandler->instance);

}
}

}
}
/*Implementation of the reactive event loop.*/
void HandleEvents(void)
{

/* Build the array required to interact
with poll().*/

struct pollfd fds[MAX_NO_OF_HANDLES] = {0};
const size_t noOfHandles =

buildPollArray(fds);

/*Invoke the synchronous event demultiplexer*/
if(0 < poll(fds, noOfHandles, INFTIM)){
/* Identify all signalled handles and
invoke the event handler associated with
each one. */

dispatchSignalledHandles(fds,
noOfHandles);

}
else{

error("Poll failure");
}

}
The example above lets each element in the collection maintain a binding
between the registered event handler and the structure used to interact with
poll(). One alternative approach is to keep two separate lists and ensure
consistency between them. Pattern-Oriented Software Architecture [2]
describes another, system specific alternative: in a UNIX implementation
using select(), the array is indexed by UNIX I/O handle values, which are
unsigned integers ranging from 0 to FD_SETSIZE-1.

Returning to the example, by grouping the registration and the poll-
structure together, the array used to interact with poll() has to be built
each time the reactive event loop is entered. In case the performance
penalty is acceptable, this is probably a better choice as it enables a simpler
handling of registrations and unregistrations during the event loop.

Handling New Registrations
In my previous article [4], I discussed strategies for managing changed
registrations during the notification of observers. The alternative of
forbidding changed registrations is, unlike the OBSERVER pattern, not an
option for a REACTOR implementation. In the example used in this article,
the server reacts to the notification by creating a new client, which must
be registered shall it ever be activated again. This leaves only one option
for a REACTOR implementer: ensure that it works.

One solution is to maintain a separate array to interact with the synchronous
event demultiplexer as illustrated above. This array is never modified in the
event loop. However, this solution has the consequence that handles
unregistered during the current event loop may be marked as signalled in the
separate array. The code simply has to check for this case and ignore such
handles, as illustrated by the function dispatchSignalledHandles in
Listing 7 above.

The code uses the handle alone as identification. In cases resources are
disposed and created during the same event loop, there is, depending on
platform, a possibility that the handle ID’s are re-used; a signalled handle in
the copy may belong to an unregistered event handler, but due to a new
registration using the re-cycled handle ID, the new event handler may be
erroneously invoked. If this is an issue, the problem may be prevented by
introducing further book-keeping data. For example, a second array containing
the identities of the handles unregistered during the current event loop makes
it possible to identify the case described above and thus avoid it.

More Than One Type of Event
The design in the example above does only allow applications to register for
one type of event (read-events). The event type is even hardcoded in the
Reactor and it is a simple solution sufficient for applications without any need
for further event detection. The REACTOR pattern, however, is not limited to
one type of event. The pattern scales well to support different types of events.

Pattern-Oriented Software Architecture [2] describes two general
strategies for dispatching event notifications:
● Single-method interface: An event handler is notified about all events

through one, single function. The type of event (typically in the form
of an enum) is passed as a parameter to the function. The disadvantage
of this approach is that it sets the stage for conditional logic, which soon
gets hard to maintain.

● Multi-method interface: In this case, the event handler declares separate
functions for each supported event (e.g. handleRead, handleWrite,
handleTimeout). As the Reactor has the knowledge of what event
occurred, it invokes the corresponding function immediately, thus
avoiding placing the burden on the event handler to re-create the event
from a parameter.

Comparision of REACTOR and OBSERVER
Although the mechanisms used to implement them are related, there are
differences between these two patterns. The main difference is in the

[concluded at foot of next page]

25CVu/ACCU/Features

notification mechanism. As a Subject changes its state in an OBSERVER
implementation, all its dependents (observers) are notified. In a REACTOR
implementation, this relationship is one to one – a detected event leads the
Reactor to notify exactly one dependent (EventHandler).

One typical liability of the OBSERVER pattern is that the cohesion of
the subject is lowered; besides serving its central purpose, a subject also
takes on the responsibility of managing and notifying observers. With this
respect, a Reactor differs significantly as its whole raison d’être is to
dispatch events to its registered handlers.

Consequences
The main consequences of applying the REACTOR pattern are:
1. The benefits of the single-responsibility principle. Using the REACTOR

pattern, each of the responsibilities above is encapsulated and decoupled
from each other. The design results in increased cohesion, which
simplifies maintenance and minimizes the risk of feature interaction.
As the platform dependent code for event detection is decoupled from the
application logic, unit testing is greatly simplified (it is straightforward
to simulate events through the EventHandler interface).

2. The benefits of the open-closed principle. The design now adheres to the
open-closed principle. New responsibilities, in the form of new event
handlers, may be added without affecting the existing event handlers.

3. Unified mechanism for event handling. Even if the REACTOR pattern is
centred on handles, it may be extended for other tasks. Pattern-Oriented
Software Architecture [2] describes different strategies for integrating the
demultiplexing of I/O events with timer handling. Extending the Reactor
with timer support is an attractive alternative to typical platform specific
solutions based upon signals or threads. This extension builds upon the
possibility to specify a timeout value when invoking the synchronous
event demultiplexer (for example, poll() allows a timeout to be
specified with a resolution of milliseconds). Although it will possibly not
suit a hard real-time system, a Reactor based timer mechanism is easier
to implement and use than a signal or thread based solution as it tends to
avoid re-entrance problems and race-conditions.

4. Provides an alternative to multithreading. Using the REACTOR
pattern, blocking operations in the concrete event handlers can typically

be avoided and consequently also multithreading. As discussed above,
a multithreaded solution does not only add significant complexity; it
may also prove to be less efficient in terms of run-time performance.
However, as the Reactor implies a non pre-emptive multitasking model,
each concrete event handler must ensure that it does not perform
operations that may starve out other event handlers.

5. Trades type-safety for flexibility. All concrete event handlers are
abstracted as void*. When converting a void-pointer back to a pointer
of a concrete event handler type, the compiler doesn’t have any way to
detect an erroneous conversion This potential problem was faced in the
implementation of the OBSERVER pattern [4] and the solution is the
same for the REACTOR: define unique notification functions for each
different type of event handler and bind the functions and event handler
together using an EventHandler structure as described in Listing 1.

Summary
The REACTOR pattern simplifies event-driven applications by decoupling
the different responsibilities, encapsulated in separate modules.

There is much more to the REACTOR pattern than described in this
article. Particularly several variations that all come with different benefits
and trade-offs. For an excellent in-depth treatment of the REACTOR and
other patterns in the domain, I recommend the book Pattern-Oriented
Software Architecture, volume 2 [2].

Adam Petersen

References
1. Robert C. Martin: “Agile Software Development”, Prentice Hall
2. Schmidt, Stal, Rohnert, Buschmann: “Pattern-Oriented Software

Architecture, volume 2”, Wiley
3. Adam Petersen, “Patterns in C, part 1”, C Vu 17.1
4. Adam Petersen, “Patterns in C, part 4: OBSERVER”, C Vu 17.4
5. Gamma, E., Helm, R., Johnson, R., and Vlissides, J, “Design Patterns”,

Addison-Wesley
6. The complete REACTOR sample code used in this article,

www.adampetersen.se

Acknowledgements
Many thanks to Drago Krznaric and André Saitzkoff for their feedback.

[continued from previous page]

When Worlds Collide 2 -
Circuit Switch Telephony
and Packet Switch
Networks
Mark Easterbrook <mark@easterbrook.org.uk>

Telephones have been around a very long time. Alexander Graham Bell
patented the telephone in 1876, so the telephone was over a century old
before packet switch networking escaped from the laboratory. Hence the
telephony industry is one of the most mature in the world of technology.
In comparison, the computer industry is young and immature - if you were
to anthropomorphise it you might see a troublesome teenager emerging
from a difficult puberty. Asking the two to work closely together is bound
to be interesting.

Digital Telephony Primer
Unless you work in the telecommunications industry your knowledge of
how it works is likely to be quite limited, therefore it is worth describing
the basics.

The analogue signal from your home or work phone is frequency limited
to about 3kHz (very little content of speech is above this) and converted
to digital using 8 bit samples, 8000 times a second, giving a bit stream of
64000 bits per second (64kbit/s). The telephone network consists of digital
circuits capable of carrying 64kbit/s signals, and switches that can connect
one circuit to another to form end-to-end paths. The basic building block
of the telephony network is therefore the 64kbit/s data stream. An end-to-
end circuit provides a dedicated path, it has a fixed latency, a fixed
bandwidth, and a fixed quality of service. The resources allocated at every
point in the network are fixed for the duration of the call. The number of

circuits is also fixed so that once they are all in use all further calls have
to be rejected; there is no option to adjust the balance between quality and
numbers of calls.

Mobile networks are similar, although advances in processing power in
the handset allow more efficient use of bandwidth in the access network
so that the voice circuit between the handset and the core network only
needs 16kbit/s.

Telephony networks also have a signalling infrastructure to control the
calls carried over these 64kbit/s circuits. This is a message-based network
designed specifically for call control and is often carried on the same
physical media as the voice circuits. Initially this signalling was just
restricted to basic call set-up and clear down - passing the called and caller
numbers and indicating when the call was answered and finished. As the
number of services provided by the telephony networks has increased so
has the number of type of messages carried by the signalling network so
now it is far more than just call handling. The short message service (SMS)
between mobile phones is an example of data carried by this signalling
network that is not related to a telephony call.

Circuit Switch telephony networks
Telephony networks have developed slowly over more than a century, and
until recently have been built, owned, and controlled by mostly state-owned
monopolies. This long heritage has led to the characteristics of the modern
telephony network that we are familiar with today:
● Dumb terminals. The modern telephone has changed surprisingly little

since the 19th Century. It contains a microphone and speaker for the
user to communicate with the other end of the call, and a method to
signal to the network. The only significant change has been the
replacement of the rotary dial with a keypad. You can take a hundred-
year-old phone and use it to make a call to the latest model of mobile
phone, or vice versa - there are very few other technologies that have
remained compatible for such a long time. Even modern devices, such

26 CVu/ACCU/Features

as the modem, facsimile, or DECT handset, are based on the same three
components, transmit sound, receive sound, and a signalling interface.

● Intelligent networks. As services have been developed for the
telephony world they have mostly been introduced into the core
network. With the intelligence in the network, introduction and upgrade
of a service does not require a change to the subscriber’s equipment,
and the hardware, software, configuration, and security is under control
of the network operator. This has been a great benefit to the network
operators in the form of increased revenue, to the subscriber in the form
of a rich menu of services, and to third parties in that they can sell
services to everyone with a phone, no matter how basic.

● Metered charging. Calls are usually charged by time from the time of
answer to the end of the call. This means that the cost of a call is transparent
to the end user. Today’s networks support fixed price or unmetered charging,
but these are a recent development and are only reluctantly implemented
by network operators as they threaten existing revenue streams.

● Distance charging. Long distance calls have always cost more than
short distance calls. This is based on the idea that the more pieces of
equipment, or exchanges, the call passes through, the more expensive
it is for the network operator, and that expense is passed to the end user.
Additionally, interconnect charges are a valuable source of revenue so
operators charge a premium for other operators to access their network,
and therefore international and cross-network calls are relatively
expensive.

● Fixed Bandwidth. The building block of the telecom network is the
64kbit/s channel. This has led to data connections using the circuit
switch network reaching their limit at about 56kbit/s for analogue
modems and 64kbit/s for end-to-end digital. Exceeding this limit
requires more intelligence at the end terminals, for example, 128kbit/s
ISDN is achieved by concatenating two 64kbit/s channels (charged by
the Telco as two separate calls) and video calls by using 6x64kbit/s
channels. Although there is some support in the network to route the
concatenated channels via the same path, most of the functionality is
implemented at the data terminal.

● Fixed Latency. The nature of the dedicated 64kbit/s channel is that
every bit takes the same time to transverse the network, and therefore
the latency for a connection remains constant. This is particularly
important for voice communications as the human ear/brain is
reasonably tolerant of delay, but not of jitter. The worst-case latency
within a network in a medium sized country (e.g. BT in the UK) can be
as little as 10-15ms.

● Partitioned Signalling. The circuit switch signalling network is
partitioned into core network signalling and access network signalling.
In the core network Signalling Scheme Number 7 (SS7 or C7) provides
a trusted message transfer and relay mechanism. Access to the
messaging in the core network is protected by having protocol
conversion from an access network (typically ISDN signalling) that
validates message content as well as providing supplementary services.

● Standards. The international telephony networks conform to nationally
and internationally ratified standards from organisations such as ITU-
T, ANSI, and ETSI. Standards are agreed at national or international
level and then implemented by manufacturers and operators. The
process is hierarchical and participation expensive, leading to
domination by a small number of large organisations. There is also a
historical global division resulting in a different set of standards in North
America and (most of) the rest of the World.

Packet Switch Networks
● Intelligent Terminals. Even the first networked computers were

substantially more complex than a telephone. Even just providing the
network interface required considerably more hardware and software
than even the most advanced phones of the day. With intelligence in the
terminal equipment, new services and features require modification to
that equipment, resulting in costly and time-consuming upgrades. When
a new service is rolled out, it is only available to those end users with
the equipment that supports it, or those who are willing to upgrade their
equipment.

● Dumb network. In packet switch networks the network is purely a
transport mechanism. Most of the intelligence that seems to be in the
network is actually provided by devices attached to the network, and
each terminal device needs to know how to access network resources.

● Per packet or bandwidth charging. The charging model for access to
packet switch networks traces its origins to the government (military)

or academic use, which is often perceived as free. In practice, because
most packet networks have a high infrastructure cost and low per-use
costs, charging has been on a bandwidth basis, except where bandwidth
is scarce when per-packet charging encourages efficient use. Where
access to a packet switch network such as the Internet is provided by
another network, such as dial up telecom access, the access charge is
that of the access network.

● Distance independent charging. It is rare in the packet switch world
to be charged by distance. Users of the Internet are often unaware of
the location of the service they are accessing, so charging by distance
could not be transparent and therefore would be unacceptable to most
users.

● Flexible bandwidth. The usual method of sharing the bandwidth over
packet switch networks is on a first-come first-served packet-by-packet
basis. This means that a heavy user such as a batch file transfer will
significantly affect a light traffic interactive user, and that the available
bandwidth can vary during the lifetime of a connection.

● Variable Latency. Another consequence of the shared bandwidth is the
variations in latency depending on the type of traffic sharing the
bandwidth. This makes the transport of voice over contemporary packet
switch networks a hit and miss affair.

● Transmission Delays. The packetising delay and anti-jitter buffering
alone is often more than the end-to-end delay of circuit switch networks.
There is a trade off between packet size and transmission delay as larger
packets make more efficient use of the bandwidth at the cost of delayed
transmission. Mixing bandwidth efficient traffic and latency-sensitive
traffic on the same transport network requires more intelligence at
intermediate nodes.

● End-to-end signalling. In most packet switch networks the
intermediate nodes only deal with destination routing decisions, leaving
all higher-level protocols to the endpoints. With the exception of HTTP,
it is rare to validate the communication at any point within the network.

● Signalling Standards. The vast majority of packet switching protocols
are defined by the IETF (Internet Engineering Task Force) via RFC
(Request for comments) documents. This is an “implement first, then
document what works” co-operative method of standardisation that
allows anyone to partake without significant barriers to entry. Standards
are mostly global although they tend to have a North American cultural
and language bias.

Collision
The two worlds of circuit switch and packet switch are increasingly
meeting and overlapping, and both are highlighting the other’s limitations
when in the wrong domain:
● In the telecom arena the demands of packet over circuit is only possible

by abandoning the current lucrative charging model and therefore
disrupting the business model of traditional Telcos. The drive to extract
higher transfer rates of data over the telephone access network has
reached a limit at 56-64Kbits/s per circuit, and end users are demanding
much more. The Telcos have always provided high bandwidth point-
to-point circuits for business, but at a price. The charge for a 2Mbit/s
E1 (1.5Mbit/s T1 in North America) is charged at thousands of pounds
or dollars per month, depending on location and distance. Telcos have
the choice of ignoring the demand and watching someone else take their
market, or lowering the price and seeing the revenue stream
dramatically reduce.

● The computer industry has until very recently always been forced to use
the Telcos for anything other than on-campus connections. In many
developed countries the stranglehold of the monopolies prevented
companies from even linking two of their own buildings if they didn’t
own the land between, no matter how narrow. This has made wide area
networks expensive and time-consuming to install and run, leading to
frustration and resentment of the Telco’s monopoly position. It is hardly
surprising that the computer networking community, and more recently
computer users, have taken every opportunity to circumvent or
eliminate the Telco’s networks. At the extreme this has led to the
technically crazy and inefficient use of voice over IP packet over digital
voice circuit!

It is not surprising then, that the telecom industry is looking at moving its
network infrastructure to packet switch, and the computer industry is
increasingly providing services previously the exclusive domain of the Telcos.

For the telecom industry, packet switch allows them to satisfy the
demands of IP based equipment connecting over their networks, carry

27CVu/ACCU/Features

traditional telecom traffic, and introduce new services to open up new
sources of revenue. Unfortunately, the characteristics that make telecom
networks reliable and predicable are mostly not present in packet networks,
and retrofitting them is proving challenging.

Similarly, for the computer industry, retrofitting the reliable and
predictable performance that has resulted from a carefully regulated
telecom environment to their anarchical culture feels like a paradigm
change too far.

Quality of Service (QoS)
The quality of service provided by the fixed line telecom networks in all
developed countries is taken by granted by most users to such an extent
that customers have become intolerant of dropped calls, lack of dial tone,
and expect to get through first time, every time. Compare this with the
computer industry where crashes are tolerated, perhaps almost expected,
and modems dropping the line, missing web pages, and unavailability are
taken for granted. The idea of a telephone exchange running for 25 years
without a reboot is so foreign to the computer community that they have
difficultly believing such things are possible. There is therefore a gulf
between the expectations of telephone users and computer users, even when
they are the same people. This gulf could be bridged by improving quality
of service in computer networks up to that expected by telecom users, or
reducing the expectations of the telecom users. Fortunately for the telecom
industry, two technologies have become widespread in the last decade that
have done much to lower the expectations of the telephone user: mobile
phone networks and IVR (interactive voice response) systems fronting call
centres. But can the quality of service in packet switch networks be
improved significantly to allow them to match the now reduced
expectations of the telephone user?

Voice over IP (VoIP)
VoIP is a much-misused term, often being confused with Internet
Telephony. Although the technology has been around for many years, QoS
issues are hampering its deployment. In order to provide a QoS comparable
with the existing telecom networks, the underlying IP network needs to be
carefully designed and managed, particularly with regard to capacity and
shared traffic. In practice VoIP networks need to be grossly over-specified
and dedicated to VoIP traffic, especially when using IPv4 (IPv6 solves
some, but not all, of the QoS issues). It is simply not possible to just piggy-
back voice traffic on an existing IP network and expect it to work reliably;
either the network needs to be extensively upgraded, or a new VoIP network
commissioned, both of which negate any perceived cost advantage of using
an IP network. Despite the difficulties, VoIP is slowly being deployed,
albeit mainly in two locations, PABXs, and IP islands in core telecom
networks, both of which are controlled environments where QoS and other
issues can be managed.

VoIP and the PABX
If a company needs to upgrade both its LAN and internal telephone
infrastructure, there are significant cost-savings, both up-front and on
going, by converging the two. Vendors offering solutions for the integrated
corporate market will dominate a Google search for VoIP, and technical
news feeds frequently relay press releases of companies making this
change. Although this closed environment is a success story for VoIP, it is
not the VoIP technology that is driving it, but the cost-savings from
avoiding duplication, and often the biggest savings are in the physical wires
rather than the protocols carried by them. It is highly likely that VoIP will
be the dominant technology for providing voice services in the SME space
by the end of the decade.

VoIP islands in core networks
While in most of the VoIP world the publicity and hype precedes the
implementation, the major telephone operators are quietly but steadily
installing VoIP networks, if not as islands in their core network, at least
in their test plant. My interpretation is that they believe VoIP is going to
very important in the near future, but there are still significant
technological, logistical and financial barriers still to break down, and that
giving out too much information about the technology they are using
would allow their competitors, especially the new entrants to the market,
to piggy-back their research. Similarly, the major telecom equipment
manufacturers, once you delve beyond the marketing hype, are vague
about the direction they are taking, lest the big IP equipment
manufacturers steal their market.

Internet Telephony

Most references to VoIP are actually referring to using the Internet for cheap
telephone calls. On the surface this seems an easy way to avoid paying
Telco charges, especially for long distance and international calls. In
practice it is small niche application beset with problems. The variable,
sometimes long, and unpredictable propagation delays of the Internet result
in a low quality relegated to those who are willing to trade quality for low
price. Unless the person you are calling is in one of the few areas with free
Internet to telephone network gateways, you are limited to calling people
who are close to their powered-up computer.

Despite these difficulties, a number of companies are providing
Internet Telephony products. Noticeably the big players, such as BT with
Broadband Voice in the UK, are by-passing existing desktop computers
and supplying dedicated boxes plugged into the customer’s LAN and
providing interfaces to the public telephone network, albeit not at zero
cost.

The Catch – Signalling
VoIP is easy. Taking a digital voice stream, putting it into IP packets,
and pulling it out at the other end is almost trivial, and the necessary
supporting features such as codecs, jitter buffers, and echo cancellation
are available both in hardware and as software algorithms. The element
that makes VoIP usable but technically complicated is the signalling.
Both the traditional telephony and the emerging IP telephony worlds
have many copious standards, but whereas the traditional telephony
world is in general agreement in which standards and options to apply
where, there is no consensus in the IP world and each vendor is pushing
its own favourite. Many of the IP telephony signalling protocols were
developed before the current explosion in public internet use and the
subsequent security and abuse problems, and as a consequence, do not
co-exist well with the partitioning of the Internet such firewalls and NAT
routers.

Security
In its spring 1999 issue, the hacker magazine “2600” published an article
entitled “SS7 explained” in which author Friedo describes in detail how
SS7 works. He explains: “the hackability of SS7 does not at first appear
possible, unless someone could figure out how to interface directly with
the SS7 network”. Telecom service providers have been very protective
about their internal system since the early 70s when John Draper discovered
a toy whistle allowed users to circumvent billing systems for long-distance
calls in the US and the resultant development of the so-called “blue boxes”
sold to make it easy for end users to phreak the network. Even with the
proliferation of mobile telephony networks and the licensing of many small
operators, the security of the public telephone network is many orders of
magnitude better than the Internet and the other IP networks connected to
it. The public telephony network not only provides access to the emergency
services but also provides many other critical links such as intruder
detection alerts. The reliability and availability of the telephone network
really is a life and death matter. It is simply not possible for IP based
networks to replace the existing circuit switch telephony networks unless
the security of IP is improved by orders of magnitude. This either requires
an IP telephony network completely separate from the existing IP data
network, which negates much of the advantage of an integrated system, or
there needs to be a landmark change in how IP networks are deployed and
secured.

The Outlook
There is already enough momentum in the direction that telephony and
data networks are moving that by the end of the decade it will be
impossible to tell where one network type ends and the other starts, and
a time when there is no longer any concept of separate networks for
telephony and computers is not far off. This brings great challenges all
of us: The telephony world needs to shed the legacy of its monopoly
position and gentle pace of technological change, particularly in the way
it charges its customers and rations access to new technology. The
computer industry needs to take a grown-up attitude to reliability,
availability, and security; reboots, denial of service and viruses are
simply not acceptable when dealing with universal public services and
life and death situations. The most popular cliché at the moment is
“wake-up call” - if you are in the telephony or data networks industry,
this is yours.

Mark Easterbrook

28 CVu/ACCU/Features

Tracking Exceptions in Web
Services with GUIDs

Matthew Skelton <matthew.skelton@gmail.com>

Synopsis

This article demonstrates a technique for tracking exceptions across process
boundaries in distributed systems using Globally Unique Identifiers
(GUIDs); data from log files, bug reports, and on-screen error messages
can then be correlated, allowing specific errors to be pinpointed.

Particular attention is paid to XML Web Services, with additional
reference to DCOM, CORBA, Java/RMI and .Net Remoting..

The examples are given in C#, but the technique can be applied easily
to Java and other languages.

Introduction
When dealing with modern distributed applications, it is often very useful
to track an exception as it crosses process and machine boundaries. A
comprehensive picture of the “distributed error” can then be constructed
from log files of the different applications and components affected.

Languages such as C# and Java have an inbuilt mechanism to provide
detailed error information – the Exception Stack Trace – which helps greatly
to identify the source of runtime application errors. However, this information
in itself does not always provide the full picture of an error condition.

The approach outlined here uses GUIDs (see Sidebar: GUIDs)
effectively to “tag” exceptions before they leave one part of an application
and appear in another. This allows exceptions to be tracked irrespective of
whether the application is stand-alone or distributed, and irrespective of the
transport, protocol or component architecture used.

XML Web Services: A Very Brief Introduction
XML Web Services is the name given to the latest class of middleware
technologies designed to provide cross-platform Remote Procedure Calls
(RPC). Previous technologies such as DCOM, CORBA and Java/RMI all
have strengths, but often suffer from implementation difficulties, and none
is really both platform- and language-independent [10], [11].

XML Web Services are described concisely in [16] as follows:
Web services are a new breed of Web application. They are self-contained,
self-describing, modular applications that can be published, located, and
invoked across the Web. Web services perform functions, which can be
anything from simple requests to complicated business processes... Once a
Web service is deployed, other applications (and other Web services) can
discover and invoke the deployed service.

The increasing success of XML Web Services, and SOAP [9] in particular,
as the “glue” for cross-platform RPC can be put down to several factors,
including:
● the technology is “platform-agnostic”, relying only on XML as the data

exchange format
● there is no explicit transport protocol (most implementations use HTTP,

but SMTP or other protocols are also valid [13])
● the use of these standard protocols allows Web Services to be accessed

behind a firewall (Port 80 for HTTP will usually be left open, for
example)

● Web Services can be discovered and used automatically using UDDI
[14], due to Web Services being “self-describing” via WSDL [15].

All these properties make XML Web Services very attractive for building
scalable, flexible distributed applications. For a more comprehensive
introduction to XML Web Services, see [8].

SOAP
The Simple Object Access Protocol (SOAP) [9] is probably the most common
dialect used by XMLWeb Services. The W3 introduction [17] to SOAP states:

SOAP is fundamentally a stateless, one-way message exchange paradigm,
but applications can create more complex interaction patterns (e.g.,
request/response, request/multiple responses, etc.) by combining such one-
way exchanges with features provided by an underlying protocol and/or
application-specific information.

Although SOAP does not specify a transport protocol, HTTP is normally
used. With the resultant “SOAP-HTTP Binding”, XML Web Services using
SOAP and HTTP rely on message exchange using a combination of an
HTTP Header and SOAP (XML) payload.

A SOAP message to retrieve (say) the author and title of a book might look
something like this:

POST /cgi-bin/book-info.cgi HTTP/1.1
MethodName: GetBookDetails
MessageType: Call
Content-Type: text/xml-SOAP

<GetBookDetails>
<ISBN>0201615622</ISBN>

</GetBookDetails>
Figure 1 - SOAP Request

Notice the standard HTTP POST request (first five lines), and that the
SOAP payload (the GetBookDetails element) is simply XML.

The response from the Web Service might look like this:
200 OK
Content-Type: text/xml
Content-Length: 115

<GetBookDetailsResponse>
<author>
Herb Sutter

</author>
<title>
Exceptional C++

</title>
</GetBookDetailsResponse>

Figure 2 - SOAP Response

The XML payload contains a root element GetBookDetailsResponse
that is the response to the original GetBookDetails request. Real-world
SOAP messages would be somewhat more complex, but the principle above
remains. For a much more comprehensive overview of SOAP, see [10].

SOAP deals with errors using a Fault response element. Any errors
encountered by the Web Service, either in the request itself, or during the
processing of the request, are detailed in the Fault element. For example,
if the GetBookDetails request above failed due to an unknown ISBN,
the XML payload of the response might look something like this:

<GetBookDetailsResponse>
<fault>
<faultcode>700</faultcode>
<faultstring>Processing Error</faultstring>

<runcode>1</runcode>
<details>
<Message>
ISBN Not Recognised!

</Message>
</details>

</fault>
</GetBookDetailsResponse>

Figure 3 - SOAP Fault

GUIDs
A GUID (pronounced like “squid”) is a Globally Unique IDentifier, and is
normally represented in string form something like this: DCF70619-01D8-
42a9-97DC-6005F205361A. The GUID (also known as UUID – Universal
Unique IDentifier) is an IETF standard, as defined in RFC 4122 [1]. The
.Net Framework documentation for System.Guid [4] has this to say:

A GUID is a 128-bit integer (16 bytes) that can be used across all
computers and networks wherever a unique identifier is required. Such an
identifier has a very low probability of being duplicated.

GUIDs are generated using a variety of data, such as the current date &
time, the IEEE 802 (MAC) address of the machine’s network card, etc.[2].
This is designed to ensure that the likelihood of generating the same
GUID twice is very small.

There are UUID/GUID implementations for many different languages
and platforms (see Sidebar: GUID Implementations), and even an online
GUID generator [3]. In addition, it is easy to identify GUIDs written in
the standard string representation (above) using Regular Expressions.

Note: UUIDs/GUIDs should not be confused with GIDs/UIDs on *nix
systems!

29CVu/ACCU/Features

The /fault/details node contains a Message element, with an
explanation of the error. (Note: in practice, XML Namespaces would be used
for both the request and the response XML: these have been omitted for clarity.)

We will return to the SOAP Fault shortly.

SoapExceptions in the .Net Framework
The Microsoft .Net Framework simplifies many of the implementation
details of SOAP web services by classes in the System.Web.Services
namespace [20], in particular, the WebService class, from which – by
default – all other SOAP Web Services in .Net are derived.1

One of the most useful aspects of the Framework is that a SOAP Fault
response is converted automatically to a System.Web.Services.Protocols
.SoapException [18], which is thrown in the context of the calling client.
Details of the error contained in the SOAP Fault element are made available
as properties of the SoapException instance. 2

This conversion also works in the opposite direction: a SoapException
escaping from the Web Service is converted automatically into a SOAP
Fault response. In fact, the .Net Framework ensures that only exceptions
of type SoapException escape from a Web Service call: if an uncaught
exception raised within a Web Service method is not a SoapException,
the Framework throws a new SoapException, storing the uncaught
exception as its InnerException. Details of the original exception are
extracted into the SOAP Fault/details element.

Figure 4 shows how information about an error in the Web Service method
is transmitted back to the calling client. Thus, if the Web Service were to
create a unique identifier for the error, and pass that identifier back to the
client, we would be able to track that specific error as it travels across
machine/process boundaries. Assuming that the error is logged in both
places, we would have a way to link together error information from one
application component with that from another.

Implementing Exception Tracking with GUIDs
Figure 5 shows a C# class definition for a simple base class to help with
tracking exceptions:

using System;

public class TrackedException : Exception
{
#region .ctor signatures in System.Exception
public TrackedException() :

this(Guid.NewGuid())
{}

public TrackedException(string message) :
this(message, Guid.NewGuid())

{}
// etc...
#endregion

#region .ctors providing tracking ability
using GUIDs
protected TrackedException(Guid errorID) :

base()
{
this.errorID = errorID;

}

protected TrackedException(string message,
Guid errorID) : base(message)

{
this.errorID = errorID;

}
// etc...
#endregion

#region Tracking
private Guid errorID;
/// <summary>
/// Uniquely identifies this exception
/// </summary>
public Guid ErrorID
{
get { return errorID; }

}
#endregion

}
Figure 5 - A basic TrackedException base class

The TrackedException class in Figure 5 automatically creates a new
GUID in its constructors. Derived classes therefore do not need to concern
themselves with GUID creation: in fact, they cannot, as the constructors
relating to GUIDs are protected. Other useful base class constructors could
be defined (e.g. matching the signatures of System.Exception), also
priming the ErrorID property.

Wherever a TrackedException is thrown in code, we know that it will
have a GUID-based ErrorID property, which we can include in log file data.

Crucially, however, in the context of Web Services, we can also include
this GUID in the SOAP Fault response, by throwing explicitly a
SoapException from within a Web Service method if an exception is
thrown during processing:

[WebMethod] //Attribute needed for Web Service
//'plumbing'

public string GetBananaPrice(string cityName)
{
try
{
// some processing

}
catch (TrackedException te)
{
string message = te.GetType().Name + " " +

te.Message;
// N.B. Constructor parameters simplified
// here
throw new SoapException(
message,
ExceptionHelper.WrapDetails(te.ErrorID),
te);

}
}
Figure 6 - Using a TrackedException in a Web

Service

The call to the hypothetical ExceptionHelper.WrapDetails() method
returns a System.Xml.XmlNode object that will be inserted into the SOAP
Fault response XML payload.1 Web Services in .Net can also be built ‘from scratch’ if required.

2 There are similar implementations for Java: see [19] for an example.

Figure 4 - Mapping SoapExceptions to SOAP
Faults

30 CVu/ACCU/Features

The client calling the Web Service in Figure 6 would use code like this:
// Create local proxy for Web Service
// Connection to remote machine is handled
// automatically
PricesWebService ws = new PricesWebService();
try
{
string bananaPrice =

ws.GetBananaPrice("Havana");
}
catch (SoapException se)
{
// Extract the GUID stored by the Web
// Service from the XML
string errorGUID = se.Details.InnerText;
string message = se.Message;
// Log the error here at the client...
Console.Out.WriteLine("Error when calling

GetBananaPrice(): " + message + " GUID: "
+ errorGUID);

// TODO:
// Present the GUID to the user
// Notify admin using GUID

}
Figure 7 - Catching a SoapException at the

client and logging the GUID

The Details property of the SoapException at the client contains the
XML from the XmlNode that was inserted in the catch handler of the Web
Service method: the GUID of the original exception (see Figure 6). Logging
this at the client will allow us to tie together the error logs from the two
applications; showing the GUID to the user (see Figure 8) would allow her
to copy/paste the GUID into a bug report (for example), further correlating
the error information.

The same GUID appearing in different log files will refer to the same
exception instance; due to the nature of GUIDs (see Sidebar: GUIDs) we
can assume that a GUID will never be duplicated.

There is an advantage in presenting only a GUID rather than detailed error
information to the user: it may not always be appropriate to divulge the details
of an error (for security reasons, for example). The GUID acts as an opaque
handle to the already-logged error; a bug report containing just the GUID
should be enough to put that report in context.

Other Technologies
It is fairly easy to extend the GUID-based error tracking to certain other
frameworks and technologies. For Java/RMI (and its .Net analogue, .Net
Remoting), it is basically enough to make the TrackedException class
available to each side of the Remoting channel.3 The ErrorID property of the
exception instance will be serialized along with the rest of the object, and
therefore be available to the calling client. [Note that a UUID class was

introduced only in Java 2 SE 1.5, so earlier versions of Java will have to rely
on other UUID implementations – see Sidebar: GUID Implementations, [c]]

CORBA and DCOM differ substantially in their support for exceptions.
DCOM does not transmit exception details from server to client, relying instead
on (much less useful) “HRESULT” return codes [5] [22]. There is therefore no
simple way to extend the GUID-based exception tracking to DCOM.4

Unlike DCOM, CORBA does transmit exceptions across the
communication channel. If we make TrackedException a
CORBA::UserException, we can define a public property errorID,
which will contain the string representation of the GUID:

// CORBA IDL
#pragma prefix "example.com"
module TrackedExceptionExample
{
interface FruitPrices
{
exception TrackedException
{
string errorID;

};

string get_banana_price(
in string cityName)

raises (TrackedException);
};

};
Figure 9 - TrackedException in CORBA

Some CORBA implementations already provide for a way to associate extra
information with the exception – see [23].

However, for situations that do not provide this ability to ‘hook’ the
exception GUID (for example, in ‘interop’ scenarios [21] 5), it may be
possible to append the GUID to the error message. C# code for a modified
version of the TrackedException class to append the GUID to the error
message would look like this:

using System;
public class TrackedException : Exception
{
#region .ctor signatures in System.Exception
public TrackedException() :

this(Guid.NewGuid())
{}
public TrackedException(string message) :

this(message, Guid.NewGuid())
{}
// etc...
#endregion
#region .ctors providing tracking ability

using GUIDs
protected TrackedException(Guid errorID) :

base(String.Format(FormatString,
"TrackedException", errorID))

{
this.errorID = errorID;

}
protected TrackedException(string message,

Guid errorID) : base(String.Format
(FormatString, message, errorID))

{
this.errorID = errorID;

}

// etc...
#endregion
#region Tracking
public static readonly string FormatString =

"{0} - ErrorID: {1}";
private Guid errorID;
// <summary>
// Uniquely identifies this exception
// </summary>

Figure 8 - Presenting the error GUID to the user

3 Technically, it will also be necessary to ensure that the class is serializable. For a C#
class with simple (serializable) fields, it is sufficient to mark the class with the
[Serializable] attribute.

4 The target COM Object could be made to support the IErrorInfo interface, which
could then be queried for the exception GUID.

5 See also http://udk.openoffice.org/common/man/uno_the_idea.html for an interesting
discussion on Java/RMI, CORBA and DCOM.

31CVu/ACCU/Features

public Guid ErrorID
{
get { return errorID; }

}
#endregion

}
Figure 10 - TrackedException modified to store

the GUID in the error message

The constructors ensure that a GUID is associated with the exception (as
in Figure 5), but also automatically store the string version of the GUID in
the Message property of the exception, by modifying the data passed to
the base class constructor.

This approach sacrifices encapsulation for the ability to track exceptions
across process and machine boundaries. Logging the received error
message would still allow the correlation of error information from the
various parts of the distributed system, because the original exception
GUID is stored in the error message.

Future Developments
The System.Exception class in C# 2.0 (currently in Beta, and due for
release some time in 2005) has a new member: Data of type
IDictionary. This allows the association of arbitrary named data items
with a given exception. The ErrorID property of TrackedException
could be re-implemented to store the GUID in the Exception.Data
dictionary, because this would remove the need for special treatment:

public class TrackedException : Exception
{
// Constructors go here...
// ...
// for example:
public TrackedException (Guid errorID) :

base ()
{
this.Data["GUID"] = errorID;

}
public Guid ErrorID
{
get
{
return this.Data["GUID"] as Guid;

}
}

}
Figure 11 - ErrorID implementation on C# 2.0

The reason for this becomes clear when logging exceptions, we would just
log all information in the Data dictionary (logging the Name, and calling
.ToString() on the Value for each entry):

try
{
// some processing...

}
catch (Exception ex)
{
// In practice, this code would go in a
// generic logging method somewhere...
Exception innerException = ex;
while (null!=innerException)
{
// Log the basic exception details here
// e.g. StackTrace, Message, etc....
// Log the Data dictionary entries
string[] names = ex.Data.Names;
foreach (string name in names)
{
Log.WriteLine(name + " = " +

ex.Data[name]);
}
innerException =

innerException.InnerException;
}

}
Figure 12 - Logging Exception GUIDs in C# 2.0

Arguably, the need for a separate TrackedException class is removed
with C# 2.0, because any and every exception can have a tracking GUID
associated with it, stored as a named entry in the IDictionary Data
member, rather than needing a separate property ErrorID.

Observations and Notes
The concept of exception tracking presented in this article is similar to the
idea presented in [6] and [7], where contextual information associated with
an exception is maintained for later analysis. This article extends the idea
across process, machine and protocol boundaries, however, relying on
offline log file analysis to restore the contextual information.

The overhead associated with generating and transmitting a GUID may
be unacceptable in some cases. However, in most situations, the benefits
gained from being able to track exceptions using a string of 30-something
characters will probably outweigh the slight performance hit.

An example project demonstrating the ideas in this article is available
from www.accu.org.

Summary
This article demonstrated a simple scheme to track exceptions across Web
Services and other distributed systems using GUIDs.

The benefits of using this scheme become apparent when the need arises
to correlate information from multiple error logs and bug reports: the details
of specific exceptions can be reconstructed at a later stage, and problems
diagnosed more thoroughly.

A prototype of this scheme has been in operation for several months for
a real-world project using SOAP Web Services (http://www.lamip.org/)
and proven to be very useful indeed.

Matthew Skelton

References
1 GUID/UUID Specification -

http://www.ietf.org/rfc/rfc4122.txt
2 Background to UUIDs/GUIDs (UUIDs in DCE RPC) -

http://www.opengroup.org/onlinepubs/9629399/
apdxa.htm

3 Online GUID Generator: http://kruithof.xs4all.nl/
uuid/uuidgen

4 System.Guid documentation for the .Net Framework:
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/cpref/html/
frlrfsystemguidclasstopic.asp

5 Get Seamless .NET Exception Logging From COM Clients… -
http://msdn.microsoft.com/msdnmag/issues/05/01/
ExceptionLogging/

6 Hughes, Rob, ‘Maintaining Context for Exceptions’ CVu 15.4 (August
2003)

7 Nibbs, Andy, ‘Maintaining Context for Exceptions (Alternative)’, CVu
15.6 (December 2003)

8 A Web Services Primer - Venu Vasudevan
http://webservices.xml.com/lpt/a/ws/2001/04/
04/webservices/index.html

9 SOAP Specification - http://www.w3.org/TR/soap/
10 SOAP (Introduction) - http://www.microsoft.com/mind/

0100/soap/soap.asp

GUID Implementations
a Python: http://aspn.activestate.com/ASPN/Cookbook/

Python/Recipe/163604 and http://pyro.sourceforge.net/
manual/11-implementation.html#util

b Perl: http://cpan.uwinnipeg.ca/dist/Data-UUID and
http://perl.apache.org/docs/2.0/api/APR/UUID.html

c Java: [in standard Java 1.4 there is no UUID class]
http://platform.jxta.org/nonav/java/impl/net/jxta/
impl/id/UUID/UUID.html (Java 1.4.2) and
http://java.sun.com/j2se/1.5.0/docs/api/java/util/
UUID.html (Java 2 SE 5.0)

d SQL: “UUID() was added in MySQL 4.1.2.” -
http://dev.mysql.com/doc/mysql/en/miscellaneous-
functions.html (MySQL) and “Using GUIDs with IDS 9.x” -
http://www-128.ibm.com/developerworks/db2/library/
techarticle/dm-0401roy/ (DB2)

[concluded at foot of next page]

32 CVu/ACCU/Features

11 Java RMI, CORBA or COM? - Prithvi Rao -
http://www.usenix.org/publications/java/
usingjava13.html

12 Box, Don A Young Person’s Guide to The Simple Object Access
Protocol – http://msdn.microsoft.com/msdnmag/
issues/0300/soap/

13 SMTP as a [SOAP] Transport - http://blogs.msdn.com/
rdias/archive/2004/06/17/158802.aspx

14 UDDI - http://www.uddi.org/whitepapers.html
15.WSDL Specification - http://www.w3.org/TR/wsdl
16.Web Services - The Web’s next revolution - IBM DeveloperWorks -

http://www6.software.ibm.com/developerworks/
education/wsbasics/wsbasics-ltr.pdf

17.SOAP Version 1.2 - http://www.w3.org/TR/2003/
REC-soap12-part0-20030624/

18.SoapException documentation - http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/cpref/
html/frlrfsystemwebservicesprotocolssoap
exceptionclasstopic.asp

19.Using Web Services with J2EE -
http://webservices.sys-con.com/read/39434.htm

20.The .Net System.Web.Services namespace -
http://msdn.microsoft.com/library/default.asp
?url=/library/en-us/cpref/html/frlrfsystemweb
services.asp

21.CORBA / .Net interop: Janeva - http://www.devx.com/
interop/Article/19916/1954?pf=true and
http://www.borland.com/us/products/janeva/

22.Exceptions in COM - Bob DeRemer -
http://msdn.microsoft.com/msdnmag/issues/04/
03/ExceptionsinCOM/default.aspx

23.CORBA CORBA::UserException::id() method –
http://publib.boulder.ibm.com/infocenter/
adiehelp/index.jsp?topic=/com.ibm.wasee.doc/
info/ee/corba/concepts/ccor_ipgmce.html

Acknowledgements
Thanks to the Editor, Paul Johnson, for requesting this article.

Thanks also to Kev Watkins, Liz Chapman, Mike Graves, Jason Neylon,
Besim Atalay, Gerald Krafft, Denny De La Haye, Esme Tearle, and
Rebecca Dyer for help and suggestions.

About the author
Matthew Skelton is a Senior Analyst Programmer for Porism Limited
(http://www.porism.com/), an application development company that specialises
in bespoke database applications for the web. The company also publishes
standards for e-Government, which are available at:
http://www.esd.org.uk/standards.

Matthew is also a member of ACCU, and a recent convert to Python.

[continued from previous page]

Professionalism in
Programming #34
Together We Stand (Part One)
by Pete Goodliffe <pete@cthree.org>

The most important single ingredient in the formula of success is knowing
how to get along with people.
Theodore Roosevelt

The gory business of ‘paid’ professional
programming is, depending on how you look at it,
either an exhilarating chance to do what you love
for a living, or a depressing experience where
management incompetence, inept team members,
and bad planning conspire to create mediocre
software, leaving you no chance to fix the
problems. Welcome to life in the software factory.
It’s a large place, and (however much you’d like
to believe it) you don’t live there alone.

Being a good software engineer means more than just being a good
programmer. You might be able to compute PI to ridiculous accuracy in
less than five lines of code. Well done. But there are many other skills
required. And one of these is team working

In this series of articles we’ll take a long hard look at the Real World
scenario of programming in teams. Good teamwork is vital to the survival
of a software project. An ineffective team will quickly stifle any software
development activity, leaving progress to the heroic efforts of a few
dedicated individuals working against huge odds. To work out how write
good software we’ll examine teamwork as it applies to us, as programmers.
We’ll look at what constitutes good teamwork, and how we can be more
effective in our teams.

In this first instalment we’ll investigate what our software
writing teams look like, what they do, and how they fit into
the software factory. We’ll make some observations about
what characterizes good and bad software teams and
determine what personal skills, tools, and organizational
structures will lead to better teamwork.

Our Teams – the Big Picture
So what kinds of team do we work in? A typical software
engineer participates in various levels of teams, each with
different dynamics and requiring different levels of
contribution. Consider this scenario:

● You’re creating a distinct software component which is part of a larger
project. You may develop it by yourself, or as part of a team of
programmers: team one.

● The component will fit into a wider product. All the people involved with
this product (including any hardware designers, software developers, and
other non-engineering roles such as marketing) form team two.

● You are also part of a company that may be working on many different
products simultaneously. Team three.

In reality there are more levels of team-manship in any reasonably large
software-development company. As programmers, we are most involved in
the smaller level of team activity – in our day-to-day development teams. We
have the most control and influence over this world. This is the level we are
responsible for, where we have authority to make design/implementation
decisions and to report on team progress. Programmers are less responsible for
the effects of higher level teams, but we are affected by teamwork ‘in the large’
as much as we are by teamwork ‘in the small’, even if it’s not as immediately
obvious.

Development teams sit amidst the many other tribes of software factory
inhabitants, and must interact with and work alongside them. This dictates
the nature of most of our inter-team interactions. The general shape of
corporate team structure is shown in the following diagram:

It is vital to cultivate good relations and foster smooth work flow
between these different teams. A problem in the wider software factory
structure will really scupper your software development. However, it’s
outside the scope of this article to investigate company culture and process
improvements. In this article we’ll focus mainly on development
teamwork, under the shadow of this organisational context. That’s where
most of our time and effort is spent, and consequently where our individual
improvement will make the greatest difference. It’s the teamwork level that
most directly influences the quality of our software

test

management

directors

production customercustomer

marketing & sales

architects

development

software
team

hardware
team

33CVu/ACCU/Features

Development team size dictates the dynamic and nature of shared software
construction work as much as the team’s place in the organisational food
chain. A lone engineer is given responsibility for all software architecture,
design, and implementation work. In really small outfits they may also
have to work on gathering requirements, and create and run a thorough test
plan.

As soon as more developers are added to this mix, the nature of the
programming task changes. It’s no longer just about coding skill, and
requires social interaction, coordination and communication skills. This is
where your team working skills will affect the software you build -- for
good or ill.

The Good, the Bad, and the Ugly
There are some factors that clearly characterise good and bad software
development teamwork. Cataloguing these will help to set the context for
our foray into teamwork improvement. Some can be worked on by
individual programmers, but most are things that we have to live with, or
try to persuade managers above us to get right.

Prerequisites for Good Teamwork
These are influences that will determine the effectiveness of a software
team, and the quality of the work produced. For effective teamwork, all of
these factors must be in place:
● The correct spread of people, with a range of appropriate technical

skills.
● Team members with a range of experience, who are each able to learn

from others (a whole team of trainees will clearly be doomed from the
start).

● Complimentary team member personality types -- to succeed the team
needs encouragers and motivators not people who will drag morale
down.

● A clear and realistic goal (even better if it’s an ‘exciting’project that the
team members really want to see completed).

● Motivation (whether financial or emotional).
● Suitable specifications provided as soon as possible, so each member

understands what they have to build, and to ensure that the individual
pieces of work fit together.

● Good management.
● As small a team as realistically possible, but no smaller. Adding more

people makes teamwork harder: there are more lines of communication,
more people to coordinate, and more points of failure. We should try
not to make things unnecessarily hard.

● A clear and universally understood software engineering process for the
team to follow.

● Backing from the company, not hindrance and unnecessary beaurocracy.

Characteristics of Bad Teamwork
In contrast, these are sure indicators of a team that is not able to work
effectively. Note that this is a mix of internal and external factors.
● Unrealistic schedules, with deadlines established before the team has

scoped their work.
● Unclear project objectives, and a lack of project requirements.
● Communication failure.
● Bad or unqualified team leaders.
● Badly defined individual roles and responsibilities -- who’s responsible

for doing what?
● Individual bad attitudes and personal agendas.
● Incompetent team members.
● Management not valuing individual engineers, treating them like

minions.
● Individual appraisals based on criteria that don’t match the team

objectives.
● Rapid turnover of team members.
● No change management procedure.
● A lack of training, or of mentoring.

Personal Skills and Characteristics for Good Teamwork
Every team is comprised of individuals. A trite maxim splashed across
banal motivational posters says: there is no ‘I’ in Team. If you can avoid
vomiting, you’ll realise that your software team doesn’t exist to serve you.
You serve the software team. To start improving your team’s performance
you can begin close to home – by addressing your attitudes towards the
team and your joint development effort. We’re not all managers, so this is

really the main area that we have any influence over.
Being a high quality programmer requires you to be a high quality team

player, so how do you improve? What skills do you need to be an effective
team worker? What does it mean to be a ‘good’ team member?
Teamwork is a skill acquired over time, no one is born with what it takes
to be successful in a winning team. However, it is clear that some people
are more adept at it than others; it fits their personality and character better.

A different set of technical skills are required from each different
development team role. However, presented below are a list of non-
technical skills, characteristics, and attitudes that any effective team
member really must have before we can even consider program language
dexterity or design capability.

Communication
Teamwork is dead without communication. Individual parts cannot move
as a whole without communication. How can the goal and vision be shared
without communication? Projects really do fail because of a lack of good
communication.

Intra-team communication occurs in several ways: conversations
between individual engineers, phone calls, meetings, written specifications,
email correspondence, reports, and instant messaging. Sometimes we even
communicate in pictures! Each medium has a particular usage dynamic
and is most appropriate for a specific kind of discussion.

The most effective communication should involve (or at the very least
be visible to) all relevant parties. It should be sufficiently detailed, but not
consume too much time or effort. It should be performed in a suitable
medium – for example design decisions should be captured in a written
specification, not agreed verbally and shared by word of mouth.

Code itself is a form of communication. A programmer must be able to
communicate well. This requires both good input and good output:
● to write unambiguous specifications, to describe ideas clearly, and keep

things succinct, and also
● to read and comprehend specifications correctly, to listen carefully, and

to understand what they are told.
In addition to intra-team communication we must also consider
communication between teams. The classic example of bad communication
is seen in most companies, between their marketing department and the
engineers. If marketing don’t ask the engineers what is possible then they
will sell products that the company can’t make. This kind of problem is
cyclical: once it has occurred once and people have been burnt, the two
teams are less likely to talk to each other (due to resentment). It will then
happen again and again.

Communications Breakdown
There are many communication methods in our highly connected world,
and we must learn to use them effectively, to support and facilitate our team
interaction. The key to this lies in understanding their particular dynamics,
etiquette, and individual merits.

Telephone

Best used for communication that requires an urgent response, a phone call
interrupts what you are doing. For this reason it’s inconvenient to be called
for non-urgent matters – use another method instead. With mobile phones
we are far more connected than we used to be; this is a blessing and a curse
at the same time.

Being audio only, you can’t see the other person’s face and their subtle
body language cues. It’s easy to misinterpret someone on the phone, and
draw a different conclusion from the other person.

Too many techies are scared of using the phone. Don’t be – for urgent
communication it’s invaluable.

Email

An asynchronous, out-of-band communication medium. You can specify
a level of urgency, but email is never immediate – it’s not a real-time
conversation. It’s a rich medium, allowing you to quickly send attachments,
and compose replies when it’s convenient for you. It is often used for
‘memo’-style broadcasts to many recipients. Your email history provides
a reasonably permanent record of communications. Email is an immensely
powerful communication mechanism.

You must learn to use email as a tool, and to not become a slave to it.
Don’t open every new mail as it arrives; your coding will get interrupted
far to often, with a hit to your productivity. Designate email reading times,
and stick to them.

34 CVu/ACCU/Features

Instant Messaging
A quick, conversational medium that requires more attention than email,
yet one that can be ignored or sidelined easier than the telephone. It is an
interesting and useful middle ground.

Written Report

These are less conversational than email communication, and more
permanent. Written reports and specifications are formal documents.
They take longer to prepare, and are consequently harder to misinterpret.
Written reports are generally reviewed and agreed on, so are more
binding.

Humility
This is an essential characteristic, and so often lacking in our profession.

The humble programmer wants to make a contribution to serve the
team. They don’t slack off to let others do all the work. They don’t believe
that they are the only talented person capable of making a worthwhile
contribution.

You can’t hoard all the ‘good’ work for yourself; it’s just not possible
for one person to do everything. You have to be willing to let another team
member contribute – even if it’s something you want to do.

You should listen to and value the opinions of other people. Yours is not
the only point of view, and not the only solution. You don’t necessarily
know the only, or the best way to solve every problem. Listen to others,
respect them, value their work and learn from them.

Dealing with Conflict
We have to be realistic: some people can’t help winding each other up. In
this situation we must be mature and responsible in our attitudes, and learn
to avoid (or learn to resolve) conflict situations. Conflict and animosity
breed more and more bad will, and will severely degrade the performance
of a team.

However, harnessed and channelled conflict can be a major success
factor in your team work. Team mates who stimulate and provoke each
other produce the best designs. Disagreement can act as a refining process,
ensuring that ideas are valid. Knowing that your work will be cast under a
critical eye keeps you focused.

It’s important to keep this kind of conflict constructive; on a strictly
professional, not personal, level.

Learning
This doesn’t just mean learning new technical skills, but learning to
work as a team. It’s not a God given gift. A new team has to learn how
to work together, how each member reacts, their strengths and
weaknesses, and how to capitalise on individual skills to the group’s
benefit.

Emerson wrote: “every man I meet is in some way my superior”. Look
at what you can gain from your peers. Learn from what they know, learn
from what they’re like, and learn how they react. Learn to communicate
with them. Seek criticism from them at all levels, from the formal code
review to their passing opinion offered in conversation.

Good teamwork builds the project and also builds the team. An
important part of ‘building the team’ is for each member to be learning as
they work.

Adaptability
This is tied closely with learning.

If the team has a need that no developer can currently fulfil, and it’s not
possible to bring in an outside resource, then a solution needs to be found.
Adaptable people can learn the new skills quickly to fill the gap and serve
the team.

Know Your Limitations
If you are committed to work that you know you can’t do, or later find out
that you don’t have the skills to complete (and you can’t realistically learn
them in the given time scale) then you should make your manager aware
of this as soon as possible.

Otherwise, you will fail to deliver your piece of the project, and the
whole team will suffer as a consequence.

Many people believe that admitting they can’t do something is a sign
of weakness. It’s not. It’s better to admit your limitations than to be a point
of failure in the team. A good manager will provide some extra resource to
help you do the work, and along the way you will learn the new skills that
you previously lacked.

Teamwork Tools

Having investigated the core personality traits and essential skills of a team-
playing software developer, we can now investigate what tools help us to
form a functioning software team. There are a few indispensable tools that
facilitate collaboration and help to elevate your joint development from
chaos to a well-oiled machine. On their own they won’t make you a team
of commando programmers, but they’re the arsenal every crack outfit relies
on – the prerequisites for effective software developer interaction.

Source Control
Even if you’re the sole developer on a project, you need a source control
system – it’s a crucial store of the codebase and its history. When there are
multiple programmers it becomes even more critical. Source control helps
to marshal who is doing what and when, provides the definitive ‘latest
code’ snapshot, and allows you to manage changes, undo mistakes, and
make sure that no one misses source code updates.

Without it you’d need to employ someone to integrate all changes and
manage the code. And they’d be more likely to make catastrophic mistakes.
Joint development without source control is unthinkable.

Faults Database
We’ve already looked at what this is, and the specific purpose it serves.
However, notice how it facilitates interaction between your development
team and the test team. A fault tracking system acts as a pivot between test
and development. It helps to organise test and repair work, prioritise faults,
assign problems to individuals, and track pending fixes in the software.

The tool can be used to make sure that all issues are addressed and that
no work is overlooked. It makes clear which faults are currently
development’s responsibility and which are tests.

Groupware
A team needs effective communications support, especially when
geographically split. A centralised calendar, address book, and meeting
booking system provides a digital administrative backbone.

You also need a mechanism to share documents, both externally
supplied documents and your current works-in-progress. A groupware tool
facilitates such collaborative work. Without this facility, an inelegant
replacement is a well-defined shared network drive.

There are other tools that facilitate group interaction. Consider using
wikis (web-based community documentation tools) and internal newgroups
(email discussion boards with more permanent storage).

A Methodology
It’s important to establish a defined and universally understood
development methodology, or work will be chaotic, performed on an ad-
hoc basis. One developer will release their code, when another would refuse
to let go of it until they’ve thoroughly tested and debugged it. One
developer will halt all coding until they’ve produced an intricately detailed
specification, whilst another rushes straight into prototyping the code. Holy
Wars are made of smaller things than this.

A methodology defines the development process details, who is
responsible for what work, and how work is handed on. With one, every
developer knows how to work as a part of the team, and what’s expected
of them. You must pick an appropriate methodology, based on the size of
the team, the kind of code you are producing, and the talent, experience,
and dynamics of people.

Project Plan
To produce any work in a predictable, timely manner you need some
semblance of organisation. This is enshrined the project plan, detailing who
is doing what over the course of development. To be of any use, the plan
must be based on sound estimates, stuck to by developers, and kept up to
date with any changes required.

Team Organisation
The structure of a software development team is shaped by two main
factors:
● the management approach, and
● the division of responsibility amongst members.
This will determine the amount of code and the size of the units that you work
on. The code produced, in turn, is shaped by the organisation of the team.

[concluded at foot of next page]

35CVu/ACCU/Features

Management Approach

A project may be managed on a peer basis, with no coder considered more
important than any other, or under the leadership of an über-
programmer/manager. The programming team could be considered part of
a software production line: fed designs from a team upstream, they produce
code to specification1. Enlightened software engineers are given more
autonomy and responsibility.

Tasks may be allotted months in advance, on long-range plans (which
can rapidly become out-of-date and inaccurate), or ‘just-in-time’ by
assigning each work package when a developer finishes their last one.
Programmers might work alone on their individual parts of the system, or
work collaboratively, pair programming to spread responsibility and
knowledge.

Division of Responsibility
The axis of responsibility determines how each line of development is split
amongst programmers:
● With a vertical team organisation you employ a team of generalists, who

are skilled in a wide number of roles. They are each given a piece of
work and implement it end-to-end, from the architecting and designing,
right through implementation and integration, to development testing
and documentation.
The main advantage of this approach is that developers gain a wider
range of skills, and become more experienced in the whole software
system. With one key developer per feature there is cohesion in its
design and implementation. However, generalists are expensive and
hard to find. They don’t have expertise in all areas, and therefore take
longer to solve some problems. There is likely to be less cohesion
between separate features, as they are implemented by different
developers. The customer has to work with more people, since there’s
no specific liaison point – each developer needs their input to scope the
requirements and validate their design.
To make this kind of team work you must define common standards
and guidelines for development work. You must have good
communication to avoid several people reinventing the same wheel. A
common architecture must be agreed early on, or a chaotic and
haphazard system will ensue.

● In contrast, a horizontally organised team is built from a team of
specialists, and every development task is split between them, using
their respective talents at the appropriate time. Because each aspect of
work (requirements gathering, design, etc.) is done by a specialist it
should be of a higher quality.

This has many opposite characteristics to the vertical arrangement:
we build cohesion between separate work packages, but there’s a
danger that each slice of work holds together less well because more
people have worked on it. Interaction outside the team (with
customers or other company factions) is made by a small number of
specialists. This is easier to manage, for the team itself and the
external contacts.
You must take care to ensure that the specialists are well coordinated,
and that they see right through to the end of each work package, or their
work will be narrow-sighted. With many people involved in each
development procedure, the team is harder to manage; there is more
work flow To make this arrangement work requires good
communication, defined processes, and smooth handoffs between
developers.

There is no ‘right’ kind of organisation. Which one is most appropriate
depends on the team members and the nature of the work produced. The
pragmatic arrangement is probably somewhere in the middle.

Organisation and Code Structure
A team’s organisation has an inevitable affect on the code it produces. This
is enshrined in software folk law as Conway’s Law. Simply stated: “if you
have four groups working on a compiler, you’ll get a four-pass compiler”.
Your code inevitably takes on the structure and dynamics of your
interacting teams. The major software components lie where teams gather,
and their communications follow the team interactions. Where groups work
closely, component communication is simple and well defined. When
teams separate, the code interacts clumsily.

We naturally aim to create opaque interfaces between each different
team’s work, to facilitate our interaction with that team. We do so even in
cases where reaching into some internal part of another component might
be valid and better approach. In this way teams can foster arbitrary
divisions; despite our good intentions design decisions are forced by team
composition.

Of course, there’s nothing wrong with encapsulation and abstraction;
however they must be designed in for the right reasons. If anything,
organise your team around the code you must build, not vice-versa.

Next Time
In the next instalment, we’ll investigate the death of some failing software
teams. Cheery stuff! From this we’ll see what we can learn about the
characteristics of healthy development teams. Stay tuned.

Pete Goodliffe1 Here management expect replaceable, commodity -- grunt -- programmers.

Let’s Do C# and MySQL –
Part 1 - MySQL
Paul F. Johnson <paul@all-the-johnsons.co.uk>

Before I start, this is going to be fun. Understand? Fun. Not dull, but fun.
I intend writing this in a banana suit with my feet in a bucket of warm rice
pudding1. That’s how much fun it’s going to be!

Objectives
What is the point of the series of articles? I intend it to be a learning
progression to take you from the very basics of an application through to
implementation. I’ve chosen to write a small MySQL front end in C# to
do this. There will be a progression from setting up the MySQL database,
testing using a command line application, moving it over to a
System.Windows.Forms application and then adding in functionality. I
will also look at using db4o. The question is though - why C#?

The MySQL API is very well documented and is accessible through
many different programming languages with the minimum of fuss. I’ve
chosen C# as I’m yet to find any really good tutorials for using the
language. Sure, MSDN contains a great deal of information, but without
the linking arguments, the information is almost context less.

Let’s Make a Start

You will need a copy of MySQL installed on your computer to benefit
from this series of articles and some form of C# compiler. The code
works fine with both Mono and Microsoft C# - I have not tested the C#
using gnu.NET. When compiling the code, Microsoft users should use
csc and Mono users mcs. Any additional dlls to be used will be listed
as -r:System.Drawing -r:System.Windows.Forms (though if you
are using Visual Studio, these are normally be hidden).

Setting up MySQL
The first thing we’ll need is a working MySQL database. I’m not going to
assume that you’ve set up a database before now, but there are effectively
two things you need to decide. What’s going into it and how it’s laid out.
Take the following list of elements:

I could have one very large database which would contain parameters such
as the period number, CAS registry, element block, shell filling, picture
URL, if it is radioactive, man made and so on. This would be fine, but very
messy and a pain to administer too.

[continued from previous page]

1 Your definition of fun may vary from that of the author. The ACCU cannot be held
responsible for any discomfort felt that you may experience in the pursuit of what you
consider fun. Rice pudding does not mix well with electricity, but is very nice with freshly
made blackcurrant and gooseberry jam.

Element Atomic Description Mass Atomic
Symbol URL Number

Copper Cu metals/copper 63.546 29

Chlorine Cl gases/chlorine 35.5 17

Nepunium Np actinides/neptunium 237 93

36 CVu/ACCU/Features

A simpler solution is to break the database down and to do that, we need
a couple of generic categories.

The list above gives three types of element: metal, gas and man-made.
They are good enough and more can be added as and when I need them
(such as trans-metal, halide and trans-actinide). But what of the actual data?
For that, a second table is created which is linked to the generic first table.
In the second table, the specifics of the element are held (such as discovery,
relative atomic weight, shell filling, etc.).

Graphically, the database looks like this.

For the Element Info column, ID represents the classification ID – for
example, metal = 1, gas = 2. Name is the generic name, Description a
generic description and Image a generic picture. Element Info links to The
Element in what is known as a 1 to many (sometimes known as 1 to
infinity) relationship (1 item in the generic table can link to many items in
the second table, as long as they match the type of the generic item). The
Element list is straight forward to understand which again is linked to a
third database (again via a 1 to many relationship) for other information.

Okay, what you should now be asking is why the other information
should be in its own table?

When you think about it, the answer to that is simple. Say a new element
is discovered (or created). While it is entirely possible to enter all of the
details into one big table, discovery of elements and the dates are
sometimes contested (especially for the trans-actinides where there was
originally contested names for elements 104 to 111) – after the dust settles,
it may be that the original name has to be changed, the discoverer changed
and a few other details to boot. It is far simpler to have all of the
“additional” information elsewhere so that the main database is still correct.

When considering a MySQL database, it could also be thought of as
spreadsheet in style with columns and rows. A column will always be of a
particular type which will be associated with a row. For example

The white blocks indicate the type associated. It’s not quite how things are
done, but is a convenient way to represent the database. (In reality, it’s
actually a two column table with the ID in column 1 and the type in column
2 – my representation is just handy – well, to me at least!)

MySQL Data Types
If you think of the MySQL server as a form of computer, you can quickly
see that objects within the database can be thought of as variables and all
variables need to be of a specific type (such as int, char and float).
MySQL has specific data types for the components of a database.
Effectively,there are three main types for MySQL : Date & Time, Numeric
and String.

Date and Time

String Types

ID

Allotropes
Oxidation states
Colour
Discovered

ID
Name
Description
Image

ID

Outer shell
Block
CAS Registry
Classification
Atomic number
Atomic weight
Image
Symbol
Name
Element category

Element Info The Element Others

1

many

1

many

TEXTDOUBLEVARCHARCHARINT
ID
NAME
DESCRIPTION
IMAGE

Field name What it does Range

DATE It’s a date. MySQL allows dates to 1000-01-01 to 9999-
be inputted as either a string or 12-31. Always in
numeric. yyyy-mm-dd format.

DATETIME Time and date. As with date, the 1000-01-01 00:00:00
fields can be entered as strings or to
numerics. Always displayed as 9999-12-31 23:59:59
yyyy-mm-dd HH:MM:SS

TIME Time – has the format HH:MM:SS -838:59:59 to
and can be set using strings or 838:59:59
numeric values

Field name What it does Range

TIMESTAMP This allows a timestamp to be 1970-01-01 00:00:00
added when either update to midway through
or insert are used. TIMESTAMP 2037.
is returned as a string of the
format yyyy-mm-dd HH:MM:SS.
TIMESTAMP will automatically
add the time and date of the most
recent operation if you don’t set it.

YEAR[(2/4)] Gives the year as either 2 or 0000 and between
4 digit values. Default 4 digit. 1901-2155 for 4 digit

and 70-69 for 2 digit
(represents 1970 to
2069).

Field name What it does & Options Range

CHAR(M) A character string of size M. 0 - 255
It is right space padded. Options
BINARY (also written as BYTE),
ASCII (assigns latin1), UNICODE
(assigns ucs2). Trailing spaces are
removed when retrieved. If M > 255,
it is automatically converted to
SMALLTEXT (From version 4.1.0)
– this applies to other large values.
CHAR can be preceded by NATIONAL.
This tells the database to use the
default character set for that nation.

CHAR Synonym for CHAR(1)

VARCHAR(M) A variable length string of M = 0 to 255
maximum size M. Can be preceded (MySQL
by NATIONAL. Options : BINARY < 5.0.3)
(stores the string as a binary set) M = 0 to 65535

BINARY(M) Roughly the same as CHAR(M)

VARBINARY(M) Roughly the same as VARCHAR(M)
except is stored as binary byte string
instead of non-binary character bytes.

TINYBLOB A small blob column. 255 bytes

TINYTEXT A small text column 255 bytes

BLOB[(M)] A blob column. The server will 65535 bytes
create the smallest possible blob
column for the size. If M < 255
then a TINYBLOB is used.

TEXT[(M)] A text column. The server will 65535 bytes
create the smallest possible blob
column for the size. If M is < 255,
then a TINYTEXT is used.

MEDIUMBLOB A medium sized blob column 16,777,215 bytes

MEDIUMTEXT A medium sized text column 16,777,215 bytes

LONGBLOB A somewhat large blob column 4,294,967,295
bytes (4 Gb)

LONGTEXT A large text column 4,294,967,295
bytes (4 Gb)

ENUM(c1,c2,..)
An enumeration column. It Max. 65535
is very similar to C enumerations enumerations
with the strings being held internally
as integer values.

SET(c1, c2,...)
A string which can have more Max. 64 strings.
than one value (0 to n). The strings
(c1, c2 to cn) are held internally as
integers.

37CVu/ACCU/Features

Setting Up the Database for Next Time
MySQL can be set up from the command line or by using something like
mysqlcc [1] or phpMyAdmin [2]. Being a bit of a traditionalist, I’ll go with
the terminal windoUw (mainly as it also means that you don’t need to
download anything else!).

To call up MySQL, open a terminal
window and type mysql -u root -p.
This tells MySQL that you want to start up
with the user “root” and with a password.
The actual nuts and bolts of setting up
MySQL isn’t that hard.

If you’ve never used MySQL before,
then the default password is nothing – just
hit the return key. This is a hideous
security hole and one which needs to be
rectified as soon as you log in.

Once in, you’ll see something similar
to the image on the right.

If you’ve not set a password, then enter the following:
UPDATE user set password =
PASSWORD("newpassword") where user = 'root';
FLUSH PRIVILEGES; exit;

Field name What it is, options and aliases Range

BIT [(M)] A bit field type. If M is not specified, it is taken as 1. 1 - 64

TINYINT[(M)] A very small integer. Can be signed (default) or UNSIGNed. 0 – 255 (unsigned)
Can also be set with ZEROFILL. -127 to 128 (signed).

BOOL, BOOLEAN This is a synonym for TINYINT(1). 0 = false, non-zero = true.

SMALLINT[(M)] A small integer range. Can be signed (default) or UNSIGNed. -32767 – 32768
Can also be set with ZEROFILL. 0 - 65535

MEDIUMINT[(M)] A medium range integer. Can be signed (default) or UNSIGNed. -8388608 – 8388607
Can also be set with ZEROFILL. 0 - 16777215

INT[(M)] A normal sized integer. Can be signed (default) or UNSIGNed. -2147483648– 2147483647
Can also be set with ZEROFILL. Can also be written as INTEGER. 0 - 4294967295

BIGINT[(M)] A big integer. Can be signed (default) or UNSIGNed. Can also be set -9223372036854775808 - 92233720368547758
with ZEROFILL. Use with care (see the notes after this table). 0 - 18446744073709551615

FLOAT[(p)] A floating point value. Can be signed (default) or UNSIGNed. p = 0 – 24, single precision
Can also be set with ZEROFILL. p = 25 – 53, double precision

FLOAT[(M,D)] A floating point figure. Can be signed (default) or UNSIGNed. Can also -3.402823466E+38 to -1.175494351E-38,
be set with ZEROFILL. M is the display width, D is the number of 0 and
decimal places. If no values are set or FLOAT(p = 25 to 53) is not 1.175494351E-38 to 3.402823466E+38
used (M can be blank), the value is single precision. Can also be written
as REAL.

DOUBLE[(M,D)] A double precision value. Can be signed (default) or UNSIGNed. -1.7976931348623157E+308
Can also be set with ZEROFILL. M is the display width, to -2.2250738585072014E-308, 0,
D is the number of decimal places. Also can be written and 2.2250738585072014E-308
as DOUBLE PRECISION. to 1.7976931348623157E+308

DECIMAL[(M[,D]) A packed exact fixed point figure of length M and with D digits. Max D = 30
(MySQL 5.03) If D is omitted, 0 is used (there can be no decimals or fractions with Max M = 64

this value). If M is omitted, 10 is used. Can also be UNSIGNed and
ZEROFILL. Also written as DEC[(M[,D]), FIXED[M[,D]) and
NUMERIC[(M[,D]).

DECIMAL[(M[,D]) An unpacked exact fixed point figure of length M and with D digits (it Max D = 30
(pre MySQL 5.03) acts more like a CHAR column). All parameters and synonyms for the Max M = 64

above apply.

Numeric Values

Notes for BLOB
A BLOB is a Binary Large OBject – it can be just about any piece of binary
data (picture, video or audio are examples). A BLOB can be useful in some
circumstances (saving of avatars or to replace a directory of binary objects)
but can also be a hindrance (increases the size of the database and may take
longer to serve up the data).

Notes for BIGINT

All arithmetic is done using signed BIGINT or DOUBLE values, so you
shouldn’t use unsigned big integers larger than 9223372036854775807
(63 bits) except with bit functions! If you do that, some of the last digits
in the result may be wrong because of rounding errors when converting a
BIGINT value to a DOUBLE.

MySQL 4.0 can handle BIGINT in the following cases:
● When using integers to store big unsigned values in a BIGINT column.
● In MIN(col_name) or MAX(col_name), where col_name refers to a

BIGINT column.
● When using operators (+, -, *, and so on) where both operands are integers.
● You can always store an exact integer value in a BIGINT column by

storing it using a string. In this case, MySQL performs a string-to-
number conversion that involves no intermediate double-precision
representation.

● The -, +, and * operators use BIGINT arithmetic when both operands
are integer values. This means that if you multiply two big integers (or
results from functions that return integers), you may get unexpected
results when the result is larger than 9223372036854775807.

(In this instance, newpassword is a password of your choice)
You now have a new password for the root user on your MySQL server.

FLUSH PRIVILEGES clears all privileges on the server and exit does what
it says on the tin – it exits the MySQL terminal.

That done, login to the server again. This time, let’s examine what tables
come by default.

mysql> show databases;

This will produce a table
containing all of the databases
the MySQL server is currently
serving (right). You can see
there is only 1 database on the
MySQL server this series is
being composed on. mysql is
the database which contains
details about users, passwords
and the such.

When show databases;
didn’t show up the name of the
database to be created, that gave

the green light to say the database can be created.
Before creating the database (and as is common with creating anything

on a computer), the database, linking, names and types should be written
on paper first.

I have already specified earlier the names which I will use for the
columns, but what about the types?

ID (here) is an INT and is also given the special type of PRIMARY_KEY
when defining. The tables below show all of the types for all of the names.

The PRIMARY_KEYs all link to each other. KEY(1) is the “root” key which
links to KEY(2). KEY(3) is linked from Others ID to the Catalogue table.

At the end of the second table, there is an “others” id. This is the anchor
from which the ID in the Others table is attached. It would be pointless to try
and add further to these tables as they are pretty much in their clearest format.

VARCHAR has been used for the images. While I could have used BLOB,
using VARCHAR allows me to say, “okay, the URL for the images is going
to be fixed, this is just the filename”.

Finally, I have “Last ordered” set as a DATE which is ZEROFILLed. This
means I can set the date myself which is more useful than reliance on a
TIMESTAMP (useful as it means I can say that I had the stock before the
database was set up!)

Creating the Database
Simple enough.

mysql> create database theelements;
mysql> use theelements;
mysql> create table catagoryinfo (
`id` smallint(6) NOT NULL auto_increment,
`name` varchar(30) NOT NULL default '',
`description` varchar(30) NOT NULL default

'',
`image` varchar(50) NOT NULL default '',
PRIMARY KEY (`id`)

);

mysql> create table elementinfo (
`id` longint NOT NULL auto_increment,
`elementcatagory` int NOT NULL,
`name` varchar(50) NOT NULL default '',
`symbol` varchar(5) NOT NULL default '',
`image` varchar(50) NOT NULL default '',
`atweight` float(1) NOT NULL,
`atnumber` int NOT NULL,
`classification` varchar(50) NOT NULL

default '',
`casreg` longint NOT NULL,
`block` varchar(5) NOT NULL,
`outershell` varchar(5) NOT NULL default '',
PRIMARY KEY (`id`)

);

mysql> create table other(
`id` smallint(6) NOT NULL auto_increment,
`discovered` int NOT NULL,
`colour` varchar(20) NOT NULL default '',
`oxstates` varchar(50) NOT NULL default '',
`allotropes` varchar(200) NOT NULL default

'',
PRIMARY KEY (`id`)

);

That’s the tables set. Next stage is to get the data in. As the datasets are
somewhat large for this article, I’ve placed them on my website[atj] - you
will need to grab the file article1.zip and de-archive it; I would
suggest saving it to your CSD1. There are three files: catinfo.csv,
elemitems.csv and other.csv. These will need importing into your
database and it is very easy to do.

mysql> LOAD DATA LOCAL infile 'catinfo.csv'
INTO TABLE catagoryinfo FIELDS TERMINATED BY
',' LINES TERMINATED BY '\n' (id, name,
description, image);

Repeat for the other files. The only difference being to change the
filename and the contents of the () to reflect the names given to the table
rows. Once imported, you should get the following message back from the
MySQL server

Query OK, 10 rows affected, 0 warnings (0.51 secs)
Records: 10 Deleted: 0 Skipped: 0 Warnings: 0

This means the data has been read in happily. A quick test to show that the
data is indeed in the table should confirm this

mysql> select name,description from catagoryinfo;

38 CVu/ACCU/Features

Category Info Type Size Special

ID INT PRIMARY_KEY (1)

NAME VARCHAR 30

DESCRIPTION VARCHAR 30

IMAGE VARCHAR 50

Element Info Type Size Special

ID LONGINT

Element category INT PRIMARY_KEY (2)

Name VARCHAR 50

Symbol VARCHAR 5

Image VARCHAR 50

Atomic weight FLOAT(1)

Atomic number INT

Classification VARCHAR 50

CAS registry LONGINT

Block VARCHAR 5 NON_ZERO

Outer shell VARCHAR 50

Other Type Size Special

ID INT PRIMARY_KEY (3)

Discovered INT

Colour VARCHAR 20

Oxidation states VARCHAR 50

Allotropes VARCHAR 200

2 On my Linux machines, that would be /home/paul. I would suggest for those using
Windows using C:\ rather than anywhere else.

[concluded at foot of next page]

39CVu/ACCU/Features

This will display all of the category names and their descriptions from the
catagoryinfo table. Similar tests can be performed for the other tables.

I’ll leave this article at this point. Next time, I’ll cover SQL manual
insertion, manual alteration and manual deletion and introduce the C#
command line interface which I will subsequently be developing.

I must thank the following people for helping me out on this project:
● Paul Grenyer and Patrick De Ridder – both of whom have tested the

compiled binaries under the .NET framework to ensure they have worked.
● Novell – for the production and development of Mono [4].
● Steve Hopley – my MySQL tutor at St. Helens College [5] and a good

friend who helped me design the database these articles are based on.
● Dr. Alex Woods - my former Physical Chemistry lecturer at Liverpool

John Moores University, who inspired this due to his slightly “forgetful”
nature.

● Pippa Hennessy & Laurence Murphy – proof reading.

Disclaimer
No furry animals were hurt during the production of this article. I did step
on something while chasing some information, but it didn’t squeak, so I’m
not going to count that.

Paul Johnson

Webliography
[1]http://www.mysql.com/products/mysqlcc/
[2]http://www.phpmyadmin.net/home_page/
[3]http://www.all-the-johnsons.co.uk/accu/articles
[4]Novell. The Mono Project. http://www.mono-project.com
[5]St Helens College. http://www.sthelens.ac.uk

[continued from previous page]

Silas’s Corner
Silas S. Brown <ssb22@cam.ac.uk>

Recycling throwaway hardware

I was recently given the challenge of setting up a system suitable for an
individual to use for selecting and playing educational sound recordings.
What made this particularly interesting was that the individual was an adult
with very little schooling (so no complicated user interfaces allowed) and
no knowledge of the English language. His accommodation was too small
to set up a full PC with monitor, and there was absolutely no budget.

I was able to obtain an old PC that was being given away for free. It
had 16M of RAM, a 2G hard disk, a slow CD-ROM drive and a soundcard.
The system unit was not exactly small, but I planned to set it up in such a
way that nothing else would be needed apart from the system unit and
keyboard (and a pair of headphones). Of course the Windows 98 on it ran
extremely slowly, was full of viruses and was probably unlicensed, not to
mention being unsuitable for “blind” use, so I decided to erase it and install
Linux.

First I used Knoppix (www.knoppix.org) to detect the sound
hardware. Knoppix isn’t very good at dealing with a low amount of RAM,
so I had to go into “expert” mode and override some of the bootup
behaviour. It helped to repartition the hard disk as soon as possible and
create a swap partition. I typed lsmod and noted which kernelmodules
Knoppix had loaded; this told me which modules would be needed for the
soundcard.

The Linux installation to the hard disk had to be as smallas possible so
as to make room for the sound recordings and also given the limited amount
of RAM. Graphics was out ofthe question (but not needed for this
application anyway). Knoppix was too big: I didn’t want to do the drudgery
required to trim it down, and anyway its installation script is broken in
recent releases, and older versions of Knoppix didn’t detect the soundcard
at all; the unusual type of soundcard installed was supported only by the
latest (2.6) version of the Linux kernel. So I needed a distribution that is
up-to-date, that can give you a near-minimal installation without too much
hassle, and that contains players for MP3, OGG and SPX sound files.

The obvious answer was Debian. Its most recent release (3.1 or “sarge”)
has a much improved installer; it probably wouldn’t detect the old
soundcard, but thanks to Knoppix Inow knew which module to load. I burnt
myself a copy of the first CD of Debian (you don’t need all the CDs) and
installed a minimal system. Then I installed the 2.6 kernel, and installed
the sound packages by copying the necessary package files onto a floppy
disk (they weren’t popular enough to be on the first CD) and finally
trimmed out any remaining unnecessary packages (such as the old 2.4
kernel). Then I customised the startup scripts into /etc/init.d so as to load
the correct module with modprobe, set the volume with aumix, clean out
old logfiles (the disk would be very nearly full once the recordings were
on it) and run my program. I also commented out potentially time-
consuming startup scripts such as the filesystem check (since nowadays it
uses a journalling filesystem, the check is less necessary and it doesn’t
matter if the user prematurely switches off the power, especially given that
this application does not require saving anything).

The main part of the program was written in Python. Basically I wanted
a system that would read out (in the user’s native language) a list of
recordings and invite him to press a number to choose one to play. Of

course, I couldn’t have the complication of asking him to press Enter after
the number, so I used the Python curses library which interfaces with the
terminal at a lower level:

import curses
curses.initscr()
curses.cbreak()

initscr() is required to initialise the curses library, and cbreak() tells
it to accept one character at a time (but still allow sequences such as
control-break to interrupt the program, which may be useful for
debugging). Then to read a character, one would do something like:

import sys
response = sys.stdin.read(1)

That wasn’t too difficult to find in the Python library documentation, and
didn’t require any extra libraries to be set up (it’s all included with Python).
We can build it up into a function that repeatedly plays a prompt while
waiting for an answer like this:

def get_selection(play_prompt_command):
pid = os.spawnlp(os.P_NOWAIT,"/bin/bash",

"/bin/bash","-c",
"while true; do %s; done"
% play_prompt_command)
curses.flushinp()
response = sys.stdin.read(1)

os.kill(pid,signal.SIGKILL)
os.system("killall -9 ogg123;
killall -9 mpg123;killall -9 speexdec")
return response

The killall command is hacky but the alternative would be to write a
function that goes through all the processes and checks each one to see if it is
in the same process group as the current process but is not the same as the
current process (we cannot include the current process in an uncatchable signal,
and if any other signal is used then some sound-playing commands do not stop
immediately). Also we use curses.flushinp() to flush the keyboard buffer
(typeahead would probably be too confusing in this application).

As for what to do when something was selected (say, option 2), I
decided to check for 2.mp3, 2.ogg, 2.spx or adirectory called 2 (and
option 0 always goes up one level).

Here’s the rest of the script:
def get_play_command(filename):
for extension,format in [
(".mp3", "mpg123 %s.mp3"),
(".mp2", "mpg123 %s.mp2"),
(".ogg", "ogg123 %s.ogg"),
(".spx", "speexdec %s.spx")]:
try:
if open(filename+extension):

return format % filename
except IOError: pass
by default returns None

[concluded at foot of next page]

40 CVu/ACCU/Reviews

Reviews
USUAL PREAMBLE
The editor writes

The book review section of C Vu is one of the
most important parts of our output, but we are in
need of more reviewers. While it is good that we
have a strong cohort willing to do the reviews,
fresh blood will bring another perspective to the
book reviews.

For a mere £5 per book (this is for postage –
not the book itself), you have a list of some of
the most up to date books around (some of which
aren’t even released in the UK at the time of
being offered to the ACCU). All we ask is that
you review the books. You even get to keep it!

Calling all those who have not returned their
reviews:

The only condition when you receive a book
from the ACCU is that you actually review it!
Both Francis and I have a list of books with
names next to them and no reviews to show.
Could I please ask that you write your review(s)
in a timely fashion?

All prices given are from the Blackwells
website where they have not been provided by
the reviewer. It may be possible to purchase them
at a reduced cost elsewhere.

Paul

C and C++
1001 Visual C++ Programming
Tips by Charles Wright Prima
Tech ISBN: 0761527613 £51.99
Pages: 500, plus 2 CDs:
Microsoft’s VC++6.0
Introductory edition and sample

code Reviewer: Frances Buontempo
This book claims to be aimed at beginners and
experts. Some sections give concise information
clearly, but most are written in a chatty,
misleading style. The author readily admits the
aim is to present code that “works.”
Unfortunately this sometimes means a lack of
rigour. For example, new is encouraged over
malloc since sizeof is not needed. Though
rectified elsewhere, it leaves the reader
misinformed.The tips are a mixture of C and
C++, showing how to use VC++ to write
applications.Most are variations on text editors,
with pointers on using the GDI to draw points

and lines. Occasional reference is made to
FORTRAN and BASIC for comparative
purposes. Many complicated ideas are introduced
before a whole sample that will compile is
presented. This is an MDI MFC app, which may
terrify a beginner. Furthermore, when CArray,
CList and CMap are introduced, templates have
not been explained. Overall, this book therefore is
unsuitable for a C/C++ beginner.On a more
positive note, it introduces some methods through
API code, before doing the same thing in MFC,
illustrating what the MFC is up to and why.
However, the tips are often about several different
issues, so require skipping about to get the whole
story, which is difficult with no page numbers.
Also, being so vast, it is difficult to read from
cover to cover. For someone who knows C/C++,
there are some good tips, but they are buried in
the chatty style, are few and far between and
frequently are not explained clearly. It reads more
like a stream of consciousness than a reference
book. On balance, I would not be happy paying
the full cover price for this.

Microsoft Visual C++ .NET Step
by Step by Julian Templeman
and Andy Olsen Microsoft Press
ISBN 0-7356-1907-7 £28.49
Reviewer: Mike Spence
Visual C++ .NET Step by Step is

part of the Microsoft Press library of “Step by
Step” titles designed to “Teach yourself Visual
C++ - and begin developing for Microsoft .NET -
one step at a time.” I (slightly mis)quote from the
back of the book. The book is split into 27
individual chapters, each of which should require
no more than a single night of study to cover
completely, and probably a lot less if you have
any previous experience in the matter under
discussion. The choice of subject matter for some
of these chapters I felt rather basic at times,
attempting to cover the fundamentals of OOP and
C++ (to be fair the C++ .NET version was
covered in the few placed where this differs from
standard C++). Then later chapters covering
.NET specific subject seemed slightly rushed in
comparison. Maybe trying to teach C++, OOP
and C++ .NET in a single book is expecting a
little much in slightly over 550 pages. The
chapters take the form of descriptive text, maybe
a diagram and an example that is a list of step by

step (hence the series title I guess) instructions,
which when carried out demonstrate the topic
being discussed. The descriptions themselves
appeared well written and I had no problem
understanding the subject matter. The examples
were again well written and to me appeared to
contain no obvious technical errors. However
the Step byStep style of the examples I personally
didn’t like. I’m not convinced that following a
number of simple steps teaches anything other
than what to do with the mouse and keyboard.
However in the book’s defence the individual
steps do try and convey the reason behind the
each step. My big problem with the book is that
like so many “Teach Yourself” books before it,
Visual C++ .NET Step by Step falls somewhat
short of the level of detailed needed to truly teach
anything but an overview of the subject matter.
It’s a good starting point for a novice who doesn’t
mind the step by step format of the examples, but
for others it’s probably best to look elsewhere.

Hit The Ground Running with
Visual C++ .NET by Ami Neiman
Thomson/Delmar ISBN: 1-4018-
7880-6) 689pp @ £52.91
Reviewer: Alan Lenton
If you hit the ground running with

this book, you will break both legs. I got it
because I needed to use Visual Studio .NET and
needed some help to get it running and learn
about managed code. (Bring back proper written
documentation with software!) To be fair I did
find pages 6 through to 13 useful. That,
unfortunately, was about as far as it went. This
style of walking you through various tasks has
limited utility at the best of times, since it
provides little understanding of the concepts
involved. Without that understanding you can’t
apply what you’ve learned to anything that’s
similar, but different. The author falls into the
familiar trap of trying to cater for both ‘basic
and advanced’ programming skills. The result is
a mish-mash of material, much of it too trivial to
be useful to an experienced programmer, but
without the explanation a beginner would need
to make sense of it. And last, but by no means
least, the code has typographical errors. This is
an absolute no-no. It’s difficult enough learning
something new without being fed incorrect
code. Oh, and incidentally, the author has the

def menu():
play_prompt_command =

get_play_command("index")
if play_prompt_command:
while True:
response =

get_selection(play_prompt_command)
if response=="0": return
play_cmd = get_play_command(response)
if play_cmd: os.system(play_cmd)
else:
it might be a directory
try:
os.chdir(response)

except OSError: continue
menu()
os.chdir("..")

else:
print "\a Warning: index not found!"
but continue running (up one level)

def main():
try:
while True: menu()

except KeyboardInterrupt: curses.endwin()if
__name__ == "__main__": main()

I threw in a feature that checks for an executable script on any CD-ROM
that is inserted (for future expansion) and then delivered the box. It’s a
shame that throwaway PCs don’tcome any smaller.

Silas Brown

[continued from previous page]

41CVu/ACCU/Reviews

most execrable taste in colours I’ve ever come
across - how could any self-respecting author
tell their readers to colour the window
background lavender? Avoid like the plague.

Effective C++ Third Edition by
Scott Meyers, Addison Wesley
ISBN: 0-321-33487-6,
297 pages £31.99
Reviewer: Pete Goodliffe
Highly Recommended. First, the
punchline: this book is highly

recommended. There, I said it. Now you can skip
the rest of this review. Scott Meyers is one of
those few industry gurus with the rare
combination of exceptional technical talent and a
keen ability to explain the intricacies of C++ (a
powerful but - at times painfully - complex
language). He does this with clarity and
entertainment. This is a new edition of the first
part of his “effective” book series (including
“More Effective C++” and “Effective STL”). The
previous editions of Effective C++ book are
legendary, so what has he done to this third
edition, and is it an improvement? The answer is:
an awful lot, and yes. This edition has been
greatly revised and is thoroughly up-to-date.
Meyers has totally reworked, restructured and
improved the text. The contents are considerably
different from the second edition, and more
appropriate to an age where templates, generic
programming, and exceptions are the staple fare
of C++ work. Meyers weaves in many references
the new tr1 additions to the standard library, and
evangelises the popular Boost library. Effective
C++ contains a series of 55 “items” (short self-
contained articles on a specific subject) grouped
into nine chapters. The material ranges from a
foundational understanding of what C++ is,
through basic mechanical maxims, to design
considerations, OO concerns, and generic
programming fundamentals. Meyers covers the
essential precepts of C++ programming. You
must absorb every item, and integrate them all
into your coding DNA, to be a truly useful C++
programmer. I couldn’t find anything to argue
with technically. The book is lucid, accurate , and
thoughtfully produced, with well-chosen topics.
It is undoubtedly better than previous the
editions. The presentation make occasional, and
clever, use of colour to highlight specific parts of
code examples. A nice touch. It’s well-geared to
the target readership (be they newbie C++
programmers, or people coming from a
background in other languages). There are some
downsides. A few pages suffered colour bleed
from the red ink. Hopefully this is just my review
copy, but check your book before taking it to the
till. The new/delete chapter could have been
replaced with something less specific and more
generally useful (this material is more
“advanced” and should have been pushed off
elsewhere). So do you need to buy this book?

If you’re a new C++ programmer: Yes,
definitely.

If you are an experienced C++ programmer:
Check it out - I’d highly recommended it.
If you own a previous edition: The book is
significantly different from previous versions. A
different take on some of the material is available in
Sutter’s books and also in Vandevoorde and Josuttis’
C++ Templates (but they go into far greater detail).
Consider this edition if you don’t have those books.

The punchline once again: this is a great book.
Essential reading for C++ programmers.

C# and Java
Using and Understanding Java
Data Objects by David Ezzio
PressISBN: 1-59059-043-
0Pages: 426 £35.20
Reviewer: Michel Greve
From the back cover: This book has
two missions: The first mission is to

give you a tour of Java Data Objects. The second
mission is to give you a tour of the open source JDO
Learning Tools.. From the introduction (a snippet):
This book is intended for Java programmers and
application architects. It assumes that you know how
to program in Java, and it assumes that you want to
use JDO and understand how it works. This book
emphasizes what you need to know to use JDO
effectively. We shall see of this holds. Basically
this book consists of three parts: JDO itself, using
it and an appendix. It has a nice layout and it
reads well. The paragraphs are short, with the
chapters at about 40 pages. The chapters have
some example code, tables and diagrams in it, so
it isn’t a massive piece of text. David describes in
his book all the important parts of the JDO
standard (persistence managers, queries,
transactions etc). He also shows you the traps and
the not so well defined parts of the JDO standard.
He writes how to use JDO in three different
applications (swing, a web application and
enterprise Java beans). In the appendices there are
some large UML diagrams and I really mean
large which are, to me, a waste of space. The
glossary is a nice thing to have and the index
works but could be better (searching for Fields
gives me four sub indexes. Two of them
(“application data class” and “cached persistent”),
should be left out because on the referring pages
there is no real information about them. They are
only mentioned there.

The problem with this book is that once you
have read it, you will never read it again. The
information is there, but it is hidden in the text.
Nowhere there is an exclamation mark in the
margin with the important information besides
it, or a grey area with an important remark
(although there are some notes in the book, but
with less useful information). What is the
verdict? The mission statements are fulfilled.
The rather bold introduction puts you on the
wrong foot. This book will not help you to
learn JDO, but it will help you to deepen your
knowledge. If David changed his book to
emphasize the traps and the not so well defined
parts of the JDO standard, he would get a
highly recommended. Unfortunately, I only can
give it a recommended.

Windows Forms Programming
with C# by Erik Brown Manning
ISBN 1-930110-28-6 715 pages
£49.48 Reviewer: Max Palmer
Windows Forms Programming
with C# is aimed at people who
wish to develop desktop

applications for .NET using the classes that are
part of the Windows Forms namespace. Although
it is not a general book on .NET or C#, some
more general material is provided in the first part
and the appendices to get people up to speed in

these areas. The book itself is divided into three
parts. The first provides an overview of Windows
forms and using Visual Studio, the second part
deals with basic Windows form programming
and the final part deals with advanced controls,
such as list views, data binding and tree views.
All code, as the title suggests, is in C# and the
approach that is adopted is very much ‘hands on’.
As is common with books of this type, the author
introduces concepts through the development of
an application, or suite of applications, in this
case based on organising and browsing photos.
Often this kind of approach can seem contrived,
and can at times be both difficult or tedious to
follow. However, in most cases the author
manages to introduce new topics without seeming
to add unnecessary features to the application(s)
being developed and the style adopted for
explaining tasks is very clear and readable. It is
certainly one of the best tutorial approaches I
have come across. The book also attempts to
engender good general programming and
Windows UI development practices such as the
use of application versioning, setting the tab order
on dialogs and support for keyboard shortcuts -
important areas which can easily be overlooked.
However, I would have liked to have seen
localisation covered in more detail.The material
presented is well explained and most of the
common windows controls are covered. It is also
useful to see sections on multiple document
interfaces (MDIs) as well as single document
interfaces (SDIs) and dialogs. However, on
occasion I felt that the use of a control within an
application may have slightly limited the breadth
of the discussion. The other criticism I have is
that the topics discussed in the final chapter,
including printing and support for drag and drop
operations, felt as if they had been tagged on to
the end of the book. They should really be
explained in more detail or not at all. In summary,
the book is both clear and well written. I would
recommend it to someone who has limited
knowledge of programming Windows form
applications and who enjoys a ‘hands on’
approach to learning.

Software Development
An OO Approach to Programming Logic &
Design by Joyce Farrell Thompson ISBN 0-
619-21563-1
Reviewer: Paul Thomas

I really like just over half of this book. It is,
on balance, an extremely well written
introduction to programming as a craft. I would
recommend it to anyone who wanted to start
programming in modern language like Java or
C# and wanted to make a career of it rather
than a hobby. My problem is that it is not truly
OO. I have heard good things about the
author’s other books on programming and I
have the sneaking suspicion that this is just a
marketing-led update on the original but with
enough objects in it to get OO into the title.
The introductory chapters contain enough to get
anybody started without the need for much
background knowledge. I particularly like the
style of writing as I feel it has the right balance
between a gentle introduction and a deep
explanation. There is enough structure to make
revision from the text simple as well as plenty of
diagrams and code examples in the right places.

Once the book moves on to programming
proper, we meet the all-important flow chart
and structures of code flow are discussed
before technical details of ifs and whiles. This
way round, new programmers are taught why
certain structures are preferred instead of being
given the means to write sloppy code followed
by the restrictions.

In the advanced topics, there is an excellent
chapter devoted to event-driven programming
for GUIs that recommends story-boarding as a
design technique and introduces threads where
lesser books might gloss over them. The UML
introduction is useful from a programmers
point of view but there are a few mistakes in
the diagram notations. The book rounds off
with a chapter on exception handling.

The book is promoted as language
independent and it almost is. It would be more
true to say that it covers a large array of
languages. There are enough examples to give
the reader a feel for specific languages like Java
without tying them to it. The text focuses on
teaching you how to program like a professional.
No tricks or hacks, just well proven techniques.
It does not represent the state of the art or “High
Church” but is practical and well presented.
Each chapter has a thorough review and exercise
section with a case study running throughout.

The only let down is, again, the claim to an
Object Oriented approach. Objects are
introduced early in the book, but only as a
means of programming with a modern
language. By chapter 3 we are introduced to
getter/setter methods and from then on, all
objects are either pure data or pure code where
all methods are static. Inheritance is dealt with
near the end as little more than an extension
mechanism. Even in the GUI chapter, the main
example ends up as a procedure call with no
object assigned responsibility. This is not a book
on design, so it might not seem an issue, but any
new programmer would be left with the
impression that OO is little more than a
technique to break up software into smaller
blocks. This is fine if the student just wants to
write their own code, but is at odds with the rest
of the book which is thoroughly professional.

I would recommend this book to anyone
new to programming that is likely to use VB,
Java or C# for their own small programs.
Anyone serious about learning OO as a

paradigm should steer clear.

Aspect Oriented Software
Development by Robert E
Filman, Tzilla Elrad, Siobhan
Clarke and Mehmet Aksit
Addison-Wesley 755pp @
$59.99 (£50.58 – Blackwells)
ISBN: 0-321-21976-7
Reviewer: Alan Lenton

I picked up this book to review because I wanted
to learn what Aspect Oriented Programming
(AOP) was all about. I chose the correct book,
and found out more than I ever wanted to know
about the subject! Anyone who has written an
object oriented program of even moderate size or
complexity will have discovered that no matter
how carefully you try to resolve the problem into
loosely coupled classes, there are always some
issues that spread themselves across all your
object boundaries. Debugging information,
logging and security are examples that spring
immediately to mind.In AOP these issues are
known as ‘crosscutting’ issues or concerns, and
AOP is an effort to deal with these problems. To
simplify greatly (this is not the place for a major
discussion of AOP) AOP handles this by
concentrating the crosscutting code in its own
classes and then arranging for a separate
compiler, or pre-compiler, to weave the
crosscutting code into the appropriate places in
the other classes. As you can imagine figuring
out the appropriate places is not a trivial task!The
book itself will give any competent programmer
a thorough understanding of AOP, and also some
excellent ideas about design and analysis using
Aspect Oriented methods. The book is cutting
edge stuff, and requires hard intellectual work,
but it is, in my opinion well worth the effort. The
editors have brought together some thirty papers
on the topic, and they provide a useful
assessment of the state of the art.One caution
though. Don’t expect to be able to read this book
and then leap out and start programming in an
AOP language, such as AspectJ. Much work
remains to be done before Aspect Oriented
Programming is ready to move out of the
academic world and into the rough and tumble of
production work.It’s not a cheap book, or an easy
read, and it won’t immediately impact your work.
Nonetheless, I thought it was well worth the time
I put into reading it, and it did give me some

ideas about how to improve my non-AOP
programming.

MIDP Style Guide by Cynthia
Bloch and Annette Wagner
Addison-Wesley
iSBN 0-321-19801-8 £30.99
Reviewer: Paul Thomas
There is not a great deal I can
say about this book. If you are

implementing applications or platforms for
MIDP 2.0 then you quite simply need this
book. Without it, you will likely create
something that users find impossible to use; it
might have the tightest coding imaginable and
use every trick known to man, but put it on a
platform it wasn’t developed for and it’s a
chocolate teapot.

Interoperability is the diplomacy of the
technology world and requires some finesse.
Focus exclusively on trade relations with one
partner and the fickle nature of the market can
leave you in legacy-land watching the world
leave you behind. To survive requires an
enormous effort to keep up with events at court,
or an etiquette guide. The style guide provides
invaluable advice on maintaining good
relations between platform vendors, application
developers and users.

There’s no code in the book.
Implementation details are not covered, but it is
assumed that the reader is at least familiar with
the capabilities of the MIDP platform. Some
sections do delve into the specific behaviour of
form items and abstract commands, but the
book as a whole can be read by anyone
involved.

Advice is split into categories by severity. The
“strongly recommended” flavour is something
that other standards groups might have mandated
in specifications. As an example, it is strongly
recommended that platforms display at least 4
characters in a soft button label. This kind of
advice gives developers a platform with more
predictable behaviour than the raw technical
specs alone. From the other side, application
authors are advised on just about every aspect of
usability. While this might not suit the bedroom
hacker, it’s equivalent to thousands in
consultancy fees and could make all the
difference to an authoring house.

Highly recommended

42 CVu/ACCU/Reviews

Software Development
Visual Studio Hacks by James Avery O’Reilly
0-596-00847-3 £17.50/$24.95
Reviewer: Derek M. Jones

Perl
Computer Science and Perl Programming by
Jon Orwant (ed) O’Reilly ISBN: 0-596-00310-2
£28.50
Reviewer: Joe Mc Cool

Perl Graphics Programming by Shawn Wallace
O’Reilly ISBN: 0-596-00219-X £28.50.
Reviewer: Joe Mc Cool

Extending and Embedding Perl by Tim
Jenness & Simon Cozens Manning ISBN
1930110 82 0 £40.50
Reviewer: Joe Mc Cool

Linux
The definitive guide to SAMBA by Roderick W
Smith APress ISBN 1-59059-277-8. 625 pages
£31.50
Reviewer: Mark Easterbrook.

MySQL Cookbook by Paul DuBois O’Reilly BN
0-596-00145-2 £24.85
Reviewer: Joe Mc Cool

Building Secure Servers with Linux by Michael
D. Bauer O’Reilly ISBN 0-596-00217-3 £31.95
Reviewer: Joe Mc Cool

Running Linux by Matt Welsh, et alO’Reilly
ISBN: 0596002726 £31.95
Reviewer: Joe Mc Cool

Due to lack of space, not all book reviews could be printed in this issue.
Reviews of the following books can be found on the website (www.accu.org) and will be printed in the next issue if space permits.

