
Reports & Opinions
Editorial 4
Reports

View From the Chair, Secretary’s Report, Membership Report, Standards Report, Website Report 5

Dialogue
Francis’ Scribbles 6
Student Code Critique (competition) entries for #32 and code for #33 8

Features
Patterns in C – Part 2 by Adam Petersen 13
A Subversion Primer by Pete Goodliffe 17
I Wish Programming Was Easy Again by Paul F Johnson 21
Using Qt’s Non-GUI Classes by Jasmin Blanchette 22
Professionalism in Programming #31 by Pete Goodliffe 24
Automatically Generating Word Documents by Silas S Brown 26
Forgetting the ABC by Orjan Westin 28
Introduction to Tcl/Tk by R.D. Findlay 29
Objective C – Part 5 by D.A. Thomas 33

Reviews
Bookcase 34

Copy Dates
C Vu 17.3: May 7th 2005
C Vu 17.4: July 7th 2005

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Thaddaeus Frogley
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

Advertise In
C Vu & Overload

80% of Readers Make Purchasing Decisions
or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.org
4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Pandora’s Box

It seems that I have opened the proverbial
Pandora’s Box with my last editorial. The accu-
generalmailing list went almost haywire with
the number of comments regarding the issue
raised (for new members, see my article later in
the magazine). I knew that demographically we
had a large-ish chunk of the membership who
would be of the age to appreciate the comments
I made, but not on the scale they did!

The other change I feel I need to justify is the
size of the Student Code Competition and the
knock-on effect that it had on the space for the
other articles, book reviews and other regulars.

Since taking over the editorship of C Vu, I’ve
noticed that the number of people contributing to
the SCC (and sending in letters/emails directly
to me) has been somewhat sparse. On average,
the SCC gets 2 entries, which makes the judging
very unfair (in my opinion). In the last edition,
we had so many entries that I felt it worthwhile
publishing all of the entries and having two
prizes instead of the one. The basic premise is
that if you submit an entry, unless it really is
awful it deserves to be in print. There is also a
feel-good factor involved (it used to be called
something like the “look Mum, my name’s in
print” factor when we had a myriad of computer
magazines in the 80s); I’m not suggesting that as
professionals we do such a thing, but I can
remember both my first book review in C Vu and
when I showed the first editorial to colleagues
the buzz of pride in the hard work presented.

I want people to write in and contribute to the
magazine. Has the gamble paid off? Only time
will tell.

OpenOffice2, Mono and gcc 4
I hate standing still and I can’t stand software which
stands still either. I don’t use a stable version of
Linux (I use Fedora Core rawhide – “it eats babies
and if it destroys trees, your computer, your
mother’s computer and a number of urchins, well,
it’s your fault” – as it was once described on a
mailing list) and despite of that, riding on the
bleeding edge is what makes computing fun for me.
It can be a pain in the bum though at times!

I realise that beta software is not for everyone
(I certainly don’t have rawhide working on my
machine at work or on my wife’s and son’s
machines).

Recently, OpenOffice2 was moved into
rawhide. This is the beta version of what OOo2
will become and already it has become stable
enough for me to stop using OOo 1.1.3 (though
it still sits on my machine “just in case”). It really
is a wonderful product. While you cannot yet
place an equation into a table and there are a few
problems with importing old OpenOffice files
with vector graphics in, it doesn’t detract from
the sheer quality of the product.

Having had a chance to play with MS
Office 2003 and OOo2 and leaving my
prejudices at the door, I can honestly say that
now OpenOffice2 has a database system in
place, the case for using Office 2003 on the
basis of Access doesn’t hold water anymore.
The database form editor in OpenOffice2 is
every bit as simple to use as Access and has
the advantage of connecting to a raft of
different database server types, so you can now
just connect it to an existing MySQL server or
ODBC or Oracle system.

Compatibility with PowerPoint and the other
packages in MS Office as well as the user
interface is so similar that when I recommended
it to someone who had only ever used MS Office
for home use (but was on a tight budget), he
actually preferred it as it no longer felt like he
was the slave to the package!

That’s not to say it is all there yet. It isn’t. The
software last week (first week in March) only
reached a beta 1 release, so there are plenty of
issues left to be ironed out.

For those who have read my editorials,
you’ll no doubt know that I have been using
Mono (one of the open source implementations
of the .NET framework) quite extensively and
helping out where I can. The Novell team have
been busy and have released an all-in-one
installer for many platforms. If you don’t want
the hassle of finding the bits and pieces, please
feel free to try it out and see how it compares to
the MS .NET framework. I did have an article
lined up this edition from one of the hackers
working on the System.Windows.Forms
class, but due to his work pressures, it will be
delayed.

Another addition to rawhide has been the
latest flavour of gcc – gcc4. As with each update
of any packages, it has quite a number of fixes,
speed improvements, platform optimisations and
improvements to bring it closer to the relevant
standards for each language. While not new, it is
good to see that gfortran is still in there and that
a java compiler has been added in. I have a long
term love of FORTRAN having spent more
nights than enough using it for my M.Phil. Call
me Mr Nostalgia if you like, but having the
requirement for 6 spaces before code, dire text
handing and not to mention a very linear
approach to code in 1999 made me appreciate the
heritage of the language (punch tapes and the
likes). It is nice to see the latest version being F95
compliant.

The Conference
By the time this edition hits the door mats, the
annual conference will be upon us and it should
be one of the best (how do we keep improving
them year on year? Simple answer is the
reputation for being one of the finest in Europe
as well as the sheer quantity and quality of
speakers we manage to recruit). Unfortunately,
due to illness, I won’t be able to make it this year
and so I hope you all have/had an enjoyable
conference.

Getting Involved With C Vu
Despite how it looks, both C Vu and Overload
usually both run short on articles and can always
do with new contributors. If you have an idea for
an article (either one-off, or as a series), then
please get in touch.

In past issues, we’ve had a wide range of
articles (including a lot of cross-platform
material, specific libraries, Objective C and
patterns), but these only last so long and being
good editors, we don’t rest in searching out for
new writers.

You still retain copyright on all material, so
you have the benefit of writing for a magazine
that is read worldwide and also keep hold of the
original, which means you can then publish it for
yourself (should you wish to of course!).

Fancy it? If you do, please email
editor@accu.org for C Vu and
overload@accu.org for Overload and we’ll
be happy to fill you in.

5CVu/ACCU/Reports & Opinions

And On With the Show...
Enough of me for now.

I must express a large thank you to both Pippa
and Alan for helping me on this issue in its
closing stages due to having to go into hospital
for a rather unpleasant operation.

Paul F Johnson

View from the Chair
Ewan Milne <chair@accu.org>
I believe that by the time you are reading this,
there will be just enough time to make a last-
minute booking for the conference. What have
you been waiting for? Stroustrup, Coplien, in fact
the unrivalled quality of the whole programme:
you know you’ll only regret missing out. Of
course, you may be sensibly booked up already,
in which case can I just ask you to remind
yourself of the information in the last C Vu and
that you’ve been emailed about the AGM. It is
an important part of the ACCU calendar.

Indeed, with the conference and AGM
imminent, we are at the end of another year’s
activity for the ACCU. I would like to thank
everyone who has played a part in the life of the
association over the past year. Members of the
committee, the C Vu and Overload editors,
editorial teams and authors, conference speakers
and delegates, accu-general posters and
everyone who helps with the surprising number
of administrative tasks that keep things running
smoothly: your efforts are very much appreciated.

I intend to stand once again for the post of
ACCU Chair for the coming year. However I
have decided that this will be my last year in the
job, and will stand down at the 2006 AGM. I find
that covering the role of Conference Chair takes
up a good proportion of my “ACCU time”, in fact
as much time as I will be able to spare from now
on. Why the full year’s notice? Well, there are
some ongoing issues I’d like to see through, not
least the revamp of the website and its
implications. Also it is traditional for the outgoing
Chair to seek a replacement before vacating the
post. In fact I now believe I can depend on a
candidate coming forward from the committee.

I can easily say that I have greatly enjoyed my
involvement in helping to run the association, as
I’m sure I will continue to in the future. I
certainly recommend you seriously consider
getting more involved: you stand to gain a great
deal of enjoyment and satisfaction, and the
ACCU always needs enthusiastic people to move
things forward. Please talk to me or a fellow
committee member at the conference if you have
any ideas, skills or time to offer. See you then.

Secretary’s Report
Alan Bellingham <secretary@accu.org>
The fourth and final committee meeting of the
2004/2005 year took place on the 19th of
February 2005 in Bristol, at the house of Tony
Barrett-Powell. This was our first excursion to
the west of England, but since both our Chair and
our host live there, it was nice to let them not
have to travel as far as usual.

We normally start (or try to) at 13:30, which
allows us to meet beforehand at a pub or similar
and have a meal. This allows a certain amount of
informal chat about what we’re going to discuss,
as well as letting us get up to date on whatever
else we’ve been doing. This time, we were joined
by the famous Kevlin Henney, who actually lives

on the same road as Tony, though apparently not
for much longer, as both of them have their
houses up for sale.

At the actual meeting, we carried out the
normal administrivia, officers’ reports, looking
over the previous minutes to check what had
been done, and so on. The officers’ reports
should be pretty much as you read them
elsewhere in this issue (allowing for two weeks
of extra time since then).

The major issues facing us at the moment are
the appointment of a new production editor to
replace Pippa Hennessy (which is in hand), and
the new web site. Allan Kelly’s team had received
five tenders, and he made a comprehensive report
to the meeting on what each candidate wanted to
charge, how they intended to do the work, what
Allan and Co. felt about the tenderer, and
ultimately, which tender we should go for. There
were a number of questions from other members
of the committee, but Allan covered them
comprehensively and it’s a tribute to his
preparation that we agreed unanimously with his
recommendation and, before the end of the
meeting, signed a contract with that choice.

The other item that will be even closer when
you read this is the AGM. Last issue, I supplied a
draft agenda. However, there may be a couple of
constitutional agenda items added by the meeting.

The first is that we are constitutionally limited
to three types of membership – effectively a
basic, a standard and a (single site) company
type. There is a desire to allow more types.

The second is on the election of officers. At
present, if a written nomination for a post has
been lodged in advance, then no nomination may
be accepted from the floor at the AGM itself.
Although we have a tradition of therefore not
making written nominations, it seems odd to
have to deliberately dance round our own
constitution’s rules in this way.

The actual wording of these items is not yet
fixed, and it is possible that neither will appear.

The next meeting is currently scheduled for
the 5th of May, probably in Royston, Herts.
Exact details do depend on the results of the
Officers’ election at the AGM. Members are not
excluded, so if any of you do want to come along
and see what we do on your behalf, just get in
contact and let me (or my successor) know so I
can send you the details in advance.

Standards Report
Lois Goldthwaite <standards@accu.org>
The UK C++ panel brings a special perspective
to meetings of WG21, the international C++
standard committee. Most of the other
international participants are vendors of
compilers or libraries, or else people at the
bleeding edge of C++ development.

In the UK, on the other hand, panel members
for the most part are working programmers who
use the language in their daily tasks – not
vendors of C++ but consumers, if you will.

We see our mission as helping to hold a focus
on how C++ and the standard committee can
address the needs of ordinary working
programmers, roughly defined as people who
wouldn’t even think about using a template
template parameter oftener than, say, once in
their life, and then only if absolutely necessary.

In recent discussions the panel has identified
a deficiency in the C++ world, the lack of a

library of easily-reusable components for what
Francis Glassborow calls incidental
programmers – people who write programs
(frequently one-offs) in support of their real work
such as scientific research. What is needed is a
CPAN for C++. The Boost Library fulfills some
of this purpose, but is pitched at highly
competent professional programmers.

It’s early days yet, and whether we will move
past talk into action remains to be seen.
Meanwhile, if you have an opinion on how C++
could develop better to meet the needs of the
programming community, you are invited to join
the panel and make your voice heard. Even if you
don’t want to join, your comments on standards
matters are always welcome. Please write to
standards@accu.org for more information.

Membership Report
David Hodge <membership@accu.org>
Since the last issue the membership has increased
by about 50, and stands at 982.

This increase is mainly due to the conference,
with people taking advantage of the discount for
ACCU members and the reduced early bird rates
that were available until the end of February. I
expect that by the time this hits the streets in
April we will be over 1000 members.

The membership secretary keeps the only
database of members’ details, so it is me you
need to email if your contact details change. This
database is used to create the labels that go on
the journal mailings, so if this went to the wrong
address just send me an update.

Officer Without Portfolio
Allan Kelly <allan@allankelly.net>
At the end of January the New Web committee
received five tenders from organizations interested
in redeveloping our website. Two came from
ACCU affiliates and three from other organizations.

The committee reduced this to a shortlist of
three – one of the bidders was eliminated on the
ground that one part of their system required the
use of Microsoft Internet Explorer exclusively.
We made additional enquiries of the remaining
three.

The company that submitted the lowest bid was
always going to be the one to beat and in this case
it was also one of the strongest bids. Together with
Alan Lenton I visited the company’s offices and
discussed the project in more detail.

As a result the New Web committee
recommended to the full committee that the
ACCU accept the bid from Turtle Networks
(http://www.turtle.net/). The
committee agreed with this at the February
meeting and by the time you read this contracts
should have been exchanged. With luck the first
elements of the new website will be in place for
mid April – just in time for the conference.

Turtle is a small company based in West
London. They have been established for several
years and have a number of large websites to their
credit. They are a major supporter of the London
Linux User Group (www.lonix.org.uk) and
use Linux for their systems. So those of you who
feared a Microsoft-centric site can sleep better at
night.

This is just stage one of the website project,
the committee envisage 7 to 8 stages before we
have a completely new site, so we won’t be
relaxing any time soon.

6 CVu/ACCU/Dialogue

Francis’ Scribbles
Francis Glassborow <francis@robinton.demon.co.uk>
Books
A couple of readers have responded to the item in my Bookcase editorial:

Now to turn to something positive, and something you can all join in. I would
like readers to do three things. First select the book that you have read that
you think has been most underrated or overlooked. Just one, and I know
that makes it hard for some but the effort of choosing can focus the mind.
Of course there are no right answers but it will be interesting if some books
turn up more than once (and if only three readers respond …)
The second thing is to choose a category (novice programmer, newcomer
to C++, embedded systems developer, games developer, etc.) and list which
books you would recommend given a) a budget of £100 ($180) and b) a
budget of £250 ($450).
And lastly, given a budget of £2000 ($3600) list what software development
tools and references you would take with you for a year’s stay on a desert
island. The desert island comes equipped with the essentials for life and
electric power.

Before I hand you over to them, I would like to list a few books that I think
are either underrated or frequently overlooked. Some of these are out of
print though if people understood their quality they would not be.
Ruminations on C++ by Andy Koenig and Barbara Moo. Its present

ranking on amazon.com of 350, 000+ is a complete disgrace. This is
one of the most readable books on C++ and should be essential reading
for every new C++ programmer.

Programming on Purpose (I, II and III) by P. J. Plauger
Programming Pearls & More Programming Pearls by Jon Bentley
Those five books should be read by every aspiring programmer. That may
prove difficult as two of Plauger’s books are out of print and the third only
available in Facsimile as is More Programming Pearls. Programming
Pearls is the only one with an amazon.com rank below 400,000, and
even that has a miserly ranking in the 43000s.
Multi-Paradigm Design for C++ by James Coplien with an amazon.com

sales rank of 488, 000+ is another book that deserves a much wider
readership, this time among the more experienced C++ users.

Confessions of a Used Program Salesman by Will Tracz. The
amazon.comsales rating of 949, 000+ shows how poorly known this
book is. Readers almost invariably sing its praises, but still it languishes
gathering dust. I suspect this book would have been my choice for the
most overlooked book.

Obfuscated C and Other Mysteries by Don Libes (amazon.com sales rank:
869,000+). This book teaches a great deal about good C programming by
exposing the reader to programs from the annual Obfuscated C competition.
It is a rich source of study material for the aspiring C programmer.

C Traps and Pitfalls by Andy Koenig is only in the 160,000 on
amazon.com. That is pretty poor for a book that should be read by every
aspiring C programmer.

Expert C Programming by Peter van der Linden. This book is not quite so
badly rated as most of the above, but with a sales rating of 101, 000+
on amazon.com it deserves much better. Even C++ programmers
could learn quite a bit by reading it.

There are quite a few others but I offer you the above as a starter. What other
books on programming and software development should be in this list?
Let me give a guideline for your search. What book would you recommend
to at least one category of software developer whose current sales rank on
amazon.com is worse than 250, 000? What can we do to improve things
so that these books become better known? Please do not sit back and let
others do the work. Just as open software development draws in the skills
of many people, we can do the same thing for other types of project.

I would like to see ACCU develop high quality reading lists for different
target audiences, but it would be most unreasonable to expect one person
to any one of them. For example, what should be the reading list for
someone who aspires to be a games programmer? A process of progressive
refinement should be applied to such a list. In other words, we need
dialogue, we need you (yes I mean you, the person reading this now) to get
involved. We need preliminary lists and we need others to review those lists

(the lists, not the books). If we do the job right we can seriously influence
the development and training of software developers. Ideally our lists should
become the basis for University reading lists for the areas we target.

Now to those two reader submissions.

From Jez Higgins

Been thinking about your wretchedly difficult competition for the last
couple of weeks now. Am now at the point where I have to mail you or it
will haunt me forever.

Underrated or overlooked book: Software Tools in Pascal by
Kernighan and Plauger. Now obviously this is not some amazing
undiscovered gem, because you frequently see it mentioned and it is still
in print after nigh on 25 years. We do work, however, in an industry where
a book a year old can be past its sell-by date, and that makes it easy to
discount a book that was published when many of my work colleagues
were unwrapping their ZX81s. Often, when I recommend it, people say “in
Pascal?” and laugh in a nervous are-you-going-mad way.

Once they actually read it, they are generally converted. There is a
clarity in the writing, coupled with a strong narrative. Starting with an
almost laughably simple program to copy the input to the output, it builds
to a rather capable line editor, text processing and macro processing almost
without you noticing. All the time it stresses good practice – refactoring,
library building and so on. That the code is in an obsolete language is
almost an advantage in these modern times. Everyone can read Pascal, even
if they’ve never encountered it before, and translating to your language of
choice is a useful exercise of itself. It is just super.

Books for <someone>: My category is a C++ programmer who did not
actually train as a programmer, sort of fell into it by accident, and who
works alone or in a small, inexperienced team of people. They are generally
keen, but lack direction so have to rediscover everything for themselves.
The first selection to £100 leans toward good practice.
Code Complete by Steve McConnell, £23.79 – changed how I work
The Practice of Programming by Kernighan and Pike, £17.23 – changed

how I work more
The C++ Standard Library by Nico Josuttis, £29.91
The Pragmatic Programmer by Hunt and Thomas, £23.19
On up to £250, I would add in some more C++ specific advice, together
with a couple of books to remind them that good practice goes wider than
just the code in front of you.
The C++ Standard , £24.47
Effective C++ by Meyers, £25.49
Effective STL by Meyers, £21.69
Managing Projects with GNU Make by Mecklenburg and Oram, £15.71 –

if there was one program I could have “invented” it’s make
CVS Pocket Reference by Purdy, £6.95
Software Tools in Pascal by Kernighan and Plauger, £19.99 at Amazon
Writing Solid Code by Steve Maguire, £9.95 used at Amazon – the homely

anecdotal pair to Code Complete’s rigour
The Mythical Man Month by Brooks, £22.99
Castaway tools and references: This is extremely difficult. It rather
depends on what I would spend my time working on if I did not have to
work. Since I am finishing up an XPath engine, I suppose I might have a
crack at an XSLT 2.0/XPath 2.0/XQuery implementation. In addition,
maybe try a bit of games programming. I’m not sure I can actually get close
to the £2000 limit. Most of the tools I use are available at no cost – emacs,
CVS, grep, gcc and so on, although I might also go for a couple of Visual
C++. The standard version would probably be fine.

I’d take the books listed above, plus
C Standard
C++ Templates by Vandevoorde and Josuttis
Standard C++ IOStreams by Langer and Kreft,
Java in a Nutshell by Flanagan,
XML in a Nutshell by Harold and Means,
XSLT by Tidwell,
Python Cookbook by Martelli and Ascher,
Programming Pearls by Bentley,
The XML, DOM, XPath 2.0, XSLT 2.0 and XQuery recommendations
Friedl’s Mastering Regular Expressions,

Dialogue

7CVu/ACCU/Dialogue

Philip and Alex’s Guide to Web Publishing by Greenspun – just terrific
XML Topic Maps: Creating and Using Topic Maps for the Web– my friend

Kal is a co-author on this, and I keep meaning to find out what it really
is he does,

Modern C++ Design by Alexandrescu
A ZX Spectrum emulator and David Webb’s Super Charge Your Spectrum

and Advanced Spectrum Machine Language. The latter book was the
first one to really show me that you could have a library of routines to
draw on again and again.

I am showing a singular lack of imagination. I really cannot think of
anything else ...

All prices are from Computer Manuals, unless otherwise noted.
Even as I type this, I’m doubting myself. Should I have included

Fowler’s Refactoring? Booch? Peopleware? Gah. As I said at the
beginning, it has been extremely difficult.
When I commented that he did not seem to have any hardware to use, Jez added
the following:

For a box to work on I would take something like a Demonite Graduate.
It does not have to be top of the range, because it is not like there would
be huge pressure of time or enormous builds to do. The basic ~£825 version
would be fine (my own slightly more expensive one does go like the
clappers - they are super). I’d swap the bundled flat monitor for an Iiyama
Vision Master, say the 454 (~£250). I would also throw away the mouse
and get a Logitech TrackMan Marble. I am not sure they still make them,
but I paid about £30 for mine. I did toy with taking two machines, but
decided that would be a bit silly.

Not bothered about OS, so let me take some version of Linux – Debian
or SuSE, say. Most of the tools I use are available at no cost – emacs, CVS,
grep, gcc and so on. If I had gone for Windows, I would take a copy of
Visual C++. Instead, I will take Comeau’s compiler with libcomo ($50),
along with Dinkumware’s library for Comeau and gcc ($135).

From Thaddaeus Frogley

Most Overlooked/Underrated
Multi Paradigm DESIGN for C++
Note: An incredibly hard one to pick. All my favourite development books
are either popular and highly acclaimed or Highly Recommended by
ACCU Book Reviewers. In the end, I selected this book because I think
many people are put off by the highly academic style, which can make
reading it very hard work. Despite this bar to wide popularity, I think this
book is well worth the effort.
C++ Programmers Essential Reference Library
(Prices Based on prices listed on amazon.co.uk, Dec 2004)
For £100:

£34.99 – The C++ Programming Language, Special Edition
£30.79 – The C++ Standard Library: A Tutorial and Reference
£29.39 – C++ Templates: The Complete Guide

For £250, as above, plus:
£24.46 – The C Standard
£24.46 – The C++ Standard
£29.39 – Standard C++ IO Streams and Locales: Advanced

Programmers Guide and Reference
£18.89 – Exceptional C++
£20.99 – Effective C++
£23.09 – Modern C++ Design: Applied Generic and Design Patterns

Note: In creating a list with the theme of “Reference Library”, the last three
were a tough call.
Desert Island Developers Shopping List
Hardware (source: apple.com):

1.8GHz PowerMac G5
1GB DDR400 SDRAM (PC3200) – 2x512
80GB Serial ATA – 7200rpm
NVIDIA GeForce 6800 GT DDL w/256MB GDDR3 SDRAM
Apple Cinema Display (20” flat panel)
8x Super Drive (DVD-R/CD-RW)
Apple Keyboard & Apple Mouse – U.S. English
Mac OS X – U.S. English
Subtotal $3,423.00

Software:
OS X Development Tools (free download)
Misc Home-brew GameBoy Advance Development Software
i.e. Boycott Advance (GBA Emulator for OS X) & GBA SDK (free /

Open Source)

References:
As found online (free)

I am assuming either an internet connection from the island, or time to
download and burn the software and references wanted to a DVD or two.

My Comments

I found these two interesting responses. One thing I think that is worth
noting is that both found the dash limits on books to be very tough to meet.
I suspect that a minimal library for a serious software developer would cost
of the order of £1000 ($2000).

That tells me two things; being a software developer is both expensive
and time consuming. Having the books is not enough; you have to find
time to study them.

I think that I am now even more convinced that we need a concerted
effort to get rid of the dross from the bookshelves (virtual as well as real)
and make a great effort to see that good authors (or authors of good books)
get the sales they deserve.

The vast number of bad and mediocre books taking up space is making
it very difficult for the newcomer to find good books. Unfortunately, when
we start listing the reading requirements the costs begin to daunt. You can
easily spend much more on books than on hardware and an order of
magnitude more than you need to spend on software.

The Winner

Because there are only two submissions, I am not going to toss for which
wins. Instead, I am going to award them both a choice of any book currently
in print, costing under £45 published by Addison-Wesley, Wiley, Prentice
Hall or O’Reilly.

Commentary on Problem 18
Some programmers seem to hate to use more names in their programs than
they absolutely have to. Your challenge is to write a program in C++ that
outputs the first n members of the Fibonacci series where the user will
provide the value of n at runtime.
That is easy for most readers. However, there is a limitation, you must use
i as the name of any variable, function, type or namespace that you declare.
You may use anything you like from the Standard (such as main,
std::cin and std::cout).

What is it about programmers that they tackle writing bad code with such
enthusiasm and inventiveness? Because the problem had come to mind
because of a novice’s attempt at generating Fibonacci numbers recursively,
I had completely missed the potential for code such as:

#include <stdio.h>
int main() {
int i[] = {1, 1, 2, 0};
puts("How many values?");
scanf("%d", i+3);
puts("The results are: \n\t1\n\t1");
while(i[2]<i[3]) {

i[1] += i[0];
i[0] = i[1] - i[0];
printf("\t%d\n", i[1]);
i[2]++;

}
return 0;

}
That source code gives the lie to my contention that the problem could not
be done in C. The solution I was thinking of is:

#include <iostream>
int i(int i) {
if(i < 0) return 0;
if(i < 2) return 1;
return ::i(i-1) + ::i(i-2);

}
int main() {
std::cout << "How many members?";
int i;
std::cin >> i;
—i;
do {

std::cout << ::i(i) << '\n';
} while(—i > -1);

} [concluded at foot of next page]

Student Code Critique
Competition 33

Set and collated by David Caabeiro <scc@accu.org>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members.
The title reflects the fact that the code used is normally provided by a
student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended to
designate it as an item where reader interaction is particularly important.
Readers’ comments and criticisms of published entries are always welcome.

Before We Start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/). This is aimed at people living
overseas who get the magazine much later than members in Europe.

Student Code Critique 32 Entries
I still wonder about the lack of knowledge (or rather awareness) among
beginners of the extensive functionality offered by the standard library. Let this
be reflected in your answer to the student, with a corresponding solution.

This computes the product of two N by N matrices. It works fine in cygwin
compiler, but it doesn’t in VC++. The strange thing is when I have N = 2 no
problem, but N = 3 makes problem. I am not sure I use ‘new’ operator correctly
in the following program. Can someone help in finding the problem here ?
#include <iostream.h>
#include <process.h>
void main(void) {
int N, i, j, k;
double **A, **B, **C;
double sum = 0.0;
cout << "Dimension of Matrix ?" << endl;
cin >> N;
A = new (double *);
B = new (double *);
C = new (double *);
for(i=0; i<N; i++){

A[i] = new double[N];
B[i] = new double[N];
C[i] = new double[N];

}
for(i=0; i<N; i++)
for(j=0; j<N; j++){
cout << "A[" << i << "][" << j << "] = ?" << endl;
cin >> A[i][j];

}
for(i=0; i<N; i++)
for(j=0; j<N; j++){
cout << "B[" << i << "][" << j << "] = ?" << endl;
cin >> B[i][j];

}
for(k=0; k<N; k++)
for(i=0; i<N; i++){
sum = 0.0;
for(j=0; j<N; j++)
sum += A[i][j]*B[j][k];

C[i][k] = sum;
}

cout << endl << endl << endl;
for(i=0; i<N; i++)
for(j=0; j<N; j++)
cout << "C[" << i << "][" << j << "] = "

<< C[i][j] << endl;
}

From “The Cart Horse”
This is an interesting case; the student knows they have a problem and have
even gone to the extent of trying the program on two different compilers.
However they don’t seem to know what to do with the results of their test!
The first thing to do was to try and reproduce the problem.

This was surprisingly hard – I compiled the code and tested it with a
matrix size of 3 and it seemed to work perfectly with Microsoft VC 6.0.

Microsoft VC 7.1 failed to compile the program – <iostream.h> is
obsolete – so I changed it to the ISO standard <iostream> and added the
appropriate std:: prefixes to cin, cerr and endl. The code again seemed
to work faultlessly.

8 CVu/ACCU/Dialogue

Obviously, the above solution cannot be implemented in C because C does
not allow a distinction between local and global variables. A local variable
name in C always hides a global declaration of the same name (except when
the global name is declared as a type name by using the struct, union
or enum keywords.

My thanks to Martin Stuart, James Talbut and Ian Glover who all came
up with excellent C++ solutions. However, the best I think was Tim
Sharrock’s creative use of std::vector:

#include <ostream>
#include <istream>
#include <iostream>
#include <vector>
#include <algorithm>
int main() {
std::vector<int> i(1);
std::cin >> i[0];
std::cout << "first " << i[0]

<< " terms of the fibonacii "
"sequence are:\n";

while(i[0]— > 0) {
i.push_back((i.size()<3)
? int(i.size()-1)
: (i.back()+*(i.end()-2)));

}
std::copy(i.begin()+1,i.end(),

std::ostream_iterator<int>(
std::cout," "));

std::cout << "\n";
}

Ian Glover also offered this interesting C solution:

#include <stdio.h>
#include <math.h>
/* Cheating slightly declaring I, but GCC
won’t compile the rest without it and we never
use it! */
int main(int I, char* i[]) {
while(strtol(i[1], 0, 10)) {
printf("%d\n",

(long)((pow((0.5 + sqrt(5.0)/2.0),
(double)strtol(i[1], 0, 10))
- pow((0.5 - sqrt(5.0)/2.0),
(double)strtol(i[1], 0, 10)))
/sqrt(5.0)));

/* The nasty hack */
sprintf(i[1], "%d",

(strtol(i[1], 0, 10) - 1));
}
return 0;

}

Cryptic clues for numbers

Here is last issue’s clue:
Deuce, it sounds like they came for tea twice. (4 digits)

As many of you worked out, the answer is 4040
Margaret Wood came up with:

Intel’s first microprocessor? No, I’ve heard this one is double strength.
I feel sure I had another one, but I seem to have mislaid it.

Now try this one:
A first course on C++ at the University of Rome [3 digits]

When hunting for alternate clues you might remember that we are
considering strings of digits rather than numerical values. And that is about
all the extra I am willing to give you.

Francis Glassborow

[continued from previous page]

9CVu/ACCU/Dialogue

I next tried mingw and gcc also complained that the program used
iostream.h not iostream (so I used the file fixed for VC 7.1) and it
also complained that main should return int. So I’m not sure what version
of gcc the student was using.

My first response in this sort of situation would usually be to try and get a
better fault report from the student. I’d want the answer to three questions:
1) What version of the compiler(s) are you using?
2) What command line are you using?
3) What are the actual symptoms of the problem?
However the Student Code Critique is not interactive in this sense so I’ll
just press on...

What does it mean when a program works when compiled with one
compiler but not with another?

In my experience this is usually because the program accesses memory
it shouldn’t be using. The underlying problem probably occurs with the
code generated by both compilers, but there are no (obvious) symptoms
with one of them. This is because the actual layout of memory is different
in the two compilers (or even with the same compiler when, for example,
the optimiser is turned on).

It is very often worth compiling and running a program with multiple
compilers – sometimes you get more information from additional compiler
warnings and other times the runtime error handling provides additional
clues to the problem.

In this case we only have the program failing with one compiler, and even
worse I can’t reproduce it. So without more ado let’s dive into the code itself.

On reading the code it is fairly clear what the problem is; the first
allocation of memory for the variables A, B and C does not involve N.

new (double *) allocates enough memory for a single double* –
but we actually want an array of N pointers.

It is at first sight surprising that the code works at all – it just goes to
show that writing only a little bit off the end of allocated memory can
sometimes seem to work!

So it would be very easy to suggest the student changes:
A = new (double *);

to:
A = new double*[N];

and similarly for B and C.
But is this helpful? As the saying has it, “give a man a fish and you

feed him for a day, teach a man to fish and you feed him for life”.
There are some other problems also lurking in this code but attempting

to fix them directly leads into deeper waters.
I would recommend that most users of C++ start out by staying well

away from operator new and letting the standard library allocate the
memory for them where possible.

So, looking at the problem with a library user’s hat on, what do I want?
I want a class which gives me the characteristics of a matrix.
Sadly the standard library doesn’t come with one of these – but it does

supply a vector class and we can create a matrix by having a vector of
vectors. Alternatively we can search for a matrix class that we can
download from the Internet. A quick search with “C++ matrix class”
reveals several possible candidates.

If we want to stick with the standard library solution then we can define
a row as a vector of double and a matrix as a vector of rows:

#include <vector>
class row : public std::vector<double> {};
class matrix : public std::vector<row> {};

Now the code to initialise the matrices is a matter of resizing the vectors
rather than allocating the memory ourselves. This has several benefits over
using raw pointers
● it is easier to code correctly
● the vectors will ensure the memory is freed when the function return
● if we are still having memory problems, we could use a debugging

version of the standard library to trap out of range indices.
I hate writing anything twice, so I would probably suggest the student
writes a simple helper function and calls it when needing to initialise a
matrix:

void init(matrix & A, int size) {
A.resize(size);
for(int idx = 0; idx != size; ++idx)
A[idx].resize(size);

}
This would make the code as presented work immediately and the student
would also hopefully have less problems with memory allocation in future.

I might suggest, as an exercise for the student, that they move the matrix
multiplication into a separate function so it could be reused and to improve
the readability of the code.

I would probably initially suggest a free standing function with a
prototype like this:

matrix operator*(matrix const & A, matrix const & B);
So my initial solution to the student’s problem looks like this:

#include <iostream>
#include <vector>
class row : public std::vector<double> {};
class matrix : public std::vector<row> {};
void init(matrix & A, int size) {
A.resize(size);
for(int idx = 0; idx != size; ++idx)
A[idx].resize(size);

}
matrix operator*(matrix const & A, matrix const & B) {
int const N(A.size());
matrix result;
init(result, N);
for(int k=0; k<N; k++)
for(int i=0; i<N; i++) {
double sum = 0.0;
for(int j=0; j<N; j++)
sum += A[i][j]*B[j][k];

result[i][k] = sum;
}

return result;
}
int main(void) {
int N, i, j;
matrix A, B;
std::cout << "Dimension of Matrix ?" << std::endl;
std::cin >> N;
init(A, N);
init(B, N);
for(i=0; i<N; i++)
for(j=0; j<N; j++) {
std::cout << "A[" << i << "][" << j << "] = ?"

<< std::endl;
std::cin >> A[i][j];

}
for(i=0; i<N; i++)
for(j=0; j<N; j++) {
std::cout << "B[" << i << "][" << j << "] = ?"

<< std::endl;
std::cin >> B[i][j];

}
matrix C = A * B;
std::cout << std::endl << std::endl << std::endl;
for(i=0; i<N; i++)
for(j=0; j<N; j++)
std::cout << "C[" << i << "][" << j << "] = "

<< C[i][j] << std::endl;
return 0; // keeps MSVC happy

}
We would then have two free-standing functions operating on objects of
the matrix class; we can then move on to suggest ways in which the row
and matrix classes could be enhanced by using member functions and
constructors. We might then move on to discuss using composition rather
than inheritance.

There are a number of other ways this solution could also be improved,
for example to generalise by data type or to improve the input and output,
but at this stage I suspect trying to do any more would simply confuse
things for the student.

From Calum Grant <calum@visula.org>
The main problem with this code is that it is structured badly. You should
always split long functions up into small simple units, which makes
programs clearer and more reusable. It also makes it easier to test.
Whenever you write code, turn it into generic functions or classes that can
be reused. So what you really want is a general-purpose Matrix class that
you can use in any application that requires a matrix. Rewrite your main()

10 CVu/ACCU/Dialogue

function to look something like this:
int main() {

Matrix a, b;
int size = input_matrix_size();
input_matrix(size, a);
input_matrix(size, b);
std::cout << a * b;
return 0;

}
This makes the main() function much clearer, and all the real work is done
elsewhere. We have changed the return type of main() function to be
standards conforming, and it is conventional to return 0 from main() to
indicate no error. Other minor problems with your code are that it is in general
preferable to use pre-increment ++j instead of postincrement j++ and that
you should #include <iostream>, not the deprecated <iostream.h>.
That will require you to put using namespace std in your code, or else
qualify cout, cin and endlwith std::. Don’t #include <process.h>,
that isn’t needed. Your code should check that its inputs are valid.

The constructor of the Matrix class should allocate the data, while the
destructor should free the data. This highlights another problem with your
code: you don’t free the arrays. In commercial software, forgetting to free
memory can be disastrous since the system will eventually run out of
memory. Therefore we need to pass the size of the array to the constructor,
and since we are writing a library class, we might as well cater for non-
square matrices as well. Your code did not work reliably because you did
not allocate the first array correctly, it should be an array of size N of arrays
of size N. Note also how the array is deleted in the destructor, it is important
to use the delete [] notation when deleting an array, since this will matter
when objects in the array have destructors.

One should hide the internal data of the class by making it private, and
access and manipulate the data via accessor methods. One can overload
the [] operator to access the cells of the matrix, so that if you have a matrix
m, you can write m[x] to access a column in your matrix, and therefore
m[x][y]to access a particular cell. So here is a Matrix class that allocates
the data, and provides accessor methods:

class Matrix1 {
unsigned width, height;
double **cols;

public:
Matrix1(unsigned w, unsigned h)

: width(w), height(h) {
cols = new double*[height];
for(unsigned i=0; i<width; ++i)
cols[i] = new double[height];

}
~Matrix1() {
for(unsigned i=0; i<width; ++i)
delete [] cols[i];

delete [] cols;
}
double *operator[](unsigned col) {return cols[col];}
unsigned get_width() { return width; }
unsigned get_height() { return height; }

};
So we’re done right? Not by a long way! The most important problem is
safety, and at the moment the copy constructor and the assignment operator
don’t work correctly, so writing

a = b;
Matrix x = y;

will crash the program. The compiler provides default implementations
that will in this case do the wrong thing. It will only copy the pointer, so
some arrays will not be freed, whilst other arrays will be freed twice. The
constructor of Matrix is not exception safe, and could leak memory on an
exception. Making the class robust and writing safe copy constructors and
assignment operators would be straightforward, but quite laborious. The
code does not initialize the cells in the matrix to zero, which would be a
nice feature of the constructor.

You can replace C-style arrays with std::vector, and your code becomes
class Matrix2 {
unsigned width, height;
std::vector<std::vector<double> > cols;

public:
Matrix2(int w, int h) : width(w), height(h),

cols(w, std::vector<double>(h)) {}
std::vector<double> &operator[](unsigned col)

{ return cols[col]; }
unsigned get_width() { return width; }
unsigned get_height() { return height; }

};
This code is much shorter, clearer, nicer and safer, since all of the
functionality we need has already been implemented by the vector class,
and all of the default methods like copy construction, assignment and
destruction are all taken care of by the vector. The : notation in the Matrix
is used to initialize its members, which initializes the array with w elements
each a vector of length h, and the vector initializes the contents to zero.

The moral of the story is that one should almost never use pointers and
arrays, always use STL containers and iterators. Because Matrix is a
generic container, it should comply with the norms of the STL as much as
possible. This allows it to be used with STL-compliant algorithms, and will
make it easier to use and understand. So it needs as much standard
functionality as appropriate, such as a begin() , end(), iterator,
const_iterator, reverse_iterator, swap(), at() and operators like
+, -, *. One should provide constand non-const versions of methods, so
that the container is usable when const. Implement operators << and >> to
read and write the matrix to a stream. Like other containers, it should be
templated on the type it contains, so that we could could have a matrix of
any type of value, such as integers, bools, floats, std::complex or
even other matrices. One might also perform bounds checking.

Although std::vector provides a perfectly acceptable solution, the
C++ STL has std::valarray, that is intended specifically for writing
multi-dimensional arrays. It is much more versatile since it can use “slices”,
linear subsets of an array, based upon FORTRAN’s BLAS (Basic Linear
Algebra Subprograms) library, offering high-performance multi-dimensional
array manipulation. Stroustroup [1] provides an implementation of a Matrix
class based upon valarray and slices, so I do not need to repeat it here. A
slice can represent any linear subsequence of an array, so can represent both
a row and a column. However it may be easier to organize the array into
columns and just return the correct offset into the array.

T *operator[](unsigned col)
{ return &data[height*col]; }

const T *operator[](unsigned col) const
{ return &data[height*col]; }

If the size of the matrix is fixed, it may be better to specify the dimensions
of the matrix in template parameters. This has the advantage that the
compiler can then generate optimal code by unrolling loops, and the contents
of the matrix can be stored inside the matrix object itself, rather than
performing additional memory allocation and deallocation.The crucial
benefit is that the dimensions of the matrices can be checked by the
compiler, so that matrices of the wrong sizes are prevented from being added
or multiplied, and the compiler can check that a matrix is square for certain
operations. It is much better to catch errors at compile-time than run-time.

template<typename T, unsigned W, unsigned H=W>
class Matrix3 {
T cells[W][H];

public:
T *operator[](unsigned col) { return cells[col]; }
const T *operator[](unsigned col) const

{ return cells[col]; }
unsigned get_width() const { return W; }
unsigned get_height() const { return H; }

};
template<typename T, unsigned W,

unsigned H, unsigned N>
Matrix3<T,W,H> operator*(const Matrix3<T, N, H> &m1,

const Matrix3<T, W, N> &m2) {
Matrix3<T,W,H> result;
for(unsigned i=0; i<W; ++i) {
for(unsigned j=0; j<H; ++j) {
T sum = T(); // Initializes to zero
for(unsigned k=0; k<N; ++k)
sum += m1[k][i] * m2[j][k];

result[i][j] = sum;
}

}
return result;

}

11CVu/ACCU/Dialogue

References

1. Bjarne Stroustrup, The C++ Programming Language, 3rd Ed, Addison
Wesley 1997.

From Seyed H. Haeri <shhaeri@math.sharif.edu>
The first thing which jumps out at me as I skim through the code is the lack
of any (appropriate) commenting. The code has got no comments at all,
which means a big drawback to any code. The student would lose a large
amount of marks if he/she was a student of mine. Not only each mentally
separate piece of code needs its own comment(s), but also the code needs to
be commented – say at the beginning of the program – for its (potential)
reader about what it’s generally supposed to do. The next overall point about
this code is that the student has well tested the program, yet he/she hasn’t
developed any diagnosis. He/she could have done that say by observing the
size of what he/she allocates (using the sizeof operator, for example).

I then start wondering whether this code really flawlessly gets compiled
under any standard conforming implementation. The student has used
std::cout as well as std::cin, yet he/she hasn’t anywhere told the
compiler that he/she means the cout and cin of std.

Another matter of style is the poor way of program interaction with its
user. I’ll delve deeper into that throughout the criticism below. For the
moment, however, especially for students, I say that it is a very good
practice to get used to let the user know what the program is supposed to
do. This could easily be done using a short series of initial prompts to the
user before he/she starts the I/O process. Afterwards, let’s go through the
code. The first line:

#include <iostream.h>
should be re-written as:

#include <iostream>
I say that because the Standard has allowed the header files to be
implemented with extensions other than .h (§16.2, Phrase 5 and §17.4.1.2,
Footnote 158).

The next line, in fact, led me into doubt. I checked the Standard to see
whether there really is such a standard header. And, there is not. Thus

#include <process.h>
should be fully omitted. The following line

void main(void)
although may work under many implementations, is not portable (§3.6.1,
Phrase 2 of 98 Standard).

int N, i, j, k;
This line should not be written here. Variables should be declared as close
as possible to where they got used. Furthermore, as far as I can see, those
variables are all supposed to hold sizes. Therefore, it’s quite irrational to
prefer int to size_t for their type. I’ll again come to that as I proceed
through the code.

double **A, **B, **C;
Assuming that the decision of playing with matrices using double**s is
a good decision – which turns out not to be so – for the mere sake of
extendibility, should be replaced by:

typedef double** Matrix;
Matrix A, B, C;

This way, the code will work easily by merely changing the typedef as
he/she decides to change the data structure using which he/she wants to
play with matrices.

Another big mistake is:
double sum = 0.0;

here. I’ll mention in the following where it is best to do that.
using std::cout;
using std::cin;
cout << "Dimension of Matrix? " << endl;
size_t N;
cin >> N;

As you can see, I’ve added statements as per what I’ve previously spoken
about. Another point about any input is to check the input stream for
(possible) errors. Hence:

if(!cin) { ... }
(Perhaps the use of some exceptions.)

A = new (double *) [N];
B = new (double *) [N];
C = new (double *) [N];

When you do:
A = new (double *);

what you get is a single pointer to a pointer to double, and not an array of
pointers to pointer to double. To get the latter, you need to write what I have.

I tried a lot to find out why the student has come to the observation that
it works for N = 2, whilst it does not for N = 3. The only reasonable guess
of mine is the following snippet from the Standard (§18.4.1.2, Footnote 211):

“…The array new expression, may, however, increase the size argument to
operator new[] (std::size_t) to obtain space to store
supplemental information.”

That is, I think for N = 2, the above space for storing supplemental
information allocated invisibly by VC++ suffices, whilst it does not suffice
for N = 3. I guess, furthermore, that for little N’s – which are much likely
to suffice for the student’s test cases – cygwin does a similar job in
allocating a space which happens to be satisfactory.

Another important point, the necessity of which may not become that
obvious at academy, but somehow plays a vital role in commercial
programming, is the validation of any try for allocation. This means that,
under normal conditions such as that of ours, any such try should be put in
a try/catch block.

for(size_t i = 0; i < N; ++i) {
A[i] = new double[N];
B[i] = new double[N];
C[i] = new double[N];

}
Yep! That’s right. I’ve defined i inside the for body. The reason is what
I’ve already mentioned; variables should always be declared as close to
their application as possible. Furthermore, they should not be present
outside the scope they are supposed to function.

Anybody having a little experience of overloading in C++ knows enough
why should one always prefer the prefix operator ++ to its postfix
counterpart. Although you may argue that, in this case, we’re dealing with built-
in types, and no modern compiler may leave optimising it off, I insist on what
I told. Why? ‘Cause of two important points: First, this kind of optimisation –
although quite common – is not guaranteed. Second, it is a good practice to
get used to that. Having that done, you’ll never lose efficiency whilst dealing
with objects constructing/destructing of which is much more than wasteful.

Again this for body should all lie in a try/catch block. Let’s go further.
cout << "Enter matrix A: (Please enter each

row in one line.)" << endl;
for(size_t i = 0; i < N; ++i) {
for(size_t j = 0; j < N; ++j)

cin >> A[i][j];
cin.get();

}
There are many ways for inputting a matrix. The one chosen by the student
is not appropriate however. What’s wrong with it? It prompts something
to the user each time, and asks him/her to enter each element again and
again. One plausible way seems to be that of mine, in which I ask the user
only one time about what he/she is supposed to do. This way has got
another advantage, and that’s the fact that it well equally works for when
we want to input from files. Furthermore, human beings find it much more
natural as they’re working with 2 by 2 matrices. We should then check the
input stream for possible errors. The next for body should be replaced
with a similar one like above.

for(size_t i = 0; i < N; ++i)
for(size_t j = 0; j < N; ++j) {

double sum = 0.0;
for(size_t k = 0; k < N; ++k)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

That is, I’ve defined sum at the best possible position. Anywhere outside
this body sum would be meaningless. After a few blank lines in output

cout << "A * B = " << endl;
for(size_t i = 0; i < n; ++i) {
std::copy(C[i][0], C[i][N],

std::ostream_iterator<double>(cout, " "));
cout << endl;

}
Here, I’ve suited the already-at-hand tool of the Standard, std::copy().
Note that this needs the addition of #include <algorithm> as well as
#include <iterator> at the top of the program.

And another extremely important point which this student – like many other
newbies – has forgotten is to delete[] the allocated memory. That is:

12 CVu/ACCU/Dialogue

for(size_t i = 0; i < N; ++i) {
delete[] A[i];
delete[] B[i];
delete[] C[i];

}
delete[] A;
delete[] B;
delete[] C;

And, the rest of the code which has not been included in the journal...
Assuming that there is no better candidate than raw pointers, I

recommend the student to reconsider the code. Yes, the code is quite trivial.
But, it’s a mixture of many different creatures. It does its input, it constructs
its own objects, it performs the multiplication, it then outputs the resulting
matrix, and finally, it destructs the objects. These are the major steps, not?
This is a very good point showing us the necessity of splitting the code into
different functions with names indicating what’s intended. Here is what
will be the result: (All the following code is off-hand. The deadline is close,
and I’ve got to finish the criticism. So, please don’t be fussy.)

int main() {
cout << "This programme ...";
cout << "Dimension of matrices? ";
size_t N;
cin >> N;
Matrix A, B, C;
Construct(A, N);
Construct(B, N);
Construct(C, N);
Input(A, cin);
Input(B, cin);
C = Multiply(A, B);
Output(C, cout);
Destruct(A);
Destruct(B);
Destruct(C);
return 0;

}
I’m wondering whether there could ever be a guy aware of OOP, whom
the above code does not whet appetite for assembling a class – an ADT, in
other words – which serves the job much neater.

In fact, considering the very little code above, one should have gotten
quite sure that playing with raw pointers also very dangerous, is very
cumbersome. A well arisen question then is that isn’t there any facility in
C++ which can ease the job? Oh yes, there are. You can say use their
majesty vector<>s. This way, you get rid of all the allocation, evaluation
of allocation, and deallocation stuff. All of those bothers are now settled
by the aids of automatically served features of vector<>. This way, you
should end up with something like

int main() {
cout << "Dimension? ";
Matrix<double>::size_type n;
cin >> n ;
Matrix<double> A(n), B(n), C(n);
cout << "Enter A:" << endl;
cin >> A;
cout << "Enter B:" << endl;
cin >> B;
C = A * B;
cout << "A * B = " << endl << C;
return 0;

}
Do you see what’s happened? You’ve ended up with nothing apart from
the abstract problem at hand. Full stop. Wow!

The Winner of SCC 32
The editor’s choice is:

Calum Grant
Please email francis@robinton.demon.co.uk to arrange for your prize.

Guest Commentary – Alan Griffiths
<alan@octopull.demon.co.uk>

When faced with code like this it is difficult to know where to start –
inappropriate choice of headers, ignorance of what the standard mandates
(void main()!), anti-idiomatic usage (choice of variable names and scope,

memory management “by hand”), bad design and just plain bugs. There is
also the question of assessing what the student understands – clearly
suggesting writing a matrix class won’t help a student that apparently
hasn’t even caught onto using functions to factor out repetitive code.

I’ll mention the fundamental problem that often occurs with more
experienced developers: too much code has been written without giving
thought to finding out if it works. It appears that while the student has some
test input (and expected results?) against which to run the program whole
program, she is at a loss as to how to identify which parts of the program are
(or are not) working. If the student exhibited a better knowledge of the language
one might suggest that the program be broken down into pieces. (Indeed, the
student should have been introduced to functions before this point.)

However, introducing functions and user defined types is a long road
that doesn’t address the immediate problem of getting the program working
in a way the student understands. And this student has identified a prime
suspect: incorrect use of new – C++ is unforgiving of developers that use
language features they don’t understand. It is rarely the case that arrays
should be allocated using new, and in this occasion new is not an
appropriate solution. So, I’m going to look at this code with a view to
showing how new and all its pitfalls can be avoided.

First let’s show the code to a compiler:
Compiling source file(s)...
main.cpp
In file included from C:\MinGWStudio\MinGW\include\
c++\3.3.1\backward\iostream.h:31,
from main.cpp:1:
C:\MinGWStudio\MinGW\include\c++\3.3.1\backward\back
ward_warning.h:32:2: warning: #warning This file
includes at least one deprecated or antiquated
header. Please consider using one of the 32 headers
found in section 17.4.1.2 of the C++ standard.
Examples include substituting the <X> header for the
<X.h> header for C++ includes, or <sstream> instead
of the deprecated header <strstream.h>. To disable
this warning use -Wno-deprecated.
main.cpp:4: error: 'main' must return 'int'
main.cpp:4: error: return type for 'main' changed to
'int'
scc24.exe - 2 error(s), 1 warning(s)

Before we continue, I’ll fix these problems. The header <iostream.h>
refers to a pre-standard library distribution, and <process.h> is a posix
header irrelevant to the current program. Replace these with:

#include <iostream>
#include <vector>

The latter, <vector>, isn’t needed yet, but I’ll use it shortly to provide a
dynamically sized array in place of the current heap allocations.

The remaining diagnostics indicate that the corrected signature for main is:
int main()

Making that change and back to the compiler:
Compiling source file(s)...
main.cpp
main.cpp: In function 'int main()':
main.cpp:10: error: 'cout' undeclared (first use
this function)
main.cpp:10: error: (Each undeclared identifier is
reported only once for each function it appears in.)
main.cpp:10: error: 'endl' undeclared (first use
this function)
main.cpp:11: error: 'cin' undeclared (first use this
function)
scc24.exe - 4 error(s), 0 warning(s)

There are several ways to fix these diagnostics. My usual preference is to
use the fully qualified names, but it will probably confuse the student less
to employ using definitions. At the top of main, add:

using std::cin;
using std::cout;
using std::endl;

And now we have some code that compiles – and Comeau
(http://www.comeaucomputing.com/tryitout/) is happy with it
too.

Next, to eliminate those suspicious uses of new – there is a far better
option – std::vector. Replace the declarations of A, B and Cwith aliases

[concluded at foot of next page]

13CVu/ACCU/Features

Patterns in C - Part 2: State
Adam Petersen <adampetersen75@yahoo.se>

Every non-trivial program passes through a number of different states
during its lifecycle. Describing this lifecycle as a finite state machine is a
simple and useful abstraction. In this part of the series, we will investigate
different strategies for implementing state machines. The goal is to identify
mechanisms that let the code communicate the intent of expressing the
problem as a finite state machine.

Traditional Solution with Conditionals
Consider a simple, digital stop-watch. In its most basic version, it has two
states: started and stopped. A traditional and direct way to implement this
behaviour in C is with conditional logic in the shape of switch/case
statements and/or if-else chains.

The digital stop-watch in this example is implemented as a First-Class
ADT [1].

typedef enum { stopped, started } State;

struct DigitalStopWatch {
/* Let a variable hold the state of our object. */
State state;
TimeSource source;
Display watchDisplay;

};

void startWatch(DigitalStopWatchPtr instance) {
switch(instance->state) {
case started:
/* Already started -> do nothing. */
break;

case stopped:
instance->state = started;
break;

default: error("Illegal state"); break;
}

}

Features

for vector and matrix types as follows:
typedef std::vector<double> vector;
typedef std::vector<vector> matrix;

Finally, replace the memory allocation code with:
matrix A(N, vector(N));
matrix B(N, vector(N));
matrix C(N, vector(N));

Now, magically, the program works! Let’s look at the whole thing:
#include <iostream>
#include <vector>
int main() {
using std::cin;
using std::cout;
using std::endl;
typedef std::vector<double> vector;
typedef std::vector<vector> matrix;
int N, i, j, k;
double sum = 0.0;
cout << “Dimension of Matrix ?” << endl;
cin >> N;
matrix A(N, vector(N));
matrix B(N, vector(N));
matrix C(N, vector(N));
for(i=0; i<N; i++)
for(j=0; j<N; j++) {
cout << "A[" << i << "][" << j << "] = ?"

<< endl;
cin >> A[i][j];

}
for(i=0; i<N; i++)
for(j=0; j<N; j++) {
cout << "B[" << i << "][" << j << "] = ?"

<< endl;
cin >> B[i][j];

}
for(k=0; k<N; k++)
for(i=0; i<N; i++) {
sum = 0.0;

for(j=0; j<N; j++)
sum += A[i][j]*B[j][k];

C[i][k] = sum;
}
cout << endl << endl << endl;
for(i=0; i<N; i++)
for(j=0; j<N; j++)

cout << "C[" << i << "][" << j << "] = "
<< C[i][j]<< endl;

}
Actually, there is still plenty wrong with this – anti-idiomatic usage (choice of
names and scope, addiction to std::endl), bad design and bugs. In short, it
is still suitable as an entry for a “Student Code Critique”! On the other hand,
the student does not appear ready to deal with these problems (yet!) and should
learn that there are easier solutions to attempt to manage memory by hand.

Student Code Critique 33
(Submissions to scc@accu.org by May 10th)
Special thanks to Richard Corden for providing us with a snippet he came
across.
I’m having a problem whose cause I’m not able to detect. I sometimes end up in
the true block of the if statement where iter->first is not 5. Could you
explain me what is going wrong?

#include <map>
#include <algorithm>
typedef std :: multimap <int, int> MyMapType;
// Filter on values between 5 and 10
struct InRange {
bool operator ()(

MyMapType::value_type const & value) const {
return (value.second > 5) && (value.second < 10);
}

};

// Not really important how this happens.
void initMap (MyMapType & map);

int main () {
MyMapType myMap;

// initialise the map...
initMap (myMap);
MyMapType::iterator lower = myMap.lower_bound(5);
MyMapType::iterator iter = std :: find_if(

lower, myMap.upper_bound(5), InRange());

// Did we find this special criterial?
if (iter != myMap.end()) {
// Yup...we have a value meeting our criteria

}
else {
}

}

[continued from previous page]

14 CVu/ACCU/Features

void stopWatch(DigitalStopWatchPtr instance) {
switch(instance->state) {
case started:
instance->state = stopped;
break;

case stopped:
/* Already stopped -> do nothing. */
break;

default: error("Illegal state"); break;
}

}

While this approach has the advantage of being simple and easy to
understand, it introduces several potential problems:
1. It doesn’t scale. In large state machines the code may stretch over page

after page of nested conditional logic. Imagine the true maintenance
nightmare of changing large, monolithic segments of conditional
statements.

2. Duplication. The conditional logic tends to be repeated, with small
variations, in all functions that access the state variable. As always,
duplication leads to error-prone maintenance. For example, simply
adding a new state implies changing several functions.

3. No separation of concerns. When using conditional logic for
implementing state machines, there is no clear separation between the
code of the state machine itself and the actions associated with the
various events. This makes the code hide the original intent (abstracting
the behaviour as a finite state machine) and thus makes the code less
readable.

A Table-based Solution
The second traditional approach to implement finite state machines is
through transition tables. Using this technique, our original example now
reads as follows.

typedef enum {
stopped,
started

} State;

typedef enum {
stopEvent,
startEvent

} Event;

#define NO_OF_STATES 2
#define NO_OF_EVENTS 2

static State
TransitionTable[NO_OF_STATES][NO_OF_EVENTS] = {
{ stopped, started },
{ stopped, started } };

void startWatch(DigitalStopWatchPtr instance) {
const State currentState = instance->state;
instance->state

= TransitionTable[currentState][startEvent];
}

void stopWatch(DigitalStopWatchPtr instance) {
const State currentState = instance->state;
instance->state

= TransitionTable[currentState][stopEvent];
}

The choice of a transition table over conditional logic solved the previous
problems:

1. Scales well. Independent of the size of the state machine, the code for
a state transition is just one simple table-lookup.

2. No duplication. Without the burden of repetitive switch/case
statements, modification comes easily. When adding a new state, the
change is limited to the transition table; all code for the state handling
itself goes unchanged.

3. Easy to understand.A well structured transition table serves as a good
overview of the complete lifecycle.

Shortcomings of Tables
As appealing as table-based state machines may seem at first, they have
a major drawback: it is very hard to add actions to the transitions defined
in the table. For example, the watch would typically invoke a function
that starts to tick milliseconds upon a transition to state started. As the
state transition isn’t explicit, conditional logic has to be added in order
to ensure that the tick-function is invoked solely as the transition
succeeds. In combination with conditional logic, the initial benefits of
the table-based solution soon decrease together with the quality of the
design.

Other approaches involve replacing the simple enumerations in the table
with pointers to functions specifying the entry actions. Unfortunately, the
immediate hurdle of trying to map state transitions to actions in a table
based solution is that the functions typically need different arguments. This
problem is possible to solve, but the resulting design loses, in my opinion,
both in readability as well as in cohesion as it typically implies either giving
up on type safety or passing around unused parameters. None of these
alternatives seem attractive.

Transition tables definitely have their use, but when actions have to be
associated with state transitions, the STATE pattern provides a better
alternative.

Enter STATE Pattern
In its description of the STATE pattern, Design Patterns [2] defines the
differences from the table-based approach as “the State pattern models state-
specific behaviour, whereas the table-driven approach focuses on defining state
transitions”. When applying the STATE pattern to our example, the structure
in Figure 1 emerges.

Figure 1: STATE pattern structure

This diagram definitely looks like an object oriented solution. But please
don’t worry – we will not follow the temptation of the dark side and
emulate inheritance in C. However, before developing a concrete
implementation, let’s explain the involved participants.

● DigitalStopWatch: Design Patterns [2] defines this as the context.
The context has a reference to one of our concrete states, without
knowing exactly which one. It is the context that specifies the interface
to the clients.

● WatchState: Defines the interfaceof the state machine, specifying all
supported events.

● StoppedState and StartedState: These are concrete states and
each one of them encapsulates the behaviour associated with the state
it represents.

The main idea captured in the STATE pattern is to represent each state as an
object of its own. A state transition simply means changing the reference
in the context (DigitalStopWatch) from one of the concrete states to the
other.

Implementation Mechanism
Which mechanism may be suitable for expressing this clearly object
oriented idea in C? Returning to our example, we see that we basically
have to switch functions upon each state transition. Luckily, the C
language supplies one powerful feature, pointers to functions, that
serves our needs perfectly by letting us change the behaviour of an

15CVu/ACCU/Features

object at run-time. Using this mechanism, the interface of the states
would look as:

Listing 1: The state interface in WatchState.h

/* An incomplete type for the state representation
itself. */

typedef struct WatchState* WatchStatePtr;

/* Simplify the code by using typedefs for the
function pointers. */

typedef void (*EventStartFunc)(WatchStatePtr);
typedef void (*EventStopFunc)(WatchStatePtr);

struct WatchState {
EventStartFunc start;
EventStopFunc stop;

};

Breaking the Dependency Cycle
After getting used to the scary syntax of pointers to functions, the interface
above looks rather pleasant. However, with the interface as it is, a
dependency cycle will evolve.

Consider the pointers in the WatchState structure. Every concrete state
has to define the functions to be pointed at. This implies that each time an
event is added to the interface, all concrete states have to be updated. The
resulting code would be error-prone to maintain and not particularly flexible.

The good news is that breaking this dependency cycle is simple and the
resulting solution has the nice advantage of providing a potential error-
handler. The trick is to provide a default implementation, as illustrated in
the listing below.

Listing 2: Extend the interface in WatchState.h

/* ..previous code as before.. */
void defaultImplementation(WatchStatePtr state);

Listing 3: Provide the default implementations in WatchState.c

static void defaultStop(WatchStatePtr state) {
/* We’ll get here if the stop event isn’t

supported in the concrete state. */
}

static void defaultStart(WatchStatePtr state) {
/* We’ll get here if the start event isn’t

supported in the concrete state. */
}

void defaultImplementation(WatchStatePtr state) {
state->start = defaultStart;
state->stop = defaultStop;

}

Concrete States
The default implementation above completes the interface of the states.
The interface of each state itself is minimal; all it has to do is to declare an
entry function for the state.

Listing 4: Interface of a concrete state, StoppedState.h

#include "WatchState.h"
void transitionToStopped(WatchStatePtr state);

Listing 5: Interface of a concrete state, StartedState.h

#include "WatchState.h"
void transitionToStarted(WatchStatePtr state);

The responsibility of the entry functions is to set the pointers in the
passed WatchState structure to point to the functions specifying the
behaviour of the particular state. As we can utilize the default
implementation, the implementation of the concrete states is
straightforward; each concrete state only specifies the events of interest
in that state.

Listing 6: StoppedState.c

#include "StoppedState.h"
/* Possible transition to the following state: */
#include "StartedState.h"

static void startWatch(WatchStatePtr state) {
transitionToStarted(state);

}

void transitionToStopped(WatchStatePtr state) {
/* Initialize with the default implementation

before specifying the events to be handled
in the stopped state. */

defaultImplementation(state);
state->start = startWatch;

}

Listing 7: StartedState.c

#include "StartedState.h"
/* Possible transition to the following state: */
#include "StoppedState.h"

static void stopWatch(WatchStatePtr state) {
transitionToStopped(state);

}

void transitionToStarted(WatchStatePtr state) {
/* Initialize with the default implementation

before specifying the events to be handled
in the started state. */

defaultImplementation(state);
state->stop = stopWatch;

}

Client Code
The reward for the struggle so far comes when implementing the context,
i.e. the client of the state machine. All the client code has to do, after the
initial state has been set, is to delegate the requests to the state.

struct DigitalStopWatch {
struct WatchState state;
TimeSource source;
Display watchDisplay;

};

DigitalStopWatchPtr createWatch(void) {
DigitalStopWatchPtr instance

= malloc(sizeof *instance);
if(NULL != instance) {
/* Set the initial state. */
transitionToStopped(&instance->state);
/* Initialize the other attributes here. */

}
return instance;

}

void destroyWatch(DigitalStopWatchPtr instance) {
free(instance);

}

void startWatch(DigitalStopWatchPtr instance) {
instance->state.start(&instance->state);

}

void stopWatch(DigitalStopWatchPtr instance) {
instance->state.stop(&instance->state);

}

A Debug Aid
In order to ease debugging, the state structure may be extended with a string
holding the name of the actual state. Example:

16 CVu/ACCU/Features

void transitionToStopped(WatchStatePtr state) {
defaultImplementation(state);
state->name = "Stopped";
state->start = startWatch;

}

Utilizing this extension, it becomes possible to provide an exact diagnostic
in the default implementation. Returning to our implementation of
WatchState.c, the code now looks like:

static void defaultStop(WatchStatePtr state) {
/* We’ll get here if the stop event isn’t

supported in the concrete state. */
logUnsupportedEvent("Stop event", state->name);

}

Extending the State Machine
One of the strengths of the STATE pattern is that it encapsulates all state-
specific behaviour making the state machine easy to extend.
● Adding a new event. Supporting a new event implies extending the

WatchState structure with a declaration of another pointer to a
function. Using the mechanism described above, a new default
implementation of the event is added to WatchState.c. This step
protects existing code from changes; the only impact on the concrete
states is on the states that intend to support the new event, which have
to implement a function, of the correct signature, to handle it.

● Adding a new state. The new, concrete state has to implement
functions for all events supported in that state. The only existing code
that needs to be changed is the state in which we’ll have a transition to
the new state. Please note that the STATE pattern preserves one of the
benefits of the table-based solution: client code, i.e. the context, remains
unchanged.

Stateless States
The states in the sample code are stateless, i.e. the WatchState structure
only contains pointers to re-entrant functions. Indeed, this is a special case
of the STATE pattern described as “If State objects have no instance variables
[…] then contexts can share a State object” [2]. However, before sharing any
states, I would like to point to Joshua Kerievsky’s advice that “it’s always
best to add state-sharing code after your users experience system delays and a
profiler points you to the state-instantiation code as a prime bottleneck”[3].

In the C language, states may be shared by declaring a static variable
representing a certain state inside each function used as entry point upon
a state transition. As the variables now have permanent storage, the
signature of the transition functions is changed to return a pointer to the
variable representing the particular state.

Listing 8: Stateless entry function, StartedState.c

WatchStatePtr transitionToStarted(void) {
static struct WatchState startedState;
static int initialized = 0;
if(0 == initialized) {
defaultImplementation(&startedState);
startedState.stop = stopWatch;
initialized = 1;

}
return &startedState;

}

The client code has to be changed from holding a variable representing
the state to holding a pointer to the variable representing the shared state.
Further, the context has to define a callback function to be invoked as the
concrete states request a state transition.

Listing 9: Client code for changing state

void changeState(DigitalStopWatchPtr instance,
WatchStatePtr newState) {
/* Provides a good place for controls and trace

messages (all state transitions have to go
through this function). */

instance->state = newState;
}

The stateless state version comes closer to the STATE described in Design
Patterns [2] as a state transition, in contrast with the previous approach,
implies changing the object pointed to by the context instead of just
swapping its behaviour.

Listing 10: State transition in StoppedState.c

static void startWatch(DigitalStopWatchPtr context) {
changeState(context, transitionToStarted());

}

A good quality of the stateless approach is that the point of state
transitions is now centralized in the context. One obvious drawback is
the need to pass around a reference to the context. This reference
functions as a memory allowing the new state to be mapped to the correct
context. Another drawback is the care that has to be taken with the
initialization of the static variables if the states are going to live in a
multithreaded world.

Consequences
The main consequences of applying the STATE pattern are:

1. Reduces duplication introduced by complex, state-altering
conditional logic. As illustrated in the example above, solutions based
upon large segments of conditional logic tend to contain duplicated
code. The STATE pattern provides an appealing alternative by removing
the duplication and reducing the complexity.

2. A clear expression of the intent. The context delegates all state
dependent operations to the state interface. Similar to the table-based
solution, the STATE pattern lets the code reflect the intent of abstracting
the problem as a finite state machine. With complex, conditional logic,
that intent is typically less explicit.

3. Encapsulates the behaviour of each state. Each concrete state
provides a good overview of its behaviour including all events
supported in that very state. This encapsulation makes it easy both to
identify as well as updating the relevant code when changes to a certain
state are to be done.

4. Implicit error handling. The solutions based on conditional logic, as
well as the table-based one, requires explicit code to ensure that a given
combination of state and event is valid. Using the technique described
above of initializing with a default implementation, the controls are
built into the solution.

5. Increases the number of compilation units. The code typically
becomes less compact with the STATE pattern. As Design Patterns says
“such distribution is actually good if there are many states” [2].
However, for a trivial state machine with few, simple states, the STATE

pattern may introduce an unnecessary complexity. In that case, if it isn’t
known that more complex behaviour will be added, it is probably better
to rely on conditional logic so the logic will be easy to follow.

Summary
The STATE pattern lets us express a finite state machine, making the intent
of the code clear. The behaviour is partitioned on a per-state basis and all
state transitions are explicit.

The STATE pattern may serve as a valuable tool when implementing
complex state-dependent behaviour. On the other hand, for simple
problems with few states, conditional logic is probably just right.

Next Time
We’ll continue with Design Patterns [2] and investigate the STRATEGY

pattern, which is closely related to STATE. The STRATEGY pattern lets us
implement different variation points of an algorithm, interchangeable at
run time.

Adam Petersen

Acknowledgements
Many thanks to Magnus Adamsson, Tord Andersson, and André Saitzkoff
for their feedback.

References
1. Adam Petersen , “Patterns in C, part 1”, C Vu 17.1
2. Gamma, E., Helm, R., Johnson, R., and Vlissides, J, Design Patterns,

Addison-Wesley
3. Joshua Kerievsky , Refactoring to Patterns, Addison-Wesley

17CVu/ACCU/Features

A Subversion Primer
Pete Goodliffe <pete@cthree.org>

This article provides an introduction to Subversion. It lists Subversion’s
key features and best working practices, provides cookbook recipes for all
the common activities in your day-to-day development work, and points
the reader to further reading.

It is intended for software developers and doesn’t matter which
operating system you use (although it would help to not be scared of the
command line). It’s useful to have an understanding of CVS, or some other
version control system.

Disclaimer: If the information in here diverges from Subversion
documentation, clearly I’m wrong and they’re right. Terms and conditions
apply. Your hair may be at risk if you do not keep up a loan secured on it.

Terms and Definitions
SCMS – Source Code Management System (e.g. CVS, ClearCase, or

Subversion)
CM – Configuration Management (development practices using SCMS)
CVS – Concurrent Versions System, the de facto open source SCMS

What is Subversion?
Subversion was designed from the ground up as a modern, high-
performance version control system. It is intended to be compelling SCMS
replacement for the (now ageing) CVS1. It is freely available under an open
source licence.

It is gaining popularity, a stable, production-quality system. It’s now
used in anger by public projects including Mono, Xiph, Apache, Samba,
PuTTY, Debian, and Ethereal. I have used it for personal work, and
deployed it in commercial development teams. I’ve found it to be an
excellent, streamlined SCMS that is very usable.

Of the new breed of open SCMS tools around, this is really the only
mature production worthy system.

Subversion follows the same modify-merge-commit model of CVS, so
it should be familiar to most developers.

Key Features
● CVS-like interface
● Directories, renames, and file metadata are versioned
● Commits are truly atomic, they either totally succeed or totally fail
● Commits are recorded as a changeset (a revision number applies to the

whole file tree, not individual files)
● Branching and tagging are cheap (constant time) operations
● Efficient network usage
● Cross platform: Windows, Linux, MacOS X, with several GUI front-ends
● Good for offsite work (supports offline diff and revert)
● Scales far better than CVS
● Efficient binary file handling
● Supports Apache and the WebDAV protocol (also has own protocol,

which can be tunnelled over ssh)
● MS Visual Studio integration

What It Doesn’t Do
The feature sets of different SCMSs vary, although the core concepts (i.e.
versioning a set of files) don’t tend to differ significantly. There are a
number of key facilities that Subversion does not provide that you may be
used to:
● Merge support is not so rich as some tools (it is as good as CVS, though)
● There are no dynamic views (a ClearCase magic versioned file system)
● There are no locking checkouts (strangely, they’re working on this)
Depending on your SCMS religion, the last two points are actually huge
benefits.

Overview of Operation
Versioning

Subversion versioning is different from the CVS model. Unlike CVS,
changes are atomic. When you check in multiple files you submit an atomic
changeset. These file commits will either all succeed or all fail.

All the modifications made in one changeset are held together as a single
revision, with a single checkin message.

Important difference: a revision number applies to the whole tree,
unlike CVS where version numbers apply to each individual file. When
you check in a single file, the whole file tree gets up-versioned (the files
in your working copy do not all automatically get up-versioned,
though). A revision number identifies how a file tree looked at a
position in time.

For example: you check out foo.c from HEAD, and the repository is
currently at version 5. You have ‘version 5’ of the file in your working copy.
What you really have is foo.c as it appeared in version 5 of the
repository. The file may not have changed since version 3. So consecutive
version numbers of a single file may be identical.

The changeset idea is very powerful. Using it there is no need for a
manually maintained changelog (updates) file, and it’s easy to merge
specific changesets from one branch to another.

Branches and Tags
Committing a single file effectively creates a new copy of the entire file
tree in the repository (remember: the whole source tree goes up a version
number). To do this Subversion provides very cheap copy operations.
Subversion branches and tags (labels) exploit this fact, and so are also very
cheap and quick operations. Their implementation is surprising to CVS
developers.

Both branches and tags are stored in the repository as copies of a file
set. Therefore, they exist at a physical point in the file structure. This is
very different from the CVS branching/tagging model. A Subversion tag
is not a property applied to a particular revision of a file, although it does
still uniquely identify a set of files.

Both tags and branches are created in the same way, and the difference
between the two is only what you do with them afterwards. A branch is a
copy created with the express purpose of performing additional
development work, work that should be kept separate from the trunk. A tag
is a copy that will not be worked on (you can still merge changesets into a
tag copy, in order to ‘move’ the tag).

Branches and tags can have finite lifetimes – as versioned objects in the
repository you can delete them like any other object. This will not lose the
history of their existence, and is a powerful tool that helps to keep your
repository neat.

Repository Directory Layout
There is no fixed directory structure in a repository, although there are
conventions that Subversion users generally follow. A repository may
contain a number of projects, each in their own top-level directory. A
project directory has three subdirectories:
trunk – contains the main line of code development
branches – contains all branch copies of code development
tags – contains all tag copies of code development
The branches and tags directories both hold Subversion copies of a
version of the trunk file set.

1 For this reason I often compare a Subversion operation to the CVS counterpart in this
document.

Revision Names
When you invoke Subversion commands, there are a number of special
revision names that you can use:
HEAD – the latest revision in the repository.
BASE – a pristine copy of the file currently checked out in your working

copy.
COMMITTED – the last revision in which a file changed, before (or at)

BASE.
PREV – the file that is identified as (COMMITTED–1).

Terms
Repository – the central store of files under revision control.
Working copy – a set of files checked out of the repository, stored on

your local hard disk.
Revision – a set of changes to the repository (file edits, directory changes,

metadata changes). A revision number applies to the whole repository
file tree, not to individual files.

Tag – a read-only copy of a revision of the file tree.
Property – arbitrary (possibly binary) metadata associated with a revision

of a file in the repository.
Trunk – the repository directory containing the main line of code

development.
Branch – a repository copy of a version of the trunk. New commits in

this directory only affect the branch, not the trunk.

18 CVu/ACCU/Features

Miscellaneous
● When you check out a working copy of the repository, Subversion

makes a physical copy of the files on your hard disk. Each directory
contains a .svn directory (akin to the CVS directory in CVS) where
admin files are held. You must not poke around in here.
In that directory is held a pristine copy of the files you have checked
out, so network utilisation is very efficient – file diffs are done at the
client end, not on the server.

● Subversion uses URIs to define a location in the repository. There are
several different repository access methods, identified by the URI’s
transport (e.g. file: svn: http: and https:, you only use one
of these at once!)
On Windows, URIs still use the Unix-like forward slash.

● Most operations are applied to the working copy’s file tree, in which case
the modification is made locally, but no change occurs in repository until
you perform a commit. Some operations also accept repository URIs; these
work directly on the repository files (the copy command is an example of
this). In this case you do not even need to check out a working copy.

Subversion Cookbook
Here are some simple Subversion recipes to
get you started. This should cover most of
your day-to-day work. If you want to step
beyond these examples, you can always type
svn help for more information, or look at
the Further Reading section, below.

These recipes show how to perform each
operation using the Subversion command
line client (svn). The exercise is similar
using one of the available GUI front ends (for example the MS Visual
Studio Ankh plug-in); naturally you don’t type a command, you click on
helpful buttons instead. But despite all the GUI goodness you still have to
understand what’s going on behind the scenes – these recipes will make
this clear. The Other Tools section towards the end of this article describes
the various Subversion GUI front ends available.

In the following command line examples, the text you type is
emboldened, the svn response is plain text. The repository URI location is
represented as REPOSITORY, and I assume that the URI’s transport is
method svn:. Change this as appropriate.

Subversion commands have both a long form (e.g. checkout) and a
shortened form (co). I use the long form for clarity. The shortened versions
are listed at the end of the document (see Shortened Commands).

Import a Project
Admittedly you don’t do this very often, but it’s a quick way to get a
baselined project into a Subversion repository2.
● You want to import the widgetizer project into the repository.
● You have made a top-level widgetizer directory structure in the

repository (see below for that recipe).
svn import /path/to/widgetizer
svn://REPOSITORY/widgetizer/trunk
Adding widgetizer/main.c
Adding widgetizer/other.c
Committed revision 1

These changes are made to the repository immediately. Don’t worry if you
import to the wrong place, in Subversion it’s easy to move things around
afterwards (that’s a later recipe).

View the Repository
Before you ‘check out’ files from the repository you can browse to see what
you want to play with. (CVS doesn’t provide this facility.)

svn list svn://REPOSITORY/widgetizer
branches/
tags/
trunk/

Clearly, if there is a ViewCVS system (a web-based repository browse
application) set up, you would use that in preference.

Check Out Part of a Repository
● You’ve identified the project subdirectory you want to check out, and

know whether you want the trunk or a branch.

cd ~/Work
svn checkout svn://REPOSITORY/widgetizer/trunk
A widgetizer/trunk/main.c
A widgetizer/trunk/other.c
Checked out revision 1

The A above stands for ‘Added’. We’ll see more output like this later. You
have now created a working copy of the repository.

You can choose to check out a whole project or just a specific file or
directory.

You can edit the files immediately; there is no need to issue a Subversion
command to ‘open’ them for editing. Of course, this means that someone else
could be editing the same file as you at the same time. More on that later…

Inspect Which Files You’ve Modified
● You’ve modified some of the files in your working copy.
● Before you commit the changes to the repository, you want to see what

you’ve changed.
cd widgetizer/trunk
svn status
M main.c
M other.c

The M above stands for ‘Modified’. Files with no difference from the
repository3 are not listed. The most common status codes are:
M The contents of this file have been changed
? This file is not in the repository (you may want to svn add it)
A File is scheduled for addition
D File is scheduled for deletion
C File has conflicts which need resolving (see below)
S File has been switched to a branch (see below)
! File is managed by Subversion, but it’s missing in your working copy
CVS users, note: Subversion doesn’t need you to subvert the update command
to do this kind of inspection. (CVS users routinely type cvs –nq update to
list modifications because the output of cvs status is not at all helpful.)

You can give a specific filename as an argument to svn status to get
information on it alone.

Inspect the Changes You’ve Made
● You know that you’ve changed a file.
● You want to look at the complete set of changes to compose a suitable

checkin message.
svn diff other.c
Index: other.c
=======================================
—- other.c (revision 2)
+++ other.c (working copy)
@@ -1,4 +1,5 @@
int m;
int n;
-int p;
+int o;
$

You can compare your working copy to a specific repository revision using
the –r switch, and can compare two repository versions by specifying a
range. For example, to see the last change made to main.c:

svn diff –r PREV:COMMITTED main.c
Index: main.c

...

2 Tools exist to help you import CVS projects and retain the version/branch history. See
the Subversion website for details.

Selecting Revisions
Many commands can be directed to work with a specific revision of a file
(remember, though, that revision numbers actually apply to the repository,
and not to individual files). In this case they take a —revision (-r for
short) argument.

This can take two forms:
-r 5 Specifies files from revision 5 of the repository.
-r 3:5 Specifies a range of files from version 3 to version 5 of the

repository
The version specified can be a revision number, a keyword, or a date.
Dates are enclosed in braces, and can take many forms, for example:
{2002-02-17}, {15:30}, {"2002-02-17 15:30"} and more. (If the
date contains a space, wrap it in quotes.)

3 Or, more accurately: no difference from the repository version that the working copy was
checked out from.

19CVu/ACCU/Features

Check In Your Changes
● You’ve edited a file (or files), and want to check it in to the repository.

svn commit -–message "Changed the default \
banana count" other.c
... or ...

svn commit –-file log-message-file other.c
Sending other.txt
Transmitting file data .
Committed version 3.

If you don’t specify a message on the command line, Subversion opens
your default editor (as specified by the EDITOR environment variable) to
prompt you for it.

Note: You can’t perform a checkin if someone else has modified the
files and checked them in before you. In this case, Subversion will moan
at you:

svn commit –m "Changed the default banana \
count" other.c

Sending other.txt
svn: Commit failed (details follow):
svn: Out of date: 'other.c' in transaction 'k'

You must first update to the HEAD version (recipe below) and then try to
check in.

Add Directories and Files
● You want to add a new file to the widgetizer project.
● You have created it in your working copy.

svn add new.c
A new.c
svn commit –m "Added" new.c

...
Note that the file doesn’t get put into the repository until you issue a
commit command.

Move and Copy Files
● You want to modify the layout of files within a directory.

svn move new.c old.c
A old.c
D new.c
svn copy old.c copy.c
A copy.c
svn commit –m "Changed file structure"

...

Undo a Modification
● You made a mistake when altering main.c, and want to back out your

changes, restoring the previous revision that you checked out.
svn revert main.c
Reverted 'main.c'

Update to Latest Version of a File
Files change in the repository whilst you are working; your working copy
will become outdated. Periodically (and usually before you check in) you
must update your working copy to the latest repository state-of-the-art.

If a file that you are modifying has been changed by someone else then
Subversion, like CVS, will attempt to merge the changes automatically into
your working copy. Usually this works fine. Occasionally a conflict occurs,
when Subversion doesn’t know how to perform a merge because the
changes interfere with each other. This is dealt with in the next recipe.
● You want to see what files have changed in the repository since you last

updated
svn status –-show-updates

... or ...
svn status –u
M * main.c

* other.c
The * shows that an update must be taken from the repository. The M shows
that you have modified a file locally: Subversion will merge the repository
change into your modified copy.
● You want to bring in the latest version of other.c, but leave main.c

in the current working copy
svn update other.c
U other.c
Updated to revision 4.

Notes:
● Working copies are not dynamic, so you are in control of when you pull

in other people’s changes. This is especially useful during builds – no
files will change during your build process, so you can be assured of
the build’s integrity.

● Your working copy can contain a random collection of file version
numbers (you can commit and update files independently).

● You can use the –r argument to shift to a particular file revision.

Resolving Conflicts
● You performed a svn update, and a file had conflicts (the update output

message showed a file with C status).
● You can’t check your version of the file in until you have resolved the

conflict.
● Open the conflicted file in your editor. You will see the conflicts flagged

between conflict markers that highlight the problem changes.
● Subversion has created three extra files in your working copy

directory:
1. filename.mime – the copy of filename that was in your

working copy directory before you ran svn update.
2. filename.rOLDREV – The file that was the BASE revision before

you ran svn update.
3. filename.rNEWREV – The new version that came from the

repository.
● Merge the changes manually.
● Then type the following command to tell Subversion that you have

resolved the conflict (note: this is an extra step over CVS operation):
svn resolved other.c
Resolved conflicted state of 'other.c'

Inspect File History
● You want to see how the file other.c changed over time.

svn log other.c

r3 | pete | Tue, 16 Dec 2004 12:23:12 +0000

| 1 line
Changed the default banana count

r2 | pete | Tue, 16 Dec 2004 12:16:43 +0000

| 1 line
Added

Creating a Branch
You want to branch the HEAD of your project’s trunkinto a branch called
trout, to perform some parallel development work .

svn copy \
svn://REPOSITORY/widgetizer/trunk \
svn://REPOSITORY/widgetizer/branches/trout \
-m "Created trout branch"

Committed revision 128.
Note: we didn’t need to have a working copy checked out to perform this
operation, since we used URIs into the repository. (You can also do this
locally in a working copy, but there’s not much point.)

Working on a Branch
● Having created a branch, you want to check it out and start working on it.

svn checkout \
svn://REPOSITORY/widgetizer/branches/trout

A trout/main.c
A trout/other.c
Checked out revision 128.

This new branch is a separate physical directory from the trunk.
However, it retains all the file revision history (try a svn log on a file).

Alternatively, if you already have a working copy checked out, and you
want to switch it to view the branch, use svn switch:

svn info | grep URL
URL: svn://REPOSITORY/widgetizer/trunk
svn switch
svn://REPOSITORY/widgetizer/branches/trout
U main.c
U other.c
Updated to revision 128.

20 CVu/ACCU/Features

svn info | grep URL
URL:
svn://REPOSITORY/widgetizer/branches/trout

This is more efficient than checking out a whole new tree, and also allows
you to switch just a single directory, or even a single file.

You can now use your branch version of the working directory as if it
was the trunk . All checkins you make appear only on the branch,
without affecting trunk at all.

Merge Changes Between Branches
● Your work on the trout branch is sufficiently advanced that it should

be merged back onto the mainline of development, into trunk.
● Create a working copy of the trunk, then identify the range of changes

that you want, merge them into the trunk, and check in:
cd ~/Work/trout
svn update
At revision 132.
svn log –-verbose -–stop-on-copy

The final revision number listed is the
start of the branch, let’s say it’s 2

cd ~/Work/trunk
svn merge –r 2:132
svn://REPOSITORY/widgetizer/branches/trout
M main.c
M other.c
svn commit –m "Merged trout changes r2:r132 \

into the trunk"
...

Like CVS, Subversion doesn’t record a merge history, so you have to be
careful when you merge a branch into trunk multiple times. Always
specify revision numbers in great detail when you write the log message,
next time you merge you will want to merge the range 133:HEAD , not
2:HEAD.

Create a Tag
● You release the first version of your software and want to tag the source

code that built it.
svn copy \

svn://REPOSITORY/widgetizer/trunk \
svn://REPOSITORY/widgetizer/tags/Release1 \
-m "Created release 1 tag"

Committed revision 326.
This is a very simple tag operation (but probably the most common). You
can tag more eclectic collections of files. Update your working copy to
the set of file versions that you want to tag (using svn update -r).
Then:

svn copy \
my-working-copy \
svn://REPOSITORY/widgetizer/tags/TagName \
-m "Created release 1 tag"

Committed revision 327.

Undo a Change in the Repository
● Some idiot (you, probably) checked a blatantly wrong revision into the

repository.
● You want to revert the change.

svn merge –r 10:9
svn://REPOSITORY/widgetizer/trunk/main.c
U main.c
svn commit –m "Undoing change committed in r10"

...

Create a Change Log
● You want to maintain a file containing all commit messages over the

project’s history.
● You don’t want to do it by hand.
● At each release point in your project, do this:

svn log –r 42:HEAD >> ChangeLog
svn commit ChangeLog -m 'Update ChangeLog'

Shortened Commands
Subversion commands can be abbreviated to save you some typing. The
following table shows the abbreviations for the common commands:

CVS Conversion in 2 Minutes
Subversion has been designed to work as much like CVS as is practical. Most
of your CVS knowledge translates directly into Subversion. The following
table shows the Subversion equivalents of common CVS commands:

Other Tools
There are other tools that sit on top of Subversion. You may find them
useful:
TortoiseSVN – a Windows explorer plug-in providing a Subversion RMB

submenu. This is an absolutely excellent Subversion front end, and I
highly recommend it. It has an excellent history viewer, merge tool,
repository browser, and much more. If you use Subversion under
Windows you really want to get a hold of this. You can download it
from http://tortoisesvn.tigris.org/

RapidSVN – a cross-platform GUI front end for Subversion. In my
experience this is an odd beast, and best avoided – the Tortoise front
end is far superior.

Ankh – a MS Visual Studio plug-in for the Subversion client. It works
quite nicely, and I recommend it. Some Subversion operations are
easier to perform through TortoiseSVN, so I tend to use both clients
together. Ankh is not quite as polished as TortoiseSVN, but it is an
excellent tool for VS developers.
You can download it from http://ankhsvn.tigris.org/

ViewCVS – a web based repository viewer, originally for CVS, but now
with Subversion support (at the moment there is no CVSGraph-like
facility, sadly).

Subversion’s svnadmin and svnlook tools. Mere mortals needn’t ever use
these; they are administration tools.

There are many other useful Subversion tools – I have seen very pretty
Mac OS X clients (SvnX is a neat GUI front end and SCPlugin is a
helpful Finder plug-in). Subclipse and Svn4Eclipse are Eclipse plug-ins.
Look around for other useful Subversion plug-ins.

Pete Goodliffe

Further Reading
Subversion’s homepage is http://www.subversion.org/
The free Subversion book is an excellent, thorough overview of the

system. It is available from http://svnbook.org/ You can buy
a dead tree version of this from O’Reilly, which is recommended. It’s
called Version Control with Subversion, ISBN: 0596004486.

Another recommended book is Pragmatic Version Control Using
Subversion by The Pragmatic Programmers. ISBN: 0974514063.

There is a Latex Subversion quick reference card in the source
distribution.

Long form Short (alternate) form
checkout co

checkin ci

copy cp

delete rm, del, remove

help ?, h

list ls

move mv

status stat, st

switch sw

update up

—revision -r

—show-updates -u

Table 1: Shortened forms of Subversion commands

CVS command Subversion command
cvs co svn co

cvs ci svn ci

cvs tag svn copy

cvs –nq update svn status

cvs diff svn diff

cvs tag –j svn copy

cvs add svn add

cvs update svn update

cvs merge svn merge

Table 2: CVS and Subversion commands compared

21CVu/ACCU/Features

I Wish Programming Was
Easy Again

Paul F. Johnson <editor@accu.org>

It takes my PC just over 90 seconds from power up to desktop. It’s nothing
special, not really that high spec’d, okay, it has a lot of memory on it, but
lots of memory is nothing that peculiar anymore.

Now, add onto that time loading kdevelop and we’re up to the two
minute stage. Type some code, compile and test, say 5 minutes. The code
is linked to, say, OpenGL.

It’s not an amazing amount of time, but say the code has a problem. Is
the problem in the code or the libraries it is linked to? Check the code,
hmm, nothing looks wrong there. Right, run the debugger on the binary...
ah, looks like I’m passing something incorrectly to OpenGL. What is
supposed to be passed in there? Where is my book with the API in? Drat,
it’s out of date, but looking at that I’m actually correct. Oh well, fire up the
browser and search the OpenGL documentation, ah, found the problem.

My code is fine, it’s passing the correct information to OpenGL, so what
is the problem? I’d better check the physical information being passed and
that it is exitting the OpenGL function correctly. It is. ARGH!!!!!!!

Does that sound familiar? It does from this end, and definitely will when
you think back to when you started to learn C++ (or C) and tried to link it
to an established library for the first couple of times (or more – I still
manage to mess up when using Qt).

Is there a reason for this or is programming just becoming to darned
complex these days for people to break into? And if it is too complex,
shouldn’t we all be doing something about it?

Lots of Questions...
My original editorial in the last issue of C Vu sparked quite a lot of
conversation on the accu-general mailing list where it gave those on
there the chance to let off a bit of steam over the issue.

However, as with most computer related topics, it is not as simple as
looking through rose-tinted glasses, a more pragmatic approach is required.
While I stick to every word I said in the last editorial, you’ll see that some
things are made better by being slightly more complex.

One of the main issues raised was how complex something as simple as
making the internal speaker play a scale had become. The example cited was
for the Dragon32 which just needed PLAY "ABCDEFG" to be typed into the
machine and a scale played. But was it really as simple as that for everything?

You’ll need to think back now. If I take 4 machines (BBC B, Oric,
Spectrum and Dragon) and compare how different something as simple as
playing a scale was, we can soon see that even then something like sound
wasn’t that easy! I’ll not consider the Commodore range as I have no real
experience of them.

These will all play a series of beeps which produce a scale (some include
the sharps, some don’t). What it demonstrates that from a programming
perspective, if you learn from any of these audio systems, you’re going to
have a problem going to a different one.

Okay, sound is just one thing. A machine is nothing without input/output
and graphic handling. This is where things became really different. While
most had a PLOT and DRAW method of putting lines on the screen, the way
they did it wasn’t the same. The BBC B and Spectrum were effectively the
opposite of each other with the Oric just being strange!

Line graphics are all well and good, but what about sprite handling?
None of the 8 bit machines really had any sprite handling facilities, so
unless you created a whole pile of user defined graphics, you would need
to fudge the screen so that it appeared there was more graphics than there
was or you had to generate the graphics on the fly or you plain had (say)
16 points of rotation and depended on a frame rate to fool the eye. (Later
versions of BBC BASIC (mainly for the RISC OS machines) had sprite
handling facilities, however, that would also mean I would need to consider
the ST and Amiga machines).

Compare this to literally a few lines to call the Allegro or SDL libraries and
you can see my point. Sure, there are problems learning how to compile,
waiting for the build and the such, but it is (on the whole) much easier to learn.

What’s Your Point?
Simple, yes it was easier but the drawback was that moving from one
platform to another was a right royal pain in the backside! Interoperability
was not on the cards.

While things are more complex now (such as having to use specialist
bitmap software for sprites or sound software for audio), the actual API is
much simpler; you learn it once and compile it quite a few times. Sprite,
audio and (to some extent) error handling is provided by the library.

You What?
Okay, at this point, you’re starting to question the reason behind the
argument put forward in the last editorial as this really does make me sound
as if I’ve contradicted myself.

While the movement has been from a version of BASIC on all
machines, quite a number of machines do come with languages which don’t
require compilation. Tcl is one such language. No compilation is required
and the results are instantaneous. It just isn’t as easy to learn as BASIC
was or (in my opinion) as friendly to the new user.

Copyright issues aside, there is no real reason why a version of BBC BASIC
for each platform isn’t bundled (I know there is BBC BASIC for Windows, a
Linux BBC BASIC and a MacOSX version, all but the Windows version being
free). This would give the user an easy to use language within (about) 2 minutes
from firing up with the advantage of seeing instant results.

DHTML and Javascript – The Way Forward?
A point which was raised in discussion was the use of DHTML and
Javascript with a web browser for learning. I have a problem with this, in
fact, I have a few.
1. It requires a browser happy with both. Despite there being an ECMA

standard for JavaScript, not all browsers comply (quelle surprise) with how
the standard describes operations. Add this to having to fudge for specific
browsers, and you can’t really have anything which will work with certainty.

2. Some browsers don’t do one or the other (or both). Opera (up to version
7.5.2 for Linux) certainly doesn’t like DHTML. Browsers used for the
visually impaired have problems with DHTML and dynamic content
generated in JavaScript.

3. While JavaScript is pretty close to an OO language, it is also close to being
a straight procedural language. As such, it really doesn’t help the newcomer
as they’re easily confused – are they or are they not using an OO language?

4. DHTML doesn’t have a standard. It makes any real certainty over how
a browser should react somewhat hit and miss.

While everyone now using one of the main platforms1 has a browser,
someone learning on (say) Firefox will need to learn how to get around
DHTML problems for Opera and IE (with the same being applicable in
reverse). This is pretty much the same problem as there was with the
differing implementations of BASIC.

What About the Learner Though?
We are all (presumably) professionals. We know how to build our software,
effectively debug, optimise the code we write and the myriad of other
aspects there are to writing software, but we must remember that we all
had to start somewhere.

While there is little doubt that the likes of Francis Glassborow’s book
is a step in the right direction, it is, unfortunately, not cross platform. I
certainly would not buy a copy as I very rarely touch a Windows machine
(other than tech support at work that is!); it would contain very little which
would give an instant result for either myself or my son.

Have we moved so far away from having a built in interpreter with some
form of common language behind it that to go back would be almost
unthinkable? I have to conclude, on current evidence, that this is the case.

The learner no longer has the 3 seconds and into BASIC as we used to
have. The code, build, run, debug system looks here to stay unless a
common language is built in to each Linux distro, each version of Windows
and OSX. I can’t see that happening, more’s the pity.

Sorry folks, looks like the fun days of the 8 bit machines have gone and
we’re left with makefiles and debuggers.

Paul F Johnson

BBC B Oric 1
FOR a%=89 TO 113 STEP 4 FOR a=1 TO 8
SOUND 1,-10,a%,100 MUSIC 1,3,a,10
NEXT NEXT

Spectrum Dragon
FOR a=0 TO 11 PLAY "ABCDEFG"
BEEP a, 5
NEXT a

1 These being Windows, Linux and MacOSX. I am leaving other platforms (such as RISC
OS) out for the purpose of this article.

Using Qt’s Non-GUI Classes
Jasmin Blanchette <http://www.trolltech.com>

In the fifth installment of our series on cross-platform programming with
the Qt 3 C++ toolkit, we are going to review Qt’s non-GUI classes.
Although Qt is fundamentally a GUI toolkit, it contains many non-GUI-
related classes that are useful when writing portable applications. Here
we’ll focus on Qt’s support for networking, database access, inter-process
communication, XML handling and multithreading.

Network Classes
Qt provides a set of classes for writing cross-platform TCP/IP clients and
servers. The most important classes are QHttp, QFtp, QSocket ,
QSocketServer and QSocketDevice.

QHttp and QFtp implement the client side of the HTTP and FTP
protocols. HTTP (Hypertext Transfer Protocol) is an application-level
network protocol used mainly for downloading HTML and XML files, but
it is also used as a high-level transport protocol for other types of data. For
example, HTTP is often used for transferring purchase orders over the
Internet. In contrast, FTP (File Transfer Protocol) is a protocol used almost
exclusively for browsing remote directories and transferring files. (see
Figure 1.)

Since the two protocols are used to solve similar problems, the QHttp and
QFtp classes have many features in common:
Non-blocking behaviour. QHttp and QFtp are asynchronous. You can

schedule a series of commands (also called “requests” for HTTP). The
commands are executed later, when control goes back to Qt’s event
loop. (Blocking behaviour is usually unacceptable in a GUI application,
because it can freeze the user interface for some time.)

Command IDs. Each command has a unique ID number that you can use to
follow the execution of the command. For example, QFtp emits the
commandStarted()and commandFinished() signal with the command
ID for each command that is executed. QHttp has requestStarted()
and requestFinished() signals that work the same way.

Data transfer progress indicators. QHttp and QFtp emit signals
whenever data is transferred. You can connect these signals to a progress
bar’s setProgress() slot.

For example, let’s assume we have a class called Downloader that has a
QHttp data member called http and a QFile member called outFile.
To keep the example simple, we’ll do everything in the constructor and in
a slot called httpDone().

Downloader::Downloader() {
outFile.setName("bookreviews.html");
if(!outFile.open(IO_WriteOnly))
return;

connect(&http, SIGNAL(done(bool)),
this, SLOT(httpDone(bool)));

http.setHost("www.accu.org");
http.get("/bookreviews/public/", &outFile);
http.closeConnection();

}

void Downloader::httpDone(bool error) {
if (error)
...

outFile.close();
}

In the constructor, we open the output file. Then we connect QHttp’s
done() signal to our httpDone() slot. Finally we schedule three HTTP

requests: “set host”, “get”, and “close connection”. These requests will be
executed at some point in the future, when control returns to Qt. When all
three requests have been processed, the httpDone()slot is called to close
the file.

If you need TCP-based protocols other than HTTP and FTP (e.g., POP3,
SMTP, NNTP or any proprietary protocol), you can use the QSocket class
to implement your own protocol. TCP (Transmission Control Protocol) is
a low-level network protocol used by most Internet protocols, including
HTTP and FTP, for data transfer. It is a reliable, stream-oriented,
connection-oriented transport protocol. It is especially well suited for
continuous transmission of data.

An alternative to TCP is UDP (User Datagram Protocol). UDP is a
lightweight, unreliable, datagram-oriented, connectionless protocol. It can
be used when reliability isn’t important. For example, a server that reports
the time of day could choose UDP. If a datagram with the time of day is
lost, the client can simply make another request. UDP is supported through
the QSocketDevice class.

Database Classes

The Qt database classes provide a multiplatform interface for accessing
SQL databases. Qt includes native drivers for Oracle, Microsoft SQL
Server, Sybase Adaptive Server, PostgreSQL, MySQL, ODBC and SQLite.
The drivers work on all platforms supported by Qt and for which client
libraries are available. Programs can access multiple databases using
multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides
a high-level C++ interface that programmers can use to generate the
appropriate SQL statements automatically.

The QSqlQuery class is used to directly execute any SQL statement. It
is also used to navigate the result sets produced by SELECT statements.

In the example below, a query is executed, and the result set navigated
using QSqlQuery::next():

QSqlQuery query("SELECT id, surname FROM staff");
while(query.next()) {
cout << "id: " << query.value(0).toInt()

<< " surname: " << query.value(1).toString()
<< endl;

}

Field values are indexed in the order they appear in the SELECT statement.
QSqlQuery also provides the first(), prev(), last() and seek()
navigation functions.

INSERT, UPDATE and DELETE are equally simple. Below is an UPDATE
example:

QSqlQuery query("UPDATE staff SET salary = salary"
" * 1.10 WHERE id > 1155 AND id < 8155");

if(query.isActive()) {
cout << "Pay rise given to "

<< query.numRowsAffected()
<< " staff" << endl;

}

Qt’s SQL module also supports value binding and prepared queries, for
example:

QSqlQuery query;
query.prepare("INSERT INTO staff (id, surname,

salary)"
" VALUES (:id, :surname, :salary)"

22 CVu/ACCU/Features

Figure 1: HTTP and FTP protocol stacks

Figure 2: TCP and UDP protocols

23CVu/ACCU/Features

query.bindValue(":id", 8120);
query.bindValue(":surname", "Bean");
query.bindValue(":salary", 29960.5);
query.exec();

Value binding can be achieved using named binding and named
placeholders (as above), or using positional binding with named or
positional placeholders. Qt’s binding syntax works with all supported
databases, either using the underlying database support or by emulation.

For programmers who are not comfortable writing raw SQL, the
QSqlCursor class provides a high-level interface for browsing and editing
records in SQL tables or views without the need to write SQL statements.
For example:

QSqlCursor cur("staff");
while(cur.next()) {
cout << "id: " << cur.value("id").toInt()

<< " surname: "
<< cur.value("surname").toString() << endl;

}

QSqlCursor also supports the ordering and filtering that are achieved
using the ORDER BY and WHERE clauses in SQL statements.

Database drivers usually supply data as strings, regardless of the actual
datatype. Qt handles such data seamlessly using the QVariant class.
Database drivers can be asked about the features they support, including
query-size reporting and transactions. The transaction(), commit()
and rollback() functions can be used if the database supports
transactions.

Qt also provides classes that make it easy to present data from the
database to the user. One of them is QDataTable, a table widget that
displays records from a result set (see Figure 3). QDataTable supports in-
place editing. Records can be updated and deleted without writing any
code. Insertions require some code since most database designs expect new
records to be created with a unique key.

Qt also includes QDataBrowser and QDataView to display records as
forms (see Figure 4), typically with one or perhaps a few records shown at
a time. These classes provide buttons with ready-made connections for

navigating through the records. QDataView is used for read-only data.
QDataBrowser is used for editing, and can provide ready-made insert,
update and delete buttons.

Inter-Process Communication
The QProcessclass is used to start external programs, and to communicate
with them from a Qt application in a platform-independent way.
Communication is achieved by writing to the external program’s standard
input stream and by reading its standard output and standard error.

QProcessworks asynchronously, reporting the availability of data by
emitting Qt signals. We can connect to the signals to retrieve and process
the data, and optionally respond by sending data back to the external
program.

XML Classes
Qt’s XML module provides a SAX parser and a DOM parser, both of which
read well-formed XML and are non-validating. The SAX (Simple API for
XML) implementation follows the design of the SAX2 Java
implementation, with adapted naming conventions. The DOM (Document
Object Model) Level 2 implementation follows the W3C recommendation
and includes namespace support.

Many Qt applications use XML format to store their persistent data. The
SAX parser is used for reading data incrementally and is especially suitable
both for simple parsing requirements and for very large files. The DOM
parser reads the entire file into a tree structure in memory that can be
traversed at will.

Multithreaded Programming
GUI applications often use multiple threads: one thread to keep the user
interface responsive, and one or many other threads to perform time-
consuming activities such as reading large files and performing complex
calculations. Qt can be configured to support multithreading, and provides
four central threading classes: QThread, QMutex, QSemaphore and
QWaitCondition.

To create a thread, subclass QThread and reimplement its run()
function. For example:

class MyThread : public QThread {
protected:
void run();

};

void MyThread::run() {
... // thread code goes here

}

Then, create an instance of the thread object and call QThread::start().
The code that appears in the run()reimplementation will then be executed
in a separate thread.

The QMutex class provides a means of protecting a variable or a piece
of code so that only one thread can access it at a time, preventing memory
corruption, crashes or other race conditions. The class provides a lock()
function that locks the mutex. If the mutex is unlocked, the current thread
seizes it immediately and locks it; otherwise, the current thread is blocked
until the thread that holds the mutex unlocks it. Either way, when the call
to lock() returns, the current thread holds the mutex until it calls
unlock(). For example:

QString globalString;
QMutex mutex;
...
mutex.lock();
globalString += "More text\n";
mutex.unlock();

QSemaphore and QWaitCondition are two other classes that make it
possible to synchronize threads.

This article presented a short overview of some of the most interesting
non-GUI classes offered by Qt. There are many more classes than we
presented here. For example, Qt has a Unicode 16-bit QString data type,
classes for performing text and binary I/O, classes for supporting
internationalisation, and more.

Jasmin Blanchette

Figure 3: QDataTable

Figure 4: QDataBrowser

Professionalism in
Programming #31
Code Monkeys (Part Two)
Pete Goodliffe <pete@cthree.org>

Darwinian Man, though well-behaved, at best is only a monkey shaved
Gilbert and Sullivan

Last time we began a high-paced stroll through a gallery of collected
programmer stereotypes. We’re looking at individual developer attitudes,
to see how they can drastically affect the quality of the software we write
and how they affect the whole development team.

In this concluding article we’ll finish the tour, and see what makes the
best type of programmer. Brace yourself: here come more Code Monkeys...

6. The Cowboy
Some would incorrectly classify this guy a
Hacker. He’s not a hacker in the classic sense of
the word. ‘Hacker’ is a term used by geeks to
proudly describe a heroic coder1. The Cowboy is
a shoddy programmer, who actively avoids hard
work. He’ll take as many shortcuts as he can find.

The Cowboy dives straight into code and does
the minimum work to solve the immediate
problem. He won’t care if it’s not a very good
solution, if it compromises the code structure, or
will not satisfy future requirements.

A Cowboy is anxious to complete each task
and move on to the next. If he’s read a little about
processes, he’ll call this Agile Programming. It’s
really just laziness.

Strengths Cowboy code works, but isn’t particularly elegant. Cowboys
like to learn new things, but seldom get around to it (it’s too much like
hard work).

Weaknesses You’ll spend ages cleaning up after a Cowboy. Their aftermath
is not a pleasant place to be. Cowboy code always requires later repair,
rework and refactoring. They have a limited palette of techniques to
use, and no real engineering skills.

What to do if you are one Learn to hack code in the right sense of the
word. Take a pride in your work, and spend more time over it. Admit
your failings, and try to improve.

How to work with them Never go into a Cowboy’s house; if their code’s
anything to go by, it’ll be a DIY disaster! Understand that they’re not a
malicious breed, just a little lazy. Organise reviews of their code. Get
them pair programming (they might work well with an Eager Coder,
but if you want to see fur flying pair them with a Planner).

7. The Planner
The Planner thinks about what he’s doing so much,
the project’s been canned long before he’s started
writing any code.

It’s true, you must plan up front and establish a
cohesive design, but this guy forms an impenetrable
cocoon around himself and refuses any contact with
the outside world until he’s finished. Meanwhile
everything’s changing around him.

Terminally educated, the Planner studies and reads a lot. A common
subspecies is the Process Weenie; he knows all about the ‘proper
development process’, but is weak on hitting deadlines or getting anything
done. (Process Weenies eventually become middle managers, and then get
fired.)
StrengthsThey do design. They do think. They don’t hack out thoughtless

code.
Weaknesses When a Planner sets to work there is a very real danger of

over design. He tends to create very complex systems. Planners are the
key cause of analysis paralysis – where development gets more focused
on methods and modelling than on prototyping and creating a solution.
The Planner likes to generate endless documents and call meetings
every other hour.

He spends ages thinking, and not enough
time doing anything. He knows a lot, but it
doesn’t all make the leap from theory to practice.
What to do if you are one It is important to
create careful designs up front, but consider
incremental development and prototyping as
methods to verify your design. Sometimes you
can’t commit to a design until you’ve actually

started to implement it. Only then will you appreciate all the problems.
Try to establish a better balance of planning and action. Console
yourself that it’s better to spend too long designing than to write awful
code – the latter is far harder to fix.

How to work with them Ahead of time, agree all milestones and deadlines
for a Planner’s work. Throw in a design complete milestone; they’ll be
happy that it has been recognised as an important task, and encouraged
to complete their design work on time. This is usually enough to
crystallise a Planner into action.
Avoid meetings with a Planner. You’ll spend an hour arguing about how
to decide the agenda.

8. The Old Timer
This old boy is a senior programmer from the old
school. Sit back and listen to him reminisce about
the Good Old Days, when he used punch cards and
machines without enough memory to hold the
result of an integer addition.

The Old Timer’s either happy that he’s still
doing what he loves the most, or bitter that he’s
missed promotion countless times. He’s seen it all,
knows all the answers, and won’t learn new tricks
(he’ll tell you that there’s nothing new to learn, we
just repackage the same old ideas).

An Old Timer doesn’t suffer fools gladly. He’s
a bit cranky, and is easily irritated.
Strengths He’s been programming for years, and so has considerable

experience and wisdom. The Old Timer has a mature approach to
coding. He has learnt what qualities make good and bad programs, and
how to avoid the common pitfalls.

Weaknesses The Old Timer won’t willingly learn new techniques. Fed up
with fashionable ideas that promise much and deliver little, he’s slower
and more resilient to change.
He has little patience thanks to years of corporate ineptitude. He’s been
at the receiving end of countless tight deadlines and unreasonable
managers.

What to do if you are one Don’t be too judgmental of younger more
enthusiastic programmers. You were once like them, and your code
wasn’t awful.

How to work with them You don’t know how easy you have it, you young
programmers. Don’t mess with an Old Timer, or you’ll find out how he
survived this long in the software factory. Choose your battles with him
wisely. Show him respect, but treat him as a peer, not a deity.
Understand the Old Timer’s motivation. Check if he’s programming
because he loves to do so, or because he can’t scale the promotional
ladder any higher.

9. The Zealot
The Zealot is a brainwashed convert, a disciple who
blindly thinks that everything BigCo produces is
excellent. Teenage girls have rock stars to worship;
programmers have their own idols. In his
enthusiasm, the Zealot takes it upon himself to
become an unpaid technology evangelist. He’ll try
to incorporate BigCo products into every assignment
he is given.

The Zealot follows BigCo to the exclusion of all
other approaches, and rarely knows about
alternatives. Anything that’s not excellent in the
current BigCo product line will be fixed in the next
version, which we must upgrade to immediately2.

Strengths He knows BigCo’s products inside out, and will produce
genuinely good designs based on them. He is productive with that

24 CVu/ACCU/Features

1 Also been subverted by ignorant people, and used mistakenly to mean cracker
– someone who breaks into computer systems without permission.

2 Don’t assume that Zealots only idolise certain software vendors. A Zealot might equally
be an open source advocate, or hanker after an obsolete software package.

25CVu/ACCU/Features

technology, but not necessarily maximally productive – other unfamiliar
approaches might be more effective.

Weaknesses Being a Zealot, he’s neither objective nor pragmatic. There
may be better non-BigCo designs that he will miss. Worse, though, are
the Zealot’s continual rants about BigCo.

What to do if you are one No one expects you to turn away from your
beloved BigCo. It’s valuable to understand their technologies and know
how to deploy them. But don’t be a technology bigot. Embrace different
approaches and new ways of thinking. Don’t look at them with an air
of superiority, or prejudge them.

How to work with them Don’t bother getting into philosophical arguments
with a Zealot. Don’t try to explain the virtues of your preferred
technology – he won’t listen. Watch yourself – one conversation with
this guy can turn you into a Zealot. He’s contagious.
Zealots are generally harmless (and amusing to watch from a distance),
unless your project is at a critical design stage. At this point, provide a
clear, unbiased perspective on the problem domain and insist on a
thorough evaluation of all implementation approaches. Remember: he
might be right.
If you encounter silly arguments, counter them with well prepared,
accurate, detailed information about the strengths of your approach and
the weaknesses of his.

10. The Slacker
The Slacker is a workshy sluggard. He’s hard to
detect, because he’s learnt to make it look like he’s
overloaded with jobs. His ‘design’ is playing
solitaire, his ‘research’ is looking at fast cars on the
web, and his ‘implementation’ is working on his
own stuff. The Slacker actively avoids all
assignments (“Oh, I’m far too busy to do that”).

A more subtle Slacker will only work on the
things he wants to, or the bits he thinks should be
done, not what he’s supposed to. Despite working
all the time, he’ll never get his jobs done.

The Slacker knows how to have fun. He parties
too much, and can usually be found sleeping under
his desk. His diet consists mostly of coffee, except
for lunchtimes when you’ll find him in the bar.

This guy can be a burn-out; one too many failed projects has killed his
desire to work.
Strengths At least he knows how to have fun.
Weaknesses A Slacker is an obvious liability. It’s hard to prove he’s

slacking – some hard problems do take a while to sort out. A
programmer might not be slack, just not skilled enough to solve the
problem quickly.

What to do if you are one Work on your morals, and start to put some
effort in. Or learn to live with the guilt.

How to work with them It’s best not to bitch about a Slacker – you have
your own flaws. In good time he’ll get his come-uppance.
Take measures to prove that you are working effectively, and that delays
are the Slacker’s fault. It might help to keep a methodical diary of your
work. A clear set of deadlines is generally enough to get a Slacker
working. Don’t start writing his stuff too, even in desperation. He’ll
only expect you to do this next time.
Avoid burnout yourself, try to have fun as you work. Perhaps you should
hit the bar with him one lunchtime.

11. The Reluctant Team Leader
This is the organisational classic; a developer
who’s been promoted to team leader when there
was no further technical route for him to advance.

You can plainly see that he is uncomfortable in
this role. He doesn’t have the correct skillset, and
struggles to keep up. He is a programmer, and
wants to program. This guy is not a natural
organiser or manager of people, and is a bad
communicator.

Most programmers make spectacularly bad
leaders. There are few genuinely excellent software team leaders; it requires
a particular skillset that is both technical and organisational.

The Reluctant Team Leader is usually quite mild mannered and
indecisive – how else did he get persuaded to take on this job? He gets

squashed between the development team and management, taking the
blame for slippage and poor software. An increasingly harrassed expression
grows on his face until he finally burns out.
Strengths The Reluctant Team Leader has a real sympathy for the

programmer’s plight – he’s been there, and now wishes he was back.
Often he is far too willing to take responsibility for late software delivery,
to prevent the programmers being picked on by management. Just as he’s
not good at delegating work, he’s not good at apportioning blame.

Weaknesses When a Team Leader tries to write code it will be awful. He
never has enough time to write, design, and test carefully. He naively
plans himself a full day’s coding alongside team leading duties. He can’t
fit it all in, and so the Reluctant Team Leader spends longer and longer
in the office, trying to keep up.
He can’t organise well, can’t explain things to managers, and can’t
manage his team members properly.

What to do if you are one Get training. Quickly.
If you’re not happy in this role, push for a career move. This is not
admitting defeat; it’s pointless to burn yourself out doing something you
hate and aren’t good at. Not everybody has the skills or passion for
management. Move to the area you do have skill and passion for.
If you like herculean tasks, try to sort out the promotion path at your
company. Get them to recognise that a managerial position should not
be the next step up from senior developer. Few programmers make
decent managers; their brains aren’t wired up the right way.

How to work with them Be sympathetic, and do everything you can to
help the Team Leader. Give him reports on time, and try to get your
work done to schedule. If you might miss a deadline, let the Team
Leader know early on, so he can plan around it.

The Ideal Programmer
From this tangled mess, it’s clear to see that we’re a strange breed. Which
of these code monkeys should we aspire to? What code monkey cocktail
will create the Ideal Programmer?

Unfortunately, in the Real World there are no perfect programmers –
the beast is an urban myth. Although this question is somewhat academic,
finding an answer will give us something to aim for.

The fabled Ideal Programmer is part:

Politician

They must be diplomatic, able to deal with all of these weird code monkeys
and the many, many more creatures that inhabit the software factory –
managers, testers, support, customers, users, and so on.

Relational

They work well with others. They aren’t territorial about their code and
aren’t afraid to get their hands dirty if a task is for the common good. They
communicate well – they can listen as well as talk.

Artistic

They can design elegant solutions, and appreciate the aesthetic aspects of
a high quality implementation.

Getting Personal
This classification of programmer attitudes isn’t particularly scientific.
Psychologists have devised more formal personality classifications;
authoritative ways of calling you a freak. They don’t focus exclusively
on the software development world, but do give a valuable insight into
programmer behaviour.

The Myers Briggs Type Indicator is perhaps the most popular tool. It
decomposes your personality across four axes: extrovert (E) or introvert
(I), sensing (S) or intuitive (N), thinking (T) or feeling (F), and judging
(J) or perceptive (P). This classification results in a four letter descriptor;
ISTJ would be common for a Code Monkey.

Belbin’s Team Roles are a taxonomy of attitudes, investigating how an
individual works as a part of their team. Belbin identifies nine specific
behavioural roles: three action-oriented, three people-oriented, and three
cerebral personalities. Understanding these enables us to build effective
teams from people with complimentary skills; if every programmer was
a coordinator then nothing would ever get done.

Neither of these personality taxonomies have a one-to-one mapping
with my programmer classifications. And they have a distinct lack of
primates.

[concluded at foot of next page]

Automatically Generating
Word Documents

Silas Brown <ssb22@cam.ac.uk>

I like to write my documents without WYSIWYG (what you see is what
you get). One reason for this is that I want my mind to concentrate on what
the document actually says, rather than on trivial details about what it looks
like.

There are good typesetting systems, such as LaTeX, that can make the
text look nice by putting the line breaks in the best places, putting the right
amount of space between the words, and so on, so why should I let such
things distract me when I’m trying to write creatively?

Another reason for not using WYSIWYG is that a document becomes
more like a program. If you are editing markup, you are editing the “source
code” which can then be “run” in various ways. You might transform your
markup (using various tools) into different formats, such as an HTML
version for online viewing and a TeX version for printing.

If you later find something wrong then you can change the source code
and all versions will be changed automatically when you run your script
to re-generate them. You can also use the features of your favourite editor,
not to mention obtaining the assistance of your filing system by writing the
different sections in files and directories and getting the script to merge
them when generating the output (and the order in which they are included
can be changed quickly).

Your script might also include some code to write certain parts of the
document automatically, for example, test results can be generated on-
the-fly by running the test program (and any changes to that program
will automatically be reflected in the document). In short, you can relax
without having to worry about keeping everything consistent and up-to-
date, because the computer does all that for you (well, most of it
anyway).

But there’s one problem with this approach. What if you’re writing
a technical paper for publication, and the editor says, “you must submit
it in Microsoft Word format”? There are many ways of converting other
formats into Word, but usually the editor will go further and say “and
it must look like this example” or “it must use that template”. This
means that, after you’ve got the document into Word format (by
converting from HTML or whatever), you usually have to do some
further work inside Word to make it look like what the editor wants.
And then if you later need to make more changes, you either have to
make all future changes inside Word (which means sacrificing all the
benefits of the source-code approach, not to mention being more

restricted in your choice of operating system and working environment,
and causing problems if you want to publish in other forms and Word’s
conversion is not nice enough), or you have to repeat the whole process
of getting it into Word and making the adjustments all over again as
many times as is needed. If any of this annoys you, then that may
negatively affect the quality of your work, so it’s worth doing
something about it.

One option is to become an expert in Microsoft Word’s macro system
and use that, either to automate the process of getting your document
into Word, or, if you’re a real macro expert, use it to drive the whole
approach instead of using the scripting language of your choice.
However, this does have its disadvantages. You have to be very good
with the macro system in order to make your macros robust (it’s too
easy to make some small change that accidentally means the macro
won’t work any more), and if your only reason for using Word is to
fulfill the requirements of some editor, why bother to learn Microsoft’s
product-specific language if there’s some way of doing the same job
using Python or whatever other general scripting language you’re
already skilled at?

The approach that I eventually found was this. Modern versions of
Microsoft Word have an interesting way of saving documents as
HTML. Enough information is encoded in the HTML for Word to re-
read the document exactly in nearly all cases (if there is something that
cannot be saved in the HTML then Word should tell you what that is at
the time of the save). Now, there are various views about the quality
of Word’s HTML in terms of Web standards and portability, but if you
regard Word’s version of HTML as an alternative file format for Word
documents, there is hope for your automatic program. Simply save the
editor’s example as HTML, have your program generate HTML like
that example, and import this into Word whenever you need to produce
a Word version; no post-editing in Word should be necessary. You may
even be able to use diff and other utilities to find how the Word
document has been changed by others (if they haven’t tracked the
changes) by converting it back to HTML and comparing that with what
you sent.

I wasn’t able to test enough versions of Word to work out exactly when
this feature was introduced; the HTML functionality of Word 97 does NOT
preserve all formatting, but Word 2002 does. If you do have access to a
real copy of Microsoft Word, as opposed to something like OpenOffice.org,
then it’s best to use the real Microsoft product in order to maximise your
chances that the conversion will go without a hitch, especially when
converting back to Word format. If you don’t have access to Word then
you might be able to get away with asking the person who wants the Word

26 CVu/ACCU/Features

Technical genius

They write solid, industrial strength code. They have a broad palette of
technical skills, and understand how and when to apply them.

Reading that list again, it’s quite clear what we should be. If you haven’t
realised yet, I’ll spell it out for you. The ideal programmer is a: PRAT.

So What?
Only the wisest and stupidest of men never change.

Confucius
Whilst it’s entertaining to stare in the cages at all of these code monkeys
and have a laugh at their expense, what should you do about this? If you
do nothing then it’s been little more than mere entertainment; you’ll walk
away doing exactly the same stupid things you’ve always done.

To improve as a programmer you must change. Change is hard – it runs
contrary to our nature. The saying goes: a leopard doesn’t change his spots.

If he did, he wouldn’t be a leopard any more. Perhaps that’s the key. More
of us should be wildebeest or rhinoceros.

Take a moment to think about the following questions:
● What kind of code monkey are you most like? If you’re honest there’s

probably a little of each of them in you. Identify the one or two that
describe you in a nutshell.

● What are your particular strengths and weaknesses?
Look over your code monkey description again, and see what practical
things you could change. What specific techniques will help you to
overcome bad attitudes, and how can you capitalise on your good ones?

Conclusion
Programmers are a social species (which is odd considering their lack of
social skills). They are social by necessity; you can’t create excellent large
software systems without a closely working team of programmers, who
are knit into a larger social structure (be it a department, company, or an
open source culture).

Each of these programmers has their own foibles and peculiarities. Their
underlying attitudes affect how well they program – both in their approach
to the code and to their place in the team.

If you want to be an exceptional programmer, you need to foster the
correct positive attitudes. Remember: aim to be a prat.

Pete Goodliffe

Acknowledgement
Thanks to my friend and colleague David Brookes for the excellent monkey
illustrations. I owe you another pint, Dave (or perhaps another banana!)

[continued from previous page]

ACCU Conference 2005
This series has been a snapshot of my presentation at last year’s ACCU
conference. If you fancy staring at more monkeys then come to the
conference in April this year. I’m taking code monkeys to the next level:
I’ll be discussing writing software in teams. You’ll see how to survive
software writing teams, and learn techniques to improve your day-to-day
software writing experience.

Come to Life in the Software Factory. It’ll be a blast.

27CVu/ACCU/Features

document to save their example as HTML and import your HTML reply,
although this requires more skill on their part especially if you have
separate image files.

Reducing the Clutter
Word’s HTML may be verbose, but it’s not difficult to understand which
part does what (especially with syntax highlighting), and it’s much
easier to work with Word’s HTML than it is to work with its RTF (how
many text editors with special facilities for navigating around RTF
source do you know?) Modern versions of Word store the document’s
styles in the HTML header, using the CLASS attribute to assign HTML
elements to styles and using stylesheet overrides to show other
formatting.

The first thing to realise is that the only markup that matters for our
purposes is the body section of the document. Everything up to and
including the line beginning <body can be included without change at the
start of the output document. You can do this in Python as follows:

template = open(template_html_filename).read()
text = open(my_html_filename).read()
out = open(output_filename, "w")
out.write(template[:re.match(r"<body[^>]*>",

template).end()])
out.write(text[re.match(r"<body[^>]*>",text).end():])

which means you can edit (or automatically generate) your HTML without
worrying about what comes before the <body> tag. You could adapt this
so as to paste in text up to any point in the document you like by inserting
special keywords to indicate that point in both the template and your
document; this might be useful if the editor requires a complex header
(name, address, etc, in an unusual format) that is hard to convert but that
will rarely (if ever) have to change during the editing process.

The remaining “clutter” in the template may include backward-
compatibility markup (you can safely replace the regular expression
<!\[if !support.*!\[endif\]> with nothing), and markup for smart
tags and spelling and grammar alerts (you can also safely remove this, but
it’s easier if you can tell Word not to save it in the first place by unchecking
“embed smart tags” and “embed linguistic data” in the “save options”
dialogue and turning off spelling and grammar check in the “language”
dialogue).

The template you have to work with is still a little too cluttered though.
There is usually a gratuitous amount of markup to represent the skips
between paragraphs, and in some documents you will find rather a lot of
markup that overrides the language of each part of the text. If you use
search-and-replace to simplify this, you can then edit (or automatically
generate) the simplified version and then reverse all your searches and
replaces to get back to Word’s version. That can all be scripted.

It may help if you are working with no end-of-line markers but with
end-of-paragraph markers. You can get the text into that state by using
code such as:

paragraph_token = "—- PARAGRAPH"+chr(0)
template = template.replace(“\n\n”, paragraph_token) \
.replace("\n"," ") .replace(paragraph_token, "\n\n")

When you are writing your search-and-replace list, one thing that helps to
begin with is to see a list of the most common markup. You can do this as
follows. First, get a list of all the tags that open elements:

openingElems = re.findall("<[^/][^>]*>", template)

then generate a frequency count and print it out in order:

freqs = {}
for e in openingElems:
if freqs.has_key(e): freqs[e] += 1
else: freqs[e] = 1

freqs = map(lambda (x,y): (y,x), freqs.items())
freqs.sort()
for f in freqs: print f

That, together with a look at the template document, should give you
enough pointers to write a quick script that converts between your

simplified HTML markup (or the markup that is generated by the
something-else-to-HTML-translator utility you are using in your scripts)
and the markup of the template. This script can be re-used as many times
as is needed during the editing process. It’s best if you put the list of things
to search and replace into a list of tuples, rather than in the code itself;
that way the program can be reversed just by reversing each tuple in the
list:

searchList = [
(r"<p class=Text lots-of-attributes>\(.*\)</p>",

r"<p>\1</p>"),
(r"<p class=Bulletedlist

lots-of-attributes>\(.*\)</p>",
r"\1"),

...
]

for s in searchList: text=re.replace(text,s[0],s[1])
or:
for s in searchList: text=re.replace(text,s[1],s[0])

Note that we are not using special XML-handling toolkits because it’s
often quite awkward to get them to work with Word-generated markup;
they tend to find errors and throw exceptions, which is normally good
but not what we want here. Note also the slight awkwardness in the
above example about bulleted lists: it has to assume that each item is
its own list. You can do better by writing more code, but you might not
want to (it’s only for one article after all); you can preprocess your
HTML by stripping s and replacing all s with
(unless you’re also using numbered lists, in which case you need to be
more clever).

It would be interesting to see if any readers can further automate the
process of creating this script. It would be nice if a program could just look
at the template and guess most of the rules automatically.

Finishing Touches
The markup for Word’s equations and other special objects is complex
and is best left alone; if you need to include such things in your
document then you can do so by typesetting them in LaTeX or whatever
and including the images (hopefully not too many Word-using editors
will want to adjust your equations). Incidentally, Word defaults to
setting images at 96 dots per inch, and it’s best to use PNG or JPEG
formats.

Footnotes can be awkward too, but it’s best to write without using too
many footnotes anyway.

Clearly there are going to be some quality compromises in using
Word as an output format. It simply isn’t as good at typesetting as
LaTeX is. Hopefully the journal’s production editor will use something
else for the final copy. However, one thing you can do is to make sure
your quotes and em-dashes look nice. You can do this by writing them
as Unicode entities. Don’t try to be too clever and put in ligatures,
unless you understand the rules of when and when not to ligature (or
can extract them from TeX), and even then don’t do it as you may find
the final printed copy has them replaced with strange-looking
characters. However, nice quotes and em-dashes are quite simple to
achieve.

The LaTeX to HTML translator TTH loses the em-dashes during its
translation (it replaces them with hyphens), so you need to replace them
with a special token before running TTH and restore them afterwards. The
following Unix commands will do this and also deal with the quotes and
ellipses:

mv texfile.bbl .bbl; mv texfile.aux .aux; cat \
texfile.tex | sed -e 's/—-/SSB22ANEMDASH/g' -e \
's/—/SSB22ANENDASH/g' | tth | sed -e \
's/SSB22ANEMDASH/\―/g' -e \
's/SSB22ANENDASH/\—/g' -e \
's/''/\“/g' -e \
"s/''/\\”/g" -e 's/'/\‘/g' -e \
"s/'/\\’/g" -e 's/\.\.\./\…/g' \
> texfile.html

[concluded at foot of next page]

Forgetting the ABC
Orjan Westin <owestin@unilog.co.uk>

I recently bought and read “C++ Coding Standards” by Sutter and
Alexandrescu[1], without expecting many surprises. Like most seasoned
C++ professionals, I’ve read Sutter’s “Exceptional” and Meyers’
“Effective” series, as well as numerous articles, which coupled with long
experience of using the language has made me reasonably confident that I
don’t commit too many sins.

Indeed, I wasn’t surprised by anything I read, although I might not
have agreed completely with everything either. Those are minor
quibbles, though, and not really worth mentioning. What did surprise
me was an omission. Of course, any collection of best practice
guidelines has to tread a line between the terse and verbose, and on the
whole I think the authors have made a good job. I just wish they hadn’t
missed what I have always thought of as the ABC principle – Always
Be Conventional.

To be fair, it is covered, albeit in a couple of specific instances. Items
26 (Preserve natural semantics for overloaded operators), 27 and 28
(Prefer the canonical form[s of +, +=,++, and the minus equivalents])
and 55 (Prefer the canonical form of assignment) are all expressions of
ABC.

However, while it is important to follow the principle when dealing with
operators, I was surprised that there was no generalisation of it, since it is
a common problem anywhere an established convention exists.

Here is a simple example I once found in production code:

template<typename A_, typename B_,
typename C_>

struct trio {
A_ first;
B_ second;
C_ extra;
...

};

This is clearly inspired by std::pair and while I have omitted all but the
essential members, it should illustrate the point. The struct is well named,
implying where the idea came from, and it can be used as a pairwould,
with a first and second member. And then there’s an extramember...
I can see the logic there, but it’s such a silly thing to do. Why isn’t the C_
member called third?

Okay, so that’s just annoying but not dangerous per se. Here is
another example, again found in production code, which really boggled
me:

template<typename A_>
class matrix {
vector<A_> data_;
long width_, height_;

public:
// STL style functions mirroring the
// std::vector interface

...
void resize(long w, long h) {
data_.resize(w*h);
width_ = w;
height_ = h;

}
...

};

This implementation of resize does not fulfil my expectations. While
the behaviour of the function does what it says on the tin, it doesn’t do
enough. By designing the class interface to resemble that of a standard
container, the programmer has implicitly promised to follow the
convention already established by the STL. If I have data in the matrix
and resize it, I would expect that the elements in the cells that remain in
the matrix are unchanged, which is the canonical behaviour. This is not
the case here, since there is no shuffling around of existing data if I
change the width.

As a user of the matrix class, I will carry with me an assumption of
what the function resizewill do in a container, based on my knowledge
of an established convention. Any piece of code that draws on such a
convention should adhere to it completely, or clearly document where
it does not. In this example, the offending function should really be
called resize_dirty, or be rewritten to conform to the expected
behaviour.

These are just two examples – I have seen many, many more.
Neither is it only applicable to operators and STL look-alikes. If I were
to create a new label control using MFC[2] to show the text in rainbow
colours, for instance, I would make sure that the function to provide it
with a text to display would be called SetWindowText and have the
same form as the canonical one. Sadly, judging from what I’ve seen
over the years, the common practice would be to call it SetText or
SetRainbowLabelText .

ABC is basic wisdom and common sense, just like KISS, and it bears
repeating. While Sutter and Alexandrescu devote four out of one hundred
and one items to special cases, they fail to point out the underlying general
principle. I do not know whether this was through oversight or because
they considered it too obvious, but personally, I feel it is an important
principle that is neglected too often.

It’s just a matter of following conventions where they exist, fulfilling
expectations and avoiding putting in surprises for other developers (or
oneself, in six months time). Sometimes, if all your friends are jumping
off a cliff, you really should do so too.

Orjan Westin

References
[1] Herb Sutter and Andrei Alexandrescu, C++ Coding Standards,

Addison-Wesley, 2004
[2] Microsoft Foundation Classes, the class framework created by

Microsoft to create GUI applications for Windows, in which window
classes have a SetWindowTextmember.

28 CVu/ACCU/Features

Previewing the Result
Finally, when you are developing your document, it may be nice to be able
to preview what it will look like in Word, just as it is occasionally useful
(or at least satisfying) to preview the PostScript or DVI output when
working with LaTeX. This is particularly important if you are aiming for
a certain page count. If you are working on Windows then you can tell
your script to run Word with the HTML file on the command line, or if you
don’t have Word then you can download Microsoft’s Word Viewer (search
www.microsoft.com for Word Viewer) to see what should be exactly
how Word will show your document.

Sadly, the Windows emulator WINE (www.winehq.org) doesn’t
seem to be up to running Word Viewer 2003 yet (it can run Word Viewer
97, but that will not be able to render this HTML properly). You can
unpack Word Viewer 2003 with the cabextract utility if WINE fails
to run the installer (but make sure you have the latest version of

cabextract as old versions tend to corrupt the files) but when you run
it, it is liable to complain about calls to unimplemented functions in
DLLs. You may be able to work around this by borrowing DLLs from a
recent version of Windows, but I don’t have a suitable Windows license
to try this.

It is possible that the special commercial distribution of Wine called
CrossOver Office from www.codeweavers.com will do better. However,
at the time of writing, their trial version download form seems to have been
non-functional for some time, so I couldn’t check this. Another trialware
product is TextMaker from www.softmaker.com/english/
tm_en.htm which is more lightweight than OpenOffice.org (useful if
you’re short on RAM) and often gives a better idea of how Word will
display your document, but it is not perfect (it managed to scramble the
references in one of my papers) so I wouldn’t buy it without checking
alternatives. OpenOffice.org 2.0 is due to be released soon, so that might
be worth checking too.

Silas S Brown

[continued from previous page]

29CVu/ACCU/Features

Introduction to Tcl/Tk
R.D. Findlay <bob@icanprogram.com>

There are lots of different ways to program a computer.
Computers are essentially very stupid.
Even the fastest desktop computers can only understand a hundred or

so commands in their microprocessor “brains”. These commands in and of
themselves are very simple things like “add these two numbers”, “compare
these two values” or “fetch this value from memory”. How then could
computers possibly appear to be so “smart”?

The simple answer is that they are able to do lots of simple things
extremely quickly. So quickly that the typical desktop computer can easily
do several million such commands every second.

While some people still occasionally program computers by setting
up these millions of microprocessor commands directly by hand, you
can appreciate that writing something like a computer game or
wordprocessing program in this manner would be extremely laborious
and tedious. You see humans and computers don’t speak the same
language.

To help with this immense problem associated with programming a
computer, people began to invent tools called “programming languages”
and other tools to translate these “human programming languages” into the
language that the microprocessor understands.

There are many programming languages used to program modern
computers. The one we are going to speak about in this article goes by the
name Tcl/Tk which stands for “Tool Control Language with a Tool Kit” .
It is affectionately known by the 500000 or so users world wide by the
name “tickle tee kay”.

Tcl/Tk is a very good language to start to learn about computer
programming because:
● the language and associated tools are open sourced and hence free
● the language has been implemented for almost every conceivable

computer type (IBM clones, Macintosh, Linux to name but a few)
● it has been around for over 10 years and is widely used in the real world

for everything from eCommerce on webpages to quality control in
microprocessor factories

● it is a very simple language without too many quirky syntax issues

Downloading All Our Programming Tools
The amount of work you will need to do to get set up to write programs in
Tcl/Tk will depend on the type of computer you are using.

For Linux users you are likely not going to have to do anything because
Tcl/Tk tools are included with most Linux distributions including the very
popular Knoppix live CD version.

Microsoft Windows or Macintosh users, however are going to have to
download and install the Tcl/Tk tools from the Internet.

Tcl/Tk is maintained today by a company which goes by the name
Active State (http://tcl.activestate.com). All the basic tools
you will need to start exploring Tcl/Tk as a programming language are
freely available for download at the Active State website following the link
above.

The only other tool you will require for the code examples in this series
of articles is a very simple text editor.

Once again Linux and Mac users will have plenty to chose from. For
Windows users the simplest chose will be Wordpad. The important thing
to note is that you’ll need a text editor and not a word processor, as the
latter adds lots of hidden characters into the resulting file to control fonts
and formatting.

Writing Our Very First Program
At this point you should have the Tcl/Tk tools set installed on your
machine.

You must be anxious to write your very first computer program.
We are going to be using a feature of the Tcl/Tk tools that are not

available in every computer language: the ability for the program to be
written and run interactively. In other words we are going to type something
and then immediately run the program. This mode of programming is often
called “interpretive mode” and it is a great way to test out simple programs
and programming constructs.

The instructions below will describe how to write this program using
Windows. For others the procedure will be similar.

One of the tools you installed on your computer goes by the name wish.
Which stands for window shell.

This should bring up two windows: one called Wish and the other,
Console . The console window will usually have a % character (this may
vary though) on the left hand side of the first line. This character is the
prompt.

This program is going to contain the following line (to be typed after
the prompt)

puts stdout "hi Bob"

If you end the line by hitting the <enter> key you should see the string
inside the "" appear on the line below

Congratulations!
You have just written your very first Tcl/Tk program!
Feel free to experiment with the words inside the "" ... perhaps by

inserting your name.
Notice that you can use the “up arrow” key to recall the previous line

and make changes by using the “left or right arrow” to edit the line.

Explanation of the First Program
Tcl/Tk is a particularly simple language and every statement will always
have the same elements:

command arg1 arg2 arg3 ...

In our little programming example the command was puts. This command
is used to “put things” or “display things”.

The first argument in our example was: stdout
For us stdout will always mean the console screen.
One thing you will find is that programmers in general are a lazy lot.

The laziest programmers of the bunch are those who write operating
systems or programming languages. That is why we end up often with
cryptic commands like puts and clipped arguments like stdout... it saves
typing.

The second argument in our example was: "hi Bob"
The "" were used to group these words into a single argument ...

otherwise the wish program would have taken “hi” as the second argument
and “Bob” as the third.

The puts command would only be expecting 2 arguments and our
little program would not have worked very well. This concept of
grouping is in almost every computer language ... they don’t always use
"" as the group markers, however. The series of words inside the ""
are often referred to as a “string” ... which is short for “string of
characters”.

30 CVu/ACCU/Features

In the Beginning ...
When computers were first invented the way you interacted with them was
far from friendly.

Humans like colour and graphics.
Computers find those things a big pain in the chips.
The simple one line program above was an example of a command line

or text based interface. The input was all done with the keyboard and the
output was in the form of more text on the console.

To this day this remains one of the most economical ways to interact
with a computer.

Many programmers prefer to type commands rather than use the mouse
to click icons. Nonetheless, graphics and graphical user interfaces (or GUIs
as they are called) are very common on modern computers.

Fortunately for us Tcl/Tk comes with very capable and powerful
graphical “sidekick”: Tk.

Tk looks at the graphical world as being composed sets of what it calls
widgets. Like real world widgets, Tk widgets have a basic shape with a
colour, texture, size etc.

The widget model is a good one for us as programmers because we don’t
have to concern ourselves with the thousands of details that go into teaching
a computer how to draw buttons on the screen.

The Tk language looks after that for us. All we have to do is decide how
our button is going to look.
● How big it will be.
● What colour it will be.
● What shape it will be.
● What text will appear inside the button.
These characteristics of a button are all modifiable from within our
program. This gives us a very rich set of combinations of button attributes
that we can use in our particular program.

The First Graphical Program
Just as we did above for our text program we need to be running wish.

In the console window at the prompt you want to type the following
line

button .hello -text "hi Bob"
pack .hello

When you hit <enter> this time the wish window should change and a
button should appear. The words “hi Bob” should appear on the face of the
button.

Congratulations! You have written your very first graphical program.

Explanation of the First Graphical Program
Just to refresh our memory all Tcl/Tk statements are composed of:

command arg1 arg2 arg3 ...

In the first statement of our program the:

command = button
arg1 = .hello
arg2 = -text
arg3 = "hi Bob"

The command button specifies the type of widget we want Tk to create for
us.

arg1 specifies the name we wish to give to our newly created button.
The “.” in front of the name is important.

We will describe this more fully shortly ... but for now think of the “.”
as standing for the top level window shell (wish) window.

.hello then means name the widget helloand put in into the toplevel
wish window.

arg2 specifies one of the many attributes for this button that we want
to set. In this case we want to set the text which will appear inside the
button.

arg3 then specifies the actual text string that we want to place in the
text attribute for our button called hello.

At this point we have only told Tk to create our button. We have not
told Tk where to draw the button on our toplevel window. The second
statement in our little program

pack .hello

tells Tk to draw our button widget called hello. When this statement gets
executed our button magically appears on the wish window.

Save the Program
As with all programs, it is a good idea to save them. You do this as you
would any text file, just following the time honoured protocol of adding
.tk as the extension. When you come to reload the program, you should
be able to run the program directly from your filemanager – or can you?

The wish program is complaining that window name hello already exists
in parent.

The reason for this is that widgets stay around inside the wish program
until we explicitly destroy them. Because we had already created the button
called hellowhen we typed our program into the wish console by hand,
we are being told that we can’t create another button widget of the same
name.

Don’t worry about the word parent ... in computereeze windows that
start from other windows are referred to as “children” and higher level
windows as “parents”. In this context “parent” simply refers to the
environment in which you are running your program.

To fix our little bug we need to add another Tcl/Tk statement to the
beginning of our computer program. Here is where the file comes in
really handy. You need to return to your text editor program and load up
the file where you stored your previous two statement program. You need
to open a new line at the beginning of your file and insert the following
statement.

destroy .hello

This tells the Tk program to get rid of the previous button widget named
hello ... because we want to recreate it.

If you now save your file again and repeat the above File/Source
procedure to run the program it should work like it did in step one. In fact
you can repeat this over and over again and the program will always run.

Have some fun experimenting with different strings inside the double
quotes (“”) on the button line in your program. For those of you who are
really ambitious try adding another attribute to the end of the button line
which will set the button colour. The format for that attribute is:

-background red

Some Programming Wisdom
As you may have gathered by now programming has a healthy dose of
repetition involved.

31CVu/ACCU/Features

In fact the sequence of steps that you have just been through is so
repeated in every programming language that is often referred to as the
“Programming Cycle”.

While there are many books written on this subject and many opinions
as to which variation of this cycle is best in large development projects ...
we fortunately do not have to concern ourselves with anything but the
basics. With our Tcl/Tk toolset our cycle consists of the following steps:
● entering/changing lines of code via our text editor
● saving those changes to a file
● telling the Wish console where that file is and instructing it to Open the

file and run the program
● observing the resulting program behaviour
While our little program had only a simple “bug” in it and with our hints
it only took one iteration to solve it, this will not always be the case for
larger more complex programs. In fact it is often very desirable to attack
a complex programming problem by starting with a very simple program
and adding features to it step by step. At each step you would iterate
through one complete programming cycle as described above. If you take
nothing else away from this article remember this:

“all complex programs can be built up from simple parts which already
work”

Creating Our Own Tcl/Tk Commands
Any computer language contains a relatively small set of basic commands.

If that is all that the language could do it would not be very useful or
practical. It would be better if we could extend existing commands or create
entirely new ones as we needed them. Fortunately Tcl/Tk has just that
capability.

Before we begin we need to discuss and reinforce the relationship
between the “Wish” program and our little programs.

Tcl/Tk is what is known as an “interpreted language”. What this
really means is that the statements in our little programs are “digested”
one by one inside the “Wish” program as they execute. This has no real
impact on what we are learning except that phrases such as “Tcl/Tk
interpreter” or “interpreted by Wish” etc. will appear in the article as
we go forward.

Suffice to remember that our programs require Wish in order to run.

Extended Command Example
Let us illustrate how to extend the basic Tcl/Tk commands by way of an
example.

Using the editor you used above create the following program by typing
in these statements:

first extended command example

scott - entry point
proc scott {mycolour} {

puts stdout [format "lastcolour was %s" $mycolour]

return $mycolour

} ;# end of proc scott

main - entry point
These statements will be executed at startup
set lastcolour red
destroy .hello

button .hello -text "change me to green" \
-background red \
-command {set lastcolour [scott $lastcolour]}

pack .hello -padx 20 -pady 20

The first thing you will notice is the statements which begin with the #
character. The Tcl/Tk interpreter program (eg. Wish) will simply ignore
these statements. This type of statement is used to add some description to
a computer program. In addition blank lines are ignored as well with one
important exception noted below.

Occasionally Tcl/Tk statements get very long. Long statements are very
difficult to read because a portion of those long lines is often “off the visible
screen”. To make long statements more readable Tcl/Tk has assigned the

\ character a special significance. It is often referred to as the continuation
character.

What the \ tells the Wish program is that the line that follows is really
to be treated as part of the same line that the \ appears on. As such you
cannot follow a line ending in \ with a blank line. In the example above
we have used the continuation character to divide this line into two lines:

button .hello -text "change me to green" \
-background red \
-command {set lastcolour [scott $lastcolour]}

Notice that we have also introduced another argument for the button
widget. This argument is the -command argument. It is probably the single
most powerful feature of the Tk part of the Tcl/Tk language.

What we are saying is “whenever you press the button with the mouse
jump and execute the statement enclosed by the {} immediately following
the -command argument”.

This is what allows Tk programs to actually interact with us humans.
Before we try to understand the -command we have for our button we

need to understand a couple of other new Tcl/Tk ideas.
In Tcl/Tk variables are set using the set command. An example in our

code is:

set lastcolour red

In this example our variable is named lastcolour and the value we are
assigning to that variable is red.

We can then use that stored value at other places in our program by
adding a $ symbol to the front of the variable name. You can see a couple
of examples of this in the program example above. The most interesting of
these statements also merits further explanation:

puts stdout [format "lastcolour was %s" $mycolour]

In this statement we have introduced the first of our “statement within a
statement” constructs. The inside statement is enclosed in []. The way the
Wish program handles this is that it first executes the inside statement. In
this case:

format "lastcolour was %s" $mycolour

As with any Tcl/Tk statement this produces a result. The Wish program
then executes the outer statement

puts stdout "whatever the result was from the
format statement"

Compound statements are very important Tcl/Tk constructs to understand.
The format statement itself is a very powerful and important Tcl/Tk

statement.
The format statement can be viewed as a kind of “text creation

statement”. It is often desirable in a computer program to display the result
of a computation or the value stored in a variable as part of a human
friendly phrase. For this purpose we use the Tcl/Tk format statement. If
you examine the first argument to the format statement:

"lastcolour was %s"

You can readily identify a portion of the “human friendly” phrase. In this
case it would be lastcolour was. We would like to be able to finish this
phrase using the contents of the variable, mycolour. We do this by using
a special format character called a placeholder. In this case it is %s. The
formatstatement understands a whole range of placeholder types. The %s
means that “the variable I’m holding the place for is a text string”. The
third argument in our format statement identifies the variable value that
we wish to have stuffed into the spot held open by the placeholder. In our
case that is:

$mycolour

The resulting phrase in our example might be something like:

lastcolour was red

32 CVu/ACCU/Features

if the value stored in the mycolour variable was in fact red.
We now have talked about all the new Tcl/Tk constructs in our little

program example with the exception of the statement:

proc scott {mycolour} {

The command proc in this statement is informing the Wish interpreter
program that we want to create our very own new Tcl/Tk command. In this
case we are calling our new Tcl/Tk command scott.

The first matching set of {} tells Wish that our new command will
accept a single argument ... and with our command that argument will be
named mycolour. The single { at the end of the line denotes the beginning
of the block of Tcl/Tk code which will constitute our new command called
scott. This logic will continue until we encounter the closing brace } as
in:

} ;# end of proc scott

We have introduced another form of Tcl/Tk comment here as well. If you
want to add a comment to the same line as a Tcl/Tk statement is on you
must use two characters ;# together to denote the beginning of this
comment string.

The return statement presents the result that we want our new scott
command to give back or return. In this simple example we are simply
returning the same value that we gave in as an argument.

return $mycolour

Everything between the braces constitute the logic associated with our new
command called scott.

In our simple example the puts statement and the return statement
are the only statements contained within scott. Our new commands can
be as simple or complicated as we need to make them. This capability gives
our computer language a huge degree of flexibility and richness. It is as if
we can take words in our spoken language and combine them together to
create brand new words of our own.

Having defined our new command we can now have it execute every
time we press the button with the mouse by adding the following to the -
command argument:

set lastcolour [scott $lastcolour]

Remember how the compound statements execute. Inner part first ... outer
part next.

Go ahead and type this program in and execute it. Remember to press
the button with your mouse. You should see an output that looks something
like this:

A More Useful Example
Let’s go ahead now and make our little example more useful.

a more useful example

scott - entry point
proc scott {mycolour} {

puts stdout [format "lastcolour was %s" $mycolour]

if {$mycolour == "red" } {
.hello configure -text "change me to red" \

-background green
set newcolour green

} else {
.hello configure -text "change me to green" \

-background red
set newcolour red

} ;#end if else

puts stdout [format "newcolour is %s" $newcolour]
return $newcolour
} ;# end of proc scott

main - entry point
set lastcolour red
destroy .hello

button .hello -text "change me to green" \
-background red \
-command {set lastcolour [scott $lastcolour]}

pack .hello -padx 20 -pady 20

What we have done in this enhanced example is added some new
statements to our scott command.

The first of those new constructs is what is known as the if ... then ...
else branching construct.

Computers excel at this kind of true or false branching decisions.
Most of the so called “intelligence” in computer software can be traced
back to statements like these in the code. The if statement allows our
little program to alter its execution path depending on the contents of
a variable.

It begins with the statement (and it is important that in your code it is
written this way):

if {$mycolour == "red" } {

In our little example this code block includes:

.hello configure -text "change me to red" \
-background green

set newcolour green

Here we have introduced our final Tcl/Tk concept for this article ... the
ability to alter the attributes on a Tk widget even after it has been drawn
on the screen.

We can alter the colour of our button. We can alter the text in our button.
We can do all these things based on how we code our program logic and
flow The statement which does all this magic is:

.hello configure ...

Recall that when the button was defined it was given the name .hello.
Thus the .hello configure command construct is saying “I want to

change something about the widget I have called .hello ... in this case a
button widget”.

Notice in this example we are changing the text in the button as well as
its background colour. When this statement executes that is exactly what
will happen on the screen.

The other statement inside our true branch of our if statement
simply allows us to remember the new colour we have assigned to our
button.

The closing } for our true branch is found as part of the else statement
below:

} else {

Which then moves on to the false branch as you’d expect.
It is hard to see from this very simple example, but this is how

computers get much of their apparent intelligence. You can see that it isn’t
intelligent at all! The intelligence is all supplied by the human programmer
in the form of these true and false blocks of code.

[concluded at foot of next page]

33CVu/ACCU/Features

An Introduction to
Objective-C

Part 5 – The Philosophy Behind
Objective-C

D.A. Thomas
As mentioned in Part 1, it was Cox’s idea to apply the principles of Smalltalk
to a lower-level language like C, thus producing a useful hybrid which
combined the advantages of both. Polymorphism is implemented by late
binding and is not dependent on inheritance, as it is permitted to send any
message to any object. This gives the developer the maximum flexibility and
enables techniques such as delegation and notification, which are very
important in the construction of complex graphical user interfaces. These
techniques are very difficult to implement in C++, as the compiler needs to
know at compile time about all the member functions that are going to be called
on an object. Objective-C programmers tend to find C++ very restrictive in
this regard, and they typically say that they are having to fight against the
language instead of being able to use it as a tool. In fact, I must admit to having
experienced this feeling myself. Supporters of C++, on the other hand, say that
having the compiler do the checking for you eliminates at an early stage a
common class of errors. The fact remains, however, that certain problems are
very difficult to solve in pure C++, and vendors like Trolltech (who supply the
Qt application development framework) and Microsoft provide some quite
elaborate mechanisms in order to get around this.

Another area where the message-passing model of Objective-C shines
is distributed objects; with NeXT/Apple’s PDO invoking a method
belonging to an object in another thread, address space, or even a remote
host differs little from invoking one in a local object..

It has been said that C++ excels at solving closed-world problems, while
Objective-C’s realm is an open world. Anguish et al. write:

Closed-World Applications
The engine compartment of an automobile is analogous to closed-world
applications. It is desirable to know in advance every component that will be
inside the engine compartment and how they will fit together. Engines are
carefully designed and their design is seldom modified after they leave the
factory. Any variation in the connections between engine components is
probably a manufacturing error. Languages such as C++ and to a lesser extent
Java provide language-level features that are well-suited to solving closed-
world problems. The static strong typing used by C++ and Java enables the
compiler to verify that all components fit together as planned at the cost of
making variation, redesign, and modification of existing applications more
difficult. Some applications require the verifiability of static strong typing and
can overcome the reduction in flexibility. Some programmers are just more
comfortable solving closed-world style problems and might never be satisfied
with Cocoa because it is designed to solve open-world problems.
Open-World Applications
The passenger compartment of an automobile is analogous to open-world
applications. Any constraints on the type or number of people and things
that can be placed in the passenger compartment detract from the utility of
the automobile. Some constraints are inevitable, but the designer of a
passenger compartment must strive for maximum flexibility. The price of
that flexibility is that the designer cannot anticipate everything that might
be put in the passenger compartment. The designer must work with
incomplete information. Objective-C provides language-level support for
solving open-world problems. Objective-C objects can operate with
anonymous objects in different applications. It is possible to send messages
to objects even though the receiver might not understand the message. It

is possible to add behaviors to existing compiled objects without recompiling
them. The flexibility provided by Objective-C aids the development and life-
cycle modification of most desktop applications, but the cost is that the
compiler cannot always verify that the components fit together. In some
cases, errors that might have been caught by a compiler with a different
language cannot be caught until an Objective-C application is running.

Most graphical user interfaces are examples of open-world applications.
Restrictions on the type and number of graphical components available
reduce the utility of user interfaces. Sometimes it is necessary to create new
user interface components that were not anticipated by the original designers
and still be able to integrate the new components with the old components.
Plug-ins and context menus are other examples of open-world applications.
It is certainly possible to create open-world applications with static strongly
typed languages, but it is more difficult. It is also possible to use strong static
typing with Objective-C and gain many of the benefits at the cost of flexibility.
Cocoa and Objective-C emphasize flexibility at the expense of compile time
verifiability. Much of the increased programmer productivity attributed to using
Cocoa results from Objective-C’s flexibility. (Anguish, S., op. cit. pp. 25-26)

My first introduction to C++ was something of a disappointment. To be
sure, I was greatly impressed by the power of the ‘template’ facility to
operate with arbitrary types, though it did not seem as elegant as the strong
generic typing of SML and Haskell. I expected C++ to come packaged
with general-purpose and GUI class es in the same way as Smalltalk, and
all I got was iostreams! The position is a little better today, as the standard
C++ library now incorporates the Standard Template Library, a very
versatile basic set of algorithms and data structures, yet I still have the
impression that people who work in C++ ‘cut their own code’ for the most
part rather than make the maximum use of code written by others.

I hope to have convinced the reader that Objective-C is very simple in
terms of both its syntax and its concepts; much like Java, it eschews ‘frills’
like operator overloading and multiple inheritance. It has no ‘templates’
either, which are perhaps the source of the best and the worst of C++.
However, the APIs associated with Objective-C, for example those of
Apple’s Cocoa, tend to have a very steep learning curve.

As the programming language of choice for new Macintosh applications,
Objective-C would seem to have a future at least as secure as that of its main
platform. In the wider world of object computing, however, I perceive a trend
away from low-level hybrids like Objective-C and C++ towards managed
object environments like those of Java and the Microsoft Common Language
Runtime on the one hand and scripting languages like Perl, Python and Ruby
on the other. There are several reasons for this. First, languages in the C family
allow the programmer access to raw, unchecked pointers, which, while often
efficient, can also lead to application crashes and buffer overruns. The
difficulty of providing reliable automatic garbage collection for these
languages can also cause crashes (from deallocating unallocated memory)
and memory leaks. The Cocoa frameworks use partly manual and partly
automated reference counting, which is better than leaving memory
management completely to the programmer, but inappropriate use of -retain
and -release can still result in crashes and memory leaks, and of course,
there is always the possibility of the retain count never reaching zero because
of circular references; in addition, the book-keeping overhead involved with
reference counting can be extremely severe where a large number of objects
is inserted into and taken out of container objects. Object programming seems
to me to demand automatic memory management, something which is
possible in C++ and Objective-C only under controlled circumstances, like
the ‘safe mode’ of Microsoft Visual C++ .NET. As computers become ever
faster, the undoubted machine efficiency of Objective-C and C++ is perceived
as less of an advantage relative to the interpreted, thus slower, but also safer,
easier and more flexible, scripting languages.

D.A. Thomas

Our false branch in our code simply mirrors the true branch in that we
will alter the text and colour to reflect a red button and remember that
colour in our newcolour variable.

.hello configure -text "change me to green" \
-background red

set newcolour red

The false branch block is ended by the single closing } as below

};# end if else

If you now type in this program and run it you should see the button toggle
between red and green each time you click on it with your mouse.

R. D. Findlay

Acknowledgement
The contents of this article were derived with permission from several of
the online iCanProgram lessons offered at
http://www.icanprogram.com/nofeecourses.html

iCanProgram offers all its courses online for no fees. All we ask of the
students is that they make a Cancer Research donation to a local charity in
memory of one of our founders. © iCanProgram Inc. 2005

[continued from previous page]

34 CVu/ACCU/Reviews

Bookcase
Collated by Christopher Hill
<accubooks@progsol.co.uk>

Paul Writes
It seems to me that books seem to fall into one
of two categories: those worth purchasing and
those which really shouldn’t have made it past
a competent technical editor, and
unfortunately, the latter group seem to be those
aimed at what can be classed as the “beginner”
market; the market where the most care should
be taken to not only ensure that the technical
quality of the material is at the highest possible
standard, but that it is simple to comprehend
irrespective of the platform being used to learn
on.

I am unsure if this is down to market
pressures to just have a book on the book stand
or to have something to be in direct
competition with another book (even if it is
from the same company) under the banner of
“competition raising standards”. What is clear
is that if the offending book companies spent
that extra couple of weeks to ensure that their
books are of that top-notch quality, that the
number of not recommended ratings would
drop somewhat.

I must thank all of our reviewers for their time
and effort spent reviewing books, and if anyone
wishes to review books, a quick email to Chris
Hill <accubooks@progsol.co.uk> will
point you in the right direction.

Paul F. Johnson

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members – if you ever have a problem with this,
please let me know – I can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let us know so
they can be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.
The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. I consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). I consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

.NET
.NET Framework Essentials by
Thuan Thai & Hoang Q. Lam (0-
596-00505-9) O’Reilly @ £20.95
reviewed by Andrew Marlow
The book contains a lot of material,
providing an overview of the entire

.NET Framework. I found the book to be a
very helpful introduction to .NET and I do not
have a Microsoft background. I rate this book
as highly recommended.

Programming at intermediate to advanced
level is assumed, as is some exposure to XML
and web development. The book aims to help
programmers make the transition from
traditional Microsoft Windows programming to
.NET programming. It provides an
introduction to its languages, Common
Language Runtime (CLR), and APIs.

Security is one of the subjects that is not
covered very deeply, although it is mentioned
several times in passing. The book is supposed
to be concise and cannot cover everything, but
this, coupled with the fact that there is no
bibliography (other relevant books are
mentioned as footnotes on various pages), was
a minor defect, especially when one bears in
mind that some of the changes of .NET 1.1 are
security-related.

The book is concise and understandable but
rather condensed, so whilst the book is small it
is not an easy read, especially when it gets to
the code. The style is good; the difficulty is
just the sheer amount of information and the
fact that it is packed into just over 300 pages.
The .NET overview is particularly well written
and helps to get the reader started before there
are many code examples.

The CLR chapter contains a “hello world”
example that clearly shows the benefits of a
uniform API across languages. Meta data,
assemblies and manifests, and language
integration are very clearly explained. This is
rounded off in chapter 3 with a mixed language
example using a polymorphic vehicle class.

The “Working with .NET components”
chapter is the point at which the book becomes
hard going, especially for someone that is not
very familiar with Microsoft technologies. The
ideas come thick and fast and many code
example fragments are given. It also flits
between languages rapidly, partially to show
how language neutral .NET programming can
be. Some familiarity with all the languages
used will help the reader considerably
(managed C++, C#, J#, VB).

The next two chapters are harder still, with
much XML involved and many pages of XML
code. In my view, these chapters require the
reader to have had some exposure to ADO
(ActiveX Data Objects) and SOAP. The pace
slackens slightly in the ASP.NET chapter, and
further still in the Windows Forms chapter,
where the uniform cross-language set of GUI
classes are covered, and the ease of use
illustrated by making .NET GUI development
similar to VB development.

The .NET and mobile devices chapter
covers mobile controls which are used for
rendering web content on phones and PDAs,
and the .NET Compact framework, which is
used for developing applications that run on
pocket PCs.

3D Game Engine Programming
by Stefan Zerbst with Oliver
Duvel (1-59200-351-6) Thomson
@ £38.99
reviewed by Dáire Stockdale
Judging purely by appearances,

this looks like it might be a ‘serious’ book. It’s
a large book (over 800 pages), with a cover
design vaguely reminiscent of the Microsoft
press covers, a blue flash in the top left corner
announcing that this book is ‘Thompson
Course Technology’ with
Professional/Trade/Reference as bullet points.
Only the line telling that its series editor is the
CEO of Xtreme Game LLC, André LaMothe,
hints at the low value of the book’s contents.

I have had the misfortune to review several
of the books in LaMothe’s Game Development
Series, and they have been uniformly bad.
Worse, I believe that these types of books can
be misleading and damaging to the games
industry, promoting code and programming
practices of the worst possible kind, and
passing these off as acceptable professional
standards. Young impressionable programmers
are taught bad habits early on, many of which
seem to last a lifetime.

This book is a good example of such a
dangerous text. First of all, neither of its
authors actually work in the games industry,
and there is no mention that either has in the
past. We are told Stefan Zerbst founded a
popular German site for hobby developers and
that he lectures about game programming at
an unnamed German university, and his co-
author Oliver Düval is a project manager in
the field of support for a German software
company.

Reading the book was a depressing and
maddening task. It is light years apart from
the mature professional texts that I suspect
many ACCU members respect and enjoy. The
book is muddled, uncertain about what is
supposed to be teaching, and whom its
audience is. I suspect the reason most ‘game
development’ books feel the need to include
ham-fisted tutorials on crucial topics like
virtual functions and abstract classes is that no
matter what they may proclaim on the books
cover blurb, they know the real audience is
young, inexperienced and unsuspecting
programmers.

Many of the habits promoted within the
book would jeopardise your marks if done
during a university project, and should
jeopardise your job if employed as a software
engineer. I don’t even know where to begin
criticising. The code looks like it has been
heavily influenced by reading Microsoft’s
early code, copying many of their bad habits,
such as misuse of trailing underscores,

Reviews

35CVu/ACCU/Reviews

typedefining structs, hungarian notation,
global variables etc, with many new bad habits
added, such as mingling new with malloc, C
style code dressed as C++, classes that are not
copy-safe, uncommented code and much
more. The author even defends some of his
practices (use of globals) with a line saying
“...you will find a big software company from
Redmond does the very same thing, so I guess
you and I can live with that quick ‘n dirty
solution.” Well I am sorry, I cannot, and I
certainly do not expect to find it encouraged in
a course textbook.

Some more choice advice from the author
is: “Be warned: Do not show this code to
hard-core C++ object-oriented programming
gurus.” Very good advice! It might make them
ill! He continues: “These programmers would
criticize this code because when you define an
interface, you should not define attributes in
the abstract class. This is a code design issue.”
On the subject of complex numbers: “If you
are really interested in this weird stuff, I
recommend a doctor and a good book about
analysis”.

Even if the code were of a professional
standard and the text pleasant to read, I am not
sure what value the book would have as an
industry textbook. Most authors in these series
seem unaware that the console market is the
focus of the game industry, and that PC games
account for only a tiny portion of the market. It
is the exception proving the norm. A useful
book on game engine design should make the
novice programmer aware of the real design
issues that the industry faces: rapid
development times, portable code and data,
severe memory restrictions, and real-time
performance. And of course there is the coming
parallel processing problems of the next
generation of consoles.

In chapter 6, instead of explaining the
meaning of the buzzwords he is using, the
author says “...you need to check a good book
or tutorial about 3D graphics first...” My
suggestion strongly would be to bypass the
confusion and risk of learning some bad
programming habits that his book poses, and
go directly to the good book instead.

Not Recommended.

Beginning .NET Game
Programming in C# by David
Weller et al. (1-59059-319-7)
Apress @ £28.50
reviewed by Paul F. Johnson
This is a very well written book,

which really is written for beginners. Unlike
other books, it actually takes the time to show
the maths behind the likes of collision
detection, the differences between a 2D and 3D
game and why using OO techniques for games
programming is good. The book even covers
(in a very simplistic way) games engine and the
design process.

The book begins using GDI+ (which makes
it accessible to those using Mono) and then
moves over to DirectX in later chapters for 3D
programming. I would of preferred to see
something on using C# with OpenGL (which,
in my opinion, offers far greater flexibility and
wider platform coverage to the programmer
than DirectX), but the coverage and

explanations give enough detail for the reader
to know what is going on and to be able to use
the ideas shown.

There are a number of example games
that are built up over the course of a chapter.
The games are pretty lightweight, but this is
a book for beginners, so that is acceptable –
it would be too much to expect a beginner to
be writing a complete Doom4 engine at this
stage!

Where the book does fall down is that it
covers too much too quickly for me. Uless you
have time to download a 7.5Mb zip file from
the APress website, the partial listings, while
useful for demonstration, are by themselves not
a whole lot of good. The use of pseudo code
was helpful for explaining what is going on,
but the lack of comments in the source reduced
the pseudo code’s use.

Overall, it is a rather decent book.
Recommended with reservations.

C# Web Development with
ASP.NET by Jose Mojica (0-201-
88260-4) Peachpit Press* @
£16.99
reviewed by David Sullivan
This book has a misleading title.

In the introduction the author states that “This
book makes no attempt to teach Web
programming” and also that the examples
contain very few web based examples. Also
stated is that “The concepts can be applied to
other application domains other than Web
based applications. It is as if the publishers
changed the title to generate more interest. If
you want to know about ASPX pages and web
controls look elsewhere. There is a short
chapter at the end of the book called “Web
Based C# Projects” as a token gesture.

But you might be interested in this book
(one of the Visual Quickstart series) if you
would like to learn from the basics the
fundamentals of the C# language. Particularly
if you like enjoy a practical style with plenty of
examples to work through. The examples are
simple but do illustrate the concepts. In the
style typical of the series, the book presents a
good deal of visual material, examples and
practical instruction to assist the reader. It is
certainly much cheaper than most technical
books at 17 GBP.

The book could not be described as a
thorough reference on C#, It is a book of
course material but is a practical how-to
reference on the C# language features. Some
of the descriptions of concepts are confusing.
There are many examples in the book that
fall short of what is required (e.g.
encapsulation, value and reference
parameters), particularly for those readers
who have no prior experience of such
concepts. I think a professional author should
really do better than this. The introduction
does states clearly that the book is for
beginners, and for those that have no object
programming experience. However, in some
cases the author makes assumptions about
the reader’s knowledge. If you are familiar
with similar concepts (Java, C++) then you
will likely understand what the author is
trying to say. Not the best book for a total
beginner though.

If you are interested in a quick introduction
to C# with plenty of examples, ideally have
some programming experience already, and
you just want to learn C# (not the web based
C#), then you might be interested in this book.

Beginning C# Game
Programming by Ron Penton (1-
59200-517-9) Thomson @
£18.99
reviewed by Duncan Kimpton
This book can largely be split into

three sections: C#, DirectX, and building a game.
The C# section was depressing as it

contained numerous factual errors, and
oscillated between assuming in depth
knowledge of programming from the reader
and explaining simple concepts in baby steps.
There are much better introductory books for
C# and you would be well advised to skip this
section and pick up one of those instead.

Since Managed DirectX is changing at a
crazy rate the DirectX section suffers the
immediate downfall of being out of date,
readers should be aware that there are other
books that are up to date.

I found the rather unstructured “here is my
framework let’s dissect it” approach very
unsatisfying – I would have preferred to see an
explanation of the concepts used as a basis for
building up a framework. With the tear down
approach I learnt a lot about the author’s code,
but not many of the principles behind it. Other
readers may not share my preference.

All the major sections of DirectX were
covered, however for a beginner it would have
been better to spend space on buffered
DirectInput instead of things like force
feedback.

The last section relates to actually building
a game, but again this feels rushed and the
completed project is incomplete and
unexciting, a situation that fails to inspire
future study.

The crisp clean page layout, slightly
humorous writing style, and the concept of
teaching programming from a gaming
perspective are all good points to this book.
Unfortunately they cannot outweigh my overall
impression that the author tried to cover too
much (and yet also too little) in one book,
without a lot of thought to the actual process of
learning that a student must undertake. Not
Recommended.

Database Programming with
Visual Basic .NET by Carsten
Thomsen (1-59059-032-5)
Apress @ £31.20
reviewed by Mick Spence
The book is large, by the time all

26 chapters, the numerous appendices and
index are finished the page count is just over
950. It attempts to cover using Visual Basic
.NET and the ADO.NET layer to access a
database, where “database” is mainly an SQL
Server (three different providers are covered)
but not exclusively as MySQL, Oracle, DB2
and Access also appear.

It is assumed that the reader does know
what a database is, but most other concepts are
explained. The same cannot be said for Visual
Basic; few, if any, allowances are given to

36 CVu/ACCU/Reviews

someone trying to learn VB using this book,
but to be fair that is not the book’s target
audience.

A large number of coding examples appear
at suitable points in the text. These are
available on-line to save typing. Most
appeared technically accurate and cover the
subject under discussion reasonably well (I
didn’t try all examples but those I did worked).
Most of these examples relate to a fictional
application that gives a common theme that
runs throughout the book.

The writing throughout the book appeared
accurate and fairly clear, however it did feel a
little verbose at times and I struggled to stay
focused while preparing this review (however
doing this over the Christmas holidays maybe
didn’t help).

This book’s cover states, “Learn the
concepts of disconnected data access with
ADO.NET” and to be truthful it does pretty
much that. I’m sure that someone trying to
learn ADO.NET using the VB.NET language
could do a lot worse than getting this book. I
also think that the book would double as a
fairly good reference book where the reading
only small sections of the book would make its
wordiness less of a problem.

C & C++
C++ Coding Standards by Herb
Sutter & Andrei Alexandrescu
(0-321-11358-6) Addison-
Wesley @ £24.99
reviewed by Anthony Williams
The key points from the book are

neatly summarised in the 12-page “Summary
of Summaries” at the back of the book. This
lists all 101 guidelines, with both their title and
summary; the primary reason for reading the
main body of the book is to understand the
background and reasoning behind the
guidelines, as well as any exceptions. These
guidelines are not casually thrown together;
they are well researched, with extensive
references. It is also worth reading the
introductory text to each section, as this pulls
the guidelines from the section together; a nice
touch from the authors is the selection of a
“most valuable Item” from each section, one
which you really really ought to follow.

Other books from Addison-Wesley, such as
Effective STL, have an easy-to-read layout. In
this book, in common with the others in the C++
In Depth series, the text is slightly too small and
the margins slightly too narrow, so there is too
much text on a page. This, combined with the
high density of technical content, makes it hard
to read cover to cover in one go. There are also a
couple of errors; though nothing major, they do
detract from the authority of the book, given the
nature of the content.

In the preface, the authors state that they
intended each item to be short, non-
controversial, authoritative, and something that
needs saying, and I believe they have achieved
that. In any set of coding standards I usually
find something that I disagree with, but there
was not a single item that grated on me here. I
agree with the authors that this book is
something you should reference from your own
coding standards. Highly Recommended.

C++ Without Fear by Brian
Overland (0-321-24695-0)
Prentice Hall* @ £19.99
reviewed by Mark Symonds
The book is aimed at teaching
non-programmer how to write

programs in C++ and comes with a companion
CD which contains of the source code and a
version of the GNU compiler.

There are numerous problems with the
book; templates and the STL are not covered at
all and the early examples are written in a very
C style with all local function declarations at
the start of the function rather than where they
are used. The author does mention that the
scope of the loop variable can be limited to the
loop but since the concept of a scope has not
been introduced at that point in the book it is
difficult to see what the beginner would make
of this advice.

Very little advice is given on good
programming practice; for instance the goto
statement is described in the section covering
looping constructs but no warnings about its
usage is given.

The various examples use char* pointers
for almost all string handling. The book does
describe the basics of the C++ Standard
string class but goes on to state that all
compilers may not support this.

The book contains many examples that do
not adhere to the C++ standard in various
ways; main() returning void and the fact that
constructors return NULL on failure are two
examples of this.

This does give the impression overall that
the book is describing a pre standard C++
dialect, a very depressing state of affairs in a
book copyrighted 2005.

There are also many comparisons
throughout the book to the C language, which
would be extremely confusing for the novice
and since this is the intended audience, it seems
totally unnecessary comparing C++ to another
language that the reader is assumed to know
nothing about.

Not Recommended

Embedded C Programming and
the Atmel AVR by Richard
Barnett, Larry O’Cull, Sarah Cox
(1-4018-1206-6) Thomson @
£42.00
reviewed by Derek Jones

This is an all-in-one book aimed at the
introductory programming student market. Is
it worth buying this one book, or should more
money be spent buying separate books
dealing with learning C, programming the
Atmel AVR processor (a very similar book by
the same authors deals with the Microchip
PIC), an extended programming project using
this processor, a library reference, plus a CD
containing an IDE and C compiler? I would
suggest buying two books, a book on learning
C and this book (or its companion if your
lecturer targets the Microchip PIC).

The C tutorial in this book reads like it
has been poorly cut and pasted from a set of
more substantial notes by somebody who
does not know the language very well. No
attempt is made to distinguish between
Standard C and the extensions commonly

found in embedded compilers. A listing of
the C syntax would be useful to the intended
readership.

The chapters dealing with programming
the Atmel AVR and the embedded
programming project (which is a different one
from that given in the Microchip PIC book)
give lots of details. While they would be out
of place in another book, the extensive coding
examples are probably of use to the intended
readership. Although I did not work through
the examples in detail, I got the feeling they
were pitched at about the right level for
students taking their first programming
course. The index also appeared to be
extensive enough to be useful.

If you are a student on a course based on
this book then you will not be wasting your
money buying it. If you already know C and
are looking to learn about the practical details
of writing embedded applications, then this
book is one to look at. The material is not of
sufficient quality at the price it is pitched, for
me give it a value for money recommendation.

Object-Oriented Programming:
Using C++ for Engineering a by
Goran Svenk (0-7668-3894-3),
Thomson, 506pp + CD @ £38-00
(1.92)
reviewed by Mark Easterbrook

Do not waste your money on this book, it does
not teach Object Oriented Programming and
the programming examples are a mishmash of
C and poor C++. For example:
● I would expect a book on OO, when trying to

illustrate code diagrammatically, to use some
form of class diagram – this book uses
flowcharts.

● float is used almost exclusively for
scientific calculations, even when using
library functions that operate on doubles.

● Pre-processor macros have no place in C++
code; the author seems to like them.

● The STL is not introduced until 80% of the
way through the book.

I strongly suspect the author is Fortran
programmer and has just translated to C++
with the addition of OO to increase the
buzzword count. Not Recommended.

Ivor Horton’s Beginning ANSI
C++ 3ed by Ivor Horton (1-
59059-227-1), Apress, 1090pp @
£37-50 (1.60)
reviewed by Malcolm Pell
The book’s intended audience is

someone with little prior programming
knowledge or experience.

The book starts well, and I had no trouble
understanding the basics of C++. Even though
I have previous C experience, I feel that
someone without C experience can still use this
book to gain familiarity with C++.

The first 11 chapters cover the basics of
C++, which map quite well to the features
provided by C, so should not present any major
difficulty to either a C user, or someone with
little programming experience.

Chapters 12 to 20 cover features which are
pure C++, and thus new to someone like
myself coming from a C programming
background.

37CVu/ACCU/Reviews

I was surprised that ‘Input and Output’ is
not properly discussed until chapter 19. Given
that most of the example programs produce
some sort of output, I would have thought that
an early chapter on some basic I/O code would
be beneficial to inexperienced readers.

There are plenty of sample code chunks in
every chapter, and lots of useful exercises
which readers are strongly encouraged to
undertake. There is also a Code ZIP file that
can be downloaded from the APRESS Web
site.

Overall, I would suggest that this book is
considered by someone who desires to learn
C++. Do not be put off by the number of errors
found by myself and other readers. In some
ways, finding these errors gave me confidence
that I have understood the subject material. See
the Long review for a list of errors.

C++ Demystified by Jeff Kent
(0-07-225370-3), McGraw Hill
Osborne, 348pp @ £12-99 (1.54)
reviewed by James Roberts
This book advertised itself as
‘simple enough for a beginner,

but challenging enough for an advanced
student’. I would grudgingly agree on the
former, but strongly disagree with the latter.

The author is strong on explanation, writing
in a rather chatty and jokey style. I suppose this
might be useful for readers who like the
technical input leavened slightly. I found it
irritating.

After a little investigation, it turned out that
this was in-fact a book on C, with a little bit of
C++ thrown in. For example, using cout
rather than printf for terminal output.
However, the word class only appears in a
‘what to study next’ chapter at the end. I think
that this is a fatal weakness. I have no idea how
a reader could be expected to understand a
description of the ofstream functionality,
without knowing about methods or classes.

Another criticism that I have is that the
author expects the user to have Visual Studio
available. Although he says that alternatives are
available, it might have been nice if he had
recommended one or two, or even just gave a
URL for download.

Some examples will not compile, including
this one that I found slightly amusing:

The following...are different in syntax, but
identical in effect:
char name[] = {'J', 'e',

'f'. 'f',
'/0'};

char name = "Jeff";

Yup, both fail to compile on my system too.
There are a number of other problems,

including: no coding exercises; ‘rules’ which
are given on one page and broken on the next;
leaving function parameters as unnamed
because the names ‘serve no purpose’.

To end on a more positive note, there were
some areas that were not badly covered (e.g.
dangers of cin where a user might type a
character when a number is expected).
However, this does not make up for the
inadequacies of the remainder of the book. Not
recommended.

Java
Concurrent Programming in
Java by Doug Lea (1-201-31009-
0) Addison-Wesley* @ £34.99
reviewed by David Caabeiro
When I got this book my intent
was to improve my understanding

of the concepts of the language regarding
concurrent programs design. I must say I got a
nice surprise, given that this turned out to be
quite good material for concurrency in general,
regardless the language used. On the other
hand, this implies that the book’s title is not the
most appropriate, as it suggests to be restricted
to the Java language. Far from it, anyone with
an interest in this topic will benefit from this
book.

The book is divided in four parts, starting
with basic concepts to get you ready for the
next topics, which include concurrent
patterns, design forces behind concurrency,
synchronization, state dependency and
threads. It also contains extensive code
examples.

The author expects you to have a good
background in OOP, patterns and Java (though
knowledge of other strongly typed languages
such as C++ will suffice). So if you are a
newcomer you would better look at other
places first.

Covert Java: Techniques for
Decompiling, Patching, ... by
Alex Kalinovsky (3-672-32638-
8) SAMS* @ £21.99
reviewed by Silvia de Beer
This is a very interesting book if

you are a Java architect or developer. It makes
you reflect on topics which are inherent to the
Java language like the fact that Java is
compiled into bytecode. This impacts heavily
on the security aspects of your Java programs.
This book is not advanced enough for people
who already regularly use decompilation,
obfuscation of code and profilers. It rather
forms a useful and understandable introduction
to all those topics where a lot of developers
would be ignorant.

The book contains nineteen easy
digestible chapters which cover the various
topics. The book is well written, always
clearly understandable, with code examples,
with concise summaries and review
questions.

It is interesting to see how easy bytecode
can be decompiled, using for example the
JAD or JODE decompiler which return the
source code, almost exactly the same as the
original source code, only without
comments. The logical consequence for a
commercial package is thus to use an
obfuscater of the code, to make the
decompiled code difficult understandable.
The various obfuscating techniques are
explained. The fourth chapter explains how
you could call package or protected members
of another package.

The book covers useful techniques, as for
example using an omniscient debugger,
which differs from a normal debugger in that
it records the history of an execution. The
section on the security manager is worth

reading as well, because it shows how easy it
is to replace the configuration of a security
manager. A security manager can very easily
bypassed by ill-wanting people if you do not
take any precautions. The last chapter is
explains how to implement a license
manager in your java code, using encryption
techniques.

There was only one unrealistic example in
the book, about patching native code in C. It
briefly talked about changing assembly code,
not very realistically in my opinion, but
interesting to see the difference between
patching java bytecodes and assembly code.

Hibernate in Action by Christian
Bauer & Gavin King (1-932394-
15-X) Manning @ £40.50
reviewed by Peter A. Pilgrim
This book is about a next
generation Java database

persistence technology. It is about one
particular framework called “Hibernate”,
which allows developers to work directly with
POJOS (plain old Java objects) instead of
programming basic create, retrieve, update and
delete (CRUD) operations traditionally with
the standard JDBC API.

The framework achieves transparent
persistence by using XML mapping files to
associate the fields & methods in your POJOS
to the tables and columns that exist in a
RDBMS.

The book is divided into nine chapters, three
appendices, a reference and an index. The first
chapter launches the reader into esoteric world
of object relational mapping (O/RM). The
authors provide an overview of the
contemporary thoughts of object persistence in
terms of the Java platform.

After 31 pages we are into second chapter
that properly introduces us to Hibernate and its
integration. We start with the simplest POJO
class. Persistence, however, is not a free lunch.
Hibernate requires an XML mapping
document. The authors discuss the main
objects and interfaces and, then, explain how to
perform queries. One large piece of advice I
can recommend when using Hibernate is to
switch on the debuggable logging facility to
see generated SQL commands.

Mapping your own persistence classes is the
theme for chapter three. The authors have their
own working example application, available
on-line, called ‘Caveat Emptor’. Here is the
key differentiator for people who feel they
need to be hands-on and experimenting at the
keyboard with the O’Reilly Associates “A
Developer’s Notebook” book. Bauer and King
describe the fundamentals of associations, and
definition of XML meta data, for each example
POJO implementation. They explain naming
conventions, controlling inserts and updates,
how to retrieve objects, property and class
name mappings, and most importantly how to
declare SQL schemas. Finally they discuss
entity and value types.

The fourth chapter is about working with
persistence objects. The author describes the
life cycle of the objects as they move from
‘transient’ to ‘persistence’ states and back
again. Hibernate has one major advantage
over other O/RM solutions, it supports

detached objects, which are especially helpful
to web application developers. In the latter
section of the fourth chapter, the famous HQL
makes an appearance for the first time (page
139).

The fifth chapter covers transactions,
concurrency and caching. The authors begin
with a refresher on subjects you probably
already know such as ACID database
transactions, the basic two types: direct JDBC
and JTA, and isolation levels. From here
onwards the content is aimed at practising
intermediate developers.

The title of the sixth chapter is called,
advanced mapping concepts. It starts with a
revision of the Hibernate type system,
introducing the built-in mapping types. This
chapter explains how to extend the framework
with custom user types, including composite
user types.

The seventh chapter is about retrieving
objects efficiently. Hibernate has three ways
for the developer to express queries. The first
is through the HQL dialect, and the second is
by the Query API: query by criteria and query
by example. The third option is to program
list with relevant business details, direct code
using the SQL. In my opinion some of the
material in the beginning of this section
should be a part of the third chapter. The
authors also discuss sub-queries and executing
against native SQL.

The eighth chapter is about writing
Hibernate applications. Bauer and King
provide advice for designing multi-tier
applications that use the framework as their
persistence tool. J2EE developers will find the
material in this chapter particularly helpful.
Here you will find good tips for using
Hibernate in a web container, including a well
explained example of resource management
store a Hibernate session in a ThreadLocal
variable.

The final chapter, the ninth, describes the
tools that available for the Hibernate developer.
In comparison with the O’Reilly Developer
Notebook much of this discussion on the
hbm2java, the XDoclet generation, and the
hbm2ddl is pretty similar, but the O’Reilly
book obviously provides more detailed source
code and examples.

In conclusion, Hibernate in Action is
comprehensive guide and a solid reference to a
complex, wide-ranging, and contemporary Java
platform to database persistence solution. This
book, then, comes strongly recommended,
because a contemporary and state-of-the-art
topic is very well explained, and especially,
because the voices are literally from the horses’
mouths.

Hibernate in Action by Christian
Bauer & Gavin King (1-932394-
15-X) Manning @ £40.50
reviewed by Christer Lofving
The concept of Enterprise Java
Beans (EJB) has both advantages

and drawbacks.
One big plus is the persistence mechanism

that will protect your business data from almost
everything; even from the disaster of power
failure. A drawback is the sometimes
troublesome handwork of creating and

mapping entity (“database”) beans; another is
the costly overhead in handling the lifecycle of
such a bean.

Hibernate seems to be the cure for much of
this.

It builds on a much simpler persistence
mechanism than EJB, and use single-filed
POJOS (“Pure Old Java Objects”) instead of
monstrous EJB objects; the EJB container has
to generate a head of a hydra with different
files before being able to start up.

Being a new open-source based product,
the best information about Hibernate so far
has been available on the web. I think this
one is among the first printed titles about the
subject.

The author takes a pedagogic approach with
a basic starting chapter about object/relational
persistence. Good for the beginner true, but I
think 99% of the potential readers already
know this stuff. Rest of the book is hands-on
code with explanations. The code samples are
small, clean and easy to follow.

Another plus is the nice format. The less
than 400 pages (excluding index) suggests that
it contains no redundant material.

I had one real disappointment. The cover
promises “Getting started”. But where in the
book is that chapter? I finally found a “Hello
World” headline, but that text deals with
analyzing the code and configuration settings,
simply supposing the reader already has
Hibernate up and running.

Who is the book aimed at then? I think it is
for anyone already on his way with Hibernate
and who wants to summarize the concepts for
him/herself. To find out what might be
overseen. I do not recommend it if you are
starting to learn Hibernate and/or if you are
new to the concept of persistence-relation
objects itself.

If you are just after a taster, the Web
provides you with many samples, tips and free
documentation

Hibernate: A Developer’s
Notebook by James Elliot (0-
596-00696-9) O’Reilly @ £17.50
reviewed by Peter A. Pilgrim
Hibernate: A Developer’s
Notebook is one of the first

titles in a new series of O’Reilly books. The
notebooks are supposed to contain just
enough information to let you quickly learn
about a new API or project; only just what
you need to “make it work”. The book is
divided into nine chapters, three appendices
and has 178 pages.

The first chapter is short and describes
installation and set up of Hibernate. The
examples require the Ant, a build tool, in order
to generate the executables. The examples are
based on the Java based embeddable database
HSQLDB. The author describes where to
download Hibernate and install it within a
project hierarchy.

After a short introduction into the world of
object relational mapping O/RM, the second
chapter starts working with Hibernate properly.
We are already at page 13! The first topic is the
mapping document. Hibernate frameworks
require a XML mapping file to define meta
data of plain old Java objects in terms of

database persistence. The author demonstrates
that mapping documents can be written quite
practically with a text editor. Contrast this
“mining at the coalface” approach in this
notebook to the reference style of Bauer and
King Hibernate in Action, and we are only at
page 18 of the O’Reilly book. By the way the
business domain of the book examples is a
MP3 album / track information database, which
works with Java based embedded database,
HSQLDB.

The third chapter explains how to create
persistent objects in the database using the
Track POJO class, which was generated in the
previous chapter. In the following sections of
the chapter, the author carefully explains the
life cycle of mapped objects, and how they
move from transitive to persistent states.
Moving in the reverse direction of state is
about finding persistent objects. If you want a
fuller understanding of Hibernate state
management, then the Manning book is the
perfect reference. Elliot describes the process
of finding saved Track objects, the retrieval
make use of the infamous HQL. In contrast to
the Manning book, HQL is introduced early on
to demonstrate how similar the query dialect is
to ANSI SQL. Of course, HQL is semantically
different from SQL. The last sections of the
chapter tell how to delete a persistent object,
and describe the named parameters of the HQL
query engine.

A database that only could persist simple
POJOS would be next to useless. Typically any
data structure in an application required a type
of collection to manipulate individual elements
or to describe relationships between two or
more different classes of objects. Chapter five
is about mapping collection and declaring
associations and it introduces a new class
Artist. The only criticism of the this chapter is
that it completes missing out or fails to explain
that Hibernate can map complex Java
collection data types such as bags, lists, and
ordered types.

The fifth chapter expands on the previous
one with richer associations, starting with lazy
associations. The author justifies the reason for
lazy loading of associations especially for
linkages between big tables. There is a section
dedicated to ordered collections. The
associations between tables (Java classes) can
be augmented as much you would expect in a
business schema.

Chapter six describes how to persist
enumerated types as Hibernate data types. In
order to add persistence for enumerated data,
then your POJO class must implement the
PersistentEnum class.

Chapter seven is about custom value types,
which are types that the developer defines and
thus extends the default Hibernate data types.
The author explains that complex and highly
nested object structures can be persisted to a
database using the framework.

Chapter eight discusses criteria queries with
the major example to find MP3 tracks shorter
than a specified length. Programming with the
Criteria API is much like building functional
objects and constructing them as an expression.

The subject of the final chapter is the
Hibernate Query Language, which appear
several times earlier in the book.

38 CVu/ACCU/Reviews

39CVu/ACCU/Reviews

In conclusion, HADN is a great book to
have on the coffee table, if you want are in
hurry to get a project up and running with
Hibernate. There are enough working
examples for the developer to build
functionally software without taking
shortcuts. The only criticism is that such a
book will not teach you advanced tips and
tricks, so you may grow out of it pretty
quickly if you suddenly become a seasoned
Hibernate Expert. This latter important point
will be sorely important if you need to
optimise Hibernate for an enterprise quality
application. None the less on average you will
be sort of person who just wants to see best
practice and actually view some code that just
works as it says on the tin. This book is
recommended.

Java Security by Harpreet
Ganguli with NIIT (1-931841-
85-3) Premier Press @ £37.99
reviewed by Alistair McDonald
This book is structured in three
parts : an Introduction to Java

Security, Advanced Security Concepts, and
Appendices.

I found this book very difficult to read. The
writing is often confused and concepts are
rarely explained well. Within a chapter, there is
a tendency to jump around between different
areas. I got the feeling that the author did not
know the subject well, and was occasionally
confused by similar terms.

On the other hand, this book does not suffer
from the overly verbose code listings of
Helton’s “Java Security Solutions”, in fact the
examples in this book work well in
highlighting the discussion in the text. Most
chapters have short question and answer
sections.

This book is not as comprehensive as
Helton’s “Java Security Solutions”. It does not
cover the more advanced topics, nor does it
cover the basics as well as Helton’s book. I
would recommend Helton’s book over this
one.

Java Security Solutions by Rich
& Johennie Helton (0-7645-
4928-6) Wiley @ £38.99
reviewed by Alistair McDonald
This is a thick book, at almost
700 pages. It is broken into

nine sections, each a few chapters long. One
feature with nearly all of the chapters is the
excess of code listings. These days, any good
book should have their code samples
available for download and there is little need
to clutter up a book with page after page of
listing. It is far better to discuss the salient
points with short code excerpts than to
reproduce entire classes, complete with
verbose comments.

The book covers most aspects of security, in
particular those that use cryptography in some
way. In general, the writing covers Java well,
but the book also attempts to touch on more
general material, and it makes too many
assumptions to be of any use.

Overall, this book attempts to do too much.
Rather than being a Java security book, and
covering security as used in Java applications,

it is attempting to be a security book that uses
Java to illustrate the concepts. Helton would
do better to cut out a lot of the code samples,
drop the more esoteric subjects, and pull the
remainder into a more cohesive text.
However, for someone who knows security
basics, or has a more general security text to
hand, then this book will be of great help if
they need assistance in implementing security
in Java.

Java, XML, and JAXP by Arthur
Griffith (0-471-20907-4) Wiley @
£22.50
reviewed by R.D. Hughes
For a relatively small book, this
has quite large ambitions – the

author states that his intention is to provide an
introduction to XML and to using XML in
Java. In fact, the author has done a very good
job in meeting these ambitions in a manner that
is extremely succinct yet still very readable.

Other books of comparable size dedicate
themselves entirely to introducing the syntax
and semantics of XML. Here the author spends
only the second chapter, some thirty pages,
tackling these issues and yet I came away with
at least as much understanding of the basics
from this book as I have from others.

The rest of the book is largely dedicated to
introducing DOM and SAX programming in
Java. It succeeds in providing an excellent
overview of these areas and enables anyone
with even basic Java experience to get going
with XML extremely quickly. A wide range of
topics is covered; from basic parsing of
documents to modifying DOM parse trees and
building parse trees from scratch. Another
chapter looks at XSL within Java and shows
some very simple applications.

The author even finds time at the end to
discuss Ant, an XML based build system
designed for Java applications (although this is
far from its exclusive use), as a practical and
highly relevant way of showing XML in action.

I would certainly recommend this book for
anyone who wants a good introduction to XML
and its use within Java code.

Python
Python Programming for the
Absolute Beginner by Michael
Dawson (1-59200-073-8)
Premier Press @ £19.99
reviewed by Alan Griffiths
As I’ve been programming in

various languages for over thirty years I don’t
fit the target profile of an “Absolute Beginner”,
but I do have two children that do: Blake and
Simon assisted me in reviewing this book.

For this purpose the underlying structure of
the book is ideal: it is written around a series of
increasingly complex computer games –
something the boys could relate to
immediately. And the first program in the book
is a welcome variation on the ubiquitous
“Hello World!” – it prints that essential element
of a real game – the words “Game Over!”

Blake found that there was a little too much
background discussion in the book to retain his
attention and I spent some time with him to
assist in skipping from one example or exercise

to the next. This isn’t really a problem with the
book, as I do not think it is targeted at his age
group (Blake is 9). In contrast, I got up one
morning to find that Simon (12) had read the
next chapter by himself and was enjoying
working through the “challenges” at the end of
it.

The book follows a sensible progression
through text output, text input, variables, flow
control, functions, object classes and instances,
packages, GUIs and graphics each with a well
chosen selection illustrative games and
challenges.

There are some limitations: the approach is
informal – so I was often left wondering
exactly what the language supports for
various constructs. While the book suggests
trying things out – which is what the boys
were happiest doing, I have a professional’s
awareness of the distinction between what
happens with the current configuration and
that which can be relied upon. This was most
apparent when a “modified version of
livewires” – an add-in library – is introduced:
nowhere is it explained what the
modifications are or what they affect. (I ended
up replacing the latest versions from the
Internet with the versions shipped on CD with
the book as the easiest way to complete the
later chapters – in part because not all the
add-ins were available for the latest Python
version.)

In summary, the book is a well thought out
introduction to programming in Python. It is
pitched at a level of experience below that of
the typical ACCU member – but that is exactly
what it claims to be.

Recommended.

General
Data Structures for Game
Programmers by Ron Penton
(1-931841-94-2) Premier Press
@ £36.99
reviewed by Alan Lenton
The information on the back of

the book’User Level: Beginning/Advanced’
says it all. This book mixes the ludicrously
simple with advanced topics and little in
between.

The author also suffers from confusion
about whether he is writing for game library
authors or game application programmers, so
many of the topics contain details of data
structures without any information about how
to use them efficiently. For instance, there is
little point in covering minmax trees without
covering alpha-beta pruning or other higher-
level heuristics. Minmax trees are of no use on
their own except for extremely trivial games,
like noughts and crosses.

The author’s decision not to use the
Standard Template Library has only the
weakest justification, and much of the C++
programming is also fairly primitive. I get the
impression that the author had only just moved
from C to C++ when he wrote the book. That is
unfortunate, because the lack of fluency in the
C++ idiom will not help his readers.

I cannot, unfortunately, recommend this
book, and that is rather sad because there is
potential showing through, especially in the

material on trees, graphs and finite state
machines. It is just that they do not really
provide enough depth to be really useful.

Not recommended.

Designing for the User with
OVID by Dave Roberts et al. (1-
57870-101-5) MTP @ £30.99
reviewed by Andrew Marlow
This book talks about UI, OO
and basic software engineering

principles. It does so in a way that makes it
seem to be aimed at the beginner. At an
elementary level and superficially, it seems to
do this quite well. The table of contents is also
impressive, making it seem like the book will
pack a powerful punch in just a few pages.
However, a more careful examination shows
that the book has several faults, which is why it
is not recommended.

The book is comprised of four parts: (1) UI
and OO foundations, (2) the methodology, (3)
prototyping and evaluation, (4) case study and
exercises.

Much of the foundation section is standard
good software engineering practise and is used
whether or not OVID is used. Most of the
discussion is clear and well presented but it
does lack precision and is simplistic in a
number of places. For example, the book does
not make a clear distinction between classes
and objects. The description of how to identify
classes, objects and instances are closely tied
with examples drawn from file metaphor
applications. The section on views contains
less than one full page of text on what an
OVID view is.

The methodology section does not provide
an overview of the OVID methodology. This,
coupled with the way in which the foundation
material is handled, makes it hard to
distinguish between standard good practise and
OVID. The finding views section is three
pages and is the only part where there is any
detail on views yet still there is insufficient
detail to explain what a view is.

The discussions in the prototypes and
usability section are basic but well presented.

The realCD case study has task and action
tables forced onto single pages using
microscopic print. They were almost
unreadable. Screen shots are small, blurred and
monochrome.

The book fails to attribute mental models to
Donald Norman and does not provide enough
references for hierarchical task analysis and
Harel diagrams.

The book was published in 1998 and
mentions a few things in such a way as to
date the book. For example, throughout the
book it mentions Windows 95 and 98 rather
than just referring to Microsoft
Windows(TM).

Many of the good points in this book do not
owe anything to OVID in particular, and there
are enough negative aspects about the book to
outweigh the good points. In conclusion, this
book is not recommended because in the
opinion of this reviewer is simplistic,
imprecise, dated, poorly presented
typographically, and gives insufficient detail on
what makes OVID different from other
approaches.

Extreme Programming
Explained by Kent Beck (0-321-
27865-8) Addison-Wesley* @
£24.99
reviewed by Anthony Williams
This is Kent Beck’s second

attempt to explain eXtreme Programming to
the world; it is not just a revised edition, rather
a complete rewrite. He has a vision, a
philosophy of how we should go about
software development, which he describes in
terms of values, principles and practices.

There is a new value, Respect, in addition to
the values of Communication, Simplicity,
Feedback and Courage from the first edition.
These values, along with the underlying idea
that we are trying to write software to please
the customer, drive the principles and practices;
Communication is important, so talk to your
customers all the time, show them what you’ve
done so far and discuss what can be changed.
Feedback is important, so write tests for
everything, so you know if you break
something, work with the customer to write
acceptance tests, so you know when you’re
done, and give the customer frequent releases,
so they can try things out for themselves.

Many of these ideas are old, tried and
tested ideas with a good track record, but the
combination makes them even more powerful,
and it is called “Extreme” programming for a
reason – Kent wants to drive the ideas as far
as they can go, “turn the dials up to 10”; if
testing is good, let’s test all the time, after
every tiny change; if code reviews are good,
let’s program in pairs and do continuous code
reviews as the code is written. “10” is further
up on some of the dials than even Kent
thought it was when he wrote the first edition;
people release more often, and integrate more
often than the first edition suggested, for
example.

Kent acknowledges that one of the
criticisms of the first edition was that it was too
inflexible – you were only “doing XP” if you
did every practice, followed every principle
and held every value. The second edition is far
more inclusive – he acknowledges that people
may have other values in addition to those
listed, and that these will shape the principles
and practices. He also acknowledges that each
team needs to decide on the set of practices that
is most appropriate for their situation; that said,
many of the practices will help to improve the
software development process of any team,
regardless of whether they decide to “follow
XP”.

This book is very easy to read; the writing is
compelling, and it is well laid out. That said,
I’m still not sure that it can be comfortably
read in one pass; Kent’s ideas are deep and far-
reaching, and really need thought and
contemplation to get the most from them. I
expect to gain more insight into what Kent is
getting at with each reading.

You might not agree with what Kent says,
but this book will certainly make you think
about the way you develop software. It is not
just aimed at developers, but their managers
and executives too – developing software XP
style can have beneficial implications for the
whole organisation.

Highly recommended.

Game Programming All on One
by J. Harbour (1-59200-383-4)
Thomson @ £36.99
reviewed by Paul F. Johnson
I wanted to like this book as it
combines what I really like in a

book; platform independent library, support for
many compilers and a non-partisan approach to
development.

Very quickly though this falls apart.
Dev-C++ is used throughout, headers are
missing and there are no instructions for
compilation from the command line (many
linux programmers use the command line over
an IDE for small projects).

This means that while there are plenty of
examples, they will not compile cleanly (if at
all) and, given the intended audience of
Beginner – Intermediate, this is plainly
unforgivable.

Confidence isn’t very high of the true cross
platform nature of the book with the early
examples – conio.h doesn’t exist on my
machines, the likes of time() are used without
time.h being included. Okay, let us move onto
the program examples.

There is very little in the description of the
library functions in use or what the sections of
the code actually do. The book also has full
listings of the source contained on the CD.
Now, I am a tad lazy when it comes to typing
in code, I use the CD. Lump it into kdevelop
and hit compile. Then puzzle why it will not
compile. Check the makefile. Right, the
makefile is broken – as they are for quite a
number of the source files. Putting my
“beginners” hat on, first thing I do – give up. I
do not have the knowledge to fix that sort of
problem. Chase through the book and see if I
can compile via the command line. There are
a couple of instructions, but they are
incomplete.

This really is a pity – the book could have
been so much more. Instead we have a second
rate book which for the beginner will cause
many difficulties further down the line.

There seems to be something in common
here. I’ve looked back at my past reviews of
books and the majority of the not
recommended books have all been from the
same publisher. It really does look to me as if
there is very little in the way of technical
editing or quality control. I hope this improves
soon.

The Art of ClearCase Deployment
by Christian D. Buckley & Darren
W. Pulsipher (0-321-26220-4)
Addison-Wesley* @ £30.99
reviewed by Pete Goodliffe
ClearCase is a high-end

expensive version control and configuration
management tool sold by Rational/IBM. The
aim of this book is to explain how to set up
and administer a ClearCase installation, and
how to integrate it into your company’s
development process. In a nutshell: it is a
disappointing offering.

The book certainly readable, if verbose in
places. It is clearly laid out. If your
organisation is large and has very chaotic CM
and development processes it might be of some
use.

40 CVu/ACCU/Reviews

41CVu/ACCU/Reviews

And yet it is blinkered and presumes
ClearCase is right for you – it does not help
you to choose the right tool. There is a small
comparison with other CM tools, but only
really to slate them. It is biased and sometimes
quite incorrect, dismissing the alternatives.

This book gives the overall impression of a
work not quite finished yet, with countless
errors and omissions. There are even wholesale
duplications – a sure mistake. There are large
structural problems, and the book opens and
closes with some very odd “change agent”
spiel that does not gel with the rest of the
contents.

ClearCase is a good system, and will be a
great asset to a large organisation: when
deployed correctly. Many organisations can’t
support such a behemoth, and blindly moving
to a ClearCase system could be very
destructive. This book will not help you to
understand these issues.

The Data Compression Book by Mark Nelson
& Jean-Loup Gailly (1558514341) MTP, 526pp
1996 @ £36.99
reviewed by Paul Colin Gloster
This is a book which accessibly reviews the
prerequisite theories underlying most
conventional forms of compression and
which quickly and intelligibly progresses
onto fully working practical programs. It
does not concern itself with the file formats
of established, refined compression file
formats (not even those used in the widely
distributed free source programs written by
one of the co-authors) and as just the basic
core concepts appear, the programs in this
book are comparable to but do not rival third
party compression programs: not even
matching the performance of programs by
Jean-Loup Gailly on mirrors of GNU-
licensed FTP servers.

However, I would not hesitate in
recommending this or a similar book because it
is good to read such a clear domain-specific
text explaining many of the main approaches
taken in both lossless and lossy compression
algorithms.

Even so, the code printed in the book has
mistakes, though fortunately the
accompanying disk is perfect. The code
presented is very portable but I have found
that due to varying numerical precision, the
lossy programs are not binary compatible
across platforms.

Desktop computing power was an
important factor for lossless coding when
this book had been written, but now it is
feasible to use lossless compression on
embedded targets, which is perhaps where
some people will want to deploy the disk’s
code as opposed to merely understanding the
science and moving on to superior industrial
strength compression.

Unfortunately, not all embedded C
compilers whose vendors lie about C89
conformance are able to use a complete
program unmodified.

Being from the then-publisher of “Dr.
Dobb’s Journal”, the book contains an essay
against the patenting of innovations for which
the patent applicants played no role in
discovering.

Linux
Linux Kernel Development by Robert Love (0-
672-32720-1) SAMS, 496pp £32.99 Dec 2003
reviewed by Ian Bruntlett
This is, in my opinion, a “wow” book, detailing
the Linux Kernel 2.6 as it applies to 80x86
hardware. It has a website http://tech9.
net/rml/kernel_book. At the time of
writing, Kernel 2.6 is the current kernel it is
unusual to have up to date kernel
documentation. I heard a rumour that the latest
Linux Device Drivers (3e, O’Reilly) also
covers Kernel 2.6. If this is true then we are
experiencing a rare renaissance in Linux
Kernel documentation.

The author is an experienced kernel and
GNOME hacker who now works as senior
kernel engineer in the Ximian Desktop Group
at Novell.

Prospective readers should be familiar
with C, processor architecture and operating
system design – if you are a bit rusty, check
out the bibliography or, for processor
specific information, using Google can
unearth some very interesting processor
datasheets.

This book aims to equip the reader with the
skills necessary to become a Linux Kernel
Developer. One item on boot loaders, on page
16, discusses LILO instead of the more recent
GNU GRUB. The special requirements
introduced by kernel mode development are
discussed.

In some way this book is like the QL
Advanced User Guide – I didn’t understand it
completely on my first reading although with
time and effort I’m likely to understand it.

Highly recommended for: 1) People who
want to know how their system works; 2)
People who want to write kernel/supervisor
mode code. If you are only going to use the
standard C library (libc) then you are better
visiting the Linux Emporium website and
buying the GNU libc manuals.

Red Hat Linux Fedora Unleashed
by Bill Ball & Hoyt Duff (0-672-
32629-9) SAMS* @ £36.50
reviewed by Silvia de Beer
I have mixed feelings about this
book. The book consists of four

parts. The first part covers how to install
Fedora Linux on a PC (previously called the
Red Hat distribution). It explains what to pay
attention to and investigate before installing
Fedora, and how to make a dual boot machine.
I found this first section useful to read. The
second part treats System Administration, and
contains chapters on services, package
management with rpm, managing users,
managing the file system, backing up. The
third part treats system services administration,
and the last part is about programming and
productivity.

Most of the topics would need to be
mastered by a system administrator, so in that
point the book would be excellent, but because
the topics are all covered with such little detail,
the book is almost worthless. It could for
example be perfectly useful to read a little bit
about configuring printing services, network
connectivity etc, but I think the book should

have been more exhaustive on fewer topics.
The book is overly verbose and I did not learn
very much by reading the 1000 pages.

I did miss topics that I think would need to
be covered in this type of book on Linux. All
the command line commands are given without
any further explanation and options. It will be
rare that you can use the command in the exact
format that it is given. For example, I looked in
the index to find the sections in the book which
cover basic Linux commands like ps, ls, grep,
but they are all just given without any
explanation about the rich wealth of options.

The book comes with 2 CDs and a DVD,
containing the Fedora Core distribution. This is
may be one of the reasons that you could
consider buying the book, because
downloading such a distribution over a normal
telephone line is burdensome.

Management
Managing Software Acquisition
by B. Craig Meyers & Patricia
Oberndorf (0-201-70454-4)
Addison-Wesley @ 37.99
reviewed by Mark Easterbrook
My first impression of this book is

that someone had selected as many buzzwords
as they could and then strung them together
with padding to make grammatically correct,
with the result that a lot of the book is
indigestible. The text is full of paragraph after
paragraph starting with “A manager may say”
or “A systems consultant may promise” and
numerous anonymous quotes, resulting in a
book that feels like it is a collection of third
party hearsay – as if the authors are reluctant to
present any ideas of their own.

The authors claim an audience for the book
of project managers and their staff in both
private and public sectors, but there is very
little that is not aimed squarely at those
working on US government contracts, of which
much is military related. As a result, this book
is of little use to anyone who does not work in
this specific market segment.

As part of the SEI series in Software
Engineering I expected a reasonable level of
quality, applicability, and usefulness, but I have
been disappointed, Addison-Wesley have
devalued the whole series by letting this one
slip through their vetting process. Not
recommended.

Managing Software for Growth by
Roy Miller (0-321-11743-3)
Addison-Wesley @ £26.99
reviewed by Mark Easterbrook
The overall theme of this book is
that software is grown, rather than

manufactured, which is why attempts to
manage or control software projects using
traditional management or manufacturing
techniques have been generally less than
successful. The book is divided into four parts.
The first part explores applying traditional and
contemporary software management
techniques to software projects and why they
so often fail.

The second part moves away from software
and explains the science of complexity such a
chaos theory as a background to the third part,

growing software, or how to plan and control
something as complex as software
development that tends to defy planning and
control. The final and largest part explores how
managers can change their organisation from
the unreliable manufacturing of software to a
more successful growing of software.

The book is unfortunately let down by the
choice of language which is distinctly
American and makes frequent use of U.S.
idioms and culture, which reduces its potential
audience and may make it difficult for readers
who do not have English as their first language.
If you have to stop and think what IRS stands
for or the significance of Apple Pie
comparisons, then some parts will be difficult
to comprehend.

This is not a book that introduces any
radically new ideas but borrows extensively
from previous works, with reference to classics
such as DeMarco & Listers “Peopleware” right
up to the latest on Agile Development. This,
combined with an Annotated Bibliography at
the end, makes it a good starting point on the
wrongs and rights of software management,
although the bibliography is far from
comprehensive and I would have liked to see
books such as “The Mythical Man Month”,
“Crossing the Chasm” and some of the
Microsoft Press publications mentioned.

Although the book does have its merits, and
deserves a place on a recommended reading list
on software management, the language and
lack of original material would place it closer
to the bottom rather than the top.

Requirements by
Collaboration by Ellen
Gottesdiener (0-201-78606-0)
Addison-Wesley @ £34.99
reviewed by Ivan Uemlianin
Requirements By Collaboration

is a very practical book about planning,
conducting and evaluating same-time/same-
place requirements workshops. It will work
very well as a handbook; less well but still
useful as an introduction. I recommend the
book for anyone running such workshops.

There are three parts: Overview (chapters 1-
3), Framework (chapters 4-9) and Design
Strategies (chapters 10-12).

In the Overview, Chapter 2, “Workshop
Deliverables: Mining Coal, Extracting
Diamonds”, looks in fairly practical detail at
Requirements Models. Nineteen models are
outlined (e.g., Actor Map, Business Rules,
Event Table, Use Cases) and characterised in
terms of how they address the problem domain.
Chapter 3 goes on to give some useful
“Ingredients of a Successful Requirements
Workshop”.

Framework consists of six chapters which
each look at a different aspect of the workshop:

the six P’s – Purpose, Participants, Principles,
Products, Place, and Process. For example,
chapter 9, “Process: Plan the Work, Work the
Plan” looks at different activities, the focus
being (a) appropriately linking activities to
types of requirements model and (b) forging a
fruitful path through a workshop from one
activity/model to the next.

Design Strategies steps back from the chalk
face to look at case studies and presenting
results.

The book is rigidly structured and its
language is highly rhetorical (from the punchy
end of the advertising spectrum). This is all a
bit heavy going for a cover-to-cover read, but
the rhetoric is not empty: it allows the author to
be very terse when she needs to be.

Requirements (in part 1) and workshops (in
part 2) are each approached from many
different perspectives. A complex, multi-
faceted picture is built up which might be
difficult to translate into a more conventional
linear-through-time conception. However,
used as a handbook for planning a workshop
from your initial questions, through kitting out
the room, to running activities on the day, this
book will help you develop intense, dynamic
and stimulating (and probably reusable)
requirements workshops.

Requirements-Led Project
Management by Suzanne and
James Robertson (0-321-18062-
3) Addison-Wesley @ £34.99
reviewed by Ivan Uemlianin
“Requirements-Led Project

Management” is aimed at people familiar with
the requirements process; it claims (on the back
cover) to “demonstrate” how good requirements
can impact positively on processes further down
the development lifecycle.

The book consists of eleven chapters, each
discussing a different aspect of the
requirements process, and how it can improve
the effectiveness of your project management.
Chapter summaries are provided in “What Do I
Do Right Now?” and “What’s the Least I Can
Get Away With?” sections. Two appendices
give outlines of a “Requirements Knowledge
Model” and the “Volere Requirements
Specification Template”.

The back cover says the book shows “how
to use requirements to manage the development
lifecycle” and I interpreted this to mean that it
would be shown how aspects of requirements
process could improve other parts of project
management. This holds true for at least the
first three chapters, but for the rest of the book
the link is much less clear. For example, the
chapter on Measuring Requirements does not
show how good requirements can mean more
accurate function point counts and
consequently more accurate labour-time

estimates; it shows how good function point
counts can lead to accurate labour-time
estimates for the requirements gathering
process.

Much of the book is an ostensibly pleasant
meander through the requirements process.
The table of contents does not provide
subheadings and the book has not been
structured to promote efficient navigation. My
impression is that the authors (and editors)
were very relaxed throughout its production. I
have not read the Robertsons’ Mastering the
Requirements Process, which may well be
seminal, but if it is they are resting on their
laurels.

There are good ideas dotted through the
book, but they are all too fleeting when they
appear. For example, a few interesting pages
on requirements reuse (p38f), could have been
turned into a very useful chapter.

This is not a first requirements text; neither
can it be used as a handbook. It is not an
especially pleasant read. If you liked
Mastering the Requirements Process, you may
like this one.

Return on Software by Steve
Tockey (0-321-22875-8)
Addison-Wesley @ £37.99
reviewed by Alan Griffiths
This book sets out to tackle a
serious subject and one that could

well do with treatment: how to address the
technical choices that software development
presents within the context of a business. I was
hoping that the book would present techniques
for translating between the world of scope,
development effort, timescales and alternative
technologies and that of business value, cash
flows and return on investment. I was very
disappointed.

It starts well with a discussion of the
reasons why forces from the business are
important to software developers. But, having
once explained why the financial view of
software development projects is important, the
book focuses entirely on that view – for
example, there are several chapters on methods
of comparing different cashflows. (Which, to
me, was tedious – given my training in
mathematics, these different methods would
obviously give the same result as the difference
was usually a scale factor – this scale factor
reflected the interest that money would
accumulate between different reference dates).

For most of the book, there is no reference to
software development – and especially not how
one might present a choice between, say, using
.NET or Java as a cash flow. The closest one gets
is the use of purchasing computers in various
examples, for instance why tax law requires such
a purchase to be depreciated over several years.

Not recommended.

42 CVu/ACCU/Reviews

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

