
Reports & Opinions
Editorial 4
Reports

View From the Chair, Secretary’s Report, Membership Report, Standards Report 5
Officer Without Portfolio, AGM Notification 6

Dialogue
Student Code Critique (competition) entries for #31 and code for #32 7

Features
Patterns in C – Part 1 by Adam Petersen 22
Professionalism in Programming #30 by Pete Goodliffe 24
Wx – A Live Port – Part 3 by Jonathan Selby 26
Elephant – A C++ Memory Observer by Paul Grenyer 28
An Introduction to Objective-C – Part 4 by D A Thomas 32
Memory For a Short Series of Assignment Statements by Derek M Jones 34
An Introduction to Programming with GTK+ and Glade – Part 4 by Roger Leigh 37

Reviews
Bookcase 40

Copy Dates
C Vu 17.2: March 7th 2005
C Vu 17.3: May 7th 2005

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Chris Lowe
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

Advertise In
C Vu & Overload

80% of Readers Make Purchasing Decisions
or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@accu.com
4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Well, the bunting is down, the turkey has well
gone (and if it hasn’t by the time this issue hits
your door mats, then I seriously suggest throwing
it out before it walks out!) and thoughts are
turning to how to remove the couple of inches
gained through the annual festival of excess.

While I can’t help very much with the physical,
in this edition I can certainly help with the mental!
In the last issue, we had the first part of Derek
Jones’ statistical results from the last conference.
This will conclude this edition, but it has sparked
something in my inbox. It seems quite a few of you
have been very interested in the results obtained.
I’ve asked Derek if he’d like to submit some more
along the same lines, so you never know...

In the Caverns of Your Mind...
I have many many many books in my office.
Loads of them. I’d hate to imagine how much
they’d cost to replace as there are some classics
in my collection which are long out of date and
even longer out of print.

Just before the holidays events really took
hold as one of the shelves holding the books up
(together with a good chunk of the wall) finally
succumbed to the forces of gravity, and as usual,
it was at around 4am. I don’t think I’ve seen the
dogs jump so high – even the deaf one!

While I cleaned up the mess, I came across
three books which I thought had vanished when I
moved to Haydock over 10 years ago. While they
really wouldn’t be worth a huge amount today,
they are important to me; they were the first two
programming books I ever bought and the first
programming book I ever bought from eBay.

The books in question here are “Computer
Spacegames” and “Computer Battlegames” for
the ZX81, ZX Spectrum, BBC, TRS-80, Apple,
Vic 20 & Pet. That should give you an idea of the
age of them (both published in 1982 by
Usbourne). I’d not really read these books in a
very long time (well, in 1982 I was 11, so playing
football was more important than my ZX81) and
decided to look through them – mainly out of
interest – and something struck me. While
machine power has increased vastly, things have
actually regressed in terms of computing.

You What?
Okay, I’ll explain what I mean there. Take the
following piece of code (as listed in the
Computer Spacegames book)

INVERSE c
LET y=h*1.3+10
PLOT 200,y: DRAW 34,0
DRAW -4,20: DRAW -13,10
DRAW -13,-10: DRAW -4,20
RETURN
LET y = 172-a*32
INK c
PLOT 0,y
DRAW b,0
DRAW INVERSE 1,100-b,0
RETURN
LET i$=INKEY$
IF i$="a" THEN LET t=t+4

: IF t>100 THEN LET t=100
IF i$="d" THEN LET t=t-4

: IF t<0 THEN LET t=f
IF t>f THEN LET t=f
RETURN

This is the ZX Spectrum version of a game called
“Touchdown”. It’s not an amazing game, it is one
of those land the craft on the platform games. All
the above code does is a bit of drawing on the
screen and interacts with the player for which
key they press to move the spaceship (a user
defined 8x8 graphic). It’s in BASIC (albeit
Sinclair BASIC) and what you see is what you
get.

Now, consider what you would have to do to
get that to run on a modern Mac or PC (not
bothered as to which OS the PC is running – it
applies equally to Win32 and Linux/Unix/BSD
variants). No cheating here (read no emulators!).

First you need a third party library for the
graphics handling (say SDL – I’m keeping this
cross platform as I know next to nothing about
DirectX). Okay, there is a version for platform X
and I can install it. Right. Good.

Next the code has to be converted. That
means that some parts will be easier than others
and some will need mapping over to SDL.
Problem. I need to consult the documents for
SDL to see what is the closest to the original. For
the parts which are simple enough (simple logic),
conversion to C is simple. Moving it to C++, C#

or Java may be a bit of a pain, but can be done
easily enough.

So we now have the basics. We can’t do it
natively (that is with only the operating system),
but with dynamic linking, the final product can still
be used by many people – as long as they too have
the library I’ve used. Nevertheless, it is possible.

The code though will have grown quite a lot
(in all probability) and to a beginner (which is
the target audience for these books), unless it is
well documented, it isn’t going to be easy to use.

Then comes the make file. Shudder time!
So from something you sit down at, switch

on, 2 seconds later have a command prompt and
can start working on, you now have boot times
of up to a minute, then load either a text editor or
development environment, load the source and
start to work. 2 seconds can become up to 10
minutes.

Of course, it would be plain daft of me to say
development and software quality hasn’t improved,
but it would also be wrong for me to omit saying
that the technology has developed as well.

We no longer use 8 bit machines with a
maximum of 40K available memory, 8 colours
and a piezo beep for a sound system, and
software has come on in leaps and bounds, but is
it still as accessible for the newcomer as things
were in 1981 or has computing changed to a
“them and us” whereby instead of the computer
being a portal to the imagination, it is a tool for
writing editorials, doing your home accounts or
sending emails?

Does your average kid get the same kick out
of writing some code as kids between 1981 and
1985 get when they used their BBC Bs, Orics,
Spectrums, Dragons et al or has the fun been
sucked out of it when you write something like:

void moveLeft(
Position *currentPosition,
Ship &Tardis) {

Position newPosition;
newPosition = checkBounds(

currentPosition
– sizeof(Tardis));

if(!newPosition)
moveLeft(currentPosition

– sizeof(Tardis));
}

5CVu/ACCU/Reports & Opinions

Yes it’s logical, but is it really the same in terms
of bright eyed fun?

And the Third Book?
Another classic from when I was a teenager:
“Creating Adventure Games on Your BBC
Micro” by Ian Watt (there were other versions for
machines of that era, including the Amstrad 464,
Spectrum and Dragon 32).

Now this really was a good book as it took the
reader through just about every aspect (at that time)
of writing an adventure – from the requirement to
get everything down on paper first (the map
planning being one of the most important aspects,
followed by the puzzles) – to using non-player
characters (NPCs). It was easy to understand and
even by todays standard, is a great book to have.

Why Did I Bring These Up?
Am I drunk? Am I just in one of those moods to
look back with rose-tinted glasses? Am I just one
of those cranks who wishes that the BBC B was
still the best thing since sliced bread?

The answer is no to all three.
I brought it up for one reason. In comparison

to what we have today, things have undeniably
moved forward, but at the same time, we’ve
regressed. Books are the same. Sure, things are
more complex, but the fun seems to have gone
as, more importantly, has the attention to detail.
We are getting more and more substandard books
being published which really aren’t helping.

I recently reviewed a book called “Linux
Game Programming” which was truly awful. It
was a book which (I’ve since learned) was
written by a committee after the lead author
found a new job. The attention to detail was lax
to say the least with someone at the publisher
adding in notes which instead of helping gave
some very poor information, some of which had
nothing to do with the material presented.

I doubt that in the 1980s this book would have
made it. All right, I’m not that blinkered to say
there were not some real turkeys out there (I
remember one Oric-1 book which did everything
with direct pokes to the screen etc instead of
using the built in command – that was a horrid
book!), but they were fewer and further between.
Was it that back then books were not just off a
conveyor belt (yes, Granada Publishing was the
exception to that rule!) but written by authors not
just interested in getting another DirectX, SDL,
or OpenGL book out?

It would be refreshing, to say the least, if an
update to the adventure game book was made
available for users of C, C++, C# or Java.

Rant over. On with the show!
Paul F Johnson

View from the Chair
Ewan Milne <chair@accu.org>
Preparations for the conference are in full swing,
and with a line-up featuring Stroustrup, Coplien,
Sutter, Buschmann and many others, I hope you are
as excited as I am about it. There is one event at the
conference that understandably will be causing less
excitement, but which I would like to draw your
attention to nonetheless. On the next page you will
see the announcement of the AGM. It is easy to
forget about this with everything going on around
it; but those with long memories will remember the
conference’s roots as a few presentations held
alongside the AGM for added interest.

So, I admit it: Alan and I working through the
agenda, the other officers presenting reports – it’s
not the most gripping hour of the event. But it is an
essential task in the running of the association, for
the whole membership as much as the committee,
so your participation is strongly encouraged. This
year we have planned to streamline the meeting as
much as possible, minimizing the administrative
details in order to use the time to better focus on any
real issues that are raised.

One of the new ideas is to make the officers’
reports available to the membership in advance of
the meeting. The aim of this is to avoid much of the
meeting itself being taken up by their presentation.
Some, like the Treasurer’s report, don’t really suit
a live reading. At the meeting we plan to move
directly to taking questions on the reports. Of
course, the key to cusses here is for the reports to
have actually been read in advance, so please, when
you receive your AGM pack, do please take the
time to read and consider it. With your help we can
have a more efficient, more productive AGM. I
look forward to seeing you there.

Secretary’s Report
Alan Bellingham <secretary@accu.org>
Members don’t often know what takes place during
committee meetings (although they’re entitled to
attend if they so wish, or receive the minutes on
request). So this time, I’ll give a quick report on
what happened during our last meeting.

Meetings take place four times a year, usually
at roughly 3-month intervals (but the summer
vacation season tends to mean that a longer gap
occurs then). Also, to spread the travelling around,
the meetings won’t always occur at the same place.

The most recent meeting took place at Jez
Higgins’ house in Moseley, Birmingham, in the
English Midlands. It began at 13:30, and there
were eight of us present, with another three
experimenting with Skype in an attempt to attend
virtually. In the event, domestic broadband
Internet turned out not to be quite up to it.

The first activity, after recording who is present
and who has sent their apologies, and after
approving the minutes of the previous meeting, is
to note those actions in the previous minutes that
are complete, and those that aren’t. This is where
the committee keep track of ongoing activity –
some things do take years to complete.

In this case, we noted that the 2003 writers’
competition had finally been judged (deplorably
late – we will do better next time), and that the
long-drawn-out process of transferring the post of
Treasurer to Stewart Brodie was finally complete.
(The new banking rules make changing signatories
on bank accounts a very tedious process.)

The next step is officers’ reports. Not all officers
make a report every time: for instance, since my
main activity is organising agendas, writing
minutes and the like, there’s rarely anything new
for me to report. Usually, these reports should be
broadly similar to what appears in this journal, with
the exception that with four meetings a year, and
six journals, matters do get a little out of phase.

Unusually, we co-opted a member, Thaddeus
Frogley, to take charge of advertising sales. There
was also the announcement that Pippa Hennessy
is stepping down as our production editor. (The
production editor is the person responsible for the
actual layout and so on of the journals, rather than
for their content.) This is an important post
(though not actually a committee role), and we

hope that John Merrells (the Publications Officer)
will find a replacement up to Pippa’s standard.

The conference is always on our minds, but
it’s run by a subcommittee rather than by the
main committee. We were informed that
everything is on schedule, and that a programme
has mostly been finalised.

The final item on the agenda (placed last
because we knew it would need the most
discussion), was the subject of the accu.org
website. We’re very aware that the current website
is a bit of a monster – it contains thousands of
pages, it looks old-fashioned, and it creaks a bit.
Because of this, we have been trying to work out
what to do with it. What has been happening
recently is that Allan Kelly has taken charge of
this, to produce a full plan of what we need, and
to effectively outsource the rebuilding of it. This
has led to the production of a requirements
document (it’s difficult to produce the right answer
if you don’t ask the right question), and this has
now been approved. The next stage should be that
we get a list of tenderers together, and by the next
meeting, we should be going ahead.

Finally, the next meeting is scheduled for 19th
February. However, that’s a tentative date, and I
know that I won’t be able to make it, since I
won’t have returned from the Basler Fasnacht
(www.fasnacht.ch if you’re interested).
Hence, it’s likely to be rescheduled.

Membership Report
David Hodge <membership@accu.org>
At the end of 2004 the membership stood at 934
with the majority of new members and renewals
using the website.

If you have a UK bank account and would like
to save £5 on your next year’s subscription by
paying by standing order, ask for details by email.

Note that due to the lag in getting the banks
to process standing order information, you need
to initiate this process at least 8 weeks before
your renewal date.

If you change your email or mail address it is
important that you let me know so that I can
update the database. There are occasions when
journals can go astray, if you do not get your
copies, please contact me.

Standards Report
Lois Goldthwaite <standards@accu.org>
The UK continues to punch above its weight in
international standards development.

A UK delegation has attended every meeting
of the international C standard committee (WG14)
going back to the very first one in September
1986. I doubt if any country except the US could
make a similar claim. The first document listed in
the WG14 register is N001, ‘Minutes of 10 Sep 86
Meeting’, by Cornelia Boldyreff, who was the first
convenor of the BSI C panel. N005, also by
Boldyreff, is ‘Comments from BSI’ on issues
discussed at the second meeting.

The first meeting of WG21, the C++ standard
committee, was in June 1991. I haven’t been able
to determine yet if the UK was represented there,
but we’ve sent delegates to all the ones since then.
Derek Jones remembers attending the meeting of
the C committee which decided a different group
should develop the C++ standard, so he counts that
as the zeroth meeting for C++. In 2004 members of
the UK C++ panel authored or co-authored 24
discussion papers submitted to WG21.

6 CVu/ACCU/Reports & Opinions

Another area of UK standards activity is
Posix. Posix is a standard for operating system
interfaces – ‘Unix’ was originally a trademark of
AT&T, who invented it, so the standard had to be
called something else. In those days there were
multiple standards for commercial Unix, as
various groups of vendors formed themselves
into consortia. Posix (Portable Operating
System) began as an effort by IEEE and Unix
users to standardise library functions so that
applications could be ported to different
platforms. The BSI Posix panel was officially
established in September 1987 (an ad hoc one
met a month earlier), also under the leadership
of Cornelia Boldyreff. After that the UK played
an active role in IEEE P1003 and WG15.

These days the Posix/Unix landscape has
changed. There are now three bodies who issue
standards on this subject, but there is only one
standard. What is called the Austin Group consists
of representatives from IEEE, the Open Group
(successor to all the Unix vendor consortia), and
ISO/IEC SC22 (the parent committee for WG15,
which has been dissolved), plus a great many
individuals representing their employers or
themselves, all working together to produce a
single unified standard document. Approximately
600 people take part in the Austin Group work.
Their motto for the jointly-developed standard is
‘Write once, adopt everywhere.’

An Austin Group plenary session took place in
Reading in January, along with the initial meeting
of the SC22 Posix Advisory Group which has
succeeded WG15. Of the nine people who attended
the PAG in person, four are members of the UK
panel. Three of these people are regular attendees
in the Austin Group’s almost-every-week working
teleconferences, wearing their other hats: Andrew
Josey chairs the Austin Group and is Director of
Certification for the Open Group, Nick Stoughton
is the Organisational Representative from SC22 and
liaison from the Free Standards Group, and Joanna
Farley is an experienced expert from Sun.

Speaking of the Free Standards Group, their
Linux Standard Base document has been submitted
for adoption by ISO and IEC. Formulating the UK
vote on whether or not to approve it is an important
task facing the BSI Posix panel. If you have an
interest in Linux and would like to participate in
this work, please send an email to
standards@accu.org for more information.

(To save myself the trouble of researching
through all those meeting minutes, I consulted
the memory of veteran UK delegates Francis
Glassborow, Neil Martin, Derek Jones, and
Cornelia Boldyreff, to whom all many thanks.)

Officer Without Portfolio
Allan Kelly <allan@allankelly.net>
When I agreed to join the ACCU committee last
April I did so because I wanted to see the ACCU
improve in some specific areas. Principally I had
the website in mind. Well, you can’t see any
changes yet but things have been happening
behind the scenes so I thought I’d fill you in on
what’s been happening and where we are at.

The new committee (including myself) met for
the first time in May and decided to outsource the
website. Steve Dicks (Electronic Communications
Officer) and myself were tasked to develop a
specification. Unfortunately this turned out to be
more difficult than either of us expected.

In August I asked a friendly company how
much they would charge to write such a
specification for us. The committee decided this
was too much and instead a “new web” sub-
committee was formed. This produced a short
specification that was put to the main committee
in November. The main committee agreed the
specification and gave us authority to seek
tenders.

December was a busy month for everyone but
those of us in the new-web group still found time
to draw up a tender schedule, make final
revisions to the documents and a couple of days
after Christmas I mailed a request for tenders to

accu-contacts and several firms who had
already expressed interest in the work.

We have tried to keep the process as open as
possible. We’ve had debates amongst ourselves
about who should be allowed to bid and one
person withdrew from the new-web group lest his
position be questioned. Originally we intended to
advertise the tender in the pages of C Vu itself, this
hasn’t happened for two reasons. First and
foremost, given the schedule we are running to
this would inject a two-month delay into the
process. We didn’t feel this was reasonable, not
only would we lose momentum but we would lose
any chance of having anything ready for the April
conference. (It’s worth noting that our schedule
is dictated by the fact that we are all volunteers
who fit this work around our real jobs. If we had
had the time to do it quicker we would have done.)

Secondly, the new-web group (and myself
specifically) feel that the companies we have asked
to bid – and the mailing to accu-contacts –
will give us plenty of competition in the bidding
process. Every extra bid means work for the
committee and potentially slows down the signing
of the contract.

At the moment I’m hopeful that by the time
you read this we will have a shortlist of bidders
and be well on the way to signing a contract. I’d
still like to think we’ll have some new pages on
show for the April conference but have to admit
this is looking more unlikely.

One change we have asked bidders to look into
is the possibility of raising revenue from the
website. The obvious example is links from book
reviews to booksellers’ websites. While nobody on
the committee wants to see the site overrun with
advertising, we haven’t forgotten the support given
to the ACCU by the likes of Blackwells and PC-
Bookshops. The objective is to lessen the costs to
the ACCU and therefore your membership fees.

So there you have it. I know 8 months may
seem a long time to do this sort of work – it does to
me! – but it is surprising just how quickly it goes.

NOTIFICATION OF AGM
Alan Bellingham <secretary@accu.org>

Notice is hereby given that the 17th Annual
General Meeting of The C Users’ Group (UK)
publicly known as ACCU will be held at 12:00
pm on Saturday 23rd April 2005 at the The
Randolph Hotel, Beaumont Street, Oxford, OX1
2LN, United Kingdom.

Agenda
1 Apologies for absence
2 Minutes of the 16th Annual General Meeting
3 Annual reports of the officers
4 Accounts for the year ending 31st December

2004
5 Appointment of Auditor
6 Election of Officers and Committee
7 Other motions for which notice has been

given.
8 Any other Annual General Meeting Business

(To be notified to the Chair prior to the
commencement of the Meeting).

The attention of attendees under a Corporate
Membership is drawn to Rule 7.8 of the
Constitution:

‘... Voting by Corporate bodies is limited to a
maximum of four individuals from that body. The
identities of Corporate voting and non-voting

individuals must be made known to the Chair
before commencing the business of the Meeting.
All individuals present under a Corporate
Membership have speaking rights.’

Also, all members should note rules 7.5:
‘Notices of Motion, duly proposed and seconded,
must be lodged with the Secretary at least 14
days prior to the General Meeting.’

7.6:
‘Nominations for Officers and Committee
members, duly proposed, seconded and
accepted, shall be lodged with the Secretary at
least 14 days prior to the General Meeting.’

and 7.7:
‘In the absence of written nominations for a
position, nominations may be taken from the
floor at the General Meeting. In the event of there
being more nominations than there are positions
to fill, candidates shall be elected by simple
majority of those Members present and voting.
The presiding Member shall have a casting
vote.’

For historical and logistical reasons, the date and
venue is that of the last day of the ACCU Spring
Conference. Please note that you do not need to
be attending the conference to attend the AGM.

At the last two AGMs, there has been some
protracted discussion that has led to a time
overrun. For this reason, rather than be scheduled

for the second hour of the lunch break, the meeting
is scheduled for the first hour. On the other hand,
there should be less that needs discussion, so the
extra time should not be needed.

For more information about the conference,
please see the web page at
http://accu.org/conference

As far as business is concerned, we don’t yet
have any extraordinary items, and at the time of
writing, all current officers and other committee
members are willing to stand again. There is
somewhat of a tradition that nominations are
made from the floor during the AGM as per rule
7.7 rather than as per rule 7.6. However, it is still
within the powers of the membership to select an
entirely new committee should it so desire.

One innovation we intend this year is to
prepare the reports, together with the minutes of
last year’s meeting, and distribute them by email
to all members a fortnight before the meeting.
This should allow attenders to study them and
prepare questions in advance, rather than having
to do so on the spot. Although there may be some
reports that do not arrive before the day, this
should help streamline the business and let
members concentrate on what matters.

We will also be placing these documents on the
website, which should from now on contain all
AGM documents for this and subsequent years.

7CVu/ACCU/Dialogue

Student Code Critique
Competition 32

Set and collated by David A. Caabeiro
Prizes provided by Blackwells Bookshops & Addison-Wesley
Please note that participation in this competition is open to all members.
The title reflects the fact that the code used is normally provided by a
student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended to
designate it as an item where reader interaction is particularly important.
Readers’ comments and criticisms of published entries are always welcome.

Before We Start
Besides wishing you all (unpunctually) a prosperous 2005, a special thanks
to those who participate in this competition for their support.

Remember that you can get the current problem set at the ACCU website
(http://www.accu.org/journals/). This is for people living overseas
who get the magazine much later than members in the UK and Europe.

Editor’s Note
Due to the large number of entrants this time, I have found this a
particularly difficult SCC to judge; the entries are that good (as you’ll see!).
As we’re at the start of a new year, two prizes will be awarded for this SCC.

Thank you to everyone who entered for making this the most difficult
SCC to judge, and oddly enough, the most enjoyable – keep sending those
entries in folks!

Student Code Critique 31 Entries
Here is the code I have using the equation to drop the lowest number from the grades.
The problem is, if I change up number 3 and number 4, I get a different answer. I
used the numbers 80, 84, 60, 100 and 90. Putting the numbers in like that, I get 88
but, if I mix up the 100 and 60 then I get a grade of 81. Can anyone tell me why it is
not finding the lowest number and just dropping it when I tell it to (- lowest)?

#include <iostream>
#include <iomanip>
using namespace std;

int main() {
int test1, test2, test3, test4,test5,average,

averagescore,divide;
cout <<"This program will gather five test

scores and\n";
cout <<"drop the lowest score, giving you the

average\n";
cout <<"\n";
cout <<"Please enter Five Test scores\n";
cin >> test1>>test2>>test3>>test4>>test5;
int lowest = test1;

// test 1 is the lowest number unless
if (test2 < test1)lowest = test2;

// test 2 is smaller than test 1 unless
if (test3 < test2)lowest = test3;

// test 3 is smaller than test 2 unless
if (test4 < test3)lowest = test4;

// test 4 is smaller than test 3 unless
if (test5 < test4)lowest = test5;

// test 5 is smaller than test 4.
average = (test1+test2+test3+test4+test5);

// all test scores averaged together
averagescore = average - lowest;

// average score minus the lowest grade
divide = averagescore /4;

// average grade is then divided by 4
cout << divide<< endl;

// final grade after division
return 0;
}

Besides the question asked by the student, this code gives you a chance to
discuss topics such as extensibility, design and style. Please address as
many issues as you consider necessary, without omitting the answer to the
original question.

From Tim Penhey <Tim.PENHEY@rbos.com>

I do have to admit that on first scan of the code, I didn’t notice the error. It
was only when typing the code in that I noticed it.

One thing that I often do when working with numbers is to actually
transpose the numbers into the code and look for errors. It is very easy to
get caught by “off by one” errors, however this is not one of those times.
Firstly let’s look at the first sequence of numbers:

80 84 60 100 90
Now put these into the code replacing the test variables (let’s replace the
comments too):

int lowest = 80;
// 80 is the lowest number unless
if (84 < 80) lowest = 84;
// 84 is smaller than 80 unless
if (60 < 84) lowest = 60;
// 60 is smaller than 84 unless
if (100 < 60) lowest = 100;
// 100 is smaller than 60 unless
if (90 < 100) lowest = 90;
// 90 is smaller than 100.

Now we can easily see that the logic is flawed. Checking the adjacent value
will not choose the smallest. The simplest change that will get the code to
work is the check against the current lowest value instead

int lowest = test1;
// test 1 is the lowest number unless

if (test2 < lowest) lowest = test2;
// test 2 is smaller than lowest unless

if (test3 < lowest) lowest = test3;
// test 3 is smaller than lowest unless

if (test4 < lowest) lowest = test4;
// test 4 is smaller than lowest unless

if (test5 < lowest) lowest = test5;
// test 5 is smaller than lowest.

Now to comment on style...
● maybe it is just me, but I prefer to have the comment above the code that

it is referring to, not below. Perhaps it is just that I like to know the intent
before I see the code. [Production Editor – that was my fault, comments were
at the end of the lines, and as there wasn’t room within the standard layout I
inserted line breaks with indentation, which is standard procedure for the ACCU
journals. This is the only layout change I ever make to the code critique problem]

● <iomanip> is not needed as the only manipulator being used is endl, and
that is defined in <ostream> (which is included through <iostream>.

● use appropriate variable names. average in the example is not the
average but the sum, and averagescore is the sum less the lowest.

What is going to happen if we now need to test six values, or ten, or even
a class of 30? The algorithm being used is not particularly extensible.

One solution is to calculate the sum and the lowest while entering value.
However when doing this we now have to handle the boundary cases where
the user may enter any number of values. No values obviously has average
of zero, while one value is by definition also the lowest, and the average
of the rest (no values) is zero, so the average calculation is only valid where
the number of entered values is greater than one. Here is an example that
accumulates on the fly:

#include <iostream>
#include <limits>
using namespace std;
int main() {
cout << "This program will gather "

<< "test scores and drop the\n"
<< "lowest score, giving you the "
<< "average of the remaining.\n\n"
<< "Enter test scores. Terminate "
<< "the last score with a period.\n";

Dialogue

8 CVu/ACCU/Dialogue

int sum = 0;
int count = 0;
int value;
int lowest = numeric_limits<int>::max();
while(cin >> value) {
if(value < lowest) lowest = value;
sum += value;
++count;

}
int average = 0;
if(count == 0)
cout << "No entries entered\n";

else if(count == 1)
cout << "Only one value entered, "

<< "so it is the lowest value.";
else
average = (sum - lowest) / (count - 1);

cout << "Average: " << average << endl;
return 0;

}
numeric_limits is used to define the initial value of the lowest variable.
Since any other integer value will be equal or less than this, then any value
typed in as the first value will set the lowest to be that. Subsequent values
are then checked against the current lowest.

The other “trick” in the code is using the fail flag on cin to terminate
the entry loop. The fail flag happens when we ask to stream into an
integer and the stream contains a non-whitespace non-integer value, hence
the terminating the last score with a period.

Another solution is to use standard containers and use algorithms like
accumulate to sum the values, but this I’ll leave as an exercise for the
reader (or other submitters).

From Thaddaeus Frogley <codemoney_uk@mac.com>

The code does not work because of a simple logical error, and not a language
specific problem. Each if statement is evaluated “locally” and in effect
ignores the preceding work done. Thus, as the student as observed, if test5
contains a smaller value than test4 then lowest is assigned test5,
irrespective of the results of the preceding tests. The straightforward fix is
to change the sequence of if statements to compare each time against the
current lowest value, then I would expect the code to work.

This of course ignores issues of extensibility, design and style, but for a
student of this level I would consider it more important to understand the
logical flow required to solve the problem at this simple level. Ultimately
knowledge of the standard library is second to a solid grasp of constructing a
logical sequence of steps to solve a problem programatically. For future
reading I would advise reading up on arrays and containers, and the
std::sortalgorithm. Constant use of std::endlvs \nwould also be nice.

From Roger Orr <rogero@howzatt.demon.co.uk>

The first thing to do is to answer the student’s question – they want to know
what is wrong with the code. The answer is the sequence of comparisons
of adjacent test values: the result of each stage (the new value of lowest)
needs to be passed into the next comparison.

Simply change the sequence to:
int lowest = test1;

// test 1 is the lowest number unless
if(test2 < lowest) lowest = test2;

// test 2 is smaller than lowest so far unless
if(test3 < lowest) lowest = test3;

// test 3 is smaller than lowest so far unless
if(test4 < lowest) lowest = test4;

// test 4 is smaller than lowest so far unless
if(test5 < lowest) lowest = test5;

// test 5 is smaller than lowest so far.
This fixes the code – but there are several other things worth commenting
on. Firstly, this sort of code cries out for a loop! In order to do this we want
an array variable rather than 5 separate variables. C++ comes with a
suitable collection object: the vector. So we can replace the list of
variables test1 to test5 with:

std::vector<int> test(5);
then the input, the test and the addition can all be done by using loops –
this is immediately generalisable to cases where you’ve got more (or less)
than 5 numbers to process.

To make the code more robust, this should be the last time we use the hard-
coded number ‘5’ – the rest of the program can use the size of the vector
to ensure it copes with changes to this number.

for(int i = 0; i != test.size(); ++i)
cin >> test[i];

int lowest = test[0];
for(int i2 = 1; i2 != test.size(); ++i2)
if(test[i2] < lowest) lowest = test[i2];

// get the lowest number
average = 0;
for(int i3 = 0; i3 != test.size(); ++i3)
average += test[i3];

I’d also like to change the names of the variables – the names don’t match
the contents. For example, average and averagescore both contain
totals, not averages!

It is good to pick meaningful names for variables, but important to
remember to keep the names of the variables consistent with their usage to
avoid leading the reader of the code astray.

Lastly, we can get rid of some of the loops by using algorithms provided
by the standard library. We can use min_element to find the lowest value
and accumulate to perform the sum.

My final version of the program looks like this:
#include <iostream>
#include <iomanip>
#include <vector>
#include <algorithm>
#include <numeric>
using namespace std;

int main() {
cout << "This program will gather "

<< "five test scores and\n";
cout << "drop the lowest score, "

<< "giving you the average\n" << "\n";
cout << "Please enter Five Test scores\n";
std::vector<int> test(5);
for(int i = 0; i != test.size(); ++i)
cin >> test[i];

int lowest = *min_element(test.begin(),
test.end());

int totalscore = std::accumulate(test.begin(),
test.end(), -lowest);

// total score (minus the lowest grade)
int divide = totalscore / (test.size() - 1);

// average grade is then total divided by (n-1)
cout << divide << endl;

// final grade after division
return 0;

}
My hope is that the resultant code is easy to understand and does the task
well enough. This code may be slower to write than the original code the
first time, but with practice it will become second nature. The time spent
learning to do this is also repaid in the reduction in bugs.

From Richard Wheeler <acht85@ukgateway.net>

OK, so I am not a programmer but every now and then I get to look at code,
especially when I want to know what actually happens in a program.
(Especially when I do not believe the documentation or there is no
documentation). Thank heavens this code compiles and runs – I don’t think
I could handle obscure syntax problems. Anyway, full marks to the student
for carrying out sufficient testing to identify that there is a problem. Now,
looking at the student’s code a number of points to comment on jump out at
me. I will treat them in order so the trivial are mixed in with the more
important – but then with just a short piece of code it is not clear how a trivial
comment would scale into a programme with thousands of lines of code.

1. Input validation

There is no validation of the input. This is not the student’s issue but it is
worth a remark as I would expect significant further programming effort
to ensure that the input is properly validated (sensible means of stopping
the programme if run in error, the correct number of exam grades are
entered, each is a number, each within sensible bounds, meaningful error
messages to the user, etc).

9CVu/ACCU/Dialogue

2. Choice of variable names

I do not like variable names which look like reserved words – average
and divide (and further down lowest) make me uneasy. These names
look as though they are self-documenting but I would prefer something
like average_score and lowest_score as better self-documenting
names. [See also comment 7 below].

3. Consistent programming style

I look for a consistent programming style as this should speed up
comprehension of code. Here we have a block where all the int variables
are defined except for the single variable lowest which is defined later.
I may be making a mountain out of a molehill in this case but when a
programme extends to thousands of lines then consistency is important.

4. Program logic

This is the guts of the student’s problem. The process should be to set up a
placeholder for the lowest grade. This is given any grade as its initial value
(and the first grade is as good as any). Then each grade is compared in turn to
the placeholder and if the grade has a lower value the placeholder is reset to
that grade. From this description it follows that the if statements should read

if(testn < lowest)lowest = testn;
for each value of n from 1 to 5.

5. Generalisation (1)

I am against unnecessary generalisation but in this case I think it clarifies
the program logic. If we allow for a variable number of tests we can
generalise the logic into a for loop using an array of test scores.
Something on the following lines should do

lowest_score = test_score(1);
for(int i = 1, i <= number_of_tests, i++) {
if(test_score(i) < lowest_score)
lowest_score = test_score(i);

}
(The student might want to change the input process to start with obtaining
the number of grades, so giving a value to the new variable
number_of_tests – there are other approaches which could be used).

A bit of cleverness might be to avoid the first iteration in the loop as this
is unnecessary. But that, in my opinion, tends to obscure the logic process.

6. Comments should be meaningful (1)

I found the comments against all the if statements were not very helpful.
In fact one reason for generalising to the for loop above was to think how
the for loop should be commented and compare this to the existing
comments. In fact I would not bother to comment the for loop at all.

7. Variable names are misleading

The variable average is set to a total and is not an average at all. As variable
names, average and averagescore give no clues as to the different (or
same) data entities they refer to. divide gives no clues at all to what it
means. I would suggest that the following are more meaningful values

total_score for average
adjusted_total_score for averagescore
final_grade for divide

8. Comments should be meaningful (2)

The comments in the section of code which calculates the final grade are
wrong. (Note the distinction – the variable names are misleading, the
comments are wrong). With good variable names (such as those suggested
above) I think that comments are unnecessary.

9. Magic numbers

The evaluation of divide uses the “magic number” 4. This comment is
scarcely worth bothering about in this specific example but is something
to be aware of if the programme is generalised to handle any number of
grade scores.

10. Generalisation (2)

Following on from the generalisation of the logic there needs to be
corresponding generalisation of calculation of the total_score. I would use

total_score = 0;
for(int i = 1, i <= number_of_tests, i++) {
total_score = total_score + test_score(i);

}

Now there are two for loops. Perhaps compiler optimisation can roll
these up into one. I would do this explicitly and, at last, include a comment

// calculate lowest score and total of all scores
lowest_score = test_score(1);
total_score = 0;
for(int i = 1, i <= number_of_tests, i++) {
if(test_score(i) < lowest_score)
lowest_score = test_score(i);

total_score = total_score + test_score(i);
}

and, just for comparison, we could save the first iteration of the loop
with

// calculate lowest score and total of all scores
lowest_score = test_score(1);
total_score = test_score(1);
for(int i = 2, i <= number_of_tests, i++) {
if(test_score(i) < lowest_score)
lowest_score = test_score(i);

total_score = total_score + test_score(i);
}

But, as I said before, I think this is unnecessary cleverness which obscures
what is happening.

11. User interface niceties

The student has taken care on input to explain to whoever runs the program
what the program does. But for the results, the adjusted grade value is all
that appears. I think it would be an improvement to have a line which
explains the results. Something like

cout << "The adjusted grade for your "
<< "five test scores is \n";

Finally there are a number of other points which make me feel uneasy. I
would want to discuss these with the student’s tutor / mentor / project leader
as to whether the student needs additional help. These are:
● The student’s initial description of the problem does not come over as

fluent English. Is the student a native English speaker? (I have worked
on multi-national projects with English as the project language. I found
that fluent English speakers were still worried that as “non-native
speakers” they could misunderstand the subtleties of requirements etc).
[I don’t know where he is from. David]

● I wonder whether the student’s incorrect comments about calculating
the average etc are a problem with the English language or a problem
with understanding the code.

● Whilst I give the student full marks for identifying the problem through
testing, it is not that difficult to step through this code line by line with
the two sets of test values and work out what is going wrong.

● I could quite well be over-reacting. After all, we all have off-days.
However, I think it would be worthwhile to find out a bit more about
the student and not stop after completing a coding criticsm.

From Neil Youngman <ny@youngman.org.uk>

To start with the question as asked, the code does not always find the lowest
value because the value is only compared with its neighbours, not with the
lowest value found so far. Obviously this can result in the value selected
not always being the lowest.

Once this is fixed, I would expect the the program to work as expected,
provided the input is exactly as expected, but it may not handle any
unexpected variations in input gracefully and any extensions, e.g. to handle
a different number of inputs, will require changes to the code.

After fixing the bug, I would start further improvements to the code by
providing a more flexible input mechanism that allows the variable
numbers of inputs. I would also break the program down into functions
that will handle the individual tasks, so I might as well make this change
by way of a new function, which I shall call input_data. I have defined
input_data as:

std::vector<int> input_data(istream &in) {
std::vector<int> data;
while(!in.eof() && in.good()) {
int val;
in >> val;
if(in.good()) {
data.push_back(val);

}
}

if(!in.eof()) {
// We should only get here if there
// has been an error on the stream
cerr << “Input error reading data”

<< endl;
exit(1);

}
return data;

}
[Watch out here. This function contains some pitfalls. For instance, what happens
when EOF is right after the last number? Is it pushed into the vector? David]

The first thing you should notice is that this function returns a vector
of ints. A vector is a structure provided the standard template library,
which is capable of handling a variable number of elements. As vectors
are defined by templates they may be used to contain any type you choose,
in this case ints. Bear in mind that other list structures are available and
a vector may not always be the best choice.

You may also notice that the input stream is left as a parameter, so that
the function may read data from any input stream, e.g. a file, instead of
being restricted to reading from cin.

Also needed is a way of indicating that the end of input has been
reached. I have chosen to request an end of file character to indicate the
end of the list. Again, this is not the only possible choice and a non technical
audience may prefer something like entering the word “end”, but this
approach is simpler to code.

Another important point is that there was no error checking in your
existing code. This function checks for errors and exits when there is an
error on the stream. You should consider whether this code should continue
when an error has occurred, in which case it will need some action to reset
the stream to a good state before it will be able to read further.

I have updated the prompts to read
cout << "This program will gather test "

<< "scores and drop the lowest" << endl
<< "score, giving you the average of the "
<< "remaining scores" << endl << endl
<< "Please enter your test scores" << endl
<< "When all scores have been entered "
<< "please terminate the list" << endl
<< "with an end of file character "
<< "(^D in Unix, ^Z in Windows)" << endl;

It is important that when you modify a program, comments and text shown
to the user are updated to match. If this is not done at the same time it will
often be forgotten.

Many will argue that the use of endl for all line endings is inefficient.
I prefer to always use endl for consistency, unless a program has a serious
I/O performance problem.

The next task is to find the lowest value, which can be done by a simple
function, but rather than writing our own, we can see that there is a suitable
function already provided in the STL called min_element, which we can
use:

std::vector<int>::iterator lowest
= min_element(data.begin(), data.end());

Similarly we can use the STL function accumulate to produce an initial
sum. To avoid confusion you really should not use the name “average” for
the initial sum, that’s somewhat confusing and your other names are
similarly poorly chosen. I would suggest something like:

int sum = accumulate(data.begin(), data.end(), 0);
int adjusted_sum = sum - *lowest;
int result = adjusted_sum / (data.size()-1);

Other things I would change include changing using namespace std
to using specific items from the std namespace and declaring variables
where they are used instead of declaring them all at the start of the function.
This leaves the final program looking like:

#include <vector>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <numeric>
using std::istream;
using std::vector;
using std::cin;
using std::cout;
using std::cerr;
using std::endl;

std::vector<int> input_data(istream &in) {
std::vector<int> data;
while(!in.eof()) {
int val;
in >> val;
if(in.good()) {
data.push_back(val);

}
}
if(!in.eof()) {
// We should only get here if there
// has been an error on the stream
cerr << "Input error reading data" << endl;
exit(1);

}
return data;

}

int main() {
cout << "This program will gather test "

<< "scores and drop the lowest" << endl
<< "score, giving you the average of the "
<< "remaining scores" << endl << endl
<< "Please enter your test scores" << endl
<< "When all scores have been entered "
<< "please terminate the list" << endl
<< "with an end of file character "
<< "(^D in Unix, ^Z in Windows)" << endl;

std::vector<int> data = input_data(cin);
std::vector<int>::iterator lowest

= min_element(data.begin(), data.end());
int sum = accumulate(data.begin(), data.end(), 0);
int adjusted_sum = sum - *lowest;
int result = adjusted_sum / (data.size()-1);
cout << result << endl;
return 0;

}

From Margaret Wood <margaretwood@pocketmail.com.au>

I’m sure lots of people can tell you why the output of your program
depends on the order you enter the numbers, but I think it will be more
useful to help you work it out for yourself. You can do this by looking at
the values of the variables as you progress through the code. Here is a
modified version of your code, I have added some more calls to cout, to
show the value of lowest after each comparison.

#include <iostream>
#include <iomanip>
using namespace std;

int main() {
int test1, test2, test3, test4, test5,

average, averagescore, divide;
cout << "This program will gather "

<< "five test scores and\n";
cout << "drop the lowest score, "

<< "giving you the average\n";
cout << "\n";
cout << "Please enter Five Test scores\n";
cin >> test1 >> test2 >> test3 >> test4 >> test5;
cout << endl;
int lowest = test1;
cout << "lowest is " << lowest << endl;

// test 1 is the lowest number unless
if (test2 < test1) lowest = test2;

// test 2 is smaller than test 1 unless
cout << "lowest is " << lowest << endl;

// test 3 is smaller than test 2 unless
if (test3 < test2) lowest = test3;
cout << "lowest is " << lowest << endl;
if (test4 < test3) lowest = test4;

// test 4 is smaller than test 3 unless
cout << "lowest is " << lowest << endl;
if (test5 < test4) lowest = test5;

// test 5 is smaller than test 4.

10 CVu/ACCU/Dialogue

11CVu/ACCU/Dialogue

cout << "lowest is " << lowest << endl;
average = (test1 + test2 + test3 + test4 + test5);

// all test scores averaged together
averagescore = average - lowest;

// average score minus the lowest grade
divide = averagescore /4;

// average grade is then divided by 4
cout << endl;
cout << divide << endl;

// final grade after division
return 0;

}
If you run this version, with the values 80,84,60,100,90 it will print out

lowest is 80
lowest is 80
lowest is 60
lowest is 60
lowest is 90
81

Why has lowestincreased to 90? What was the program doing just before
the change? It was comparing test4 and test5. Since test5 is smaller
than test4 the value of lowest is reset to 90. However you only want
lowest to be reset if the new value (test5) is smaller than lowest. Here
is a modified version of your code which should give the answer you want.

#include <iostream>
#include <iomanip>
using namespace std;
int main() {
int test1, test2, test3, test4, test5,

average, averagescore, divide;
cout << "This program will gather "

<< "five test scores and\n";
cout << "drop the lowest score, "

<< "giving you the average\n";
cout << "\n";
cout << "Please enter Five Test scores\n";
cin >> test1 >> test2 >> test3 >> test4 >> test5;
cout << endl;
int lowest = test1;

// test 1 is the lowest number unless
if (test2 < lowest) lowest = test2;

// test 2 is smaller than test 1 unless
if (test3 < lowest) lowest = test3;

// test 3 is smaller than test 2 unless
if (test4 < lowest) lowest = test4;

// test 4 is smaller than test 3 unless
if (test5 < lowest) lowest = test5;

// test 5 is smaller than test 4.
average = (test1 + test2 + test3 + test4 + test5);

// all test scores averaged together
averagescore = average - lowest;

// average score minus the lowest grade
divide = averagescore /4;

// average grade is then divided by 4
cout << divide << endl;

// final grade after division
return 0;

}
Now I would like to mention a few other things I noticed while looking at
your code.

Some of the variable names are misleading. The variable you call
average is in fact the total, averagescore is a modified total – perhaps
you could call it modTotal – and divide is the average.

I’m not sure why you have included iomanip– the code works without
it. [Maybe he thought (mistakenly) it would be needed by std::endl. David]

If this was my code I would calculate the average as a float. For the 5
numbers you entered the average is in fact 88.5, so presenting 88 as your
answer is fair enough, but if you had chosen say, 80, 84, 60, 91, 100, the
average would be 88.75 and in many circumstances it would be better to
round the answer up to 89. However I don’t know the precise details of the
problem you were asked to solve, so let’s leave it as it is for now.

Finally I’d like to look at some ways of making your code more
versatile. At the moment it requires exactly 5 inputs, it is relatively simple
to make it work with any number of scores greater than one.

#include <iostream>
using namespace std;

int main() {
int inValue, total, lowest, count, average;
cout << "This program will gather two "

"or more test scores and\n";
cout << "drop the lowest score, giving "

"you the average\n" << "\n";
cout << "Please enter at least two test scores\n";
cout << "End your input with a single full stop\n";
cin >> inValue;
lowest = inValue;
total = inValue;
count = 1;
while(cin >> inValue) {
++count;
total += inValue;
if(inValue < lowest) lowest = inValue;

}
if (count < 2) {
cout << "This program requires at least "

<< "two values" << endl;
} else {
average = (total - lowest)/(count-1);
cout << average << endl;

}
return 0;

}
Just one more improvement to go! In real life you may not have a user
typing data in at the prompt – it may have come from a database,
spreadsheet or a special user interface. So let’s make your program into a
function that returns the answer to whatever called it. We will assume that
the calling program has already put the values into a vector.

#include <iostream>
#include <vector>
using namespace std;

int myAverage(vector<int> values) {
int total, lowest, average;
total = 0;
lowest = values[0];
for(vector<int>::iterator it = values.begin();

it != values.end(); ++it) {
total += *it;
if(*it < lowest) lowest = *it;

}
average = (total - lowest)/(values.size()-1);
return average;

}

From Nevin Liber <nevin@eviloverlord.com>

The question as stated is slightly wrong. Here is the correction:
80 84 60 100 90 ==> 81 (incorrect!)
80 84 100 60 90 ==> 88 (correct)

[Good, you verified the student’s statement, which was probably a typo. David]

Improvement #1: Fix the bug

The bug is in the if statements: instead of comparing adjacent test scores,
each test score should be compared against lowest. The corrected code:

#include <iostream>
using namespace std;

int main() {
int test1, test2, test3, test4, test5,

average, averagescore, divide;
cout << "This program will gather five "

<< "test scores and\n";
cout << "drop the lowest score, giving "

"you the average\n" << "\n";
cout << "Please enter Five Test scores\n";
cin >> test1 >> test2 >> test3 >> test4 >> test5;
int lowest = test1;
if (test2 < lowest) lowest = test2;

if (test3 < lowest) lowest = test3;
if (test4 < lowest) lowest = test4;
if (test5 < lowest) lowest = test5;
average = (test1 + test2 + test3 + test4 + test5);

// all test scores averaged together
averagescore = average - lowest;

// average score minus the lowest grade
divide = averagescore /4;

// average grade is then divided by 4
cout << divide<< endl;

// final grade after division
return 0;

}
Style: not bad, actually. Only a few minor nits.
1. Don’t include iomanip, since nothing in it is being used.
2. Be more consistent with whitespace.
3. Each variable declaration should be on a separate line.
4. Each variable declaration should be as close to its use as possible.
5. Put curly braces around the statements inside ifs.
6. Pick better variable names (eg: average should really be sum or

total). Note: Since I am trying to build upon the student’s solution,
I will not be changing his variable names even when I know that they
aren’t quite accurate.

Design: once the bug is fixed, his code gets the job done, albeit in a brute
force sort of way.
Extensibility: here is the real shortcoming of this code. The number of
test scores is fixed at 5. The number of scores we drop is fixed at 1. We
can, of course, do better.

Improvement #2: Variable number of test scores

When I first read this problem, it screamed out to me that we should be
using algorithms over a collection of test scores. Without changing the
structure of the original solution too much, I came up with:

#include <algorithm> // for std::min_element
#include <deque>
#include <iostream>
#include <iterator> // for std::distance
#include <numeric> // for std::accumulate
typedef std::deque<int> Scores;
int AverageTestScore(Scores::iterator first,

Scores::iterator last) {
int lowest = *std::min_element(first, last);
int average = 0;
average = std::accumulate(first, last, average);
int averagescore = average - lowest;
int divide = averagescore

/ (std::distance(first, last) - 1);
return divide;

}
int main() {
std::cout << "This program will gather test scores "

<< "and\ndrop the lowest score, giving you "
<< "the average\n\nPlease enter Test scores, "
<< "followed by \"end\"" << std::endl;

// store all the ints in cin into scores
Scores scores;
int test;
while(std::cin >> test) {
scores.push_back(test);

}
// Need at least two elements for this calculation
if(1 < scores.size()) {
int divide = AverageTestScore(scores.begin(),

scores.end());
std::cout << divide << std::endl;

}
else {
std::cerr << "The number of scores needed is "

<< "at least 2; you only entered "
<< scores.size() << std::endl;

return 1;
}
return 0;

}

Highlights:
1. I use a deque to store the elements. I could have just as easily used a

vector or even a list. It is hard to make the tradeoffs between them
without running this on real data and profiling.

2. Unlike the original solution, there is now a potential error condition
when too few scores are given to perform the calculation. I had to add
code to handle this situation.

3. I use the min_elementalgorithm to get the lowest score. Since I know
there are at least two elements in scores, I also know that I can legally
dereference the iterator returned from min_element.

4. I use accumulate to calculate the average. A better variable name
would have been sum or total, but I was trying to keep this as close
to the original solution as possible.

5. Both min_element and accumulate do not modify the collection, and
they are “linear” (O(N)) algorithms.

6. Since there are at least two elements in scores, the division performed
in dividewill never result in a divide by 0 error.

Improvement #3: Variable number of low scores dropped

In order to do this, we need to sort the scores. There are a variety of
different ways to do this. We could store them in a multiset. We could
sort the entire collection. But this is overkill (in the sense of greater than
linear time algorithms, such as Nlog(N)), as we don’t need to sort the entire
collection; we just need to group the low scores away from the high scores.
And there just happens to be an algorithm which does what we want:
nth_element(...). What it does is put the nth element in the correct
position as if the whole thing were sorted, and all the elements before the nth
position are <= the nth element, and all the elements after the nth position
are >= the nth element. Plus, nth_element(...) runs in linear time on
average. However, nth_element(...) requires random access iterators,
thus limiting the collection types to vector or deque, but not list.

#include <algorithm> // for std::nth_element
#include <stdlib.h> // for exit
#include <deque>
#include <iostream>
#include <numeric> // for std::accumulate
typedef std::deque<int> Scores;

int NonnegativeIntFromCin() {
int value;
if(!(std::cin >> value) || value < 0) {
std::cerr << "Next time, please enter a "

<< "non-negative integer" << std::endl;
exit(1);

}
return value;

}
int AverageTestScore(Scores::iterator first,

Scores::iterator low, Scores::iterator last) {
// Put the lowest test scores in [first, low)
std::nth_element(first, low, last);
// Sum all the high [low, last) test scores
int averagescore = 0;
averagescore = std::accumulate(low, last,

averagescore);
int divide = averagescore / (last - low);
return divide;

}
int main() {
// Enter the number of low test scores to drop
std::cout << "This program will gather test scores "

<< "and\ndrop the lowest score, giving you "
<< "the average\n\nPlease enter the number of "
<< "low Test scores to drop" << std::endl;

int lowdropped = NonnegativeIntFromCin();
// enter the test scores
std::cout << "Please enter Test scores, followed "

<< "by \"end\""<< std::endl;
Scores scores;
int test;
while(std::cin >> test) {
scores.push_back(test);

}

12 CVu/ACCU/Dialogue

13CVu/ACCU/Dialogue

// need at least 1 more score than number dropped
if(lowdropped < scores.size()) {
int divide = AverageTestScore(scores.begin(),

scores.begin() + lowdropped, scores.end());
std::cout << divide << std::endl;

}
else {
std::cerr << "The number of scores needed is "

<< "at least " << lowdropped + 1
<< "; you only entered " << scores.size()
<< std::endl;

return 1;
}
return 0;

}
The original functionality can be gotten by calling:

AverageTestScore(scores.begin(),
scores.begin() + 1, scores.end());

Improvement #4: Variable number of high scores dropped

That is another predictable extension, and it isn’t hard to add. Basically,
do the nth_element(...) trick on the high side of the collection as well,
taking care not to resort the lowest scores.

#include <algorithm> // for std::nth_element
#include <stdlib.h> // for exit
#include <deque>
#include <iostream>
#include <numeric> // for std::accumulate
typedef std::deque<int> Scores;

int NonnegativeIntFromCin() {
int value;
if(!(std::cin >> value) || value < 0) {
std::cerr << "Next time, please enter a "

<< "non-negative integer" << std::endl;
exit(1);

}
return value;

}
int AverageTestScore(Scores::iterator first,

Scores::iterator low, Scores::iterator high,
Scores::iterator last) {

// Put the lowest test scores in [first, low)
std::nth_element(first, low, last);
// Put the middle test scores in [low, high)
std::nth_element(low, high, last);
// Sum all the middle [low, high) test scores
int averagescore = 0;
averagescore

= std::accumulate(low, high, averagescore);
int divide = averagescore / (high - low);
return divide;

}

int main() {
// Enter the number of low test scores to drop
std::cout << "This program will gather test "

<< "scores and\ndrop the lowest score, "
<< "giving you the average\n\nPlease enter "
<< "the number of low Test scores to drop"
<< std::endl;

int lowdropped = NonnegativeIntFromCin();
// Enter the number of high test scores to drop
std::cout << "Please enter the number of high "

<< "Test scores to drop" << std::endl;
int highdropped = NonnegativeIntFromCin();
// enter the test scores
std::cout << "Please enter Test scores, "

<< "followed by \"end\"" << std::endl;
Scores scores;
int test;
while(std::cin >> test) {
scores.push_back(test);

}

// need at least 1 more score than number dropped
if(lowdropped + highdropped < scores.size()) {
int divide = AverageTestScore(scores.begin(),

scores.begin() + lowdropped,
scores.end() - highdropped, scores.end());

std::cout << divide << std::endl;
}
else {
std::cerr << "The number of scores needed is "

<< "at least " << lowdropped + highdropped + 1
<< "; you only entered " << scores.size()
<< std::endl;

return 1;
}
return 0;

}
The original functionality can be achieved by calling

AverageTestScore(scores.begin(), scores.begin() + 1,
scores.end(), scores.end());

As you can see, this isn’t much different than my solution for improvement
#3. Since it didn’t involve much extra engineering or testing, I felt it was
worth adding this functionality. Your mileage may very.

At this point I am done. There are other ways to extend this code (for
instance, making AverageTestScorea templated function instead of hard
coding its parameters); however, they tend to get in the way of readability
and understandability for a student first getting started with the language
(my target audience), and I’ll leave those as an exercise for the reader.

From Chris Main <chris@chrismain.uklinux.net>

“It’s not fair!”
Inspector Slack was dozing peacefully in his favourite armchair after

his Christmas dinner when he was interrupted by the familiar and
unmistakeable sound of his children bickering.

“It’s that computer game Sergeant Lake gave us for Christmas. Joy
scored 80, 84, 60, 100 and 90 and got a grade of 88. I scored 80, 84, 100,
60 and 90 and only got 81”, complained Matthew.

“Why is that unfair?”
“Because I got exactly the same scores, just in a different order”.
“Just like those gloves I knitted for little Tommy Smith”.
Slack ignored this remark from his house guest, a little old lady knitting

quietly in the corner, and proceeded to vent his fury on his sergeant.
“Lake! I told him that Open Source Software would be no good.

Bungling amateurs!”.
“Did you say Open Source, Inspector?” inquired Miss Marple. “Doesn’t

that mean anyone can read the program? I should be most interested to see
it, though I don’t suppose I shall understand it.”

Before Slack had time even to think “interfering old woman”, Matthew
had downloaded the source code from the internet and built it.

“See. If I enter my scores it gives me 81, but if I enter Joy’s she gets
88.”

“Oh dear!” exclaimed Miss Marple. “Do we have to type in the numbers
every time we want to try it out?”

“I know,” said Joy, “let’s turn it into a function that can use any input
stream. Then we can feed it test data in string streams and the real thing
from standard input”.

The children typed away busily, setting up a test function that used an
assert to check the result of calculating a grade. With this rearrangement
they could easily add other test cases too:

namespace {
int CalculateGrade(istream &stream) { ... }
struct TestCase {
const char *scores;
int grade;

};
void CheckCalculateGrade(const TestCase &testCase) {
istringstream stream(testCase.scores);
assert(CalculateGrade(stream) == testCase.grade);

}
void TestCalculateGrade() {
const TestCase testCases[]
= { { "80 84 60 100 90", 88 },

{ "80 84 100 60 90", 88 } };
const unsigned count
= sizeof(testCases)/sizeof(testCases[0]);

for_each(testCases, testCases+count,
CheckCalculateGrade);

}
}
int main() {
TestCalculateGrade();
cout << "This program will gather five test "

<< "scores and\n";
cout << "drop the lowest score, giving you the "

<< "average\n" << "\n";
cout << "Please enter Five Test scores\n";
cout << CalculateGrade(cin) << endl;
return 0;

}
When they tried it out, it duly reported an assert failure.

“How thoughtful,” said Miss Marple with approval, “the program prints
out what it is supposed to do. Do all programs do that?”

“Sadly not,” sighed Matthew.
“It should really only be output when a command line option such as /?,

-h or —help is set,” added Inspector Slack with a punctilious air of authority.
“Dear me, my eyesight is poor these days, I seem to be seeing double

looking at this program,” fussed the old lady as she adjusted her spectacles.
“It’s not your eyes,” replied Joy, “it’s just that every line has a comment

repeating what the previous line does.”
“Well, my dears, let’s get rid of all that. There’s absolutely no point in

stating the obvious.”
Slack bristled as he felt sure that Miss Marple had glanced knowingly

at him when making this last point, but now she was again scrutinizing the
code with an expression of sweetness and innocence on her face.

“Ah, that’s much clearer. Now, surely what is named an average is
really a sum, and what is called divide is actually the average.”

Matthew reworked the code. “You always manage to work out which
people aren’t who they say they are. I bet that fixes it.” He ran the program,
but it still failed. Slack allowed himself a smile of satisfaction; this problem
demanded professional detection skills.

“I thought these computers were supposed to make tasks easier, but I notice
you still have to add up the test scores in one big sum,” observed Miss Marple.

“We could use std::accumulateinstead,” answered Joy, “but we have
to put the scores in a container first, like a vector.” Miss Marple wasn’t
quite sure what a vector was. Her nephew Raymond West had once taken
her for a very fast drive in his sports car which she was sure was called a
Vector. With this fond memory she encouraged Joy to make the change. From
this it became apparent that the number 5 would make a useful constant for
the input loop, and could be used in the average calculation.

“Such a pity,” muttered Miss Marple as she considered the simplicity
of the accumulate statement.

“What’s a pity?” asked Matthew.
“I was thinking, if only there were a nice function already available for

finding the lowest value, similar to accumulate for finding the sum”.
“But there is, it’s called std::min_element.” Matthew replaced all

the if statements with min_element. The first attempt failed to compile,
then he remembered it returned an iterator rather than a value. After de-
referencing it the code built. Even better, the tests ran successfully too.

“I’ve got it!” cried Inspector Slack, who had been working feverishly
with pencil and paper.

“It’s okay, Dad, Miss Marple’s already fixed it,” Joy informed him.
Crestfallen, Slack looked at their code:
namespace {
const int scoreCount = 5;
int CalculateGrade(std::istream &stream) {
vector<int> scores;
for(unsigned n = 0U; n != scoreCount; ++n) {
int score;
stream >> score;
scores.push_back(score);

}
const int sum = accumulate(scores.begin(),

scores.end(), 0);
const int lowest

= *min_element(scores.begin(), scores.end());
const int average = (sum-lowest) / (scoreCount-1);
return average;

}
}

“Yes, but that doesn’t explain why the original code didn’t work. You see,
the if statements compare each value to the previous value, when they
should compare each value to the current lowest value.”

“How clever of you, Inspector,” said Miss Marple. Slack beamed with pride.
“However,” she went on, “it seems to me that the really interesting question

is why the mistake occurred. The programmer says in, now what did Joy call
them? oh, yes, in the comments that he is using ‘the equation’ to drop the
lowest number. He must have either been given the wrong equation or, more
likely, noted it down incorrectly. I remembered I once made a mistake copying
a knitting pattern from Mrs McGillicuddy, and made a pair of gloves for little
Tommy Smith where the fingers came out in the wrong order.”

Seeing the look of disappointment on the Inspector’s face, and feeling
guilty for outwitting him whilst enjoying his hospitality, she made a
proposal. “I should very much like to see one of your magic tricks,
Inspector, I do so enjoy them.”

“I’ve been working on sawing the lady in half. Perhaps you’d like to lie
down in that box over there while I fetch my saw,” suggested Slack, with
just the slightest hint of menace.

From Ian Glover <ian@manicai.net>

First the bug, the code above only works if the numbers after the lowest
value are in increasing order, so for instance 80, 84, 100, 60, 90 works
because the sequence 60, 90 is increasing, but 80, 84, 60, 100, 90 does not
as 60, 100, 90 is not an increasing sequence (the problem description is the
wrong way round it terms of the output of these sequences). The simplest
correction would be not to compare each value in the series to the previous
but to compare it to the lowest found so far.

int lowest = test1;
// test 1 is the lowest number unless

if(test2 < lowest) lowest = test2;
// test 2 is smaller or

if(test3 < lowest) lowest = test3;
// test 3 is smaller or

if(test4 < lowest) lowest = test4;
// test 4 is smaller or

if(test5 < lowest) lowest = test5;
// test 5 is smaller.

While this fixes the bug it does leave some aspects still wanting in the
program.

To deal with some of the stylistic points first. The early declarations of
average, averagescoreand divideare unnecessary and should be shifted
to where those variables are first defined. It would also be worth changing the
name of average and averagescore, because the names do not match the
meanings, perhaps total and amendedtotal respectively; divide could
then be renamed averagescorewhich gives a better sense of its purpose.
Another minor point is that the inclusion of iomanip is superfluous as nothing
from this header is used. Personally I would also prefer to use a single
std::cout reference for the printed block at the top, since this makes for
fewer changes should we wish to send the output to a different stream in future
(though this is a more marginal decision than the others).

A rather more major issue than those is the design of the program in that
it does not easily allow extension. As more tests are added we would have
to remember to update the code in seven places (the declaration of the test
variables, the two references to five tests in the printed text, the cin
statement, the comparison tests, the summation to produce the total score
and the division to produce the average). The solution to this is to use one
of the STL sequences to hold the scores.

While the initial thought might be to use std::vectoror std::list,
the arithmetic operations that we do on the sequence suggest a better choice
in the form of std::valarray. This has convenient methods allowing us
to find the minimum held value, the sum of the values and the length which
are the three pieces of information we use. Implementing this change alters
most of the program to produce something like:

#include <iostream>
#include <valarray>

int main() {
const size_t number_of_scores = 5;
std::valarray<int> scores(number_of_scores);
std::cout << "This program will gather "

<< scores.size() << " test scores and\n"
<< "drop the lowest score giving you the "
<< "average\n\n"

14 CVu/ACCU/Dialogue

15CVu/ACCU/Dialogue

<< "Please enter " << scores.size()
<< " test scores\n";

for(size_t i = 0; i < scores.size(); ++i) {
std::cin >> scores[i];

}
int averagescore = (scores.sum() - scores.min())

/ (scores.size() - 1);
std::cout << averagescore << std::endl;
return 0;

}
A couple of notes. As you can see I’ve changed things round so that the
number of scores is only set in one place and everything after that checks
the the valarray size. I’ve also got rid of the intermediate variables for
calculating the average as the method names on valarray express what
the intent of the formula accurately.

From Andrew Marlow <andrew@marlowa.plus.com>

The code is very close to working. There are two bugs: the first bug is in
the code to calculate lowest. The code needs to compare successive grade
results with the current value of lowest, like this:

int lowest = test1;
if (test2 < lowest) lowest = test2;
if (test3 < lowest) lowest = test3;
if (test4 < lowest) lowest = test4;
if (test5 < lowest) lowest = test5;

The code was comparing adjacent grades, which is why the bug was
dependent on the order of the grades.

The other bug was in the calculation of the integer average. The average
of 80, 84, 90 and 100 is 88.5, which is 89 to the nearest integer. The average
should be calculated as a floating point number and then rounded to the
nearest integer using the ceil function from cmath, thus:

divide = int(ceil(averagescore / 4.0));
The code could be left with these corrections and it would work but the
code is not extensible; it only works for five grades. With the current
approach, extending the program for a larger number of grades, say N,
would result in code additions proportional to N.

There are a few minor points on style, such as inaccurate comments and
misleading variable names, which can be taken care of whilst refactoring
to make the code more extensible should a larger number of grades be
required. The line:

const int scores_count = 5;
can be used to set the number of grades the program is to cope with. The
cout statements at the start can use scores_count to say how many
grades the program is for.

The grades can be held in an array, and functions sum and lowest used
to return grade sum and lowest grade respectively. These functions have
no need to belong to a class, so they can reside in the unnamed namespace.

A C-style array could be used to hold the grades, dimensioned to
scores_countelements, but using a vectoris better than using a C-style
array for several reasons:
● once the vector is populated it knows its size so the size does not need

to be given to the sum and lowest functions.
● the future addition of more complex functionality is easier with vector

due to its rich interface.
● The use of fixed size arrays creates opportunities for memory problems

such as accidentally subscripting out of range. vectors manage their
memory automatically and provide natural ways to iterate over all the
items contained.

The student’s code had very misleading variable names used in the calculation.
With the functions mentioned, the calculation can be done as follows:

int total = sum(test_scores);
int low = lowest(test_scores);
int average = int(ceil((total - low)

/ double(scores_count-1)));
With clearer names the code becomes self-documenting and comments
become unnecessary.

The program should annotate its output so that its meaning stands on its
own. This is shown in the complete code for the amended program below:

#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>

using namespace std;

namespace {
int sum(const vector<int>& v) {
int total = 0;
for(vector<int>::const_iterator it = v.begin();

it != v.end(); ++it)
total += *it;

return total;
}
int lowest(const vector<int>& v) {
int result = v[0];
for(vector<int>::const_iterator it = v.begin();

it != v.end(); ++it)
if(*it < result) result = *it;

return result;
}

}
int main() {
const int scores_count = 5;
cout << "This program will gather " << scores_count

<< " test scores and\n";
cout << "drop the lowest score, giving you the "

<< "average\n" << "\n";
cout << "Please enter " << scores_count

<< " test scores\n";
vector<int> test_scores;
for(int i = 0; i < scores_count; ++i) {
int one_result;
cin >> one_result;
test_scores.push_back(one_result);

}
int total = sum(test_scores);
int low = lowest(test_scores);
int average = int(ceil((total - low)

/ double(scores_count-1)));
cout << "average = " << average << endl;
return 0;

}

From Andrew Bache <andy@bache.eclipse.co.uk>

The problem. The program does not function as intended because the if
tests are wrong. Each successive number tested should be compared
against the current lowest number not the following number entered. The
logic error is easily fixed by amending the if tests as follows:

int lowest = test1;
if (test2 < lowest) lowest = test2;
if (test3 < lowest) lowest = test3;
if (test4 < lowest) lowest = test4;
if (test5 < lowest) lowest = test5;

Having made this change the program will function as intended. Issues of
extensibility, design and style were hinted at. I had better address them.

Style

Personally I thought the code as presented was well laid out and easy to
read. It was clear to see what the author’s intention had been, and therefore
where he had gone wrong. Making code easy for others to read is the most
important aspect of ‘style’ and on this count the code, as written, is not bad.
Ideally we write code without bugs, but accepting that we all make mistakes,
if code is written in a manner that clearly communicates in English what
the intent is, then it is easier for both ourselves and others to spot the
mistakes. The style could perhaps be improved in the following ways:

Variable names. The names average, averagescore and divide are
wrong. Is is an arguable point whether we need these variables but if we are
going to use them names should reflect meaning. The names total_score,
adjusted_total and adjusted_average would be better. This follows
from the point made about communicating our intent in English.

Declaration close to use: it is widely accepted that variables should
be declared as close as possible to where they are used. The author does
well in this respect with the declaration of lowest, which is initialised on
declaration and then immediately used in the if tests. However the rest
of the locally declared variables are all together at the start of main and in
the case of divide, it is not used until almost the end of the function. The
reason for this is again to make the code easier to read. By declaring
variables as close as possible to where they are used we do not waste time
scrolling and scanning to absorb the meaning and intent of the code.

Design and Extensibility

These should be considered in the light of current and possible future use.
Current use: One can imagine a teacher with a sheet of scores for each

student in a class, typing them in one at a time and then scribbling down
each adjusted average result at the end of an existing list of scores. As the
program stands the teacher is going to need to retype the program name
for every student or at least use the command history. Putting the core of
the code into a loop with a user generated exit condition seems like an
obvious improvement. Alternatively if the student names and scores are
already available in a suitable electronic form, processing an existing file
and generating an output file with the adjusted average appended to the
end of each line would be an obvious enhancement.

Future use: Next time round there may be seven assignments to mark
or perhaps just three. So variability of the number of test scores per student
and corresponding low scores to drop are obvious enhancements. Indeed
one may wish to change the scoring policy altogether. There may not be an
immediate requirement for these features but adopting a good design early
on will allow incremental improvements and new features to be easily added.

Having thought through some of the possible use cases we are in a
position to focus back on specific design issues to see how a more
extensible foundation might be laid.

main() is too busy. It prompts the user, collects input, processes it and
displays the result. These tasks should be factored into their own functions.
The next issue is the use of magic numbers. Although the hard coded
values of 5 and 1 for the the total number of scores and the scores that
should be dropped are adequate for the current requirement, lifting them
out of the code and into constants of suitable scope will make it easier to
parameterise these in the future as well as clarifying the current code by
providing variable names that are meaningful in English.

The amended code, which functions in the manner intended by the
original code, is shown below. The only functional difference is the use
of the character 5 in our prompt rather than the word five.

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <functional>
#include <cassert>
using namespace std;
typedef vector<int> score_collection;
const int scores_to_include = 5;
const int scores_to_drop = 1;
void display_prompt() {
cout << "Enter your " << scores_to_include

<< " test scores now.\n";
}
void get_scores(istream& in,

score_collection& scores) {
assert(scores.empty());
for(int i = 0; i != scores_to_include; ++i) {
int score = 0;
in >> score;
scores.push_back(score);

}
}
int apply_marking_policy(score_collection& scores) {
assert(scores.size() > scores_to_drop);
sort(scores.begin(), scores.end(), less<int>());
return accumulate(scores.begin() + scores_to_drop,

scores.end(), 0)
/ (scores.size() - scores_to_drop);

}
void put_result(ostream& out, const int result) {
out << result;

}

int main() {
display_prompt();
score_collection scores;
get_scores(cin, scores);
put_result(cout, apply_marking_policy(scores));
return 0;

}

The only interesting thing about display_prompt() is that we now use
the integer constant scores_to_include to construct the prompt.

get_scores() now receives an istream reference as its first parameter.
This is the stream we read the scores from. The second parameter is a collection
that we use to store the scores, also passed by reference. We could have
returned the scores by value but that would involve an unnecessary copy. In
order to keep things simple and similar to the original code we don’t validate
each entered score. In practice this method should check that each score entered
is within in valid range e.g. >= 0 and <= the maximum score for the specified
test. These values could be defined as constants like scores_to_include
and scores_to_drop. The most important thing about this method is that,
like display_prompt()we use the integer constant scores_to_include,
this time in the exit condition of the for loop. We also use a precondition to
make clear our assumptions about the initial state of the container.

apply_marking_policy() does the work of sorting our scores,
accumulating the ones that we are interested in and returning the adjusted
average. It uses the stl algorithms std::sort (along with the function object
(or functor) std::less) and std::accumulate. These work as their
names suggest. For the details refer to Josuttis[1] and Meyer[2]. The
important thing to note in this method is how the second of our constants,
scores_to_drop, comes in to play. Our policy of dropping low scores
before taking the average makes no sense if we attempt to drop all of the
scores or more than we have collected so we make that pre-condition explicit
in the code. Next we sort the scores, writing the result back to the original
container and use the scores_to_dropconstant to skip over the low scores
at the beginning of the sorted collection when we accumulate. Using this
approach places a requirement that our collection of scores must support
random access iterators. (Should you wish to use a std::list<>collection
you would need to adjust this method to use the list member function sort
and then increment the begin iterator to the correct position in a loop using
scores_to_drop.) We use scores_to_drop to adjust our divisor.

put_result() is uninteresting and merits no further comment.
Now that the code is better organised, implementing both our ‘current use’

requirements and our ‘future use’ requirements should be easier. With a bit
more work it should be possible to support both an ‘interactive’ mode where
the results are typed in or a batch mode where we pass our program a file to
process. If we want to adjust either the number of scores or the scores to drop,
the const qualification can be removed and they can be read from the
command line. If we want to process a file, that can be passed as a command
line parameter. If no filename is passed we can assume ‘interactive’ mode.
When in interactive mode the user could type ‘q’ to quit at any point.

Introducing these features inevitably leads to more complexity, but if
the original design is sound that complexity can be managed. If the original
design is rigid and inflexible it simply is not possible to introduce new
features. (Consider the case with the multiple if statements – how do we
handle a variable number of scores?).

A version that includes the full feature list from above, with both
interactive and batch mode was developed (Unfortunately there is not room
to display it here but email me for a copy if you are interested). There is
still room for improvement with this version. Validation is not included
and the basic policy for calculating the adjusted average is fixed.
Supporting different policies might be an interesting application in the use
of policy template classes.

References:

[1] Nicolas Josuttis The C++ Standard Library A Tutorial and Reference.
[2] Scott Meyers Effective STL.

From Seyed H. Haeri <shhaeri@math.sharif.edu>

First of all, let me answer the main question. Why does the piece of code
don’t do what’s desired? Simply, because it’s logically wrong. Consider
the way it tries to choose the lowest element:

int lowest = test1;
if(test2 < test1) lowest = test2; // So far, so good.
if(test3 < test2) lowest = test3; // Why?

The question is that given the second condition is true, how does it mean that
the lowest element so far is test3? The following sequence is one example
where this conclusion is wrong: “10, 21, and 18”. As you can see, here, the
first condition doesn’t get desired, and the conclusion after the second
condition comes wrong. The rest of the algorithm falls into the same trap.

Apart from that, and assuming that the algorithm is correct, I’d suggest
the student to reconsider the code so that he/she can see whether he/she
can use better constructs in his code. The code is in fact full of poor issues:

16 CVu/ACCU/Dialogue

17CVu/ACCU/Dialogue

● That vague #include <iomanip> is, IMHO, a pre-standard beast
lurking at the beginning of the code, according to a misconception that
it is needed to enable us to use std::endl. As per the (98) Standard
(§27.6.1.3/637, Phrase 22, which is an example), to use std::endl, it
is enough to #include <iostream>.

● using namespace std; is another root of evil as many of the authors
have also mentioned that. It is best to get used to avoid that, even in
these plain-Jane examples.

● This code works for just when you want to do desired job for a sequence
of length five. If this is going to be case forever, then “5” turns out to
become a magic number, and hence, should be stored in a constant.
Otherwise, to take the code out of this silly hard-wired-ness, and to
make it flexible enough to deal with sequences of any length, there are
two major alternatives to store the input numbers in: dynamic arrays,
or std::vector<>. I wouldn’t recommend the former, and to know
the reason, I would address the student to bewildering number of pages
divined to this in the C++ literature.

This is how the first few lines of code will become after the above
considerations

#include <iostream>
#include <vector> // Perhaps. See below.
int main () {
using std::cout;
using std::cin;
using std::endl;

if five is going to live forever
const size_t len(5);
int test[len];

and if it may change
using std::vector;
vector<int> test;

Note that having chosen this, you need to add #include <vector> as well.
After a few std::couts, the best way to read the input sequence is not

to re-invent wheel. That is, to use std::copy():
using std::copy;
using std::istream_iterator;

Which require #include <algorithm> and #include <iterator>.
Either
copy(istream_iterator<int>(cin),

istream_iterator<int>(), test);
Or

using std::back_inserter;
copy(istream_iterator<int>(cin),

istream_iterator<int>(), back_inserter(test));
AFAI’ve understood, we’re about to choose the minimum. That’s an easy
piece of job:

using std::min_element;
Either

const int lowest = min_element(test, test + len);
Or

const int lower = min_element(test.begin(),
test.end());

Another useful consequence of this method is the removal of those
excessive comments. (See C++ Gotchas, Item # 1)

Next poor issue which catches my attention is the poor style of naming:
The variable named average is, in fact, the summation of the elements,
and divide is the average!

Neglecting the poor style of naming, I draw your attention to type of
divide. I do doubt if this is what it is assumed to be.

To achieve the desired average, furthermore, I’d do one of the following:
using std::accumulate;

Either
const double average = (accumulate(test, test + len,
0.0) – lowest) / (len – 1);

Or
const double average = (accumulate(test.begin(),

test.end(), 0.0) - lowest) / (test.size() – 1);
Note that to use std::accumulate(), we need to #include <numeric>.

There are two remaining points worse mentioning: First, the initial value
sent to it should be 0.0 rather than 0. (See Effective STL, Item # 37.)
Second, the consts are intentionally put there. They are not modified in
the next steps. Thus, for the sake of const-correctness, they should be
declared so.

Again, many thanks to the Standard as the remained excessive
comments will be vanished. We’re better, however, to add a comment to
the last line.

A little remained point is that if this functionality is likely to be used a
lot by the student, why not modularise it? It turns out that the following
seems to be a best solution then

template<typename ReturnType, typename InputIterator>
ReturnType avgButMin(InputIterator first,

InputIterator last) {
typedef typename iterator_traits<InputIterator>::

value_type value_type;
const value_type m(*min_element(first, last));
const ReturnType avg

= (accumulate(first, last, ReturnType(0)) - m)
/ (distance(first, last) - 1);

return avg;
}

And then use it like this
int a[] = {80, 84, 100, 90, 60};
const size_t n(sizeof(a)/sizeof(*a));
double avg = avgButMin<double>(a, a + n);

I won’t offer any further explanations as how to construct that template
function is another full issue for itself.

From Robert Lytton <robert.lytton@metagence.com>

Student: The problem is, if I change up number 3 and 4 I get a different answer.
Critic: Explain to me what your code is doing.
Student: Well, mainis ...<snip>... and if test5is less than test4 – Ooops

I see my problem. I am not interested if test5 is less than test4, I am
only interested if test5 is less than the lowest.

Critic: How are you going to fix it?
Student: I need to compare each test against the lowest found so far.
Critic: This sounds like a loop...

for(i = 0; i < num_tests; ++i) {
if(test[i] < lowest) {
lowest = test[i];

}
}

Critic: By the way what was the value that should have been returned?
Student: <silence>
Critic: Before we worry about defining and initialising variables for the

loop, let’s take a big step back. Test Driven Development...
First a range of grades and the required results:
80,84,60,100,90 => 88.5
80,84,100,60,90 => 88.5

As the result expected has a floating point, we will use float to store the
numbers. Next a ‘test’ harness:

As we are in C++ we will hold the test data in a vector instead of an array.
We will parcel this up with the expected result in a structure and change test
to grade to aid clarity. For simplicity we will be using namespace std.

#include <iostream>
#include <vector>
using namespace std;

struct test_grade {
vector<float> grade;
float expected_result;

};
void test_average_less_lowest() {
// we can’t pass an array range directly to the
// vector initialisation...
const float test_1[] = {80,84,60,100,90};
const float result_1 = 88.5;
const float test_2[] = {80,84,100,60,90};
const float result_2 = 88.5;
// but we can pass an array iterator range...
const test_grade test_case[]
= { {vector<float>(test_1, test_1 +

sizeof(test_1)/sizeof(test_1[0])),
result_1},

{vector<float>(test_2, test_2 +
sizeof(test_2)/sizeof(test_2[0])),
result_2} };

const int num_test_cases = sizeof(test_case)
/ sizeof(test_case[0]);

cout << "TEST: average_less_lowest()" << endl;
for(int i = 0; i < num_test_cases; ++i) {
float result

= average_less_lowest(test_case[i].grade);
if(result != test_case[i].expected_result) {
cout << " Failed test " << i << endl;

} else {
cout << " Passed test " << i << endl;

}
}

}
And finally we develop the code: We now have a specification for the
interface – designed by the user not the implementer.

#include <algorithm>
float average_less_lowest(const vector<float>& grade){
float total = 0;
float lowest = grade[0]; // safe initial value
for(int i = 0; i<grade.size(); ++i) {
total += grade[i];
lowest = min(lowest,grade[i]); // from <algorithm>

}
return (total - lowest) / (grade.size() - 1);

}
int main() {
test_average_less_lowest();
return 0;

}
Building and running all works. But what if we only pass in one grade or
even none?

First we write the test cases:
void test_average_less_lowest() {
const float test_1[] = {80,84,60,100,90};
const float result_1 = 88.5;
const float test_2[] = {80,84,100,60,90};
const float result_2 = 88.5;
const float test_3[] = {80};
const float result_3 = 0;
// const float test_4[] = {}; can’t initialise
// an empty array.
const float result_4 = 0;
const test_grade test_case[] = {

{vector<float>(test_1, test_1 +
sizeof(test_1)/sizeof(test_1[0])),
result_1},

{vector<float>(test_2, test_2 +
sizeof(test_2)/sizeof(test_2[0])),
result_2},

{vector<float>(test_3, test_3 +
sizeof(test_3)/sizeof(test_3[0])),
result_3},

{vector<float>(), result_4} };
...

And running the test we discover there is indeed a problem. The 3rd test
case fails, the 4th causes an exception. It seems we need to make sure we
don’t divide by zero and also check for an empty container. In both of these
situations, as specified by the test cases, we return zero. We can also benifit
more from the standard library. We could use an iterator,

vector<float>::const_iterator i;
for(i = grade.begin(); i != grade.end(); ++i) {
total += *i;
lowest = min(lowest,*i);

}
but after checking Josuttis’ “Summary of STL Algorithms” (try
google.com), we can make our intentions clearer.

#include <numeric>
float average_less_lowest(const vector<float>& grade){
float result(0);
const int grades_to_count = grade.size() - 1;
if(grades_to_count > 0) {
const float total = accumulate(grade.begin(),

grade.end(), float(0));
// !grade.empty() so min_element() != grade.end()

const float lowest = *min_element(
grade.begin(), grade.end());

result = (total - lowest) / grades_to_count;
}
return result;

}
Running the tests again, the code fixes the problem found in the new test
cases and does not break the old test cases. How about some more tests?
Considered them added and passing. (Any rounding error within the test
case is left as an exercise for the reader.)

And now for the application:
We will need to use a vector container because

average_less_lowest() expects one. Using a vector automatically
gives us safety in accepting more or less than five grades. It also allows
us to use stream iterators.

#include <iterator>
int main() {
cout << "This program will gather grades and "

<< "drop the lowest, giving you the average\n"
<< "Please enter your grades (ending with "
<< "'=').\n";

// create two iterators, and fill the vector using
// them. Users separate grades with ANY white
// space. Entry is terminated by non-white space,
// non-float character.
istream_iterator<float> intReader(cin);
istream_iterator<float> intReaderEOF;
vector<float> grade(intReader, intReaderEOF);
cout << "Average grade (with lowest removed) for ";
copy(grade.begin(), grade.end(),

ostream_iterator<float>(cout, ", "));
cout << " = " << average_less_lowest(grade) << endl;
return 0;

}
Using Test Driven Development has naturally separated the algorithm from
the application. This is a good thing. We could use a batch file to drive
average_less_lowest() if we wished. Alternatively if using floats is
not what we want, we can change the algorithm easily. Instead of having
two versions we can make average_less_lowest()a template function.
First our test harness: We will factor out the commonality of the testing
loop and use templates.

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
template <typename T>
struct test_grade {
test_grade(const vector<T>& g, const T& r)

: grade(g), expected_result(r) {};
vector<T> grade;
T expected_result;

};
template <typename T>
void call_test(vector<test_grade<T> > test_case) {
vector<test_grade<T> >::const_iterator i;
int num = 0;
for(i = test_case.begin();

i != test_case.end(); ++i) {
++num; // start with test 1 instead of 0,

// for non-programmers
if(average_less_lowest(i->grade)

!= i->expected_result) {
cout << " Failed test " << num << endl;

} else {
cout << " Passed test " << num << endl;

}
}

};
void test_average_less_lowest() {
// we will initialise the floats with ints and
// ignore the warnings!
const int test_1[] = {80,84,60,100,90};
const int test_2[] = {80,84,100,60,90};
const int test_3[] = {80};

18 CVu/ACCU/Dialogue

19CVu/ACCU/Dialogue

// const int test_4[] = {};
vector<test_grade<float> > test_case_float;
test_case_float.push_back(test_grade<float>(

vector<float>(test_1, test_1 +
sizeof(test_1) / sizeof(test_1[0])), 88.5));

test_case_float.push_back(test_grade<float>(
vector<float>(test_2, test_2 +
sizeof(test_2) / sizeof(test_2[0])), 88.5));

test_case_float.push_back(test_grade<float>(
vector<float>(test_3, test_3 +
sizeof(test_3)/sizeof(test_3[0])), 0));

test_case_float.push_back(test_grade<float>(
vector<float>(), 0));

vector<test_grade<int> > test_case_int;
test_case_int.push_back(test_grade<int>(

vector<int>(test_1, test_1 +
sizeof(test_1)/sizeof(test_1[0])), 88));

test_case_int.push_back(test_grade<int>(
vector<int>(test_2, test_2 +
sizeof(test_2)/sizeof(test_2[0])), 88));

test_case_int.push_back(test_grade<int>(
vector<int>(test_3, test_3 +
sizeof(test_3)/sizeof(test_3[0])), 0));

test_case_int.push_back(test_grade<int>(
vector<int>(), 0));

cout << "TEST: average_less_lowest() with float"
<< endl;

call_test(test_case_float);
cout << "TEST: average_less_lowest() with int"

<< endl;
call_test(test_case_int);

}
int main() {
test_average_less_lowest();
return 0;

}
Compile and run – the test cases fail to compile as we have no int
average_less_lowest(vector<int>) defined.

Next to fix our development code:
All we need to do is define average_less_lowest() as a

template<typename T> function and replace occurrences of floatwith T.
template<typename T>
T average_less_lowest(const vector<T>& grade) {
T result(0);
const int grades_to_count = grade.size() - 1;
if(grades_to_count > 0) {
const T total = accumulate(grade.begin(),

grade.end(), T(0));
const T lowest = *min_element(grade.begin(),

grade.end());
result = (total - lowest) / grades_to_count;

}
return result;

}
Compile and run and all test cases pass. We have confidence that our quick
change to average_less_lowest() has not broken earlier code and it now
full fills the new ‘spec’ documented in test_average_less_lowest().

From Ken Munro <ken@kjmunro.co.uk>

I’m going to iterate through your code a few times, first, to fix the reported
problem, and then until I’m happy with the code.

1) Fix error

Let’s start with the boring bit and fix the error reported in your code: The
overlong sequence of if statements is the location of the problem, your
code only compares neighbouring scores, e.g.

assume we have scores of: 80, 84, 60, 100, 90
= test1..test5

test3 < test2 (60 < 84) is true thus
lowest = test3, ie, 60, but,

test5 < test4 (90 < 100) is also true which resets
lowest = test5, ie, 90,

which is correct for the local statement but not for the full list of scores.

To fix the problem we need to replace the right-hand side of the <
comparisons with lowest so that each score is compared against the
current lowest score. Running through the above example again gives:

test3 < lowest (60 < 80) is true thus
lowest = test3, ie, 60

test5 < lowest (90 < 60) is now false
leaving us with lowest = 60

which is correct
The code now works ‘correctly’ with the suggested test data, although

questions may be asked as to whether the test coverage is adequate.

2) Code improvements

Comments: A scan through the code reveals that your comments are not
entirely helpful – they comment the obvious and are at too low a level to
be useful. Comments, generally, should be about why and not how. A quick
redraft would give just 3 comments:

// get student’s test scores
cout << “This program will gather five test scores”;
...
// calculate adjusted average score
int lowest = test1;
...
// output average
cout << divide << endl;
...

Unlike the existing comments these should (ideally) be written before your
code is written – we’ll return to the utility of these comments a little later.

Variable naming and usage: The names used within your code are
poorly chosen – I would suggest that you spend more time thinking about
the names used in your code – good code flows from well-chosen names.

To specifics: the variables test1 through test5 should ring alarm bells
with most programmers. Clearly these variables are closely related and should
be grouped together; we’ll adopt the simplest approach of a fixed-sized array.

We’ll also rename to testScores rather than using the anaemic ‘tests.’
While we’re at it we’ll define a constant (or three) as well, which should
get rid of any unsightly magic numbers left in the code:

const int MinScore = 0; // assume %age scores
const int MaxScore = 100;
const int NoTestScores = 5; // must be > 1
typedef int TestScores[NoTestScores];

We’ll leave the test score type as an int, although some might prefer to
hide this decision with a typedef.

Misnamed variables:
average: is used to total the scores – we’ll rename it totalScores.
averagescore: is used to store the total scores minus the lowest score –

we’ll rename it adjustedTotal.
divide: is used to hold the average score – we’ll rename it averageScore.

Assumption: the requirements stipulate that the average is to be a rounded-
down whole number.

Finally (more oft-repeated advice), if you’re using C++ you should try to
use the variables as close as possible to their declarations; this reduces the
amount of mental effort (and stress!) required in looking through the code
and significantly increases the chances of your variables being initialised
correctly, or, indeed, at all. We can now replace the brittle if statements
with a simple loop: see Listing 1.

You may like to note that we can change the number of test scores by
simply changing the NoTestScores constant, cf, your original solution
which would require an additional variable and if statement for each
additional test score.

The above changes were run through the same tests and still appear to work.

3) More improvements

Whilst the code has improved, there are still grounds for concern:
1 Input of scores not restricted to valid values.
2 Lack of proper testing.
3 Mixing UI (user interface) with application code (separation of

concerns).
I’m going to start by ignoring point 1 as it would expand this solution well
past the point of boredom: if we were to do it full justice we’d have to look
at filtering out non-numeric input (including control characters), preventing
buffer-overruns, verifying the resulting numbers, procedural (C) vs OO
(C++) approach, and, possibly even, accounting for platform differences.
The remaining 2 points can be dealt with concurrently, more-or-less.

Unit testing

In any real program you’d be expected to demonstrate its veracity (I would
hope) – with the current program you’d have to draw up a list of inputs,
calculate their averages, and manually input each set and check the output.
This could easily get quite tiresome as it has to be done every time you
change your code, furthermore, you may well find that you need more than
just a couple of data sets – more likely than not we’d have an un(der)tested
program. What you really want is an automated test suite, which takes us
into the realm of unit tests. The code, however, mixes the UI with the
averaging algorithm, preventing us from testing the latter without the former.
We therefore need to break up our monolithic code before we can configure
some simple automated testing (I’m deliberately ignoring the unit test suites
available for C++, such as CppUnit, partly as they’re unlikely to be installed
by default, and partly as I rarely use C/C++ in the real world).

You’ll note that our revised comments each describe a separate part of
the program – these can be conveniently turned into routines, after which,
the comments can be deleted:

getTestScores(testScores);
averageScore = averageScoreFor(testScores);
outputAverageScore(averageScore);

Separating the code is mostly trivial: the only complication is that we’ll
have to put the averageScoreFor routine in its own module (Listings 2
& 3) so that we can use it separately.

A test program is now written, see Listing 4. We’re using simple look-
up tables for the test data but it could equally come from a file or be
generated by an alternative implementation of the algorithm at run-time
etc. The tests are run and, you’ll be relieved to hear, all work correctly. You
should get into the habit of writing unit tests as soon as possible; I can
absolutely guarantee that you will write better code as a result.

Separation of concerns

We have through the above separated the UI and application code – they’re
now in separate routines and namespaces. In the current example, unit testing
not withstanding, it is not a big deal but it is important that you are aware of
the issue, otherwise, for example, if you move to GUI development, you’ll
find that many of the development environments make it all too easy to create
your very own tar pit by seamlessly mixing UI and app code.

4) Future improvements

I’m now reasonably content with the code but I guess we should briefly
consider the future well-being of our code.

Exception handling: I omitted the exception handling from the main
functions in the interests of brevity/clarity, but in production code you
would definitely need them, i.e. do as I say, not...

Expanding the number of test scores: As already noted this should
be easy to do at compile-time. It is, however, a little more challenging at
run-time: here, we’d need some sort of dynamic structure, such as a
container or dynamically-allocated array, which would benefit from being
encapsulated in a class – but that’s another and longer story.

Using a different algorithm: Since the algorithm is now in its own
separately-compiled module we can readily change it without impacting
on the main program. Changing the algorithm at run-time could also be
done but you’d need to set up a class hierarchy (Strategy pattern) or, if
you’re using pure C, an array of function pointers.

Validation of inputs: Discussed earlier (I hope).
Unit tests: If you do extend or modify the code remember to update the

unit tests accordingly. A fairly useful approach to modifying (or creating)
code with unit tests is to write your tests before writing new code – so-
called test-driven development (TDD). Once convinced of the efficacy of
unit testing (and you will be) you should start using a proper unit testing
suite – most of them seem to be modelled on the original JUnit (for Java).

Listing 1: main.cpp

#include <iostream>
namespace {
const int NoTestScores = 5;
const int MinScore = 0;
const int MaxScore = 100;
typedef int TestScores[NoTestScores];
void getTestScores(TestScores& testScores) {
using namespace std;
cout << "This program will gather "

<< NoTestScores << " test scores and\n";

cout << "drop the lowest score, giving you the "
<< "average\n\n";

cout << "Please enter " << NoTestScores
<< " test scores\n";

for(int i = 0; i < NoTestScores; i++) {
cin >> testScores[i];

}
}
int averageScoreFor(const TestScores& testScores) {
int lowestScore = MaxScore;
int totalScores = 0;
for(int i = 0; i < NoTestScores; i++) {
if(testScores[i] < lowestScore) {
lowestScore = testScores[i];

}
totalScores += testScores[i];

}
int adjustedScores = totalScores - lowestScore;
return adjustedScores / (NoTestScores - 1);

}
void outputAverageScore(int averageScore) {
std::cout << averageScore << std::endl;

}
} // namespace
int main() {
TestScores testScores;
getTestScores(testScores);
int averageScore = averageScoreFor(testScores);
outputAverageScore(averageScore);

}

Listing 2: averageScore.h

#ifndef AVERAGE_SCORE_H
#define AVERAGE_SCORE_H
namespace Accu {
const int MinScore = 0;
const int MaxScore = 100;
const int NoTestScores = 5;
typedef int TestScores[NoTestScores];
int averageScoreFor(const TestScores& testScores);

}
#endif

Listing 3: averageScore.cpp

#include "averageScore.h"
namespace Accu {
int averageScoreFor(const TestScores& testScores)

{...} // per listing 1
}

Listing 4: testMain.cpp

#include <iostream>
#include "averageScore.h"
namespace {
using namespace Accu;
const int NoUnitTests = 10;
const TestScores UnitTestInputs[NoUnitTests] = {
// test with lowest value in every position
{60, 80, 84, 100, 90},
{80, 60, 84, 100, 90},
{80, 84, 60, 100, 90},
{80, 84, 100, 60, 90},
{80, 84, 100, 90, 60},
// tests with same values
{50, 50, 50, 50, 50},
{MinScore,MinScore,MinScore,MinScore,MinScore},
{MaxScore,MaxScore,MaxScore,MaxScore,MaxScore},
// ascending and descending tests
{10, 20, 30, 40, 50},
{90, 80, 70, 60, 50}

};
const int UnitTestResults[NoUnitTests] = { 88, 88,

88, 88, 88, 50, MinScore, MaxScore, 35, 75 };

20 CVu/ACCU/Dialogue

21CVu/ACCU/Dialogue

const std::string TestCorrect = ".";
const std::string TestIncorrect = "X";

} // namespace
int main() {
int result = EXIT_SUCCESS;
for(int Test = 0; Test < NoUnitTests; Test++) {
if(averageScoreFor(UnitTestInputs[Test])

== UnitTestResults[Test]) {
std::cerr << TestCorrect;

} else {
std::cerr << TestIncorrect;
result = EXIT_FAILURE;

}
}
std::cerr << "\nUnit tests completed\n";
return result;

}

The Winner of SCC 31
The editor’s choices are:

Ken Munro and Richard Wheeler.
Special mention is to Chris Main for one of the most amusing answers
I’ve ever seen here.
Please email francis@robinton.demon.co.uk to arrange for your prize.

Francis’ Commentary
There are several problems with this program. The first is that the problem has
not been well specified. It seems by examining the code that the intention is to
calculate the arithmetic mean of all but the smallest of five values.

Let us think how we would identify the smallest of a list of numbers.
Assume that we have the list in a column. You would tentatively assume
that the smallest number was the first one and then scan down the list
checking each subsequent value to see if it was smaller than the current
smallest. If it is we update the smallest value. When we reach the end of
the list we know what the smallest value is.

Let me focus on this and assume that the student knows nothing about
arrays or any other form of collection (yes, I know that is pretty silly, but
sometimes instructors like to set these exercises as motivating examples
for introducing collections.)

Assuming that we have initialised the five variables; test1, test2,
test3, test4 and test5; the following piece of code exactly duplicates
the above description.

int lowest(test1); // tentatively assume test1 is
the smallest
if(test2 < lowest) lowest = test2;
if(test3 < lowest) lowest = test3;
if(test4 < lowest) lowest = test4;
if(test5 < lowest) lowest = test5;

Now we can see the student’s critical error. There is no use comparing each
value with the next one, we must compare each value with the lowest so far.

Next let me rewrite the final part of the student’s code so that it is self
documenting:

int const total(test1+test2+test3+test4+test5);
int const top4(total - lowest);
double const mean(top4/4.0);
cout << "The mean grade is " << mean << endl;

One of the important points here is that variables are only declared when
we are ready to initialise them. In addition I advocate using const qualified
variables extensively. The student was already part of the way there by
using named variables to identify each step in the calculation, though the
names he chose were not exactly the most appropriate ones.

I am not going to comment on the data capture part of the program
because it is tedious and if the student was limited to placing everything
in main() without using loops or containers there is not much option.

Once we allow the student to use a loop things become much neater because
we read in the first value and use it to initialise both total and lowest. Next
we loop four times reading in a new value, adding it into total and testing to
see if we have to adjust the lowest. The code might look something like:

cout << "What is the first grade? ";
int total;
cin >> total;
int lowest(total);
for(int i(0); i != 4 ; ++i) {
cout << "What is the next grade? ";

int grade;
cin >> grade;
total += grade;
if(grade < lowest) lowest = grade;

}
int const top4(total - lowest);
double const mean(top4/4.0);
cout << "The mean grade is " << mean << endl;

At some point the instructor will need to discuss problems arising from
incorrect data being keyed in. Notice that we now have an extensible program
which can deal with more than five grades by simply adjusting the number of
iterations of the loop. That is a good point to talk about magic numbers.

Finally we have the issue of ‘remembering’ the individual grades rather
than keeping a running total of them. At that point I would be talking to
my students about using std::vector.

Now I have not seen the answers readers sent in, but I suspect most of
them were very anxious to get into using an array or vector. For the problem
as set (and even extended) containers are not that useful and there are a good
number of other programming points that needed to be addressed first.

Student Code Critique 32
(Submissions to scc@accu.org by March 10th)

I still wonder about the lack of knowledge (or rather awareness) among
beginners of the extensive functionality offered by the standard library. Let this
be reflected in your answer to the student, with a corresponding solution.

This computes the product of two N by N matrices. It works fine in cygwin
compiler, but it doesn’t in VC++. The strange thing is when I have N = 2 no
problem, but N = 3 makes problem. I am not sure I use ‘new’ operator correctly
in the following program. Can someone help in finding the problem here ?
#include <iostream.h>
#include <process.h>
void main(void)
{
int N, i, j, k;
double **A, **B, **C;
double sum = 0.0;

cout << "Dimension of Matrix ?" << endl;
cin >> N;

A = new (double *);
B = new (double *);
C = new (double *);
for(i=0; i<N; i++){
A[i] = new double[N];
B[i] = new double[N];
C[i] = new double[N];

}

for(i=0; i<N; i++)
for(j=0; j<N; j++){
cout << "A[" << i << "][" << j << "] = ?" << endl;
cin >> A[i][j];

}

for(i=0; i<N; i++)
for(j=0; j<N; j++){
cout << "B[" << i << "][" << j << "] = ?" << endl;
cin >> B[i][j];

}

for(k=0; k<N; k++)
for(i=0; i<N; i++){
sum = 0.0;
for(j=0; j<N; j++)
sum += A[i][j]*B[j][k];

C[i][k] = sum;
}

cout << endl << endl << endl;

for(i=0; i<N; i++)
for(j=0; j<N; j++)
cout << "C[" << i << "][" << j << "] = "

<< C[i][j] << endl;
}

22 CVu/ACCU/Features

Patterns in C – Part 1
Adam Petersen <adampetersen75@yahoo.se>

Over the last ten years, the pattern format has gained a tremendous
popularity as the format used for capturing experience. One of the reasons
for this popularity is the unique success of the classic book Design Patterns
by the Gang of Four [1]. The Design Patterns book definitively served the
community by spreading the word about patterns.

Today, patterns in the software industry aren’t limited to design; there
exists a broad range of patterns, covering analysis patterns, patterns for
organizations, patterns for testing, etc.

As most patterns are described in the context of an object oriented
design, one is easily led to believe that patterns require a language with
support for object orientation. By browsing a popular online bookstore, I
noticed a lot of language specific pattern literature: design patterns in Java,
C#, Smalltalk and other popular object oriented languages. But, where is
the one targeting the unique implementation constraints and techniques for
the C language? Isn’t it possible to use patterns in the development of C
programs or doesn’t it add any benefits?

An important thing to realize about patterns is that they are neither a
blueprint of a design, nor are they tied to any particular implementation. By
those means, shouldn’t it be possible to find mechanisms fitting the paradigm
of C, letting C programmers benefit from the experience captured by patterns?

What You Will Experience in This Series ...
It is my belief that C programmers can benefit from the growing catalogue
of patterns. This series will focus on the following areas:
● Implementation techniques. I will present a number of patterns and

demonstrate techniques for implementing them in the context of the C
language. In case I’m aware of common variations in the
implementation, they will be discussed as well. The implementations
included should however not by any means be considered as a final
specification. Depending on the problem at hand, the implementation
trade-offs for every pattern has to be considered.

● Problem solved. Patterns solve problems. Without any common
problem, the “pattern” may simply not qualify as a pattern. Therefore I
will present the main problem solved by introducing the pattern and
provide examples of problem domains where the pattern can be used.

● Consequences on the design. Every solution implies a set of trade-offs.
Therefore each article will include the consequences on the quality of
the design by applying the pattern.

... And What You Won’t
● Object oriented feature emulation. The pattern implementations will

not be based on techniques for emulating object oriented features such
as inheritance or C++ virtual functions. In my experience, these features
are better left to a compiler; manually emulating such techniques are
obfuscating at best and a source of hard to track down bugs at worst.
Instead, it is my intent to present implementations that utilize the
strengths of the abstraction mechanisms already included in the C
language.

● In depth discussion of patterns. As the focus in these articles will be
on the implementation issues in C, the articles should be seen as a
complement to the pattern descriptions. By those means, this series will
not include exhaustive, in depth treatment of the patterns. Instead I will
provide a high-level description of the pattern and reference existing
work, where a detailed examination of the pattern is found.

Pattern Categories
The patterns described in this series will span the following categories.
● Architectural patterns. Frank Buschmann defines such a pattern as “a

fundamental structural organization schema for software systems. It provides
a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them” [2].

● Design patterns. These typically affect the subsystem or component
level. Most patterns described in this series will be from this category,
including patterns described in the classic Design Patterns [1] book.

● Language level patterns. This is the lowest level of the pattern-categories,
also known as idioms. A language level pattern is, as its name suggests,
mainly unique to one particular programming language. One simple,
classic example is the strcpyversion from Kernighan and Ritchie [3].
void strcpy(char *s, char *t) {

while(*s++ = *t++);
}

The Foundation
Our journey through the patterns will start with a language level pattern
that decouples interface from implementation, thus improving
encapsulation and providing loose dependencies.

This pattern will lay the foundation for many of the subsequent parts of
this series.

FIRST-CLASS ADT Pattern
It’s getting close to the project deadline as the project manager rushes into
your office. “They found some problem with your code”, he says with a
stressed voice. “According to the test-team, you cannot register more than
42 orders for a given customer. Sounds strange, doesn’t it?”

Darn. You knew it. Those hard coded limits. “Oh, I’ll have a look at it”,
you reply softly. “Fine, I expect the problem to be solved tomorrow”, the
manager mumbles as he leaves your office.

“No problem”, you reply, well confident that the design of the customer
routines are highly modular and clearly implemented (after all, you’ve
implemented it yourself).

You launch your favourite code-editor and open a file with the following
content:

/* Customer.h */
< include guards and include files >
#define MAX_NO_OF_ORDERS 42
/* Internal representation of a customer. */
typedef struct {
const char* name;
Address address;
size_t noOfOrders;
Order orders[MAX_NO_OF_ORDERS];

} Customer;
void initCustomer(Customer* theCustomer,

const char* name, const Address* address);
void placeOrder(Customer* customer,

const Order* order);
/* and a lot of other related functions */

A quick glance reveals the problem. Simply increasing MAX_NO_OF_ORDERS
would do, wouldn’t it? But what’s the correct value for it? Is it 64, 128, maybe
even 2048 or some other magic number? Should customers with one, single
order allocate space for, let’s say, 2047 non-existing orders?

As you think of it, you realize that the current solution doesn’t scale
well enough. Clearly, you need another algorithm. You recall that a linked
list exists in the company’s code library. A linked list must do the trick.
However, this means changing the internal structure of the Customer.

No problem, it looks like you thought of everything; the clients of the
customer module simply use the provided functions for all access of the
customer structure. Updating those functions should be enough, shouldn’t it?

Information Hiding
Well, in an ideal world the change would be isolated to the one, single
module. Given the interface above, clients depend upon the internal
structure in at least one way.

At worst, the clients alter the internals of the data structure themselves
leading to costly changes of all clients.

This can be prevented by frequent code-inspections and programmer
discipline. In any case, we still have the compile-time dependencies and
after changes, a re-compile of all clients is required and the compilation
time may be significant in large systems.

The FIRST-CLASS ADT pattern will eliminate both dependency
problems. The pattern provides us with a method of separating interface
from implementation, thus achieving true information hiding.

Features

23CVu/ACCU/Features

Definition of a FIRST-CLASS ADT
ADT stands for Abstract Data Type and it is basically a set of values and
operations on these values. The ADT is considered first-class if we can
have many, unique instances of it.

Sounds close to the interface listed in the introductory example above,
doesn’t it? However, the data type in the example is not abstract as it fails
to hide its implementation details. In order to make it truly abstract, we
have to utilize a powerful feature of C – the ability to specify incomplete
types.

Incomplete Types
The C standard [4] allows us to declare objects of incomplete types in a
context where there sizes aren’t needed. In our example implementation,
we are interested in one property of incomplete types – the possibility to
specify a pointer to an incomplete type (please note that the pointer itself
is not of an incomplete type).

/* A pointer to an incomplete type (hides the
implementation details). */

typedef struct Customer* CustomerPtr;
Instances of this pointer will serve as a handle for the clients of a FIRST-
CLASS ADT. This mechanism enforces the constraint on clients to use the
provided interface functions because there is no way a client can access a
field in the Customer structure (the C language does not allow an
incomplete type to be dereferenced).

The type is considered complete as soon as the compiler detects a
subsequent specifier, with the same tag, and a declaration list containing
the members.

/* The struct Customer is an incomplete type. */
typedef struct Customer* CustomerPtr;
/* Internal representation of a customer. */
struct Customer {
const char* name;
Address address;
size_t noOfOrders;
Order orders[42];

};
/* At this point, struct Customer is considered

complete. */

Object Lifetime
Before we dive into the implementation of an ADT, we need to consider
object creation and destruction.

As clients only get a handle to the object, the responsibility for creating
it rests upon the ADT. The straightforward approach is to write one function
that encapsulates the allocation of an object and initializes it. In a similar
way, we define a function for destructing the object.

/* Customer.h */
< includes and include guards as before >
/* A pointer to an incomplete type (hides the

implementation details). */
typedef struct Customer* CustomerPtr;
/* Create a Customer and return a handle to it. */
CustomerPtr createCustomer(const char* name,

const Address* address);
/* Destroy the given Customer. All handles to it

will be invalidated. */
void destroyCustomer(CustomerPtr customer);

/* Customer.c */
#include "Customer.h"
#include <stdlib.h>
struct Customer {
const char* name;
Address address;
size_t noOfOrders;
Order orders[42];

};
CustomerPtr createCustomer(const char* name,

const Address* address) {
CustomerPtr customer = malloc(sizeof * customer);
if(customer) {
/* Initialize each field in the customer. */

}

return customer;
}
void destroyCustomer(CustomerPtr customer) {
/* Perform clean-up of the customer internals,

if necessary. */
free(customer);

}
The example above uses malloc to obtain memory. In many embedded
applications, this may not be an option. However, as we have
encapsulated the memory allocation completely, we are free to choose
another approach. In embedded programming, where the maximum
number of needed resources is typically known, the simplest allocator
then being an array.

/* Example of a static approach for memory
allocation. */

#define MAX_NO_OF_CUSTOMERS 42
static struct Customer
objectPool[MAX_NO_OF_CUSTOMERS];
static size_t numberOfObjects = 0;
CustomerPtr createCustomer(const char* name,

const Address* address) {
CustomerPtr customer = NULL;
if(numberOfObjects < MAX_NO_OF_CUSTOMERS) {
customer = &objectPool[numberOfObjects++];
/* initialize the object */

}
return customer;

}
In case deallocation is needed, an array will still do, but a more
sophisticated method for keeping track of “allocated” objects will be
needed. However, such an algorithm is outside the scope of this article.

Copy Semantics
As clients only use a handle, which we have declared as a pointer, to the
ADT, the issue of copy semantics boils down to pointer assignment. Whilst
efficient, in terms of run-time performance, copies of a handle have to be
managed properly; the handles are only valid as long as the real object
exists.

In case we want to copy the real object, and thus create a new, unique
instance of the ADT, we have to define an explicit copy operation.

Dependencies Managed
With the interface above, the C language guarantees us that the internals
of the data structure are encapsulated in the implementation with no
possibility for clients to access the internals of the data structure.

Using the FIRST-CLASS ADT, the compile-time dependencies on
internals are removed as well; all changes of the implementation are limited
to, well, the implementation, just as it should be. As long as no functions
are added or removed from the interface, the clients do not even have to
be re-compiled.

Consequences
The main consequences of applying the FIRST-CLASS ADT pattern are:
1. Improved encapsulation. With the FIRST-CLASS ADT pattern we

decouple interface and implementation, following the recommended
principle of programming towards an interface, not an implementation.

2. Loose coupling. As illustrated above, all dependencies on the internals
of the data structure are eliminated from client code.

3. Controlled construction and destruction. The FIRST-CLASS ADT
pattern gives us full control over the construction and destruction of
objects, providing us with the possibility to ensure that all objects are
created in a valid state. Similarly, we can ensure proper de-allocation
of all elements of the object, provided that client code behaves correctly
and calls the defined destroy-function.

4. Extra level of indirection. There is a slight performance cost involved.
Using the FIRST-CLASS ADT pattern implies one extra level of
indirection on all operations on the data structure.

5. Increased dynamic memory usage. In problem domains where there
may be potentially many instances of a quantity unknown at compile-
time, a static allocation strategy cannot be used. As a consequence, the
usage of dynamic memory tends to increase when applying the FIRST-
CLASS ADT pattern.

[concluded at foot of next page]

Professionalism in
Programming #30
Code Monkeys (Part One)
Pete Goodliffe <pete@cthree.org>

We are just an advanced breed of monkeys on a
minor planet of a very average star. But we can
understand the Universe. That makes us something very special.

Stephen Hawking
As time marches relentlessly onwards we’re drawing near to the 2005
ACCU conference (you have booked your place, haven’t you?) I’ve been
preparing this year’s presentation, and so I thought that this would be a
good opportunity to review what I presented last year.

In a previous article I asked the frivolous question: how many
programmers does it take to change a light bulb? There could be any
number of answers, but it really depends on who is doing the work.
Different programmers work in different ways and will have their own
individual approach to solve the same problem. There is always more than
one way to do it1, and different programmers’ attitudes will lead them to
make very different decisions.

In this series of articles we’ll look at this; we’ll investigate programmer
attitudes, good and bad, and identify the key ones for successful
programming. This includes how we approach the task of coding, and also
how we relate to other programmers. We’ll come to some surprising
conclusions about what makes the best coders.

Monkey Business
The software factory is inhabited by a strange collection of freaks and
social misfits. Any serious software system is built by a bunch of these
people, with their different skill levels and attitudes, all working towards
a common goal.

The way we work together and the kind of code we write will inevitably
be shaped by our attitude to the work. If everyone was a diligent, hard
working genius then our software would be a lot better; delivered on time,
to budget, with no bugs. We’re not perfect, and unfortunately it shows in
the code we write.

To work out strategies to deal with this I’ll lead us on a guided tour
through a gallery of programmer stereotypes. We’ll see the different types
of code monkey. These are all directly based on the types of people I have
met in the software factory. Of course it’s a necessarily general list; you’ll
know programmers who fall into categories other than those listed here, or
even fit several descriptions at once.

Even so, this shameless categorisation will highlight the important facts
and show us how we can improve. We’ll see:
● what makes different types of code monkey tick,
● how to work with each of them,
● how each code monkey can improve, and
● what we can learn from each of them.
As you read each code monkey description, ask yourself:
● Are you this type of programmer? How closely does the description

match your programming style? What lessons can you learn to improve
your approach to coding?

● How many people do you know like this?
Are they close colleagues, and can you work
with them better?
Without further ado, meet The Code
Monkeys...

1. The Eager Coder
We’ll start with this guy,
because he2 probably

embodies the traits of most programmers. The Eager
Coder is fast and fleeting; he thinks in code. An
impulsive, natural born programmer, he tends to
write code as soon as an idea forms in his head. He’s
not good at standing back and thinking first. So,
although an Eager Coder does have very good
technical skills, the code he writes never shows his
true potential.

The Eager Coder often tries to use a new feature or idiom because it’s
fashionable, the best thing since the last big new idea. His desire to try
out new tricks means that he applies technology even when it’s not
appropriate.
Strengths: Eager Coders are productive, in terms of code quantity. They

write a lot of code. They love learning new stuff, and are really
enthusiastic – even passionate – about programming. The Eager Coder
loves his job, and genuinely wants to write good code.

Weaknesses: Due to his unfettered enthusiasm, the Eager Coder is hasty
and doesn’t think before rushing into the code editor. He does write a
lot of code, but because he writes it so fast, it’s flawed – the Eager Coder
spends ages debugging. A little forethought would prevent many silly
errors, and many hours ironing out careless faults.
Unfortunately the Eager Coder is a really bad debugger. In the same
way he rushes into coding, he dives straight into debugging. He’s not
methodical, so he spends ages chasing faults down blind alleys.
He’s a poor estimator of time. He’ll make a reasonable estimate for the
case when it all goes well, but it never does go according to plan; he
always takes longer than expected.

What to do if you are one: Don’t lose that enthusiasm – it’s one of the
best characteristics of a programmer. Because your joy lies in seeing
programs work, to stand back and admire the beauty of code, work out
practical ways to do this.
It mostly boils down to this simple piece of advice: stop and think. Don’t
be hasty. Work out personal disciplines that will help you, even
something basic like writing THINK on a post-it-note stuck to your
monitor!

How to work with them: When they work well, these are some of the
best people to program alongside. The trick is to channel their energy
into productive code rather than mindless flapping. They are great to
get pair programming.
Ask an Eager Coder about what he’s doing each day, and what his plans
are. Show an interest in his design – it will encourage him to really think
about it! If you rely on an Eager Coder’s work, ask for early pre-
releases, and ask to see their unit tests too.

24 CVu/ACCU/Features

Examples of use
The most prominent example comes from the C language itself or, to be
more precise, from the C Standard Library – FILE. True, FILE isn’t
allowed by the standard to be an incomplete type and it may be possible
to identify its structure, buried deep down in the standard library. However,
the principle is the same since the internals of FILE are implementation
specific and programs depending upon them are inherently non-portable.

Sedgewick[5] uses First-Class ADT to implement many fundamental
data structures such as linked-lists and queues.

This pattern may prove useful for cross-platform development. For
example, when developing applications for network communication, there
are differences between Berkeley Sockets and the Winsock library. The
First-Class ADT pattern provides the tool for abstracting away those
differences for clients. The trick is to provide two different implementations
of the ADT, both sharing the same interface (i.e. include file).

Next time
We will climb one step in the pattern categories and investigate a pattern
from the Design Patterns [1] book. The next pattern may be useful for
controlling the dynamic behavior of a program and in eliminating complex
conditional logic.

Adam Petersen

References
[1] Gamma, Helm, Johnson and Vlissides, Design Patterns, Addison-Wesley
[2] Buschmann, Meunier, Rohnert, Sommerlad and Stal, POSA, A System

of Patterns, Volume 1, Wiley
[3] Kernighan and Ritchie, The C Programming Language, Prentice Hall
[4] ISO/IEC 9899:1999, The C Standard
[5] Sedgewick, R., Algorithms in C, Parts 1-4, Addison-Wesley

Acknowledgements
Many thanks to Drago Krznaric and Andre Saitzkoff for their feedback.

1 The Perl programmers’ mantra.
2 I’ll describe all code monkeys as male, for no other reason than clarity of prose.

[continued from previous page]

25CVu/ACCU/Features

An Eager Coder benefits from appropriate management, to help with
his discipline. Make sure his time is carefully placed on a project plan
(you don’t have to plan his time yourself).

2. The Code Monkey
If you ever need an infinite number of monkeys,
these guys would be your first choice. (I wouldn’t
advise it though, you’ll be picking monkeys for a
loooong time!)

The Code Monkey writes solid but uninspired
code. Given an assignment, they’ll faithfully plod
through it, ready to be handed the next one. Perhaps
it’s a little unfair, but because of their menial work
these guys are also known as grunt programmers.

Code Monkeys have quieter personalities. Afraid to push for good jobs,
they tend to get sidelined on unglamorous projects. They carve out a niche
as maintenance programmers, keeping the aged codebase going whilst the
pioneers are off writing exciting replacements.

A junior Code Monkey will learn and progress given time and
mentoring, but is given ‘low risk’ assignments for now. An older Code
Monkey has probably stagnated, and will retire a Code Monkey. He’ll be
quite happy to do so.
Strengths: Give them a job and they’ll do it, reasonably well, reasonably

on time. A Code Monkey is reliable, and can usually be counted on to
put in extra effort when it comes to crunch time.
Unlike an Eager Coder, a Code Monkey is a good estimator of time.
They are methodical and thorough.

Weaknesses: Although a Code Monkey is careful and methodical, they
don’t think outside of the box. They lack design flair and intuition. A
Code Monkey will follow the existing code design conventions
unquestioningly, rather than address any potential problems. Since they
are not accountable for the design, they don’t accept responsibility for
any problems that arise, and won’t often take the initiative to investigate
and fix them.
It’s hard to teach a Code Monkey new stuff; they’re just not interested.

What to do if you are one: Do you want to explore new areas and broaden
your responsibility? If so, start to strengthen your skills by practicing
on personal projects. Grab some books and study new techniques.
Push for more responsibility, and offer to join in the design work. Take
the initiative in your current work – identify possible failure points
early, and work out plans to avoid them.

How to work with them: Don’t look down on a Code Monkey, even if you
have stronger technical skills or greater responsibility. Encourage them
– compliment their code and teach them techniques to improve their
work.
Write your code thoughtfully to make the maintenance programmer’s
job as easy as possible.

3. The Guru
This is the fabled mystic genius, a program wizard.
The Guru tends to be quiet and unassuming, perhaps
even a little odd. He writes excellent code, but can’t
communicate well with mere mortals.

The Guru is left alone to work on the
fundamental stuff: frameworks, architectures,
kernels, and so on. He holds the deserved respect
(and sometimes fear) of his colleagues.

Omniscient, the Guru knows all and sees all. He
turns up sagely in any technical discussion to dispense his expert opinion.
Strengths: Gurus are the experienced magicians. They know all the new

magic, and understand why the old tricks are better. These are the guys
that created magic in the first place. They have a wealth of experience,
and write mature maintainable code.
A good Guru is a wonderful mentor – there’s so much to learn from
him.

Weaknesses: Few Gurus can communicate well. They’re not always
tongue tied, but their ideas fly so fast and at a level beyond mere
mortals’, that it’s hard to follow them. A conversation with a Guru either
makes you feel stupid, confused, or both.
A bad Guru makes a fantastically bad mentor. They find it hard to
understand why others don’t know as much, or don’t think as fast as them.

What to do if you are one: Try to step off your cloud and live in the Real
World. Don’t expect everyone to be as quick as you, or to think in the

same way as you. It takes a lot of skill to explain something simply and
clearly. Practice this.

How to work with them: If you cross paths with a Guru, learn from them.
Absorb what you can – and not just technical stuff. To become
established as a Guru takes a certain temperament and personality –
knowledge but not arrogance. Observe this.

4. The Demiguru
The Demiguru thinks he’s a genius. He isn’t. He talks
knowledgeably, but talks a load of rubbish.

This is probably the most dangerous type of code
monkey; a Demiguru is hard to spot until the damage
is done. Managers believe he’s a genius, because he
sounds so plausible and sure of himself.

A Demiguru is generally less quiet than a Guru.
He’s more boastful and full of himself.

Strengths: It’s easy to assume that a Demiguru has no strengths, but his
great asset is his belief in himself. It’s important to trust your own
abilities, and be secure that you write high quality code. However

Weaknesses: The Demiguru’s great weakness is his belief in himself. He
overestimates his abilities, and when left to make important decisions
will jeopardise your project’s success. At worse, he’s a serious liability.
The Demiguru will haunt you, even after he’s moved on to new
pastures. You’ll be left with the consequences of his bad decisions, and
his overly clever code.

What to do if you are one: Right now, take an honest appraisal of your
skills. Don’t oversell yourself. Ambition is a good thing; pretending to
be something you’re not isn’t.
You may not be doing this on purpose, so be objective about what you
can and cannot do. Be more concerned about the quality of your
software than how important or clever you look.

How to work with them: Be very, very careful.

5. The Arrogant Genius
This guy is a subtle, but significant, variation on the
Guru species. He annoys the pants off of you – he’s
the killer programmer. Fast and efficient, he writes
high quality code. Not quite a Guru, but he’s hot.

But because he’s all too aware of his own skills
he’s cocky, condescending and demeaning. The
Genius is often terminally argumentative, because
he’s so used to being right and having to promote

his correct view over other’s wrong opinions. He’s become used to it now.
The most annoying thing is that most of the time he is right, so you’re

bound to lose any argument with him. If you are correct, he’ll keep talking
until the argument moves on to something he is right about.
Strengths: The Genius has considerable technical skill. He can provide

a strong technical lead, and will catalyse a team when everyone agrees
with him.

Weaknesses: The Genius doesn’t like to be proved wrong, and thinks that
he must always be right. He feels compelled to act as an authority; the
Genius ‘knows’ everything about everything. Even if he has no
experience at all, he still tries to look knowledgeable. He can never say
I don’t know, suffering from a full humility bypass.

What to do if you are one: Not everyone achieves God-like status, but
there are plenty of good programmers worthy of respect. Recognise
this. Practice humility, and honour other people’s opinions
Look for people who might have a more experienced viewpoint, and
learn from them. Don’t pretend – be honest about what you do and don’t
know.

How to work with them: Do show a Genius respect, and show respect
to other programmers around him. Don’t come up against him, and
don’t enter into unconstructive quarrels. But stand your ground – assert
your reasonable opinions and views. Don’t be daunted by him.
Discussing technical issues with a Genius can make you a better
programmer; just learn to detach your emotions first. If you’re sure
you’re correct, gain allies to help fight the stance.
Take heed and avoid being cocky yourself.

Next Time
We’ll look at some more programmer stereotypes, and work out what the
‘ideal programmer’ looks like. Stay tuned.

Pete Goodliffe

26 CVu/ACCU/Features

Wx – A Live Port – Part 3
Jonathan Selby <jon@xaxero.com>

In this, the final part of the series, Jon rounds off the port of an
application from MFC to wxWidgets.

Internet Access
The wxSocket class provides a very simple interface over the Internet.
You will need to have a phone connection or DSL/ISDN network
connection established.

To get a web page is simplicity in itself.
The following is from the samples – Sockets – Client.
// define the URL
wxString urlname = "your.url.com"
wxURL url(urlname);
// Check to see url is valid
if(url.GetError() != wxURL_NOERR) {
m_text->AppendText(("Error: couldn’t parse URL\n"));
m_text->AppendText(("=== URL test ends ===\n"));
return;

}
// Get the data
wxInputStream *data = url.GetInputStream();

Read up in wxStringBase and wxStringBuffer for data manipulation.
This would take about a page in MFC.
For more sophisticated operations like perhaps talking to a mail server

on port 25 you have to establish a socket connection directly using
wxSocketClient. This is derived from wxSocketBase which
handles both Server and Client connections.

Use wxIPV4address to store the address.
wxIPV4address sockAddr;
sockAddr.Hostname(pszHostAddress);
sockAddr.Service(nPort);

The host address can be a server name or a resolved IP Address.
Now we connect:
m_hSocket.Connect(lpSockAddr, TRUE);

Check we are OK
wxASSERT(m_hSocket.Error());

TRUE has the instruction wait for the connection to complete. The
command returns true if a connection was made.

To avoid long timeouts you may want to set this flag to FALSE and use
WaitForConnect after the connect. This will allow you to specify your
own timeout.

Input and output is handled by wxSocketBase .
To read use the following
if(m_hSocket.WaitForRead(-1))
m_hSocket.Read(pszRecvBuffer,256)

To write
wxString Buffer = "DATA";
m_hSocket.Write(Buffer, Buffer.Length());

To close the connection:
if(!m_hSocket.Error()) {
m_hSocket.Close();

}
For more advanced use of both client and server tools please take a look at the
Sockets sample in the wxWidgets samples. The comments are very helpful.

Context Sensitive Help
wxWidgets supports winHelp, Microsoft HTMLHelp and wxHTMLHelp.
The latter being a subset and useful for cross platform operation. There are
also a lot of internal hooks to put in fast context help for dialogs.

Every wxWindow object can have some text associated with it. In
practice this type of help seems to have been the most popular. Most users
want a quick hint to get them on their way rather than a huge tome
presented when they press the F1 button. The old Microsoft way was to
pop up a document with the relevant passage. With a quick hint this would
consume a huge amount of real estate on the screen and the many
keystrokes required to get out of it detracted from the experience and
generally soured the user on the F1 button.

So in this section we will design a simple window based help structure
where every item has help of some kind and the F1 key can be used on the
fly. Lastly we will create a hot link to the documentation file via Shift F1
or a menu item that will allow us to display the help.

If we have been using wxDesigner to its full extent the object
functionality of the tool bar and menu bars will be already in place. You
should see context sensitive help on the status bar as you pass the cursor
over the object and on the toolbar, a tool tip should pop up. If this is not
enough for our poor user, then they will have to start reading the
documentation.

To provide a clearing house for a single point in the application to handle
all help oriented commands (F1, context help), we use in our mainframe
an implementation of wxHelpProvider that allows a great deal of
flexibility here:

In the App Class header create:
wxHelpControllerHelpProvider* provider;

In the mainframe class create as private:
private:
wxHelpController m_help;

and then create an inline function to return the controller
wxHelpController& GetHelpController() {return m_help;}

Now in the App inititialization before and after the Mainframe creation
insert the help implementation:

>> provider = new wxHelpControllerHelpProvider;
>> wxHelpProvider::Set(provider);

Here we substantiate and set the controller class.
// create the main application window
m_mainFrame = new WXWindPlotFrame(m_docManager,

(wxFrame*) NULL, "WindPlot "+rs,
wxPoint(0, 0), wxSize(640, 480),
wxDEFAULT_FRAME_STYLE);

>> provider->SetHelpController(
& m_mainFrame->GetHelpController());

Here we link the controller with the main frame. We can now use the
SetHelpText function of the wxWindow class for any object derived
from wxWindow – views, dialogs etc. Just add the following text to the
constructor for example

WXWindPlotFrame::WXWindPlotFrame(
wxDocManager *manager, wxFrame *frame,
const wxString& title, const wxPoint& pos,
const wxSize& size, long type)

: wxDocMDIParentFrame(manager, frame, -1,
title, pos, size, type, "myFrame") {

SetHelpText(("To review toolbar functions, rest
mouse over the toolbar button and read the
description on the bottom Status
bar.\nSelect help menu Contents for
detailed help"));

When you are in a window that has control and you press F1 you will see
this text pop up in a neat compact frame window. It will disappear on a
single mouse click.

To use the traditional Context Help cursor (the ? And pointer) we need
to issue a context help command.

This is accomplished by associating a menu entry or toolbar button with
wxID_HELP_CONTEXT.

When the context message is received do the following:
BEGIN_EVENT_TABLE(WXWindPlotFrame,

wxDocMDIParentFrame)
EVT_MENU(wxID_HELP_CONTEXT,

WXWindPlotFrame::OnCHelp)
END_EVENT_TABLE()

void WXWindPlotFrame::OnCHelp() {
wxContextHelp chp(this, TRUE);

}
The help controller will handle the rest for you. The Cursor will change
and you can take it where you will. Left Click to see the help text

The First Linux Compile
The main weapon of choice here is the preprocessor. While we are trying
to make our code as portable as we can, some things will have to be done
a little differently.

Using the preprocessor command we can eliminate Unix code from
Windows compiles:

#ifndef WXMS_
—- Unix specific commands
#endif

27CVu/ACCU/Features

Now comes the moment of truth. Prepare to be humbled and pay for all
those sloppy little habits you picked up when using MSVC++.

We are moving over to Linux which though not entirely unfriendly is
less forgiving in many respects. Firstly wxWidgets needs to be installed.

On RedHat 9 this went without a problem – I downloaded the GTK+
tarball and unzipped it into a working directory.

Following the instructions: ./config, make and then a make
install (the last one as root), we were up and running

wxWidgets sets up library and include paths. The command ldconfig
-v sets up the linker paths and you should see libwx_gtk somewhere
in there.

We need to be sensitive to shared libraries. I first tried to compile and
link everything statically. With GTK this is not possible. Most of the high
level widgets need to be loaded dynamically at run time. We can link in all
the wx libraries though so when you configure use the command:

./configure –with-gtk –disable-shared
Now we need to get familiar with the development environment. I use
kdevelop as this has a lot of similar functionality to MSVC. I am a GUI junkie
and am more productive when I have a tool to relate messages to code.

A good move now is to try to run up one of the samples.

Follow These Steps
Navigate to the samples directory of the wx distribution and look for a
project. DocViewMDI is a good one. Rename the file makefile.unx
to Makefile and we have a make environment ready to go.

Now run up kdevelop and from the project menu generate a project file
in same directory. You should now be able to press the cogwheel toolbar
button to compile and run the program and verify that your wx build
environment is ready to go.

Now on to the Port
MSVC is a lot better when it comes to managing projects and files and as a
result my project was spread over several folders. I was re-using source code
in several projects and had a common source folder. This is OK if you are on
your own but in a commercial environment with multiple programmers it is
intolerably sloppy. Common modules should be statically linked into a library
and then included on the link path. Include files should be in a common
include directory. Then all you need to do is put all your C++ code in a
working directory and all the wdr generated includes in the .wdr/ folder.

The construct of the makefile becomes very simple in this case and here
it is:

File: Generic Makefile for wxWidgets under GTK
CXX = $(shell wx-config —cxx)
PROGRAM = WxWindplot
#OBJECTS = WXWindPlotApp.o *.o
OBJECTS = $(patsubst %.cpp, %.o, $(SOURCES))
SOURCES = $(wildcard *.cpp)

implementation
.SUFFIXES: .o .cpp
.cpp.o :
$(CXX) -c 'wx-config —cxxflags' -o $@ $<

Uncomment next line if you need debugging
information
$(CXX) -c 'wx-config —cxxflags' -g -o $@ $<

all: $(PROGRAM)
$(PROGRAM): $(OBJECTS)
$(CXX) -o $(PROGRAM) $(OBJECTS) 'wx-config –libs

--static'
clean:
rm -f *.o $(PROGRAM)

This makefile compiles all .cpp programs in the same directory and links
them. If you uncomment the debugging line and comment out the line
above you will get debugging information.

So Off We Go
Most of the errors you get will be due to include files not properly resolved.
There will also be a few MS specific library calls and you will need to find
ANSI equivalents or look in the wxWidgets documentation. Specific examples
will be platform issues life file name resolution, variable persistence etc.

Remember Unix/Linux file names are case sensitive. Very soon all your
source files will be lower case. Microsoft does not care and allows mixing
of cases.

One thing to be aware of on the port. I have been quite sloppy about
defining variables on the fly. MSVC has a slightly different visibility rule
on dynamic variables. It is good practice to follow the old C rule of
declaring local variables at the beginning of the subroutine to avoid porting
problems. If you declare variable i within a for loop

for(int i=0 ; i<20 ; i++)
and you reference i again you will get an error.

int i;
for(i=0;i<20;i++)

The above is a better way of doing things.
Referencing the contents of wxString – always use

wxString::GetData() and wxString::GetChar(i) as opposed
to referencing the data directly.

Put on your flying goggles and go to work. For my 5,000 line windplot
project over 10 cpp files we had clean compile in 4 hours. It would have
been faster had I done this before. Running the program – Wow it ran first
time. Not perfect but we were cooking. More important I was able to single
step with kdevelop and get an idea where the problems lay.

Where classes have integral data types – wxStringwxLonLong– you
need to use the access functions rather than the classes themselves
wxLongLong you need to pull the long value via wxLongLong::ToLong.
Very important if you are using time variables where everything is LongLong
(takes us over the next rollover event in 2034).

Regrettably a lot of the sexier features of MS Windows are not all
implemented on GTK and especially in things like MDI windows there are
some things lacking. The next step will be to look at these deficiencies and
see how we can address them.

The Tuneup: Basic Debugging
When you get to work with Linux you experience a true multi threaded
multitasking environment. Compared to Windows where your primary
thread will hang on a dialog until you respond. Be prepared for some very
fast lock ups if you put a modal dialog in a the OnDraw loop for instance.

I was having a dreadful time trying to sort out Windows Sockets and
and my breakpoints seemed to be activated at random until I got the hang
of what was going on. From then on it was plain sailing and kdevelop was
a big help. Looking inside classes was not possible with the way I was
using kdevelop and so I have to put in debugging statements to pull values
out of wxStrings to see them. For those who are used to an IDE,
kdevelop worked very well. Above all the price is right.

The problems I encountered on my first run:
File visibility: This is very important and you need to agree on where your

working files will be based.
Month 0 based: July was August until I put in a conditional compile

statement to decrement the month.

Internet Hang-up: Serial Port Access.
Could not open a COM port (/dev/cua0). Using setserial -G
/dev/cua0 I verified the port was valid and then logged on as root and gave
read/write access to all. After that everything worked. [The name of the ports
will vary – the serial ports on my linux box are all ttySx - Ed]

Back to MSVC
The last job was to do a release build and put the windows version on the
web. A nasty shock, every function crashed horribly. In debug it was
perfect. What to do ?

Finally after looking through the support base, I recompiled wxWidgets
specifically disabling optimizations and after the libraries were re-built the
code worked perfectly. All that is needed is to go into the Project menu and
in the settings go to the C++ tab and set optimizations to Disable (Debug).
I had visions of a huge rewrite but fortunately a simple fix was all that was
required.

The most important thing I found in all this was that the underlying
thought process was similar so re-training in wxWidgets from MFC is a
very easy and refreshing process. The Class Wizard and App Wizard that
MFC prides itself on is in fact a great snare and a delusion. The work it
saves you is quite trivial. I am convinced that this toolkit will be with us
for a long time. As open source, its future is assured. The modified GPL
license it is released under means that it will be attractive to commercial
operations and it could be one of the levers that finally puts Linux in the
forefront where it belongs.

Jonathan Selby
[resources section at foot of next page]

28 CVu/ACCU/Features

Elephant – A C++ Memory
Observer

Paul Grenyer <paul@paulgrenyer.co.uk>

What is Elephant?
Elephant is a C++ memory observer. It keeps track of all calls to new and
deletevia custom implementations of operator new and operator
delete. Observers can register to be notified of allocations and deletions
and used to detect memory leaks, keep a track of maximum memory usage
or for any other purpose, by implementing a simple interface.

A notification of an allocation consists of the address and size of the memory
allocated. The line number, function name and file name in which the allocation
takes place can be added by placing special macros in the client code. A
notification of a deletion consists of the address of the memory being freed.

Elephant is not intended to ship in production code. It is intended as a
debugging aid. Elephant’s functionality can be removed simply by
relinking without the Elephant static library. All other code can remain in
place.

Elephant comes with a complete, Aeryn
(http://www.paulgrenyer.co.uk/aeryn) based test suite to
test that it behaves correctly on any given platform.

Where Can I Get Elephant?
Elephant is available for download from:
http://www.paulgrenyer.dyndns.org/elephant/

What Do I Need To Build Elephant?
Elephant uses up-to-date C++ techniques (including member function
templates using the Aeryn unit tests), as well as some classes based on parts
of Andrei Alexandrescu’s Loki library
(http://sourceforge.net/projects/loki-lib/) and therefore
requires a modern compiler. It has been tested on, and provides make files or
project files for the following compilers:
● Microsoft Visual C++ 7.1
● MinGW 3.2.3
● GNU G++ 3.2.3
It may be possible to get Elephant to compile on Microsoft Visual C++ 6.0.

How Do I Build Elephant?
Elephant consists of a group of headers and a static library. The full source
is supplied with Elephant and the static library must be built. Building the
elephant static library couldn’t be easier:

Microsoft Visual C++ 7.1
To build the Elephant library, unit tests and the (test) supporting Aeryn
library with Microsoft Visual C++ 7.1, simply open the Elephant solution
located in the top level Elephant directory and select Build Solution from
the Build menu.

To run the unit tests right click on the TestClientproject in the Solution
Explorer and select Set as StartUp Project, then select Start Without
Debugging from the Debug menu. This should give you the following output:

Aeryn 0.4.0 beta (c) Paul Grenyer 2004
http://www.paulgrenyer.co.uk/aeryn

Ran 21 tests, 21 Passed, 0 Failed.
Press any key to continue

MinGW
To build the Elephant library, unit tests and the (test) supporting Aeryn library
with MinGW open a command prompt and navigate to the top level Elephant
directory. Making sure that the MinGW bindirectory is in your path, type:

mingw32-make
To run the unit tests type the following:

bin\TestClient.exe

This should give you the following output:
Aeryn 0.4.0 beta (c) Paul Grenyer 2004
http://www.paulgrenyer.co.uk/aeryn

Ran 21 tests, 21 Passed, 0 Failed.

For mingw32-make clean to work correctly the rm tool from MSYS
or cygwin must also be in your path.

g++
To build the Elephant library, unit tests and the (test) supporting Aeryn
library with g++ open a command prompt and navigate to the top level
Elephant directory. Checking that g++ and make are both installed
correctly, type:

make
To run the unit tests type the following:

bin/TestClient.exe
This should give you the following output:

Aeryn 0.4.0 beta (c) Paul Grenyer 2004
http://www.paulgrenyer.co.uk/aeryn

Ran 21 tests, 21 Passed, 0 Failed.

The current version of Elephant was tested with g++ 3.2.3 on Red Hat
Linux ES 3.0. If any of the tests fail on your platform Elephant may not
work as expected. If you do have tests that fail, please send me the
complete Aeryn output along with details of your g++ version and
operating system.

How Do I Set Up My Environment To Use Elephant?
Before you can use Elephant, the Elephant static library must be built (see
previous section):
Microsoft Visual C++ 7.1

Elephant_debug.lib (debug)
Elephant.lib (release)

MinGW
libelephant.a

g++
libelephant.a

Regardless of which compiler or platform is used the Elephant library is
places in the bin directory which a subdirectory of the Elephant top level
directory.

Your environment also needs to have access to the Elephant include
directory which is a subdirectory of the top level Elephant directory. The
actual Elephant include files are stored in further subdirectories called
elephant and tools (tools is a subdirectory of elephant). This
is so that Elephant include files can be identified from other include files
which might share the same name. For example:

#include <elephant/newdelete.h>

Microsoft Visual C++ 7.1
Once you have created a solution containing the project which is going to
use Elephant to monitor memory usage, you are ready to add Elephant to
your environment.

There are at least two ways to add the Elephant static library to your
solution:

Method 1: Add the ElephantLib project to the solution.

This method has the advantage that the ElephantLib project is included
in a rebuild all.
1 Right click the solution name in Solution Explorer and select Add

Existing Project from the Add menu item.
2 Navigate to the ElephantLib directory which is a subdirectory of

the Elephant top level directory.
3 Select ElephantLib.vcproj and click open. (This will add the

Elephant library project to your solution.)
4 Right click your project and select Project Dependencies from the menu.

Then put a tick in the ElephantLib box and click Ok.

Resources
wxWidgets : http://www.wxwidgets.org
wxDesigner : http://www.roebling.de/

Another introduction to wxWidgets : http://www.all-the-
johnsons.co.uk/accu/index.html
Porting MFC to wxWidgets : http://www-
106.ibm.com/developerworks/linux/library/l-mfc/

[continued from previous page]

29CVu/ACCU/Features

Method 2: Add the Elephant static library directly to the project.

1 Right click your project and select properties.
2 Set the Configuration drop-down box to All Configurations.
3 Select the Linker folder and then the General item in the tree view.
4 Enter the path to the Elephant static libraries (Elephant\bin) into

the Additional Library Directories box.
5 Set the Configuration drop-down box to debug.
6 Select the Input item from the Linker folder in the tree view.
7 Enter Elephant_debug.lib into the Additional Dependencies

box.
8 Set the Configuration drop-down box to release.
9 Enter Elephant.lib into the Additional Dependencies box.
10 Click Ok
To make the Elephant headers available to your project in your solution
follow these steps:
1 Right click your project and select properties.
2 Set the Configuration drop-down box to All Configurations.
3 Select the C/C++ folder and then the General item in the tree view.
4 Enter the path to the Elephant include files (Elephant\include)

into the Additional Include Directories box.
5 Click Ok.

MinGW & g++
This description of configuring MinGW and g++ to link to Elephant
assumes that you are using a make file to build your project. Of course
this is not the only way.

To link Elephant to your executable (or shared library etc) two extra
parameters need to be added to your link command: the path to the
Elephant static library, preceded by –L and the name of library, preceded
by –l. For example:

g++ myproj.o –LElephant/bin –lelephant myproj
The Elephant include files must be made available to every invocation of
g++ that builds a source (cpp) file that includes, directly or indirectly, an
Elephant include file. This is done by adding a single parameter, which
consists of the path to the Elephant include directory preceded by –I. For
example:

g++ -c -o myproj.o myproj.cpp -IElephant/include

How Do I Use Elephant In My Program?
Assuming that you have built the Elephant static library and integrated it
into your environment (see previous two sections) you are now ready to
use Elephant in your program.

operator new and operator delete
The custom implementations of operator new and operator
delete are the key to Elephant’s ability to monitor memory. There are
overloads for the normal and array versions with corresponding no throw
versions.

To use the Elephant’s custom new and delete operators simply
include the newdelete.h header in your program. For example:

#include <elephant/newdelete.h>
int main() {
return 0;

}
It only needs to be included once, although multiple inclusions will not
do any harm.

Every time a call is made to new or delete the Elephant operator
overloads will register the call with the Elephant memory monitor. The
Elephant memory monitor is observerable and you can register one of the
provided observers or write your own to react to the allocations and de-
allocations.

Example 1: Observing and Reporting a Memory Leak
Let’s start of with a simple example of a memory leak:

#include <elephant/newdelete.h>
class SomethingToAllocate {};
int main() {
SomethingToAllocate* p

= new SomethingToAllocate;
return 0;

}
This program will compile and run and you will see absolutely no
indication of the memory leak. In order to detect the memory leak you

need the leak detector class, LeakDetector. The leak detector class is
an observer of the memory monitor, so you need to register and unregister
it as an observer:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/leakdetector.h>
class SomethingToAllocate {};

int main() {
using namespace elephant;
LeakDetector leakDetector;
// Register leak detector with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&leakDetector);
SomethingToAllocate* p = new SomethingToAllocate;
// Unregister leak detector with memory monitor.
MemoryMonitorHolder().Instance().RemoveObserver(

&leakDetector);
return 0;

}
To use the memory monitor and the leak detector you need to include the
appropriate header files as shown. Running this program will still not
indicate that there is a memory leak. To indicate the memory leak you
need to interrogate the LeakDetector instance. For example:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/leakdetector.h>
#include <cassert>
class SomethingToAllocate {};

int main() {
using namespace elephant;
LeakDetector leakDetector;
// Register leak detector with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&leakDetector);
SomethingToAllocate* p = new SomethingToAllocate;
// Unregister leak detector with memory monitor.
MemoryMonitorHolder().Instance().RemoveObserver(

&leakDetector);
assert(!leakDetector.IsLeak());
return 0;

}
The assert (which required the cassert header as shown) will
indicate that a memory leak has occurred. This particular method of
indicating a memory leak isn’t particularly useful. The next step is to print
the memory address and the size of the leak:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/leakdetector.h>
#include <elephant/leakdisplayfunc.h>
#include <algorithm>
class SomethingToAllocate {};

int main() {
using namespace elephant;
LeakDetector leakDetector;
// Register leak detector with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&leakDetector);
SomethingToAllocate* p = new SomethingToAllocate;
// Unregister leak detector with memory monitor.
MemoryMonitorHolder().Instance().RemoveObserver(

&leakDetector);
// Display the details of the leak.
LeakDisplayFunc leakDisplay(std::cout);
std::for_each(leakDetector.begin(),

leakDetector.end(), leakDisplay);
return 0;

}
The LeakDisplayFunc class constructor takes a reference to an
output stream and has a function operator that can be used, as shown, to
the write memory leak information to the stream. As

30 CVu/ACCU/Features

LeakDisplayFunc uses an output stream it is possible that memory
will be allocated and not freed until the end of main. This is why the leak
detector must be unregistered before the memory leak information is
displayed. Otherwise the output stream allocation will appear as a further
memory leak. One way to avoid having to unregister the LeakDetector
is to write your own function object that displays the memory leak
information without allocating memory using new. For example using
printf.

The output from this program should be as follows, although the address
will be a different value:

Address: 00320B70
Size: 1

Example 2: Recording Line and Filename of Allocation
In the previous example the memory leak was displayed as a memory
address and a size. This can be useful in finding a memory leak, but not as
usual as tracking the exact site of the allocation. Elephant can do this by
introducing a special macro into every translation unit where this type of
tracking is needed. The macro is called ELEPHANTNEW and can be
included anywhere in the translation unit. The following code shows how
the macro would be added to example 1:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/leakdetector.h>
#include <elephant/leakdisplayfunc.h>
#include <algorithm>

#define new ELEPHANTNEW

class SomethingToAllocate {};
int main() {
...

}
The output should now look something like this:

Address: 00322878
Size: 1
Line: 22
Function: main
File: c:\...\example2\main.cpp

Some compilers, such as Microsoft Visual C++ 7.1 will show a fully
qualified function name and a complete a full file path. Other compilers,
such as g++ and MinGW will show only the local function name and file
name without the full path. For example:

Address: 0x3d24f0
Size: 1
Line: 23
File: main.cpp

Example 3: Using the Maximum Memory Observer
The other memory observer supplied with Elephant,
MaxMemoryObserver , is for measuring the maximum amount of
memory used at anyone time by an application. Its use is very similar to
that of LeakDetector:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/maxmemoryobserver.h>
class SomethingToAllocate {};

int main() {
using namespace elephant;
MaxMemoryObserver maxMemory;
// Register max memory observer with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&maxMemory);
SomethingToAllocate *p1

= new SomethingToAllocate[100];
delete[] p1;
SomethingToAllocate *p2

= new SomethingToAllocate[50];
delete[] p2;
// Unregister max memory observer.
MemoryMonitorHolder().Instance().RemoveObserver(

&maxMemory);

// Display the max memory usage
std::cout << "Max memory usage: "

<< static_cast<unsigned long>(
maxMemory.MaxMemory())

<< " bytes\n";
return 0;

}
The output from this simple (not very exception safe) example is as follows:

Max memory usage: 100 bytes
The size of SomethingToAllocate is 1 byte. During the execution of
the program a total of 150 SomethingToAllocate instances are
created and destroyed. However, the program only has up to 100 instances
allocated at any one time. Therefore the maximum amount of memory used
by the program is 100 bytes.

Example 4: Writing a Custom Memory Observer (Part 1)
Elephant can be used for more than just detecting memory leaks and the
maximum memory used by a program. Elephant can be used to monitor
any characteristic of new and delete based memory usage via custom
memory observers. Custom memory observers are simple to create. All
that is required is the implementation of the following interface:

namespace elephant {
class IMemoryObserver {
protected:
IMemoryObserver();

public:
virtual ~IMemoryObserver() = 0;
virtual void OnAllocate(void* p, size_t size,

size_t line, const char* file) = 0;
virtual void OnFree(void* p) = 0;

private:
IMemoryObserver(const IMemoryObserver&);
IMemoryObserver& operator=(

const IMemoryObserver&);
};

}
All that needs to be done to implement the interface is to inherit from it
and override the OnAllocate and OnFree pure virtual member
functions. The OnAllocate function has the following arguments:
p – A pointer to the memory that has been allocated. This is useful for

getting the address.
size – The size of the memory that has been allocated.
line – The line number on which the memory was allocated. This is 0

unless the ELEPHANTNEW macro has been used correctly.
char – The file in which the memory was allocated. This is an empty string

unless the ELEPHANTNEW macro has been used correctly.
The OnFree function has the following argument:
p – A pointer to the memory that has been allocated. This is useful for

getting the address.
The default constructor of the interface is protected to show that the class
should be inherited from. The copy constructor and assignment operator
are private to prevent attempts to copy the interface or its subclasses (unless
the subclasses define their own copy constructor and assignment operator)
and the destructor is virtual to ensure proper destruction should a
dynamically allocated subclass by destroyed via a pointer to the interface.

The example below is of a simple custom observer which records the
total memory allocated by a program during its lifetime:

class TotalMemoryobserver : public
elephant::IMemoryObserver {
private:
size_t totalMemory_;

public:
TotalMemoryobserver()

: totalMemory_(0) {}
virtual void OnAllocate(void* p, size_t size,

size_t line, const char* file) {
totalMemory_ += size;

}
virtual void OnFree(void* p) {}
size_t TotalMemory() const {
return totalMemory_;

}
}

31CVu/ACCU/Features

The OnAllocate override is used to accumulate the size of every
allocation. The other parameters are ignored as they are not needed. The
OnFree function does nothing as we are not interested in de-allocations.
In, for example, the leak detector, the value of p passed to OnFree is used
to match against a previous value of p passed to OnAllocate to show
that the memory has been deleted.

Replacing MaxMemoryObserver, from the previous example, with
TotalMemoryobserverand making a couple of other minor changes:

int main() {
using namespace elephant;
TotalMemoryobserver totalMemory;
// Register max memory observer with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&totalMemory);
SomethingToAllocate *p1

= new SomethingToAllocate[100];
delete[] p1;
SomethingToAllocate *p2

= new SomethingToAllocate[50];
delete[] p2;
// Unregister max memory observer.
MemoryMonitorHolder().Instance().RemoveObserver(

&totalMemory);
// Display the max memory usage
std::cout << "Total memory usage: "

<< static_cast<unsigned long>(
totalMemory.TotalMemory())

<< " bytes\n";
return 0;

}
gives the following output, which correctly indicates the total memory used
by the program:

Total memory usage: 150 bytes

Example 5: Writing a Custom Memory Observer (Part 2)
Sometimes you want to store information about allocations and de-
allocations in a container within a custom memory observer. Containers
do of course allocate memory in order to contain. This could lead to
erroneous memory usage observations and, in a worst case scenario,
infinite recursion.

The simple answer is to use a container that uses malloc and free
instead of new and delete. Or, to be more precise, a container that uses
an allocator that allocates with malloc and free instead of new and
delete. Elephant comes with just such an allocator, called
malloc_allocator, which can be used with any of the C++ standard
library containers. It should be used as follows:

#include <elephant/tools/mallocallocator.h>
#include <vector>

...

std::vector<size_t,
elephant::tools::malloc_allocator<size_t> >
allocStore;

Naturally a typedef can make life a lot easier.
The following example shows a custom memory observer that uses a

container with the malloc_allocator to store two lists of the
addresses, allocations and de-allocations:

#include <elephant/newdelete.h>
#include <elephant/memorymonitorholder.h>
#include <elephant/imemoryobserver.h>
#include <elephant/tools/mallocallocator.h>
#include <vector>

class AllocationMemoryobserver : public
elephant::IMemoryObserver {

private:
typedef std::vector<void*,

elephant::tools::malloc_allocator<void*> >
MAllocContainer;

typedef MAllocContainer::const_iterator
const_iterator;

MAllocContainer allocations_;
MAllocContainer deallocations_;

void Print(const MAllocContainer& cont,
std::ostream& out) {

const_iterator current = cont.begin();
const_iterator end = cont.end();
for(; current != end; ++current) {
out << "\t" << (*current) << "\n";

}
out << "\n";

}
public:
AllocationMemoryobserver() : allocations_(),

deallocations_() {}
virtual void OnAllocate(void* p, size_t size,

size_t line, const char* file) {
allocations_.push_back(p);

}
virtual void OnFree(void* p) {
deallocations_.push_back(p);

}
void PrintAllocations(std::ostream& out) {
out << "Allocations:\n";
Print(allocations_, out);

}
void PrintDeallocations(std::ostream& out) {
out << "Deallocations:\n";
Print(deallocations_, out);

}
};

class SomethingToAllocate {};

int main() {
using namespace elephant;
AllocationMemoryobserver allocationObserver;
// Register max memory observer with memory monitor.
MemoryMonitorHolder().Instance().AddObserver(

&allocationObserver);
SomethingToAllocate *p1

= new SomethingToAllocate[100];
SomethingToAllocate *p2

= new SomethingToAllocate[50];
delete[] p2;
delete[] p1;
// Unregister max memory observer.
MemoryMonitorHolder().Instance().RemoveObserver(

&allocationObserver);
allocationObserver.PrintAllocations(std::cout);
allocationObserver.PrintDeallocations(std::cout);
return 0;

}
The output from this example is as follows:

Allocations:
00322850
00322910

Deallocations:
00322910
00322850

If malloc_allocator is replaced by the default allocator, there is no
output, not even an error message, with both Microsoft Visual C++ and
MinGW.

Elephant and Threading
Elephant has not yet been tested in a multithreaded environment.

The use of the Mutex class and its various implementations are based
on previously known working examples.

Offers to test Elephant in a multithreaded environment will be
gratefully accepted.

By default, Elephant is not thread safe. The mutex.h header file is
included in a number of places and the Mutex class, along with the Guard
class (for exception safety) is used to protect those parts of the library that
may cause problems if accessed by two threads at the same time.

[concluded at foot of next page]

An Introduction to
Objective-C
Part 4 – Some Further Topics
D.A. Thomas

Type Introspection
Objective-C has a rich set of methods by which the contents and
capabilities of an object can be queried. NSObject implements:
(Class)class returns the class object for the receiver’s class.
(Class)superclass returns the class object for the class from which

the receiver inherits.
(BOOL)isMemberOfClass:(Class)class returns YES if the argument

to the method is an instance of the specified class.
(BOOL)isKindOfClass:(Class)class returns YES if the argument

to the method is an instance of the specified class or of a class that
inherits from it.

(BOOL)respondsToSelector:(SEL)aSelector returns YES if the
receiving object is capable of handling a certain message.

There are also functions to query classes for their instance variables and
class and instance methods, and methods can be queried for information
about their arguments.

Extensions
NeXT and Apple have extended the language specified by Cox in “Object-
Oriented Programming, an Evolutionary Approach” with categories,
protocols and, most recently, Java-style exception-handling, thread
synchronisation and support for invoking methods in remote processes.
The last two are considered too specialised to be dealt with in this article.

Categories
Categories add new functionality to an already existing class. They are
particularly useful where you are using a third-party class library and you
are not free to amend that library’s source code. One solution to this
problem is to derive a new class from the one you need to extend, but this
may require detailed knowledge of the superclass, and inheritance
notoriously breaks encapsulation. To create a category, you declare
interface and implementation sections as shown in the pseudocode below:

In the header file, CategoryName.h:
#import "ClassName.h"
@interface ClassName (CategoryName)
method declarations
@end

In CategoryName.m:
#import "CategoryName.h"
@implementation ClassName (CategoryName)
method definitions
@end

A class has a size that is fixed at compilation time, so it is not possible to
add instance variables to an existing class in this manner; the only way to
do this is to use inheritance.

The file StringTokenizer.m contains the following lines:
// Create a category to forward-declare private
// method in order to avoid compiler warnings about
// undeclared methods.
@interface StringTokenizer (Private)
- (void)skipDelimiters;
@end

Since -skipDelimiters is not meant to be directly accessible to the
users of a class, it would be inappropriate to declare it in
StringTokenizer.h, and so I have created a category in the
implementation file to contain declarations of private methods. This is not
strictly necessary, as an Objective-C compiler emits a warning, not an error,
when it is required to compile a message to an undeclared method, and
since the programmer knows that the method has been defined, the program
would work perfectly well without such a category declaration.

Categories can also be used to split up the implementation of a class
into separate units, with perhaps each having its own implementation file;
this would facilitate the development of classes to which more than one
programmer contributes. They can also be used to declare informal
protocols, of which more below.

Protocols
Protocols involve the declaration of a list of methods whose implementation
is deferred to any class that chooses to implement them. If a class adopts an
informal protocol, it can choose which methods to implement, whereas with
a formal protocol, implementations of all the methods listed must reside either
in the class itself or in its superclasses. This is a way of associating classes that
share similar behaviour but are not closely related in the inheritance hierarchy.

Informal Protocols
There is little language support for informal protocols, but in the
Foundation framework, informal protocols are often declared as a category
of the root class, NSObject. Here is the list of methods in GNUStep’s
version of Foundation for the informal protocol NSKeyValueCoding,
which defines a mechanism in which the properties of an object are
accessed indirectly by name (or key), rather than directly through
invocation of an accessor method or as instance variables:

32 CVu/ACCU/Features

Elephant Mutexes
If you open the mutex.h header file, you will see it looks like this:

#ifndef ELEPHANT_TOOLS_MUTEX_H
#define ELEPHANT_TOOLS_MUTEX_H
#include <elephant/tools/nullmutex.h>
//#include <elephant/tools/boostmutex.h>
//#include <elephant/tools/win32mutex.h>
#endif // ELEPHANT_TOOLS_MUTEX_H

There are three types of mutex supplied with Elephant:
Null Mutex

An empty mutex class intended for use in single threaded programs so that
no performance is lost creating, entering or leaving an unnecessary mutex.

Win32 Mutex
Implemented using the Win32 API for use with Windows compilers only.

Boost Mutex
A mutex implemented using boost::mutex
(http://boost.org/libs/thread/doc/mutex_concept.html).

The Null Mutex is used by default. To use one of the other mutexes simply
include its header file in mutex.h instead of nullmutex.h and rebuild
(a rebuild all is recommended).

Custom Mutexes
A custom mutex can be written simply by implementing the following class
in its own header file and including it in mutex.h instead of the other
mutex header files:

namespace elephant {
namespace tools {
class Mutex {
public:
Mutex() {}
~Mutex() {}
void Enter() const {}
void Leave() const {}

private:
Mutex(const Mutex&);
Mutex& operator=(const Mutex&);

};
}

}
Note: As the Enter and Leave member functions are const, you may
need to make the object that holds the current state of the mutex mutable.

Where Next?
This is the very first beta release of Elephant. Therefore I expect I, and
hopefully other people, will find plenty of bugs or new features that should
be implemented, over the coming months.

So far, planned for future releases:
● Threading testing and unit tests.
● Black and white allocation lists
● Client memory tracking

Paul Grenyer

[continued from previous page]

33CVu/ACCU/Features

@interface NSObject (NSKeyValueCoding)
+ (BOOL) accessInstanceVariablesDirectly;
+ (BOOL) useStoredAccessor;
- (id) handleQueryWithUnboundKey: (NSString*)aKey;
- (void) handleTakeValue: (id)anObject

forUnboundKey: (NSString*)aKey;
- (id) storedValueForKey: (NSString*)aKey;
- (void) takeStoredValue: (id)anObject forKey:

(NSString*)aKey;
- (void) takeStoredValuesFromDictionary:

(NSDictionary*)aDictionary;
- (void) takeValue: (id)anObject forKey:

(NSString*)aKey;
- (void) takeValue: (id)anObject forKeyPath:

(NSString*)aKey;
- (void) takeValuesFromDictionary:

(NSDictionary*)aDictionary;
- (void) unableToSetNilForKey: (NSString*)aKey;
- (id) valueForKey: (NSString*)aKey;
- (id) valueForKeyPath: (NSString*)aKey;
- (NSDictionary*) valuesForKeys: (NSArray*)keys;
@end

Any object that derives from NSObject can select from this list which
methods it needs to implement in order to acquire appropriate key-value
coding functionality.

Formal Protocols
Formal protocols are enforced by the language. They are declared as in the
following pseudocode:

@protocol ProtocolName
method declarations
@end

Here is a declaration for the NSCoding protocol for the serialisation
(‘flattening’) and deserialisation (reconstruction) of objects associated with
archiving from disk or some other form of distribution to another address space.

@protocol NSCoding
- (void) encodeWithCoder: (NSCoder*)aCoder;
- (id) initWithCoder: (NSCoder*)aDecoder;
@end

If the class Person needed to be stored on disk, it would adopt the
NSCoding protocol:

#import <Foundation/Foundation.h>
@interface Person : NSObject <NSCoding>
{
NSString *name;
NSString *address;

}
// Accessor methods
- (NSString *)name;
- (NSString *)address;
- (void)setName:(NSString *)aName;
- (void)setAddress:(NSString *)anAdress;
// Other methods ...
@end

@implementation Person
// Accessor methods
- (NSString *)name {return name;}
- (NSString *)address {return address;}
- (void)setName:(NSString *)aName
{
[aName retain];
[name release];
name = aName;

}
- (void)setAddress:(NSString *)anAdress
{
[anAddress retain];
[address release];
address = anAdress;

}
// NSCoding methods
- (void) encodeWithCoder: (NSCoder*)aCoder
{

[super encodeWithCoder:coder];
[aCoder encodeObject:name];
[aCoder encodeObject:address];

}
- (id) initWithCoder: (NSCoder*)aDecoder;
{
self = [super initWithCoder:coder];
name = [[coder decodeObject] retain];
address = [[coder decodeObject] retain];
return self;

}
// Called when the object is deallocated
- (void) dealloc {[name release]; [address release]}
@end

Formal protocols are equivalent to interfaces in Java; indeed, the designers
of Java have copied this idea from Objective-C. Assuming that Foundation
had been implemented in C++ you would write something like the
following abstract class definition:

class NSObject;
class NSCoding {
virtual void encodeWithCoder(NSCoder& aCoder) = 0;
virtual NSObject* decodeWithCoder(

const NSCoder& aCoder) = 0;
};

class Person : public NSObject, public NSCoding {
NSString *name_, *address_;

public:
// Accessor functions
NSString* name();
void setName(const NSString* aName);
NSString* address();
void setAddress(const NSString* anAddress);
// NSCoder virtual functions
void encodeWithCoder(NSCoder& aCoder);
NSObject* decodeWithCoder(const NSCoder& aCoder);
// Other functions ...
// Called when the object is deallocated
virtual ~Person();

};
The implemention of these methods in C++ is left to the reader’s
imagination.

Unlike C++, neither Objective-C nor Java implements multiple inheritance,
and so these languages need a separate mechanism for adopting protocols.

It cannot always be known at run-time whether a particular object
implements a formal protocol; it can be tested in the following way:

if([anObject conformsTo:@protocol(NSCoding)])
[anObject encodeWithCoder:myCoder];

Exceptions
Simple exception-handling code could be written as follows;

Cup *cup = [[Cup alloc] init];
@try {
[cup fill];

}
@catch (NSException *exception) {
NSLog(@”main: Caught %@: %@”, [exception name],

[exception reason]);
}
@finally {
[cup release];

}
Code that might throw an exception is enclosed within a @try block, and
the exception should be caught in a @catch block. A @finally block
contains code that must be executed whether an exception is thrown or not.

Cup’s fill method might throw an exception like this:
NSException *exception = [NSException
exceptionWithName:@"HotTeaException"

reason:@"The tea is too hot" userInfo:nil];
@throw exception;

Any kind of Objective-C object can be thrown.
An exception can be re-thrown by means of @throw without an

argument.
D. A. Thomas

34 CVu/ACCU/Features

Memory For a Short
Sequence of Assignment

Statements
Derek M. Jones <derek@knosof.co.uk>

This is the second of a two part article describing an experiment carried
out during the 2004 ACCU conference. The previous part was published
in the previous issue of C Vu. This second part discusses how the if
statement part of the problem affected subject performance.

The if statement problem can be viewed as either a time filler for the
assignment remember/recall problem, or as the main subject of the
experiment (with the assignment problem acting as a smoke screen to make
it more difficult for subjects to notice any patterns in the if problems). The
reason for this second possibility is that studies have found patterns in the
errors made by subjects when performing various kinds of deduction tasks.

Given that some kind of filler task had to be performed, your author
decided to take opportunity to try and replicate some of the error patterns
seen in some studies of deduction.

As Table 1 shows, relational operators commonly occur in if statements.

Linear Syllogisms
The psychology of deduction uses the terms linear syllogisms or linear
reasoning to describe deduction between statements involving relational
operators. The term usually used to describe a (sub)expression containing
a relational operator, in programming language specifications, is relational
expression.

Linear syllogisms are part of mathematical logic and the skills associated
with being able to make deductions based on relational information are usually
assumed simply to be a component of the general reasoning ability that people
have. However, studies have found that a number of animals have the ability
to adapt their behaviour to given situations based on relational knowledge they
have acquired. For instance, aggressive behaviour may occur between two
animals to determine which is dominant, relative to the other. Such behaviour
can lead to being injured in a fight and is best avoided if possible. The ability
to make use of relative dominance information (e.g., obtained by a member of
a social group watching the interaction between other members of the group)
may remove the need for aggressive behaviour during an encounter between
two members of the same group who have not met face to face before (i.e., the
member most likely to lose immediately behaves in a subservient fashion).

One study [1] allowed a social dominance hierarchy to become
established in several independent groups of birds (Pinyon jays). Two birds
from different groups were then placed in a cage and given time to establish
their relative social dominance (a process that involves staring, looking
away, chin-up and beg, etc). The interaction of the two birds was witnessed
by a bird belonging to one of the two groups from which the two birds
came (this bird could not participate in any social interaction with the birds
it witnessed). The witness bird had previously encountered one of the birds
in the interaction it witnessed, but had never seen the other before. The

witness bird was then allowed to interact with the bird from the other group.
Analysis of the social interaction that occurred between the two birds on
their first encounter showed that in those cases where the witness bird had
sufficient information to reliably deduce its relative social status, it more
often behaved in a way consistent with that social position, than an
experimental control that had not witnessed any interaction.

The results from a related study using Western Scrub jays (a less social
species, closely related to Pinyon jays) showed less evidence for the ability
to make use of relational information. Those animals that live together in
social groups are likely to have various kinds of relational information
available to them. The benefits of being able to make use of this information
appears to have resulted in at least some social species developing the
cognitive abilities needed to process and make use of this information.

Relational Reasoning in Humans
If some animal brains (that don’t have what are considered higher level
cognitive reasoning abilities) have developed a mechanism to combine
relational information to create new information, it is possible that humans
also possess a similar mechanism (this is not to say that they don’t have
any other cognitive systems that are capable of performing the same task).
A possible consequence of having such a special purpose reasoning
mechanism is that it may not handle all relational expressions in the same
way (i.e., it is likely to be optimised for handling those situations that
commonly occur in its owner’s everyday life). Some of the studies of
human linear reasoning have found that subjects are slower and make more
errors when the operands in a sequence of relational expressions occur in
certain orders.

One study [2] used a task that was based on what is known as social
reasoning (using the relations better and worse). Subjects were shown two
premises, involving three people, and a possible conclusion (e.g., Is Mantle
worse than Moskowitz?). They had 10 seconds to answer yes, no, or don’t
know. All four possible combinations of conclusions were used.

Based on the results (see Table 2) the researchers made two observations
(which they called paralogical principles; cases 5 and 6 possess both, while
cases 7 and 8 possess neither):
1 People learn orderings better in one direction than another. In this

study people gave more correct answers when the direction was better-
to-worse (case 1), than mixed direction (case 2, 3), and were least
correct in the direction worse-to-better (case 4). This suggests that use
of the word better should be preferred over worse (the British National
Corpus [3] lists better as appearing 143 times per million words, while
worse appears under 10 times per million words and is not listed in the
top 124,000 most used words).

2 People end-anchor orderings. That is, they focus on the two extremes
of the ordering. In this study people gave more correct answers when
the premises stated an end term (better or worse) followed by the middle
term, than a middle term followed by an end term.

A related experiment in the same study used the relations to-the-left and
to-the-right, and above and below. The above /below results were very
similar to those for better/worse. The left-right results showed that subjects
performed better with a left-to-right ordering than a right-to-left ordering.

Since this original study additional factors have been discovered and a
number of models have been proposed to explain the strategies used by
people in solving linear reasoning problems, including:

Table 1 – Occurrence of equality, relational, and logical operators in the
conditional expression of an if statement (as a percentage of all such
controlling expressions and as a percentage of the respective operator).
Based on the visible form of over 3 million lines of C source. The
percentage of controlling expressions may sum to more than 100%
because more than one of the operators occurs in the same expression.

Operator % Controlling % Occurrence
Expression of Operator

== 31.7 88.6
!= 14.1 79.7
< 6.9 45.6
<= 1.9 68.6
> 3.5 84.9
>= 3.5 76.8
no relational/equality 47.5 –
|| 9.6 85.9
&& 14.5 82.3
no logical operators 84.2 –

Table 2 – Eight sets of premises describing the same relative ordering
between A, B, and C (people’s names were used in the study) in different
ways, followed by the percentage of subjects giving the correct answer.
Adapted from De Soto, London, and Handel [2].

Premises % Correct
Responses

1 A is better than B, B is better than C 60.5
2 B is better than C, A is better than B 52.8
3 B is worse than A, C is worse than B 50
4 C is worse than B, B is worse than A 42.5
5 A is better than B, C is worse than B 61.8
6 C is worse than B, A is better than B 57
7 B is worse than A, B is better than C 41.5
8 B is better than C, B is worse than A 38.3

35CVu/ACCU/Features

● The spatial model [2][4], in which people integrate information from
each premise into a spatial array representing all known relationships.

● The linguistic model [5], in which people represent each premise using
linguistic propositions (the individual premises are not integrated).

● The algorithmic model [6], in which people apply some algorithm to
the structure of the linguistic representation of the premises. For
instance, given “Reg is taller than Jason; Keith is shorter than Jason”
and the question “ Who is the shortest?”, a so called elimination strategy
was used by some subjects in the study. (The answer for the first
premise is Jason, which eliminates Reg; the answer to the second
premise is Keith which eliminates Jason, so Keith is the answer).

● The mixed model [7], in which the information in the premise is first
decoded into a linguistic form and then encoded into a spatial form.

The strategy used to solve a given problem has been found to vary between
people. A study by Sternberg and Weil [8] found a significant interaction
between a subject’s aptitude (as measured by verbal and spatial ability tests)
and the strategy they used to solve linear reasoning problems. However,
a person having high spatial ability, for instance, does not necessarily use
a spatial strategy. A study by Roberts, Gilmore, and Wood [9] asked
subjects to solve what appeared to be a spatial problem (requiring the use
of a very inefficient spatial strategy to solve). Subjects with high spatial
ability used non-spatial strategies, while those with low spatial ability used
a spatial strategy. The conclusion made was that those with high spatial
ability were able to see that the spatial strategy was inefficient to select as
alternative strategy, while those with less spatial ability were unable to
perform this evaluation.

If the evaluation of relational expressions in source code is performed
using a cognitive mechanism that has been optimised for certain kinds of
operations, then it is possible that developers’ performance will be worse
for some forms of expressions (e.g., the rate of making mistakes will be
greater). The form of the if statements used in this study was designed
to look for differences in subject performance that depended on the form
of the relational expressions appearing in the control expressions.

Subject Motivation
When reading source code developers are aware that some of the information
they see only needs to be remembered for a short period of time, while other
information needs to be remembered over a longer period. For instance,
when deducing the effect of calling a given function the names of identifiers
declared locally within it only have significance within that function and
there is unlikely to be any need to recall information about them in other
contexts. Each of the problems seen by subjects in this study could be treated
in the same way as an individual function definition (i.e., it is necessary to
remember particular identifiers and the values they represent, once a problem
has been answered there is no longer any need to remember this information).

Subjects can approach the demands of answering the problems this
study presents them in a number of ways, including the following:

● seeing it as a challenge to accurately recall the assignment information (i.e.,
minimizing would refer backanswers),

● recognizing that would refer back is always an option, but that it is more
important to correctly answer the if statement question,

● making no conscious decision about how to approach the answering of
problems.

Experience shows that many developers are competitive and that accurately
recalling the assignment information, after solving the if statement problem,
would be seen as the ideal performance to aim for. The experimental format
did not allow for easy debriefing of subjects after they had answered the
questions, and none was performed.

The only applicable instruction given to subjects was: “Read the
variables and the values assigned to them as you might when carefully
reading lines of code in a function definition.”

Results
The raw results for each subject are available on the study’s web page [10].

if Statement/Assignment Recall Interaction
Answering the if statement portion of the problem requires time (information
held in short term memory decays over time and unless it is regularly refreshed
it will soon be lost) and use of short term memory resources. If subjects
require more time or use more short term memory resources to answer some
forms of relational expression problem, then performance in recalling
assignment information is likely to be poorer after comprehending expressions
having the more complicatedform. The results (Figure 1) suggest that such
a correlation may exist, at least for the first eight answers.

However, the difference in performance characteristics between the first
eight answers and the ninth and subsequent problems may have been caused
by subjects learning and making use of patterns in the assignment recall
questions (which could reduce the need for short term memory resources).
Alternatively some information occurred sufficiently often (e.g., the same
identifier) that it was stored in a longer term memory subsystem, where it
was not so susceptible to interference from the if statement problem.

if Statement Performance
This study differed from others on the topic of reasoning in a number of
ways, including:
1 Researchers of human reasoning are usually attempting to understand

the mechanisms underlying human cognition. For this reason they use
subjects who have little or no experience in using formal mathematical
logic. This study was interested in the performance of subjects in
evaluating particular kinds of logical expressions and subjects were
chosen because they had significant amounts of experience in evaluating
the kinds of logical expressions that occur in source code.

2 The problems used in studies by researchers investigating the
mechanisms of human cognition are usually expressed in forms that

Figure 1 – The percentage of would refer back, correct and incorrect answers for each kind of relational expression. The left
graph is based on answers to the first eight problems, while the right graph is based on the answers from the ninth and subsequent
problem answers. Variation in subject performance is denoted by the error bars, which encompass one standard deviation. The
ordering of relational expressions along the x-axis is sorted on the percentage of incorrect answers to the assignment problem,
for the first eight if statement problems. H denotes high, M denotes middle, and L denotes low. So “H > M M > L” denotes
“high greater than middle and middle greater than low”.

36 CVu/ACCU/Features

occur in everyday life, i.e., they are natural language descriptions of
everyday situations (e.g., “If Jim deposits 50p, he gets a canned drink.”).
One of the complications caused by expressing problems in this form
is that the words and phrases used are often open to multiple
interpretations. It is also possible that subjects will base their answer
on expectations they have about how the real world operates [11] .

3 In this study no limits were placed on subjects (De Soto et al. [2] required
that an answer be given within 10 seconds), the mode of presentation
mimicked that encountered in program comprehension (in the
Huttenlocher [4] study subjects heard a tape recoding of the problem)

A total of 844 if statement problems were answered. There were 40 (4.7%
of all answers) incorrect answers, an average number of incorrect answers per
subject of 1. However, the incorrect answers were not evenly distributed across
subjects. The number of incorrect answers did not appear to depend on the
number of problems answered (Figure 2). While performance on reasoning
tasks has been found to decrease with age [12] , years of experience (which is
likely to be highly correlated with age) does not appear to have been a factor
affecting the number of incorrect answers given to if statement problems.

Two of the reasons why subject performance could differ across
different forms of relational expressions are:
1 Subjects may have a cognitive relational deduction mechanism (this

may be actual hardware, i.e., a cluster of brain cells, or software, i.e., a
neural network whose weights have been tuned through experience)
that is optimised for handling problems (i.e., those that commonly occur
in everyday life) that are expressed in a particular form.

2 The amount of cognitive resources required to solve a relational
expression may depend on the form in which the expression is presented
(this difference might simply be a consequence of how the human
cognitive subsystem handles relational reasoning).

The paper and pencil format of the experiment meant that it was not feasible
to obtain information on the amount of time taken to answer each problem.

Although subjects were told: “ Treat the paper as if it were a screen, i.e.,
it cannot be written on.”, there was nothing to prevent them using any paper

that they happened to have on them as a temporary work area. Several
subjects did write notes on the paper next to if statement problems (in one
case for all the answered problems) and the answers to these problems were
not counted. Except for the one case the number of such answers was very
small (in the one case the subject was not included in the subject count).

The error rates reported by other studies (where subjects read a problem
typed on a card) were: De Soto et al [2] 39.2 – 61.7%, Clark [5] 6%, Potts
[13] 5%, Mayer [14] 4 – 36%, Quinton et al[6] not given, Sternberg et al[8]
1.7 – 3.5%. A study where subjects heard a tape recording of the problem[4]
reported an error rate of 8 – 19%.

In order to look for patterns in the errors made by subjects it is necessary
to have a statistically significant sample of the errors made by them.
Unfortunately, there were not enough incorrect answers to the if statement
problem (Table 3) to enable any statistically significant analysis to be
performed.

Possible techniques for producing a greater number of incorrect answers
include: running the experiment for a longer period of time (it seems
reasonable to assume that the number of errors will increase as the number
questions answered increases), or making the problem more difficult (e.g.,
using longer sounding identifiers).

General Conclusions
It was hoped that the results of this experiment would provide some insight
into subjects’ performance in handling short sequences of assignment and
if statements. If the results of this experiment followed the pattern of
behaviour seen in other (non-software related) experiments, it would be
possible to claim that the models of human cognition created to explain
that behaviour were also applicable here. The following summarises the
conclusions:
Assignment information held in working memory. While there was some
correlation between the duration of the spoken form of the identifiers appearing
in assignment statements and subject performance, the content of long term
memory also seems to play a significant role.

Performance differences in evaluating conditional
expressions. The form of relational expression had some
impact on assignment recall performance (figure 1).
However, the operand orderings giving the best
performance (i.e., lowest number of errors made when
recalling assignment information) were not the same as
those for which subject performed best(i.e., lowest number
of incorrect answers to logic problem) in other studies
[2][4][5][6][7]. There was insufficient error data (Figure
2) for any reliable statistical analysis of subject if
statement evaluation performance to be carried out.

Where Next?
While developers are often exhorted to think about the
meaningfulness of identifiers, when creating new ones, the
usability of identifiers within expressions and statements
is rarely considered (apart, that is, from typing effort).
More experiments need to be performed before it is

Figure 2 – The left graph plots the number of problems answered by each subject against the number of incorrect answers they gave.
The bullets are offset from the y-axis to try to show those cases where more than one subject had the same problems answered/incorrect
answers pair. The right graph plots the number of years of subject experience against the percentage of incorrect answers they gave.

Table 3 – Errors. Number of correct and incorrect responses for the first eight and ninth
and subsequent answers (parenthesized value is percentage of incorrect responses). H
denotes high, M denotes middle, and L denotes low. So H > M M > L denotes “high greater
than middle and middle greater than low”.

relational form correct correct (9th incorrect incorrect (9th incorrect
(first 8) and subsequent) (first 8) and subsequent) (total)

H > M M > L 34 80 0 (0.0%) 2 (2.5%) 2 (1.8%)
L < M H > M 38 66 0 (0.0%) 3 (4.5%) 3 (2.9%)
L < M M < H 37 64 1 (2.7%) 3 (4.7%) 4 (4.0%)
M < H M > L 40 69 3 (7.5%) 2 (2.9%) 5 (4.6%)
H > M L < M 40 64 4 (10.0%) 2 (3.1%) 6 (5.8%)
M > L M < H 28 73 4 (14.3%) 2 (2.7%) 6 (5.9%)
M < H L < M 41 71 2 (4.9%) 5 (7.0% 7 (6.2%)
M > L H > M 39 60 1 (2.6%) 6 (10.0%) 7 (7.1%)
Totals 297 547 15 (5.0%) 25 (4.6%) 40 (4.7%)

[concluded at foot of next page]

37CVu/ACCU/Features

Roger Leigh <rleigh@debian.org>

GTK+ and C++
In the previous article, it was shown that Glade and GObject could make
programs much simpler, and hence increase their long-term maintainability.
However, some problems remain:
● Much type checking is done at run-time. This might mean errors only

show up when the code is in production use.
● Although object-oriented, using objects in C is a bit clunky. In addition,

it is very difficult (although not impossible) to derive new widgets from
existing ones using GObject, or override a class method or signal. Most
programmers do not bother, or just use “compound widgets”, which are
just a container containing more widgets.

● Signal handlers are not type safe. This could result in undefined
behaviour, or a crash, if a signal handler does not have a signature
compatible with the signal it is connected to.

● Signal handlers are functions, and there is often a need to resort to using
global variables and casting structures to type gpointer to pass
complex information to a callback though its data argument. If Glade
or GObject are used, this can be avoided, however.

gtkmm offers solutions to most of these problems. Firstly, all of the GTK+
objects are available as native C++ classes. The object accessor functions
are now normal C++ class methods, which prevents some of the abuse of
objects that could be accomplished in C. The advantage is less typing, and
there is no need to manually cast between an object’s types to use the
methods for different classes in the inheritance hierarchy.

The gtkmm classes may be used just like any other C++ class, and this
includes deriving new objects from them through inheritance. This also
enables all the type checking to be performed by the compiler, which results
in more robust code, since object type checking is not deferred until run-time.

Signal handling is also more reliable. gtkmm uses the libsigc++
library, which provides a templated signal/slot mechanism for type-safe
signal handling. The slot objects allow signal handlers with a different
signature than the signal requires to be bound, which gives greater
flexibility than the C signals allow. Perhaps the most notable feature is that
signal handlers may be class methods, which are recommended over global
functions. This results in further encapsulation of complexity, and allows
the signal handlers to access the member data of their class. Unlike the Qt
library, gtkmm does not require any source preprocessing, allowing plain
ISO C++ to be used without extensions.

libglademm is a C++ wrapper around libglade, and may be used
to dynamically load user interfaces as in the previous section. It provides
similar functionality, the exception being that signals must be connected
manually. This is because the libsigc++ signals, connecting to the
methods of individual objects, cannot be connected automatically.

C++/glade/ogcalc, shown in Figure 1, is identical to the previous
examples, both in appearance and functionality. However, internally there
are some major differences.

Figure 1: C++/glade/ogcalc in action.

possible to reliably draw any firm conclusions about the consequences of
using different kinds of identifier spellings in assignment statements and
on developer performance during source code comprehension. Other
experiments might use a greater number of different character sequences
(e.g., abbreviations, or identifiers containing two known words), randomise
the order in which identifiers appear in the table of assignment answers, or
use more commonly occurring character sequences. Other experiments
might also use different filler tasks.

Source code comprehension involves problem solving and developers
are likely to use a variety of strategies to solve the problems that arise. The
strategies used by developers can affect even such apparently simple tasks
as remembering information about assignment statements. For instance,
while some developers may choose to remember information about the
identifiers appearing in an assignment using an encoding that involves their
spoken form, other developers may use a different encoding (e.g., an
abbreviated form of the identifier such as its first letter, or the encoding of
the semantics that the identifier represents). Any study of developer
cognitive performance needs to ensure that the subjects taking part in an
experiment are only using their cognitive resources in a way has been
anticipated by the experimenter (even simple tasks such as counting have
been found to require cognitive resources [15]).

The problems used in this study could be answered by subjects having
insignificant amounts of experience in software development (e.g.,
undergraduate computer science students). It would be interesting to compare
the performance of inexperienced subjects against that of subjects having a
significant amount of experience. However, care needs to be taken when using
inexperienced subjects to take into account the possibility of performance
improvement through learning of the underlying coding problem itself.

Derek M Jones

References
[1] Pazymino, Bond, Kamil & Balda, “Pinyon jays use transitive inference to

predict social dominance”, Nature, 430:778-781, Aug. 2004
[2] De Soto, London & Handel, “Social reasoning and spatial paralogic”,

Journal of Personality and Social Psychology, 2(4):513-521, 1965
[3] Leech, Rayson & Wilson, Word Frequencies in Written and Spoken English,

Pearson Education, 2001

[4] Huttenlocher, “Constructing spatial images: A strategy in reasoning”,
Psychological Review, 75(6):550-560, 1968

[5] Clark, “Linguistic processes in deductive reasoning”, Psychological
Review, 76(4):387-404, 1969

[6] Quinton & Fellows, “Perceptual strategies in the solving of three-term series
problems”, British Journal of Psychology, 66:69-78, 1975

[7] Sternberg, “Representation and process in linear syllogistic reasoning”,
Journal of Experimental Psychology: General , 109(2):119-159, 1980

[8] Sternberg & Weil, “An aptitude x strategy interaction in linear
syllogistic reasoning”, Journal of Educational Psychology, 72(2):226-
239, 1980

[9] Roberts, Gilmore, & Wood, “Individual differences and strategy selection
in reasoning”, British Journal of Psychology, 88:473-492, 1997

[10] Jones, Experimental data and scripts for short sequence of assignment
statements study, www.knosof.co.uk/cbook/accu04.html, 2004

[11] Evans, Barston & Pollard, “On the conflict between logic and belief in
syllogistic reasoning”, Memory & Cognition, 11(3):295-306, 1983

[12] Gilinsky & Judd, “Working memory and bias in reasoning across the life
span”, Psychology and Ageing, 9(3):356-371, 1994

[13] Potts, “Storing and retrieving information about ordering relationships”,
Journal of Experimental Psychology, 103(3):431-439, 1974

[14] Mayer, “Qualitatively different encoding strategies for linear reasoning
premises: Evidence for single association and distance theories”, Journal
of Experimental Psychology: Human Learning and Memory, 5(1):1-10,
1979

[15] Camos & Barrouillet, “Adult counting is resource demanding”, British
Journal of Psychology, 95:19-30, 2004

Further reading
For a readable introduction to human reasoning see “Reasoning and
thinking” by Ken Manktelow. “The Cognitive Animal” edited by M.
Bekoff, C. Allen, and G. M. Burghardt contains 57 short, wide ranging,
essays (of varying quality) on animal cognition.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making a conference slot available
in which to run it.

An Introduction to Programming with GTK+ and Glade
in ISO C and ISO C++ – Part 4

[continued from previous page]

38 CVu/ACCU/Features

Firstly, the main() function no longer knows anything about the user
interface. It merely instantiates an instance of the ogcalc class, similar
to C/gobject/ogcalc.

The ogcalc class is derived from the Gtk::Window class, and so
contains all of the functionality of a Gtk::Window, plus its own
additional functions and data. ogcalc contains methods called
on_button_clicked_calculate()and on_button_clicked_reset()
These are the equivalents of the functions
on_button_clicked_calculate()and on_button_clicked_reset()
used in the previous examples. Because these functions are class methods,
they have access to the class member data, and as a result are somewhat
simpler than previously.

Two versions are provided, one using the basic C++ classes and
methods to construct the interface, the other using libglademm to load
and construct the interface as for the previous examples using Glade. Only
the latter is discussed here. There are a great many similarities between
the C and C++ versions not using Glade, and the C Gobject version and
the C++ Glade version. It is left as an exercise to the reader to compare
and contrast them.

Code Listings
// C++/glade/ogcalc.h
#include <gtkmm.h>
#include <libglademm.h>
class ogcalc : public Gtk::Window {
public:
ogcalc();
virtual ~ogcalc();

protected:
// Calculation signal handler.
virtual void on_button_clicked_calculate();
// Reset signal handler.
virtual void on_button_clicked_reset();
// The widgets that are manipulated.
Gtk::SpinButton* pg_entry;
Gtk::SpinButton* ri_entry;
Gtk::SpinButton* cf_entry;
Gtk::Label* og_result;
Gtk::Label* abv_result;
Gtk::Button* quit_button;
Gtk::Button* reset_button;
Gtk::Button* calculate_button;
// Glade interface description.
Glib::RefPtr<Gnome::Glade::Xml> xml_interface;

};

// C++/glade/ogcalc.cc
#include <iomanip>
#include <sstream>
#include <sigc++/retype_return.h>
#include "ogcalc.h"
ogcalc::ogcalc() {
// Set the window title.
set_title("OG & ABV Calculator");
// Don’t permit resizing.
set_resizable(false);
// Get the Glade UI and add it to this window.
xml_interface = Gnome::Glade::Xml::create(

"ogcalc.glade", "ogcalc_main_vbox");
Gtk::VBox *main_vbox;
xml_interface->get_widget("ogcalc_main_vbox",

main_vbox);
add(*main_vbox);
// Pull all of the widgets from the Glade interface
xml_interface->get_widget("pg_entry", pg_entry);
xml_interface->get_widget("ri_entry", ri_entry);
xml_interface->get_widget("cf_entry", cf_entry);
xml_interface->get_widget("og_result",

og_result);
xml_interface->get_widget("abv_result",

abv_result);
xml_interface->get_widget("quit_button",

quit_button);

xml_interface->get_widget("reset_button",
reset_button);

xml_interface->get_widget("calculate_button",
calculate_button);

// Set up signal handers for buttons.
quit_button->signal_clicked().connect(

SigC::slot(*this, &ogcalc::hide));
reset_button->signal_clicked().connect(

SigC::slot(*this,
&ogcalc::on_button_clicked_reset));

reset_button->signal_clicked().connect(
SigC::slot(*pg_entry,

&Gtk::Widget::grab_focus));
calculate_button->signal_clicked().connect(

SigC::slot(*this,
&ogcalc::on_button_clicked_calculate));

calculate_button->signal_clicked().connect(
SigC::slot(*reset_button,

&Gtk::Widget::grab_focus));
// Set up signal handlers for numeric entries.
pg_entry->signal_activate().connect(

SigC::slot(*ri_entry,
&Gtk::Widget::grab_focus));

ri_entry->signal_activate().connect(
SigC::slot(*cf_entry,

&Gtk::Widget::grab_focus));
cf_entry->signal_activate().connect(

SigC::hide_return(SigC::slot(*this,
&Gtk::Window::activate_default)));

// Ensure calculate is the default. The Glade
// default was lost since it was not packed in
// a window when set.
calculate_button->grab_default();

}

ogcalc::~ogcalc() {}

void ogcalc::on_button_clicked_calculate() {
// PG, RI, and CF values.
double pg = pg_entry->get_value();
double ri = ri_entry->get_value();
double cf = cf_entry->get_value();
// Calculate OG.
double og = (ri*2.597) -(pg*1.644) - 34.4165 + cf;
// Calculate ABV.
double abv;
if (og < 60)
abv = (og - pg) * 0.130;

else
abv = (og - pg) * 0.134;

std::ostringstream output;
// Use the user’s locale for this stream.
output.imbue(std::locale(""));
output << "" << std::fixed

<< std::setprecision(2)
<< og << "";

og_result->set_markup(
Glib::locale_to_utf8(output.str()));

output.str("");
output << "" << std::fixed

<< std::setprecision(2)
<< abv << "";

abv_result->set_markup(
Glib::locale_to_utf8(output.str()));

}

void ogcalc::on_button_clicked_reset() {
pg_entry->set_value(0.0);
ri_entry->set_value(0.0);
cf_entry->set_value(0.0);
og_result->set_text("");
abv_result->set_text("");

}

39CVu/ACCU/Features

// C++/glade/ogcalc-main.cc
#include <gtk/gtk.h>
#include <glade/glade.h>
#include "ogcalc.h"

// This main function merely instantiates the ogcalc
// class and displays it.
int main (int argc, char *argv[]) {
Gtk::Main kit(argc, argv); // Initialise GTK+.
ogcalc window; // Create an ogcalc object.
kit.run(window);

// Show window; return when it’s closed.
return 0;

}

To build the source, do the following:

cd C++/glade
c++ 'pkg-config —cflags libglademm-2.0' -c ogcalc.cc
c++ 'pkg-config —cflags libglademm-2.0'

-c ogcalc-main.cc
c++ 'pkg-config —libs libglademm-2.0' -o ogcalc

ogcalc.o ogcalc-main.o

Similarly, for the plain C++ version, which is not discussed in the tutorial:

cd C++/plain
c++ 'pkg-config —cflags gtkmm-2.0' -c ogcalc.cc
c++ 'pkg-config —cflags gtkmm-2.0' -c ogcalc-main.cc
c++ 'pkg-config —libs gtkmm-2.0' -o ogcalc ogcalc.o

ogcalc-main.o

Analysis
ogcalc.h

The header file declares the ogcalc class.
class ogcalc : public Gtk::Window

ogcalc is derived from Gtk::Window
virtual void on_button_clicked_calculate();
virtual void on_button_clicked_reset();

on_button_clicked_calculate() and on_button_clicked_reset()
are the signal handling functions, as previously. However, they are now
class member functions, taking no arguments.

Gtk::SpinButton* pg_entry;
Glib::RefPtr<Gnome::Glade::Xml> xml_interface;

The class data members include pointers to the objects needed by the
callbacks (which can access the class members like normal class member
functions). Note that Gtk::SpinButton is a native C++ class. It
also includes a pointer to the XML interface description.
Glib::RefPtr is a templated, reference-counted, “smart pointer”
class, which will take care of destroying the pointed-to object when
ogcalc is destroyed.

ogcalc.cc

The constructor ogcalc::ogcalc() takes care of creating the interface
when the class is instantiated.

set_title("OG & ABV Calculator");
set_resizable(false);

The above code uses member functions of the Gtk::Window class.
The global functions gtk_window_set_title() and
gtk_window_set_resizable() were used previously.

xml_interface = Gnome::Glade::Xml::create(
"ogcalc.glade", "ogcalc_main_vbox");

Gtk::VBox *main_vbox;
xml_interface->get_widget("ogcalc_main_vbox",

main_vbox);
add(*main_vbox);

The Glade interface is loaded using Gnome::Glade::Xml::create(),
in a similar manner to the GObject example, and then the main VBox is
added to the ogcalc object.

xml_interface->get_widget("pg_entry", pg_entry);
Individual widgets may be obtained from the widget tree using the static
member function Gnome::Glade::Xml::get_widget() .

Because gtkmm uses libsigc++ for signal handling, which uses class
member functions as signal handlers (normal functions may also be used, too),
the signals cannot be connected automatically, as in the previous example.

quit_button->signal_clicked().connect(
SigC::slot(*this, &ogcalc::hide));

This complex-looking code can be broken into several parts.
SigC::slot(*this, &ogcalc::hide)

creates a SigC::slot (function object) which points to the
ogcalc::hide() member function of this object.

quit_button->signal_clicked()
returns a Glib::SignalProxy0 object (a signal taking no arguments).
The connect() method of the signal proxy is used to connect
ogcalc::hide() to the “clicked” signal of the Gtk::Button.

calculate_button->signal_clicked().connect(
SigC::slot(*this,

&ogcalc::on_button_clicked_calculate));
calculate_button->signal_clicked().connect(

SigC::slot(*reset_button,
&Gtk::Widget::grab_focus));

Here two signal handlers are connected to the same signal. When the
“Calculate” button is clicked,
ogcalc::on_button_clicked_calculate() is called first,
followed by Gtk::Widget::grab_focus().

cf_entry->signal_activate().connect(
SigC::hide_return(SigC::slot(*this,

&Gtk::Window::activate_default)));
SigC::hide_return is a special SigC::slotused to mask the boolean
value returned by activate_default(). The slot created is incompatible
with with the slot type required by the signal, and this “glues” them together.

In the ogcalc::on_button_clicked_calculate() member
function,

double pg = pg_entry->get_value();
the member function Gtk::SpinButton::get_value() was
previously used as gtk_spin_button_get_value().

std::ostringstream output;
output.imbue(std::locale(""));
output << "" << std::fixed

<< std::setprecision(2)
<< og << "";

og_result->set_markup(
Glib::locale_to_utf8(output.str()));

This code sets the result field text, using an output stringstream and
Pango markup.

In the ogcalc::on_button_clicked_reset()member function,
pg_entry->set_value(0.0);
og_result->set_text("");
pg_entry->grab_focus();

class member functions are used to reset and clear the widgets as in
previous examples.

ogcalc-main.cc

This file contains a very simple main() function.
Gtk::Main kit(argc, argv); // Initialise GTK+.
ogcalc window;
kit.run(window);

A Gtk::Main object is created, and then an ogcalc class, window, is
instantiated. Finally, the interface is run, using kit.run(). This function
will return when window is hidden, and then the program will exit.

Conclusion
Which method of programming one chooses is dependent on many
different factors, such as:
● The languages one is familiar with.
● The size and nature of the program to be written.
● The need for long-term maintainability.
● The need for code reuse.
For simple programs, such as C/plain/ogcalc, there is no problem
with writing in plain C, but as programs become more complex, Glade can
greatly ease the effort needed to develop and maintain the code. The code
reduction and de-uglification achieved through conversion to
Glade/libglade is beneficial even for small programs, however, so I
would recommend that Glade be used for all but the most trivial code.

[concluded at foot of next page]

40 CVu/ACCU/Reviews

Bookcase
Collated by Christopher Hill
<accubooks@progsol.co.uk>

Francis Writes
It is curious the way things go in cycles. We have
had very few C and C++ books in the past few
issues and now we are inundated with them.
Unfortunately, there is the usual high number of
poor books for novices. In addition, the books from
one publisher seem expensive in the UK and
astronomical in the US (even when they are listed).
Asking a student to pay a large amount for a
mediocre book seems unreasonable. I wonder if the
high headline prices are a mechanism to appear to
give big discounts to academic bulk purchasers.

The relative costs of books in the UK and the
US are becoming completely silly. Actually, after
the US dollar has remained at around 1.8 to the
pound sterling for over a year, a ratio of 2:1 for
books sourced in the UK isn’t too bad for US
purchasers but ratios of 5:4 for books sourced in
the US seems quite unreasonable.

Another issue I noticed recently is the weight
of books. One or two publishers are using very
heavy paper, which may be seriously affecting
transport costs. We now have a ratio of over 2:1 in
weight for books with the same page count. Quite
apart from anything else, the average person does
not want to carry around a textbook that weighs
over 2kg. Yes, I just checked by weighing a couple.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members – if you ever have a problem with this,
please let me know – I can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.
The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. I consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). I consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

C & C++
Computer Science A Structured
Approach Using C++ by Behrouz
A. Forouzan & Richard F. Gilberg
(0-534-37480-8), Thomson,
1020pp @ £36-99 (2.0)
reviewed by Frank Antonsen

The aim of this book is to teach C++ as a first
language. Often C++ is considered too
complicated for this and Java is used instead.
But although C++ is a very powerful language
that allows you to do all sorts of complicated
things, you can also do quite simple things in a
simple and consistent manner.

So let me start by saying what I like about
this book. First, it begins by using streams and
manipulators to provide a nice looking output
in the very first chapter. All too often, this is
moved to an advanced chapter near the end of
the book. Secondly, it shows you how to write
your own I/O manipulator and handle binary
files. There is an appendix on the STL, and
they introduce templates relatively early on.
Finally, each chapter concludes with a broader
section on general software design techniques
and methodology. However, alas, this also
shows the limitations of the book. They cite

very few books, which is not a problem, but all
of them are from the seventies or eighties.
Many things have happened since.

In fact, the authors spend a lot of time
discussing structure diagrams and give much
good advice on how to factor functions.
However, they barely touch UML, and there is
not a single word on when to factor classes. In
other words, they teach is procedural
programming, with just hint of object orientation.
All the advice they give on writing functions
remain valid of course, but it takes on quite a
different meaning in the context of classes.

The first part of the book shows signs of being
just a quick update of the original book (I don’t
know when that appeared). For instance, it warns
against using the bool type, because not all
compilers provide it. In 2004, if a compiler does
not provide bool, do not use it! Fortunately, the
authors ignore their own advice for most of the
book so this is not a big problem. The same holds
for their advice on where to define variables
inside functions; the first chapters recommends
putting all variable definitions at the top before
any executable code, that is in the old-fashioned
C-style. Again, the authors ignore their own
advice in the rest of the book and comply with
modern practice of defining a variable as close as
possible to where it is used.

The book has 1000+ pages, so inevitably a
number of typos must show up. There are a few
places where the code is clearly wrong, but these
are usually obvious and should not confuse the
novice too much. What is more serious is the
old-fashioned style. There is a long (actually
quite good) discussion on pointers and the use of
the this pointer, but no mention of
auto_ptr. They use characters instead of
standard strings until the end of the book, where
a chapter on strings has been tagged on. Even
though templates are introduced in chapter 13,
they are not used in the remaining 4 chapters, not
even in the final chapter where a linked list class
is designed. Exceptions are only introduced at
the very end; all previous code relies on the older
style of having functions returning an invalid
number or calling exitwith an error-code.

Reviews

The C++ code using gtkmm is slightly more complex than the code
using Glade. However, the benefits of type and signal safety, encapsulation
of complexity and the ability to re-use code through the derivation of new
widgets make gtkmm and libglademm an even better choice. Although
it is possible to write perfectly good code in C, gtkmm gives the
programmer security through compiler type checking that plain GTK+
cannot offer. In addition, improved code organisation is possible, because
inheritance allows encapsulation.

GObject provides similar facilities to C++ in terms of providing classes,
objects, inheritance, constructors and destructors etc., and is certainly very
capable (it is, after all, the basis of the whole of GTK+!). The code using
GObject is very similar to the corresponding C++ code in terms of its
structure. However, C++ still provides facilities such as RAII (Resource
Acquisition is Initialisation) and automatic destruction when an object goes
out of scope that C cannot provide.

There is no “best solution” for everyone. Choose based on your own
preferences and capabilities. In addition, Glade is not the solution for every
problem. The author typically uses a mixture of custom widgets and Glade

interfaces (and your custom widgets can contain Glade interfaces!). Really
dynamic interfaces must be coded by hand, since Glade interfaces are not
sufficiently flexible. Use what is best for each situation.

Roger Leigh

Further Reading
The GTK+ Tutorial, and the GTK+ documentation are highly
recommended. These are available from http://www.gtk.org/ The
gtkmm documentation is available from http://www.gtkmm.org
Unfortunately, some parts of these manuals are as yet incomplete. I hope
that they will be fully documented in the future, since without good
documentation, it will not be possible to write programs that take
advantage of all the capabilities of GTK+ and gtkmm, without having to
read the original source code. While there is nothing wrong with reading
the source, having good documentation is essential for widespread
adoption of GTK+.

Documentation and examples of GObject are scarce, but Mathieu
Lacage has written an excellent tutorial which is available from
http://le-hacker.org/papers/gobject/

[continued from previous page]

41CVu/ACCU/Reviews

It is really a pity. The authors do quite a good
job at explaining things, but for a book published
in 2004 it is far too old-fashioned. This becomes
clearer as one reads the later chapters where most
of what has happened to C++ since the late
eighties has been quickly tagged on.

Problem Solving in C++ by
Angela Shiflet & Paul Nagin (0-
534-40005-1), Thomson,
1070pp @ £35-99 (no US price)
reviewed by Frank Antonsen
I have some problems with this

book. On the one hand, it is written in an easy to
follow language and contains valid points on how
to structure programs. It also contains some
interesting background information and exercises.

However, the book is more about C with I/O
streams added than it is about C++. Even though
classes are introduced early on (in chapter 3, on
page 151), they are rarely used for anything but
the most trivial encapsulation. I would be able to
accept this in a beginner’s book if there were not
so many such oddities and omissions.

Let me give some examples.
For the first 10 chapters, spanning two

thirds of the book, the only character data type
introduced is char. Then in chapter 11, the
first 40-odd pages are used to discuss char*,
before 8 pages are devoted to the standard
string class. Why? The fundamental
character data type is after all not the individual
character, just like the basic numeric data type
is not the digit. Ironically, the authors finish
chapter 11 with saying that people should use
std::string instead of the old C-strings!

Throughout the book the authors prefer to
use the C-functions exit or even assert to
terminate a program upon error. Why do they
not use exceptions?

Chapter 10 introduces arrays, and finishes off
by introducing the vector class from STL. They
even give a (very short) introduction to
templates, which they then never use. The final
chapters of the book implement some basic data
structures. This would be perfectly acceptable if
it was a way of demonstrating how templates are
used in STL by providing some simple
implementation of the container. Instead they
even fail to mention that the STL contains (far
superior) implementations of these containers.

Furthermore, this is a book that goes to
great lengths to teach safe programming
methods. Why do they then almost invariably
define global constants with #define instead
of using const int or string etc, which
would give them type safety as well?

In summary, the authors seem to possess only
a rudimentary knowledge of modern C++. As I
said above, this is really a book on C with C++’s
iostream library added. Not recommended.

Learning C++ 3ed by Eric
Nagler (0-534-38966-X),
Thomson, 530pp @ £34-99 (no
US price)
reviewed by Paul F. Johnson
I started reading this book and

what initially struck me was how easy it was to
read. It has plenty of good points (such as
common problems and helpful hints) and the
writing style is very much like Schildt, except
without the number of mistakes.

I really have two problems with the book.
Firstly, the over use of acronyms. The

author seems to like these and while they are
initially explained, it becomes a pain trying to
remember them. Sure we have the likes of
FDDI and other such acronyms to recall, but
the number of them in this book really will not
help those wanting to learn.

Secondly, the use of Hungarian notation. I
have never liked Hungarian notation and is
widely discredited as a teaching method within
education. Take for instance this variable name

char const *ptr Ptr;
What exactly is it? Okay, to the seasoned
reader, we would recognize it as a char
const pointer called Ptr, but put yourself in
the position of a new learner. It is hard enough
coming to terms with the use of const
without finding names such as above.

Those aside, the author has obviously put a
lot of thought into the layout and approach to
the book and it shows – the coverage of the
C++ style of casting comes very early and
classes and encapsulation are handled in a
simple to understand approach.

My other criticism is that there are a lot of
“will be covered in chapter xxx” when a simpler
approach would be to have (say) try/catch
when discussing memory allocation – the code
is there and a line saying what the try/catch
mechanism does and then refers to a later
chapter. It certainly does not detract overly
much, but for a new learner, it will not help.

While not as comprehensive as a Schildt
book (in terms of coverage rather than accuracy
– this book has far fewer mistakes than the
average Schildt book), it is a far better book for
a new-comer to C++ than a lot of books on the
market. Recommended with reservations.

Developing Series 60
Applications A Guide for
Symbian OS by Leigh Edwards et
al. (0-321-22722-0), Addison-
Wesley*, 748pp @ £37-99 (1.32)
reviewed by David Caabeiro

For those waiting for a definitive reference on
Symbian C++ development for Series 60, this
book fulfils all expectations. Series 60 is currently
the best selling mobile platform, being deployed
on devices from manufacturers such as Nokia,
Siemens, Samsung, etc. It is difficult to find a
topic not covered by this book, and given the lack
of documentation provided by the SDK, it
becomes a must-have in your bookshelf.

The book could be split into three parts. The
first part comprises basic stuff such as building
and deployment process, Symbian fundamental
APIs and application framework (comparable
to the MVC pattern). It is fundamental to
understand these chapters to understand the rest
of the book.

The second part refers to UI gadgets,
starting with an explanation of basic controls,
event handling, menus, etc. Following chapters
provide description of dialogs, lists, notes,
editors and many other system widgets.

Lastly, more advanced stuff, such as
communications programming (sockets,
TCP/IP, IrDA, Bluetooth, HTTP, messaging
and telephony), multimedia framework, system
engines and views, and finally testing and
debugging.

Of course, no book covers all possible
topics. The information you will find on some
chapters (communications is an example) is the
essential you will need to get started. For other
advanced topics, such as client-server
architecture, multithreading, etc. you will need
to look for other material.

One of the things I liked most of this book
is the quantity and quality of examples (which
are available online) which feature working
applications, so they are ready to build and run
on your emulator and smartphone.

If you are on your first steps with Series 60
development get this book, you will not be
disappointed. As I read somewhere, it might
well be considered the “Charles Petzold” for
Series 60 platform development.

C++ Programming: From Problem Analysis to
Program Design by D.S. Malik (0-619-16042-
X), Thomson, 1304pp + CD @ £34-00 (2.23)
reviewed by James Roberts
When I chose this book from the ‘to be
reviewed’ list, I was expecting a book aimed at
a reader who had mastered the basics of C++
(perhaps from the same authors C++ primer
book), and was interested in progressing
further.

It turned out that this book is aimed at
building up a student’s knowledge of C++ from
a start point of little or nothing.

The style is fairly wordy, and includes
copious examples of completed code.
Unfortunately, the author does not explain why
design choices were taken, or what alternatives
were not taken.

As a course book, perhaps it is reasonable to
not include anything but the briefest
descriptions of which compilers might be
useful. However, for any other readers this is in
my opinion rather important.

The main complaint I had with the book is
the actual content. Why was there no mention
of polymorphism (other than a passing
definition)? Why were three chapters dedicated
to the implementation of linked lists, queues
and stacks, with no mention of the STL outside
the appendices? A description of the concepts
would have its place – but the full source code
seems over the top.

There is apparently ‘valuable testing
software’ included with the book. This seems
to consist of a series of acrobat files mainly
consisting of examination texts. I was unable to
access the website, as I had no instructor id.

Exceptional C++ Style by Herb
Sutter (0 201 76042 8), Addison-
Wesley*, 325pp @ £30-99 (1.29)
reviewed by Pete Goodliffe
If you know Herb Sutter’s writing
then you will already be asking: is

this another must have C++ book? Indeed it is.
Herb has produced another exceptional (pun
intended) tome. If you are a C++ programmer
who is not familiar with Sutter’s work then I
suggest you get copies of Herb’s previous books,
work through them, and then get this one.

Sutter is a renowned C++ guru, chair of the
ISO C++ standards committee, regular CUJ
columnist, and conference speaker. He knows
what he’s talking about. As ever his latest book
is well structured, readable, and authoritative.

42 CVu/ACCU/Reviews

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

Due to lack of space not all book reviews could be
printed in this issue. Reviews of the following books
can be found on the website (www.accu.org) and
will be printed in the next issue if space permits.

C++
Object-Oriented Programming: Using C++ for
Engineering by Goran Svenk (0-7668-3894-3),
Thomson, 506pp + CD @ £38-00 (1.92) reviewed
by Mark Easterbrook

Ivor Horton’s Beginning ANSI C++ 3ed by Ivor
Horton (1-59059-227-1), Apress, 1090pp @
£37-50 (1.60) reviewed by Malcolm Pell

C++ Demystified by Jeff Kent (0-07-225370-
3), McGraw Hill Osborne, 348pp @ £12-99
(1.54) reviewed by James Roberts

Programming in C, 3ed by Stephen G. Kochan
(0-672-32666-3), Developer’s Library*, 542pp
@ £28-99 (1.38) reviewed by Giles Moran

C Programming for the Absolute Beginner by
Michael Vine (1-931841-52-7), Premier Press,
240pp + CD @ £21-99 (1.36) reviewed by
Thomas Padron-McCarthy

.NET Programming
ADO.NET in a Nutshell by B Hamilton & M
MacDonald (0-596-00361-7), O’Reilly, 600pp +
CD @ £31-95 (1.41) reviewed by Mick Spence

Programming .NET Components by Juval Lowy
(0-596-00347-1), O’Reilly, 458pp @ £28-50
(1.40) reviewed by Paul Usowicz

Teach Yourself Visual Studio .NET 2003 by
Jason Beres (0-672-32421-0), SAMS, 666pp @
£28-99 (1.38) reviewed by Griff Phillips

C# & Java
J2EE and XML Development by Kurt Gabrick &
David Weiss (1 930110 30 8), Manning, 274pp
@ £35-99 (1.11) reviewed by Alistair McDonald

JUnit Recipes by J.B.Rainsberger (1-932394-
23-0), Manning, 720pp @$49.95 reviewed by
Anthony Williams

Learn Java in a Weekend by Joseph P Russell
(1-931841-60-8), Premier Press, 482pp @ £21-
00 (1.43) reviewed by Paul F. Johnson

Professional Java Tools for Extreme
Programming by Richard Hightower et al. (0-
7645-5617-7), Wrox, 732pp @ £29-99 (1.50)
reviewed by Jim Hague

Embedded and Real Time
Real-Time Java Platform Programming by Peter
Dibble (0 13 028261 8), Prentice Hall, 332pp @
£39-99 (1.25) reviewed by Alan Barclay

Database Programming
Access VBA for the Absolute Beginner by
Michael Vine (1-59200-039-8), Prima Tech,
328pp + CD @ £21-99 (1.36) reviewed by
Richard Knight

Information Architecture with XML by Peter
Brown (0-471-48679-5), Wiley, 324pp @ £27-
50 (1.81) reviewed by Christopher Hill

Games Programming
Beginner’s Guide to DarkBasic Game
Programming by Jonathan S. Harbour (1-
59200-009-6), Prima Tech, 711pp + CD @ £37-
99 (1.58) reviewed by Mark Green

Methodologies & Testing
Agile Development in the Large by Jutta
Eckstein (0-932633-57-9), Dorset House,
216pp @ $33.95 reviewed by Alan Griffiths

CMMI Distilled 2ed by Dennis M. Ahem et al
(0-321-18613-3), Addison-Wesley, 310pp @
£22-99 (1.30) reviewed by Greg Billington

The OPEN Process Framework by Donald
Firesmith & Brian Henderson-Sellers (0 201
67510 2), Addison-Wesley, 330pp @ £29-99
(1.50) reviewed by Matt Pape

Real World Software Configuration
Management by Sean Kenefick (0-59059-065-
1), Apress, 439pp @ £35-50 (1.41) reviewed by
Derek Graham

Official Eclipse 3.0 FAQs by John Arthorne, Chris
Laffra (0-321-26838-5), Addison-Wesley*,
385pp @ £26-99 (1.30) reviewed by Silas Brown

The Web & Networking
Pro Apache 3ed by Peter Wainwright (1-
59059-3006), Apress, 880pp @ £31-50 (1.59)
reviewed by Alan Barclay

The Definitive Guide to Linux Network
Programming by Keir Davis et al. (1-59059-
322-7), Apress, 375pp @ £31-50 (1.59)
reviewed by Alyn Scott

General Programming
Unix & Shell Programming by B Forouzan & R
Gilberg (0-534-39155-9), Thomson,pp @ £35-
00 (no US price) reviewed by Paul F. Johnson

About Face 2.0; The Essentials of Interaction
Design by Alan Cooper and Robert Reimann
(0-7645-2641-3), Wiley, 540pp @ £24-50 (1.43)
reviewed by Christopher Hill

Refactoring to Patterns by Joshua Kerievsky
(0-321-21335-1), Addison-Wesley*, 367pp @
£37-99 (1.32) reviewed by Anthony Williams

Succeeding With Open Source by Bernard
Golden (0-321-26853-9), Addison-Wesley*,
242pp @ £30-99 (1.29) reviewed by Mike Pentney

Holub on Pattems by AIIen Holub (1-59059-
388-X), Apress*, 412pp @ £31-50 (1.59)
reviewed by Alan Lenton

VB for the Absolute Beginner by Michael Vine
(0-7615-3553-5), Prima Tech, 342pp + CD @
£21-99 (1.36) reviewed by Richard Knight

Non-Programming
Linux in Easy Steps by Mike McGrath (1-
84078-275-7) Computer Steps, @ £10.99
reviewed by Paul F. Johnson

Fearless Change by Mary Lynn Manns, PhD &
Linda Rising, PhD (0-201-74157-1), Addison-
Wesley, 273pp @ £22-99 (1.09) reviewed by
Francis Glassborow

It follows directly on from his two previous
“Exceptional C++” books, and the story here is
very much “business as usual”. Presented in a
question and answer format (which often works
well, and sometimes seems very contrived),
various individual topics are investigated in
separate mini-articles. Some of the more thorny
topics are split across several articles.

Sutter takes us on a journey through the latest
wisdom on generic programming, exception

safety, class design, resource management and
optimisation. I was originally confused by the
book’s title “Exceptional C++ Style”; none of
the items are really any more to do with
programming style than his previous books.

However the last section, probably the best,
does finally do some justice to the title. Sutter
provides a number of case studies of Real
World code, showing how to improve its
coding style in light of modern C++ wisdom.

This section alone will help less experienced
C++ programmers to learn what industrial
strength C++ coding is about.

The book is well cross-referenced
(internally, with his earlier books, and with
other major C++ books) and clearly laid out,
with sound bite “guidelines” to distil the
important information. It comes highly
recommended for all practicing C++
programmers.

