Contents

Reports & Opinions
Editorial 4
Reports
View From the Chair, Secretary’s Report, Membership Report, Standards Report 5
Officer Without Portfolio, AGM Notification 6
Dialogue
Student Code Critique (competition) entries for #31 and code for #32 7
Features
Patterns in C — Part 1 by Adam Petersen 22
Professionalism in Programming #30 by Pete Goodliffe 24
Wx - A Live Port - Part 3 by Jonathan Selby 26
Elephant — A C++ Memory Observer by Paul Grenyer 28
An Introduction to Objective-C — Part 4 by D A Thomas 32
Memory For a Short Series of Assignment Statements by Derek M Jones 34
An Introduction to Programming with GTK+ and Glade — Part 4 by Roger Leigh 37
Reviews
Bookcase 40
Copy Dates

C Vu 17.2: March 7th 2005
C Vu 17.3: May 7th 2005

Contact Information:

Editorial:

Advertising:

Treasurer:

Paul Johnson

77 Station Road, Haydock,
StHelens,

Merseyside, WA11 0JL
cvu@ccu. org

Chris Lowe
ads@ccu. org

Stewart Brodie

29 Campkin Road,
Cambridge, CB4 2NL
treasurer @ccu. org

ACCU Chair:

Secretary:

Membership
Secretary:

Cover Art:
Repro:
Print;
Distribution:

Ewan Milne
0117 942 7746
chair @ccu. org

Alan Bellingham
01763 248259
secretary@eccu. org

David Hodge
01424 219 807
nmenber shi p@ccu. or g

Alan Lenton

Parchment (Oxford) Ltd
Parchment (Oxford) Ltd
Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vuonly): £25

Full (C Vu and Overload): £35

Corporate: £120

Students: half normal rate

ISDF fee (optional) to support Standards
work: £21

There are 6 issues of each journal produced
every year.
Join on the web at ww. accu. or g with a
debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
member shi p@ccu. org for an
application form.

Any questions - just email
menber shi p@ccu. org

Reports & Opinions

Editorial

Well, the bunting is down, the turkey has well
gone (and if it hasn't by the time this issue hits
your door mats, then | seriously suggest throwing
it out before it walks out!) and thoughts are
turning to how to remove the couple of inches
gained through the annual festival of excess.

Whilel can't help very muchwiththe physical,
inthisedition | can certainly help with the mental!
In the last issue, we had the first part of Derek
Jones statistical results from the last conference.
Thiswill conclude this edition, but it has sparked
something inmy inbox. It seemsquiteafew of you
have been very interested in the results obtained.
I've asked Derek if he' d like to submit some more
adong the samelines, so you never know...

In the Caverns of Your Mind...

| have many many many books in my office.
Loads of them. I'd hate to imagine how much
they’d cost to replace as there are some classics
in my collection which are long out of date and
even longer out of print.

Just before the holidays events really took
hold as one of the shelves holding the books up
(together with a good chunk of the wall) finally
succumbed to theforces of gravity, and asusual,
it was at around 4am. | don’t think I’ ve seen the
dogs jump so high — even the deaf one!

While | cleaned up the mess, | came across
three books which | thought had vanished when |
moved to Haydock over 10 years ago. While they
really wouldn't be worth a huge amount today,
they are important to me; they were the first two
programming books | ever bought and the first
programming book | ever bought from eBay.

The books in question here are “Computer
Spacegames’ and “Computer Battlegames” for
the ZX81, ZX Spectrum, BBC, TRS-80, Apple,
Vic20 & Pet. That should giveyou anideaof the
age of them (both published in 1982 by
Usbourne). I'd not really read these books in a
very long time (well, in 1982 | was 11, so playing
football was more important than my ZX81) and
decided to look through them — mainly out of
interest — and something struck me. While
machine power hasincreased vastly, things have
actually regressed in terms of computing.

You What?

Okay, I'll explain what | mean there. Take the
following piece of code (as listed in the
Computer Spacegames book)

I NVERSE ¢

LET y=h*1.3+10

PLOT 200,y: DRAW 34,0

DRAW -4, 20: DRAW-13, 10

DRAW - 13, -10: DRAW -4, 20

RETURN

LET y =

INK c

PLOT 0,y

DRAW b, 0

DRAW | NVERSE 1, 100- b, 0

RETURN

LET i $=I NKEY$

IF i$="a" THEN LET t=t+4

I F t>100 THEN LET t=100
I F i$="d" THEN LET t=t-4
IF t<O THEN LET t=f

IF t>f THEN LET t=f

RETURN
Thisisthe ZX Spectrum version of agamecalled
“Touchdown”. It' snot an amazing game, itisone
of thoseland the craft on the platform games. All
the above code does is a bit of drawing on the
screen and interacts with the player for which
key they press to move the spaceship (a user
defined 8x8 graphic). It's in BASIC (albeit
Sinclair BASIC) and what you see is what you
get

172-a*32

Now, consider what you would have to do to
get that to run on a modern Mac or PC (not
bothered as to which OS the PC is running — it
applies equally to Win32 and Linux/Unix/BSD
variants). No cheating here (read no emulators!).

First you need a third party library for the
graphics handling (say SDL — I’'m keeping this
cross platform as | know next to nothing about
DirectX). Okay, thereisaversion for platform X
and | caningtall it. Right. Good.

Next the code has to be converted. That
means that some parts will be easier than others
and some will need mapping over to SDL.
Problem. | need to consult the documents for
SDL to seewhat isthe closest to the original. For
the partswhich are smpleenough (smplelogic),
conversionto Cissimple. Movingitto C++, C#

or Java may be a hit of a pain, but can be done
easily enough.

So we now have the basics. We can’t do it
natively (that is with only the operating system),
but with dynamiclinking, thefinal product can still
be used by many people—aslong asthey too have
thelibrary I’ ve used. Nevertheless, it is possible.

The code though will have grown quite a lot
(in all probability) and to a beginner (which is
the target audience for these books), unlessit is
well documented, it isn’t going to be easy to use.

Then comes the make file. Shudder time!

So from something you sit down at, switch
on, 2 seconds later have acommand prompt and
can start working on, you now have boot times
of up to aminute, then load either atext editor or
development environment, load the source and
start to work. 2 seconds can become up to 10
minutes.

Of course, it would be plain daft of me to say
development and software quality hasn’timproved,
but it would also be wrong for me to omit saying
that the technology has developed aswell.

We no longer use 8 bit machines with a
maximum of 40K available memory, 8 colours
and a piezo beep for a sound system, and
software has comeoninleapsand bounds, but is
it still as accessible for the newcomer as things
were in 1981 or has computing changed to a
“them and us’ whereby instead of the computer
being a portal to the imagination, it isatool for
writing editorials, doing your home accounts or
sending emails?

Does your average kid get the same kick out
of writing some code as kids between 1981 and
1985 get when they used their BBC Bs, Orics,
Spectrums, Dragons et al or has the fun been
sucked out of it when you write something like:

voi d noveleft (

Position *currentPosition,
Ship &Tardis) {
Posi ti on newPosi ti on;
newPosi ti on = checkBounds(
current Position
— sizeof (Tardis));
i f(!'newPosition)
nmoveleft (current Position
— sizeof (Tardis));

Advertise In
C Vu & Overload

80% of Readers Make Purchasing Decisions
or recommend products for their organisation.

Reasonable Rates. Discounts available to corporate members. Contact us for more information.

ads@ccu. com

| CVu/ACGU/Reports & Opinions

Yesit'slogical, but isit realy the samein terms
of bright eyed fun?

And the Third Book?

Another classic from when | was a teenager:
“Creating Adventure Games on Your BBC
Micro” by lan Watt (there were other versionsfor
machines of that era, including the Amstrad 464,
Spectrum and Dragon 32).

Now this redly was agood book as it took the
reader through just about every aspect (at that time)
of writing an adventure — from the requirement to
get everything down on paper first (the map
planning being one of the most important aspects,
followed by the puzzles) — to using non-player
characters (NPCs). It was easy to understand and
even by todays standard, is a great book to have.

Why Did | Bring These Up?

Am | drunk? Am | just in one of those moods to
look back with rose-tinted glasses? Am | just one
of those cranks who wishes that the BBC B was
still the best thing since dliced bread?

The answer isno to all three.

| brought it up for one reason. In comparison
to what we have today, things have undeniably
moved forward, but at the same time, we've
regressed. Books are the same. Sure, things are
more complex, but the fun seems to have gone
as, more importantly, has the attention to detail.
We are getting more and more substandard books
being published which really aren’t helping.

| recently reviewed a book called “Linux
Game Programming” which was truly awful. It
was a book which (I’ve since learned) was
written by a committee after the lead author
found anew job. The attention to detail was lax
to say the least with someone at the publisher
adding in notes which instead of helping gave
some very poor information, some of which had
nothing to do with the material presented.

| doubt that in the 1980s this book would have
made it. All right, I’m not that blinkered to say
there were not some real turkeys out there (I
remember one Oric-1 book which did everything
with direct pokes to the screen etc instead of
using the built in command — that was a horrid
book!), but they were fewer and further between.
Weas it that back then books were not just off a
conveyor belt (yes, Granada Publishing was the
exception to that rule!) but written by authors not
just interested in getting another DirectX, SDL,
or OpenGL book out?

It would be refreshing, to say the least, if an
update to the adventure game book was made
available for users of C, C++, C# or Java.

Rant over. On with the show!

Paul F Johnson

View from the Chair

Ewan Milne <chai r @ccu. or g>
Preparations for the conference are in full swing,
and with a line-up featuring Stroustrup, Coplien,
Sutter, Buschmann and many others, | hopeyou are
asexcitedasl amabout it. Thereisoneevent at the
conferencethat understandably will becausingless
excitement, but which | would like to draw your
atention to nonetheless. On the next page you will
see the announcement of the AGM. It is easy to
forget about this with everything going on around
it; but thosewith long memorieswill remember the
conference’ s roots as a few presentations held
adongsdethe AGM for added interest.

CVu/ACCU/Reports & Opinions

So, | admiit it: Alan and | working through the
agenda, the other officers presenting reports —it's
not the most gripping hour of the event. Butitisan
essential task in the running of the association, for
the whole membership as much as the committee,
S0 your participation is strongly encouraged. This
year we have planned to streamline the meeting as
much as possible, minimizing the administrative
detailsin order to use thetimeto better focus on any
real issuesthat areraised.

One of the new ideas is to make the officers
reports available to the membership in advance of
themeeting. Theaim of thisisto avoid much of the
meeting itsalf being taken up by their presentation.
Some, like the Treasurer’ s report, don't really suit
alive reading. At the meeting we plan to move
directly to taking questions on the reports. Of
course, the key to cusses here is for the reports to
have actually been readin advance, so please, when
you receive your AGM pack, do please take the
timeto read and consider it. With your help we can
have a more efficient, more productive AGM. |
look forward to seeing you there.

Secretary’s Report

Alan Bellingham <secr et ar y@ccu. or g>
Membersdon'’t often know whet takes place during
committee meetings (although they’'re entitled to
attend if they so wish, or receive the minutes on
request). So thistime, I'll give a quick report on
what happened during our last meeting.

Meetings take place four times a year, usudly
at roughly 3-month intervals (but the summer
vacation season tends to mean that a longer gap
occursthen). Also, to spread the travelling around,
themeetings won't always occur a the same place.

The most recent meeting took place at Jez
Higgins' house in Mosegley, Birmingham, in the
English Midlands. It began at 13:30, and there
were eight of us present, with another three
experimenting with Skypein an attempt to attend
virtually. In the event, domestic broadband
Internet turned out not to be quite up to it.

Thefirgt activity, after recording who is present
and who has sent their apologies, and after
approving the minutes of the previous mesting, is
to note those actions in the previous minutes that
are complete, and those that aren’t. Thisiswhere
the committee keep track of ongoing activity —
some things do take yearsto complete.

In this case, we noted that the 2003 writers’
competition had finally been judged (deplorably
late — we will do better next time), and that the
long-drawn-out process of transferring the post of
Treasurer to Stewart Brodie was finally complete.
(Thenew banking rulesmake changing signatories
on bank accounts avery tedious process.)

Thenext sepisofficers reports. Not al officers
make a report every time: for instance, since my
main activity is organising agendas, writing
minutes and the like, there' s rarely anything new
for me to report. Usualy, these reports should be
broadly similar towhat appearsinthisjourna, with
the exception that with four meetings a year, and
six journals, matters do get alittle out of phase.

Unusually, we co-opted a member, Thaddeus
Frogley, to teke charge of advertising sales. There
was a so the announcement that Pippa Hennessy
is stepping down as our production editor. (The
production editor isthe person responsiblefor the
actual layout and so on of thejournals, rather than
for their content.) This is an important post
(though not actually a committee role), and we

hopethat John Merrells (the Publications Officer)
will find a replacement up to Pippa s standard.

The conference is always on our minds, but
it's run by a subcommittee rather than by the
main committee. We were informed that
everything ison schedule, and that aprogramme
has mostly been finalised.

The final item on the agenda (placed last
because we knew it would need the most
discussion), was the subject of theaccu. or g
website. We revery awarethat the current website
is abit of a monster — it contains thousands of
pages, it looks old-fashioned, and it creaks a bit.
Because of this, we have been trying to work out
what to do with it. What has been happening
recently is that Allan Kelly has taken charge of
this, to produce afull plan of what we need, and
to effectively outsource the rebuilding of it. This
has led to the production of a requirements
document (it' sdifficult to produce the right answer
if you don’'t ask the right question), and this has
now been approved. The next stage should be that
weget alist of tendererstogether, and by the next
meeting, we should be going ahead.

Finally, the next meeting is scheduled for 19th
February. However, that's a tentative date, and |
know that | won’'t be able to make it, since |
won't have returned from the Basler Fasnacht
(wwv. f asnacht . ch if you'reinterested).
Hence, it's likely to be reschedul ed.

Membership Report

David Hodge <nenber shi p@ccu. or g>
At the end of 2004 the membership stood at 934
with the majority of new members and renewals
using the website.

If you have a UK bank account and would like
to save £5 on your next year’s subscription by
paying by standing order, ask for details by email.

Note that due to the lag in getting the banks
to process standing order information, you need
to initiate this process at least 8 weeks before
your renewal date.

If you change your email or mail addressitis
important that you let me know so that | can
update the database. There are occasions when
journals can go astray, if you do not get your
copies, please contact me.

Standards Report

Lois Goldthwaite <st andar ds@ccu. or g>
The UK continues to punch above its weight in
international standards devel opment.

A UK delegation has attended every meeting
of theinternational C standard committee (WG14)
going back to the very first one in September
1986. | doubt if any country except the US could
makeasimilar claim. Thefirst document listed in
the WG14 register isN0OL, ‘Minutes of 10 Sep 86
Mesting’, by CorneliaBoldyreff, who wasthefirst
convenor of the BSI C panel. N0OO5, also by
Boldyreff, is‘ Comments from BSI’ on issues
discussed at the second meeting.

The first meeting of WG21, the C++ standard
committee, was in June 1991. | haven't been able
to determine yet if the UK was represented there,
but we' ve sent del egatesto dl the ones since then.
Derek Jones remembers attending the meeting of
the C committee which decided a different group
should devel op the C++ standard, so he countsthat
asthezeroth meeting for C++. In 2004 members of
the UK C++ panel authored or co-authored 24
discussion papers submitted to WG21.

S

Another area of UK standards activity is
Posix. Posix is a standard for operating system
interfaces—‘Unix’ wasoriginally atrademark of
AT&T, who invented it, so the standard had to be
called something else. In those days there were
multiple standards for commercial Unix, as
various groups of vendors formed themselves
into consortia. Posix (Portable Operating
System) began as an effort by |IEEE and Unix
users to standardise library functions so that
applications could be ported to different
platforms. The BS| Posix panel was officially
established in September 1987 (an ad hoc one
met a month earlier), also under the leadership
of Cornelia Boldyreff. After that the UK played
an activerolein |EEE P1003 and WG15.

These days the Posix/Unix landscape has
changed. There are now three bodies who issue
standards on this subject, but there is only one
standard. What iscalled the Austin Group consists
of representatives from |EEE, the Open Group
(successor to all the Unix vendor consortia), and
ISO/IEC SC22 (the parent committee for WG15,
which has been dissolved), plus a great many
individuals representing their employers or
themselves, all working together to produce a
single unified standard document. Approximately
600 people take part in the Austin Group work.
Their motto for the jointly-developed standard is
‘Write once, adopt everywhere.’

An Austin Group plenary session took placein
Reading in January, along with the initial meeting
of the SC22 Posix Advisory Group which has
succeeded WG15. Of the nine peoplewho attended
the PAG in person, four are members of the UK
pand. Three of these people are regular attendees
inthe Austin Group’ samost-every-week working
teleconferences, wearing their other hats: Andrew
Josey chairs the Austin Group and is Director of
Certification for the Open Group, Nick Stoughton
isthe Organisational Representativefrom SC22 and
liaison from the Free Standards Group, and Joanna
Farley is an experienced expert from Sun.

Speaking of the Free Standards Group, their
Linux Standard Base document has been submitted
for adoption by SO and |EC. Formulating the UK
vote on whether or not to approveit isanimportant
task facing the BS| Posix panel. If you have an
interest in Linux and would like to participate in
this work, please send an emal to
st andar ds@ccu. or g for more information.

(To save myself the trouble of researching
through all those meeting minutes, | consulted
the memory of veteran UK delegates Francis
Glassborow, Neil Martin, Derek Jones, and
Cornelia Boldyreff, to whom all many thanks.)

Officer Without Portfolio
Allan Kelly <al | an@l | ankel | y. net >

When | agreed to join the ACCU committee |ast
April | did so because | wanted to seethe ACCU
improvein some specific areas. Principally | had
the website in mind. Well, you can’t see any
changes yet but things have been happening
behind the scenes so | thought 1'd fill you in on
what's been happening and where we are at.

The new committee (including myself) met for
thefirst timein May and decided to outsource the
website. Steve Dicks (Electronic Communications
Officer) and myself were tasked to develop a
specification. Unfortunately this turned out to be
more difficult than either of us expected.

In August | asked a friendly company how
much they would charge to write such a
specificationfor us. The committee decided this
was too much and instead a “new web” sub-
committee was formed. This produced a short
specification that was put to the main committee
in November. The main committee agreed the
specification and gave us authority to seek
tenders.

December was abusy month for everyone but
those of usin the new-web group still found time
to draw up a tender schedule, make final
revisions to the documents and a couple of days
after Christmas | mailed arequest for tendersto

accu- cont act s and several firms who had
already expressed interest in the work.

We have tried to keep the process as open as
possible. We've had debates amongst ourselves
about who should be allowed to bid and one
person withdrew from the new-web group lest his
position be questioned. Originally weintendedto
advertisethetender in the pages of C Vuitsdlf, this
hasn’'t happened for two reasons. First and
foremost, given the schedule we are running to
this would inject a two-month delay into the
process. We didn't feel this was reasonable, not
only would welose momentum but we would lose
any chance of having anything ready for the April
conference. (It's worth noting that our schedule
is dictated by the fact that we are all volunteers
who fit thiswork around our real jobs. If we had
had thetimeto doit quicker wewould have done.)

Secondly, the new-web group (and myself
specifically) fed that the companieswe have asked
to bid — and the mailing to accu- cont act s —
will give us plenty of competition in the bidding
process. Every extra bid means work for the
committeeand potentially dowsdownthesigning
of the contract.

At the moment I'm hopeful that by the time
you read this we will have a shortlist of bidders
and bewell ontheway to signing acontract. I'd
till like to think we'll have some new pages on
show for the April conference but have to admit
thisislooking more unlikely.

One change we have asked biddersto look into
is the possibility of raising revenue from the
website. The obvious exampleislinks from book
reviewsto booksdllers websites. Whilenobody on
the committee wants to see the site overrun with
advertising, we haven'’ t forgotten the support given
to the ACCU by the likes of Blackwells and PC-
Bookshops. The objectiveisto lessen the coststo
the ACCU and therefore your membership fees.

So there you have it. | know 8 months may
seem along timeto do this sort of work —it doesto
me! —but it issurprising just how quickly it goes.

NOTIFICATION OF AGM

Alan Bellingham <secr et ar y@ccu. or g>

Notice is hereby given that the 17th Annual
General Meeting of The C Users’ Group (UK)
publicly known as ACCU will be held at 12:00
pm on Saturday 23rd April 2005 at the The
Randolph Hotel, Beaumont Street, Oxford, OX1
2L N, United Kingdom.

Agenda

1 Apologiesfor absence
Minutes of the 16th Annual General Meeting
Annual reports of the officers
Accounts for the year ending 31st December
2004
Appointment of Auditor
Election of Officers and Committee
Other motions for which notice has been
given.
Any other Annual General Meeting Business
(To be notified to the Chair prior to the
commencement of the Meeting).
The attention of attendees under a Corporate
Membership is drawn to Rule 7.8 of the
Constitution:
‘... Voting by Corporate bodies is limited to a
maximum of four individuals from that body. The
identities of Corporate voting and non-voting

2
3
4

~No O

individuals must be made known to the Chair
before commencing the business of the Meeting.
All individuals present under a Corporate
Membership have speaking rights.’
Also, all members should note rules 7.5:
‘Notices of Motion, duly proposed and seconded,
must be lodged with the Secretary at least 14
days prior to the General Meeting.’
7.6:
‘Nominations for Officers and Committee
members, duly proposed, seconded and
accepted, shall be lodged with the Secretary at
least 14 days prior to the General Meeting.’
and 7.7:
‘In the absence of written nominations for a
position, nominations may be taken from the
floor at the General Meeting. In the event of there
being more nominations than there are positions
to fill, candidates shall be elected by simple
majority of those Members present and voting.
The presiding Member shall have a casting
vote.’
For historical and logistical reasons, the date and
venueisthat of thelast day of the ACCU Spring
Conference. Please note that you do not need to
be attending the conference to attend the AGM.
At the last two AGMs, there has been some
protracted discussion that has led to a time
overrun. For thisreason, rather than be scheduled

for the second hour of the lunch break, the meeting
is scheduled for the first hour. On the other hand,
there should be less that needs discussion, so the
extratime should not be needed.

For more information about the conference,
please see the web page at
http://accu. org/ conference

Asfar as businessis concerned, we don't yet
have any extraordinary items, and at the time of
writing, al current officers and other committee
members are willing to stand again. There is
somewhat of a tradition that nominations are
made from the floor during the AGM as per rule
7.7 rather than as per rule 7.6. However, it is till
within the powers of the membership to select an
entirely new committee should it so desire.

One innovation we intend this year is to
prepare the reports, together with the minutes of
last year’ smeeting, and distribute them by email
to all members a fortnight before the meeting.
This should allow attenders to study them and
prepare questions in advance, rather than having
to do so on the spot. Although there may be some
reports that do not arrive before the day, this
should help streamline the business and let
members concentrate on what matters.

Wewill aso be placing these documentson the
website, which should from now on contain all
AGM documents for this and subsequent years.

6

CVu/ACCU/Reports & Opinions

Dialogue

Student Code Critique
Competition 32

Set and collated by David A. Caabeiro .
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members.
The title reflects the fact that the code used is normally provided by a
student as part of their course work.

Thisitemis part of the Dialogue section of C Vu, which isintended to
designateit asan itemwherereader interaction is particularly important.
Readers' commentsand criticisms of published entries are always welcome.

Before We Start

Besideswishing you all (unpunctually) a prosperous 2005, a special thanks
to those who participate in this competition for their support.

Remember that you can get the current problem set at the ACCU website
(http://ww. accu. org/journal s/) . Thisisfor peopleliving overseas
who get the magazine much later than membersin the UK and Europe.

Editor’s Note

Due to the large number of entrants this time, | have found this a
particularly difficult SCC to judge; the entries are that good (asyou’ Il see!).
Aswe'reat the start of anew year, two prizeswill be awarded for this SCC.

Thank you to everyone who entered for making this the most difficult
SCCtojudge, and oddly enough, the most enjoyable— keep sending those
entriesin folks!

Student Code Critique 31 Entries

Here is the code | have using the equation to drop the lowest number from the grades.
The problem is, if | change up number 3 and number 4, | get a different answer. |
used the numbers 80, 84, 60, 100 and 90. Putting the numbers in like that, | get 88
but, if I mix up the 100 and 60 then | get a grade of 81. Can anyone tell me why it is
not finding the lowest number and just dropping it when | tell it to (- lowest)?

#i ncl ude <i ostreane

#i ncl ude <i onani p>

usi ng nanespace std,;

int main() {

int testl, test2, test3, test4,test5, average,
aver agescor e, di vi de;
gather five test
scores and\n";

giving you the

average\ n";

cout <<"This programwill
cout <<"drop the | owest score,

cout <<"\n";
cout <<"Please enter Five Test scores\n"
cin >> test1>>test2>>t est 3>>t est 4>>t est 5;
int |owest = testl;

/1l test 1 is the |owest nunber
if (test2 < testl)lowest = test2

/] test 2 is smaller than test
if (test3 < test2)lowest = test3;

[/l test 3 is snaller than test
if (test4 < test3)lowest = test4

/] test 4 is smaller than test
if (test5 < test4)lowest = testb5;

// test 5is smaller than test 4.
average = (test1+test2+test3+test4+testh);

/1 all test scores averaged together
averagescore = average - |owest;

/1 average score minus the |owest grade
di vide = averagescore /4;

/Il average grade is then divided by 4
cout << divide<< endl;

/1 final grade after division
return O

}

unl ess

1 unl ess

2 unl ess

3 unl ess

| CVu/ACCU/Dialogue

Besides the question asked by the student, this code gives you a chance to
discuss topics such as extensibility, design and style. Please address as
many issues as you consider necessary, without omitting the answer to the
origina question.

From Tim Penhey <Ti m PENHEY@ bos. con®

| do have to admit that on first scan of the code, | didn’t notice the error. It
was only when typing the code in that | noticed it.

One thing that | often do when working with numbers is to actually
transpose the numbers into the code and look for errors. It isvery easy to
get caught by “off by one” errors, however thisis not one of those times.
Firstly let’slook at the first sequence of numbers:

80 84 60 100 90
Now put these into the code replacing the test variables (let’s replace the
comments too):

int | onest = 80;

/1 80 is the | owest nunber unless

if (84 < 80) |owest = 84;

/1 84 is smaller than 80 unless
if (60 < 84) |owest = 60;

/1 60 is smaller than 84 unless
if (100 < 60) |owest = 100;

/1 100 is smaller than 60 unless
if (90 < 100) | owest = 90;

/1 90 is smaller than 100.
Now we can easily seethat thelogicisflawed. Checking the adjacent value
will not choose the smallest. The simplest change that will get the code to
work is the check against the current lowest value instead

int [owest = testl;

/1 test 1 is the |owest nunber unless
if (test2 < lowest) lowest = test2

I/l test 2 is snaller than |owest unless
if (test3 < lowest) |owest = test3;

/1 test 3 is snmaller than |owest unless
if (test4 < lowest) lowest = test4

I/l test 4 is snaller than |owest unless
if (test5 < lowest) |owest = testb5;

/] test 5 is smaller than |owest.

Now to comment on style...

* maybeitisjust me, but | prefer to have the comment above the code that
itisreferring to, not below. Perhapsitisjust that | liketo know theintent
before | see the code. [Production Editor — that was my fault, comments were
at the end of the lines, and as there wasn’t room within the standard layout |
inserted line breaks with indentation, which is standard procedure for the ACCU
Journals. This is the only layout change | ever make to the code critique problem]

» <i omani p> isnot needed asthe only manipulaor being usedis end! , and
that is defined in <ost r ean» (whichisincluded through <i ost r ean®.

e Use appropriate variable names. aver age in the example is not the
average but the sum, and aver agescor e isthe sum less the lowest.

What is going to happen if we now need to test six values, or ten, or even

aclass of 30? The algorithm being used is not particularly extensible.
One solution isto calculate the sum and the lowest while entering value.

However when doing thiswe now haveto handle the boundary caseswhere

the user may enter any number of values. No values obviously has average

of zero, while one value is by definition also the lowest, and the average
of therest (no values) iszero, so the average calculationisonly valid where
the number of entered valuesis greater than one. Hereis an example that
accumulates on the fly:
#i ncl ude <i ostreanr
#include <limts>
usi ng nanespace std;
int main() {
cout << "This programwi || gather
<< "test scores and drop the\n"
<< "l owest score, giving you the "
<< "average of the remaining.\n\n"
<< "Enter test scores. Termnate
<< "the last score with a period.\n";

int
int

sum = 0;

count = O;

int val ue;

int lowest = nuneric_limts<int>:max();

while(cin >> value) {
if(value < | owest)
sum += val ue;
++count ;

}

int average = 0;

i f(count == 0)
cout << "No entries entered\n";

else if(count == 1)
cout << "Only one val ue entered,

<< "so it is the |owest value.";

| owest = val ue;

el se

average = (sum -
cout << "Average:
return O;

}
nuneric_limts isusedtodefinetheinitia value of thel owest variable.
Since any other integer value will be equal or lessthan this, then any value
typedinasthefirst valuewill set thel owest to bethat. Subsequent values
are then checked against the current | owest .

Theother “trick” inthe codeisusing thef ai | flag onci n to terminate
the entry loop. Thef ai | flag happens when we ask to stream into an
integer and the stream contai ns anon-whitespace non-integer value, hence
the terminating the last score with a period.

Another solution is to use standard containers and use algorithms like
accunul at e to sum the values, but this I'll leave as an exercise for the
reader (or other submitters).

From Thaddaeus Frogley <codenoney_uk@rac. con®

lowest) / (count - 1);
' << average << endl;

The code does not work because of asimplelogica error, and not alanguage
specific problem. Each i f statement is evaluated “locally” and in effect
ignoresthe preceding work done. Thus, asthe student asobserved, ift est 5
contains a smaller value than t est 4 then | owest isassigned t est 5,
irrespective of the results of the preceding tests. The straightforward fix is
to change the sequence of i f statements to compare each time against the
current | ovest value, then | would expect the code to work.

This of course ignoresissues of extensibility, design and style, but for a
student of thislevel | would consider it more important to understand the
logical flow required to solve the problem at this simple level. Ultimately
knowledge of the standard library is second to asolid grasp of constructing a
logical sequence of steps to solve a problem programatically. For future
reading | would advise reading up on arrays and containers, and the
std: : sort agorithm. Constant useof st d: : endl vs\ nwouldasobenice.

From Roger Orr <r oger o@owzat t . denon. co. uk>

Thefirst thing to do isto answer the student’ s question — they want to know
what iswrong with the code. The answer is the sequence of comparisons
of adjacent test values: the result of each stage (the new value of lowest)
needs to be passed into the next comparison.
Simply change the sequence to:
int lowest = testl,
I/l test 1is
if(test2 < | owest)
/] test 2 is
if(test3 < |owest)
Il test 3 is
if(testd < lowest)
/] test 4is

the | owest nunber unl ess

| onest = test2;

smal | er than | owest so far unless

| onest = test3;

smal l er than | owest so far unless

| onest = test4;

smal | er than | owest so far unless
if(test5 < lowest) |owest = test5;

I/l test 5is snmaller than | owest so far.
Thisfixes the code — but there are several other things worth commenting
on. Firstly, this sort of code criesout for aloop! In order to do thiswewant
an array variable rather than 5 separate variables. C++ comes with a
suitable collection object: the vect or . So we can replace the list of
variablest est 1tot est 5 with:

std::vector<int> test(5);
then the input, the test and the addition can all be done by using loops —
thisisimmediately generalisableto caseswhereyou’ ve got more (or |ess)
than 5 numbers to process.

8

To make the code more robust, this should be the | ast time we use the hard-
coded number ‘5’ —therest of the program can use the size of thevect or
to ensure it copes with changes to this number.

for(int i = 0; i !=test.size(); ++i)
cin >> test[i];

int lowest = test[0];

for(int i2 =1; i2 !=test.size(); ++i2)

if(test[i2] < lowest) lowest = test[i2];
/1 get the |owest nunber
average = O;
for(int i3 =0; i3 !=test.size();
average += test[i3];
I’d also like to change the names of the variables— the names don’t match
the contents. For example, aver age and aver agescor e both contain
totals, not averages!

It is good to pick meaningful names for variables, but important to
remember to keep the names of the variables consistent with their usageto
avoid leading the reader of the code astray.

Lastly, we can get rid of some of the loops by using algorithms provided
by the standard library. We can useni n_el enent to find the lowest value
and accumul at e to perform the sum.

My final version of the program looks like this:

#i ncl ude <i ostreanr

#i ncl ude <i onani p>

#i ncl ude <vector>

#i ncl ude <al gorithne

#i ncl ude <nuneric>

usi ng nanespace std;

++i 3)

int nmain() {
cout << "This programw || gather "
<< "five test scores and\n";
cout << "drop the |owest score, "
<< "giving you the average\n" << "\n";
cout << "Please enter Five Test scores\n";
std::vector<int> test(5);

for(int i =0; i !'=test.size(); ++i)
cin >> test[i];
int lowest = *mn_el ement (test. begin(),

test.end());
int total score = std::accunul ate(test.begin(),
test.end(), -lowest);
/1l total score (mnus the | owest grade)
int divide = totalscore / (test.size() - 1);
/1 average grade is then total divided by (n-1)
cout << divide << endl;
/1 final grade after division
return O;
}
My hope isthat the resultant code is easy to understand and does the task
well enough. This code may be slower to write than the origina code the
first time, but with practice it will become second nature. The time spent
learning to do thisis also repaid in the reduction in bugs.

From Richard Wheeler <acht 85@kgat eway. net >

OK, so | am not aprogrammer but every now and then | get to look at code,
especially when | want to know what actually happens in a program.
(Especially when | do not believe the documentation or there is no
documentation). Thank heavens this code compilesand runs—1 don’t think
| could handle obscure syntax problems. Anyway, full marksto the student
for carrying out sufficient testing to identify that there is a problem. Now,
looking at the student’ s code a number of points to comment on jump out at
me. | will treat them in order so the trivial are mixed in with the more
important — but then with just ashort piece of codeit isnot clear how atrivial
comment would scale into a programme with thousands of lines of code.

1. Input validation

Thereisno validation of the input. Thisisnot the student’sissue but it is
worth aremark as | would expect significant further programming effort
to ensure that the input is properly validated (sensible means of stopping
the programme if run in error, the correct number of exam grades are
entered, each is a number, each within sensible bounds, meaningful error
messages to the user, etc).

| CVu/ACCU/Dialogue

2. Choice of variable names

| do not like variable names which look like reserved words — aver age
and di vi de (and further down | owest) make me uneasy. These names
look as though they are self-documenting but | would prefer something
likeaverage_score and| owest _score as better self-documenting
names. [See also comment 7 below].

3. Consistent programming style

I look for a consistent programming style as this should speed up
comprehension of code. Herewe have ablock where all thei nt variables
are defined except for the single variable | owest which isdefined later.
I may be making a mountain out of a molehill in this case but when a
programme extends to thousands of lines then consistency isimportant.

4. Program logic

Thisisthe guts of the student’s problem. The process should be to set up a

placeholder for the lowest grade. Thisis given any grade asitsinitid vaue

(and thefirst gradeis asgood asany). Then each gradeiscompared in turnto

the placeholder and if the grade has a lower value the placeholder is reset to

that grade. Fromthisdescriptionit followsthat thei f statementsshould read
if(testn < lowest)lowest = testn;

for each value of n from 1to 5.

5. Generalisation (1)

| am against unnecessary generalisation but in this case | think it clarifies
the program logic. If we allow for a variable number of tests we can
generalise the logic into afor loop using an array of test scores.
Something on the following lines should do

| onest _score = test_score(1);

for(int i =1, i <= nunber_of_tests,

if(test_score(i) < |owest_score)
| onest _score = test_score(i);

i++) {

}
(The student might want to change theinput processto start with obtaining
the number of grades, so giving a value to the new variable
nunber _of _t ests —there are other approaches which could be used).
A bit of cleverness might be to avoid the first iteration in the loop as this
isunnecessary. But that, in my opinion, tends to obscure the logic process.

6. Comments should be meaningful (1)

| found the comments against all thei f statements were not very helpful.
In fact one reason for generalising to thef or 1oop abovewasto think how
thef or loop should be commented and compare this to the existing
comments. In fact | would not bother to comment thef or loop at all.

7. Variable names are miseading

Thevariableaver age issettoatota andisnot anaverageat al. Asvariable
names, aver age and aver agescor e give no clues asto the different (or
same) data entities they refer to. di vi de gives no clues at dl to what it
means. | would suggest that the following are more meaningful values

total _score foraverage

adj usted_t ot al _score foraveragescore

final _grade fordivide

8. Comments should be meaningful (2)

The comments in the section of code which calculates the final grade are
wrong. (Note the distinction — the variable names are misleading, the
comments arewrong). With good variable names (such as those suggested
above) | think that comments are unnecessary.

9. Magic numbers

The evaluation of di vi de usesthe “magic number” 4. Thiscomment is
scarcely worth bothering about in this specific example but is something
to be aware of if the programme is generalised to handle any number of
grade scores.

10. Generalisation (2)

Following on from the generalisation of the logic there needs to be
corresponding generdisation of calculation of thet ot al _scor e. | would use
total _score = O;
for(int i =1, i <= nunber_of _tests, i++) {
total _score = total _score + test_score(i);

}

| CVu/ACCU/Dialogue

Now there are two f or loops. Perhaps compiler optimisation can roll
theseupintoone. | would do thisexplicitly and, at last, include acomment

/1 calculate | owest score and total of all scores
| owest _score = test_score(l);

total _score = 0;

for(int i =1, i <= nunber_of _tests, i++) {

if(test_score(i) < |owest_score)
| onest _score = test_score(i);
total _score = total _score + test_score(i);
}
and, just for comparison, we could save the first iteration of the loop
with

I/ calculate | owest score and total of all scores
| owest _score = test_score(l);

total _score = test_score(1);

for(int i = 2, i <= nunber_of _tests, i++) {

if(test_score(i) < |owest_score)
| onest _score = test_score(i);
total _score = total _score + test_score(i);
}
But, as| said before, | think thisis unnecessary cleverness which obscures
what is happening.

11. User interface niceties

The student hastaken care on input to explain to whoever runsthe program
what the program does. But for the results, the adjusted grade valueis all
that appears. | think it would be an improvement to have a line which
explains the results. Something like
cout << "The adjusted grade for your "
<< "five test scores is \n";

Finally there are a number of other points which make me feel uneasy. |

would want to discuss these with the student’ stutor / mentor / project leader

as to whether the student needs additional help. These are:

o The student’sinitial description of the problem does not come over as
fluent English. Isthestudent anative English speaker? (I have worked
on multi-national projectswith English asthe project language. | found
that fluent English speakers were still worried that as “non-native
speakers’ they could misunderstand the subtl eties of requirementsetc).
[don’t know where he is from. David]

» | wonder whether the student’s incorrect comments about calculating
the average etc are a problem with the English language or a problem
with understanding the code.

» Whilst | give the student full marks for identifying the problem through
testing, it is not that difficult to step through this code line by line with
the two sets of test values and work out what is going wrong.

e | could quite well be over-reacting. After all, we all have off-days.
However, | think it would be worthwhile to find out a bit more about
the student and not stop after completing a coding criticsm.

From Neil Youngman <ny @ oungnan. or g. uk>

To start with the question as asked, the code does not always find the lowest
value because the value is only compared with its neighbours, not with the
lowest value found so far. Obviously this can result in the value selected
not always being the lowest.

Oncethisisfixed, | would expect the the program to work as expected,
provided the input is exactly as expected, but it may not handle any
unexpected variationsin input gracefully and any extensions, e.g. to handle
adifferent number of inputs, will require changes to the code.

After fixing the bug, | would start further improvementsto the code by
providing a more flexible input mechanism that allows the variable
numbers of inputs. | would also break the program down into functions
that will handle the individual tasks, so | might as well make this change
by way of anew function, which | shall call i nput _dat a. | have defined
i nput _dat a as.

std::vector<int> input_data(istream& n) {

std::vector<int> data;
while(!in.eof () & in.good()) {

int val;

in >> val;

if(in.good()) {

dat a. push_back(val) ;

}

}

if(lin.eof()) {
/1 W should only get here if there
/1 has been an error on the stream
cerr << “lInput error reading data”
<< endl;

exit(1);

}

return data;

}

[Watch out here. This function contains some pitfalls. For instance, what happens
when EOF is right after the last number? Is it pushed into the vector? David]

Thefirst thing you should notice is that this function returnsavect or
of i nt S A vect or isastructure provided the standard template library,
which is capable of handling a variable number of elements. As vect or s
aredefined by templatesthey may be used to contain any type you choose,
inthiscase i nt s. Bear in mind that other list structures are available and
avect or may not always be the best choice.

Y ou may also notice that the input stream is | eft as a parameter, so that
the function may read data from any input stream, e.g. afile, instead of
being restricted to reading fromci n.

Also needed is a way of indicating that the end of input has been
reached. | have chosen to reguest an end of file character to indicate the
end of thelist. Again, thisis not the only possible choice and anon technical
audience may prefer something like entering the word “end”, but this
approach is simpler to code.

Another important point is that there was no error checking in your
existing code. This function checks for errors and exits when there is an
error onthe stream. Y ou should consider whether this code should continue
when an error has occurred, in which caseit will need some action to reset
the stream to a good state before it will be able to read further.

| have updated the prompts to read

cout << "This programwi || gather test

<< "scores and drop the lowest" << endl

<< "score, giving you the average of the

<< "remai ni ng scores" << endl << endl

<< "Pl ease enter your test scores" << endl

<< "Wen all scores have been entered "

<< "please ternminate the list" << endl

<< "with an end of file character "

<< "("Din Unix, "Zin Wndows)" << endl;
It isimportant that when you modify a program, comments and text shown
to the user are updated to match. If thisis not done at the same time it will
often be forgotten.

Many will argue that the use of end! for al line endingsisinefficient.
| prefer to alwaysuseendl for consistency, unlessaprogram hasaserious
1/0 performance problem.

The next task isto find the lowest value, which can be done by asimple
function, but rather than writing our own, we can seethat thereisasuitable
function aready provided in the STL called m n_el enent , which we can
use:

std::vector<int> :iterator |owest

= m n_el enent (dat a. begi n(), data.end());
Similarly we can use the STL function accunul at e to produce an initial
sum. To avoid confusion you really should not use the name “average” for
the initial sum, that's somewhat confusing and your other names are
similarly poorly chosen. | would suggest something like:

int sum = accumul at e(dat a. begi n(), data.end(), 0);

int adjusted_sum= sum- *|owest;

int result = adjusted_sum/ (data.size()-1);

Other things | would change include changing usi ng nanespace std
to using specific items from the st d namespace and declaring variables
wherethey are used instead of declaring them all at the start of the function.
Thisleaves the final program looking like:

#i ncl ude <vector>
#i ncl ude <i ostreanr
#i ncl ude <i omani p>
#i ncl ude <al gorithne
#i ncl ude <nureric>
using std::istream
usi ng std::vector;
using std::cin;
usi ng std::cout;
using std::cerr;
usi ng std::endl;
10

std::vector<int> input_data(istream & n) {
std::vector<int> data;
while(!in.eof ()) {
int val;
in >> val;
if(in.good()) {
dat a. push_back(val) ;
}
}
if(lin.eof()) {
/1 W should only get here if there
/1 has been an error on the stream
cerr << "lnput error reading data" << endl;
exit(1);
}

return dat a;

}

int nmain() {
cout << "This programwi || gather test
<< "scores and drop the lowest" << endl
<< "score, giving you the average of the "
<< "remai ning scores" << endl << endl
<< "Pl ease enter your test scores" << endl
<< "Wen all scores have been entered "
<< "please termnate the list" << endl
<< "with an end of file character
<< "("Din Unix, *"Z in Wndows)" << endl;
std::vector<int> data = input_data(cin);
std::vector<int> :iterator |owest
= m n_el emrent (dat a. begi n(),
int sum= accunul at e(dat a. begi n(),
int adjusted_sum= sum- *|owest;
int result = adjusted_sum/ (data.size()-1);
cout << result << endl;
return O;

}
From Margaret Wood <mar gar et wood@ocket mai | . com au>

data.end());

data.end(), 0);

I’'m sure lots of people can tell you why the output of your program
depends on the order you enter the numbers, but | think it will be more
useful to help you work it out for yourself. Y ou can do this by looking at
the values of the variables as you progress through the code. Hereis a
modified version of your code, | have added some more callsto cout , to
show the value of | owest after each comparison.

#i ncl ude <i ostreanp

#i ncl ude <i onani p>

usi ng nanespace std;

int nain() {

int testl, test2, test3, test4, testb5,
aver age, averagescore, divide;
cout << "This programwi |l gather "

<< "five test scores and\n";
cout << "drop the | owest score,
<< "giving you the average\n";
cout << "\n";
cout << "Please enter Five Test scores\n";
cin >> testl >> test2 >> test3 >> test4 >> testb5;
cout << endl;
int lowest = testl;
cout << "lowest is " << |lowest << endl;
/Il test 1 is the |owest nunber
if (test2 < testl) lowest = test2;
/Il test 2 is smaller than
cout << "lowest is " << |owest <<
/Il test 3 is snaller than

unl ess

test 1 unless
endl ;
test 2 unless

if (test3 < test2) lowest = test3;
cout << "lowest is " << |lowest << endl;
if (test4 < test3) lowest = test4;

I/l test 4 is snaller than test 3 unless

cout << "lowest is " << |owest << endl;
if (test5 < test4) lowest = testbh;
// test 5is smaller than test 4.

| CVu/ACCU/Dialogue

cout << "lowest is " << lowest << endl;
average = (testl + test2 + test3 + test4 + testh);
/1 all test scores averaged together
averagescore = average - |owest;
/| average score mnus the |owest grade
di vi de = averagescore /4;
/1 average grade is then divided by 4
cout << endl;
cout << divide << endl;

/1 final grade after division
return O;
}
If you run this version, with the values 80,84,60,100,90 it will print out

| owest is 80

| owest is 80

| owest is 60

| owest is 60

| owest is 90

81

Why hasl owest increased to 90? What was the program doing just before
the change? It was comparing t est 4 and t est 5. Sincet est 5issmaller
thant est 4 the value of | owest isreset to 90. However you only want
| owest toberesetif thenew value (t est 5) issmaller than | owest . Here
isamodified version of your code which should give the answer you want.

#i ncl ude <i ostrean»

#i ncl ude <i onani p>

usi ng nanespace std,;

int main() {

int testl, test2, test3, test4, testh,
aver age, averagescore, divide;
cout << "This programwi || gather

<< "five test scores and\n";

cout << "drop the | owest score, "
<< "giving you the average\n";
cout << "\n";
cout << "Please enter Five Test scores\n";

cin >> testl >> test2 > test3 >> test4 >> testbh;
cout << endl;

int lowest = testl;

/1 test 1 is the | owest nunber unless
if (test2 < lowest) |owest = test2;

/Il test 2 is smaller than test 1 unless
if (test3 < lowest) |owest = test3;

/l test 3 is smaller than test 2 unless
if (testd4 < lowest) |owest = test4;

/! test 4 is smaller than test 3 unless
if (test5 < lowest) |owest = testb5;

/1 test 5 is smaller than test 4

average = (testl + test2 + test3 + test4 + testh);
/1 all test scores averaged together
averagescore = average - |owest;
/| average score minus the | owest grade
di vi de = averagescore /4;
/1 average grade is then divided by 4
cout << divide << endl;
/] final grade after division
return O;

Now | would like to mention a few other things | noticed while looking at
your code.

Some of the variable names are misleading. The variable you call
aver age isin fact the total, aver agescor e isamodified total — perhaps
you could call it modTot al —and di vi de isthe average.

I’m not sure why you haveincludedi omani p—the code works without
it. [Maybe he thought (mistakenly) it would be needed by st d: : endl . David]

If thiswas my code | would calculate the average as a float. For the 5
numbers you entered the average isin fact 88.5, so presenting 88 as your
answer isfair enough, but if you had chosen say, 80, 84, 60, 91, 100, the
average would be 88.75 and in many circumstances it would be better to
round the answer up to 89. However | don’t know the precise details of the
problem you were asked to solve, so let'sleaveit asitisfor now.

Finally 1'd like to look at some ways of making your code more
versatile. At the moment it requires exactly 5 inputs, it is relatively simple
to make it work with any number of scores greater than one.

CVu/ACCU/Dialogue

#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {

int inValue, total, |owest, count, average;
cout << "This programw || gather two "
"or nore test scores and\n";
cout << "drop the |lowest score, giving "
"you the average\n" << "\n";
cout << "Please enter at |east two test scores\n";
cout << "End your input with a single full stop\n";
cin >> inVal ue;
| owest = inVal ue;
total = inVal ue;
count = 1;
while(cin >> invalue) {
++count ;
total += inVal ue;
if(inValue < |lowest) |owest = inValue;
}
if (count < 2) {
cout << "This programrequires at |east "

<< "two val ues" << endl;

} else {
average = (total - lowest)/(count-1);
cout << average << endl;

}

return O;

}
Just one more improvement to go! In real life you may not have a user
typing data in at the prompt — it may have come from a database,
spreadsheet or a special user interface. So let’s make your program into a
function that returnsthe answer to whatever called it. Wewill assume that
the calling program has already put the valuesinto avect or.

#i ncl ude <i ostreanr

#i ncl ude <vector>

usi ng nanespace std;

int nyAverage(vector<int> val ues) {
int total, |owest, average;
total = 0;
| onest = val ues[0];
for(vector<int>::iterator it = val ues. begin();

it !'=values.end(); ++it) {
total += *it;
if(*it <lowest) lowest = *it;

}
average = (total
return average;

}
From Nevin Liber <nevi n@vi | overl ord. conr

- lowest)/(values.size()-1);

The question as stated is slightly wrong. Hereis the correction:
80 84 60 100 90 ==> 81 (incorrect!)
80 84 100 60 90 ==> 88 (correct)
[Good, you verified the student’s statement, which was probably a typo. David]

Improvement #1: Fix the bug

Thebugisinthei f statements: instead of comparing adjacent test scores,
each test score should be compared against | owest . The corrected code:
#i ncl ude <i ostreanr
usi ng nanespace std;

int main() {
int testl, test2, test3,
average, averagescore, divide;
cout << "This programwill gather five "
<< "test scores and\n";
cout << "drop the |owest score, giving "
"you the average\n" << "\n";
cout << "Please enter Five Test scores\n";
cin >> testl >> test2 >> test3 >> test4 >> test5;
int |owest = testl;
if (test2 < lowest)

test4, testbh,

| onest = test2;

11

if (test3 < lowest) |lowest = test3;
if (test4 < lowest) |lowest = test4;
if (test5 < lowest) |owest = testb5;

average = (testl + test2 + test3 + test4 + testh);
/1 all test scores averaged together
averagescore = average - |owest;
/1 average score mnus the | owest grade
di vi de = averagescore /4;
/|l average grade is then divided by 4
cout << divide<< endl;
/1 final grade after division
return O;

}

Style: not bad, actually. Only afew minor nits.

Don'tincludei omani p, since nothing in it is being used.

. Be more consistent with whitespace.

. Each variable declaration should be on a separate line.

. Each variable declaration should be as close to its use as possible.

. Put curly braces around the statementsinsidei f s.

. Pick better variable names (eg: aver age should really be sumor
total). Note: Sincel am trying to build upon the student’s solution,
I will not be changing his variable names even when | know that they
aren’t quite accurate.

Design: oncethe bug isfixed, his code getsthe job done, albeit in abrute

force sort of way.

Extensibility: hereisthereal shortcoming of this code. The number of

test scoresisfixed at 5. The number of scoreswe drop isfixed at 1. We

can, of course, do better.

oUhwWNER

Improvement #2: Variable number of test scores

When | first read this problem, it screamed out to me that we should be
using algorithms over a collection of test scores. Without changing the
structure of the original solution too much, | came up with:

#include <algorithme // for std::mn_el ement

#i ncl ude <deque>

#i ncl ude <i ostreanr
#include <iterator> // for std::distance
#include <nuneric> // for std::accumul ate

typedef std::deque<int> Scores;
int AverageTest Score(Scores::iterator first,
Scores::iterator last) {

int lowest = *std::mn_elenent(first, last);
int average = 0;
average = std::accunulate(first, |ast, average);
int averagescore = average - |owest;
int divide = averagescore
[(std::distance(first, last) - 1);

return divide;
}
int main() {
std::cout << "This programw || gather test scores "
<< "and\ndrop the | owest score, giving you "
<< "the average\ n\nPl ease enter Test scores,
<< "followed by \"end\"" << std::endl;
/1 store all theints in cin into scores
Scores scores;
int test;
while(std::cin >> test) {
scores. push_back(test);

}

/! Need at least two elenents for this calcul ation
if(1l < scores.size()) {
int divide = AverageTest Score(scores. begin(),
scores.end());
std::cout << divide << std::endl;
}
el se {
std::cerr << "The nunber of scores needed is "
<< "at least 2; you only entered "
<< scores.size() << std::endl;
return 1;

}

return O;

12

Highlights:

1. I useadeque to store the elements. | could have just as easily used a
vect or orevenali st. Itishard to make the tradeoffs between them
without running this on real data and profiling.

2. Unlike the original solution, there is now a potential error condition
when too few scores are given to perform the calculation. | had to add
code to handle this situation.

3. I usetheni n_el enent algorithmto get the lowest score. Sincel know
thereare at least two elementsinscor es, | alsoknow that | canlegally
dereference theiterator returned frommi n_el enent .

4. | use accumul at e to calculate theaver age. A better variable name
would have been sumor t ot al , but | was trying to keep this as close
to the original solution as possible.

5. Bothni n_el enent andaccunul at e do not modify the collection, and
they are “linear” (O(N)) algorithms.

6. Sincethereareat least two elementsinscor es, thedivision performed
indi vi de will never result in adivide by O error.

Improvement #3: Variable number of low scores dropped

In order to do this, we need to sort the scores. There are a variety of
different waysto do this. We could storetheminamul ti set. We could
sort the entire collection. But thisis overkill (in the sense of greater than
linear time algorithms, such asNlog(N)), aswe don’t need to sort the entire
collection; wejust need to group the low scores away from the high scores.
And there just happens to be an algorithm which does what we want:
nth_el ement (...). What it doesis put the nth element in the correct
position asif thewhole thing were sorted, and al the elements beforethenth
position are <= the nth element, and all the elements after the nth position
are >= the nth element. Plus, nth_el enent (...) runsin linear time on
average. However, nth_el ement (. . .) requires random access iterators,
thus limiting the collection typestovect or or deque, but notl i st .

#include <algorithn» // for std::nth_el enent

#include <stdlib.h> // for exit

#i ncl ude <deque>

#i ncl ude <i ostreanr

#include <nunmeric> // for std::accunul ate

typedef std::deque<int> Scores;

i nt Nonnegativel nt FronG n() {
int val ue;
if(!(std::cin >> value) || value < 0) {
std::cerr << "Next time, please enter a "
<< "non-negative integer" << std::endl;

exit(1);
}
return val ue;
}
int AverageTest Score(Scores::iterator first,
Scores::iterator low, Scores::iterator l|ast) {
/1 Put the |owest test scores in [first, |ow)

std::nth_elenment(first, |ow,
/1 Sumall the high [Iow,
int averagescore = 0;
averagescore = std::accunul ate(low, |ast,

aver agescore);
int divide = averagescore / (last - low;
return divide;

| ast);
| ast) test scores

int main() {

/1 Enter the nunber of |ow test scores to drop

std::cout << "This programwill gather test scores "
<< "and\ndrop the | owest score, giving you "
<< "the average\ n\nPl ease enter the nunber of "
<< "l ow Test scores to drop" << std::endl;

int | owdropped = Nonnegati vel nt FronGi n();

/1l enter the test scores

std::cout << "Please enter Test scores,
<< "by \"end\""<< std::endl;

Scores scores;

int test;

whil e(std::cin >> test) {

scores. push_back(test);

fol l oned "

}

| CVu/ACCU/Dialogue

// need at least 1 nore score than nunber dropped
i f (I owdropped < scores.size()) {
int divide = AverageTest Score(scores. begin(),
scores. begin() + | owdropped, scores.end());
std::cout << divide << std::endl;

}
el se {
std::cerr << "The nunber of scores needed is "
<< "at least " << |owdropped + 1
<< "; you only entered " << scores.size()
<< std::endl;
return 1;
}
return O;

}
The original functionality can be gotten by calling:
Aver ageTest Scor e(scor es. begi n(),

scores.begin() + 1, scores.end());

Improvement #4: Variable number of high scores dropped

That is another predictable extension, and it isn’t hard to add. Basicaly,
dothent h_el ement (. . .) trick onthehigh side of the collection aswell,
taking care not to resort the lowest scores.

#include <algorithm // for std::nth_el ement
#include <stdlib.h> // for exit

#i ncl ude <deque>

#i ncl ude <i ostreanr

#i ncl ude <nureric> I/l for std::accumulate

typedef std::deque<int> Scores;

int Nonnegativel nt FronG n() {
int val ue;
if(!(std::cin >> value) || value < 0) {
std::cerr << "Next tine, please enter a "
<< "non-negative integer" << std::endl;

exit(1l);
}
return val ue;
}
int AverageTest Score(Scores::iterator first,
Scores::iterator low, Scores::iterator high,
Scores::iterator last) {
/1 Put the |owest test scores in [first, |ow

std::nth_elenment(first, low Ilast);
/] Put the mddle test scores in [low, high)
std::nth_el enent (I ow, high, last);
/1 Sumall the nmiddl e [low, high) test scores
int averagescore = 0;
aver agescor e
= std::accumul ate(l ow, high, averagescore);
int divide = averagescore / (high - low;
return divide;

}

int main() {

/1l Enter the nunber of |ow test scores to drop

std::cout << "This programwi || gather test "
<< "scores and\ndrop the | owest score, "
<< "giving you the average\n\nPl ease enter "
<< "the nunber of |ow Test scores to drop"
<< std::endl;

int | owdropped = Nonnegati vel nt FronGi n();

/1 Enter the nunber of high test scores to drop
std::cout << "Please enter the nunber of high"
<< "Test scores to drop" << std::endl;

i nt hi ghdropped = Nonnegati vel nt FronC n();
/] enter the test scores
std::cout << "Please enter Test scores,
<< "followed by \"end\"" << std::endl;

Scores scores;
int test;
while(std::cin >> test) {

scores. push_back(test);

}

| CVu/AGCU/Dialogue |

/1 need at least 1 nore score than nunber dropped
i f (I owdropped + hi ghdropped < scores.size()) {
int divide = AverageTest Score(scores. begin(),
scores. begi n() + | owdropped,
scores. end() - highdropped,
std::cout << divide << std::endl;

scores.end());

}
el se {
std::cerr << "The nunber of scores needed is "
<< "at least " << | owdropped + highdropped + 1
<< "; you only entered " << scores.size()
<< std::endl;
return 1;
}
return O;

}

The original functionality can be achieved by calling

Aver ageTest Score(scores. begin(), scores.begin() + 1,

scores. end(), scores.end());
Asyou can see, thisisn't much different than my solution for improvement
#3. Sinceit didn’t involve much extra engineering or testing, | felt it was
worth adding this functionality. Y our mileage may very.

At thispoint | am done. There are other ways to extend this code (for
instance, making Aver ageTest Scor e atemplated function instead of hard
coding its parameters); however, they tend to get in the way of readability
and understandability for a student first getting started with the language
(my target audience), and I'll leave those as an exercise for the reader.

From Chris Main <chri s@hri smai n. ukl i nux. net >

“It' snot fair!”

Inspector Slack was dozing peacefully in his favourite armchair after
his Christmas dinner when he was interrupted by the familiar and
unmistakeable sound of his children bickering.

“It's that computer game Sergeant Lake gave us for Christmas. Joy
scored 80, 84, 60, 100 and 90 and got a grade of 88. | scored 80, 84, 100,
60 and 90 and only got 81", complained Matthew.

“Why isthat unfair?’

“Because | got exactly the same scores, just in adifferent order”.

“Just like those gloves | knitted for little Tommy Smith”.

Slack ignored thisremark from hishouse guest, alittle old lady knitting
quietly in the corner, and proceeded to vent his fury on his sergeant.

“Lake! | told him that Open Source Software would be no good.
Bungling amateurs!”.

“Did you say Open Source, Inspector?’ inquired Miss Marple. “Doesn’'t
that mean anyone can read the program? | should be most interested to see
it, though | don’t suppose | shall understand it.”

Before Slack had time even to think “interfering old woman”, Matthew
had downloaded the source code from the internet and built it.

“See. If | enter my scores it gives me 81, but if | enter Joy’s she gets
88.”

“Oh dear!” exclaimed MissMarple. “ Do we haveto typein the numbers
every time we want to try it out?’

“I know,” said Joy, “let’sturn it into a function that can use any input
stream. Then we can feed it test data in string streams and the real thing
from standard input”.

The children typed away busily, setting up atest function that used an
assert tocheck theresult of calculating agrade. With thisrearrangement
they could easily add other test cases too:

nanespace {

int CalculateGade(istreamé&stream) { ... }
struct TestCase {
const char *scores;
int grade;
h
voi d CheckCal cul at eG ade(const Test Case &t est Case) {
i stringstream strean{testCase. scores);
assert (Cal cul at eG ade(strean) == testCase. grade);
}
voi d Test Cal cul ateG ade() {
const Test Case testCases[]
={ { "80 84 60 100 90",
{ "80 84 100 60 90",
const unsigned count
= si zeof (t est Cases)/ si zeof (t est Cases[0]);

88 },
88} }i

13

for_each(testCases, testCases+count,
CheckCal cul at eG ade) ;
}
}
int main() {
Test Cal cul at eG ade() ;
cout << "This programwill
<< "scores and\n";
cout << "drop the | owest score,
<< "average\n" << "\n";
cout << "Please enter Five Test scores\n";
cout << Cal cul ateGade(cin) << endl;
return O;
}
When they tried it out, it duly reported an assert failure.

“How thoughtful,” said Miss Marple with approval, “the program prints
out what it is supposed to do. Do all programs do that?’

“Sadly not,” sighed Matthew.

“It should really only be output when acommand line option such as / 2,
-h or—hel p issat,” added Inspector Slack with apunctilious air of authority.

“Dear me, my eyesight is poor these days, | seem to be seeing double
looking at this program,” fussed the old lady as she adjusted her spectacles.

“It'snot your eyes,” replied Joy, “it' sjust that every line hasacomment
repeating what the previous line does.”

“Well, my dears, let’s get rid of all that. There's absolutely no point in
stating the obvious.”

Slack bristled as he felt sure that Miss Marple had glanced knowingly
at him when making thislast point, but now she was again scrutinizing the
code with an expression of sweetness and innocence on her face.

“Ah, that’s much clearer. Now, surely what is named an aver age is
really asum, and what is called di vi de is actually the average.”

Matthew reworked the code. “Y ou always manage to work out which
people aren’t who they say they are. | bet that fixesit.” Heran the program,
but it still failed. Slack allowed himself asmile of satisfaction; thisproblem
demanded professional detection skills.

“1 thought these computerswere supposed to maketaskseasier, but | notice
you still haveto add up thetest scoresin onebig sum,” observed MissMarple.

“We could usest d: : accunul at einstead,” answered Joy, “ but we have
to put the scores in a container first, like avect or.” Miss Marple wasn’t
quite surewhat avect or was. Her nephew Raymond West had once taken
her for a very fast drive in his sports car which she was sure was called a
Vector. With thisfond memory she encouraged Joy to make the change. From
this it became apparent that the number 5 would make a useful constant for
theinput loop, and could be used in the average cal culation.

“Such a pity,” muttered Miss Marple as she considered the simplicity
of theaccunul at e statement.

“What's a pity?" asked Matthew.

“1 wasthinking, if only there were anice function already available for
finding the lowest value, similar to accumnul at e for finding the sum”.

“But thereis, it'scaled st d: : mi n_el enent .” Matthew replaced all
thei f statementswith m n_el enent . Thefirst attempt failed to compile,
then he remembered it returned an iterator rather than a value. After de-
referencing it the code built. Even better, the tests ran successfully too.

“I’vegot it!” cried Inspector Slack, who had been working feverishly
with pencil and paper.

“It's okay, Dad, Miss Marple's aready fixed it,” Joy informed him.

Crestfallen, Slack looked at their code:

nanespace {

const int scoreCount = 5;
int Cal cul ateG ade(std::istream&streanm {
vect or<i nt > scor es;
for(unsigned n = OU; n != scoreCount;
int score;
stream >> score;
scor es. push_back(score);

gather five test "

giving you the

++n) {

}

const int sum = accunul at e(scores. begin(),
scores. end(), 0);

const int | owest

= *m n_el enent (scores. begin(), scores.end());
const int average = (sumlowest) / (scoreCount-1);
return average;

14

“Yes, but that doesn’t explain why the original code didn’t work. Y ou see,
the i f statements compare each value to the previous value, when they
should compare each value to the current lowest value.”

“How clever of you, Ingpector,” said MissMarple. Slack beamed with pride.

“However,” shewent on, “it seemsto methat theredlly interesting question
is why the mistake occurred. The programmer saysin, now what did Joy call
them? oh, yes, in the comments that he is using ‘the equation’ to drop the
lowest number. He must have either been given the wrong equation or, more
likely, noted it down incorrectly. | remembered | once madeamistake copying
aknitting pattern from MrsMcGillicuddy, and madeapair of glovesfor little
Tommy Smith where the fingers came out in the wrong order.”

Seeing the look of disappointment on the Inspector’ s face, and feeling
guilty for outwitting him whilst enjoying his hospitality, she made a
proposal. “I should very much like to see one of your magic tricks,
Inspector, | do so enjoy them.”

“1"ve been working on sawing thelady in half. Perhapsyou' d liketo lie
down in that box over there while | fetch my saw,” suggested Slack, with
just the slightest hint of menace.

From lan Glover <i an@rani cai . net >

First the bug, the code above only works if the numbers after the lowest
value are in increasing order, so for instance 80, 84, 100, 60, 90 works
because the sequence 60, 90 isincreasing, but 80, 84, 60, 100, 90 does not
as 60, 100, 90 is not an increasing sequence (the problem description isthe
wrong way round it terms of the output of these sequences). The simplest
correction would be not to compare each value in the seriesto the previous
but to compareit to the lowest found so far.

int lowest = testl;

/] test 1 is the |owest nunber unless
if(test2 < lowest) |owest = test2;
/]l test 2 is smaller or
if(test3 < lowest) |lowest = test3;
/1l test 3 is smaller or
if(testd4d < lowest) |owest = test4;
/]l test 4 is smaller or
if(test5 < lowest) |lowest = test5;
/]l test 5 is snaller.
While this fixes the bug it does |eave some aspects still wanting in the
program.

To deal with some of the stylistic points first. The early declarations of
aver age, aver agescor e anddi vi de are unnecessary and should be shifted
to wherethose variables arefirst defined. It would also be worth changing the
name of aver age andaver agescor e, because the names do not match the
meanings, perhaps t ot al and amendedt ot al respectively; di vi de could
then be renamed aver agescor e which gives a better sense of its purpose.
Anather minor point isthat theinclusion ofi omani p issuperfluousasnothing
from this header is used. Personally | would also prefer to use a single
std: : cout reference for the printed block at the top, since this makes for
fewer changes should we wish to send the output to adifferent stream in future
(though thisis a more marginal decision than the others).

A rather more major issue than those isthe design of the programin that
it does not easily allow extension. As more tests are added we would have
to remember to update the code in seven places (the declaration of the test
variables, the two references to five tests in the printed text, the ci n
statement, the comparison tests, the summation to produce the total score
and the division to produce the average). The solution to thisisto use one
of the STL sequences to hold the scores.

Whiletheinitial thought might betousest d: : vector orstd: : | st,
the arithmetic operations that we do on the sequence suggest a better choice
intheformof st d: : val arr ay . This has convenient methods allowing us
to find the minimum held value, the sum of the values and the length which
arethethree pieces of information we use. Implementing thischange alters
most of the program to produce something like:

#i ncl ude <i ostreanr

#i ncl ude <val array>

int main() {
const size_t nunber_of scores = 5;
std::val array<int> scores(nunber_of _scores);
std::cout << "This programw || gather "
<< scores.size() << " test scores and\n"
<< "drop the | owest score giving you the
<< "average\n\n"

| CVu/ACCU/Dialogue

<< "Pl ease enter << scores. size()
<< " test scores\n";
for(size_t i = 0; i < scores.size();
std::cin >> scores[i];

++i) {
}

int averagescore = (scores.sun() - scores.nin())
| (scores.size() - 1);
std::cout << averagescore << std::endl;
return O;
}

A couple of notes. As you can see I’ ve changed things round so that the
number of scoresis only set in one place and everything after that checks
the theval array size. I’ve aso got rid of the intermediate variables for
calculating the average as the method names on val ar r ay express what
the intent of the formula accurately.

From Andrew Marlow <andr ew@rar | owa. pl us. cone
The code is very close to working. There are two bugs: the first bug isin

the codeto calculatel owest . The code needsto compare successive grade
results with the current value of | owest , likethis:

int |owest = testl;

if (test2 < lowest) |owest = test2;
if (test3 < lowest) |owest = test3;
if (testd4 < lowest) |owest = test4;
if (test5 < lowest) |owest = testbh;

The code was comparing adjacent grades, which is why the bug was

dependent on the order of the grades.

The other bug wasin the calculation of theinteger average. The average
of 80, 84, 90 and 100is88.5, which is 89 to the nearest integer. The average
should be calculated as a floating point number and then rounded to the
nearest integer using thecei | function from cmat h, thus:

divide = int(ceil (averagescore / 4.0));

The code could be left with these corrections and it would work but the

code is not extensible; it only works for five grades. With the current

approach, extending the program for a larger number of grades, say N,

would result in code additions proportional to N.

Thereareafew minor pointson style, such asinaccurate comments and
misleading variable names, which can be taken care of whilst refactoring
to make the code more extensible should a larger number of grades be
required. Theline:

const int scores_count = 5;
can be used to set the number of grades the program isto cope with. The
cout statements at the start can usescor es_count to say how many
grades the program isfor.

Thegradescan beheldin an array, and functionssumand | owest used
to return grade sum and lowest grade respectively. These functions have
no need to belong to a class, so they can reside in the unnamed namespace.

A C-style array could be used to hold the grades, dimensioned to
scor es_count elements, but using avect or is better than using aC-style
array for several reasons:

o oncethevect or ispopulated it knowsits size so the size does not need
to be given to thesumand | owest functions.

« thefuture addition of more complex functionality iseasier withvect or
duetoitsrich interface.

o Theuseof fixed size arrays creates opportunitiesfor memory problems
such as accidentally subscripting out of range. vect or s manage their
memory automatically and provide natural ways to iterate over all the
items contained.

Thestudent’ scode had very mideading variable namesusedinthe calculation.

With the functions mentioned, the calculation can be done as follows:

int total = sun{test_scores);
int low = |owest(test_scores);
int average = int(ceil((total - Iow

/ doubl e(scores_count-1)));

With clearer names the code becomes self-documenting and comments
become unnecessary.

The program should annotate its output so that its meaning stands on its
own. Thisis shown in the complete code for the amended program below:

#i ncl ude <i ostrean»

#i ncl ude <i onani p>

#i ncl ude <vector>

#i ncl ude <cmat h>

usi ng nanespace std,;

CVu/ACCU/Dialogue

nanespace {
int sun{const vector<int>& v) {
int total = 0;
for(vector<int> :const_iterator it = v.begin();
it '=v.end(); ++it)
total += *it;
return total;

}

int |owest(const vector<int>& v) {
int result = v[O0];
for(vector<int>::const_iterator it = v.begin();
it I'=v.end(); ++it)
if(*it <result) result
return result;

= *it;

}
}
int main() {
const int scores_count = 5;
cout << "This programwill gather "
<< " test scores and\n";
cout << "drop the | owest score,
<< "average\n" << "\n";
cout << "Please enter " << scores_count
<< " test scores\n";
vector<int> test_scores;
for(int i = 0; i < scores_count;
int one_result;
cin >> one_result;
test _scores. push_back(one_result);

<< scores_count

giving you the

++) {

}
int total = sun(test_scores);
int low = | owest (test_scores);
int average = int(ceil((total - |ow)

/ doubl e(scores_count-1)));
cout << "average = " << average << endl;
return O;

}
From Andrew Bache <andy @ache. ecl i pse. co. uk>

The problem. The program does not function as intended because the i f
tests are wrong. Each successive number tested should be compared
against the current lowest number not the following number entered. The
logic error is easily fixed by amending thei f tests asfollows:

int lowest = testl;

if (test2 < lowest) |owest = test?2;
if (test3 < lowest) |owest = test3;
if (test4 < lowest) |owest = testd4;
if (test5 < lowest) |owest = testb5;

Having made this change the program will function asintended. |ssues of
extensibility, design and style were hinted at. | had better address them.

Style

Personally | thought the code as presented was well laid out and easy to
read. |t was clear to see what the author’ sintention had been, and therefore
where he had gonewrong. Making code easy for othersto read isthe most
important aspect of ‘ style’ and on this count the code, aswritten, isnot bad.
Ideslly wewrite code without bugs, but accepting that we all make mistakes,
if code is written in a manner that clearly communicates in English what
theintent is, then it is easier for both ourselves and others to spot the
mistakes. The style could perhaps be improved in the following ways:
Variable names. Thenames aver age, aver agescor e anddi vi de are
wrong. Isisan arguable point whether we need these variables but if we are
going to usethem names should reflect meaning. Thenamest ot al _score,
adj ust ed_t ot al and adj ust ed_aver age would be better. Thisfollows
from the point made about communicating our intent in English.
Declaration close to use: it iswidely accepted that variables should
be declared as close as possible to where they are used. The author does
well in this respect with the declaration of | owest , whichisinitialised on
declaration and then immediately used in thei f tests. However the rest
of thelocally declared variables are all together at the start of mai nand in
the case of di vi de, it isnot used until almost the end of the function. The
reason for this is again to make the code easier to read. By declaring
variables as close as possible to where they are used we do not waste time
scrolling and scanning to absorb the meaning and intent of the code.

15

Design and Extensibility

These should be considered in the light of current and possible future use.

Current use: One canimagine ateacher with asheet of scoresfor each
student in a class, typing them in one at a time and then scribbling down
each adjusted average result at the end of an existing list of scores. Asthe
program stands the teacher is going to need to retype the program name
for every student or at least use the command history. Putting the core of
the code into a loop with a user generated exit condition seems like an
obviousimprovement. Alternatively if the student names and scores are
aready available in a suitable electronic form, processing an existing file
and generating an output file with the adjusted average appended to the
end of each line would be an obvious enhancement.

Future use: Next time round there may be seven assignments to mark
or perhapsjust three. So variability of the number of test scores per student
and corresponding low scores to drop are obvious enhancements. |ndeed
onemay wish to change the scoring policy altogether. There may not be an
immediate requirement for these features but adopting a good design early
onwill allow incremental improvementsand new featuresto be easily added.

Having thought through some of the possible use cases we are in a
position to focus back on specific design issues to see how a more
extensible foundation might be laid.

mai n() istoobusy. It promptstheuser, collectsinput, processesit and
displaystheresult. Thesetasksshould befactored into their own functions.
The next issue is the use of magic numbers. Although the hard coded
values of 5 and 1 for the the total number of scores and the scores that
should be dropped are adequate for the current requirement, lifting them
out of the code and into constants of suitable scope will make it easier to
parameterise these in the future as well as clarifying the current code by
providing variable names that are meaningful in English.

The amended code, which functions in the manner intended by the
original code, is shown below. The only functional difference is the use
of the character 5 in our prompt rather than theword f i ve.

#i ncl ude <i ostrean»

#i ncl ude <vector>

#i ncl ude <al gori thne

#i ncl ude <nuneric>

#i ncl ude <functional >

#i ncl ude <cassert>

usi ng nanespace std;

typedef vector<int> score_collection;

const int scores_to_include = 5;

const int scores_to_drop = 1,

voi d display_prompt() {

cout << "Enter your " << scores_to_include
<< " test scores now \n";

}

void get _scores(istrean& in,
score_col | ection& scores) {
assert(scores.enpty());
for(int i =0; i != scores_to_include;
int score = 0;
in >> score;
scores. push_back(score);
}
}

int apply_nmarking_policy(score_collection& scores) {
assert(scores.size() > scores_to_drop);
sort (scores. begin(), scores.end(), less<int>());
return accunul at e(scores. begi n() + scores_to_drop,
scores.end(), 0)
| (scores.size() - scores_to_drop);

++) {

}

void put_result(ostrean& out,
out << result;

}

const int result) {

int main() {
di spl ay_pronpt();
score_col | ection scores;
get _scores(cin, scores);
put _result(cout, apply_marking_policy(scores));
return O;

16

The only interesting thing about di spl ay_pr onpt () isthat we now use
the integer constant scor es_t o_i ncl ude to construct the prompt.

get _scores() now receivesani st r eamreference asitsfirst parameter.
Thisisthe stresm weread the scoresfrom. The second parameter isacollection
that we use to store the scores, also passed by reference. We could have
returned the scores by value but that would involve an unnecessary copy. In
order to keep things smple and similar to the original code we don't validate
esch entered score. | practicethismethod should check that each score entered
iswithininvalid rangee.g. >= 0 and <= the maximum score for the specified
test. These vaues could be defined as constants like scor es_t o_i ncl ude
and scor es_t o_drop. The most important thing about this method is that,
likedi spl ay_pr onpt () weusetheinteger constantscor es_t o_i ncl ude,
thistimein the exit condition of thef or loop. We aso use a precondition to
make clear our assumptions about the initial state of the container.

appl y_mar ki ng_pol i cy() does the work of sorting our scores,
accumulating the ones that we are interested in and returning the adjusted
average. It usesthedtl algorithmsst d: : sort (alongwith thefunction object
(or functor) st d: : | ess) and st d: : accunmul at e. These work as their
names suggest. For the details refer to Josuttis|1] and Meyer[2]. The
important thing to note in this method is how the second of our constants,
scores_t o_drop, comesinto play. Our policy of dropping low scores
before taking the average makes no sense if we attempt to drop all of the
scores or more than we have collected so we make that pre-condition explicit
inthe code. Next we sort the scores, writing the result back to the original
container and usethescor es_t o_dr op constant to skip over thelow scores
a the beginning of the sorted collection when we accumulate. Using this
approach places a requirement that our collection of scores must support
random accessiterators. (Shouldyouwishtouseast d: : 1i st <>collection
you would need to adjust this method to use the list member function sor t
and then increment thebegi n iterator to the correct positionin aloop using
scores_to_drop.) Weusescores_t o_dr op to adjust our divisor.

put _resul t () isuninteresting and merits no further comment.

Now that the codeis better organised, implementing both our ‘ current use’
requirements and our ‘future use' requirements should be easier. With a bit
more work it should be possible to support both an ‘interactive’ mode where
theresults are typed in or a batch mode where we pass our program afileto
process. |f wewant to adjust either the number of scoresor the scoresto drop,
the const qualification can be removed and they can be read from the
command line. If wewant to process afile, that can be passed as acommand
line parameter. If no filename is passed we can assume ‘interactive’ mode.
When in interactive mode the user could type ‘q’ to quit at any point.

Introducing these features inevitably leads to more complexity, but if
theoriginal designissound that complexity can be managed. If theoriginal
design isrigid and inflexible it simply is not possible to introduce new
features. (Consider the case with the multiplei f statements — how do we
handle a variable number of scores?).

A version that includes the full feature list from above, with both
interactive and batch mode was devel oped (Unfortunately thereis not room
to display it here but email me for a copy if you are interested). Thereis
still room for improvement with this version. Vaidation is not included
and the basic policy for calculating the adjusted average is fixed.
Supporting different policies might be an interesting application in the use
of policy template classes.

References:

[1] Nicolas Josuttis The C++ Standard Library A Tutorial and Reference.
[2] Scott Meyers Effective STL.

From Seyed H. Haeri <shhaeri @mat h. shari f. edu>

First of all, let me answer the main question. Why does the piece of code
don’t do what’s desired? Simply, because it’s logically wrong. Consider
the way it triesto choose thel owest element:

int |owest = test1,;
if(test2 <testl) lowest =test2; // So far, so good.
if(test3 < test2) lowest = test3; // Wy?

The question isthat given the second condition istrue, how doesit mean that
thelowest element sofar ist est 3? Thefollowing sequenceis one example
wherethis conclusioniswrong: “10, 21, and 18”. Asyou can see, here, the
first condition doesn’t get desired, and the conclusion after the second
condition comeswrong. The rest of the algorithm falls into the same trap.
Apart from that, and assuming that the algorithm is correct, I’ d suggest
the student to reconsider the code so that he/she can see whether he/she
can use better constructsin hiscode. The codeisinfact full of poor issues:

CVu/ACCU/Dialogue

o That vague #i ncl ude <i omani p> is, IMHO, a pre-standard beast
lurking at the beginning of the code, according to a misconception that
it is needed to enable usto use st d: : endl . As per the (98) Standard
(827.6.1.3/637, Phrase 22, which isan example), touse st d: : endl , it
isenough to #i ncl ude <i ostreanp.

e usi ng namespace std; isanother root of evil asmany of theauthors
have also mentioned that. It is best to get used to avoid that, even in
these plain-Jane examples.

» Thiscodeworksfor just when you want to do desired job for a sequence
of length five. If thisis going to be case forever, then “5” turns out to
become a magic number, and hence, should be stored in a constant.
Otherwise, to take the code out of this silly hard-wired-ness, and to
make it flexible enough to deal with sequences of any length, there are
two major alternatives to store the input numbers in: dynamic arrays,
or std: : vect or <>, | wouldn't recommend the former, and to know
thereason, | would address the student to bewildering number of pages
divined to thisin the C++ literature.

This is how the first few lines of code will become after the above

considerations
#i ncl ude <i ostrean»

#i ncl ude <vector> // Perhaps.
int min () {

usi ng std::cout;

using std::cin;

using std::endl;

if fiveisgoing to live forever

const size_ t len(5);
int test[len];

and if it may change

usi ng std::vector;
vector<int> test;

Note that having chosen this, you need to add #i ncl ude <vect or > aswell.
After afewst d: : cout s, the best way to read theinput sequenceisnot

to re-invent wheel. That is, to usest d: : copy():

usi ng std::copy;
using std::istreamiterator;

Which require #i ncl ude <al gorit hnmeand#i ncl ude <iterator>.

Either
copy(istream.terator<int>(cin),
istreamiterator<int>(), test);

See bel ow.

Or
usi ng std::back_inserter;
copy(istream.terator<int>(cin),
istreamiterator<int>(), back inserter(test));
AFAI’ve understood, we're about to choose the minimum. That's an easy

piece of job:

using std::mn_el enent;
Either

const int lowest = mn_elenent(test, test + len);
Or

const int lower = min_elenent(test.begin(),

test.end());

Another useful consequence of this method is the removal of those
excessive comments. (See C++ Gotchas, Item # 1)

Next poor issue which catches my attention isthe poor style of naming:
The variable named aver age is, in fact, the summation of the elements,
and di vi de isthe average!

Neglecting the poor style of naming, | draw your attention to type of
di vi de. | do doubt if thisiswhat it is assumed to be.

Toachievethedesired average, furthermore, I’ d do one of thefollowing:

usi ng std::accunul at e;

Either
const doubl e average = (accunul at e(test,
0.0) — lowest) / (len — 1);
Or
const doubl e average = (accunul ate(test.begin(),
test.end(), 0.0) - lowest) / (test.size() — 1);
Notethat to usest d: : accunul at e() , weneed to#i ncl ude <nuneric>.

There aretwo remaining pointsworse mentioning: First, theinitial value
sent to it should be 0.0 rather than 0. (See Effective STL, Item # 37.)
Second, the const s are intentionally put there. They are not modified in
the next steps. Thus, for the sake of const -correctness, they should be
declared so.

test + len,

CVu/ACCU/Dialogue

Again, many thanks to the Standard as the remained excessive
comments will be vanished. We're better, however, to add a comment to
thelast line.

A little remained point is that if this functionality islikely to be used a
lot by the student, why not modularise it? It turns out that the following
seems to be a best solution then

t enpl at e<t ypenane ReturnType, typenane |nputlterator>

Ret urnType avgButM n(Inputlterator first,

Inputlterator last) {
typedef typenane iterator_traits<lnputlterator>::
val ue_type val ue_type;
const value_type m(*mn_elenent(first, last));
const ReturnType avg
= (accumul ate(first, |ast,
/ (distance(first,

ReturnType(0)) - m
last) - 1);
return avg;

}
And then useit like this

int a[] = {80, 84, 100, 90, 60};

const size_t n(sizeof(a)/sizeof(*a));

doubl e avg = avgBut M n<doubl e>(a, a + n);
I won't offer any further explanations as how to construct that template
function is another full issue for itself.

From Robert Lytton <r obert . | ytt on@ret agence. conm

Student: Theproblemis; if | change up number 3and 4| get adifferent answer.

Critic: Explain to me what your code is doing.

Student: Wdl, nai nis...<snip>... and ift est 5islessthant est 4 —Ooops
| seemy problem. | am not interested if t est 5 islessthant est 4, | am
only interested if t est 5 isless than the lowest.

Critic: How are you going to fix it?

Student: | need to compare each test against the lowest found so far.

Critic: Thissounds like aloop...
for(i =0; i < numtests;

if(test[i] < lowest) {
| owest = test[i];

}

++) {

}

Critic: By the way what was the value that should have been returned?

Student: <silence>

Critic: Before we worry about defining and initialising variables for the
loop, let’ s take a big step back. Test Driven Development...

First arange of grades and the required results:

80, 84, 60, 100,90 => 88.5

80, 84, 100, 60,90 => 88.5
Asthe result expected has afloating point, we will usef | oat to storethe
numbers. Next a‘test’ harness:

Aswearein C++wewill hold thetest datainavect or ingtead of an array.
Wewill parcel this up with the expected result in astructure and changet est
togr ade to aid clarity. For simplicity we will beusi ng nanmespace std.

#i ncl ude <i ostrean»

#i ncl ude <vector>

usi ng nanespace std;

struct test _grade {
vect or <f| oat > gr ade;
fl oat expected_ result;
b
void test_average | ess |owest() {
/1l we can't pass an array range directly to the
/1] vector initialisation...
const float test_1[] = {80, 84, 60, 100, 90};

const float result_1 = 88.5;
const float test_2[] = {80, 84,100, 60, 90};
const float result_2 = 88.5;

/1 but we can pass an array iterator range...
const test_grade test_case[]
= { {vector<float>(test_1, test_1 +
sizeof (test _1)/sizeof (test_1[0])),
result_1},
{vector<float>(test_2, test_2 +
si zeof (test _2)/sizeof (test_2[0])),
result_2} };

17

const int numtest_cases = sizeof (test_case)
| sizeof (test_case[0]);
cout << "TEST: average_ |ess_lowest()" << endl;
for(int i = 0; i < numtest_cases; ++i) {
float result
= average_ |l ess_| owest (test _case[i].grade);
if(result !'= test_case[i].expected_result) {
cout << " Failed test " << i << endl;
} else {
cout << " Passed test " << i << endl;
}
}

And finally we develop the code: We now have a specification for the
interface — designed by the user not the implementer.

#i ncl ude <al gori thne

float average_ | ess_| owest (const vector<fl oat >& grade){

float total = 0;
float |owest = grade[0]; // safe initial value
for(int i = 0; i<grade.size(); ++i) {

total += grade[i];

| owest = mn(lowest,grade[i]); // from<algorithny
}
return (total - lowest) / (grade.size() - 1);

}
int main() {
test_average_| ess_| owest ();
return O;
}
Building and running all works. But what if we only pass in one grade or
even none?
First we write the test cases:
void test_average | ess_|lowest() {

const float test_1[] = {80, 84, 60, 100, 90};

const float result_1 = 88.5;

const float test_2[] = {80, 84, 100, 60, 90};

const float result_2 = 88.5;

const float test_3[] = {80};

const float result_3 = 0;

/1 const float test_4[] = {}; can’t initialise

/] an enpty array.

const float result_4 = 0;

const test_grade test_case[] = {
{vector<float>(test_1, test 1 +

sizeof (test _1)/sizeof (test_1[0])),
result 1},
{vector<float>(test_2, test_2 +
si zeof (test _2)/sizeof (test_2[0])),
resul t _2},
{vector<float>(test_3, test_3 +
si zeof (test _3)/sizeof (test_3[0])),
resul t _3},
{vector<float>(), result_4} };
And running the test we discover there is indeed a problem. The 3rd test
case fails, the 4th causes an exception. It seems we need to make sure we
don’t divide by zero and also check for an empty container. In both of these
situations, as specified by the test cases, we return zero. We can a so benifit
more from the standard library. We could use an iterator,
vector<fl oat>::const iterator i;

for(i = grade.begin(); i != grade.end(); ++i) {
total += *i;
| onest = nmin(lowest,*i);

}

but after checking Josuttis’ ‘Summary of STL Algorithms” (try
googl e. con), we can make our intentions clearer.
#i ncl ude <numeric>
float average | ess_| owest (const vector<fl oat >& grade){
float result(0);
const int grades_to_count
i f(grades_to_count > 0) {
const float total = accumul ate(grade. begin(),
grade. end(), float(0));
/1 'grade.enpty() so mn_element() != grade.end()

= grade.size() - 1,

18

const float |lowest = *m n_el enent (
grade. begin(), grade.end());
result = (total - lowest) / grades_to_count;

}

return result;

}

Running the tests again, the code fixes the problem found in the new test
cases and does not break the old test cases. How about some more tests?
Considered them added and passing. (Any rounding error within the test
caseisleft as an exercise for the reader.)

And now for the application:

We will need to use a vector container because
aver age_| ess_| owest () expectsone. Using avect or automatically
givesussafety in accepting more or less than five grades. It also allows
us to use stream iterators.

#i ncl ude <iterator>

int main() {

cout << "This programwi ||l gather grades and "
<< "drop the lowest, giving you the average\n"
<< "Pl ease enter your grades (ending with "
<< "'='").\n";
/1 create two iterators, and fill the vector using
/1 them Users separate grades with ANY white
/] space. Entry is term nated by non-white space,
/1 non-float character.
istream.iterator<float> intReader(cin);
istream.iterator<float> intReader ECF;
vect or <f | oat > grade(i nt Reader, i ntReader ECF);
cout << "Average grade (with | owest renoved) for
copy(grade. begin(), grade.end(),
ostream.iterator<float>(cout, ",
cout << " ="
return O;

}

Using Test Driven Development has naturally separated the algorithm from
the application. This is a good thing. We could use a batch file to drive
aver age_l ess_| owest () if wewished. Alternatively if using f | oat sis
not what we want, we can change the algorithm easily. Instead of having
two versionswe can makeaver age_| ess_| owest () atemplate function.
First our test harness: We will factor out the commonality of the testing
loop and use templates.

#i ncl ude <i ostrean»

#i ncl ude <vector>

#i ncl ude <al gori thne

usi ng nanespace std;

tenpl ate <typenane T>

struct test_grade {

test _grade(const vector<T>& g, const T&r)
grade(g), expected_ result(r) {};

"))

<< average | ess_| owest (grade) << endl;

vect or <T> gr ade;

T expected_result;
h
tenpl ate <typenane T>
void cal |l _test(vector<test_grade<T> > test_case) {

vect or<test_grade<T> >::const_iterator i;
int num= 0;
for(i = test_case. begin();
i = test_case.end(); ++i) {
++num // start with test 1 instead of O,
/1 for non-progranmrers
i f (average_| ess_I| owest (i - >grade)
I= i->expected_result) {

cout << " Failed test " << num << endl;
} else {
cout << " Passed test " << num << endl;

}
}
h
void test_average | ess |owest() {
/1 we will initialise the floats with ints and
/1 ignore the warnings!

const int test_1[] = {80, 84, 60, 100, 90};
const int test_2[] = {80, 84, 100, 60, 90};
const int test_3[] = {80};

| CVu/ACCU/Dialogue

/1 const int test_4[] = {};

vector<test _grade<float> > test_case fl oat;

test _case float. push_back(test grade<fl oat>(
vector<float>(test_1, test_1 +
sizeof (test 1) / sizeof(test_1[0])), 88.5));

test _case_fl oat. push_back(test_grade<fl oat >(
vector<float>(test 2, test 2 +
sizeof (test_2) / sizeof(test_2[0])), 88.5));

test _case_float. push_back(test _grade<fl oat >(
vector<float>(test_3, test_3 +
si zeof (test _3)/sizeof (test_3[0])), 0));

test _case_float. push_back(test _grade<fl oat>(
vector<float>(), 0));

vector<test_grade<int> > test_case_int;

test _case_int. push_back(test_grade<int>(
vector<int>(test_ 1, test_1 +

sizeof (test_1)/sizeof (test_1[0])), 88));
test _case_int. push_back(test_grade<i nt>(

vector<int>(test_ 2, test 2 +

si zeof (test_2)/sizeof (test_2[0])), 88));

test _case_int. push_back(test_grade<int>(
vector<int>(test_3, test_3 +
si zeof (test _3)/sizeof (test_3[0])),
test _case_int.push_back(test_grade<int>(
vector<int>(), 0));
cout << "TEST: average_less_|lowest() with float"
<< endl;
call test(test_case_float);
cout << "TEST: average_ |ess lowest() with int"
<< endl;
call _test(test_case_int);
}
int main() {
test _average_| ess_| owest ();
return O;

0));

Compile and run — the test cases fail to compile as we have no i nt
aver age_| ess_| owest (vect or <i nt >) defined.
Next to fix our development code:
All we need to do is define average_| ess_|l owest () as a
t enpl at e<t ypenane T>function and replace occurrencesof f | oat with T.
t enpl at e<t ypenane T>
T average_| ess_| owest (const vector<T>& grade) {
T result(0);
const int grades_to_count = grade.size() - 1;
i f(grades_to_count > 0) {
const T total = accunul ate(grade. begin(),
grade. end(), T(0));
= *m n_el enent (gr ade. begi n(),
grade. end());
- lowest) / grades_to_count;

const T | owest

result = (total
}
return result;
}
Compile and run and all test cases pass. We have confidence that our quick
changetoaver age_| ess_| owest () hasnot broken earlier code and it now
full fillsthe new ‘spec’ documented int est _aver age_| ess_| owest ().

From Ken Munro <ken@j nunr o. co. uk>

I’m going to iterate through your code afew times, first, to fix the reported
problem, and then until I'm happy with the code.

1) Fix error

Let's start with the boring bit and fix the error reported in your code: The
overlong sequence of i f statements is the location of the problem, your
code only compares neighbouring scores, e.g.
assume we have scores of: 80, 84, 60, 100, 90
= testl..test5

test3 < test2 (60 < 84) is true thus

| onest = test3, ie, 60, but,
test5 < test4 (90 < 100) is also true which resets
lowest = test5, ie, 90,

which is correct for the local statement but not for the full list of scores.

CVu/ACCU/Dialogue |

To fix the problem we need to replace the right-hand side of the <
comparisons with | owest so that each score is compared against the
current lowest score. Running through the above example again gives:

test3 < lowest (60 < 80) is true thus
| owest = test3,
is now fal se
| eaving us with | owest =

ie, 60
test5 < | owest (90 < 60)
60
which is correct

The code now works ‘ correctly’ with the suggested test data, although

questions may be asked as to whether the test coverage is adequate.
2) Codeimprovements

Comments: A scan through the code reveal s that your comments are not
entirely helpful —they comment the obvious and are at too low alevel to
be useful. Comments, generally, should be about why and not how. A quick
redraft would give just 3 comments:

/] get student’s test scores

cout << “This programwi || gather five test scores”;

/] cal cul ate adjusted average score
int lowest = testl,

/] output average
cout << divide << endl;

Unlike the existing comments these should (ideally) be written before your
codeiswritten —we' |l return to the utility of these comments alittle later.

Variable naming and usage: The names used within your code are
poorly chosen — 1 would suggest that you spend more time thinking about
the names used in your code — good code flows from well-chosen names.

To spexifics. thevariablest est 1 throught est 5 should ring alarm bells
with most programmers. Clearly thesevariablesare closdly related and should
be grouped together; we' |l adopt the smplest approach of afixed-sized array.

We'll dsorenametot est Scor es rather than using the anaemic ‘tests.’
Whilewe're at it we'll define a constant (or three) as well, which should
get rid of any unsightly magic numbers left in the code:

const int MnScore = 0; // assune %age scores
const int MaxScore = 100;

const int NoTestScores = 5; // must be > 1
typedef int TestScores[NoTest Scores];

We'll leave the test score type as an i nt, although some might prefer to

hide this decision with at ypedef.

Misnamed variables:
aver age: isused to total the scores—we'll renameitt ot al Scor es.
aver agescor e: isused to store the total scores minus the lowest score —

we'll renameitadj ust edTot al .

di vi de: isused to hold the average score —we'll rename it aver ageScor e.
Assumption: the requirements stipul ate that theaverageisto bearounded-
down whole number.

Finally (more oft-repeated advice), if you're using C++ you should try to

use the variables as close as possible to their declarations; this reducesthe

amount of mental effort (and stress!) reguired in looking through the code
and significantly increases the chances of your variables being initialised
correctly, or, indeed, at all. We can now replace the brittlei f statements

with asimple loop: see Listing 1.

Y ou may like to note that we can change the number of test scores by
simply changing the NoTest Scor es constant, cf, your origina solution
which would require an additional variable and i f statement for each
additional test score.

Theabove changeswere run through the sametestsand still appear to work.

3) Moreimprovements

Whilst the code has improved, there are still grounds for concern:

1 Input of scores not restricted to valid values.

2 Lack of proper testing.

3 Mixing Ul (user interface) with application code (separation of
concerns).

I’m going to start by ignoring point 1 asit would expand this solution well

past the point of boredom: if wewereto do it full justice we' d haveto look

at filtering out non-numeric input (including control characters), preventing

buffer-overruns, verifying the resulting numbers, procedural (C) vs OO

(C++) approach, and, possibly even, accounting for platform differences.

The remaining 2 points can be dealt with concurrently, more-or-less.

19

Unit testing

Inany real program you'd be expected to demonstrateits veracity (I would
hope) — with the current program you’ d have to draw up alist of inputs,
calculate their averages, and manually input each set and check the outpuit.
This could easily get quite tiresome as it has to be done every time you
change your code, furthermore, you may well find that you need more than
just acouple of data sets—more likely than not we' d have an un(der)tested
program. What you really want is an automated test suite, which takes us
into the realm of unit tests. The code, however, mixes the Ul with the
averaging agorithm, preventing usfrom testing the latter without the former.
Wetherefore need to break up our monalithic code before we can configure
some simple automated testing (I' m deliberately ignoring the unit test suites
availablefor C++, such as CppUnit, partly asthey’ re unlikely to beinstalled
by default, and partly as| rarely use C/C++ in the rea world).

You'll note that our revised comments each describe a separate part of
the program — these can be conveniently turned into routines, after which,
the comments can be deleted:

get Test Scor es(t est Scor es) ;

averageScore = averageScor eFor (t est Scores) ;

out put Aver ageScor e(aver ageScor €) ;

Separating the code is mostly trivial: the only complication is that we'll
have to put the aver ageScor eFor routine in its own module (Listings 2
& 3) so that we can use it separately.

A test program is now written, see Listing 4. We're using simple look-
up tables for the test data but it could equally come from afile or be
generated by an alternative implementation of the algorithm at run-time
etc. Thetestsarerun and, you'll berelieved to hear, all work correctly. Y ou
should get into the habit of writing unit tests as soon as possible; | can
absolutely guarantee that you will write better code as a result.

Separation of concerns

We have through the above separated the Ul and application code—they’re
now in separate routines and namespaces. In the current example, unit testing
not withstanding, it isnot abig deal but it isimportant that you are aware of
the issue, otherwise, for example, if you move to GUI development, you'll
find that many of the devel opment environments make it al too easy to create
your very own tar pit by seamlessly mixing Ul and app code.

4) Future improvements

I’m now reasonably content with the code but | guess we should briefly
consider the future well-being of our code.

Exception handling: | omitted the exception handling from the main
functions in the interests of brevity/clarity, but in production code you
would definitely need them, i.e. do as| say, not...

Expanding the number of test scores: As already noted this should
be easy to do at compile-time. It is, however, alittle more challenging at
run-time: here, we'd need some sort of dynamic structure, such as a
container or dynamically-allocated array, which would benefit from being
encapsulated in a class — but that’s another and longer story.

Using a different algorithm: Since the algorithm is now in its own
separately-compiled module we can readily change it without impacting
on the main program. Changing the algorithm at run-time could also be
done but you’ d need to set up aclass hierarchy (Strategy pattern) or, if
you're using pure C, an array of function pointers.

Validation of inputs: Discussed earlier (I hope).

Unit tests: If you do extend or modify the code remember to update the
unit tests accordingly. A fairly useful approach to modifying (or creating)
code with unit tests is to write your tests before writing new code — so-
called test-driven development (TDD). Once convinced of the efficacy of
unit testing (and you will be) you should start using a proper unit testing
suite— most of them seem to be modelled on the original JUnit (for Java).

Listing 1: mai n. cpp

#i ncl ude <i ostreanr
nanespace {

const int NoTestScores = 5;

const int MnScore = 0;

const int MaxScore = 100;

typedef int TestScores[NoTest Scores];

voi d get Test Scores(Test Scores& test Scores) {

usi ng nanespace std;
cout << "This programwi ||
<< NoTest Scores << "

gat her
test scores and\n";

20

}

cout << "drop the | owest score, giving you the
<< "average\n\n";

cout << "Please enter " << NoTest Scores
<< " test scores\n";

for(int i =0; i < NoTestScores; i++) {

cin >> testScores[i];
}
int averageScoreFor (const Test Scores& testScores) {

int | owestScore = MaxScore;

int total Scores = 0;

for(int i = 0; i < NoTestScores; i++) {

}

if(testScores[i] < |owestScore) {
| onest Score = test Scores[i];

}
total Scores += testScores[i];
}
int adjustedScores = total Scores - | owest Score;

return adjustedScores / (NoTestScores - 1);

voi d out put Aver ageScore(i nt averageScore) {

}

std::cout << averageScore << std::endl;

} /1 nanespace

int

mai n() {

Test Scores test Scores;
get Test Scor es(t est Scores) ;

int averageScore =

aver ageScor eFor (t est Scor es) ;

out put Aver ageScor e(aver ageScor e) ;

}

Listing 2: aver ageScor e. h

#i f ndef AVERAGE SCORE_H
#defi ne AVERAGE SOORE_H
nanespace Accu {

const int MnScore = 0;

const int MaxScore = 100;

const int NoTest Scores = 5;

typedef int Test Scores[NoTest Scores];

int averageScoreFor(const TestScores& testScores);
}
#endi f

Listing 3: aver ageScor e. cpp

#i ncl ude "averageScore. h"
nanespace Accu {
int averageScoreFor (const Test Scores& test Scor es)

}

{...} Il per listing 1

Listing4: t est Mai n. cpp

#i ncl ude <i ostreanr
#i ncl ude "averageScore. h"
nanespace {

usi ng nanespace Accu

const

int NoUnitTests = 10;

const Test Scores Unit Test | nputs[NoUnitTests] = {

}s

const

/1 test with | owest value in every position

{60, 80, 84, 100, 90},
{80, 60, 84, 100, 90},
{80, 84, 60, 100, 90},
{80, 84, 100, 60, 90},
{80, 84, 100, 90, 60},

/] tests with same val ues
{50, 50, 50, 50, 50},

{M nScore, M nScore, M nScore, M nScor e, M nScor e},
{ MaxScor e, MaxScor e, MaxScor e, MaxScor e, MaxScor e},
/1 ascendi ng and descendi ng tests

{10, 20, 30, 40, 50},

{90, 80, 70, 60, 50}

int UnitTestResults[NoUnitTests]
88, 88, 88, 50, M nScore, MaxScore,

= { 88, 88,
35, 75 };

| CVu/ACCU/Dialogue

const std::string TestCorrect = ;
=

const std::string Testlncorrect
} /1 nanmespace
int main() {
int result = EXI T_SUCCESS;
for(int Test = 0; Test < NoUnitTests; Test++) {
i f (aver ageScor eFor (Uni t Test | nput s[Test])
== Uni t Test Resul ts[Test]) {
std::cerr << TestCorrect;
} else {
std::cerr << Testlncorrect;
result = EXIT_FAl LURE;
}
}

std::cerr << "\nUnit tests conpl eted\n";
return result;

}
The Winner of SCC 31

The editor’s choices are:
Ken Munro and Richard Wheeler.
Special mentionisto Chris Main for one of the most amusing answers
I’ve ever seen here.
Please email f r anci s@ obi nt on. denon. co. uk to arrange for your prize.

Francis’ Commentary

Therearesevera problemswith thisprogram. Thefirstisthat the problem has
not been well specified. It seemsby examining the codethat theintentionisto
calculate the arithmetic mean of al but the smalest of five values.

Let us think how we would identify the smallest of alist of numbers.
Assume that we have the list in a column. Y ou would tentatively assume
that the smallest number was the first one and then scan down the list
checking each subsequent value to see if it was smaller than the current
smallest. If it is we update the smallest value. When we reach the end of
the list we know what the smallest valueiis.

Let me focus on this and assume that the student knows nothing about
arrays or any other form of collection (yes, | know that is pretty silly, but
sometimes instructors like to set these exercises as motivating examples
for introducing collections.)

Assuming that we have initialised the five variables; t est 1, t est 2,
test 3,t est 4 andt est 5; the following piece of code exactly duplicates
the above description.

int lowest(testl); // tentatively assune testl is
the snal |l est

if(test2 < lowest) lowest = test2;

if(test3 < lowest) lowest = test3;

if(test4 < lowest) |owest = test4;

if(testb < lowest) |owest = testbh;

Now we can see the student’s critical error. Thereis no use comparing each
vaue with the next one, we must compare each vaue with the lowest so far.

Next let me rewrite the final part of the student’s code so that it is self
documenting:

int const total (testl+test2+test3+test4+testh);

int const top4(total - |owest);

doubl e const nean(top4/4.0);

cout << "The nean grade is " << nean << endl;

One of the important points here is that variables are only declared when
we areready toinitialisethem. In addition | advocate usingconst qualified
variables extensively. The student was already part of the way there by
using named variables to identify each step in the calculation, though the
names he chose were not exactly the most appropriate ones.

I am not going to comment on the data capture part of the program
because it is tedious and if the student was limited to placing everything
inmai n() without using loops or containers there is not much option.

Onceweadlow the student to usealoop thingsbecome much neater because
weread inthefirst vaueand useit toinitidiseboth t ot al and| owest . Next
weloop four timesreading inanew value, addingitintot ot al and testing to
seeif we haveto adjust the lowest. The code might look something like:

cout << "What is the first grade? ";

int total;

cin >> total ;

int lowest(total);

for(int i(0); i !'=4; ++) {

cout << "What is the next grade? ";

| CVu/AGCU/Dialogue |

i nt grade;

cin >> grade;

total += grade;

if(grade < lowest) |owest = grade;

}

int const top4(total - |owest);

doubl e const nean(top4/4.0);

cout << "The nean grade is " << nean << endl;

At some point the instructor will need to discuss problems arising from
incorrect data being keyed in. Notice that we now have an extensible program
which can deal with more than five grades by simply adjusting the number of
iterations of the loop. That isagood point to talk about magic numbers.

Finally we have theissue of ‘remembering’ the individual gradesrather
than keeping a running total of them. At that point | would be talking to
my students about using st d: : vect or.

Now | have not seen the answers readers sent in, but | suspect most of
them were very anxiousto get into using an array orvect or . For the problem
as set (and even extended) containersare not that useful and there are agood
number of other programming points that needed to be addressed first.

Student Code Critique 32

(Submissions to scc @ccu. or g by March 10th)

| still wonder about the lack of knowledge (or rather awareness) among
beginnersof theextensivefunctionality offered by thestandard library. Let this
be reflected in your answer to the student, with a corresponding solution.
This computes the product of two N by N matrices. It works fine in cygwin
compiler, but it doesn’t in VC++. The strange thing is when | have N = 2 no
problem, but N = 3 makes problem. | am not sure | use ‘new’ operator correctly
in the following program. Can someone help in finding the problem here ?
#i ncl ude <i ostream h>
#i ncl ude <process. h>
voi d nai n(voi d)
{
int N i, j, k;
doubl e **A, **B,
doubl e sum = 0. 0;

**C;

cout << "Dinension of Matrix ?" << endl;
cin >> N,

A = new (doubl e *);

B = new (double *);

C = new (double *);

for(i=0; i<N, i++){
Ali] = new doubl e[N ;
Bli] new doubl e[N ;
di] = new doubl e[N ;

}
for(i=0; i<N i++)
for(j=0; j<N j++){

cout << "Al" << <"][" <] << "] = << endl;
cin>> Al
}
for(i=0; i<N i++)

for(j=0; j<N j++){

cout << "B[" << i << "][" <] << "] = ?" << endl;
cin>> Bli][j];
}
for(k=0; k<N k++)
for(i=0; i<N, i++){
sum = 0. 0;
for(j=0; j<N |++)
sum += AL][J]1*B[j]1[K];
qillk] = sum
}
cout << endl << endl << endl;
for(i=0; i<N i++)

for(j=0; j<N j++)
cout << """ << i << "][" <<] <<

<< di][j] << endl;

S

21

Features

Patterns in C — Part 1

Adam Petersen <adanpet er sen75@ahoo. se>

Over the last ten years, the pattern format has gained a tremendous
popularity asthe format used for capturing experience. One of thereasons
for this popularity isthe unique success of the classic book Design Patterns
by the Gang of Four [1]. The Design Patternsbook definitively served the
community by spreading the word about patterns.

Today, patterns in the software industry aren’t limited to design; there
exists a broad range of patterns, covering analysis patterns, patterns for
organizations, patterns for testing, etc.

As most patterns are described in the context of an object oriented
design, one is easily led to believe that patterns require a language with
support for object orientation. By browsing a popular online bookstore, |
noticed alot of language specific pattern literature: design patternsin Java,
C#, Smalltalk and other popular object oriented languages. But, whereis
the onetargeting the unique implementati on constraints and techniquesfor
the C language? Isn’t it possible to use patterns in the development of C
programs or doesn't it add any benefits?

An important thing to realize about patterns is that they are neither a
blueprint of a design, nor are they tied to any particular implementation. By
those means, shouldn’t it be possible to find mechanismsfitting the paradigm
of C, letting C programmers benefit from the experience captured by patterns?

What You Will Experience in This Series ...

Itismy belief that C programmers can benefit from the growing catalogue

of patterns. This serieswill focus on the following areas:

* Implementation techniques. | will present a number of patterns and
demonstrate techniques for implementing them in the context of the C
language. In case I'm aware of common variations in the
implementation, they will be discussed as well. The implementations
included should however not by any means be considered as a final
specification. Depending on the problem at hand, the implementation
trade-offs for every pattern hasto be considered.

* Problem solved. Patterns solve problems. Without any common
problem, the “ pattern” may simply not qualify as apattern. Therefore |
will present the main problem solved by introducing the pattern and
provide examples of problem domains where the pattern can be used.

* Consequenceson thedesign. Every solution impliesaset of trade-offs.
Therefore each article will include the consegquences on the quality of
the design by applying the pattern.

... And What You Won’t

* Object oriented featur eemulation. The pattern implementationswill
not be based on techniques for emulating object oriented features such
asinheritance or C++ virtual functions. In my experience, these features
are better left to a compiler; manually emulating such techniques are
obfuscating at best and a source of hard to track down bugs at worst.
Instead, it is my intent to present implementations that utilize the
strengths of the abstraction mechanisms already included in the C
language.

* Indepth discussion of patterns. Asthe focusin these articleswill be
on the implementation issues in C, the articles should be seen as a
complement to the pattern descriptions. By those means, this serieswill
not include exhaustive, in depth treatment of the patterns. Instead | will
provide a high-level description of the pattern and reference existing
work, where a detailed examination of the pattern is found.

Pattern Categories

The patterns described in this series will span the following categories.

* Architectural patter ns. Frank Buschmann defines such a pattern as “a
fundamental structural organization schema for software systems. It provides
a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them” [2].

* Design patterns. These typically affect the subsystem or component
level. Most patterns described in this series will be from this category,
including patterns described in the classic Design Patterns [1] book.

22

* Languageleve patterns. Thisisthelowest level of the pattern-categories,
also known asidioms. A language level pattern is, as its name suggests,
mainly unique to one particular programming language. One simple,
classc exampleisthe st r cpy verson from Kernighan and Ritchie [3].
void strcpy(char *s, char *t) {

whi l e(*s++ = *t++);

}

The Foundation

Our journey through the patterns will start with a language level pattern
that decouples interface from implementation, thus improving
encapsulation and providing |oose dependencies.

Thispattern will lay the foundation for many of the subsequent parts of
this series.

FirsT-CLAss ADT Pattern

It' s getting close to the project deadline as the project manager rushesinto
your office. “They found some problem with your code’, he says with a
stressed voice. “ According to the test-team, you cannot register more than
42 ordersfor agiven customer. Sounds strange, doesn’t it?’

Darn. You knew it. Those hard coded limits. “Oh, I'll have alook at it”,
you reply softly. “Fine, | expect the problem to be solved tomorrow”, the
manager mumbles as he leaves your office.

“Noproblem”, youreply, well confident that the design of the customer
routines are highly modular and clearly implemented (after all, you've
implemented it yourself).

Y ou launch your favourite code-editor and open afile with the following
content:

/* Custoner.h */

< include guards and include files >

#defi ne MAX_NO OF ORDERS 42

/* Internal representation of a custoner. */

typedef struct {

const char* nane;

Addr ess addr ess;

size_t noOrOders;

O der orders[MAX_NO O ORDERS] ;
} Custoner;
voi d i nitCustomner(Custoner* theCustoner,

const char* nanme, const Address* address);
voi d pl aceOrder (Custoner* custoner,
const Order* order);

/* and a lot of other related functions */

A quick glance revedsthe problem. Simply increasingMAX_NO_OF_ORDERS
would do, wouldn't it? But what' sthe correct valuefor it?Isit 64, 128, maybe
even 2048 or some other magic number? Should customerswith one, single
order allocate space for, let’s say, 2047 non-existing orders?

As you think of it, you realize that the current solution doesn’t scale
well enough. Clearly, you need another algorithm. Y ou recall that alinked
list exists in the company’s code library. A linked list must do the trick.
However, this means changing the internal structure of the Cust oner .

No problem, it looks like you thought of everything; the clients of the
customer module simply use the provided functions for all access of the
customer structure. Updating those functions should be enough, shouldn’t it?

Information Hiding

WEell, in an ideal world the change would be isolated to the one, single
module. Given the interface above, clients depend upon the internal
structure in at least one way.

At worst, the clients alter the internals of the data structure themselves
leading to costly changes of al clients.

This can be prevented by frequent code-inspections and programmer
discipline. In any case, we still have the compile-time dependencies and
after changes, a re-compile of al clientsis required and the compilation
time may be significant in large systems.

The FirsT-CLASs ADT pattern will eliminate both dependency
problems. The pattern provides us with a method of separating interface
from implementation, thus achieving true information hiding.

CVu/ACCU/Features

Definition of a FIRsT-CLASS ADT

ADT stands for Abstract Data Type and it is basically a set of vaues and
operations on these values. The ADT is considered first-class if we can
have many, unique instances of it.

Sounds close to the interface listed in the introductory example above,
doesn’t it? However, the datatype in the example is not abstract asit fails
to hide its implementation details. In order to make it truly abstract, we
have to utilize a powerful feature of C — the ability to specify incomplete

types.

Incomplete Types

The C standard [4] allows us to declare objects of incomplete typesin a
context where there sizes aren’t needed. In our example implementation,
we are interested in one property of incomplete types — the possibility to
specify a pointer to an incompl ete type (please note that the pointer itself
isnot of an incomplete type).

/* A pointer to an inconplete type (hides the

impl ementation details). */

typedef struct Custonmer* CustonerPtr;

Instances of this pointer will serve as a handle for the clients of aFIrsT-
CLass ADT. This mechanism enforces the constraint on clients to use the
provided interface functions because there is no way a client can access a
field in the Cust onmer structure (the C language does not allow an
incompl ete type to be dereferenced).

The type is considered complete as soon as the compiler detects a
subsequent specifier, with the same tag, and a declaration list containing
the members.

/* The struct Customer is an inconplete type. */

typedef struct Customer* CustonerPtr;

/* Internal representation of a customer. */

struct Custoner {

const char* nang;
Addr ess addr ess;
size_t noOF Orders;
Order orders[42];

I

/* At this point,

conmplete. */

Object Lifetime

Before we dive into the implementation of an ADT, we need to consider
object creation and destruction.

Asclients only get a handle to the object, the responsibility for creating
itrestsuponthe ADT. Thestraightforward approach isto write one function
that encapsul ates the allocation of an object and initializesit. In asimilar
way, we define afunction for destructing the object.

/* CQustomner.h */

< includes and include guards as before >

/* A pointer to an inconplete type (hides the

impl ementation details). */

typedef struct Customer* CustonerPtr;

/* Create a Custoner and return a handle to it. */

Custoner Ptr creat eCust oner (const char* nane,

const Address* address);

/* Destroy the given Custormer. Al handles to it

will be invalidated. */

voi d destroyCust oner (Cust onerPtr custoner);

struct Custoner is considered

/* CQustoner.c */
#i ncl ude "Custoner. h"
#incl ude <stdlib. h>
struct Customer {
const char* nane;
Addr ess addr ess;
size_t noOf Orders;
Order orders[42];
B
Cust oner Ptr creat eCust oner (const char* nane,
const Address* address) {
Custoner Ptr custoner = malloc(sizeof * custoner);
i f(custoner) {
/* Initialize each field in the customer. */

}

| CVu/ACCU/Features

return customer;
}
voi d destroyCust oner (CustonerPtr custoner) {
/* Performclean-up of the custoner internals,
i f necessary. */
free(custoner);

Theexampleaboveuses mal | oc to obtain memory. In many embedded
applications, this may not be an option. However, as we have
encapsulated the memory allocation completely, we are free to choose
another approach. In embedded programming, where the maximum
number of needed resources is typically known, the simplest allocator
then being an array.
/* Exanpl e of a static approach for nenory
all ocation. */
#defi ne MAX_NO OF CUSTOMERS 42
static struct Custoner
obj ect Pool [MAX_NO OF CUSTOMERS] ;
static size t nunberf Ghjects = 0;
Customer Ptr creat eCust oner (const char* nane,
const Address* address) {
CustonerPtr customer = NULL,;
i f (nunber O Cbj ects < MAX_NO OF CUSTOVERS) ({
cust omer = &obj ect Pool [nunber O Chj ect s++] ;
/* initialize the object */
}

return custoner;

In case deallocation is needed, an array will still do, but a more
sophisticated method for keeping track of “allocated” objects will be
needed. However, such an algorithm is outside the scope of this article.

Copy Semantics

As clients only use a handle, which we have declared as a pointer, to the
ADT, theissue of copy semantics boils down to pointer assignment. Whilst
efficient, in terms of run-time performance, copies of a handle haveto be
managed properly; the handles are only valid as long as the real object
exists.

In case we want to copy the real object, and thus create a new, unique
instance of the ADT, we have to define an explicit copy operation.

Dependencies Managed

With the interface above, the C language guarantees us that the internals
of the data structure are encapsulated in the implementation with no
possihility for clients to access the internals of the data structure.

Using the FIrsT-CLASS ADT, the compile-time dependencies on
internalsareremoved aswell; all changes of the implementation arelimited
to, well, the implementation, just asit should be. Aslong as no functions
are added or removed from the interface, the clients do not even have to
be re-compiled.

Consequences

The main consequences of applying the FIrRsT-CLAsS ADT pattern are:

1. Improved encapsulation. With the FIRsT-CLASSADT pattern we
decouple interface and implementation, following the recommended
principle of programming towardsaninterface, not animplementation.

2. Loosecoupling. Asillustrated above, all dependencieson the internals
of the data structure are eliminated from client code.

3. Controlled construction and destruction. The FIRsT-CLASSADT
pattern gives us full control over the construction and destruction of
objects, providing us with the possibility to ensure that all objects are
created in avalid state. Similarly, we can ensure proper de-alocation
of all elements of the object, provided that client code behaves correctly
and calls the defined destroy-function.

4. Extralevel of indirection. Thereisadlight performance cost involved.
Using the FIrsT-CLASs ADT pattern implies one extra level of
indirection on all operations on the data structure.

5. Increased dynamic memory usage. In problem domains where there
may be potentially many instances of a quantity unknown at compile-
time, astatic allocation strategy cannot be used. As a consequence, the
usage of dynamic memory tends to increase when applying the FIRsT-
CLASSADT pattern.

[concl uded at foot of next page]

23

Professionalism in
Programming #30

Code Monkeys (Part One)

Pete Goodliffe <pet e@t hr ee. or g>

We are just an advanced breed of monkeys on a
minor planet of a very average star. But we can
understand the Universe. That makes us something very special.

Stephen Hawking
As time marches relentlessly onwards we' re drawing near to the 2005
ACCU conference (you have booked your place, haven't you?) I’ ve been
preparing this year's presentation, and so | thought that this would be a
good opportunity to review what | presented last year.

In a previous article | asked the frivolous question: how many
programmers does it take to change a light bulb? There could be any
number of answers, but it really depends on who is doing the work.
Different programmers work in different ways and will have their own
individual approach to solvethe same problem. Thereisawaysmore than
one way to do itl, and different programmers’ attitudes will lead them to
make very different decisions.

Inthisseriesof articleswe’ll look at this; we' |l investigate programmer
attitudes, good and bad, and identify the key ones for successful
programming. Thisincludes how we approach the task of coding, and also
how we relate to other programmers. We'll come to some surprising
conclusions about what makes the best coders.

Monkey Business

The software factory is inhabited by a strange collection of freaks and
social misfits. Any serious software system is built by a bunch of these
people, with their different skill levels and attitudes, all working towards
acommon goal.

Theway wework together and the kind of code we writewill inevitably
be shaped by our attitude to the work. If everyone was a diligent, hard
working geniusthen our software would be alot better; delivered on time,
to budget, with no bugs. We're not perfect, and unfortunately it showsin
the code we write.

To work out strategies to deal with this I’ll lead us on a guided tour
through a gallery of programmer stereotypes. We'll seethe different types
of code monkey. These are all directly based on the types of people | have
met in the software factory. Of courseit’s anecessarily genera list; you'll
know programmerswho fall into categories other than those listed here, or
even fit several descriptions at once.

Even so, this shamel ess categorisation will highlight theimportant facts
and show us how we can improve. We'll see:
¢ what makes different types of code monkey tick,

* how to work with each of them,

* how each code monkey can improve, and

* what we can learn from each of them.

Asyou read each code monkey description, ask yourself:

* Areyou this type of programmer? How closely does the description
match your programming style? What lessons can you learn to improve
your approach to coding?

* How many people do you know like this?
Are they close colleagues, and can you work
with them better?

Without further ado, meet The Code
Monkeys...

1. The Eager Coder

We'll start with thisguy,
because he2 probably
embodiesthetraits of most programmers. The Eager
Coder is fast and fleeting; he thinks in code. An
impulsive, natural born programmer, he tends to
write code assoon asanideaformsin hishead. He' <
not good at standing back and thinking first. So,
although an Eager Coder does have very good
technical skills, the code he writes never shows his
true potential.

The Eager Coder often triesto use anew feature or idiom becauseit’s
fashionable, the best thing since the last big new idea. His desire to try
out new tricks means that he applies technology even when it’s not
appropriate.

Strengths. Eager Coders are productive, in terms of code quantity. They
write a lot of code. They love learning new stuff, and are really
enthusiastic — even passionate — about programming. The Eager Coder
loves hisjob, and genuinely wants to write good code.

Weaknesses. Dueto his unfettered enthusiasm, the Eager Coder is hasty
and doesn’t think before rushing into the code editor. He does write a
lot of code, but because hewritesit sofast, it' sflawed —the Eager Coder
spends ages debugging. A little forethought would prevent many silly
errors, and many hours ironing out careless faults.

Unfortunately the Eager Coder is areally bad debugger. In the same

way he rushes into coding, he dives straight into debugging. He's not

methodical, so he spends ages chasing faults down blind alleys.

He' sapoor estimator of time. He'll make areasonable estimate for the

case when it al goes well, but it never does go according to plan; he

aways takes longer than expected.

What to do if you are one: Don't lose that enthusiasm —it’s one of the
best characteristics of a programmer. Because your joy liesin seeing
programs work, to stand back and admire the beauty of code, work out
practical waysto do this.

It mostly boilsdown to thissimple piece of advice: stop and think. Don’t

be hasty. Work out personal disciplines that will help you, even

something basic like writing THINK on a post-it-note stuck to your
monitor!

How to work with them: When they work well, these are some of the
best people to program alongside. The trick is to channel their energy
into productive code rather than mindless flapping. They are great to
get pair programming.

Ask an Eager Coder about what he' sdoing each day, and what his plans

are. Show aninterest in hisdesign —it will encourage him to really think

about it! If you rely on an Eager Coder’s work, ask for early pre-
releases, and ask to see their unit tests too.

1 The Perl programmers’ mantra.
2 I'll describe all code monkeys as male, for no other reason than clarity of prose.

[continued from previ ous page]

Examples of use

The most prominent example comes from the C language itself or, to be
more precise, from the C Standard Library —FI LE. True, FI LE isn’t
alowed by the standard to be an incomplete type and it may be possible
toidentify itsstructure, buried deep down inthe standard library. However,
the principle is the same since the internals of FI LE are implementation
specific and programs depending upon them are inherently non-portable.

Sedgewick[5] uses First-Class ADT to implement many fundamental
data structures such as linked-lists and queues.

This pattern may prove useful for cross-platform development. For
example, when devel oping applications for network communication, there
are differences between Berkeley Sockets and the Winsock library. The
First-Class ADT pattern provides the tool for abstracting away those
differencesfor clients. Thetrick isto providetwo different implementations
of the ADT, both sharing the same interface (i.e. include file).

24

i
Next time
We will climb one step in the pattern categories and investigate a pattern
from the Design Patterns [1] book. The next pattern may be useful for
controlling the dynamic behavior of a program and in eliminating complex
conditional logic.

Adam Petersen

References

[1] Gamma, Helm, Johnson and Vlissides, Design Patterns Addison-Wedey

[2] Buschmann, Meunier, Rohnert, Sommerlad and Stal, POSA, A System
of Patterns, Volume 1, Wiley

[3] Kernighan and Ritchie, The C Programming Language, Prentice Hall

[4] ISO/IEC 9899:1999, The C Sandard

[5] Sedgewick, R., Algorithmsin C, Parts 1-4, Addison-Wesley

Acknowledgements
Many thanks to Drago Krznaric and Andre Saitzkoff for their feedback.

| CVu/ACCU/Features

An Eager Coder benefits from appropriate management, to help with
his discipline. Make sure histimeis carefully placed on a project plan
(you don’t have to plan histime yourself).

2. The Code Monkey

If you ever need an infinite number of monkeys,
these guys would be your first choice. (I wouldn't
advise it though, you'll be picking monkeys for a
loooong time!)

The Code Monkey writes solid but uninspired
» code. Given an assignment, they’|l faithfully plod
throughit, ready to be handed the next one. Perhaps
it'salittle unfair, but because of their menial work
these guys are a'so known as grunt programmers.

Code Monkeys have quieter personalities. Afraid to push for good jobs,
they tend to get sidelined on unglamorous projects. They carve out aniche
as maintenance programmers, keeping the aged codebase going whilst the
pioneers are off writing exciting replacements.

A junior Code Monkey will learn and progress given time and
mentoring, but is given ‘low risk’ assignments for now. An older Code
Monkey has probably stagnated, and will retire a Code Monkey. He'll be
quite happy to do so.

Strengths: Givethem ajob and they’ll do it, reasonably well, reasonably
ontime. A Code Monkey isreliable, and can usually be counted on to
put in extra effort when it comes to crunch time.

Unlike an Eager Coder, a Code Monkey is a good estimator of time.

They are methodical and thorough.

Weaknesses: Although a Code Monkey is careful and methodical, they
don't think outside of the box. They lack design flair and intuition. A
Code Monkey will follow the existing code design conventions
unguestioningly, rather than address any potentia problems. Sincethey
are not accountabl e for the design, they don’t accept responsibility for
any problemsthat arise, and won't often take theinitiative to investigate
and fix them.

It'shard to teach a Code Monkey new stuff; they’ re just not interested.
What todoif you are one: Do you want to explore new areas and broaden

your responsibility? If so, start to strengthen your skills by practicing

on personal projects. Grab some books and study new techniques.

Push for more responsibility, and offer to join in the design work. Take

the initiative in your current work — identify possible failure points

early, and work out plans to avoid them.

How towork with them: Don’t look down on aCode Monkey, evenif you
have stronger technical skills or greater responsibility. Encourage them
— compliment their code and teach them techniques to improve their
work.

Write your code thoughtfully to make the maintenance programmer’s

job as easy as possible.

3. The Guru

Thisisthe fabled mystic genius, a program wizard.
The Guru tends to be quiet and unassuming, perhaps
even alittle odd. He writes excellent code, but can't
communicate well with mere mortals.

The Guru is left alone to work on the
fundamental stuff: frameworks, architectures,
kernels, and so on. He holds the deserved respect
(and sometimes fear) of his colleagues.

0 Omniscient, the Guru knows al and sees all. He

turns up sagely in any technical discussion to dispense his expert opinion.

Strengths: Gurus are the experienced magicians. They know all the new
magic, and understand why the old tricks are better. These are the guys
that created magic in thefirst place. They have awealth of experience,
and write mature maintainable code.

A good Guru is awonderful mentor — there's so much to learn from

him.

Weaknesses: Few Gurus can communicate well. They’re not always
tongue tied, but their ideas fly so fast and at a level beyond mere
mortals, that it shard to follow them. A conversation with aGuru either
makes you feel stupid, confused, or both.

A bad Guru makes a fantastically bad mentor. They find it hard to

understand why others don’t know as much, or don’t think asfast asthem.

What todoif you areone: Try to step off your cloud and livein the Real
World. Don’t expect everyone to be as quick as you, or to think in the

CVu/ACCU/Features

sameway asyou. It takesalot of skill to explain something ssimply and
clearly. Practice this.

How towork with them: If you cross pathswith aGuru, learn from them.
Absorb what you can — and not just technical stuff. To become
established as a Guru takes a certain temperament and personality —
knowledge but not arrogance. Observe this.

The Demiguru thinks he’ sagenius. Heisn't. Hetalks
knowledgeably, but talks aload of rubbish.
Thisisprobably the most dangerous type of code
= monkey; aDemiguru is hard to spot until the damage
is done. Managers believe he's a genius, because he
sounds so plausible and sure of himself.

A Demiguru is generally less quiet than a Guru.

He' s more boastful and full of himself.

Strengths: It's easy to assume that a Demiguru has no strengths, but his
great asset is his belief in himself. It's important to trust your own
abilities, and be secure that you write high quality code. However

Weaknesses: The Demiguru’ sgreat weaknessishis belief in himself. He
overestimates his abilities, and when left to make important decisions
will jeopardise your project’ s success. At worse, he’ saseriousliability.
The Demiguru will haunt you, even after he’s moved on to new
pastures. Y ou'll beleft with the consequences of hisbad decisions, and
his overly clever code.

What to do if you are one: Right now, take an honest appraisal of your
skills. Don't oversell yourself. Ambition isagood thing; pretending to
be something you're not isn’t.

Y ou may not be doing this on purpose, so be objective about what you
can and cannot do. Be more concerned about the quality of your
software than how important or clever you look.

How to work with them: Bevery, very careful.

5. The Arrogant Genius

Thisguy isasubtle, but significant, variation onthe

Guru species. He annoysthe pants off of you—he's

thekiller programmer. Fast and efficient, hewrites

high quality code. Not quite a Guru, but he's hot.
But because he's all too aware of his own skills
he's cocky, condescending and demeaning. The

Geniusis often terminally argumentative, because

he's so used to being right and having to promote

his correct view over other’ swrong opinions. He's become used to it now.

The most annoying thing is that most of the time heisright, so you're
bound to lose any argument with him. If you are correct, he' | keep talking
until the argument moves on to something he is right about.

Strengths: The Genius has considerable technical skill. He can provide
astrong technical lead, and will catalyse ateam when everyone agrees
with him.

Weaknesses: The Genius doesn’t like to be proved wrong, and thinks that
he must always be right. He feels compelled to act as an authority; the
Genius ‘knows’ everything about everything. Even if he has no
experience at al, hestill triesto look knowledgeable. He can never say
| don’t know, suffering from afull humility bypass.

What to do if you are one: Not everyone achieves God-like status, but
there are plenty of good programmers worthy of respect. Recognise
this. Practice humility, and honour other peopl€’ s opinions
Look for people who might have a more experienced viewpoint, and
learn from them. Don't pretend — be honest about what you do and don'’t
know.

How to work with them: Do show a Genius respect, and show respect
to other programmers around him. Don’t come up against him, and
don’t enter into unconstructive quarrels. But stand your ground — assert
your reasonable opinions and views. Don’'t be daunted by him.
Discussing technical issues with a Genius can make you a better
programmer; just learn to detach your emotions first. If you're sure
you're correct, gain alies to help fight the stance.

Take heed and avoid being cocky yourself.

Next Time

We'll look at some more programmer stereotypes, and work out what the
‘ideal programmer’ looks like. Stay tuned.
Pete Goodliffe

25

Wx - A Live Port - Part 3

Jonathan Selby <jon@xaxero.com>

In this, the final part of the series, Jon rounds off the port of an
application from MFC to wxWidgets.

Internet Access

The wxSocket class provides avery simple interface over the Internet.
Y ou will need to have a phone connection or DSL/ISDN network
connection established.

To get aweb page is simplicity initself.

The following is from the samples — Sockets — Client.

/1 define the URL

wWxString urlnane =

WXURL url (url nane);

/1 Check to see url is valid

if(url.GetError() !'= wxURL_NCERR) {

m t ext - >AppendText (("Error: couldn’t parse URL\n"));
m t ext - >AppendText (("=== URL test ends ===\n"));
return;

}

[/l Get the data

wx| nput Stream *data = url. Getlnput Strean();

Read upinwx St r i ngBase andwx St r i ngBuf f er for datamanipulation.

Thiswould take about a page in MFC.

For more sophisticated operations like perhaps talking to amail server
on port 25 you have to establish a socket connection directly using
wxSocket Cl i ent . Thisis derived fromwx Socket Base which
handles both Server and Client connections.

Usewx| PV4addr ess to store the address.

wx| PV4addr ess sockAddr;

sockAddr . Host nane(pszHost Addr ess) ;

sockAddr. Servi ce(nPort);

The host address can be a server name or aresolved |P Address.

Now we connect:

m hSocket . Connect (| pSockAddr,
Check we are OK

WXASSERT(m hSocket . Error());
TRUE has the instruction wait for the connection to complete. The
command returns true if a connection was made.

To avoid long timeouts you may want to set thisflag to FALSE and use
Wi t For Connect after the connect. Thiswill allow you to specify your
own timeout.

Input and output is handled by wxSocket Base.

To read use the following

i f (m_hSocket . Wi t For Read(-1))

m hSocket . Read(pszRecvBuf f er, 256)
To write
wxString Buffer = "DATA";
m hSocket . Wite(Buffer,
To close the connection:
if(!'mhSocket.Error()) {
m hSocket . A ose() ;

}

For more advanced use of both client and server tools pleasetake alook at the
Sockets sample in the wxWidgets samples. The comments are very helpful.

Context Sensitive Help

wxWidgets supports winHelp, Microsoft HTMLHelp and wxHTMLHelp.
Thelatter being asubset and useful for cross platform operation. Thereare
aso alot of internal hooksto put in fast context help for dialogs.

Every wxWindow object can have some text associated with it. In
practice thistype of help seemsto have been the most popular. Most users
want a quick hint to get them on their way rather than a huge tome
presented when they press the F1 button. The old Microsoft way was to
pop up adocument with the relevant passage. With aquick hint thiswould
consume a huge amount of real estate on the screen and the many
keystrokes required to get out of it detracted from the experience and
generally soured the user on the F1 button.

So in this section we will design asimple window based help structure
where every item has help of some kind and the F1 key can be used on the
fly. Lastly we will creste ahot link to the documentation file via Shift F1
or amenu item that will allow usto display the help.

26

"your.url.cont

TRUE) ;

Buf fer.Length());

If we have been using wxDesigner to its full extent the object
functionality of the tool bar and menu bars will be already in place. You
should see context sensitive help on the status bar as you pass the cursor
over the object and on the toolbar, atool tip should pop up. If thisis not
enough for our poor user, then they will have to start reading the
documentation.

To provideaclearing house for asingle point in the application to handle
all help oriented commands (F1, context help), we use in our mainframe
an implementation of wxHel pPr ovi der that allows a great deal of
flexibility here:

Inthe App O ass header create:

wxHel pControl | er Hel pProvi der* provi der;

Inthe mai nf r ane class create as private:
private:
wxHel pControl | er m hel p;
and then create an inline function to return the controller

wxHel pControl | er & Get Hel pControl ler() {return mhelp;}
Now inthe App inititialization before and after the Mai nf r ane creation
insert the help implementation:

>> provi der = new wxHel pControl | er Hel pProvi der;

>> wxHel pProvi der: : Set (provider);

Here we substantiate and set the controller class.
/1l create the nain application w ndow
m mai nFranme = new WKW ndPI ot Fr ane(m docManager,
(wxFrame*) NULL, "WndPlot "+rs,
wxPoi nt (0, 0), wxSize(640, 480),
WxDEFAULT FRAME STYLE);

>> provi der - >Set Hel pControl | er (

& m nai nFrane->CGet Hel pController());
Here we link the controller with the main frame. We can now use the
Set Hel pText function of the wxW ndow class for any object derived
from wxW ndow- views, dialogs etc. Just add the following text to the
constructor for example

VWKW ndPl ot Fr are: : WKW ndPI ot Fr ane(

wxDocManager *nmanager,
const wxString& title,

wxFrame *frane,
const wxPoi nt & pos,

const wxSi ze& size, |ong type)
wxDocMDI Par ent Fr ane(nanager, frame, -1,
title, pos, size, type, "nyFrane") {
Set Hel pText (("To revi ew tool bar functions, rest

nouse over the tool bar button and read the
description on the bottom Status
bar.\nSel ect help menu Contents for
detailed help"));
When you are in awindow that has control and you press F1 you will see
this text pop up in a neat compact frame window. It will disappear on a
single mouse click.
To usethe traditional Context Help cursor (the ? And pointer) we need
to issue a context help command.
Thisisaccomplished by associating amenu entry or tool bar button with
wx| D_HELP_CONTEXT.
When the context message is received do the following:
BEG N_EVENT_TABLE(WKW ndP! ot Fr ane,
wxDocMDI Par ent Fr ane)
EVT_MENU(wx| D HELP CONTEXT,
VWKW ndPl ot Fr ane: : OnCHel p)
END_EVENT_TABLE()

voi d WKW ndPl ot Frane: : OnCHel p() {
wxCont ext Hel p chp(this, TRUE);

The help controller will handle the rest for you. The Cursor will change
and you can take it where you will. Left Click to see the help text

The First Linux Compile

The main weapon of choice here is the preprocessor. While we are trying
to make our code as portable as we can, some things will have to be done
alittle differently.

Using the preprocessor command we can eliminate Unix code from
Windows compiles:

#i fndef WKVG_

— Uni x specific commands

#endi f

CVu/ACCU/Features

Now comes the moment of truth. Prepare to be humbled and pay for all
those sloppy little habits you picked up when using MSV C++.

We are moving over to Linux which though not entirely unfriendly is
less forgiving in many respects. Firstly wxWidgets needs to be installed.

On RedHat 9 this went without a problem — | downloaded the GTK+
tarball and unzipped it into aworking directory.

Following the instructions: . / conf i g, make and then amake
i nstall (thelast oneasroot), wewere up and running

wxWidgets setsup library and include paths. Thecommand| dconfi g
-v setsup the linker paths and you should see |l i bwx_gt k somewhere
inthere.

We need to be sensitive to shared libraries. | first tried to compile and
link everything statically. With GTK thisis not possible. Most of the high
level widgets need to be loaded dynamically at runtime. Wecanlink in all
the wx libraries though so when you configure use the command:

./configure —with-gtk —di sabl e-shared
Now we need to get familiar with the development environment. | use
kdevelop asthishasalot of smilar functionality to MSVC. | amaGUI junkie
and am more productive when | have atool to relate messages to code.

A good move now isto try to run up one of the samples.

Follow These Steps

Navigate to the samples directory of the wx distribution and look for a
project. DocViewMDI is a good one. Rename the filemakef i | e. unx
to Makef i | e and we have a make environment ready to go.

Now run up kdevelop and from the project menu generate a project file
in same directory. Y ou should now be able to press the cogwheel toolbar
button to compile and run the program and verify that your wx build
environment is ready to go.

Now on to the Port

MSVC isalot better when it comes to managing projects and filesand asa
result my project was spread over several folders. | wasre-using source code
in severd projects and had acommon source folder. Thisis OK if you areon
your own but in acommercia environment with multiple programmersit is
intolerably doppy. Common modules should be statically linked into alibrary
and then included on the link path. Include files should be in a common
include directory. Then all you need to do is put all your C++ codein a
working directory and dl the wdr generated includesin the . wdr / folder.

The construct of the makefile becomes very simplein this case and here
itis:

File: Ceneric Makefile for wWdgets under GIK

CXX = $(shell wx-config —exx)

PROGRAM = WW ndpl ot

#OBJECTS = WKW ndPl ot App.o *. o0

OBJECTS = $(patsubst %cpp, %o, $(SOURCES))
SOURCES = $(wi | dcard *. cpp)
inpl emrentation
. SUFFI XES: .0 .cpp
.Cpp. 0O :
$(CXX) -c 'wx-config —exxflags' -0 $@ %<

Uncomment next line if you need debuggi ng
i nformation
#i## $(CXX) -c 'wx-config —exxflags'

all: $(PROGRAM
$(PROGRAM) : $(OBJECTS)
$(CXX) -0 $(PROGRAM) $(OBIJECTS) 'wx-config —libs
--static'

-g -0 $@ %<

cl ean:
rm-f *.o0 $(PROGRAM
This makefile compilesall. cpp programsinthe same directory and links
them. If you uncomment the debugging line and comment out the line
above you will get debugging information.

So Off We Go

Most of the errors you get will be due to include files not properly resolved.
There will aso be afew MS specific library cals and you will need to find
ANSI eguivaentsor look in the wxWidgets documentation. Specific examples
will be platform issues life file name resolution, variable persistence etc.

Remember Unix/Linux file names are case sensitive. Very soon all your
source fileswill be lower case. Microsoft does not care and allows mixing
of cases.

CVu/ACCU/Features

One thing to be aware of on the port. | have been quite sloppy about
defining variables on the fly. MSVC has adightly different visibility rule
on dynamic variables. It is good practice to follow the old C rule of
declaring local variables at the beginning of the subroutineto avoid porting
problems. If you declare variablei withinaf or loop

for(int i=0; i<20 ; i++)
and you referencei again you will get an error.
int i;

for (i =0;i<20;i ++)
The aboveis a better way of doing things.

Referencing the contents of wxString - aways use
wWxString:: CGetDat a() andwxString: : Get Char (i) asopposed
to referencing the data directly.

Put on your flying goggles and go to work. For my 5,000 line windplot
project over 10 cpp files we had clean compilein 4 hours. It would have
been faster had | done this before. Running the program —Wow it ran first
time. Not perfect but we were cooking. Moreimportant | wasableto single
step with kdevel op and get an idea where the problems lay.

Where classes haveintegral datatypes—wx St ri ngwxLonLong—you
need to use the access functions rather than the classes themselves
wxLongLong you needto pull thelong valuevianxLongLong: : ToLong.
Very important if you are using time variableswhere everythingisLonglLong
(takes us over the next rollover event in 2034).

Regrettably a lot of the sexier features of MS Windows are not all
implemented on GTK and especially in thingslike MDI windows there are
somethingslacking. The next step will beto look at these deficienciesand
see how we can address them.

The Tuneup: Basic Debugging

When you get to work with Linux you experience a true multi threaded
multitasking environment. Compared to Windows where your primary
thread will hang on adialog until you respond. Be prepared for some very
fast lock upsif you put amodal dialog in atheOnDr awloop for instance.
| was having a dreadful time trying to sort out Windows Sockets and
and my breakpoints seemed to be activated at random until | got the hang
of what was going on. From then on it was plain sailing and kdevelop was
a big help. Looking inside classes was not possible with the way | was
using kdevelop and so | haveto put in debugging statementsto pull values
out of wxSt ri ngsto see them. For those who are used to an IDE,
kdevelop worked very well. Above al the priceisright.
The problems | encountered on my first run:
Filevisibility: Thisisvery important and you need to agree on where your
working files will be based.
Month 0 based: July was August until | put in a conditional compile
statement to decrement the month.

Internet Hang-up: Serial Port Access.

Could not open a COM port (/ dev/ cua0). Using setserial -G
/ dev/ cua0 | verified the port wasvalid and then logged on asroot and gave
read/write accessto all. After that everythingworked. [The name of the ports
will vary — the serial ports on my linux box are all ttySx - Ed]

Back to MSVC

The last job was to do a release build and put the windows version on the
web. A nasty shock, every function crashed horribly. In debug it was
perfect. What to do ?

Finally after looking through the support base, | recompiled wxWidgets
specifically disabling optimizationsand after thelibrarieswerere-built the
codeworked perfectly. All that is needed isto go into the Project menu and
in the settings go to the C++ tab and set optimizationsto Disable (Debug).
| had visions of ahuge rewrite but fortunately asimplefix wasall that was
required.

The most important thing | found in all this was that the underlying
thought process was similar so re-training in wxWidgets from MFC is a
very easy and refreshing process. The Class Wizard and App Wizard that
MFC prides itself on isin fact a great snare and a delusion. The work it
saves you is quite trivial. | am convinced that this toolkit will be with us
for along time. As open source, its future is assured. The modified GPL
license it is released under means that it will be attractive to commercial
operations and it could be one of the levers that finally puts Linux in the
forefront where it belongs.

Jonathan Selby
[resources section at foot of next page]

27

EIeBhant - A C++ Memory
bserver

Paul Grenyer <paul @aul gr enyer . co. uk>

What is Elephant?

Elephant is a C++ memory observer. It keeps track of all callsto newand
del et e viacustom implementationsof oper at or newand oper at or
del et e. Observers can register to be notified of allocations and deletions
and used to detect memory leaks, keep atrack of maximum memory usage
or for any other purpose, by implementing a simple interface.

A notification of an alocation condg sts of the addressand size of thememory
dlocated. Theline number, function name and filenamein which thealocation
takes place can be added by placing special macros in the client code. A
notification of adeletion consists of the address of the memory being freed.

Elephant is not intended to ship in production code. It isintended as a
debugging aid. Elephant’s functionality can be removed simply by
relinking without the Elephant static library. All other code can remainin
place.

Elephant comes with a complete, Aeryn
(htt p: / / www. paul gr enyer. co. uk/ aer yn) based test suiteto
test that it behaves correctly on any given platform.

Where Can | Get Elephant?

Elephant is available for download from:
http://ww. paul grenyer. dyndns. or g/ el ephant/

What Do | Need To Build Elephant?

Elephant uses up-to-date C++ techniques (including member function
templates using the Aeryn unit tests), aswell as some classes based on parts
of Andrei Alexandrescu’s Loki library
(http://sourceforge. net/projects/| oki-Iib/)andtherefore
requires amodern compiler. It has been tested on, and provides make files or
project filesfor thefollowing compilers:

* Microsoft Visual C++ 7.1

¢ MinGW 3.2.3

* GNU G++3.23

It may be possibleto get Elephant to compile on Microsoft Visual C++ 6.0.

How Do | Build Elephant?

Elephant consists of agroup of headers and astatic library. The full source
is supplied with Elephant and the static library must be built. Building the
elephant static library couldn’t be easier:

Microsoft Visual C++ 7.1

To build the Elephant library, unit tests and the (test) supporting Aeryn
library with Microsoft Visual C++ 7.1, simply open the Elephant solution
located in the top level Elephant directory and select Build Solution from
the Build menu.

Toruntheunittestsright click ontheTest C i ent project in the Solution
Explorer and select Set as StartUp Project, then select Start Without
Debugging from the Debug menu. This should give you thefollowing output:

Aeryn 0.4.0 beta (c) Paul G enyer 2004

http://ww. paul grenyer. co. uk/ aeryn

Ran 21 tests, 21 Passed, O Failed.

Press any key to continue

MinGW

To build the Elephant library, unit tests and the (test) supporting Aeryn library
with MinGW open acommand prompt and navigate to thetop level Elephant
directory. Making sure that the MinGW bi n directory isin your path, type:
m ngw32- neke
To run the unit tests type the following:
bi N\ Testd i ent . exe

This should give you the following output:

Aeryn 0.4.0 beta (c) Paul G enyer 2004

http://ww. paul grenyer. co. uk/ aeryn

Ran 21 tests, 21 Passed, 0 Fail ed.
For mi ngw32- neke cl ean towork correctly ther mtool from MSY S
or cygwin must also be in your path.

g++

To build the Elephant library, unit tests and the (test) supporting Aeryn
library with g++ open a command prompt and navigate to the top level
Elephant directory. Checking that g++ and make are both installed
correctly, type:

nmake
To run the unit tests type the following:

bi n/ Testd i ent. exe
This should give you the following output:

Aeryn 0.4.0 beta (c) Paul G enyer 2004

http://ww. paul grenyer. co. uk/ aeryn

Ran 21 tests, 21 Passed, 0 Fail ed.
The current version of Elephant was tested with g++ 3.2.3 on Red Hat
Linux ES 3.0. If any of the tests fail on your platform Elephant may not
work as expected. If you do have tests that fail, please send me the
complete Aeryn output along with details of your g++ version and
operating system.

How Do | Set Up My Environment To Use Elephant?

Before you can use Elephant, the Elephant static library must be built (see
previous section):
Microsoft Visual C++ 7.1
El ephant _debug. | i b (debug)
El ephant . | i b (release)
MinGW

|'i bel ephant. a
g++

|'i bel ephant. a
Regardless of which compiler or platform is used the Elephant library is
placesin thebi n directory which a subdirectory of the Elephant top level
directory.

Y our environment also needs to have accessto the Elephant i ncl ude
directory which is a subdirectory of the top level Elephant directory. The
actual Elephant include files are stored in further subdirectories called
el ephant andt ool s (t ool s isasubdirectory of el ephant). This
is so that Elephant include files can be identified from other include files
which might share the same name. For example;

#i ncl ude <el ephant/ newdel et e. h>

Microsoft Visual G++ 7.1

Once you have created a solution containing the project which isgoing to
use Elephant to monitor memory usage, you are ready to add Elephant to
your environment.

There are at |east two ways to add the Elephant static library to your
solution:

Method 1: Add the ElephantLib project to the solution.

This method hasthe advantage that the El ephant Li b project isincluded

inarebuild all.

1 Right click the solution name in Solution Explorer and select Add
Existing Project from the Add menu item.

2 Navigate to the El ephant Li b directory which is a subdirectory of
the Elephant top level directory.

3 Sdect El ephant Li b. veproj and click open. (This will add the
Elephant library project to your solution.)

4 Right click your project and select Project Dependenciesfrom the menu.
Then put atick in the ElephantLib box and click Ok.

[continued from previ ous page]
Resources

wxWidgets: htt p: / / www. wxwi dget s. or g
wxDesigner : ht t p: / / www. r oebl i ng. de/

28

Another introduction to wxWidgets : http://ww. al | -t he-
j ohnsons. co. uk/ accu/ i ndex. ht ni

Porting MFC to wxWidgets http://ww-
106. i bm cont devel operworks/linux/library/l-nfc/

CVu/ACCU/Features

Method 2: Add the Elephant static library directly to the proj ect.

1 Right click your project and select properties.

2 Set the Configuration drop-down box to All Configurations.

3 Select the Linker folder and then the General item in the tree view.

4 Enter the path to the Elephant static libraries (El ephant \ bi n) into

the Additional Library Directories box.

Set the Configuration drop-down box to debug.

Select the Input item from the Linker folder in the tree view.

Enter El ephant _debug. | i b into the Additional Dependencies

box.

8 Set the Configuration drop-down box to release.

9 Enter El ephant . | i b into the Additional Dependencies box.

10 Click Ok

To make the Elephant headers available to your project in your solution

follow these steps:

1 Right click your project and select properties.

2 Set the Configuration drop-down box to All Configurations.

3 Select the C/C++ folder and then the Generd item in the tree view.

4 Enter the path to the Elephant include files (El ephant \'i ncl ude)
into the Additional Include Directories box.

5 Click Ok.

MinGW & g++

This description of configuring MinGW and g++ to link to Elephant
assumes that you are using a make file to build your project. Of course
thisis not the only way.

To link Elephant to your executable (or shared library etc) two extra
parameters need to be added to your link command: the path to the
Elephant static library, preceded by —L and the name of library, preceded
by —I . For example:

g++ nyproj .o —LEl ephant/bin -l el ephant nyproj
The Elephant include files must be made available to every invocation of
g++ that builds a source (cpp) file that includes, directly or indirectly, an
Elephant include file. Thisis done by adding a single parameter, which
consists of the path to the Elephant include directory preceded by —I . For
example:

g++ -c -0 nyproj.o nyproj.cpp -|El ephant/incl ude

How Do | Use Elephant In My Program?

Assuming that you have built the Elephant static library and integrated it
into your environment (see previous two sections) you are now ready to
use Elephant in your program.

~N o o

operator new and operator delete

The custom implementations of oper at or new and oper at or
del et e arethe key to Elephant’s ability to monitor memory. There are
overloads for the normal and array versions with corresponding no throw
versions.

To use the Elephant’s custom new and del et e operators simply
include the newdel et e. h header in your program. For example:

#i ncl ude <el ephant/ newdel et e. h>

int main() {

return O;

It only needs to be included once, although multiple inclusions will not
do any harm.

Every time a call is made to new or del et e the Elephant operator
overloads will register the call with the Elephant memory monitor. The
Elephant memory monitor is observerable and you can register one of the
provided observers or write your own to react to the allocations and de-
alocations.

Example 1: Observing and Reporting a Memory Leak

Let's start of with asimple example of amemory leak:
#i ncl ude <el ephant/ newdel et e. h>
cl ass Somet hi ngToAl | ocate {};
int main() {
Sonet hi ngToAl | ocate* p
= new Sorret hi ngToAl | ocat e;
return O;
}
This program will compile and run and you will see absolutely no
indication of the memory leak. In order to detect the memory leak you

CVu/ACCU/Features

need the leak detector class, LeakDet ect or . Theleak detector classis
an observer of the memory monitor, so you need to register and unregister
it as an observer:

#i ncl ude <el ephant/ newdel et e. h>

#i ncl ude <el ephant/ nenor ynoni t or hol der. h>

#i ncl ude <el ephant/| eakdet ect or. h>

cl ass Sonet hi ngToAl | ocate {};

int nain() {
usi ng nanespace el ephant;
LeakDet ect or | eakDet ector;
/1 Register |eak detector with menory nonitor.
Menor yMoni t or Hol der () . I nst ance() . AddCbser ver (
& eakDet ector);
Sonret hi ngToAl | ocat e* p = new Sonet hi ngToAl | ocat €;
/1 Unregister |eak detector with nmenory nonitor.
Menor yMoni t or Hol der () . I nst ance() . RenoveCbser ver (
& eakDet ector);
return O;
}
To use the memory monitor and the leak detector you need to include the
appropriate header files as shown. Running this program will still not
indicate that there is a memory leak. To indicate the memory leak you
need to interrogate the LeakDet ect or instance. For example:
#i ncl ude <el ephant/ newdel et e. h>
#i ncl ude <el ephant/ nenor ynoni t or hol der. h>
#i ncl ude <el ephant/| eakdet ect or. h>
#i ncl ude <cassert >
cl ass Sonet hi ngToAl | ocate {};

int main() {

usi ng nanespace el ephant;
LeakDet ect or | eakDet ector;
/1 Register |eak detector with menmory nonitor.
Menor yMoni t or Hol der () . I nst ance() . AddCbser ver (

& eakDet ector);
Sonet hi ngToAl | ocat e* p = new Sonet hi ngToAl | ocat e;
/1 Unregister |eak detector with memory rnonitor.
Menor yMoni t or Hol der () . I nst ance() . RenoveCbser ver (

& eakDet ector);

assert (!l eakDetector.|sLeak());
return O;

The assert (which required the cassert header as shown) will
indicate that a memory leak has occurred. This particular method of
indicating amemory leak isn't particularly useful. The next stepisto print
the memory address and the size of the leak:

#i ncl ude <el ephant/ newdel et e. h>

#i ncl ude <el ephant/ nenor ynoni t or hol der. h>

#i ncl ude <el ephant/| eakdet ect or. h>

#i ncl ude <el ephant /| eakdi spl ayf unc. h>

#i ncl ude <al gorithne

cl ass Sonet hi ngToAl | ocate {};

int main() {
usi ng nanespace el ephant;
LeakDet ect or | eakDet ector;
/1 Register |eak detector with menmory nonitor.
Menor yMoni t or Hol der () . I nst ance() . AddGbser ver (
& eakDet ector);
Sonet hi ngToAl | ocat e* p = new Sonet hi ngToAl | ocat €;
/1 Unregister |eak detector with memory rmnonitor.
Menor yMoni t or Hol der () . I nst ance() . RenoveCbser ver (
& eakDet ector);
/1 Display the details of the |eak.
LeakDi spl ayFunc | eakDi spl ay(std::cout);
std::for_each(l eakDetector. begin(),
| eakDet ector. end(), |eakDisplay);
return O;

The LeakDi spl ayFunc class constructor takes a reference to an

output stream and has a function operator that can be used, as shown, to
the write memory leak information to the stream. As

29

LeakDi spl ayFunc uses an output stream it is possible that memory
will be allocated and not freed until the end of mai n. Thisiswhy theleak
detector must be unregistered before the memory leak information is
displayed. Otherwise the output stream all ocation will appear as afurther
memory leak. Oneway to avoid having to unregister the LeakDet ect or
is to write your own function object that displays the memory leak
information without allocating memory using new. For example using
printf.

The output from this program should be asfollows, although the address
will be adifferent value:

Addr ess: 00320B70

Si ze: 1

Example 2: Recording Line and Filename of Allocation

In the previous example the memory leak was displayed as a memory
address and asize. This can be useful infinding amemory leak, but not as
usual as tracking the exact site of the allocation. Elephant can do this by
introducing a special macro into every translation unit where this type of
tracking is needed. The macro is called ELEPHANTNEWand can be
included anywhere in the translation unit. The following code shows how
the macro would be added to example 1:

#i ncl ude <el ephant/ newdel et e. h>

#i ncl ude <el ephant/ nenor ynoni t or hol der. h>

#i ncl ude <el ephant/| eakdet ect or. h>

#i ncl ude <el ephant/| eakdi spl ayfunc. h>

#i ncl ude <al gorithne

#def i ne new ELEPHANTNEW
cl ass Sonet hi ngToAl | ocate {};

int min() {

}
The output should now look something like this:

Addr ess: 00322878

Si ze: 1

Li ne: 22

Functi on: mai n

File: c:\...\exanpl e2\ mai n. cpp

Some compilers, such as Microsoft Visual C++ 7.1 will show a fully
qualified function name and a complete afull file path. Other compilers,
such as g++ and MinGW will show only the local function name and file
name without the full path. For example:

Addr ess: 0x3d24f0
Si ze: 1
Li ne: 23
File: nmai n. cpp
Example 3: Using the Maximum Memory Observer
The other memory observer supplied with Elephant,

MaxMenor yObser ver , is for measuring the maximum amount of
memory used at anyone time by an application. Its use is very similar to
that of LeakDet ect or :

#i ncl ude <el ephant/ newdel et e. h>

#i ncl ude <el ephant/ nenor ynoni t or hol der. h>

#i ncl ude <el ephant/ maxmenor yobserver. h>

cl ass Sonet hi ngToAl | ocate {};

int main() {
usi ng nanespace el ephant;
MaxMenor yChser ver maxMenory;
/1 Register max menory observer with menory monitor.
Menor yMoni t or Hol der () . I nst ance() . AddCbser ver (
&maxMenory) ;
Sonet hi ngToAl | ocate *pl
= new Sornet hi ngToAl | ocat e[100] ;
del ete[] p1;
Sonet hi ngToAl | ocate *p2
= new Sonet hi ngToAl | ocat e[50] ;
delete[] p2;
/1 Unregi ster max nenory observer.
Menor yMoni t or Hol der () . I nst ance() . RenoveQbser ver (
&maxMenory) ;

30

/1 Display the max menory usage
std::cout << "Max menory usage:
<< static_cast<unsigned | ong>(
maxMenory. MaxMenory())
<< " bytes\n";
return O;

The output from this simple (not very exception safe) exampleisasfollows:
Max nenory usage: 100 bytes

Thesize of Sonet hi ngToAl | ocat eis1 byte. During the execution of

the program a total of 150 Sonet hi ngToAl | ocat e instances are

created and destroyed. However, the program only has up to 100 instances

allocated at any onetime. Therefore the maximum amount of memory used

by the program is 100 bytes.

Example 4: Writing a Custom Memory Observer (Part 1)

Elephant can be used for more than just detecting memory leaks and the
maximum memory used by a program. Elephant can be used to monitor
any characteristic of new and del et e based memory usage via custom
memory observers. Custom memory observers are simple to create. All
that isrequired is the implementation of the following interface:
nanespace el ephant {
cl ass | MenoryChserver {

pr ot ect ed:
| Menor yGhserver () ;
public:
virtual ~IMenoryCoserver() = O;
virtual void OnAllocate(void* p, size t size,
size_t line, const char* file) = 0;
virtual void OnFree(void* p) = 0;
private:
| Menor yCbser ver (const | MenoryCbser ver &) ;
| Menor yCoser ver & oper at or =(
const | MenoryQhserver &) ;

}s

All that needs to be done to implement the interface is to inherit from it
and override the OnAl | ocat e and OnFr ee pure virtual member
functions. The OnAl | ocat e function has the following arguments:
p — A pointer to the memory that has been allocated. Thisis useful for
getting the address.
si ze — The size of the memory that has been allocated.
| i ne — The line number on which the memory was allocated. Thisis 0
unless the ELEPHANTNEWmacro has been used correctly.
char —Thefileinwhich the memory wasallocated. Thisisan empty string
unless the ELEPHANTNEWmMmacro has been used correctly.
The OnFr ee function has the following argument:
p — A pointer to the memory that has been allocated. Thisis useful for
getting the address.
The default constructor of the interface is protected to show that the class
should be inherited from. The copy constructor and assignment operator
are private to prevent attemptsto copy the interface or its subclasses (unless
the subclasses define their own copy constructor and assignment operator)
and the destructor is virtual to ensure proper destruction should a
dynamically allocated subclass by destroyed viaa pointer to the interface.
The example below is of a simple custom observer which records the
total memory allocated by a program during its lifetime:
cl ass Tot al Menoryobser ver public
el ephant : : | MenoryCoser ver {
private:
size_t total Menory_;
public:
Tot al Menor yobser ver ()
total Menory_(0) {}

virtual void OnAllocate(void* p, size t size,
size_t line, const char* file) {
total Menory_ += si ze;
}
virtual void OnFree(void* p) {}

size_t Total Menory() const {
return total Menory_;
}
}

CVu/ACCU/Features

The OnAl | ocat e override is used to accumulate the size of every
dlocation. The other parameters are ignored as they are not needed. The
OnFr ee function does nothing as we are not interested in de-all ocations.
In, for example, the leak detector, the value of p passed to OnFr ee is used
to match against a previous value of p passed to OnAl | ocat e to show
that the memory has been deleted.
Replacing MaxMerror yCbser ver , from the previous example, with
Tot al Menor yobser ver and making acouple of other minor changes:
int main() {
usi ng nanespace el ephant;
Tot al Menor yobserver total Menory;
/1 Register max menmory observer with nmermory nonitor.
Menor yMoni t or Hol der () . | nst ance() . AddCbser ver (
&t ot al Menory) ;
Sonet hi ngToAl | ocate *pl
= new Sonet hi ngToAl | ocat e[100] ;
delete[] pi;
Sonret hi ngToAl | ocate *p2
= new Sonet hi ngToAl | ocat e[50] ;
del ete[] p2;
/1 Unregister max menory observer.
Menor yMoni t or Hol der () . | nst ance() . RemoveQbser ver (
&t ot al Menory) ;
/1 Display the max nmenory usage
std::cout << "Total nenory usage:
<< static_cast<unsigned | ong>(
total Menory. Tot al Menory())
<< " bytes\n";

return O;

givesthefollowing output, which correctly indicatesthe total memory used
by the program:
Total menory usage: 150 bytes

Example 5: Writing a Custom Memory Observer (Part 2)

Sometimes you want to store information about allocations and de-
alocations in a container within a custom memory observer. Containers
do of course allocate memory in order to contain. This could lead to
erroneous memory usage observations and, in a worst case scenario,
infinite recursion.

The simple answer is to use a container that uses mal | oc and f r ee
instead of newand del et e. Or, to be more precise, acontainer that uses
an allocator that allocates with mal | oc and f r ee instead of hew and
del et e. Elephant comes with just such an allocator, called
mal | oc_al | ocat or, which can be used with any of the C++ standard
library containers. It should be used as follows:

#i ncl ude <el ephant/tool s/ mal | ocal | ocat or. h>

#i ncl ude <vector>

std::vector<size_t,
el ephant::tool s::malloc_allocator<size t> >
al l ocStore;
Naturaly at ypedef can makelifealot easier.

The following example shows a custom memory observer that uses a
container with the mal | oc_al | ocat or to store two lists of the
addresses, alocations and de-allocations:

#i ncl ude <el ephant/ newdel et e. h>

#i ncl ude <el ephant/ nenorynoni t or hol der. h>

#i ncl ude <el ephant/i nenoryobserver. h>
#i ncl ude <el ephant/t ool s/ nal | ocal | ocat or. h>
#i ncl ude <vector>

class Al ocati onMenoryobser ver public
el ephant: : | MenoryCoser ver {
private:
typedef std::vector<void*,
el ephant::tools::malloc_all ocator<voi d*> >
MAl | ocCont ai ner;
typedef MAl | ocCont ai ner::const _iterator
const _iterator;
MAl | ocCont ai ner al |l ocations_;
MAl | ocCont ai ner deal | ocations_;

CVu/ACCU/Features

void Print(const MA I ocContaineré& cont,
std::ostreanm& out) {

const _iterator current =

const_iterator end = cont.end();

for(; current != end; ++current) {
out << "\t" << (*current) << "\n";

}

out << "\n";

cont. begin();

}
public:
Al | ocati onMenoryobserver () : allocations_(),
deal | ocations_() {}
voi d OnAl | ocate(voi d* p, size_ t size,
size_t line, const char* file) {

al | ocati ons_. push_back(p);

vi rtual

}

virtual void OnFree(void* p) {
deal | ocati ons_. push_back(p);

}

void PrintAllocations(std::ostrean& out) {
out << "Allocations:\n";
Print(allocations_, out);

}

void PrintDeal | ocations(std::ostrean& out) ({
out << "Deallocations:\n";
Print (deal |l ocations_, out);

}

b

cl ass Sonet hi ngToAl | ocate {};

int nain() {
usi ng nanespace el ephant;
Al | ocati onMenoryobserver all ocati onChserver;
/1 Regi ster max menory observer with nmermory nonitor.
Menor yMoni t or Hol der () . I nst ance() . AddCbser ver (
&al | ocat i onChserver);
Sonet hi ngToAl | ocate *pl
= new Sonet hi ngToAl | ocat e[100] ;
Sonet hi ngToAl | ocate *p2
= new Sonet hi ngToAl | ocat e[50] ;
del ete[] p2;
del ete[] p1;
/1 Unregister max nmenory observer.
Menor yMoni t or Hol der () . I nst ance() . RenoveCbser ver (
&al | ocat i onChserver);
al | ocati onChserver. Print Al l ocations(std::cout);
al | ocati onCoserver. PrintDeal | ocati ons(std::cout);
return O;
}
The output from this exampleis as follows:
Al l ocations:
00322850
00322910
Deal | ocati ons:
00322910
00322850
If mal | oc_al | ocat or isreplaced by the default allocator, thereisno
output, not even an error message, with both Microsoft Visual C++ and
MinGW.

Elephant and Threading

Elephant has not yet been tested in a multithreaded environment.

The use of the Mut ex class and its various implementations are based
on previously known working examples.

Offersto test Elephant in a multithreaded environment will be
gratefully accepted.

By default, Elephant is not thread safe. The nut ex. h header fileis
included in anumber of places and the Mut ex class, dongwiththe Guar d
class (for exception safety) is used to protect those parts of thelibrary that
may cause problems if accessed by two threads at the same time.

[concl uded at foot of next page]

31

An Introduction to
Objective-C

Part 4 — Some Further Topics

D.A. Thomas

Type Introspection

Objective-C has a rich set of methods by which the contents and
capabilities of an object can be queried. NSCbj ect implements:
(dass)class returnsthe class object for the receiver’s class.

(d ass) supercl ass returns the class object for the class from which
the receiver inherits.

(BOQL) i sMenber O d ass: (A ass) cl ass returns YESif theargument
to the method is an instance of the specified class.

(BOQL) i sKi ndOr d ass: (d ass) cl ass returns YES if the argument
to the method is an instance of the specified class or of a class that
inherits from it.

(BOOQL) respondsToSel ector: (SEL) aSel ect or returns YES if the
recelving object is capable of handling a certain message.

There are also functions to query classes for their instance variables and

class and instance methods, and methods can be queried for information

about their arguments.

Extensions

NeXT and Apple have extended the language specified by Cox in“Object-
Oriented Programming, an Evolutionary Approach” with categories,
protocols and, most recently, Java-style exception-handling, thread
synchronisation and support for invoking methods in remote processes.
The last two are considered too specialised to be dealt with in this article.

Categories

Categories add new functionality to an already existing class. They are
particularly useful where you are using athird-party class library and you
are not free to amend that library’s source code. One solution to this
problem isto derive anew class from the one you need to extend, but this
may require detailed knowledge of the superclass, and inheritance
notoriously breaks encapsulation. To create a category, you declare
interface and implementation sections as shown in the pseudocode bel ow:

In the header file, Cat egor yNane. h:

#i nport "d assNane. h"

@nterface O assNane (CategoryNane)

nmet hod decl ar ati ons

@nd

In Cat egor yNanme. m

#i nport " Cat egor yNane. h"

@ npl enent ati on d assNane (Cat egor yNane)

net hod definitions

@nd
A class has asize that is fixed at compilation time, so it is not possible to
add instance variables to an existing class in this manner; the only way to
do thisisto use inheritance.

Thefile St ri ngTokeni zer . mcontains the following lines:

/Il Create a category to forward-declare private

/1 method in order to avoid conpiler warnings about

/1 undecl ared net hods.

@nterface StringTokeni zer (Private)

- (void)skipDelimters;

@nd
Since- ski pDel i mi t er s isnot meant to be directly accessible to the
users of a class, it would be inappropriate to declare it in
StringTokeni zer. h, and so | have created a category in the
implementation file to contain declarations of private methods. Thisis not
strictly necessary, as an Objective-C compiler emitsawarning, not an error,
when it is required to compile a message to an undeclared method, and
since the programmer knows that the method has been defined, the program
would work perfectly well without such a category declaration.

Categories can aso be used to split up the implementation of a class
into separate units, with perhaps each having its own implementation file;
this would facilitate the development of classes to which more than one
programmer contributes. They can also be used to declare informal
protocols, of which more below.

Protocols

Protocols involve the declaration of alist of methods whose implementation
is deferred to any class that chooses to implement them. If a class adopts an
informal protocal, it can choose which methods to implement, whereas with
aforma protocol, implementations of al the methods listed must reside either
intheclassitsalf orinitssuperclasses. Thisisaway of associating classesthat
share similar behaviour but are not closely rdated in the inheritance hierarchy.

Informal Protocols

There is little language support for informal protocols, but in the
Foundation framework, informal protocols are often declared asacategory
of the root class, NSCbj ect . Here is the list of methods in GNUStep’s
version of Foundation for the informal protocol NSKeyVal ueCodi ng,
which defines a mechanism in which the properties of an object are
accessed indirectly by name (or key), rather than directly through

[continued from previ ous page]
Elephant Mutexes

If you open thenmut ex. h header file, you will seeit looks like this:

#i f ndef ELEPHANT TOOLS MJTEX_H

#def i ne ELEPHANT _TOOLS MJTEX_H

#i ncl ude <el ephant/t ool s/ nul | mut ex. h>

/[#i ncl ude <el ephant/t ool s/ boost nut ex. h>

/1 #i ncl ude <el ephant/t ool s/ wi n32mut ex. h>

#endi f // ELEPHANT TOOLS MJUTEX H
There are three types of mutex supplied with Elephant:
Null Mutex

An empty mutex classintended for usein single threaded programs so that

no performanceislost creating, entering or leaving an unnecessary mutex.
Win32 Mutex

Implemented using the Win32 AP for use with Windows compilersonly.
Boost M utex

A mutex implemented using boost : : mut ex

(http://boost.org/libs/thread/ doc/ nut ex_concept. htni).
The Null Mutex is used by default. To use one of the other mutexes simply
includeitsheader fileinrmut ex. h instead of nul | mut ex. h andrebuild
(arebuild all is recommended).

Custom Mutexes

A custom mutex can be written simply by implementing thefollowing class
in its own header file and including it in mut ex. h instead of the other
mutex header files:

32

invocation of an accessor method or as instance variables:

nanespace el ephant {
nanespace tools {
class Mitex {

publi c:
Mitex() {}
~Mutex() {}

void Enter() const {}

void Leave() const {}
private:

Mit ex(const Mut ex&);

Miut ex& oper at or =(const Mit ex&);
B
}

}
Note: Asthe Ent er and Leave member functions areconst , you may

need to make the object that holdsthe current state of the mutex mut abl e.

Where Next?

Thisis the very first beta release of Elephant. Therefore | expect I, and
hopefully other people, will find plenty of bugs or new features that should
be implemented, over the coming months.
So far, planned for future releases:
* Threading testing and unit tests.
* Black and white allocation lists
* Client memory tracking
Paul Grenyer

CVu/ACCU/Features |

@nterface NSOhj ect (NSKeyVal ueCodi ng)
+ (BOOL) accesslnstanceVari abl esDirectly;
+ (BOOL) useStoredAccessor;
- (id) handl eQuer yW t hUnboundKey: (NSString*)akey;
- (void) handl eTakeVal ue: (id)anObject
f or UnboundKey: (NSString*)aKey;
- (id) storedVal ueForKey: (NSString*)akKey;
- (void) takeStoredVal ue: (id)anChject forKey:
(NSSt ri ng*) akey;
- (void) takeStoredVal uesFronDictionary:
(NSDi ctionary*)abDi ctionary;
(i d)anCoj ect forKey:
(NSSt ri ng*) akey;
(id)anOhj ect forKeyPath:
(NSSt ri ng*) akey;
- (void) takeVal uesFronDictionary:
(NSDi ctionary*)abictionary;
- (void) unabl eToSet Ni | For Key: (NSString*)akKey;
- (id) val ueForKey: (NSString*)akey;
- (id) val ueForKeyPat h: (NSString*)akKey;
- (NSDi ctionary*) val uesFor Keys: (NSArray*)keys;
@nd
Any object that derives from NSCbj ect can select from thislist which
methods it needs to implement in order to acquire appropriate key-value
coding functiondity.

Formal Protocols

Formal protocols are enforced by the language. They are declared asinthe
following pseudocode:

@r ot ocol Protocol Nane

net hod decl arati ons

@nd
Here is a declaration for the NSCodi ng protocol for the serialisation
(‘flattening’) and deserialisation (reconstruction) of objects associated with
archiving from disk or some other form of distribution to another address space.

@r ot ocol NSCodi ng

- (void) encodeWthCoder: (NSCoder*)aCoder;

- (id) initWthCoder: (NSCoder*)aDecoder;

@nd
If the class Per son needed to be stored on disk, it would adopt the
NSCodi ng protocol:

#i nport <Foundati on/ Foundati on. h>

@nterface Person : NSCbj ect <NSCodi ng>

{

NSStri ng *nane;
NSStri ng *address;

}

/'l Accessor met hods

- (NSString *)nang;

- (NSString *)address;

- (void)setName: (NSString *)aNane;

- (voi d)set Address: (NSString *)anAdress;

/1 Cther nethods ...

@nd

- (void) takeVal ue:

- (void) takeVal ue:

@ npl enent ati on Person
/'l Accessor nethods
- (NSString *)nanme {return nane;}
- (NSString *)address {return address;}
- (voi d)set Nanme: (NSString *)aNane
{
[aNanme retain];
[name rel ease];
name = aNane;

- (voi d)set Address: (NSString *)anAdress

[anAddress retain];
[address rel ease];
address = anAdress;

}

/1 NSCodi ng net hods

- (void) encodeWthCoder:

{

(NSCoder *) aCoder

| CVu/ACCU/Features |

[super encodeWt hCoder: coder];
[aCoder encode(hj ect : nane] ;
[aCoder encode(hj ect: addr ess];

}
- (id) initWthCoder: (NSCoder*)aDecoder;
{
self = [super initWthCoder: coder];
nane = [[coder decodeoject] retain];
address = [[coder decodeChject] retain];

return self;

/1 Called when the object is deallocated

- (void) dealloc {[nane rel ease]; [address rel ease]}

@nd
Formal protocols are equivalent to interfacesin Java; indeed, the designers
of Java have copied thisideafrom Objective-C. Assuming that Foundation
had been implemented in C++ you would write something like the
following abstract class definition:

cl ass NSOpj ect ;

cl ass NSCodi ng {

virtual void encodeWthCoder (NSCoder & aCoder) = O;
virtual NSObject* decodeWthCoder (
const NSCoder & aCoder) = O;

}

cl ass Person :

NSString *nane_,
public:

/1 Accessor functions

NSStri ng* nane();

voi d set Nane(const NSString* aNane);

NSStri ng* address();

voi d set Address(const NSString* anAddress);

/1 NSCoder virtual functions

voi d encodeW t hCoder (NSCoder & aCoder) ;

NSObj ect * decodeW t hCoder (const NSCoder & aCoder) ;

/1 OGher functions ...

/1 Called when the object

public NSObj ect,
*address_;

publ i ¢ NSCodi ng {

i s deall ocated

virtual ~Person();
b
The implemention of these methods in C++ is left to the reader’s
imagination.

Unlike C++, neither Objective-C nor Javaimplements multipleinheritance,
and so these languages need a separate mechanism for adopting protocols.
It cannot always be known at run-time whether a particular object
implements aformal protocal; it can be tested in the following way:
i f([anObj ect conformnmsTo: @r ot ocol (NSCodi ng)])
[anoj ect encodeW t hCoder : nyCoder] ;

Exceptions
Simple exception-handling code could be written as follows;

Cup *cup = [[CQup alloc] init];
@ry {

[cup fill];
}

@at ch (NSException *exception) {
NSLog(@ nmi n: Caught %@ %@, [exception nane],
[exception reason]);
}
@inally {
[cup rel ease];
}
Code that might throw an exception is enclosed withina @ r y block, and
the exception should be caught in a@at ch block. A @i nal | y block
contains code that must be executed whether an exception isthrown or not.
Cup’sfil | method might throw an exception like this:
NSExcepti on *exception = [NSExcepti on
excepti onW t hNanme: @ Hot TeaExcept i on"
reason: @ The tea is too hot" userinfo:nil];
@ hrow exception;
Any kind of Objective-C object can be thrown.
An exception can be re-thrown by means of @ hr ow without an
argument.
D. A. Thomas

33

Memory For a Short
Sequence of Assignment
Statements

Derek M. Jones <der ek@nosof . co. uk>

Thisis the second of atwo part article describing an experiment carried
out during the 2004 ACCU conference. The previous part was published
in the previous issue of C Vu. This second part discusses how the i f
statement part of the problem affected subject performance.

Thei f statement problem can be viewed as either atime filler for the
assignment remember/recall problem, or as the main subject of the
experiment (with the assignment problem acting as a smoke screen to make
it moredifficult for subjectsto notice any patternsinthei f problems). The
reason for this second possibility is that studies have found patterns in the
errors made by subjects when performing various kinds of deduction tasks.

Given that some kind of filler task had to be performed, your author
decided to take opportunity to try and replicate some of the error patterns
seen in some studies of deduction.

AsTable 1 shows, relational operators commonly occur ini f statements.

Operator % Controlling | % Occurrence
Expression of Operator

== 317 88.6

I = 141 79.7

< 6.9 45.6
<= 19 68.6

> 35 84.9
>= 35 76.8

no relational/equality 475 -

|| 9.6 85.9
&& 145 82.3

no logical operators 84.2 -

Tablel —Occurrence of equality, relational, and logical operatorsinthe
conditional expression of ani f statement (as a percentage of all such
controlling expressions and as a percentage of the respective operator).
Based on the visible form of over 3 million lines of C source. The
percentage of controlling expressions may sum to more than 100%
because more than one of the operators occurs in the same expression.

Linear Syllogisms

The psychology of deduction uses the terms linear syllogismsor linear
reasoning to describe deduction between statements involving relational
operators. Theterm usually used to describe a (sub)expression containing
arelational operator, in programming language specifications, is relational
expression.

Linear syllogisms are part of mathematical logic and the skills associated
with being ableto make deductions based on relational information are usually
assumed simply to be acomponent of the general reasoning ability that people
have. However, studies have found that a number of animals have the ability
to adapt their behaviour to given Situations based on rel ational knowledgethey
have acquired. For instance, aggressive behaviour may occur between two
animalsto determinewhich isdominant, relative to the other. Such behaviour
can lead to being injured in afight and is best avoided if possible. The ability
to make use of relative dominanceinformation (e.g., obtained by amember of
asocial group watching the interaction between other members of the group)
may remove the need for aggressive behaviour during an encounter between
two members of the same group who have not met faceto facebefore (i.e., the
member most likely to loseimmediately behavesin a subservient fashion).

One study [1] allowed a social dominance hierarchy to become
established in several independent groups of birds (Pinyon jays). Two birds
from different groupswerethen placed in acage and giventimeto establish
their relative social dominance (a process that involves staring, looking
away, chin-up and beg, etc). Theinteraction of thetwo birdswaswitnessed
by a bird belonging to one of the two groups from which the two birds
came (thisbird could not participatein any social interaction with the birds
it witnessed). Thewitness bird had previoudy encountered one of the birds
in the interaction it witnessed, but had never seen the other before. The

34

witness bird was then allowed to interact with the bird from the other group.
Analysis of the social interaction that occurred between the two birds on
their first encounter showed that in those cases where the witness bird had
sufficient information to reliably deduce its relative social status, it more
often behaved in away consistent with that social position, than an
experimental control that had not witnessed any interaction.

The results from arelated study using Western Scrub jays (aless socid
species, closaly related to Pinyon jays) showed less evidence for the ability
to make use of relational information. Those animals that live together in
social groups are likely to have various kinds of relational information
availableto them. The benefits of being able to make use of thisinformation
appears to have resulted in at least some social species developing the
cognitive abilities needed to process and make use of thisinformation.

Relational Reasoning in Humans

If some animal brains (that don’'t have what are considered higher level
cognitive reasoning abilities) have developed a mechanism to combine
relational information to create newinformation, it is possible that humans
also possess a similar mechanism (this is not to say that they don’t have
any other cognitive systemsthat are capable of performing the sametask).
A possible consequence of having such a special purpose reasoning
mechanism isthat it may not handle all relational expressions in the same
way (i.e, it islikely to be optimised for handling those situations that
commonly occur in its owner’s everyday life). Some of the studies of
human linear reasoning have found that subjects are slower and make more
errors when the operands in a sequence of relational expressions occur in
certain orders.

One study [2] used atask that was based on what is known as social
reasoning (using therelations better and worse). Subjectswere shown two
premises, involving three people, and apossible conclusion (e.g., IsMantle
worse than Moskowitz?). They had 10 seconds to answer yes, no, or don't
know. All four possible combinations of conclusions were used.

Premises % Correct
Responses
1 | Aisbetter than B, B isbetter than C 60.5
2 | Bisbetter than C, A isbetter than B 52.8
3 | Bisworsethan A, Cisworsethan B 50
4 | Cisworsethan B, B isworsethan A 425
5 | Aisbetter than B, Cisworsethan B 61.8
6 | Cisworsethan B, A isbetter than B 57
7 | Bisworsethan A, B isbetter than C 415
8 | Bisbetter than C, B isworsethan A 38.3

Table 2— Eight sets of premises describing the same relative ordering
between A, B, and C (peopl€ s nameswere used in the study) in different
ways, followed by the percentage of subjects giving the correct answer.
Adapted from De Soto, London, and Handel [2].

Based on the results (see Table 2) the researchers made two observations
(which they called paralogical principles; cases 5 and 6 possess both, while
cases 7 and 8 possess neither):

1 Peoplelearn orderingsbetter in onedirection than another. Inthis
study people gave more correct answers when the direction was better -
to-worse (case 1), than mixed direction (case 2, 3), and were |east
correct in the direction worse-to-better (case 4). This suggests that use
of theword better should be preferred over worse (the British National
Corpus[3] lists better as appearing 143 times per million words, while
wor seappears under 10 times per million wordsand isnot listed in the
top 124,000 most used words).

2 People end-anchor orderings. That is, they focus on thetwo extremes
of the ordering. In this study people gave more correct answers when
the premises stated an end term (better or worse) followed by themiddle
term, than amiddle term followed by an end term.

A related experiment in the same study used the relations to-the-left and

to-the-right, and above and below. The above/below results were very

similar to thosefor better worse. Theleft-right results showed that subjects
performed better with aleft-to-right ordering than aright-to-left ordering.

Sincethisorigina study additional factors have been discovered and a
number of models have been proposed to explain the strategies used by
peoplein solving linear reasoning problems, including:

CVu/ACCU/Features

* The spatial model [2][4], in which people integrate information from
each premise into aspatial array representing al known relationships.

* Thelinguistic model [5], in which people represent each premise using
linguistic propositions (the individual premises are not integrated).

* Thealgorithmic model [6], in which people apply some algorithm to
the structure of the linguistic representation of the premises. For
instance, given “ Reg istaller than Jason; Keith is shorter than Jason”
and the question “ Whoistheshortest?”, aso called elimination strategy
was used by some subjects in the study. (The answer for the first
premise is Jason, which eliminates Reg; the answer to the second
premise is Keith which eliminates Jason, so Keith is the answer).

* Themixed modé [7], in which the information in the premiseisfirst
decoded into alinguistic form and then encoded into a spatial form.
The strategy used to solve agiven problem has been found to vary between
people. A study by Sternberg and Weil [8] found asignificant interaction
between a subject’ s gptitude (as measured by verbal and spatia ability tests)
and the strategy they used to solve linear reasoning problems. However,
aperson having high spatial ability, for instance, does not necessarily use
aspatial strategy. A study by Roberts, Gilmore, and Wood [9] asked
subjects to solve what appeared to be a spatial problem (requiring the use
of avery inefficient spatial strategy to solve). Subjects with high spatial
ability used non-spatial strategies, whilethosewith low spatial ability used
aspatia strategy. The conclusion made was that those with high spatial
ability were able to see that the spatial strategy was inefficient to select as
alternative strategy, while those with less spatial ability were unable to

perform this evaluation.

If the evaluation of relational expressions in source code is performed
using a cognitive mechanism that has been optimised for certain kinds of
operations, then it is possible that developers performance will be worse
for some forms of expressions (e.g., the rate of making mistakes will be
greater). The form of thei f statements used in this study was designed
to look for differences in subject performance that depended on the form
of the relational expressions appearing in the control expressions.

Subject Motivation

When reading source code devel opers are aware that some of theinformation
they see only needs to be remembered for a short period of time, while other
information needs to be remembered over alonger period. For instance,
when deducing the effect of calling agiven function thenamesof identifiers
declared locally within it only have significance within that function and
there is unlikely to be any need to recall information about them in other
contexts. Each of the problems seen by subjectsin thisstudy could be treated
in the same way as an individual function definition (i.e., it is necessary to
remember particular identifiers and the valuesthey represent, once aproblem
has been answered thereisno longer any need to remember thisinformation).

Subjects can approach the demands of answering the problems this
study presents them in a number of ways, including the following:

* seeingit asachallengeto accurately recall theassignment information (i.e.,
minimizing would refer backanswers),
* recognizing that would refer back is dways an option, but that it is more
important to correctly answer thei f statement question,
* making no conscious decision about how to approach the answering of
problems.
Experience shows that many developers are competitive and that accurately
recalling the assignment information, after solving thei f statement problem,
would be seen asthe ideal performance to aim for. The experimental format
did not allow for easy debriefing of subjects after they had answered the
questions, and hone was performed.
The only applicable instruction given to subjects was: “ Read the
variables and the values assigned to them as you might when carefully
reading lines of code in a function definition.”

Results
Theraw resultsfor each subject are available on the study’ sweb page[10].

i f Statement/Assignment Recall Interaction

Answeringthei f statement portion of the problem requirestime (information
heldin short term memory decaysover timeand unlessitisregularly refreshed
it will soon be lost) and use of short term memory resources. If subjects
require moretime or use more short term memory resourcesto answer some
forms of relational expression problem, then performance in recalling
assgnment informationislikely to be poorer after comprehending expressions
having the more complicatedform. The results (Figure 1) suggest that such
acorrelation may exi<t, a least for the first eight answers.

However, the difference in performance characteristics between thefirst
eight answers and the ninth and subsequent problems may have been caused
by subjects learning and making use of patterns in the assignment recall
questions (which could reduce the need for short term memory resources).
Alternatively some information occurred sufficiently often (e.g., the same
identifier) that it was stored in alonger term memory subsystem, where it
was not so susceptible to interference fromthei f statement problem.

i f Statement Performance

This study differed from others on the topic of reasoning in a number of

ways, including:

1 Researchers of human reasoning are usually attempting to understand
the mechanisms underlying human cognition. For thisreason they use
subjectswho have little or no experiencein using formal mathematical
logic. This study was interested in the performance of subjectsin
evaluating particular kinds of logical expressions and subjects were
chosen because they had significant amounts of experiencein evaluating
the kinds of logical expressions that occur in source code.

2 The problems used in studies by researchers investigating the
mechanisms of human cognition are usually expressed in forms that

Relational expression

“high greater than middle and middle greater than low”.

*—= comect
a8 Incorrect
60— w— wor refer back —
o
[¥]
s —
1.}
B 40—
[¥]
=
[}
= —
w
=
20—
b=
= |
0— LTl H=T¥l HeB] Wizl Tvl<H L<T¥l TWi=L H>Tvl —
H=Te] LTl L<b] BWlH TvlH W=l D=L Wi<H

Figure 1 — The percentage of would refer back, correct and incorrect answers for each kind of relational expression. The left
graphishbased on answersto thefirst eight problems, whiletheright graph isbased on the answersfrom the ninth and subsequent
problem answers. Variation in subject performance is denoted by the error bars, which encompass one standard deviation. The
ordering of relational expressions along the x-axis is sorted on the percentage of incorrect answers to the assignment problem,
for thefirst eighti f statement problems. H denotes high, M denotes middle, and L denoteslow. So“H >M M > L" denotes

k MlH TWlH Tl | W=l Tl H

Relational expression

CVu/ACCU/Features

35

4] 25
20—
w3) : g
E , E 15—
2] - - -
E * * ¥ * ESEI .
E E].D —_ *
] * -
2 1, . s . L. . E .. .
T g . .
U 1 * ; ¥ e * * ; U — - X A K] - - - - -
I I I I I I
15 20 25 30 0 10 20 a0
if staternent problems answered Years of expecicnce
Figure 2 — The left graph plots the number of problems answered by each subject against the number of incorrect answers they gave.
Thebulletsare offset from the y-axisto try to show those cases where more than one subject had the same problems answered/incorrect
answers pair. Theright graph plots the number of years of subject experience against the percentage of incorrect answers they gave.

occur in everyday life, i.e., they are natural language descriptions of
everyday situations (e.g., “If Jimdeposits 50p, hegetsa canned drink.”).
One of the complications caused by expressing problems in this form
is that the words and phrases used are often open to multiple
interpretations. It is also possible that subjects will base their answer
on expectations they have about how the real world operates [11] .

3 Inthisstudy no limitswere placed on subjects (De Soto et al. [2] required
that an answer be given within 10 seconds), the mode of presentation
mimicked that encountered in program comprehension (in the
Huttenlocher [4] study subjects heard atape recoding of the problem)

A total of 844 f statement problems were answered. There were 40 (4.7%

of al answers) incorrect answers, an average number of incorrect answers per

subject of 1. However, theincorrect answerswerenot evenly distributed across
subjects. The number of incorrect answers did not appear to depend on the
number of problems answered (Figure 2). While performance on reasoning
tasks has been found to decrease with age [12] , years of experience (whichis
likely to be highly correlated with age) does not appear to have been afactor
affecting the number of incorrect answersgiventoi f statement problems.

Two of the reasons why subject performance could differ across
different forms of relational expressions are:

1 Subjects may have a cognitive relational deduction mechanism (this
may be actual hardware, i.e., acluster of brain cells, or software, i.e., a
neural network whose weights have been tuned through experience)
that isoptimised for handling problems(i.e., those that commonly occur
in everyday life) that are expressed in a particular form.

2 The amount of cognitive resources required to solve a relational
expression may depend on theform inwhich the expression is presented
(this difference might simply be a consequence of how the human
cognitive subsystem handles relational reasoning).

The paper and pencil format of the experiment meant that it was not feasible

to obtain information on the amount of time taken to answer each problem.
Although subjectsweretold: “ Treat the paper asif it werea screen, i.e.,

it cannot be written on.”, there was nothing to prevent them using any paper

that they happened to have on them as a temporary work area. Severa
subjectsdid write noteson the paper nexttoi f statement problems(inone
casefor all theanswered problems) and the answersto these problemswere
not counted. Except for the one case the number of such answerswas very
small (in the one case the subject was not included in the subject count).

Theerror rates reported by other studies (where subjectsread aproblem
typed on acard) were: De Soto et a [2] 39.2 —61.7%, Clark [5] 6%, Potts
[13] 5%, Mayer [14] 4—36%, Quinton et al[6] not given, Sternberg et al[8]
1.7-3.5%. A study where subjects heard atape recording of the problem[4]
reported an error rate of 8 — 19%.

In order to look for patternsin the errors made by subjectsit is necessary
to have a statistically significant sample of the errors made by them.
Unfortunately, there were not enough incorrect answersto thei f statement
problem (Table 3) to enable any statistically significant analysis to be
performed.

Possibletechniquesfor producing agreater number of incorrect answers
include: running the experiment for alonger period of time (it seems
reasonabl e to assumethat the number of errorswill increase asthe number
questions answered increases), or making the problem more difficult (e.g.,
using longer sounding identifiers).

General Conclusions

It was hoped that the results of this experiment would provide someinsight
into subjects’ performance in handling short sequences of assignment and
i f statements. If the results of this experiment followed the pattern of
behaviour seen in other (non-software related) experiments, it would be
possible to claim that the models of human cognition created to explain
that behaviour were also applicable here. The following summarises the
conclusions:

Assignment information held in working memory. While there was some
correl ation between the duration of the spoken form of theidentifiersappearing
in assgnment statements and subject performance, the content of long term
memory also seemsto play asignificant role.

Performance differences in evaluating conditional
relational form | correct [correct (9th | incorrect | incorrect (Sth |incorrect | expressions. The form of relational expression had some
(first 8) | and subsequent)] (first 8) |and subsequent)| (total) | impact on assignment recall performance (figure 1).
H>MM>L 34 80 0 (0.0%) 2 (2.5%) 2(1.8%) | However, the operand orderings giving the best
L<MH>M 38 66 0(0.0%) 3 (4.5%) 3(2.9%) performancg (i.e, IO_Nest number of errors made when
recalling assignment information) were not the same as
L<MM<H 37 64 1 (2.7%) 3 (4.7%) 4 (4.0%) | thosefor which subject performed best (i.e., lowest number
M<HM>L 40 69 3 (7.5%) 2 (2.9%) 5(4.6%) | of incorrect answers to logic problem) in other studies
H>ML<M 40 64 4 (10.0%) 2 (3.1%) 6 (5.8%) [5] E‘4][5][6][7]|._ ;b I?ere was i_nSla]Jfficiazlant _erro][datt? (Figyrfe
o o 0 or any reliable statistical analysis of subject i
M>LM<H 28 3 4 (14.3%) 2(27%) 6 (5.9%) statement eval uation performance to be carried out.
M<HL<M 41 71 2 (4.9%) 5 (7.0% 7 (6.2%) 0
M>LH>M 39 60 1(26%) | 6(100%) | 7(7.1%) Whgre Next? _
Totds 297 547 15 (5.0%) 25 (4.6%) 40 (4.7%) WhII? devel opers are gern exhorted tq think about the
meaningfulness of identifiers, when creating new ones, the

Table 3— Errors. Number of correct and incorrect responses for the first eight and ninth
and subsequent answers (parenthesized value is percentage of incorrect responses). H
denotes high, M denotesmiddle, and L denoteslow. SoH >M M > L denotes*high greater

than middle and middle greater than low”.

36

usability of identifiers within expressions and statements
is rarely considered (apart, that is, from typing effort).
More experiments need to be performed before it is

[concluded at foot of next page]

| CVu/ACCU/Features |

An Introduction to Programming with GTK+ and Glade
in ISO C and ISO C++ — Part

Roger Leigh <r | ei gh@lebi an. or g>

GTK+ and C++

In the previous article, it was shown that Glade and GObject could make

programs much simpler, and hence increase their long-term maintainability.

However, some problems remain:

* Much type checking isdone at run-time. This might mean errors only
show up when the code isin production use.

* Although object-oriented, using objectsin Cisabit clunky. In addition,
itisvery difficult (although not impossible) to derive new widgets from
existing ones using GObject, or override aclass method or signal. Most
programmersdo not bother, or just use“ compound widgets’, which are
just a container containing more widgets.

* Signal handlers are not type safe. This could result in undefined
behaviour, or a crash, if asignal handler does not have a signature
compatible with the signal it is connected to.

* Signal handlersarefunctions, and thereis often aneed to resort to using
global variables and casting structures to type gpoi nt er to pass
complex information to a callback though its data argument. If Glade
or GObject are used, this can be avoided, however.

gtkmm offers solutionsto most of these problems. Firstly, all of the GTK+
objects are available as native C++ classes. The object accessor functions
are now normal C++ class methods, which prevents some of the abuse of
objectsthat could be accomplishedin C. Theadvantageislesstyping, and
there is no need to manually cast between an object’s types to use the
methods for different classesin the inheritance hierarchy.

The gtkmm classes may be used just like any other C++ class, and this
includes deriving new objects from them through inheritance. This also
enables all the type checking to be performed by the compiler, which results
in morerobust code, since object type checking isnot deferred until run-time.

Signal handling is also more reliable. gtkmm usesthe | i bsi gc++
library, which provides a templated signal/slot mechanism for type-safe
signal handling. The slot objects allow signal handlers with a different
sighature than the signal requires to be bound, which gives greater
flexibility than the C signalsallow. Perhapsthe most notabl e featureisthat
signa handlers may be class methods, which are recommended over global
functions. This resultsin further encapsulation of complexity, and alows
the signal handlersto access the member data of their class. Unlikethe Qt
library, gtkmm does not require any source preprocessing, allowing plain
SO C++ to be used without extensions.

| i bgl adenmisa C++ wrapper around! i bgl ade, and may be used
to dynamically load user interfaces asin the previous section. It provides
similar functionality, the exception being that signals must be connected
manually. Thisis becausethe | i bsi gc++ signals, connecting to the
methods of individual objects, cannot be connected automatically.

C++/ gl ade/ ogcal c, showninFigure 1, isidentical to the previous
examples, both in appearance and functionality. However, internally there
are some major differences.

v | B OG & ABV Calculator —

PG:[39.57 [} R:[63.55 [cR[IE [
0G: 65.57 ABV %: 3.48
] Quit ‘ L _3__ ég:_é_f________j Calculate |

Figure 1: C++/ gl ade/ ogcal ¢ in action.

[continued from previous page]

possible to reliably draw any firm conclusions about the consequences of
using different kinds of identifier spellings in assignment statements and
on developer performance during source code comprehension. Other
experiments might use a greater number of different character sequences
(e.g., abbreviations, or identifiers contai ning two known words), randomise
the order in which identifiers appear in the table of assignment answers, or
use more commonly occurring character sequences. Other experiments
might also use different filler tasks.

Source code comprehension involves problem solving and developers
arelikely to use avariety of strategiesto solvethe problemsthat arise. The
strategies used by devel opers can affect even such apparently simpletasks
as remembering information about assignment statements. For instance,
while some developers may choose to remember information about the
identifiers appearing in an assignment using an encoding that involvestheir
spoken form, other developers may use a different encoding (e.g., an
abbreviated form of the identifier such asitsfirst letter, or the encoding of
the semantics that the identifier represents). Any study of developer
cognitive performance needs to ensure that the subjects taking part in an
experiment are only using their cognitive resources in a way has been
anticipated by the experimenter (even simple tasks such as counting have
been found to require cognitive resources [15]).

The problems used in this study could be answered by subjects having
insignificant amounts of experience in software development (e.g.,
undergraduate computer science students). It would beinteresting to compare
the performance of inexperienced subjects againgt that of subjects having a
significant amount of experience. However, care needsto betakenwhenusing
inexperienced subjects to take into account the possibility of performance
improvement through learning of the underlying coding problem itself.

DereR M Jones

References

[1] Pazymino, Bond, Kamil & Balda, “Pinyon jays usetrangtive inferenceto
predict social dominance’, Nature, 430:778-781, Aug. 2004

[2] De Soto, London & Handel, “Social reasoning and spatia paralogic”,
Journal of Personality and Social Psychology, 2(4):513-521, 1965

[3] Leech, Rayson & Wilson, Word Frequenciesin Written and Spoken English,
Pearson Education, 2001

| CVu/ACCU/Features |

[4] Huttenlocher, “Constructing spatial images: A strategy in reasoning”,
Psychological Review, 75(6):550-560, 1968

[5] Clark, “Linguistic processes in deductive reasoning”, Psychological
Review, 76(4):387-404, 1969

[6] Quinton & Fellows, “ Perceptud strategiesin the solving of three-term series
problems’, British Journal of Psychology, 66:69-78, 1975

[7] Sternberg, “ Representation and processin linear syllogistic reasoning”,
Journal of Experimental Psychology: General, 109(2):119-159, 1980

[8] Sternberg & Weil, “An aptitude x strategy interaction in linear
syllogistic reasoning”, Journal of Educational Psychology, 72(2):226-
239, 1980

[9] Roberts, Gilmore, & Wood, “Individua differences and strategy selection
in reasoning”, British Journal of Psychology, 88:473-492, 1997

[20] Jones, Experimental data and scripts for short sequence of assignment
statementsstudy, www. knosof . co. uk/ cbhook/ accu04. ht m, 2004

[11] Evans, Barston & Pollard, “On the conflict between logic and belief in
syllogigtic reasoning”, Memory & Cognition, 11(3):295-306, 1983

[12] Gilinsky & Judd, “Working memory and biasin reasoning acrossthelife
span”, Psychology and Ageing, 9(3):356-371, 1994

[13] Potts, “Storing and retrieving information about ordering relationships’,
Journal of Experimental Psychology, 103(3):431-439, 1974

[14] Mayer, “Qualitatively different encoding strategies for linear reasoning
premises. Evidence for single association and distance theories’, Journal
of Experimental Psychology: Human Learning and Memory, 5(1):1-10,
1979

[15] Camos & Barrouillet, “Adult counting is resource demanding”, British
Journal of Psychology, 95:19-30, 2004

Further reading

For a readable introduction to human reasoning see “ Reasoning and
thinking” by Ken Manktelow. “The Cognitive Animal” edited by M.
Bekoff, C. Allen, and G. M. Burghardt contains 57 short, wide ranging,
essays (of varying quality) on animal cognition.

Acknowledgments

The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making aconference dot available
inwhichto runit.

37

Firstly, themai n() function nolonger knows anything about the user
interface. It merely instantiates an instance of the ogcal ¢ class, similar
toC/ gobj ect/ ogcal c.

Theogcal c classis derived from the G k: : W ndow class, and so
contains all of the functionality of a Gt k: : W ndow, plus its own
additional functions and data. ogcal ¢ contains methods called
on_but ton_cl i cked_cal cul at e() andon_butt on_cl i cked_reset ()
These are the equivalents of the functions
on_button_clicked_cal cul ate() andon_button_clicked_reset ()
used in the previous exampl es. Because these functions are class methods,
they have access to the class member data, and as a result are somewhat
simpler than previoudly.

Two versions are provided, one using the basic C++ classes and
methods to construct the interface, the other using | i bgl adenmto load
and construct theinterface asfor the previousexamplesusing Glade. Only
the latter is discussed here. There are a great many similarities between
the C and C++ versions not using Glade, and the C Gobject version and
the C++ Glade version. It isleft as an exercise to the reader to compare
and contrast them.

Code Listings

/1 C++/ gl ade/ ogcal c. h
#i ncl ude <gt kmm h>
#i ncl ude <l i bgl ademm h>
class ogcalc : public Gk::Wndow {
public:
ogcal c();
virtual -~ogcal c();
prot ect ed:
/1 Cal cul ation signal handler.
virtual void on_button_clicked cal culate();
/'l Reset signal handler.
virtual void on_button_clicked_reset();
/1 The wi dgets that are mani pul at ed.
G k: : Spi nButton* pg_entry;
G k::SpinButton* ri_entry;
G k:: Spi nButton* cf_entry;
G k:: Label * og_result;
G k: : Label * abv_resul t;
G k::Button* quit_button;
G k::Button* reset_button;
G k::Button* cal cul ate_button;
/1 dade interface description.
dib::Ref Ptr<Guone:: d ade:: Xml > xnl _i nterface;
b

/| C++/ gl ade/ ogcal c. cc
#i ncl ude <i omani p>
#i ncl ude <sstreanp
#i ncl ude <sigc++/retype_return. h>
#i ncl ude "ogcal c. h"
ogcal c::ogcal c() {
/] Set the windowtitle.
set _title("OG & ABV Cal culator");
/1 Don’t permt resizing.
set_resizabl e(fal se);
/] Get the ade U and add it to this w ndow.
xm _interface = Gione:: d ade: : Xni :: creat e(
"ogcal c. gl ade", "ogcal c_mai n_vbox");
G k: : VBox *nai n_vbox;
xm _interface->get_w dget ("ogcal c_nai n_vbox",
mai n_vbox) ;
add(*mai n_vbox) ;
/1 Pull all of the widgets fromthe d ade interface
xm _interface->get_widget("pg_entry", pg_entry);
xm _interface->get_widget("ri_entry", ri_entry);
xm _interface->get_widget("cf_entry", cf_entry);
xm _interface->get_widget("og_result",
og_result);
xm _i nterface->get _widget("abv_result",
abv_result);
xm _interface->get_wi dget ("quit_button",
qui t _button);

38

xm _interface->get_w dget ("reset_button",
reset_button);
xm _interface->get widget("cal cul ate button",
cal cul ate_button);
/1 Set up signal handers for buttons.
qui t_button->signal _clicked().connect (
SigC :slot(*this, &ogcalc::hide));
reset _button->signal _clicked().connect(
SigC:slot(*this,
&ogcal c::on_button_clicked_reset));
reset button->signal _clicked().connect(
SigC :slot(*pg_entry,
&3 k: : Wdget::grab_focus));
cal cul ate_button->si gnal _clicked(). connect (
SigC :slot(*this,
&ogcal c::on_button_clicked_cal cul ate));
cal cul ate_button->signal _clicked().connect (
SigC :slot(*reset_button,
&3 k: : Wdget::grab_focus));
/1 Set up signal handlers for nunmeric entries.
pg_entry->signal _activate().connect (
SigC :slot(*ri_entry,
&3 k: : Wdget::grab_focus));
ri_entry->signal activate().connect(
SigC:slot(*cf_entry,
&3 k: : Wdget : : grab_focus));
cf_entry->signal activate().connect(
SigC :hide_return(SigC :slot(*this,
&3 k: : Wndow: : activate_default)));
/] Ensure calculate is the default. The d ade
/1 default was lost since it was not packed in
/1 a wi ndow when set.
cal cul ate_button->grab_default();

}
ogcal c: : ~ogcal c() {}

voi d ogcal c::on_button_clicked_cal cul ate() {
/'l PG R, and CF val ues.
doubl e pg = pg_entry->get_val ue();
double ri =ri_entry->get_val ue();
doubl e cf = cf_entry->get_val ue();
/1 Calculate OG
doubl e og = (ri*2.597)
/] Cal cul ate ABV.
doubl e abv;
if (og < 60)
abv = (og - pg) * 0.130;
el se
abv = (og - pg) * 0.134;
std::ostringstream out put;
/1 Use the user’s locale for this stream
out put.inbue(std::locale(""));
out put << "" << std::fixed
<< std::setprecision(2)
<< 0g << "</ b>";
og_resul t->set _mar kup(
dib::locale_to_utf8(output.str()));
output.str("");
out put << "" << std::fixed
<< std::setprecision(2)
<< abv << "</ b>";
abv_resul t->set _mar kup(
dib::locale to utf8(output.str()));

-(pg*l.644) - 34.4165 + cf;

}

voi d ogcal c::on_button_clicked reset() {
pg_entry->set _val ue(0.0);
ri_entry->set_val ue(0.0);
cf_entry->set_val ue(0.0);
og_result->set_text("");
abv_resul t->set_text("");

| CVu/ACCU/Features

/1 C++/ gl ade/ ogcal c- mai n. cc
#i ncl ude <gtk/ gtk. h>

#i ncl ude <gl ade/ gl ade. h>

#i ncl ude "ogcal c. h"

/1 This main function nerely instantiates the ogcalc
/1 class and displays it.
int main (int argc, char *argv[]) {
Gk::Min kit(argc, argv); // Initialise GIK+.
ogcal ¢ wi ndow, /'l Create an ogcal c object.
Kit.run(w ndow) ;
/1 Show wi ndow;
return O;

}

return when it’s cl osed.

To build the source, do the following:

cd C++/ gl ade
c++ 'pkg-config —flags |ibgl ademm 2.0
c++ 'pkg-config —flags |ibgl ademm 2.0’
-c ogcal c-nain. cc
c++ ' pkg-config —+ibs Iibglademm 2.0 -0 ogcal ¢
ogcal c. o ogcal c-nain. o

-c ogcal c. cc

Similarly, for the plain C++ version, which is not discussed in thetutorial:

cd C++/plain

c++ 'pkg-config —eflags gtkmm 2.0' -c ogcalc.cc

c++ 'pkg-config —eflags gtkmm 2.0' -c ogcal c-main. cc

c++ 'pkg-config —+ibs gtkmm 2.0' -0 ogcal c ogcalc.o
ogcal c-main. o

Analysis
ogcal c. h

The header file declarestheogcal c¢ class.

class ogcalc : public Gk::Wndow
ogcal c isderived fromG k: : W ndow

virtual void on_button_clicked cal cul ate();

virtual void on_button_clicked reset();
on_button_clicked_cal cul ate() andon_button_clicked_reset ()
are the signal handling functions, as previously. However, they are now
class member functions, taking no arguments.

G k:: Spi nButton* pg_entry;

Aib::RefPtr<Grone::d ade:: Xm > xnl _interface;
The class data members include pointers to the objects needed by the
callbacks (which can access the class members like normal class member
functions). Note that Gt k: : Spi nBut t on is a native C++ class. It
also includes a pointer to the XML interface description.
G i b:: Ref Ptr isatemplated, reference-counted, “smart pointer”
class, which will take care of destroying the pointed-to object when
ogcal c isdestroyed.

ogcal c. cc

Theconstructorogcal c: : ogcal c() takescareof creatingtheinterface
when the class isinstantiated.

set_title("OG & ABV Cal culator");

set_resi zabl e(fal se);
The above code uses member functions of the G k: : W ndow class.
The global functions gt k_wi ndow_set _title() and
gt k_wi ndow_set _resi zabl e() wereused previously.

xm _interface = Gione:: d ade:: X :: create(

"ogcal c. gl ade", "ogcal c_nai n_vbox");
G k: : VBox *nmi n_vbox;
xm _interface->get_wi dget ("ogcal c_mai n_vbox",
mai n_vbox) ;

add(*mai n_vbox) ;
TheGladeinterfaceisloadedusingGnone: : 3 ade: : Xm @ : create(),
in asimilar manner to the GChj ect example, and then the main VBox is
added to theogcal ¢ object.

xm _interface->get_w dget("pg_entry", pg_entry);
Individual widgets may be obtained from the widget tree using the static
member function Gnomre: : G ade: : Xim : : get _wi dget () .

CVu/ACCU/Features |

Because gtkmm uses| i bsi gc++ for signa handling, which uses class
member functionsassignal handlers (normal functions may aso be used, too),
the signals cannot be connected automatically, asin the previous example.

qui t _button->signal _clicked().connect (

SigC:slot(*this, &ogcalc::hide));
This complex-looking code can be broken into several parts.

SigC:slot(*this, &ogcalc::hide)
creates a Si gC: : sl ot (function object) which points to the
ogcal c: : hi de() member function of this object.

qui t _button->signal _clicked()
returnsad i b: : Si gnal Pr oxyO0 object (asignal taking no arguments).
The connect () method of the signal proxy is used to connect
ogcal c: : hi de() tothe“clicked” signal of the G k: : But t on.

cal cul ate_button->si gnal _clicked().connect (

SigC :slot(*this,
&ogcal c::on_button_clicked_cal cul ate));
cal cul ate_button->signal _clicked().connect (
Si gC :slot(*reset_button,
&3 k: : Wdget::grab_focus));
Here two signal handlers are connected to the same signal. When the
“Calculate” button is clicked,
ogcal c::on_button_clicked_cal cul ate() iscalled first,
followed by Gt k: : W dget : : grab_focus().
cf_entry->signal _activate().connect (
SigC :hide_return(SigC :slot(*this,
& k: : Wndow. : activate default)));
Si gC : hi de_returnisaspecia Si gC. : sl ot usedtomask theboolean
valuereturnedbyact i vat e_def aul t () . Thedot createdisincompetible
with with the dot type required by the Signal, and this“glues’ them together.

Intheogcal c: : on_button_clicked_cal cul at e() member
function,

doubl e pg = pg_entry->get_val ue();
the member function Gt k: : Spi nBut t on: : get _val ue() was
previousy usedas gt k_spi n_but t on_get _val ue().

std::ostringstream out put;

out put. i mbue(std::locale(""));

out put << "" << std::fixed

<< std::setprecision(2)
<< 0g << "</ b>";

og_resul t->set _mar kup(

dib::locale_to_utf8(output.str()));
This code sets the result field text, using an output st ri ngst r eamand
Pango markup.

Intheogcal c: : on_button_cl i cked_reset () member function,

pg_entry->set _val ue(0.0);

og_result->set_text("");

pg_entry->grab_focus();
class member functions are used to reset and clear the widgets as in
previous examples.

ogcal c-mai n. cc

Thisfile contains avery simplemai n() function.

Gk::Main kit(argc, argv); // Initialise GIK+.

ogcal ¢ w ndow,

Kit.run(w ndow) ;
A G k: : Mai n objectiscreated, and then an ogcal c class, wi ndow, is
instantiated. Finally, theinterfaceisrun,using ki t . run() . Thisfunction
will return when wi ndow s hidden, and then the program will exit.

Conclusion

Which method of programming one chooses is dependent on many

different factors, such as:

* Thelanguages oneis familiar with.

* Thesize and nature of the program to be written.

* The need for long-term maintainability.

* Theneed for code reuse.

For simple programs, such as C/ pl ai n/ ogcal c, there is no problem

with writing in plain C, but as programs become more complex, Glade can

greatly ease the effort needed to devel op and maintain the code. The code

reduction and de-uglification achieved through conversion to

A ade/ | i bgl ade isbeneficia even for small programs, however, so |

would recommend that Glade be used for all but the most trivial code.
[concl uded at foot of next page]

39

Reviews

Bookcase

Collated by Christopher Hill
<accubooks@r ogsol . co. uk>

Francis Writes

It is curious the way things go in cycles. We have
had very few C and C++ books in the past few
issues and now we are inundated with them.
Unfortunately, there is the usua high number of
poor booksfor novices. In addition, thebooksfrom
one publisher seem expensive in the UK and
astronomical intheUS (evenwhenthey arelisted).
Asking a student to pay a large amount for a
mediocrebook seemsunreasonable. | wonder if the
high headline prices are amechanism to appear to
give big discounts to academic bulk purchasers.

Therelative costs of booksin the UK and the
USarebecoming completely silly. Actually, after
the US dollar has remained at around 1.8 to the
pound sterling for over ayear, aratio of 2:1 for
books sourced in the UK isn’t too bad for US
purchasers but ratios of 5:4 for books sourced in
the US seems quite unreasonable.

Another issue | noticed recently is the weight
of books. One or two publishers are using very
heavy paper, which may be serioudly affecting
transport costs. We now have aratio of over 2:1in
weight for books with the same page count. Quite
gpart from anything else, the average person does
not want to carry around a textbook that weighs
over 2kg. Yes, | just checked by weighing acouple.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members — if you ever have a problem with this,
please let me know — | can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list

Computer Manuals (0121 706 6000)

www. conput er - manual s. co. uk
Holborn Books Ltd (020 7831 0022)

www. hol bor nbooks. co. uk

Blackwell’s Bookshop, Oxford (01865
792792)

bl ackwel | s. extra@l| ackwel | . co. uk
Modern Book Company (020 7402 9176)
books@rbc. sonnet . co. uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.

The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. | consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). | consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

C&C++

Computer Science A Structured
Approach Using C++ by Behrouz
A. Forouzan & Richard F. Gilberg
N (0-534-37480-8), Thomson,
1020pp @ £36-99 (2.0)

reviewed by Frank Antonsen

The aim of thisbook isto teach C++ as afirst

language. Often C++ is considered too
complicated for thisand Javais used instead.
But athough C++ isavery powerful language
that allows you to do all sorts of complicated
things, you can also do quite simple thingsina
simple and consistent manner.

So let me start by saying what | like about
this book. First, it begins by using streams and
manipulators to provide a nice looking output
in the very first chapter. All too often, thisis
moved to an advanced chapter near the end of
the book. Secondly, it shows you how to write
your own 1/O manipulator and handle binary
files. Thereis an appendix on the STL, and
they introduce templates relatively early on.
Finally, each chapter concludes with a broader
section on general software design techniques
and methodology. However, alas, thisalso
shows the limitations of the book. They cite

very few books, which is not a problem, but all
of them are from the seventies or eighties.
Many things have happened since.

In fact, the authors spend alot of time
discussing structure diagrams and give much
good advice on how to factor functions.
However, they barely touch UML, and thereis
not asingle word on when to factor classes. In
other words, they teach is procedural
programming, with just hint of object orientation.
All the advice they give on writing functions
remain valid of course, but it takes on quite a
different meaning in the context of classes.

Thefirst part of the book shows signs of being
just aquick update of the original book (I don’t
know when that appeared). For instance, it warns
againgt using the bool type, because not al
compilersprovideit. In 2004, if acompiler does
not provide bool , do not useit! Fortunately, the
authorsignore their own advice for most of the
book so thisis not abig problem. The same holds
for their advice on where to define variables
inside functions; the first chapters recommends
putting al variable definitions at the top before
any executable code, thet isin the old-fashioned
C-style. Again, the authors ignore their own
advicein therest of the book and comply with
modern practice of defining avariable asclose as
possibleto whereit isused.

The book has 1000+ pages, so inevitably a
number of typos must show up. There are afew
places where the codeis clearly wrong, but these
are usualy obvious and should not confuse the
novice too much. What ismore seriousisthe
old-fashioned style. Thereisalong (actualy
quite good) discussion on pointers and the use of
thet hi s pointer, but no mention of
aut o_pt r . They use charactersinstead of
standard strings until the end of the book, where
achapter on strings has been tagged on. Even
though templates are introduced in chapter 13,
they are not used in the remaining 4 chapters, not
even in the final chapter where alinked list class
is designed. Exceptions are only introduced at
the very end; al previous code relies on the older
style of having functions returning an invalid
number or calling exi t with an error-code.

[continued from previ ous page]

The C++ code using gtkmm is slightly more complex than the code
using Glade. However, the benefits of type and signal safety, encapsulation
of complexity and the ability to re-use code through the derivation of new
widgets make gtkmm and| i bgl adenmman even better choice. Although
it is possible to write perfectly good code in C, gtkmm gives the
programmer security through compiler type checking that plain GTK+
cannot offer. Inaddition, improved code organisation ispossible, because
inheritance allows encapsulation.

GObject provides similar facilitiesto C++ in terms of providing classes,
objects, inheritance, constructors and destructors etc., and is certainly very
capable (it is, after al, the basis of the whole of GTK+!). The code using
GObject is very similar to the corresponding C++ code in terms of its
structure. However, C++ till provides facilities such as RAIl (Resource
Acquisition is Initialisation) and automatic destruction when an object goes
out of scope that C cannot provide.

Thereis no “best solution” for everyone. Choose based on your own
preferences and capabilities. In addition, Gladeis not the solution for every
problem. The author typically uses amixture of custom widgets and Glade

40

interfaces (and your custom widgets can contain Gladeinterfaces!). Really
dynamic interfaces must be coded by hand, since Glade interfaces are not
sufficiently flexible. Use what is best for each situation.

Roger Leigh

Further Reading

The GTK+ Tutorial, and the GTK+ documentation are highly
recommended. Theseareavailablefromht t p: / / www. gt k. or g/ The
gtkmm documentation is available from ht t p: / / ww. gt knm or g
Unfortunately, some parts of these manuals are as yet incomplete. | hope
that they will be fully documented in the future, since without good
documentation, it will not be possible to write programs that take
advantage of all the capabilities of GTK+ and gtkmm, without having to
read the original source code. While thereis nothing wrong with reading
the source, having good documentation is essential for widespread
adoption of GTK+.

Documentation and examples of GObject are scarce, but Mathieu
Lacage has written an excellent tutorial which is available from
http://1 e-hacker. org/ papers/ gobj ect/

CVu/ACCU/Reviews

Itisreally apity. The authors do quite agood
job at explaining things, but for abook published
in 2004 it isfar too old-fashioned. This becomes
clearer asonereadsthe later chapters where most
of what has happened to C++ since thelate
eighties has been quickly tagged on.

S Problem Solving in C++ by
C++ Angela Shiflet & Paul Nagin (0-

534-40005-1), Thomson,

S 1070pp @ £35-99 (no US price)

reviewed by Frank Antonsen

| have some problemswith this

book. On the one hand, it iswritten in an easy to

follow language and contains vaid points on how

to structure programs. It also contains some

interesting background information and exercises.

However, the book is more about C with 1/0
streams added than it is about C++. Even though
classes areintroduced early on (in chapter 3, on
page 151), they arerarely used for anything but
the most trivial encapsulation. | would be able to
accept thisin a beginner’ s book if there were not
so many such oddities and omissions.

Let me give some examples.

For thefirst 10 chapters, spanning two
thirds of the book, the only character datatype
introduced is char . Then in chapter 11, the
first 40-odd pages are used to discuss char *,
before 8 pages are devoted to the standard
st ri ng class. Why? The fundamental
character datatypeis after al not the individual
character, just like the basic numeric datatype
isnot the digit. Ironicaly, the authors finish
chapter 11 with saying that people should use
std:: string instead of the old C-strings!

Throughout the book the authors prefer to
usethe C-functionsexi t or evenassert to
terminate a program upon error. Why do they
not use exceptions?

Chapter 10 introduces arrays, and finishes off
by introducing the vector classfrom STL. They
even give a (very short) introduction to
templates, which they then never use. Thefina
chapters of the book implement some basic data
structures. Thiswould be perfectly acceptableif
it was away of demonstrating how templates are
used in STL by providing some simple
implementation of the container. Instead they
even fail to mention that the STL contains (far
superior) implementations of these containers.

Furthermore, thisis abook that goesto
great lengths to teach safe programming
methods. Why do they then ailmost invariably
define global constants with #def i ne instead
of usingconst int or string etc, which
would give them type safety as well?

In summary, the authors seem to possess only
arudimentary knowledge of modern C++. Asl
said above, thisisredly abook on C with C++'s
iostream library added. Not recommended.

] Learning C++ 3ed by Eric

: Lihnnme ¥ Nagler (0-534-38966-X),

‘ Thomson, 530pp @ £34-99 (no
& o us price)

L2l reviewed by Paul F. Johnson

| started reading this book and
what initially struck me was how easy it wasto
read. It has plenty of good points (such as
common problems and helpful hints) and the
writing style is very much like Schildt, except
without the number of mistakes.

| CVu/ACCU/Reviews |

| redly have two problems with the book.

Firstly, the over use of acronyms. The
author seemsto like these and while they are
initially explained, it becomes a pain trying to
remember them. Sure we have the likes of
FDDI and other such acronymsto recall, but
the number of them in this book really will not
help those wanting to learn.

Secondly, the use of Hungarian notation. |
have never liked Hungarian notation and is
widely discredited as ateaching method within
education. Take for instance this variable name

char const *ptr Ptr;

What exactly isit? Okay, to the seasoned
reader, we would recognize it asachar
const pointer caled Pt r, but put yourself in
the position of anew learner. It is hard enough
coming to terms with the use of const
without finding names such as above.

Those aside, the author has obviously put a
lot of thought into the layout and approach to
the book and it shows — the coverage of the
C++ style of casting comes very early and
classes and encapsulation are handled in a
simple to understand approach.

My other criticism isthat there are alot of
“will be covered in chapter xxx” when asimpler
approach would beto have (say) t r y/cat ch
when discussing memory allocation — the code
isthereand aline saying what thet r y/cat ch
mechanism does and then refersto alater
chapter. It certainly does not detract overly
much, but for anew learner, it will not help.

While not as comprehensive as a Schildt
book (in terms of coverage rather than accuracy
—thisbook has far fewer mistakes than the
average Schildt book), it isafar better book for
anew-comer to C++ than alot of books on the
market. Recommended with reservations.

-~ | Developing Series 60
-| Applications A Guide for
Symbian 0S by Leigh Edwards et
al. (0-321-22722-0), Addison-
Wesley*, 748pp @ £37-99 (1.32)
reviewed by David Caabeiro

For those waiting for adefinitive referenceon
Symbian C++ development for Series 60, this
book fulfilsall expectations. Series 60 is currently
the best selling mobile platform, being deployed
on devices from manufacturers such as Nokia,
Siemens, Samsung, etc. Itisdifficult tofind a
topic not covered by this book, and given the lack
of documentation provided by the SDK, it
becomes amust-have in your bookshelf.

The book could be split into three parts. The
first part comprises basic stuff such as building
and deployment process, Symbian fundamental
APIs and application framework (comparable
to the MV C pattern). It is fundamental to
understand these chapters to understand the rest
of the book.

The second part refersto Ul gadgets,
starting with an explanation of basic controls,
event handling, menus, etc. Following chapters
provide description of dialogs, lists, notes,
editors and many other system widgets.

Lastly, more advanced stuff, such as
communications programming (sockets,
TCPIIP, IrDA, Bluetooth, HTTP, messaging
and telephony), multimedia framework, system
engines and views, and finally testing and
debugging.

Of course, no book coversall possible
topics. Theinformation you will find on some
chapters (communications is an example) isthe
essential you will need to get started. For other
advanced topics, such as client-server
architecture, multithreading, etc. you will need
to look for other material.

One of the things | liked most of this book
isthe quantity and quality of examples (which
are available online) which feature working
applications, so they are ready to build and run
on your emulator and smartphone.

If you are on your first steps with Series 60
development get this book, you will not be
disappointed. As | read somewhere, it might
well be considered the “ Charles Petzold” for
Series 60 platform devel opment.

C++ Programming: From Problem Analysis to
Program Design by D.S. Malik (0-619-16042-
X), Thomson, 1304pp + CD @ £34-00 (2.23)
reviewed by James Roberts

When | chose this book from the ‘to be
reviewed' list, | was expecting abook aimed at
areader who had mastered the basics of C++
(perhaps from the same authors C++ primer
book), and was interested in progressing
further.

It turned out that this book is aimed at
building up a student’ s knowledge of C++ from
astart point of little or nothing.

The styleisfairly wordy, and includes
copious examples of completed code.
Unfortunately, the author does not explain why
design choices were taken, or what alternatives
were not taken.

As acourse book, perhapsit is reasonable to
not include anything but the briefest
descriptions of which compilers might be
useful. However, for any other readersthisisin
my opinion rather important.

The main complaint | had with the book is
the actual content. Why was there no mention
of polymorphism (other than a passing
definition)? Why were three chapters dedicated
to the implementation of linked lists, queues
and stacks, with no mention of the STL outside
the appendices? A description of the concepts
would have its place — but the full source code
seems over the top.

Thereis apparently ‘valuable testing
software’ included with the book. This seems
to consist of a series of acrobat files mainly
consisting of examination texts. | was unable to
access the website, as| had no instructor id.

Exceptional C++ Style by Herb

Exceptlonal C++ Style
gran

2| Wesley*, 325pp @ £30-99 (1.29)
‘ reviewed by Pete Goodliffe

thlsanot er must have C++ book? Indeed it is.

Herb has produced another exceptional (pun
intended) tome. If you are a C++ programmer
who is not familiar with Sutter’ swork then |
suggest you get copies of Herb's previous books,
work through them, and then get this one.

Sutter is arenowned C++ guru, chair of the
1SO C++ standards committee, regular CUJ
columnist, and conference speaker. He knows
what he' stalking about. As ever hislatest book
iswell structured, readable, and authoritative.

41

It follows directly on from his two previous
“Exceptional C++" books, and the story hereis
very much “business as usual”. Presented in a
question and answer format (which often works
well, and sometimes seems very contrived),
various individual topics areinvestigated in
separate mini-articles. Some of the more thorny
topics are split across several articles.

Sutter takes us on ajourney through the latest
wisdom on generic programming, exception

safety, class design, resource management and
optimisation. | was originally confused by the
book’ stitle “Exceptional C++ Styl€”; none of
theitems are really any more to do with
programming style than his previous books.
However the last section, probably the best,
doesfinaly do somejustice to thetitle. Sutter
provides a number of case studies of Real
World code, showing how to improveits
coding stylein light of modern C++ wisdom.

This section alone will help less experienced
C++ programmers to learn what industrial
strength C++ coding is about.

The book iswell cross-referenced
(internally, with his earlier books, and with
other major C++ books) and clearly laid out,
with sound bite “guidelines’ to distil the
important information. It comes highly
recommended for all practicing C++
programmers.

Due to lack of space not all book reviews could be

Learn Java in a Weekend by Joseph P Russell

Official Eclipse 3.0 FAQs by John Arthorne, Chris

printed in this issue. Reviews of the following books (1-931841-60-8), Premier Press, 482pp @ £21- Laffra (0-321-26838-5), Addison-Wesley*,
can be found on the website (www. accu. or g) and 00 (1.43) reviewed by Paul F. Johnson

will be printed in the next issue if space permits.

C++

Object-Oriented Programming: Using C++ for
Engineering by Goran Svenk (0-7668-3894-3),
Thomson, 506pp + CD @ £38-00 (1.92) reviewed
by Mark Easterbrook

Ivor Horton’s Beginning ANSI C++ 3ed by Ivor
Horton (1-59059-227-1), Apress, 1090pp @
£37-50 (1.60) reviewed by Malcolm Pell

C++ Demystified by Jeff Kent (0-07-225370-
3), McGraw Hill Oshorne, 348pp @ £12-99
(1.54) reviewed by James Roberts

Programming in C, 3ed by Stephen G. Kochan
(0-672-32666-3), Developer’s Library*, 542pp
@ £28-99 (1.38) reviewed by Giles Moran

C Programming for the Absolute Beginner by
Michael Vine (1-931841-52-7), Premier Press,
240pp + CD @ £21-99 (1.36) reviewed by
Thomas Padron-McCarthy

.NET Programming

ADO.NET in a Nutshell by B Hamilton & M
MacDonald (0-596-00361-7), O’Reilly, 600pp +
CD @ £31-95 (1.41) reviewed by Mick Spence

Programming .NET Components by Juval Lowy
(0-596-00347-1), O’Reilly, 458pp @ £28-50
(1.40) reviewed by Paul Usowicz

Teach Yourself Visual Studio .NET 2003 by
Jason Beres (0-672-32421-0), SAMS, 666pp @
£28-99 (1.38) reviewed by Griff Phillips

C# & Java

J2EE and XML Development by Kurt Gabrick &
David Weiss (1 930110 30 8), Manning, 274pp
@ £35-99 (1.11) reviewed by Alistair McDonald

JUnit Recipes by J.B.Rainsberger (1-932394-
23-0), Manning, 720pp @$49.95 reviewed by
Anthony Williams

Professional Java Tools for Extreme
Programming by Richard Hightower et al. (0-
7645-5617-7), Wrox, 732pp @ £29-99 (1.50)
reviewed by Jim Hague

Embedded and Real Time

Real-Time Java Platform Programming by Peter
Dibble (0 13 028261 8), Prentice Hall, 332pp @
£39-99 (1.25) reviewed by Alan Barclay

Database Programming

Access VBA for the Absolute Beginner by
Michael Vine (1-59200-039-8), Prima Tech,
328pp + CD @ £21-99 (1.36) reviewed by
Richard Knight

Information Architecture with XML by Peter
Brown (0-471-48679-5), Wiley, 324pp @ £27-
50 (1.81) reviewed by Christopher Hill

Games Programming

Beginner’s Guide to DarkBasic Game
Programming by Jonathan S. Harbour (1-
59200-009-6), Prima Tech, 711pp + CD @ £37-
99 (1.58) reviewed by Mark Green

Methodologies & Testing

Agile Development in the Large by Jutta
Eckstein (0-932633-57-9), Dorset House,
216pp @ $33.95 reviewed by Alan Griffiths

CMMI Distilled 2ed by Dennis M. Ahem et al
(0-321-18613-3), Addison-Wesley, 310pp @
£22-99 (1.30) reviewed by Greg Billington

The OPEN Process Framework by Donald
Firesmith & Brian Henderson-Sellers (0 201
67510 2), Addison-Wesley, 330pp @ £29-99
(1.50) reviewed by Matt Pape

Real World Software Configuration
Management by Sean Kenefick (0-59059-065-
1), Apress, 439pp @ £35-50 (1.41) reviewed by
Derek Graham

385pp @ £26-99 (1.30) reviewed by Silas Brown

The Web & Networking

Pro Apache 3ed by Peter Wainwright (1-
59059-3006), Apress, 880pp @ £31-50 (1.59)
reviewed by Alan Barclay

The Definitive Guide to Linux Network
Programming by Keir Davis et al. (1-59059-
322-7), Apress, 375pp @ £31-50 (1.59)
reviewed by Alyn Scott

General Programming

Unix & Shell Programming by B Forouzan & R
Gilberg (0-534-39155-9), Thomson,pp @ £35-
00 (no US price) reviewed by Paul F. Johnson

About Face 2.0; The Essentials of Interaction
Design by Alan Cooper and Robert Reimann
(0-7645-2641-3), Wiley, 540pp @ £24-50 (1.43)
reviewed by Christopher Hill

Refactoring to Patterns by Joshua Kerievsky
(0-321-21335-1), Addison-Wesley*, 367pp @
£37-99 (1.32) reviewed by Anthony Williams

Succeeding With Open Source by Bernard
Golden (0-321-26853-9), Addison-Wesley*,
242pp @ £30-99 (1.29) reviewed by Mike Pentney

Holub on Pattems by Allen Holub (1-59059-
388-X), Apress*, 412pp @ £31-50 (1.59)
reviewed by Alan Lenton

VB for the Absolute Beginner by Michael Vine
(0-7615-3553-5), Prima Tech, 342pp + CD @
£21-99 (1.36) reviewed by Richard Knight

Non-Programming

Linux in Easy Steps by Mike McGrath (1-
84078-275-7) Computer Steps, @ £10.99
reviewed by Paul F. Johnson

Fearless Change by Mary Lynn Manns, PhD &
Linda Rising, PhD (0-201-74157-1), Addison-
Wesley, 273pp @ £22-99 (1.09) reviewed by
Francis Glasshorow

Copyrights and Trade marks

Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

42

CVu/ACCU/Reviews

