
Reports & Opinions
Editorial 4
Reports

View From the Chair 5
Membership Report, Standards Report, Letter from America 6

Dialogue
Student Code Critique (competition) entries for #30 and code for #31 6
Francis’ Scribbles 9

Features
Blue Fountain Systems - An Open Source Company interviewed by Paul Johnson 11
Writing Custom Widgets in Qt by Jasmin Blanchette 12
Memory for a Short Sequence of Assignment Statements by Derek M Jones 15
Wx - A Live Port - Part 2 by Jonathan Selby 20
An Introduction to Programming with GTK+ and Glade - Part 3 by Roger Leigh 23
What’s in a Namespace? by Paul Grenyer 26
An Introduction to Objective-C - Part 3 by D A Thomas 28
Automatically-Generated Nightmares by Silas S Brown 30
Professionalism in Programming #29 by Pete Goodliffe 31

Reviews
Bookcase 33

Copy Dates
C Vu 17.1: January 7th 2005
C Vu 17.2: March 7th 2005

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Chris Lowe
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
I really do enjoy being part of the open source movement. It really does
make the mind boggle at the speed of development of software. I’ve been
tracking Novell’s Mono application for quite a while now and since the 1.0
release (which was roughly 8 months ago), things have gone on in leaps
and bounds. Probably the most interesting part has been the development
of System.Windows.Forms.

In the original version, Mono relied on Winelib to provide the SWF
parts. Unfortunately, Winelib and Wine moved all the time, which meant
that rather than concentrating on SWF, the Novell team and those around
the world which contribute to the source would be trying to hit a moving
target. In the end, it was decided that there would be a ground up effort to
implement SWF natively. That was roughly 4 months ago. It is (at the time
of writing) somewhere close to being 88% complete. To anyone, that is a
big achievement and probably, without the sort of community which is
found in the open source movement, the completion would be closer to
60%.

Of course, I could be wrong, but I can only call what I see. It certainly
has been a rollercoaster of a ride and has been a lot of fun.

The Student Code Critique

The SCC is a critical part of C Vu. It is one of the ways for you to all
participate in the magazine. However, the numbers seem to have dropped
and dropped to such a point that in this issue, there is one entrant. While it
does make my judging for the book a lot easier, it is worrying the level of
members who will take about 20 minutes to enter. Please get involved –
not only do you make it more interesting, but you’re also helping to educate
others.

Ever Had One of Those Moments?

I’m sure that you’ve all had one of those moments, those gloriously
inspired moments when you know exactly how to fix that piece of code
which has been bugging you for days now and better than that, by making
a couple of changes to said code, you can fix a number of other problems
plus make it run faster and take less time to compile? It’s wonderful isn’t
it.

I had one of those a while back when I was hand optimising some code
within a program I help develop. By replacing a lot of inefficient code with
something like

QString combo[] = { "Text", "Link", "External Link",
"External Web-Link" };

size_t comboArray = sizeof(combo)/sizeof(*combo);
for(uint prop = 0; prop < comboArray; ++prop)
ComboBox1->insertItem(tr(combo[prop]));

it made the program a lot tighter and quicker. There was a problem with it
which wasn’t apparent under the test conditions (aka on my machine with
different EU locales set). tr() is the Qt translator – it is a very powerful
piece of kit, but unfortunately with it set inside of the insertItem
method, the translator wasn’t called. This did bite into the efficiency (as
shown by various calls to memory and CPU profilers) and the second
version was to replace

QString combo[] = { "Text", "Link", "External Link",
"External Web-Link" };

with

QString combo[] = { tr("Text"), tr("Link"),
tr("External Link"), tr("External Web-Link") };

which oddly enough worked. At first, I thought the problem was in the
comboArray line, but then that really didn’t make sense – all that line
does is give the size of the created array. That could only mean that the
insertItemmethod couldn’t take the tr conversion step. Swine! I had

altered a substantial amount of code to use my original method and then
find it doesn’t work as well as anticipated (though it did work).

This did lead me to suspect that perhaps my testing and programming
methodology was incorrect. Up to now, I had been a single programmer,
working on a project which really, not many people would use and if they
did, well, the problems would not be that huge to work around. In other
words, I’m not being lazy per se, just not being as considerate as perhaps
I should; software, after all, is a global commodity.

What I finally concluded was that I should not have made so many
changes, had one and sent that out as a simple test case and worked on the
results of that. Okay, grepping through the code wasn’t that big a task,
neither were the changes, but it was time I could have spent doing things
I enjoy – like having a relaxing pint of some foaming nut brown ale and
reading my collection of Dr Who books (hey, even I have to rest
sometimes!)

Leading on from that, I decided to do some more code – this time,
replacing normal code with template code to try and speed things up – if
not from the user’s point of view, then definitely from the system’s point
of view. This time, I started small...

/* While this version is simpler to read and the
final binary is around 4k smaller than the
template version, gcc 3.4 with a few
optimisation tools being run show this to be
slightly less efficient in terms of processor
time. */

#include <qapplication.h>
#include <qslider.h>
#include <qlcdnumber.h>

int main(int argc, char* argv[]) {
QApplication myapp(argc, argv);

QWidget* mywidget = new QWidget();
mywidget->setGeometry(400, 300, 170, 110);

QSlider* myslider = new QSlider(0, 9, 1, 1,
QSlider::Horizontal, mywidget);

myslider->setGeometry(10, 10, 150, 30);

QLCDNumber* mylcdnum = new QLCDNumber(1, mywidget);
mylcdnum->setGeometry(60, 50, 50, 50);
mylcdnum->display(1); // display initial value

// connect slider and number display
QObject::connect(myslider, SIGNAL(sliderMoved(int)),

mylcdnum, SLOT(display(int)));

myapp.setMainWidget(mywidget);
mywidget->show();
return myapp.exec();

}

Okay, not exactly rocket science in terms of code (and as you’ve all been
reading the Qt series over the past couple of issues, you can tell me what
it does). However, some of the methods are very similar and how they work
even more so.

Now, I could have written a simple wrapper, but instead came up with
this

// Qslider v2 – template version.
// qslider-template.cpp

#include <qapplication.h>
#include <qslider.h>
#include <qlcdnumber.h>

5CVu/ACCU/Reports & Opinions

#include "memory.h"

template <typename N, typename T>
void setGeometry(N m, T *x) {
m->setGeometry(x[0], x[1], x[2], x[3]);

}

int main(int argc, char* argv[]) {
QApplication myapp(argc, argv);
QWidget *mywidget(allocate_memory<QWidget>());
testAlloc(mywidget);

int geom[4];
geom[0] = 400; geom[1] = 300; geom[2] = 170;
geom[3] = 100;
setGeometry(mywidget, geom);

geom[0] = 0; geom[1] = 9;
geom[2] = geom[3] = 1;
QSlider *myslider(allocate_memory<QSlider>(geom,

QSlider::Horizontal, mywidget));
testAlloc(myslider);

geom[0] = geom[1] = 10; geom[2] = 150;
geom[3] = 30;
setGeometry(myslider, geom);

QLCDNumber *mylcdnum(
allocate_memory<QLCDNumber>(1, mywidget));

testAlloc(mylcdnum);

geom[0] = 60; geom[1] = geom[2] = geom[3] = 50;
setGeometry(mylcdnum, geom);

mylcdnum->display(1); // display initial value

QObject::connect(myslider, SIGNAL(sliderMoved(int)),
mylcdnum, SLOT(display(int)));

myapp.setMainWidget(mywidget);
mywidget->show();
return myapp.exec();

}

// memory.cpp
#include <qapplication.h>
#include <qslider.h>
#include <qlcdnumber.h>
#include <new>
#include <cstdlib>
using std::nothrow;

template <typename N>
N *allocate_memory() {
return new(std::nothrow) N;

}
template <typename N, typename M>
N *allocate_memory(int val, M *&m) {
return new(std::nothrow) N(val, m);

}

template <typename N, typename M, typename O,
typename T>

N *allocate_memory(T *t, M m, O o) {
return new(std::nothrow) N(t[0], t[1], t[2], t[3],

m , o);
}

template <typename N>
void testAlloc(N &w) {
if(!w)
exit(EXIT_FAILURE);

}

What is the advantage over the original version? Well, for a start in
memory.cpp I have a very simple, yet very effective memory handling
routine – given it was only a test bed, it is probably not win any prizes for
the best and tightest code around, but the important thing was for what I
threw at it, the code worked and worked well (the profilers I use showed
roughly a 10% improvement over the original).

Was there really a point to the exercise though? The code never did
make the release version after all. Yes. Yes there was. It is a proof of concept
that demonstrates that it is entirely possible not only make the code tighter
and more importantly, more secure (there is a planned network of the
application so everything has to be as secure as possible).

Sad Times

Unfortunately, I have to report that our production editor of many moons has
decided to very reluctantly move on to pastures new. Pippa has been possibly
one of the best production editors I’ve had the pleasure to work with. Not
only has she been patient, but has that rare quality of knowing about the
subject matter in hand.

We will all miss her and wish her well. C Vu and Overload are now after
a new production editor. If you would like further details, please contact
John Merrells (publications@accu.org).

And So...

Well, this is the final edition of C Vu for 2004. All that remains for me to
say is that from all of the ACCU Committee and C Vu + Overload
production staff, may we all wish you a warm and merry yuletide and that
2005 be a fantastic year for you all. See you in 2005!

Paul F. Johnson

View From the Chair
Ewan Milne <chair@accu.org>
As we approach the end of 2004, it is time to look back on a past year and
recognise just a few of the great contributions made by C Vu and Overload
authors, as we announce the winners of the 2003 ACCU Authors’
Competition. Err, 2003? Yes, I’m afraid that over-optimistic planning and
project overruns can affect the best of us, so that the intended
announcement of these winners at this year’s conference has obviously
been missed by, well, some months. Announcing a release date before
having a plan in place – who would ever think of doing that?

But a dedicated team of judges have now spent several autumn evenings
poring over every article published in C Vu and Overload in 2003, and we
have finally reached the end of our deliberations. To say that the judging
was made difficult by the universally high quality of articles that are
published in both magazines might sound like an awards ceremony cliché,
but it is true nonetheless. We have mentioned some of the articles that just
missed the top spots, but in truth there were many other strong contenders.
The committee would like to thank everyone who has contributed to the
magazines. So without further ado, the winners are...

Best C Vu Article
An Introduction to Optimising Programs by Roger Orr

Honourable mentions: 10 Things You Always Wanted To Know About
Assert (But Were Afraid To Ask) by Garry Lancaster, the Professionalism
in Programming series by Pete Goodliffe

Best C Vu Article by a New Author
When Worlds Collide #1 - Embedded Systems and General Purpose
Computers by Mark Easterbrook

Honourable mentions: Brackets Off! by Thomas Guest, Maintaining
Context for Exceptions by Rob Hughes

Best Overload Article
A Return Type That Doesn’t Like Being Ignored by Jon Jagger

Honourable mentions: Singleton - the Anti-Pattern by Mark Radford,
Ruminations on Knowledge in Software Development by Allan Kelly

Best Overload Article by a New Author
Choosing Template Parameters by Raoul Gough

Honourable mentions: Stream-Based Parsing in C++ by Frank
Antonsen, EXPR_TYPE - An Implementation of typeof Using Current
Standard C++ by Anthony Williams, Exported Templates by Jean-Marc
Bourget, Labouring: An Analogy by Seb Rose

[reports concluded at foot of next page]

6 CVu/ACCU/Dialogue

Dialogue
Student Code Critique

Competition 31
Set and collated by David A. Caabeiro <scc@accu.org>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members.
The title reflects the fact that the code used is normally provided by a
student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended to
designate it as an item where reader interaction is particularly important.
Readers’ comments and criticisms of published entries are always welcome.

Before We Start
Have you ever come across a tricky bug at work that took you the whole
day to find, or an exercise at school that didn’t work the way you expected
to? Those could be good opportunities not only to share it with other
members, but to receive feedback from them. After all, this belongs to the
Dialogue section, so who better than you to take part?

Remember that you can get the current problem set on the ACCU
website (http://www.accu.org/journals/). This is aimed at
people living overseas who get the magazine much later than members in
the UK and Europe.

Student Code Critique 30 Entry
Here is a program Francis collected which is riddled with poor design,
naming, etc. as well as the actual problem:

I’m getting a “parse error before else” at the line indicated by the arrow

void IS_IT_A_DDR(string& mtgrec,
string& temprec,int& ddrrc) {

string Day2="SunMonTueWedThuFriSat";
string Daytoken="0123456";
int badday=0;
if (mtgrec.size() < 8) {
ddrrc=0;
return;

}
for (int i=0; i <= 6; i++) {
if (mtgrec.substr(0,3)

== Day2.substr((i+1)*3-3,3)) {
if ((mtgrec.substr(3,1) == "0")

|| (mtgrec.substr(3,1) == "1")) {
if ((mtgrec.substr(7,1)).

find_first_of("BCLMOPSTW*") != -1) {
temprec=Daytoken.substr(i,1)

+ mtgrec.substr(1);

[continued from previous page]

Membership Report
David Hodge <membership@accu.org>

With the main renewal period over the
membership stands at about 895.

From my point of view the rolling
membership system is going well. The joining
envelope now contains just one issue instead of
the back issues for the whole year, so is easier to
manage. A new member usually gets their
journals, handbook and welcome letter posted
within 48 hours of joining. If you have a UK
bank account and would like to save £5.00 on
your next year’s subscription by paying by
standing order, just email me.

Standards Report
Lois Goldthwaite
<lois@loisgoldthwaite.com>
One of the discussions at the meeting of the
C++ standard committee in Redmond,
Washington, in October could have a big effect
on the future of C++ as one of the world’s most
important programming languages. This was a
presentation by Andrei Alexandrescu, who has
been a popular speaker at several ACCU
conferences.

In a paper with several co-authors (the UK’s
Kevlin Henney being one of them), Andrei is
proposing that C++ define a memory model
which will serve as a reliable basis for
multithreaded programming. The C++ standard
is written in terms of the operations of an abstract
machine. A conforming implementation need not
copy or emulate the structure of this abstract
machine, so long as it produces the same
observable behaviour resulting from a well-
formed program with proper inputs. The
observable behaviour of the abstract machine is

“its sequence of reads and writes to volatile data
and calls to library I/O functions.”

As regards non-volatile data, compilers are
free to reorder reads and writes as much as they
like, so long as conforming observable behaviour
is the result. Apart from compiler optimisations,
processors and operating systems may contain
their own logic which affects when changes to
memory locations become visible.

Many multi-threading libraries are explicitly
or implicitly based on the idea of a single main
thread of control which assigns time-slices to
different execution contexts. As multi-processor
and multi-core computers become more common
- and there are desktop systems right now with
two or more processors - truly parallel executing
threads will become the norm. What will it take
to ensure that two threads looking at the same
memory location will definitely see the same
value there?

The paper, which you can find at
http://www.open-std.org/jtc1/sc22
/wg21/docs/papers/2004/n1680.pdf,
attempts to set out the rationale for why the C++
committee should undertake the effort to define
a more robust memory model for the future,
clearly specifying the interactions between
threads and memory. Future tasks, outlined by
Andrei in his presentation to the committee, are
to define a small set of primitive operations
necessary to support multi-threading, on top of
which a threading library can be built.

The main questions addressed by a memory
model include:
● Atomicity: Which memory operations have

indivisible effects?
● Visibility: Under what conditions will the

effects of a write action by one thread be seen
by a read by another thread?

● Ordering: Under what conditions are
sequences of memory operations by one or

more threads guaranteed to be visible in the
same order by other threads?

These factors cannot be guaranteed by a
threads library alone; they are fundamental to
the meaning of any code as simple as a=1;
b=2;. Some of the basic theoretical work has
already been done during the rethink of the
memory model for Java programming; the
authors hope to reuse some of that work in the
C++ project.

This effort is not expected to result in any
changes to C++ syntax, but it may well change
some of the underlying semantics – if only by
tightening up the rules on how optimisation can
alter the flow of control written into source code.

If you would like to participate in this
important work, and especially if you have
expertise in this area, please write to
standards@accu.org for information on
how to join the UK C++ panel.

Letter from America
Reg Charney
<charney@charneyday.com>
Here is the report on the U.S. chapter.
● Membership/attendance at the local Silicon

Valley meeting has been fairly stable – 10-20
people at each meeting.

● Due to cost considerations, we have stopped
printing the ACCent news letter. It did not
seem to be generating enough
interest/attendance.

● Most membership dues must be going
through the ACCU main web site. I have had
only one member renew by cheque in the last
two months.

● I am trying to revamp our U.S. web site and
am in negotiations with some people to give
us the basis for some unique content. It will
entail a major rework of our site.

● We have a healthy bank balance.

7CVu/ACCU/Dialogue

ddrrc=1;
return;
}

else {
ddrrc=2;
return;
}

else { <<< compiler diagnostic
ddrrc=3;
return;

}
}

}
else badday++;
}
if (badday == 7) {
ddrrc=4;
return;

}
else ddrrc=5;
return;

}

From Neil Youngman <ny@youngman.org.uk>

This piece of code is a bit of a problem. On a first reading it’s hard to tell
what it’s trying to achieve. I can see that there’s some sort of date related
functionality from the definition of variable Day2, but it really doesn’t
make it obvious what it’s doing with those dates.

First things first, I guess, start with the compiler error and then try to
deal with the other issues. This is at some level obvious, i.e. the else is
mismatched, but which if statement does it go with?

It looks as if it probably matches

if((mtgrec.substr(3,1) == "0")
|| (mtgrec.substr(3,1) == "1"))

but with erratic indentation and without any clear idea of intent, that’s not
really certain.

To go much deeper I need some idea of meaning. The function is called
IS_IT_A_DDR . DDR to me is a type of memory, which doesn’t help.
The parameter names don’t offer much of a clue either. The first parameter
is called mtgrec. I guess that would be 2 components mtg and rec.
mtg could be mortgage or meeting and rec could be record. Given the
date related details I would guess that meeting record is the most likely
meaning.

The first if statement inside the for loop looks for a 3 letter day of
the week at the start, the second for a ‘0’ or a ‘1’ and the 3rd for any of the
characters in “BCLMOPSTW*” anywhere from the 8th character on. the
value of ddrrc will be set according to which of these it finds. As I seem
to be no closer to deducing the purpose of this code, so I guess I’d better
consider the many stylistic abominations.

First off naming. As pointed out in the question the naming is poor. I
have been unable to determine what the code is intended to achieve. There
should of course be comments to assist with maintenance, but there aren’t.
Even with comments, clear use of names is invaluable in understanding
the detail of a program. Here I have neither.

Looking at the function definition ALL_CAPS is a common stylistic
convention to denote a macro or a constant. I can’t see why it is used here.
The choice of names we have already criticised. The first parameter seems
to be read only and should therefore be const. The last parameter seems to
be a return code, indicating the result of the function. It seems to me that
this should be the function’s return value instead of the function returning
void.

Looking at the variables both Day2 and Daytoken should both be
constants and some sort of collection structure, e.g. an array or a vector,
seems more appropriate than a string. This makes clear that they are a group
of separate, if related values, not a single value. The variable badday
seems entirely redundant, as I can’t see that it’s value can be anything other
than 7 if the loop runs to completion. Of course that makes the last else
clause entirely redundant.

Next we come to a size check. This is fairly straightforward, but
involves a magic number “8”. Generally hard coded constants should be
declared somewhere central with a name, both to minimise the number of

places where you they have to be changed, should a change be needed and
to make the code more readable.

That brings us to the values assigned to the variable ddrrc. The 8 in
the size check could be related to the code we see, which clearly expects
at least 8 characters. The numbers going into ddrrc carry no meaning
whatsoever. These should definitely be defined as constants somewhere. I
would probably declare an enumeration and make the function return a
value of the enumeration type.

There are also some efficiency concerns. The first 3 characters of
mtgrec are potentially extracted up to 7 times as we iterate through the
loop. The obvious solution to this is to extract them just once, with a
statement like

const string mtgDay = mtgrec.substr(0, 3);

but I suspect that this would be missing an opportunity to improve the
design further, by introducing a proper structure to be used in place of
a string. The string appears to be a collection of structured data and
using a string for the data hides that structure. Defining a proper class
(or struct) for that data would bring that structure out as well as being
more efficient than using string::substr() to extract the
components.

The Winner of SCC 30
The editor’s choice is:

Neil Youngman
Please email francis@robinton.demon.co.uk to arrange for your
prize.

Francis’ Commentary
My first reaction to the student’s question is ‘Are you surprised that the
code has an error?’ I would rapidly follow it up with ‘If the corrected code
passes the compiler, would you trust it?’ I think that the only acceptable
answer to both these questions is ‘no’.

My next question is ‘What should you do about it?’ I would try to guide
the student into ‘Redesign the code and factor the separate actions into their
own informatively named functions.’ If performance becomes an issue after
doing that, it is time to consider helping the compiler with the inline
keyword.

Most of the reorganisation I want to do is concerned with the
implementation so I will move that out into the unnamed namespace.

Before I do any of that, I take strong objection to both the function name
(spelt in all uppercase) and the function return type. Any function whose
name asks a question should return a bool. However it seems to me that
the function does not answer a simple binary question but asks something
else for which there answer is a choice of five things. I have no idea what
DDR means in this context (I am pretty sure it does not refer to ‘Dance
Dance Revolution’, ‘Developers Diversified Reality’ nor to some form of
SDRAM), nor what the classification stored in an out-parameter (ddrrc)
means so I will have to use some placeholders. These placeholders should
be replaced with meaningful names. enums are designed to deal with this
kind of issue. As the enumeration constants need to be available in multiple
translation units, it needs to be declared in a header file. Let me start with
that:

#ifndef DDR_DECLARATIONS_H
#define DDR_DECLARATIONS_H
#include <string>

enum ddr_classification{
ok, too_short, bad_day, bad_flag,
bad_symbol, err5

};
ddr_classification classify(

std::string const & mtgrec,
std::string & outrec);

inline
void IS_IT_A_DDR(std::string const & mtrec,

std::string & temprec,
int & ddrrc) {

ddrrc = classify(mtrec, temprec)+1;
}
#endif

8 CVu/ACCU/Dialogue

I have provided a simple forwarding function to provide temporary support
for the ill-named function so that no immediate changes need to be made
to code elsewhere. I would expect that to be rapidly replaced. I have made
ok take a zero value so that in future it will be possible to use the return
value of classify() for a rapid check of validity. Note that I use fully
qualified names in the header file and that I have added a const qualifier
to the first parameter.

There is also the question of those two string variables; they aren’t
variable nor are the local (though they could be static). Such items belong
in the associated unnamed namespace.

Here is the start for the implementation file:

#include "ddr_declarations.h"
using std::string;
namespace {
string const daynames[] = {"Sun", "Mon",

"Tue", "Wed", "Thu",
"Fri", "Sat"};

char * const daynumber = "0123456";
char * const symbols = "BCLMOPSTW*";

}

I would favour a better name for symbols but without knowing the context
that is the best I can do. Now let me try to write a halfway sensible
definition for classify().

ddr_classification classify(
std::string const & mtgrec,
std::string & outrec){

if(mtgrec.size() < 8) return too_short;
int daynum(dayname_to_int(mtgetrec));
if(daynum > 6) return bad_day;
if(not valid_flag(mtgrec.substr(3, 1)))

return bad_flag;
if(valid_symbol(mtgrec.substr(7, 1))){

outrec = daynumber[daynum]
+ mtgrec.substr(1);

return ok;
}
else return bad_symbol;

}

Now notice that if the original code’s for-loop ever exited that the
student’s badday variable must be equal to 7. There just isn’t any other
way through that nest of if’s. That was far from obvious in the original.
Separating out the various conditions and only continuing if everything
is still checking out leads to much clearer code. It also much better
models the way would handle the problem ourselves. First check that
the first three characters represent an abbreviation for a day, next check
that the fourth symbol is acceptable then check that the eighth one is
OK. Human beings might only notice that there were too few symbols
at that last stage, though it is easier to check it first from a program
perspective.

Now let me go back and add the requisite helper functions (which will
go in the unnamed namespace).

int dayname_to_int(string const & mtgetrec){
for(int i(0); i != 7; ++i){

if(mtgrec.substr(0, 3) == daynames[i]{
return i;

}
}
return 7;

}

Yes, I know there is a magic number lurking in there, but I am running
short of time if David is to get this in time to use it.

bool valid_flag(char flag){
if(flag == '0') return true;
if(flag == '1') return true;
return false;

}

bool valid_symbol(char symbol){
for(int i(0); i != strlen(symbols); ++i){
if(symbol == symbols[i])

return true;
}
return false;

}

Now I think that this code represents the intention of that provided by the
student. It would have been much easier had the student specified what the
code was intended to do.

Notice that the coding error was a direct consequence of an
inappropriate view of how to code the problem. The student was willing
to use all kinds of tools he had found in the Standard C++ Library but the
tool he really needed was his own brain. Sadly once the code was working
too many instructors would accept it.

Remember that this is part of the Dialogue section of C Vu so you have
an implicit invitation to critique my solution as well as add any other useful
information you have about the actual problem.

Student Code Critique 31
(Submissions to scc@accu.org by January 10th)

Here is the code I have using the equation to drop the lowest number from the
grades. The problem is, if I change up number 3 and number 4, I get a different
answer. I used the numbers 80, 84, 60, 100 and 90. Putting the numbers in like
that, I get 88 but, if I mix up the 100 and 60 then I get a grade of 81. Can anyone
tell me why it is not finding the lowest number and just dropping it when I tell it
to (- lowest)?

#include <iostream>
#include <iomanip>

using namespace std;

int main() {
int test1, test2, test3, test4,test5,average,

averagescore,divide;

cout <<"This program will gather five test
scores and\n";

cout <<"drop the lowest score, giving you the
average\n";

cout <<"\n";
cout <<"Please enter Five Test scores\n";
cin >> test1>>test2>>test3>>test4>>test5;

int lowest = test1;
// test 1 is the lowest number unless

if (test2 < test1)lowest = test2;
// test 2 is smaller than test 1 unless

if (test3 < test2)lowest = test3;
// test 3 is smaller than test 2 unless

if (test4 < test3)lowest = test4;
// test 4 is smaller than test 3 unless

if (test5 < test4)lowest = test5;
// test 5 is smaller than test 4.

average = (test1+test2+test3+test4+test5);
// all test scores averaged together

averagescore = average - lowest;
// average score minus the lowest grade

divide = averagescore /4;
// average grade is then divided by 4

cout << divide<< endl;
// final grade after division

return 0;
}

Besides the question asked by the student, this code gives you a chance to
discuss topics such as extensibility, design and style. Please address
as many issues as you consider necessary, without omitting the answer to
the original question.

9CVu/ACCU/Dialogue

Francis’ Scribbles
Francis Glassborow <francis@robinton.demon.co.uk>

Redmond Meetings

I spent the last two weeks of October in Redmond attending three
Standards meetings; WG21 (C++), ECMA’s TC3/TG5 (C++/CLI) and
then WG14 (C).

WG21 is working very hard on developing the next release of the C++
Standard (scheduled for some time about 2008/9). There are a great many
good ideas for improving or developing C++. Quite a number of these are
originating in the UK.

The Most Important Paper
However, to my mind, the most important paper N1680 (available at
www.open-std.org/jtc1/sc22/wg21/docs/papers/) was
not a direct proposal but a discussion document. It is co-authored by A.
Alexandrescu, H. Boehm, K. Henney, D. Lea, B. Pugh, and entitled
‘Memory Model for Multithreaded C++’. The paper makes it clear that
providing proper support for efficient multi-threading is more than just
adding a few libraries. It is not necessary to change the syntax of the
language to provide correct underpinnings for multi-threading but some
changes to the semantics are essential.

Trying to implement multi-threading on top of a single thread abstract
machine simply cripples modern multi CPU, multi-core hardware. In fact
even such primitive developments as Intel’s hyper-threading has to be
turned off for many programs to avoid complete chaos. It isn’t just the
assumptions that programmers make, but those that are made by the
compilers.

If we had to design a suitable abstract machine from scratch we would
have a task that we would almost certainly get wrong the first time (Java
did, and its designers were neither naïve nor ignorant). However we can
capitalise on the experience of others and we have suitable expertise within
the C++ community. What I have some doubts about is whether we actually
have the will. Many people seem to think that the solutions that are already
available through such libraries as the Boost one are good enough. I do not
think they are and I think that once you spend time understanding the above
paper you will agree. However the argument that what we have is ‘good
enough’ is a very seductive one because, if accepted, it allows us to go
away and do those other simpler things that we understand and want in
C++.

How urgent is it to provide a suitable memory model for multi-threaded
C++? Well C++ will have many fruitful years left even if we do not change
the abstract machine. But those years will be numbered. Already AMD has
sampled a dual-core CPU (i.e. two independent processors on a single
chip). Intel have announced that future versions of their Pentium line will
be multi-core and Sun Microsystems are soon to release an 8-core
processor. The upshot is that we are only a very few years away (perhaps
as small as two) from entry-level machines having, effectively, multiple
processors.

Note that this development has been clearly coming for several years
though the present competition between AMD and Intel has probably
brought it forward a couple of years. Every attempt at increasing
performance by increasing CPU speed involves increased heat production.
The current speeds are now pushing the limit of what can be handled by
air-cooling. When chip designers start muttering about having to go to
water-cooling you know we will have problems, particularly with low-end
hardware.

The only viable option is to increase computing power by having more
processors doing the work. From the hardware designer’s perspective this
is not a big problem. The problem comes from the software end. The big
number-crunchers have been using multiple processors and big array
processors for years. But getting effective use from such hardware has
meant developing specific development tools for the hardware in an area
where software tools are expected to cost orders of magnitude more than
those we customarily use for desk-top software development.

Now simple mathematics comes into play. Place C++ head-to-head with
a language such as Java on a single CPU machine and all the traditional
arguments of compiled versus interpreted code, manually managed
memory resources versus garbage collection come into play. In its own
specialist areas each language will be able to capitalise on its strengths and
make a case for continued use.

Move to a multi-processor environment and any language, which can
be used to make efficient use of all the computational resources available,
will outperform one that is tied to a more primitive model. A lock that
stops all other threads is a potential disaster on a multi-processor
machine. Suddenly half your power is lost on a primitive dual core
machine, much more on the more advanced hardware that is on the
horizon.

The upshot is that either C++ evolves to make good use of the coming
hardware or it will lose out to newer languages. Such issues as support for
garbage collection are of minor importance.

Now the interesting thing is that if we get the fundamental memory
model right library designers will be able to provide efficient components
for the application level programmer. The latter will have to learn a bit
about multi-threading (actually. probably less than what you have to learn
today) but will get good use of the available hardware. If we do not get the
underlying model correct, no amount of excellent library design will
compensate.

C++ Evolution
WG21 deliberately make all the development papers available for general
reading because they hope that others will review them and add their
insights and knowledge in order to improve them.

Just because a paper makes a proposal does not mean that it will be
in the next version of C++. Indeed a great many good ideas will fall by
the wayside. One certain way for an idea to fail is if it is not actively
pursued. WG21 have more than enough to do without taking on work
from others. If you see a proposal that you would like to see followed
through, at the very least provide the authors with moral support and
encouragement. They need to know that others think the effort
worthwhile.

If you are in a position to do more such as contributing your knowledge
and experience of prior art, or volunteering to try the idea out by modifying
a compiler whose source code you have access to then please come
forward.

One of the hidden costs in pursuing any proposal is the fact that other
good proposals will die. We just do not have the resources to follow every
good idea. And even if we did, doing so would not be good for C++. I know
some people think that there should be a nice coherent development plan
for C++. Great idea but it just does not happen that way. What gets done
is what people are willing to do.

If you want to add a major feature to C++ like full support for functional
programming (just to choose an area where there is some interest but no
existing proposals so I will not be hurting anyone’s feelings) you will have
a much better chance for success by getting together a group of people who
will do the work (and that includes coming to meetings). Sorry if you do
not like that message but it is the practicality of the situation.

If You Want, You Must Do
An example of how that works is the ‘Embedded C’ TR that was produced
by WG14. Those that wanted support for such things as DSPs got together,
came to WG14 meetings and did the work.

Others have sat on the sidelines and criticised their doing the work for
a whole range of reasons. Such criticism is unfair, inappropriate and, in my
opinion, unprofessional. The group believed they needed support at least
to the level of an ISO Technical Report, they put up the resources and no
little cost to themselves and did the work. With more support and more
expert eyes the result might have been better and more comprehensive,
however I do not know that. What I do know is that those who simply tried
to vote the work away on the basis that it should never have been done
demean themselves and those they represent.

Shamefully, for reasons that I cannot explain here, the UK has been the
worst offender over the last few years. Steps are being taken to correct the
position but it would never have happened had the broad UK C community
participated rather than sitting on the sidelines expecting others to represent
them and their needs.

By contrast the UK C++ community has been one of the most active
contributors to the future development of C++. We may not be able to send
many people to WG21 meetings but our BSI Panel meetings are well
attended and bubble with ideas and enthusiasm. Panel members have been
putting in time and personal resources to help make C++ better. We do our
best to ensure that C++ becomes better, and better meets the needs of its
users. Most participants have a broad programming base and actively
program in several languages.

10 CVu/ACCU/Dialogue

ECMA v ISO
You will have noticed that one of the three meetings that I attended in
Redmond was an ECMA meeting concerned with the development of what
is called C++/CLI. In other words a ‘dialect’ (Herb Sutter likes to call it a
set of bindings, but most of us think that is too simple a view) of C++ to
be used with the ISO Standard to which .NET conforms.

I hear a good deal of criticism of the ECMA process. I agree with much
of it but there is one thing of which I recently became conscious and that
is that the radical difference in the natures of ECMA and ISO do
legitimately lead to a different process.

ISO Committees are composed of National Body delegations. Those
delegations are supposed to represent their national interests. Indirectly
those will include a substantial element of their nation’s commercial
interests. However note that this is indirect. ECMA Committees are
composed of direct commercial representation.

It is perfectly natural that a decision made in TG5 should be dominated
by the commercial interests of the participating companies. Such things as
currently planned shipping dates are important. The process will be
designed to take much more direct consideration and input from the
participating companies.

ISO committees naturally have a wider community to serve. Where it
becomes interesting is when we have a situation such as that of WG21 that
is colocated with a strong, technically competent NB Committee (J16).
Like ECMA, J16 is largely based on corporate membership. Like ECMA,
J16 members are focused on the needs of the companies they represent
rather than a broader community. Often the tension between WG21 and
J16 goes unnoticed but sometimes it pokes above the surface.

I am greatly in favour of technical work being done together without
too much commercial influence but it would be a mistake to ignore that
the latter exists and that in the case of both WG14 and WG21 the
(overwhelming) majority of attending experts are actually from J11 and
J16.

Sometimes areas (such as what new work should be done) are definitely
the domain of the ISO Committee and not a National Body. Yet sometimes
the way that proposals get discussed means that the dominant position of
experts from a single country can distort the outcome.

A case in point is a proposal from a UK expert that WG21 should
produce a TR on a Statistics Library. The UK had only two people at the
Redmond meeting. I had my hands full with the work of the Evolution
Group. Most attending NBs had only one or two representatives. The
result was that when the WG21 Library workgroup considered the UK
proposal for work on a Statistics Library the discussion was dominated
(overwhelmingly) by the J16 experts. A number of strong voices had
good commercial reasons for not wanting to add a Statistics Library even
as a TR. Note that I am not criticising those J16 experts, they were doing
their job; the job that their employers expect and pay them to do. It just
is not the same job as that which should be done by a National delegation
to WG21. Indeed the official US Delegation often has a markedly
different as a national delegation to that of the members of J16 as
members of J16.

I think we need to address the issues that this raises. But before we do,
we need to be willing to provide (or acquire from other NBs) the resources
to do the work. When it comes to the crunch, it is those who do the work
who will determine what happens.

It is no use sitting on the sidelines and whingeing about things we do
not like, we have to get in there and get involved.

While much of the above is from a UK perspective, much of it would
be valid from the perspective of other National Bodies.

Problem 18
Some programmers seem to hate to use more names in their programs than
they absolutely have to. Your challenge is to write a program in C++ that
outputs the first n members of the Fibonacci series where the value of n is
provided by user input at runtime.

That is easy for most readers. But there is a limitation, any variable,
function, type or namespace that you declare must be called i. You are
allowed to use anything you like from the Standard (such as main,
std::cin and std::cout).

The requirement that it be written in C++ is because I do not think it
can be done in C, and there maybe some other languages in which the
problem is trivial.

In case you think it is impossible, I have a solution (which took me about
ten minutes to develop – but I have the advantage of knowing the key to

coding the problem) that is fifteen lines of code with not more than one
statement per line.

Commentary on Problem 17
Here is a minimalist version of main():

int main(){
a * b;

}

Given suitable precursors it will compile and execute. Can you provide
suitable precursors so that the resulting program executes and outputs:

int main(){
a * b;

}

This is a version of an old problem, which is to write a program that
outputs itself. In considering answers I am interested in more than just
a program, I want to see the mental process by which the author arrived
at it.

The first problem with the above code is ensuring that (a * b)
compiles. There are two possibilities, either a is a type and b is a pointer
to that type or a and b are both global objects with an operator * that
can be called.

If a is a type then the output must be generated by some other code that
will be run by executing the program. That basically requires that there is
a global object with has a constructor or a destructor that somehow causes
the output.

If a is not a type then both a and b must be global objects (because
they must be declared somewhere.) There must also be a suitable
operator *.

Once you recognise that the output must be generated by some code
that runs outside main() you are left with a number of options. Here is
one that I wrote earlier:

#include <iostream>
struct work {
work() {
std::cout << "int main(){\n"

<< " a * b;\n"
<< "}\n";

}
} x;
int a, b;
int main() {
a * b;

}

The submissions I have had so far have gone for more complicated
solutions. That does not make them bad but as a general rule good programs
achieve their objective with a minimum of complexity.

I forgot to give a closing date so I am not going to select a winner until
the end of November (which will be too late for inclusion in this issue of
C Vu.) For obvious reasons, it will be too late to enter by the time you read
this.

Cryptic Clues For Numbers
Last issue’s clue seems to have provided rather a different problem to
readers. Several of you wrote to me with the number itself but were
struggling to produce an alternative clue. Here is the clue again:

Oh for love in the sea! It only values the fifth bit.
The first three words give 040 (love is conventionally used in cryptic clues
as ‘o’ (as a letter) or ‘0’ (as a number) because of its use in such things as
tennis scores. Now, in C that means 32 (octal 40). The second sentences
provide confirmation because that is the value of the fifth bit in a byte (hey,
we are C or C++ programmers and so count from zero).

Here is another clue to keep your brain cells working over the holiday
season:

Deuce, it sounds like they came for tea twice. (4 digits)
There is plenty of potential for alternative clues. Something that happened
on November 15, 1971 might be of use as clue material.

Francis Glassborow

11CVu/ACCU/Features

Blue Fountain Systems –
An Open Source Company

Paul F. Johnson <editor@accu.org>

A company which produces Open Source Software (OSS) is nothing new.
There are plenty in the US and Europe that have been trading very nicely
for quite a number of years (RedHat and SuSE spring to mind). However,
these are companies who write the distributions. Can a company exist
which produces OSS, and if it can, how does it survive?

Recently, I was informed of a company based in Liverpool which does
just that. As Liverpool is my home city and only about 45 minutes away,
I arranged for a meeting and on the 3rd of November, in rather dull weather,
ventured forth to visit them in the world famous India Buildings, very close
to the River Mersey and a stone’s throw away from the town centre.

I was met by a very friendly environment, with a team of six
programmers and one receptionist. I was presently introduced to one of the
directors, Aidan McGuire. Over a coffee and quite a lot of laughter, we
settled down to conduct the interview for C Vu. Okay, he did find out a lot
about my involvement with OSS, programming and technical background,
C Vu and lots of other things first, but I wouldn’t have expected very much
else.

From past experience, interviewing company directors can be a tricky
affair. Most don’t (or can’t) reveal very much. In true Open Source tradition
though, Aidan offered more than I expected when he answered with a
candidness which was really refreshing!

How long has Blue Fountain Systems been around and what is your
primary business? How can an open source company make money? Is
it funded on the back of writing bespoke code?

1991, though it became incorporated in 1996. Our primary business
is as a solution company. A client stipulates what they want and not
only do we write the software, but install the hardware, maintain the
both software and hardware, provide training – in fact, everything you
would expect.

As a business plan, we offer very reasonably priced maintenance
contracts (ranging between £100 and £750 per month), as well as working
with the likes of Southport Council to provide a free WiFi network for
the town centre (it would be funded by a nominal fee from local
businesses).

[At this point, we chatted about the problem of older buildings and I
used the example of the conference building we used this year – only to
discover that Aidan had also been there and gave a talk in one of the Python
sessions – we do move in a small world!]

We are effectively using an IBM style “utility” model.
We do not work on the typical IPR model. It is something which

surprises a lot of companies in the same line as us, as we freely and openly
give away the source code, IPR is not a big issue and being an OSS
company, we are transparent in that if we make a mistake, we can hold up
our hands, admit to the mistake and fix the problem. OSS also gives us an
advantage in that we can involve other developers and code without having
to go through the expense on non-disclosure agreements. We do not write
anything closed source.

We also work with our competitors. We are part of the Zope group and
as such, while we may be in competition with other companies, we are
working to the same common aim. This really confuses traditional
companies! We are in competition, but we all meet quite regularly with a
common aim.
You have described Liverpool as being “the open source capital of the
UK”. How did you come to that description?

That was from a PR company! That said, businesses and Liverpool
Council are starting to come to see the advantages of using the Open Source
model over the traditional way of purchasing software and licences.
Obviously, you have the two Universities a stroll from your offices as
well as a good supply of talent from colleges. As they are brought up
on the world of closed source (largely), how much of a culture shock
is it for them to move to open source?

It is a culture shock and actually quite hard for them. However, they
adapt quickly. We are working with Liverpool John Moores and the
University of Liverpool on a mentoring programme. This means that
students will see both sides of the coin.
Do you source most of your employees locally or do you advertise
nationally and internationally?

Both – via the internet (we use JobCV as an agency). We also employ
people on word of mouth as we find it is one of the more reliable ways of
finding staff.

We are a company with offices in Belgium and a small office in London
as well as possibly a new office opening in China due to their increased
uptake of OSS. Additionally, we have people who work from home who
are dotted around the UK and other countries.
What licence model do you use (GPL etc)?

LGPL
How do you feel when you have some of the big closed source
producers denouncing open source as a flash in the pan and largely
unsustainable (as has been recently seen in the technical press)?

I personally don’t think that they understand the business model – and
that equally applies to some Open Source companies

Development environment

Do you have an in-house development environment or have you settled
on something like kdevelop / anjuta? Do you have a preferred
development language?

We use Python / PostgreSQL / Zope for all development – unless there is
a specific requirement from a client for another. Even if they do, we usually
find that our trio of set technologies will accomplish the task and they are
happy to use them when we demonstrate what they are capable of.
Does the company have a preferred widget set or is it a home grown
one?

Most of our work is web based but for GUI projects we use wxWidgets
(wxPython).
As lots of non-software companies expect to pay, pay and pay some
more for commercial software, how, in your opinion, have they
responded to the surge in OSS and the ability to get something they
can tailor to their needs (or have you do) and still be able to see the
source?

We are still fighting against scepticism and “early adopter” syndromes.
Undoubtedly, the SMEs can see the big advantage in not only the total cost
of ownership in using OSS, but there is still a lot of resistance given the
relative newness of OSS and the domination of the big players in the
commercial world.

If you combine that with the Liverpool being home to some very large
companies, it is an uphill struggle, but one we are winning on.
Do you employ any form of extreme programming (or similar) and
how effective do you feel it is?

We have examined many different development methodologies. I can’t
say we employ any specific one although our development methods do
utilise methods of XP (e.g. rapid feedback, embrace change) and others.
At various points we will try new ideas and embrace them if they work for
us or throw them away if they don’t.
What do you look for in a new employee? At the ACCU, we actively
promote best practice when it comes to new employment as well as
giving out a lot of advice on what to and what not to expect.

We look for quite a lot of qualities other than being a good programmer!
As we have to go to the customer for their service contracts, the employee
has to have not only customer relations skills but also be technically
proficient to speak to them at the correct level.
Roughly, what proportion of local talent do you have to “shipped in”
talent?

Currently, it’s about 50/50. We do hope to be expanding soon and when
we do, the local number will increase.

Future prospects

As you know, software is a fickle beast, though OSS has been
increasing in adoption and use over the past years on not just the Linux

[concluded at foot of next page]

Features

12 CVu/ACCU/Features

[continued from previous page]
(and other free OS) platform, but also the Windows platform. Can you
see this continuing for (say) the next 10 years and what effect will it
have on company business plans?

Open Source is increasing at an almost exponential rate and should
assure us of a good future.

Our main concern is the speed at which UK Plc is adopting open source.
If we compare the UK to our European neighbours, we see them moving
over and adopting Open Source more and more. The commercial edge is
being lost to companies with far lower overheads due to their adoption of
OSS. If we decide to go with the proprietary system and everyone else
doesn’t, then UK Plc is not going to be very healthy and it will probably
take ages for us to claw our way back.
Hardware is forever changing with the push currently for movement
to x64/IA64 and above. What have you got in place currently to ensure
current products will still work in (say) 3 – 5 years from now?

All our work is done within Python so we are shielded from the joys of
such things.

Have you seen any significant turn down or reluctance to using OSS
since SCO’s unfortunate FUD over their IP in Linux and subsequent
suits against RedHat, Autozone, IBM and Novell? And where do you
see that ending up?

We haven’t seen a down turn and really, it is up to SCO to prove their
claim. Even if SCO win, it may slow things down, but certainly won’t stop
it. Open Source is here and it’s here to stay

I must thank both Aidan for being so friendly and open with his answers
and Ian Cottee (the company’s technical manager) for the more technical
answers to some of my questions.

As you can see, it is not only possible for an OSS company to exist, but
in this case, it is a company which is expanding and succeeding despite the
reluctance of some to accept the change.

Blue Fountain Systems can be contacted on 0870 0202 111,
http://www.bluefountain.com or
info@bluefountain.com

Paul F Johnson

Writing Custom Widgets
in Qt

Jasmin Blanchette

In the fourth installment of our series on cross-platform GUI programming
with the Qt C++ toolkit, we are going to write a custom widget using Qt.
The widget in question is a “scribble” widget (see Figure 1) – that is, the
drawing area of a simple paint program. The user can draw by moving the
mouse pointer while holding down the left mouse button.

Writing a custom widget using Qt isn’t much different from writing an
application’s main window (C Vu Volume 16 No 3) or a dialog (C Vu Volume
16 No 4). It also involves deriving from a Qt base class, reimplementing
some virtual functions, and connecting signals to slots. The main difference
is that we also need to handle low-level events (also called “messages”) such
as paint events and mouse events to give the widget its look and feel.

The Scribble Class Definition
We’ll start by looking at the definition of the Scribble class:

#ifndef SCRIBBLE_H
#define SCRIBBLE_H
#include <qimage.h>
#include <qwidget.h>

class Scribble : public QWidget {
public:
Scribble(QWidget *parent = 0);
QSize sizeHint() const;
void setPixmap(const QPixmap &pixmap);
QPixmap pixmap() const { return m_pixmap; }
void setPenColor(const QColor &color);
QColor penColor() const { return m_color; }

protected:
void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);
void paintEvent(QPaintEvent *event);

private:
QColor m_color;
QPixmap m_pixmap;
QPoint m_prevPos;

};
#endif

The Scribble class inherits from QWidget, the base class for all
widgets and windows. Scribble provides public access functions, three
protected event handles, and some private variables.

The m_color data member holds the current pen colour. The
m_pixmap member holds the image that the user is drawing. The
m_prevPos member will be explained later; just ignore it for the moment.

The protected event handles are virtual functions inherited from
QWidget that are called whenever the widget receives an event. Events

are sent by the window system whenever some condition occurs. For
example, if the user presses a key while the widget has the keyboard focus,
the window system dispatches a “key press” event that the widget can
handle by reimplementing QWidget::keyPressEvent(). The
Scribble widget is interested in three kinds of event: “mouse press”,
“mouse move” and “paint” events.

The Scribble Class Implementation
We will now go through the implementation of the Scribble class,
starting with the constructor:

Scribble::Scribble(QWidget *parent)
: QWidget(parent) {

m_color = black;
m_pixmap.resize(480, 320);
m_pixmap.fill(0xFFFFFF);
setWFlags(WStaticContents);

}

The constructor takes a parent widget and passes it on to the base class
constructor. If parent is a null pointer, the widget is a window in its own
right; otherwise the widget is displayed within the parent’s area.

In the constructor body we initialize the m_color and m_pixmap
data members to default values. The pen colour is set to black; the pixmap
is initialized to size 480 × 320 and filled with white (0xFFFFFF). Finally
we set the WStaticContents flag on the widget, telling Qt that the
widget’s content doesn’t scale when the widget is resized, but rather it stays
rooted in the top-left corner. This simple trick lets Qt optimize drawing and
reduce flicker drastically.

QSize Scribble::sizeHint() const {
return m_pixmap.size();

}

The sizeHint() function is reimplemented from QWidget. It should
return the ideal size of a widget. Layout managers take this into account
when assigning screen positions to widgets. Here we return the size of the
pixmap (480 × 320 by default) as the ideal size for the widget.

void Scribble::setPixmap(const QPixmap
&pixmap) {

m_pixmap = pixmap;
update();
updateGeometry();

}

The setPixmap() function sets the pixmap which the user can draw on.
Notice that we call update() and updateGeometry() in addition to
assigning the new pixmap to m_pixmap. The call to update() tells Qt
to repaint the widget, ensuring that the new pixmap is shown straight away.
The call to updateGeometry() tells the layout manager responsible
for this widget (if any) that the sizeHint() might have changed.

13CVu/ACCU/Features

void Scribble::setPenColor(const QColor
&color) {

m_color = color;
}

The setPenColor() function sets the current pen colour. This time we
don’t need to call update() because the operation doesn’t affect the
screen rendering of the widget (it only affects pixels that the user will draw
in the future). We don’t need to call updateGeometry() either because
m_color isn’t used when computing the size hint.

void Scribble::mousePressEvent(QMouseEvent
*event) {

if(event->button() == LeftButton)
m_prevPos = event->pos();

}

The mousePressEvent() function is called whenever the user
presses a mouse button while the mouse pointer is located on the
widget. The event parameter gives additional information, such as
the button that was pressed (button()) and the screen position of the
mouse cursor when the button was pressed (pos()). If the user pressed
the left button, we store the mouse position in m_prevPos for later
use.

void Scribble::mouseMoveEvent(QMouseEvent
*event) {

if(event->state() & LeftButton) {
QPainter painter(&m_pixmap);
painter.setPen(QPen(m_color, 3));
painter.drawLine(m_prevPos, event->pos());

QRect rect(m_prevPos, event->pos());
rect = rect.normalize();
update(rect.x() - 1, rect.y() - 1,

rect.width() + 2,
rect.height() + 2);

m_prevPos = event->pos();
}

}

The mouseMoveEvent() function is called continuously when the user
moves the mouse pointer while holding down a mouse button. The typical
sequence of events is one “mouse press” event when the user presses a

button, then a series of “mouse move” events that describe the path taken
by the mouse pointer, and finally a “mouse release” event when the user
releases the button.

We check if the left button is one of the buttons that are currently
pressed. If this is the case we update m_pixmap and repaint the widget
using update().

We create a QPainter to draw on the pixmap. We set the pen to have
the correct colour (m_color) and a thickness of 3 pixels. Then we draw
a line from the previous mouse position (m_prevPos) to the new mouse
position (event->pos()).

QPainter is the entrance door to Qt’s paint engine. It provides
functions to draw all sorts of geometric shapes (rectangles, circles, pie
sections, Bezier curves, etc.) and supports transformations such as rotating
and scaling. A QPainter object can be used to draw on a pixmap, a
widget, a vector diagram or a printer.

Once we’re done updating the pixmap we must update the on-screen
version. The reductionist approach would be to call update() with
no argument and be done with it; this would tell Qt to redraw the entire
widget area, a somewhat expensive operation. Instead we compute the
bounding rectangle for the line segment we just drew and pass it to
update() .

At the end of the function, we update m_prevPos so that the next
“mouse move” event will prolong the line segment we just drew.

void Scribble::paintEvent(QPaintEvent *event) {
QPainter painter(this);
painter.drawPixmap(0, 0, m_pixmap);

}

The paintEvent() function is called whenever the widget must be
repainted. This can occur if the widget was temporarily obscured by another
window and then made visible again, or as a result of calling update().
Here we simply draw the pixmap onto the widget.

At this point you might wonder why we bother drawing on a pixmap
then transfer the pixmap onto the widget. Couldn’t we draw directly on the
widget instead, eliminating the need for m_pixmap? The answer is no.
This is because we can’t rely on the window system to keep a copy of the
widget’s pixels if the window is obscured or minimized. A well-behaved
widget must implement paintEvent() and be able to redraw itself
entirely at any moment.

The Application’s Main Window
We are done implementing the custom widget. To make it useful, we need
a window around it, with a “Pen Color...” button and a “Quit” button.
Here’s the class definition:

Figure 1: The Scribble Widget

14 CVu/ACCU/Features

#ifndef WINDOW_H
#define WINDOW_H

#include <qwidget.h>
class Scribble;

class Window : public QWidget {
Q_OBJECT

public:
Window(QWidget *parent = 0);

private slots:
void choosePenColor();

private:
Scribble *m_scribble;

};

#endif

We can call the class Window because it will be the only window in the
application. The class has one slot, choosePenColor() , which pops
up a colour dialog.

Window::Window(QWidget *parent)
: QWidget(parent) {

m_scribble = new Scribble(this);
m_scribble->setSizePolicy(

QSizePolicy::Expanding,
QSizePolicy::Expanding);

QPushButton *penColorButton =
new QPushButton(tr("Pen Color..."),

this);
QPushButton *quitButton =

new QPushButton(tr("Quit"), this);

connect(penColorButton, SIGNAL(clicked()),
this, SLOT(choosePenColor()));

connect(quitButton, SIGNAL(clicked()),
this, SLOT(close()));

QGridLayout *layout = new QGridLayout(this);

layout->setMargin(10);
layout->setSpacing(5);

layout->addMultiCellWidget(m_scribble, 0, 2,
0, 0);

layout->addWidget(penColorButton, 0, 1);
layout->addWidget(quitButton, 1, 1);

setCaption(tr("Scribble"));
}

In the constructor we create three child widgets (the scribble area and two
push buttons), connect the “Pen Color...” button to the
choosePenColor() slot, connect the “Quit” button to the window’s
close()slot, and put the child widgets in a grid layout. Figure 2 shows
how the child widgets are laid out in the grid cells.

void Window::choosePenColor() {
QColor color =

QColorDialog::getColor(
m_scribble->penColor(), this);

if(color.isValid())
m_scribble->setPenColor(color);

}

When the user clicks “Pen Color...”, we pop up a QColorDialog that
allows the user to select a pen colour. We pass the old pen colour to the

dialog as the initial value.
This is all the code we need in

Window . To complete the
application, we need a main()
function:

int main(int argc,
char *argv[]){

QApplication
app(argc, argv);

Window win;
app.setMainWidget(

&win);
win.show();
return app.exec();

}

That’s it! One of Qt’s striking
features is how easy it is to create
custom widgets. In fact all of Qt’s
built-in widgets (e.g.
QPushButton and
QColorDialog) are
implemented using the techniques
described in this article. While
with other toolkits writing custom
widgets is considered an
advanced topic, in Qt it is so easy
that it is taught straight away to
beginners as an introduction to the
Qt way of thinking.

Jasmin Blanchette

Figure 2: Grid Layout of Child Widgets

Figure 3: The Colour Dialog

15CVu/ACCU/Features

Memory for a Short
Sequence of Assignment

Statements
Derek M. Jones <derek@knosof.co.uk>

The process of comprehending source code often involves reading some
statements on a line by line basis. Some of the information read only needs
to be remembered for a short period of time, while other information needs
to be remembered over a longer period.

This article reports on an experimental study, carried out during the
2004 ACCU conference, that investigates the consequences of a limited
capacity short term memory on subjects’ performance in some of the tasks
needed to comprehend short sequences of code. The source code used
contained two commonly occurring constructs, assignment statements and
if statements. Subjects’ ability to recall the numeric values assigned to
particular identifiers and to correctly deduce which arm of an if statement
is executed were used as measures of their performance.

It is hoped that this study will provide information on the impact
different kinds of identifier character sequences have on the cognitive
resources needed during program comprehension.

Few developers appreciate how short the short in short term memory
actually is. It only has the capacity to hold information on a few statements
at most. It is hoped that the results of this study will bring home to
developers the consequences of short term memory limitations on their
code comprehension performance.

Also, advantage was taken of the if statements used in the experiment
to try and duplicate the pattern of subject performance seen in some studies
of human reasoning. The results seen in some of these studies suggest that
the ordering of operands in a pair of relational expressions has an impact
on people’s performance in evaluating it.

This article is split into two parts, the first (this one) provides general
background on the study. Part two discusses the results of the assignment
problem and discusses the if statement results.

Characteristics of Human Memory
Models of human memory often divide it into two basic systems, short term
memory (while the term working memory is sometimes used, this really
refers to a collection of short term memory subsystems – see Figure 1) and
long term memory. This two subsystem model is something of an
idealization in that there is not a sharp boundary between short and long
term memory; there is a gradual transition between them.

The phonological loop, which can hold approximately 2 seconds worth
of sound, is the primary short term memory system of interest in this study.
The information that can be held by the phonological loop is a sound-bite
corresponding to 7±2 digits [11] spoken in English (the variation is highly
correlated with differences in the rate at which people speak; faster speakers
can remember more) and 9.9 digits spoken in Chinese.

While some of the characteristics of human memory (e.g. forgetting) are
often criticized, they can provide useful functionality. It would make sense
for human memory to be optimized for the information recall demands that
frequently occur in everyday life and various studies [1] appear to confirm
this evolutionary priority. For instance, forgetting is not necessarily the result
of a poorly designed memory system. Studies [1] have found an exponential
decay in the likelihood that information will be needed after a given period

of time from when it was first encountered and that the rate at which
information is lost from memory also has an exponential form...

People who can readily remember and later accurately recall
information report that their conscious thoughts are repeatedly interrupted
by ‘unforgotten’ information [13].

It could be claimed that the underlying problem is one of using of a
computing platform (i.e. the human brain/mind) for a purpose for which it
was not designed.

Information recall performance has been found to be affected by the
extent to which the to-be-remembered information has associations with a
person’s existing network of memories.

Human Reasoning
A commonly used model of the human mind is that of a very powerful
computer with the reasoning faculties based on mathematical logical.
George Boole (after whom the term boolean is named) titled his book [3]
“An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities”. However, the results of
many studies are not consistent with this model of human reasoning.

Studies of various kinds of reasoning involving logical statements have
discovered patterns in subjects’ performance that are believed to be
characteristic of how people solve reasoning problems. If the performance
of subjects deducing the behaviour of source code if statements also
exhibit patterns (e.g. differing numbers of errors made for different
representations of the same logical condition), it may be possible to use
this information to reduce the number of errors made by developers in
comprehending source code. This topic is covered in detail in part 2 of this
article, which discusses subject if statements evaluation performance.

Experimental Setup
The experiment was run by your author during one 45 minute session of
the 2004 ACCU conference held in Oxford, UK. Approximately 300 people
attended the conference, 40 (13%) of whom took part in the experiment.
Subjects were given a brief introduction to the experiment, during which
they filled out background information about themselves, and they then
spent 20 minutes working through the problems. All subjects volunteered
their time and were anonymous.

The Problem to be Solved
Each problem seen by subjects was intended to involve memory processes
that operate over a time frame of approximately 30 seconds. It was
expected that the characteristics of short term memory would have a
significant impact on subjects’ performance within this time frame.

To obtain statistically reliable data answers to a large number of related
problems would be needed. Therefore it had to be possible to create a number
of variations on the same underlying problem. Problems also had to be created
that were not too easy or too difficult. If all subjects answered all questions
correctly, or all incorrectly, no useful information would be obtained.

By using various rules of thumb (e.g. short term memory can contain
two seconds worth of sound), simplifying assumptions (discussed below),
and practising on himself, your author settled on a problem that involved
recalling information about three assignment statements and selecting the
appropriate arm of an if statement.

There are several reasons for using two kinds of statements in the code
read by subjects:
● both kinds of statements occur frequently in source and using them

together allowed the questions asked of subjects to reflect the
kind of questions they have to answer when comprehending
source code. The study thus has some claim to being
ecologically valid (i.e. the behaviour in the experimental
situation is characteristic of a real life environment)
● experience from another (unpublished) experiment
found that when performing a single task some subjects
became very focused on improving their performance by
looking for, and using, patterns in the questions. It was hoped
that by forcing subjects to switch between two tasks this
unintended focusing behaviour would not be significant.
The following is an example of one of the problems seen by
subjects. One side of a sheet of paper contained three assignment
statements while the second side of the same sheet contained the
if statements and a table to hold the recalled information. A
series of X’s were written on the second side to ensure that
subjects could not see through to identifiers and values appearing

Figure 1: Model of working memory. The phonological loop can hold approximately
2 seconds worth of sound, while the visuo-spatial sketch pad holds a visual image that
degrades within about 1.5 seconds. From Baddeley [2].

16 CVu/ACCU/Features

on the other side of the sheet. Each subject received a stapled set of sheets
containing the instructions and 32 problems (one per sheet of paper).

—————— first side of sheet starts here ———————
prevented = 58;
liberation = 83;
conception = 94;
—————- second side of sheet starts here ——————
if ((e > a) && (u < a))
if (u > e)
.............
else
.............

remember would refer back not seen
suspend ____ ____ ____
prevented ____ ____ ____
liberation ____ ____ ____
conception ____ ____ ____

The instructions given to subjects followed that commonly used in memory
related experiments. Subjects see the material to be remembered, then
perform an unrelated task (chosen to last long enough for the contents of
short term memory to have degraded), and are then asked to recall the
previously seen information.

The sequence “remember->unrelated task->recall” has an obvious
parallel in source code comprehension; i.e. “sequence of assignments-
>conditional test->use of identifiers previously assigned to”.

In practice software developers do not make a remember/not remember
decision, there is always the opportunity to refer back to previously read
information. The selection remember/would refer back more accurately
reflects the decision made by software developers.

The following written instructions were given to subjects:

This is not a race and there are no prizes for providing answers to all questions.
Please work at a rate you might go at while reading source code.

The task consists of remembering the value of three different variables and
recalling these values later. The variables and their corresponding values appear
on one side of the sheet of paper and your response needs to be given on the
other side of the same sheet of paper.
1 Read the variables and the values assigned to them as you might when

carefully reading lines of code in a function definition.
2 Turn the sheet of paper over. Please do NOT look at the assignment statements

you have just read again, i.e. once a page has been turned it stays turned.
3 Assuming that the condition specified in the first if-statement is true, which

arm of the nested if-statement will be executed? Treat the paper as if it were
a screen, i.e. it cannot be written on. Mark the arm you think will be executed
with a cross or a tick.

4 You are now asked to recall the value of the variables read on the previous page.
There is an additional variable listed that did not appear in the original list.
● if you remember the value of a variable write the value down next to the
corresponding variable,
● if you feel that, in a real life code comprehension situation, you would reread
the original assignment, tick the “would refer back” column of the
corresponding variable,
● if you don’t recall having seen the variable in the list appearing on the
previous page, tick the “not seen” column of the corresponding variable.

If you do complete all the questions do NOT go back and correct any of your
previous answers.

The Set of Possible Questions
It was hoped that at least 32 people (on the day 40) would volunteer to take
part in the experiment and it was estimated that each subject would be able
to answer 32 problems (on the day 22.7) in 20-30 minutes (on the day 20
minutes). Based on these estimates the experiment would produce 1024
(on the day 884) answered problems.

Given the 8 different ways of ordering the operands and operators
appearing in the chosen form of the if statement conditional expression
and the 4 different questions that can be asked, it is possible to create 32
different if statement problems.

It was decided to use four sets of identifiers in the assignment problems,
with each set containing four different identifiers. The possible values
assigned to these identifiers were drawn from a set of four possible two

digit integer literals (the rationale is discussed below). Given 16 possible
identifiers and 4 possible numeric values (8 had been intended, but a bug
in the generation script meant that only 4 were ever used), it is possible to
generate 80,640 different sets of 3 assignments (the same identifier or value
only being allowed to occur once in any set of assignments).

However, if all identifiers within a given set are considered to be equivalent
and all two digit values are considered equivalent, then there are only 4
different sets of assignments (a set containing single digit constants had also
been planned, which would have created 8 different sets of assignments).

Combining 32 different if statement problems with 4 different sets of
assignment problems creates a total of 128 different problems (256 had
been intended). Given 1024 answers then there would be 8 answers for
each different problem (assuming subjects answered all problems).

The problems and associated page layout were automatically generated
using a C program and various awk scripts to generate troff, which in turn
generated postscript. The identifier and constant used in each assignment
statement was randomly chosen from the appropriate set and the order of
the assignment statements (for each problem) was also randomized. The
(corrected) source code is available on the experiments web page.

Selecting Identifiers and Integer Constants
Studies have found that people’s performance in processing character
sequences can vary between different kinds of sequences. For instance,
frequently used character sequences (i.e. words) are recognized faster and are
more readily recalled than rare ones, also many performance characteristics
are slower and more error prone for non-words compared to words, recognizing
known subsequences (e.g. ibmchairs) within a longer character sequence
allows it to be divided up into a smaller number of larger chunks (i.e. such
recognition reduces information content and requires less storage resources).

Some of the factors affecting people’s performance in recalling recently
read information include:
● the encoding used for the information. For instance, a sequence having

the same form as a word in a language known by a person can be
encoded in a sequence of sounds that is shorter than the sequence of
sounds representing the individual characters,

● the extent to which people are able to maintain the information in short
term memory. This will depend on the short term memory resources
consumed by the encoded information and other calls on short term
memory resources between when the information is originally encoded
and when it needs to be recalled,

● the extent to which the information is already stored in longer term
memory subsystems. For instance, this information may exist because
a character sequence has been encountered before, or its sound pattern
matches (or rhythms with) that of a known word. It is also possible that
a persons brain happens to store a given character sequence into a longer
term memory subsystem, when it is encountered.

The identifier attributes varied in this study were the amount of short term
memory storage required to hold their spoken form (the number of syllables
was used as an approximate indicator of storage requirements; the effects
of phonological complexity were ignored), and they were either a word
(i.e. they were established in long term memory) or a sequence of unrelated
characters. The identifiers thus belonged to one of four possible sets of
character sequences.

Identifier Character Sequences
A variety of different kinds of character sequences are used to represent
identifiers in source code. Some are recognisable words or phrases, some
abbreviated forms of words or phrases, while others have no obvious
association with any known language (e.g. they may be acronyms that are
unknown to the reader). It is to be expected that subjects’ memories of an
identifier will be sound based, rather than vision based. For instance, a
character sequence representing a known word is likely to be remembered
as the spoken form of that word, while a sequence of unrelated characters
might be remembered as the spoken form of each individual character.

Subjects are likely to have read many distinct character sequences every
day for most of their lives. Many of these character sequences will have been
stored in every subject’s long term memory and be readily available for recall.
Creating a character sequence that only evokes a response from a subject’s
short term memory is likely to be impossible. Whatever character sequence
is chosen, it is likely that there will be some form of association with the
contents of a subject’s long term memory. The best that can be achieved is to
use a set of character sequences, for identifiers, that all result in the contents
of long term memory having the same impact on performance for all subjects.

17CVu/ACCU/Features

Experience shows that developers sometimes read source code so
quickly that visually similar, but different, identifiers are treated as being
the same identifier. To reduce the possibility of this occurring during the
experiment an attempt was made to use visually distinct character
sequences (this involved arranging for ascending e.g. t, and descending
e.g. p, characters to occur at different relative locations in a sequence).

All words used in the study had a frequency of occurrence of between
1 per 18 million words and 1 per 24 million words (word frequency counts
were based on the British National Corpus). The Collins Advanced
Learners English Dictionary was used for syllable counts.

The four sets of identifiers used in assignment statements were:
1 a single character whose spoken form contained a single syllable. The

least frequently used letters in written English are wybvkxjqz. For
reasons lost in the mists of time, the letters wxyz rather than the overall
less frequent (and not sequential) xjqz were used,

2 an English word whose spoken form contained one syllable (i.e.van,
guy, tip, mud),

3 three characters whose spoken form is likely to contain three syllables
(i.e. vcq, qmt, bfj, rpl). That is the characters did not represent an
English word. Google was used to reduce the possibility that the
character sequence did not denote an acronym that was likely to be
contained in subjects long term memory (e.g. IBM). Google returned
a page count (at the start of 2004) of between 10,000 and 34,000
matches for the character sequences used (most other such sequences
each returned over 100,000 matched pages).

4 an English word whose spoken form contained three syllables (i.e.
conception, suspend, prevented, liberation).

In the rest of the article the term short identifier denotes an identifier whose
spoken form is short (i.e. it contains a single syllable) and the term long
identifier denotes an identifier whose spoken form is long (i.e. it contains
three syllables). In practice the only reliable method of finding out the
duration of the spoken form of word is to average the time taken by various
people to say the word repetitively.

The character sequences first selected did not appear to share any
common sounds that might result in increased interference between them
when held together in short term memory2.

if Statement Identifiers
It was intended that the only cause of interference between the identifiers
used in the two forms of statements should be contention for short term
memory resources. For this reason the identifiers chosen for the two kinds
of statements were distinct, both in terms of visible appearance and
sounding different.

The most frequently used letters in written English are etaoinsrhldcu.
For reasons lost in the mists of time, the single letters aeu rather than overall
more frequent (and not all vowel) eta were used,.

Selecting Integer Constants
Measurements of the frequency of integer constants in various contexts
have found that some values occur more frequently than others.
Measurements of source code have found various patterns between numeric
values and the frequency with which they appear in the visible source code
(see Figure 2).

The following integer constants were chosen (the digit 7 was not used
in any value because its spoken form
has two syllables):
● single digit numbers. The values

5, 6, 8, and 9 were chosen because
they all have approximately the
same frequency of occurrence in
source code and other contexts,
and have a spoken form
containing a single syllable.
However, due to a bug in the script
generation program no single digit
numbers were used in this study,

● two digit numbers. These have the advantage over three digit numbers
in that they are all likely to be encoded using a single spoken form
(many three digit numbers have many possible spoken forms e.g. 869
might be spoken as eight-six-nine or eight hundred and sixty nine).

Threats to Validity
Experience shows that software developers are continually on the lookout
for ways to reduce the effort needed to solve the problems they are faced
with. Because each of the problems seen by subjects in this study has the
same structure it is possible that some subjects will have detected what
they believe to be a pattern in the problems and will then attempt to use
this information to improve their performance. Possible patterns appearing
across problems include:
● a bug in the problem generation script meant that the identifier that did not

appear in the list of assignment statements always appeared first in the list
of to be recalled information. At least one subject noticed this pattern (he
raised it during discussions after he completed the experiment),

● the number of identifiers used was a very small subset of those that could
have been used. This meant that the first character of each character
sequence was unique to that identifier (i.e. there was only one identifier
starting with any given letter of the alphabet). At least one subject noticed
this (in discussions after completing the study he said that he had saved
time by only encoding the first few letters of the longer identifiers),

● the ordering of the identifiers in the assignment statements and in the to be
filled in list of recalled information was the same. It is not known if any
subjects noticed this pattern and used it to improve their performance.

While the kind of problems used commonly occur during program
comprehension, the mode of working (i.e. paper and pencil) does not.
Source code is invariably read within an editor and viewing is controlled
via a keyboard or mouse. Referring back to previously seen information
(e.g. assignment statements) requires pressing keys (or using a mouse).
Having located the sought information more hand movements (i.e. key
pressing or mouse movements) are needed to return to the original context.
In this study subjects were only required to tick a box to indicate that they
would refer back to locate the information. The cognitive effort needed to
tick a box is likely to be less than would be needed to actually refer back.
Studies have found that subjects make cost/benefit decisions when deciding
whether to use the existing contents of memory (which may be unreliable)
or to invest effort in relocating information in the physical world. It is
possible that in some cases subjects ticked the would refer back option
when in a real life situation they would have used the contents of their
memory rather than expending the effort to actually refer back.

A previous experiment (unpublished), involving a source comprehension
task that only contained conditionals, found that some subjects’ solution
strategies changed during the course of answering questions.

Initially these subjects obtained their answers by applying the traditional
algebraic strategies usually associated with solving logic problems.
However, developers’ familiarity with problem solving is not confined to
source code comprehension and is often applied to the problem of
minimizing the effort they need to expend on the task.

In the case of having the solve a sequence of conditional problems some
subjects switched to a pattern matching strategy. That is, they looked for
(and claimed to have found) patterns in the questions that enabled them to
quickly provide what they believed to be the correct answer (i.e. the answer

Figure 2: Occurrences, in the visible form of various applications written in C. of integer constants
with different values.

1 Your author would not claim to any special
knowledge on how common sounds
(phonological similarity is the technically
correct term and proposals have been
made for measuring it) might be
measured or which sounds might
interfere with each other

18 CVu/ACCU/Features

to a question was based on matching
it to a pattern having a known
answer). It is possible that the
intervening assignment problem did
not provide sufficient cognitive
demand (i.e. distraction) that in some
cases subjects gave answers to the if
statement problem based on patterns
they believed to exist in the sequence
of problems they saw.

Results
Subject Experience

Traditionally, developer experience is
measured in number of years of
employment performing some
software related activity. However,
the quantity of source code (measured
in lines) read and written by a
developer (developer interaction with
source code overwhelmingly occurs in its written, rather than spoken,
form) is likely to be a more accurate measure of source code experience
than time spent in employment. Interaction with source code is rarely a
social activity (a social situation occurs during code reviews) and the time
spent on these activities may be small enough to ignore. The problem
with this measure is that it is very difficult to obtain reliable estimates of
the amount of source read and written by developers. This issue was also
addressed in a study performed at a previous ACCU conference. While
it was hoped that some of the problems encountered in that study were
solved in the current study, the results (see Figure 3) suggest that the upper
range of possible answers is still insufficient to cover the amount of code
that subjects believe they have read.

Plotting the number of lines read against number of lines written gives
a ratio of approximately 2.5 lines read per line written. Your author’s
experience suggests this ratio ought to be greater than 25.

One possible reason for this difference is that the questions asked (e.g.
How many lines of code would you estimate you have {read|written}, in total,
over your career?) are open to various interpretations. For instance, does
reading previously read code count towards the total number of lines read
(previously read lines that a developer has forgotten about might be thought
to result in more learning than lines reread after a time delay of a few minutes),
and how should changes that modify part of an existing line be counted?

It has to be accepted that reliable estimates of lines read/written are
not likely to be available until developer behaviour is closely monitored
(e.g. eye movements and key presses) over an extended period of time.

A plot of problems answered against experience (Figure 4) does not
show any correlation between the two quantities. The number of subjects
in each quadrant is approximately the same.

Assignments
The following discussion breaks the results down by individual subject
and by kind of identifier used in the assignment statements. The raw
results for each subject are available on the studies web page. While there
is enough raw data to perform detailed statistical analysis, none is
performed. There are enough threats to validity to render the conclusions
from any such detailed analysis spurious. However, it is hoped that some
general conclusions can be drawn from the results obtained.

A total of 844 sets of assignment statements were remembered/recalled
giving a total of 2,547 answers to individual assignments. The answer
given to 43 assignment statement questions was an x in the remember
column (only for some of the initial problems answered by a few subjects).
This response was treated as indicating that the subject believed they knew
the answer. However, since no value was specified it was not possible to
verify the accuracy of the response. Therefore answers having this form
were ignored (they were not counted in any category).

The number of incorrect not seen answers decreased from 13%
(averaged over answers from all subjects) for the first eight problems to
7% for the ninth and subsequent problems. It is inevitable that some
subjects will have noticed that the correct answers was always the first
identifier in the response list. However, not all subjects noticed this pattern
(i.e. they continued to give incorrect answers; in some cases a greater
percentage of incorrect answers).

Individual Subject Performance
There is a great deal of variation in subject performance. Correct recall
performance varied between 0 and 96%, instances where subjects would
refer back varied between 0 and 94%, while incorrect answers varied
between 1 and 40% of all answers given by any subject. This extreme
variation suggests that the experimental design aim of creating problems
whose solution stretched the limits of subjects’ short term memory capacity
was achieved. Had the problems required more or less short term memory
capacity then it is likely that the variations in subjects’ performance would
have been narrower (i.e. subjects would have be likely to have provided a
fewer or a greater number of incorrect or would refer back answers).

A would refer back response does not imply that a problem has
exceeded a subject’s short term memory capacity. It could imply that the
subject is a very cautious individual, or that they were distracted by other
thoughts while answering a particular problem.

If subject performance was consistent for all problems answered, it
would be expected that averaged results for the first few problems
answered would be the same as for the last few problems. Figure 5 plots
would refer back and incorrect answer performance for the first eight and
for the ninth and all subsequent problems answered. The lack of clustering
of the bullets with the crosses means there was little correlation between
the two sets of results. There are approximately twice as many dots below
the crosses as there are above, which suggests that an individual’s
performance improved as more problems were answered.

One possible reason for an increase in performance is because answering
problems enabled subjects to learn something that was beneficial in
answering subsequent questions (e.g. the first identifier in the list of
assignment questions was always the one that did not appear in the previous

Figure 3: Developer Experience. The plot on the left depicts number of lines of code read against number of
years of professional experience. The plot on the right depicts number of lines of code read against number of
lines of code written, for each subject. The size of the circle indicates the number of subjects specifying the given
values. In cases where subjects listed a range of values (i.e. 50,000-75,000) the median of that range was used.

Figure 4: Plot of the number of problems answered against the
number of years of professional experience of the subject.
Dashed lines represent the mean number of problems answered
(22.3) and the mean number of years of experience (14.5). The
problems answered/years experience pairs (22, 6), (32, 8), and (19,
15) occurred for two subjects each.

19CVu/ACCU/Features

assignment statements). One possible
reason for a decrease in performance is
that subjects became fatigued through
having to answer so many questions that
constantly stretched the capacity limits
of their short term memory.

It might be thought that a subject
answering a greater number of
questions would be more likely to give
incorrect or would refer back answers.
Figure 6 shows that this is not the case.
Fitting a least squares line through the
data shows that both the percentage of
incorrect and would refer backanswers
decreased as more questions were
answered. As pointed out earlier it is
possible that some subjects were able to
detect and use patterns in the
presentation of the problems to improve
their performance. This improvement
in performance could take the form of
an increase in the number of problems
answered as well as an increase in the number of correct answers.

Different Kinds of Identifiers
The analysis of individual subject results suggests that their performance
improved as more problems were answered. The analysis of the results for
different kinds of identifiers takes this behaviour into consideration by
dividing the results in two; those from the first eight problems answered
and those from the ninth and all subsequent problem answers.

There are a number of surprises in the results (Figure 7) (at least for
your author):
1 for the first eight problems the pattern of answers for the identifiers

composed of three unrelated letters does not follow that of the identifiers
composed of three syllable words.
One explanation for the three unrelated letter behaviour is that these
letter sequences are likely to be completely unknown to subjects (they
were selected on this basis). When asked to recall information about
previously seen assignment statements subjects were initially unable to
make use of any longer term memory associations as a recall aid, and
so opted for the would refer back option.
As more problems were answered, and subjects encountered more
instances of the three unrelated letter sequences used, it is possible that
some information about these letter sequences became stored in longer
term memory subsystems and
subjects were able to make use of
this new existing knowledge.

2 for the first eight problems subject
performance is best for short
identifiers. For the ninth and
subsequent problems the results
showed what might be called a
word superiority effect (i.e. a
greater number of correct
answers). This suggests that after
some practice the contents of a
person’s longer term memory (i.e.
their experience in using words)
has a greater impact on
performance than limits on their
short term memory capacity.
The extent to which solving the
if statement problem may have
resulted in a degrading of the
contents of short term memory (i.e. assignment statement information)
is discussed in part two of this article.

Kinds of Recall Errors
If the repetitive process of remembering assignment information caused
the numeric values seen to be stored in longer term memory, then it would

be expected that the set of values recalled in error would converge to the
set of values seen during the experiment. The results (Table 1 on next
page) show a small increase (between the first eight, and the ninth and
subsequent answers) in the number of incorrect answers given that appear
somewhere in the list of assignment statements that a subject saw for a
given problem (fifth row). There is a larger increase in the number of
incorrect answers given that come from the set of all values seen during
the experiment (last row).

[concluded at foot of next page]

Figure 5: Left graph is the percentage of would refer back answers for the first 8 problems (crosses) and
for the ninth and subsequent problems (bullet) answered (subjects are ordered by increasing would refer
back response rates). Right graph is the percentage of incorrect answers with subjects being ordered by
increasing percentage of incorrect.

Figure 6: The percentage of would refer back answers (crosses,
least squares line unbroken) and incorrect answers (bullet, least
squares line dashed) plotted against the number of problems
answered by each subject.

Figure 7: The percentage of would refer back, correct and incorrect answers for each kind of identifier,
averaged over all subjects. The left graph is based on answers to the first eight problems, while the right graph
uses the answers from the ninth and subsequent problems answered.

3 Subjects were not asked to provide a guess for those cases where they would refer back,
so it is not possible to measure the accuracy of any information they might have believed
they had on a given assignment statement.

20 CVu/ACCU/Features

[continued from previous page]

Discussion
Based on both years of employment and the claimed number of lines of
code read/written the subjects taking part in the experiment have a
significant amount of software development experience.

The number of years of software development experience is likely to
have a high correlation with a subject’s age. While cognitive performance
has been found to decrease with age, age does not appear to have been a
factor affecting the number of questions answered in this experiment
(however, most subjects are likely to be younger than the age at which
studies find a significant age decrease in performance; 50s and over).

The aim of creating a problem that would require approximately 30
seconds to answer was not met. The average time taken to answer problems
was 67 seconds, over twice that intended in the experimental design. It is
possible that a subject’s short term memory resources were completely
consumed by solving the if statement problem.

Given the experience of the subjects participating in this experiment
any learning affects that occurred are likely to be caused by patterns in the
presentation of the problems (e.g. particular identifiers always appearing
in a given order). Known patterns include:
● using a relatively small, compared to the number of problems seen by a

subject, set of identifiers. The results show that when answering the initial
problems recall performance was significantly better for short identifiers.
The change in performance characteristics, as subjects answered more
problems, could have been caused by subjects learning the limited number
of different identifiers used in the experiment, or it could have been caused
by something else being learned. Repeating the experiment using a greater
number of different identifiers will help answer this question,

● using a relatively small, compared to the number of problems seen by
a subject, set of constant values. The issues here are the same as those
for using a small set of identifiers,

● listing the identifiers in the same order in the recall list as they appeared in
the assignment list. Subjects could have used this information to answer
problems without remembering any identifier information. While
identifiers sometimes need to be recalled in the same order in which they
are read in the source, this is not always the case. Repeating the experiment
using different relative orderings will remove this possible threat to validity,

● having the first identifier in the recall list as the identifier that did not
appear in the assignment list. While the problem appears to be difficult
enough without this identifier, its presence provides a mechanism for
estimating the amount of guessing made by subjects in their answers.

More results are discussed in the second part of this article.
Derek M Jones

Further Reading
For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley. A more advanced introduction is given in
Learning and Memory by John R. Anderson. An excellent introduction to
many of the cognitive issues that software developers encounter is given
in Thinking, Problem Solving, Cognition by Richard E. Mayer.

Acknowledgements
The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making a conference slot available
in which to run it.

first eight ninth and subsequent total

total recall errors 126 158 284

both digits incorrect 64 (51%) 104 (66%) 168

only first digit incorrect 34 (27%) 27 (17%) 61

only last digit incorrect 28 (22%) 27 (17%) 55

answer given in list 56 (44%) 76 (48%) 132

first digit in list 28 (22%) 23 (15%) 51

last digit in list 20 (16%) 18 (11%) 38

answer given in set 61 (48%) 91 (58%) 152

Table 1: Number of various kinds of recall errors made by subjects
when answering the assignment problem. The percentage is calculated
using the total at the top of the corresponding column. The phrase in list
refers to the constant values appearing in the list of assignment statements
read immediately prior to the if statement. The phrase in set refers to the
set of all possible constant values appearing in assignment statements. The
first digit is the most significant digit.

Wx – A Live Port
Part 2: Connecting the User Interface

to Code
Jonathan Selby <jon@xaxero.com>
The process of connecting the user interface to code is very similar to MFC.
The event table is as follows:

MFC

ON_COMMAND(ID_VIEW_SOUNDINGS, OnViewSoundings)
ON_UPDATE_COMMAND_UI(ID_VIEW_SOUNDINGS,
OnUpdateViewSoundings)

wxWidgets

EVT_MENU(ID_SOUNDINGS,
WXWindPlotView::OnViewSoundings)
EVT_UPDATE_UI(ID_SOUNDINGS,
WXWindPlotView::OnUpdateViewSoundings)

For clarity I put the message/event handlers in the class that will
actually be handling it – this is the way the class wizard built the
application in the first place but this is not the a requirement. Class
wizard builds the event table with a few mouse clicks. Under
wxWidgets you have to code it manually, however there is very little
work to do.

As with MFC the wxWidgets framework handles the UI changing in
idle time.

Here is the implementation of the code:

void WXWindPlotView::OnViewSoundings() {
WXWindPlotDoc* doc

= (WXWindPlotDoc*)GetDocument();

if(!Soundings->DepthFilePresent) {
wxMessageBox("Ocean depth features require

Registration and the Xaxero
CD ROM.\nVisit www.xaxero.com
for details.");

return;
}

if(bSound)
bSound=FALSE;

else
bSound=TRUE;

doc->UpdateAllViews(NULL,NULL);
}

void WXWindPlotView::OnUpdateViewSoundings(
wxUpdateUIEvent& event) {

event.Check(bSound);
}

Almost identical to MFC – however one little pitfall to be careful of. If you
want to set a check in an item make sure you have set it to checkable in the
wxDesigner properties panel or you will get assertion errors in debug.

ARRAYMacros
Like MFC, wx allows an array of classes with its own dynamic array
allocation. Here I am trying to define an array of email addresses.

21CVu/ACCU/Features

Prior to the class that defines an email message we define an array
container for the addresses:

WX_DECLARE_OBJARRAY(wxSMTPAddress,
arr_Recipients);

class Message {
...
arr_Recipients

Recipients;
};

#include <wx/arrimpl.cpp>
// this is a magic
// incantation which must
// be done!

WX_DEFINE_OBJARRAY(
arr_ToRecipients);

I left the comment in the include statement. I
had link errors when the
WX_DEFINE_OBJARRAYwas left off and so
after reading the wxArray section of the
documentation fully it all started to make
sense. More important – I went to a clean
compile and link.

Creating a dialog.
Using wxDesigner (see Figure 1) you lay out
your dialog.

This simple example shows how 3 layers
of vertical sizers encapsulate a box. The top
two layers are horizontal sizers with adjacent
controls. The hierarchy is a little tricky at first
but when you have the hang of it, design goes
really fast.

As you create the controls you will be giving them resource names
similar to MFC. Now comes the tricky bit – to generate the code.

For the whole project I am using one wdr file containing all my dialogs,
tool bars, etc. When you press the C++ button the code is written to
wxwindplotrc.cpp that has the low level hard to read stuff that does
the actual painting of the resources.

Figure 1: wxDesigner

Figure 2: The Add A Class Dialog

22 CVu/ACCU/Features

We need to generate a dialog implementation class now. We press the .cpp
button to add a C source. Give it a name (remember to add the suffix .cpp)

This will generate an empty C++ container.
We now need to implement a class for our dialog. Easy enough. Press

the Class button (see Figure 2).
We have added the handlers on the right – everything we wanted our

dialog to do. We respond to either the OK or the cancel messages and we
have handlers to move data to the dialog and out of it.

That is all there is to it – a shell is created that will compile and run. It
will not do anything yet though.

We have two ids that we wish to manipulate from the code.
● A check box: ID_TZCHECK
● An edit box: ID_TZDISP
We need to add inline functions to read and write from these ids.

Press the Get button on the source code editor to add the get functions:
Select the dialog you wish to use and press on the field you want to

allow reading and writing from.
The program will select a method name. You can alter this if you like.

The Add getter button places it in your code. Now we have:

// WDR: method declarations for MyDialog
-> wxCheckBox* GetTzcheck() { return

(wxCheckBoxl*) FindWindow(ID_TZCHECK); }
-> wxTextCtrl* GetTzdisp() { return

(wxTextCtrl*) FindWindow(ID_TZDISP); }

So far wxDesigner has been doing all the work for us. Now we have to roll
up our sleeves and start writing code.

Before we leave the header file we need to add variables to hold our
values. A wxString – DispUTC and BOOL Check.

In the code we need to connect this to actions.
Look at the constructor – the first line should connect the dialog

resource name to code. The first line of the constructor is generated as:

MyDialogFunc(this, TRUE);

Double-check this is what you want. Normally a meaningful name is generated
as specified. This will be in the constructor of the generated source file.

Next we go to the following functions and flesh them out.

bool MyDialog::TransferDataToWindow() {
// wxDesigner has added two getters, used to
// set the values on startup and retrieve them
// when closing the dialog (next method).
GetTzdisp()->SetValue(DispUTC);
GetTzcheck()->SetValue(Check);
return TRUE;

}

bool MyDialog::TransferDataFromWindow() {
DispUTC = GetTzdisp()->GetValue();
Check = GetTzcheck()->GetValue();
return TRUE;

}

There we are – a fully working dialog.
You can include a bunch of dialogs in one chunk of source code – useful

for keeping wizard and notebook pages together.

Invoking the Dialog
In your code include the tzdlg.h file and a calling subroutine in the
header of the calling program and create a call in the body.

Invoke the dialog as follows:

TZDlg dialog(GetMainFrame(), -1,
wxT("Time Zone Display"));

... Initialization
dialog.ShowModal();

As easy as that !
Jonathan Selby

Resources
wxWidgets: www.wxwidgets.org
wxDesigner: www.roebling.de/
Another introduction to wxWidgets:

www.all-the-johnsons.co.uk/accu/index.html
Porting MFC to wxWidgets: www-106.ibm.com/

developerworks/linux/library/l-mfc/

Figure 3: The Add C++ Getter Dialog

23CVu/ACCU/Features

Roger Leigh <rleigh@debian.org>

GTK+ and GObject

In the previous sections, the user interface was constructed entirely by
hand, or automatically using libglade. The callback functions called
in response to signals were simple C functions. While this mechanism is
simple, understandable and works well, as a project gets larger the source
will become more difficult to understand and manage. A better way of
organising the source is required.

One very common way of reducing this complexity is object-
orientation. The GTK+ library is already made up of many different
objects. By using the same object mechanism (Gobject), the ogcalc code
can be made more understandable and maintainable

The ogcalc program consists of a GtkWindow which contains a
number of other GtkWidgets and some signal handler functions. If our
program was a class (Ogcalc) which derived from GtkWindow, the
widgets the window contains would be member variables and the signal
handlers would be member functions (methods). The user of the class
wouldn’t be required to have knowledge of these details, they just create
a new Ogcalc object and show it. By using objects one also gains
reusability. Previously only one instance of the object at a time was
possible, and main() had explicit knowledge of the creation and workings
of the interface.

This example bears many similarities with the C++ Glade example (next
edition). Some of the features offered by C++ may be taken advantage of
using plain C and GObject.

Figure 1: C/gobject/ogcalc in action.

The listings for the code are given at the end of the article (next two pages).
To build the source, do the following:
cd C/gobject
cc 'pkg-config —cflags libglade-2.0' -c
ogcalc.c
cc 'pkg-config —cflags libglade-2.0' -c
ogcalc-main.c
cc 'pkg-config —libs libglade-2.0' -o ogcalc
ogcalc.o ogcalc-main.o

Analysis
The bulk of the code is the same as in previous sections, and so

describing what the code does will not be repeated here. The Ogcalc
class is defined in C/gobject/ogcalc.h. This header declares the
object and class structures and some macros common to all GObject-based
objects and classes. The macros and internals of GObject are out of the
scope of this document, but suffice it to say that this boilerplate is required,
and is identical for all GObject classes bar the class and object names.

The object structure (_Ogcalc) has the object it derives from as the
first member. This is very important, since it allows casting between types
in the inheritance hierarchy, since all of the object structures start at an
offset of 0 from the start address of the object. The other members may be
in any order. In this case it contains the Glade XML interface object and
the widgets required to be manipulated after object and interface
construction. The class structure (_OgcalcClass) is identical to that of
the derived class (GtkWindowClass). For more complex classes, this
might contain virtual function pointers. It has many similarities to a C++
vtable. Finally, the header defines the public member functions of the
class.

The implementation of this class is found in C/gobject/ogcalc.c.
The major difference to previous examples is the class registration and the

extra functions for object construction, initialisation and notification of
destruction. The body of the methods to reset and calculate are identical
to previous examples.

ogcalc_get_type() is used to get the the typeid (GType) of the
class. As a side effect, it also triggers registration of the class with the
GType type system. Remember, Gtype is a dynamic type system. Unlike
languages like C++, where the types of all classes are known at compile-
time, the majority of all the types used with GTK+ are registered on
demand, except for the primitive data types and the base class GObject
which are registered as fundamental types. As a result, in addition to being
able to specify constructors and destructors for the object (or initialisers
and finalisers in Gtype parlance), it is also possible to have initialisation
and finalisation functions for both the class and base. For example, the
class initialiser could be used to fix up the vtable for overriding virtual
functions in derived classes. In addition, there is also an
instance_init function, which is used in this example to initialise
the class. It’s similar to the constructor, but is called after object
construction.

All these functions are specified in a GTypeInfo structure which is
passed to g_type_register_static() to register the new type.

ogcalc_class_init() is the class initialisation function. This
has no C++ equivalent, since this is taken care of by the compiler. In this
case it is used to override the finalize() virtual function in the
GObjectClass base class. This is used to specify a virtual destructor
(it’s not specified in the GTypeInfo because the destructor cannot be run
until after an instance is created, and so has no place in object construction).
With C++, the vtable would be fixed up automatically; here, it must be
done manually. Pure virtual functions and default implementations are also
possible, as with C++.

ogcalc_init() is the object initialisation function (C++
constructor). This does a similar job to the main() function in previous
examples, namely contructing the interface (using Glade) and setting up
the few object properties and signal handlers that could not be done
automatically with Glade. In this example, a second argument is passed
to glade_xml_new(); in this case, there is no need to create the
window, since our Ogcalc object is a window, and so only the interface
rooted from ogcalc_main_vbox is loaded.

ogcalc_finalize() is the object finalisation function (C++
destructor). It’s used to free resources allocated by the object, in this case
the GladeXML interface description. g_object_unref() is used to
decrease the reference count on a GObject. When the reference count
reaches zero, the destructor is run and then the object is destroyed. There
is also a dispose() function called prior to finalize(), which may
be called multiple times. Its purpose is to safely free resources when there
are cyclic references between objects, but this is not required in this simple
case.

An important difference with earlier examples is that instead of
connecting the window destroy signal to gtk_main_quit() to end
the application by ending the GTK+ main loop, the delete signal is
connected to ogcalc_on_delete_event() instead. This is because
the default action of the delete event is to trigger a destroy event.
The object should not be destroyed, so by handling the deletesignal and
returning TRUE, destruction is prevented. Both the “Quit” button and the
deleteevent end up calling gtk_widget_hide() to hide the widget
rather than gtk_main_quit() as before.

Lastly, C/gobject/ogcalc-main.c defines a minimal main().
The sole purpose of this function is to create an instance of Ogcalc, show
it, and then destroy it. Notice how simple and understandable this has
become now that building the UI is where it belongs – in the object
construction process. The users of Ogcalc need no knowledge of its
internal workings, which is the advantage of encapsulating complexity in
classes.

By connecting the hide signal of the Ogcalc object to
gtk_main_quit() the GTK+ event loop is ended when the user presses
“Quit” or closes the window. By not doing this directly in the class it is
possible to have as many instances of it as one likes in the same program,
and control over termination is entirely in the hands of the user of the class
– where it should be.

Roger Leigh

An Introduction to Programming with GTK+ and Glade
in ISO C and ISO C++ - Part 3

24 CVu/ACCU/Features

Listing 1: C/gobject/ogcalc.h

#include <gtk/gtk.h>
#include <glade/glade.h>
/* The following macros are GObject boilerplate. */

/* Return the GType of the Ogcalc class. */
#define OGCALC_TYPE (ogcalc_get_type())

/* Cast an object to type Ogcalc. The object must
be of type Ogcalc, or derived from Ogcalc for
this to work.
This is similar to a C++ dynamic_cast<>. */

#define OGCALC(obj) \
(G_TYPE_CHECK_INSTANCE_CAST ((obj), \

OGCALC_TYPE, Ogcalc))

/* Cast a derived class to an OgcalcClass. */
#define OGCALC_CLASS(klass) \
(G_TYPE_CHECK_CLASS_CAST ((klass), \

OGCALC_TYPE, OgcalcClass))

/* Check if an object is an Ogcalc. */
#define IS_OGCALC(obj) \
(G_TYPE_CHECK_TYPE ((obj), OGCALC_TYPE))

/* Check if a class is an OgcalcClass. */
#define IS_OGCALC_CLASS(klass) \
(G_TYPE_CHECK_CLASS_TYPE ((klass), \

OGCALC_TYPE))

/* Get the OgcalcClass class. */
#define OGCALC_GET_CLASS(obj) \
(G_TYPE_INSTANCE_GET_CLASS ((obj), \

OGCALC_TYPE, OgcalcClass))

/* The Ogcalc object instance type. */
typedef struct _Ogcalc Ogcalc;
/* The Ogcalc class type. */
typedef struct _OgcalcClass OgcalcClass;

/* The definition of Ogcalc. */
struct _Ogcalc {
GtkWindow parent;
/* The object derives from GtkWindow. */

GladeXML *xml; /* The XML interface. */
/* Widgets contained within the window. */
GtkSpinButton *pg_val;
GtkSpinButton *ri_val;
GtkSpinButton *cf_val;
GtkLabel *og_result;
GtkLabel *abv_result;
GtkButton* quit_button;
GtkButton* reset_button;
GtkButton* calculate_button;

};

struct _OgcalcClass {
/* The class derives from GtkWindowClass. */
GtkWindowClass parent;
/* No other class properties are required (e.g.

virtual functions). */
};

/* The following functions are described in ogcalc.c */
GType ogcalc_get_type(void);
Ogcalc * ogcalc_new(void);
gboolean ogcalc_on_delete_event(Ogcalc *ogcalc,

GdkEvent *event,
gpointer data);

void ogcalc_reset(Ogcalc *ogcalc, gpointer data);
void ogcalc_calculate(Ogcalc *ogcalc,

gpointer data);

Listing 2: C/gobject/ogcalc.c

#include "ogcalc.h"

static void ogcalc_class_init(OgcalcClass *klass);
static void ogcalc_init(GTypeInstance *instance,

gpointer g_class);
static void ogcalc_finalize(Ogcalc *self);

/* Get the GType of Ogcalc. This has the side
effect of registering Ogcalc as a new GType if it
has not already been registered. */

GType ogcalc_get_type(void) {
static GType type = 0;
if(type == 0) {
/* GTypeInfo describes a GType. In this case,

we only specify the size of the class and
object instance types, along with an
initialisation function. We could have also
specified both class and object
constructors and destructors here as well. */

static const GTypeInfo info = {
sizeof (OgcalcClass),
NULL,
NULL,
(GClassInitFunc) ogcalc_class_init,
NULL,
NULL,
sizeof(Ogcalc),
0,
(GInstanceInitFunc) ogcalc_init

};
/* Actually register the type using the above

type information. We specify the type we are
deriving from, the class name and type
information. */

type = g_type_register_static(GTK_TYPE_WINDOW,
"Ogcalc", &info,
(GTypeFlags) 0);

}
return type;

}

/* This is the class initialisation function. It
has no comparable C++ equivalent, since this is
done by the compiler. */

static void ogcalc_class_init(OgcalcClass *klass) {
GObjectClass *gobject_class

= G_OBJECT_CLASS (klass);
/* Override the virtual finalize method in the

GObject class vtable (which is contained in
OgcalcClass). */

gobject_class->finalize
= (GObjectFinalizeFunc) ogcalc_finalize;

}

/* This is the object initialisation function. It
is comparable to a C++ constructor. Note the
similarity between "self" and the C++ "this"
pointer. */

static void ogcalc_init(GTypeInstance *instance,
gpointer g_class) {

Ogcalc *self = (Ogcalc *) instance;
/* Set the window title */
gtk_window_set_title(GTK_WINDOW (self),

"OG & ABV Calculator");
/* Don’t permit resizing */
gtk_window_set_resizable(GTK_WINDOW (self), FALSE);
/* Connect the window close button ("destroy-

event") to a callback. */
g_signal_connect(G_OBJECT (self), "delete-event",

G_CALLBACK (ogcalc_on_delete_event),
NULL);

25CVu/ACCU/Features

/* Load the interface description. */
self->xml = glade_xml_new("ogcalc.glade",

"ogcalc_main_vbox", NULL);

/* Get the widgets. */
self->pg_val = GTK_SPIN_BUTTON
(glade_xml_get_widget (self->xml, "pg_entry"));

self->ri_val = GTK_SPIN_BUTTON
(glade_xml_get_widget (self->xml, "ri_entry"));

self->cf_val = GTK_SPIN_BUTTON
(glade_xml_get_widget (self->xml, "cf_entry"));

self->og_result = GTK_LABEL
(glade_xml_get_widget (self->xml, "og_result"));

self->abv_result = GTK_LABEL
(glade_xml_get_widget (self->xml, "abv_result"));

self->quit_button = GTK_BUTTON
(glade_xml_get_widget (self->xml, "quit_button"));

self->reset_button = GTK_BUTTON
(glade_xml_get_widget (self->xml, "reset_button"));

self->calculate_button = GTK_BUTTON
(glade_xml_get_widget (self->xml,

"calculate_button"));

/* Set up the signal handlers. */
glade_xml_signal_autoconnect(self->xml);

g_signal_connect_swapped
(G_OBJECT (self->cf_val), "activate",
G_CALLBACK (gtk_window_activate_default),
(gpointer) self);

g_signal_connect_swapped
(G_OBJECT (self->calculate_button), "clicked",
G_CALLBACK (ogcalc_calculate),
(gpointer) self);

g_signal_connect_swapped
(G_OBJECT (self->reset_button), "clicked",
G_CALLBACK (ogcalc_reset),
(gpointer) self);

g_signal_connect_swapped
(G_OBJECT (self->quit_button), "clicked",
G_CALLBACK (gtk_widget_hide),
(gpointer) self);

/* Get the interface root and pack it into our
window. */

gtk_container_add
(GTK_CONTAINER (self), glade_xml_get_widget(

self->xml, "ogcalc_main_vbox"));

/* Ensure calculate is the default. The Glade
default was lost since it wasn’t in a window
when the default was set. */

gtk_widget_grab_default
(GTK_WIDGET (self->calculate_button));

}

/* This is the object initialisation function. It is
comparable to a C++ destructor. Note the similarity
between "self" and the C++ "this" pointer. */

static void ogcalc_finalize(Ogcalc *self) {
/* Free the Glade XML interface description. */
g_object_unref(G_OBJECT(self->xml));

}

/* Create a new instance of the Ogcalc class (i.e.
an object) and pass it back by reference. */

Ogcalc * ogcalc_new(void) {
return (Ogcalc *) g_object_new(OGCALC_TYPE, NULL);

}

/* This function is called when the window is about
to be destroyed (e.g. if the close button on the
window was clicked). It is not a destructor. */

gboolean ogcalc_on_delete_event(Ogcalc *ogcalc,
GdkEvent *event, gpointer user_data) {

gtk_widget_hide(GTK_WIDGET (ogcalc));
/* We return true because the object should not be

automatically destroyed. */
return TRUE;

}

/* Reset the interface. */
void ogcalc_reset(Ogcalc *ogcalc, gpointer data) {
gtk_spin_button_set_value(ogcalc->pg_val, 0.0);
gtk_spin_button_set_value(ogcalc->ri_val, 0.0);
gtk_spin_button_set_value(ogcalc->cf_val, 0.0);
gtk_label_set_text(ogcalc->og_result, "");
gtk_label_set_text(ogcalc->abv_result, "");

}

/* Perform the calculation. */
void ogcalc_calculate(Ogcalc *ogcalc, gpointer data) {
gdouble pg, ri, cf, og, abv;
gchar *og_string;
gchar *abv_string;
pg = gtk_spin_button_get_value (ogcalc->pg_val);
ri = gtk_spin_button_get_value (ogcalc->ri_val);
cf = gtk_spin_button_get_value (ogcalc->cf_val);
og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

/* Do the sums. */
if (og < 60)
abv = (og - pg) * 0.130;

else
abv = (og - pg) * 0.134;

/* Display the results. Note the GMarkup
tags to make it display in Bold. */

og_string = g_strdup_printf("%0.2f", og);
abv_string = g_strdup_printf("%0.2f", abv);
gtk_label_set_markup(ogcalc->og_result, og_string);
gtk_label_set_markup(ogcalc->abv_result, abv_string);
g_free(og_string);
g_free(abv_string);

}

Listing 3: C/gobject/ogcalc-main.c

#include <gtk/gtk.h>
#include <glade/glade.h>
#include “ogcalc.h”

/* This main function merely instantiates the ogcalc
class and displays its main window. */

int main(int argc, char *argv[]) {
/* Initialise GTK+. */
gtk_init(&argc, &argv);
/* Create an Ogcalc object. */
Ogcalc *ogcalc = ogcalc_new();
/* When the widget is hidden, quit the GTK+ main

loop. */
g_signal_connect(G_OBJECT (ogcalc), "hide",

G_CALLBACK (gtk_main_quit), NULL);

/* Show the object. */
gtk_widget_show(GTK_WIDGET (ogcalc));

/* Enter the GTK Event Loop. This is where all
the events are caught and handled. It is
exited with gtk_main_quit(). */

gtk_main();

/* Clean up. */
gtk_widget_destroy(GTK_WIDGET (ogcalc));
return 0;

}

26 CVu/ACCU/Features

What’s in a Namespace?
Paul Grenyer

In my experience most C++ developers have heard about namespaces.
Most of them understand what namespaces are for and the problems they
solve. Some even make use of them!

Namespaces can be used for more than preventing name clashes. In this
article I will visit the mechanics of namespaces and anonymous
namespaces and explain how they are used to solve some of the problems
associated with linking C++ programs. Then I will move on to explain how
they can also be used to provide context.

What are Namespaces?
The C++ standard has the following description of namespaces:

7.3.0.1 A namespace is an optionally-named declarative region. The name of
a namespace can be used to access entities declared in that namespace; that
is, the members of the namespace. Unlike other declarative regions, the
definition of a namespace can be split over several parts of one or more
translation units.

This tells you what a namespace is, but not what one is used for. Consider
the following example:

You are writing a COM object that is going to be used to split an input
file into a number of output files. For maximum ease of testability and
performance you write the actual file processing code in standard C++ and
wrap it in a Façade [Façade] called FileSplitter. A COM object can
then be written to wrap the file processing FileSplitter class. The
COM object provides an interface that forwards to the file processing
FileSplitter class.

The COM object client has no knowledge that the COM object is
actually just a wrapper, and has no need to know. As far as the client is
concerned the COM object is the file splitter. Therefore the obvious name
for the COM object class is also FileSplitter (with
IFileSplitter the obvious name for the interface).

Having two classes with the same fully qualified name in a C++
program is not permitted. The solution is to introduce namespaces. From
Microsoft Visual C++ 7.0 onwards, all COM classes are placed in the
ATL namespace (in earlier versions COM classes were required to be in
the global namespace). However, although I will use the ATL namespace
in this article; and putting COM objects in the ATL namespace is a
Microsoft convention, using the name of a technology for a namespace
is not usually good practice as it does not provide the right sort of
context. For example it would not be sensible or useful to group together
all abstract base classes or all classes that implement a recognized
pattern.

Due to the limited scope of this example the name for the namespace
containing the file processing FileSplitter class is not clear.
However, an appropriate name might be something like Process, as the
class performs the actual processing of files within the program:

// filesplitter.h

namespace Process {
class FileSplitter {

...
};

}

The file processing FileSplitter class can then be used by fully
qualifying its name in the COM class:

// filesplitter_com.h

#include "filesplitter.h"

namespace ATL {
class FileSplitter : public IFileSplitter {

...
private:

Process::FileSplitter impl_;
};

};

Both classes can now happily coexist in the same program, despite the fact
that they have the same name, as they are both in different namespaces.
The namespaces also help to make maintenance easier by providing local
context for each class.

What are Anonymous Namespaces?
The C++ standard has the following to say about anonymous (or unnamed)
namespaces:

7.3.1.1 An unnamed-namespace-definition behaves as if it were replaced by
namespace unique{ /* empty body */ }
using namespace unique;
namespace unique { namespace-body }
where all occurrences of unique in a translation unit are replaced by the
same identifier and this identifier differs from all other identifiers in the entire
program. (Although entities in an unnamed namespace might have external
linkage, they are effectively qualified by a name unique to their translation
unit and therefore can never be seen from any other translation unit.)

This is an even less useful description than the one for regular namespaces.
Bjarne Stroustrup has the following to say about unnamed namespaces in
The C++ Programming Langue [TCPPPL]:

It is often useful to wrap a set of declarations in a namespace simply to
protect against the possibility of name clashes. That is, aim to preserve
locality of code rather than to present an interface for users...
In this case we can simply leave the namespaces without a name...
Clearly, there has to be some way of accessing members of an unnamed
namespace from the outside. Consequently, an unnamed namespace has
an implied using-directive...
...In particular unnamed namespaces are different in different translation
units. As desired, there is no way of naming a member of an unnamed
namespace from another translation unit.

This gets much closer to what an anonymous namespace is for, but is still not
as clear as it could be. Mark Radford was kind enough to supply me with the
following description and examples of the use of anonymous namespaces:

Designers of C++ programs often encounter a need for some declarations
to have Translation Unit (TU) scope. For example, consider the encapsulation
of database access using SQL: it may well make sense for the SQL strings
to be encapsulated within the TU in which the database access is
implemented.
Having declared identifiers for string constants within a TU, the designer has
another issue to resolve: what if the same identifier is used in another TU?
Without support from the C++ language, it may not be possible to guarantee
avoiding this situation, without telling other people what identifiers have
been used. Putting it another way: without language support, such
encapsulated identifiers are not really encapsulated.
In early C++ the solution was one inherited from C: declare identifiers as
static to give them internal linkage. However, already this has the drawback
of overloading the keyword static. Also, as the language evolved and
templates were added, it became apparent there was another drawback:
identifiers with internal linkage could not be template arguments.
To resolve the above issues, a more C++-centric solution was devised - the
unnamed namespace, or as it tends to be called in more common parlance,
the “anonymous namespace”. Identifiers declared in the anonymous
namespace have external linkage (and can be used as template arguments),
but are accessible only in the TU in which they are declared. The mechanism
by which this is achieved is implementation dependent, but a popular
approach is the use of a scheme where the compiler mangles the identifier
name with that of the TU.

The descriptions in the C++ standard and The C++ Programming
Language, together with the comments from Mark Radford cover the
importance and uses of anonymous namespaces well. Not only do they
prevent name clashes, they also provide context. The reader of a source
file (.cpp) knows that anything located within the anonymous namespace
is only intended for use within that translation unit and no other.

Namespaces Provide Context
Namespaces do not only provide solutions to the problems associated with
linking C++ programs. They can also provide context that helps a developer

27CVu/ACCU/Features

determine a class’s, a function’s or a variable’s position and purpose within
a program just from looking at a single source file.

Before describing the mechanics of namespaces in The C++
Programming language, Stroustrup has the following to say about them:

A namespace is a mechanism for logical grouping. That is, if some
declarations logically belong together according to some criteria, they can
be put in a common namespace to express the fact….

So, namespaces are also about grouping related elements of a program
together. The file splitter example above can be expanded to demonstrate
this. Suppose your program not only splits files, but can also merge them.

Again, the standard C++ processing code should be wrapped in a façade
class (FileMerger) and should be separate from the COM class. The
processing class processes files and therefore belongs in the Process
namespace along with Process::FileSplitter.

// filesplitter.h

namespace Process {
class FileSplitter {
...

};
}

// filemerger.h

namespace Process {
class FileMerger {
...

};
}

The FileMerger COM class, of course, goes into the ATL namespace
with ATL::FileSplitter.

Elements that are grouped together by a namespace share a context.
Equally, when you look at a single class, function or variable declaration
you know what context it is in from its namespace.

For example, you could open any source or header file from the example
above and be looking at a FileSplitter or FileMerger class and
know immediately whether it was a file processing class or a COM class,
just from its namespace. This is a significant maintenance advantage as
you would not have to go searching through other source and header files
trying to determine the context of the file you had just opened.

There are, of course, other ways of providing this context. Some, such
as directory structure, complement the use of namespaces very well, but is
a subject beyond the scope of this article.

Appending File to the front of FileSplitter and FileMerger
suggests that there can be other types of splitters and mergers within the context
of the program. Otherwise, they may as well just be called Splitter and
Merger. In the example presented so far that would be perfectly reasonable.

However, now consider that as well as splitting complete files, record
by record, the records themselves are split in some way. The logical name
for a class that splits a record is RecordSplitter. This introduces a
new context and should really introduce a new namespace:

// recordsplitter.h
namespace Process {

namespace Record {
class Splitter {
...

};
}

}

If a record merging class is introduced into the program that too would go
into the Record namespace. The file processes should also be placed in
a nested namespace:

// filesplitter.h

namespace Process {
namespace File {
class Splitter {
...

};
}

}

// filemerger.h

namespace Process {
namespace File {

class Merger {
...

};
}

}

This technique can of course be taken too far and is probably overkill for
this example, but I hope it shows the concept of namespaces providing
context.

What about anonymous namespaces? Do they provide context too?
Absolutely! Anonymous namespaces provide context within a
translation unit. As stated above, they tell you that the contents of the
anonymous namespace are only intended for use in the current
translation unit.

Consider the following example. You have a lookup table of postcodes
that are to be loaded from a database:

// Postcode.cpp

#include "lookup\postcode.h"

namespace PostcodeTools {
namespace {

const std::string postcodeSql
= "SELECT postcode FROM postcodes";

}

void Postcode::Load() {
dbConn_->Execute(...);
...

}

...
}

There are a number of things that can be done with the postcodeSql
string. It could be a local variable inside the load function, but it may
be something that changes if the database table moves or is renamed
for some reason. Therefore it should be as prominent as possible to
make finding it easy. This would suggest it should be brought out to
namespace scope so that it is near the top of the file. This opens up the
possibility of a name clash (although const variables actually have
internal linkage) as other translation units containing the namespace
PostcodeTools, could also have a postcodeSql member
also.

The obvious solution is to place postcodeSql in an anonymous
namespace as shown. Even though members of an anonymous
namespace have external linkage, they cannot clash with names
declared in other translation units. The anonymous namespace also tells
you that the postcodeSql string is only intended for use within the
source file.

In this article I have examined the use of namespaces and anonymous
namespaces and the context provided by them. I hope I have made a
good case for their usage and that I have encouraged readers to use
namespaces more widely and for context as well as for preventing name
clashes.

Paul Grenyer

References
[Façade] Alan Shalloway, James J. Trott, Design Patterns Explained: A

New Perspective on Object-oriented Design, ISBN: 0201715945
[TCPPL] Bjarne Stroustrup, The C++ Programming Language, Special

Edition, ISBN: 0201700735

Acknowledgments
Thank you to Adrian Fagg, Mark Radford, Phil Bass and Alan
Griffiths.

An Introduction to
Objective-C

Part 3 – An Example Using
Foundation

D.A. Thomas
The best way to get the feel of a programming language is to have a look
at actual code. This demonstration program I’ve written consists of three
Objective-C source files:

Listing 1 shows main.m, which reads file names from the command
line and prints the unique lexical tokens found in each file. Tokens are
strings of printable characters separated by whitespace and punctuation
marks.

Listing 2 shows StringTokenizer.h , which declares the public
interface of the class StringTokenizer . Private methods, being part
of the implementation, typically have no place in this file.

Listing 3 shows StringTokenizer.m, which contains the
implementation of the StringTokenizer class.

Listing 1: main.m

#import <Foundation/Foundation.h>
#import "StringTokenizer.h"

// Prints unique tokens found in files
// supplied as arguments.

int main(int argc, const char *argv[]) {

// Create a pool of items to be garbage-collected
NSAutoreleasePool *pool

= [[NSAutoreleasePool alloc] init];
if(argc > 1) {
int i;
for(i = 1; i < argc; ++i) {
// Read contents of file into string
NSString *path

= [NSString stringWithCString:argv[i]];
NSString *myString

= [NSString stringWithContentsOfFile:path];
if(myString == nil) {
fprintf(stderr, "File %s not found\n",

[path cString]);
// The system will clean up anyway when we
// exit, but we do this for form’s sake
[pool release];
return 1;

}

// Create our tokenizer
StringTokenizer *tokenizer

= [[[StringTokenizer alloc]
initWithString:myString
andDelimiters:@" ,.!?;:\t\r\n"]
autorelease];

// Create a set with room for 100 items to
// hold unique tokens
NSMutableSet *theSet

= [NSMutableSet setWithCapacity:100];

// Get the first token
NSString *token = [tokenizer nextToken];
while(token != nil) {
// This will fail if there is an identical
// token there already
[theSet addObject:token];
// Get more tokens
token = [tokenizer nextToken];

}

// Print out unique tokens in the set in case-
// insensitive alphabetical order
NSArray *tokens = [[theSet allObjects]

sortedArrayUsingSelector:@selector(
caseInsensitiveCompare:)];

printf("Unique tokens in %s:\n",
[path cString]);

int j;
for(j = 0; j < [theSet count]; ++j)
printf("\t%d %s\n", j+1,

[[tokens objectAtIndex:j] cString]);
}

}
else
fprintf(stderr,

"Usage: StringTokenizer file1 file2 ...\n");

// Trigger autorelease of allocated memory
[pool release];
return 0;

}

Listing 2: StringTokenizer.h

// Minimal tokenizer class, useful for
// demonstration purposes only

#import <Foundation/Foundation.h>

@interface StringTokenizer : NSObject {
NSString *data;
NSCharacterSet *delimiters;
size_t position, dataSize;

}

// Default initializer - object contains no data
// and delimiters string set to space, tab, newline
// and return
- (id)init;

// Initialise object with data string;
// delimiters string is set to space, tab
// newline and return.
- (id)initWithString:(const NSString *)aString;

// Initialise object with data string to tokenise
// and a set of delimiters to ignore
- (id)initWithString:(const NSString *)aString
andDelimiters:(NSString *)delims;

// Assign the object a new data string to
// tokenise
- (void)setData:(const NSString *)aString;

// Assign the object a new set of delimiters to work
// with
- (void)setDelimiters:(NSString *)delims;

// Return the next token from the data string or nil
// if none exists
- (NSString *)nextToken;

@end

Listing 3: StringTokenizer.m

#import "StringTokenizer.h"

// Default delimiters are whitespace
#define DEFAULT_DELIMITERS @" \t\n\r"

28 CVu/ACCU/Features

29CVu/ACCU/Features

// Create a category to forward-declare
// private method in order to avoid
// compiler warnings about undeclared methods.
@interface StringTokenizer (Private)
- (void)skipDelimiters;
@end

@implementation StringTokenizer

- (id)init
{
return [self initWithString:nil

andDelimiters:DEFAULT_DELIMITERS];
}

- (id)initWithString:(const NSString *)aString
{
return [self initWithString:aString

andDelimiters:DEFAULT_DELIMITERS];
}

// This is the designated initialiser, which
// is called by all the other initialisers and
// does all the work
- (id)initWithString:(const NSString *)aString

andDelimiters:(NSString *)delims
{
if(self = [super init]) {
position = 0;
data = [aString retain];

// Cache length of data string
dataSize = [data length];
delimiters = [[NSCharacterSet

characterSetWithCharactersInString:delims]
retain];

}
return self;

}

- (void)setData:(const NSString *)aString
{
if(aString != data) {
[data release];
position = 0; // We are starting from scratch
data = [aString retain];
dataSize = [data length];

}
}

- (void)setDelimiters:(NSString *)delims
{
[delimiters release];
delimiters = [[NSCharacterSet

characterSetWithCharactersInString:delims]
retain];

}

- (NSString *)nextToken
{
if(data == nil || position >= dataSize)
return nil;

[self skipDelimiters];
if(position >= dataSize)
return nil;

size_t oldPosition = position;
// Save current position

BOOL nonDelim = YES;
// Assume that the next
// character is a non-delimiter

while(position < dataSize && nonDelim) {
// Test for a match in the delimiter string of
// the character at the current position in the
// data string; if no match is found, increment
// position and proceed.
if(![delimiters characterIsMember:

[data characterAtIndex:position]])
position++;

else
nonDelim = NO;

}

// Create a string containing the token and return
// it. Type NSRange is a struct containing two
// members: location and length
NSRange range = {oldPosition, position-oldPosition};
return [data substringWithRange:range];

}

- (void)skipDelimiters
{
BOOL nonDelim = NO;

// Non-delimiter character not yet found

while (position < dataSize && !nonDelim) {
// Test for a match in the delimter string of
// the character at the current position in the
// data string; if a match is found, increment
// position and proceed.
if([delimiters characterIsMember:

[data characterAtIndex:position]])
position++;

else
nonDelim = YES;

}
}

// Invoked automatically when object is released
- (void)dealloc
{
// Release memory allocated for our instance
// variables
[data release];
[delimiters release];
[super dealloc];

}

@end

Notes
The preprocessor directive #import is generally used in Objective-C; it
differs from #include in that it ensures that a header file is included only
once even if it does not contain guard macros.

Foundation’s memory management involves semi-automated reference
counting. Pointers to all the objects allocated in the main function will be
added to the autorelease pool, and when this pool is released, the method
-dealloc is called on all the objects before the memory they occupy is
freed.

Memory allocation for objects is usually provided by the method
+alloc in the root class, NSObject. -retain increases the reference
count by one, while -release decrements it. -autorelease adds the
receiver to the autorelease pool.

NSString is Foundation’s basic string-handling class. NSString
objects hold Unicode strings that cannot be changed once created;
objects of its subclass NSMutableString allow their contents to be
edited.

StringTokenizer is a class I have written to extract tokens from
a string. It has limited functionality but is sufficient for the purposes of
this demo. Tokens are extracted by calling nextToken repeatedly until
nil is returned. An instance of StringTokenizer is created by
calling the class method alloc to allocate storage for the object and

[concluded on next page]

[continued from previous page]
then the object is initialised by the instance method
initWithString:andDelimiter:, which does the same kind
of work as a constructor in C++ and Java.

The Objective-C keyword nil refers to a null object. It differs from
the macro NULL in that it is perfectly legal and safe to send messages to
nil.

NSMutableSet is a subclass of NSSet, from which it differs by
allowing objects to be inserted and deleted after it has been initialised.
Instances of NSSet and NSMutableSet are unordered collections of
values, where each value occurs at most once.

Objects of class NSArray are immutable ordered collections of objects.
The line:

NSArray *tokens = [[theSet allObjects]
sortedArrayUsingSelector:
@selector(caseInsensitiveCompare:)];

deserves some comment. First the message allObjects sent to the
set causes it to return an NSArray of its contents in arbitrary order; this
NSArray object then receives the message
sortedArrayUsingSelector: with the selector of NSString’s
caseInsensitiveCompare:method as argument. (The compiler
directive @selector turns a method name into a selector.) The
NSArray object’s method sortedArrayUsingSelector then
returns a new copy of itself with the NSString objects in case-
insenstitive ascending collating order.

The StringTokenizer class contains an instance variable called
delimiters of type NSCharacterSet. Its method,
characterIsMember: is called for each character of the string in turn;
if the character is found in the delimiters character set, it is skipped,
and any non-delimiter or unbroken sequence thereof is recognised as a
token and returned.

D. A. Thomas

30 CVu/ACCU/Features

Automatically-Generated
Nightmares

Silas S Brown <ssb22@cam.ac.uk>

A student sent me the source code for a mini-project of his. It came to
about 100 printed pages of Java code, and he had a problem with it. I
started looking through the code, but it was very difficult: there were
hardly any comments, and most variable names implied that the code
was something to do with a graphical interface but it was hard to see
exactly what was going on, and anyway the problem in question had
nothing to do with the interface. I searched in vain for the part of the
code that actually did something other than manipulating interface
objects, and wondered how on earth he can write all of this without
getting completely muddled. I thought “am I such a lousy programmer
that I can only deal with small and manageable code while the new
students can write reams and reams like this?” and “how many hours a
week is a programmer expected to work these days to come up with all
of this?” and “perhaps I’d better admit my utter lack of productivity now
and find a different job”. When I finally figured out roughly how it all
worked, I asked the student a question about part of the code that I
thought was more suspect than the rest, and his reply was “Oh, I don’t
know about that; the GUI wizard program wrote it all for me.” Ah! So
THAT’S why it was so big and complicated. I shouldn’t have worried
so much. Or should I?

There are plenty of “GUI wizards” and other tools that will generate
code for you, and that code will usually contain “TODO” comments to
show where you should add your own logic.

Unfortunately it seems that most programmers, after writing what they
are prompted to write, delete the “TODO” comment and do not add another
in its place, which means that anyone else who wants to browse or debug
the code will first have to spend considerable time unravelling the
automatically generated code to try and figure out where the user-written
code is actually located. This must add up to an awful lot of wasted
programmer time in the industry. While some tools give you code that is
relatively easy to follow when finished, others generate such large amounts
of hard-coded graphical widget handling that you’d be pushed to find
anything else.

I can understand why programmers want to delete “TODO” comments,
especially in the light of tools that flag them up as “things not done”, but
I think it would be better if, instead of deleting the whole comment, they
simply delete the word “TODO” when they’ve done it. That would leave
a comment that gives some description of what is happening and also
serves to highlight where the user-written code is to be found; as the
automatically generated parts usually have few if any comments, any
comments at all would make your code stand out. Even a complete
beginner who is not skilled at writing comments can adopt this method,
and it would make things a great deal easier for anyone who has to check
their work.

What would be even nicer is if more of the wizards and other rapid
application development tools could promote a clearer separation of
concerns between your code and their code. Object-oriented languages like

Java support this naturally (think of encapsulation and all the other
buzzwords you know) but it’s not being used as well as it could be. Why
do the tools promote obfuscation, turning Java into a language of a much
lower level than it was designed to be?

Perhaps it is because they want you to spend a lot of money on other
tools to help you maintain the code. In effect, they are creating a
language of their own which gets compiled into Java and then has to be
de-compiled by their tools before it makes sense. Java is going the same
way as HTML: it was originally intended to be written and read by
humans, but now most of it is generated automatically and can’t easily
be made sense of without highly complex tools (and even then you’re not
guaranteed to see the programmer’s intentions). To see what I mean, take
a straightforward text editor and try to make sense of the source code in
an average Eclipse plugin. (Yes I know some of them are better than
others.)

The problem is that the tools are not always available. What if you want
to review some code when you don’t happen to be sitting at your most
powerful computer? When you’re not at any computer? When the tool
doesn’t co-operate with your special disability access software, or its layout
is too complex for the size of the display you’re using? When there are
license restrictions that get in the way of your using it in the circumstances
at hand? When you don’t even know what tool you’re supposed to be using
because someone has handed you the code without telling you? It’s
understandable that you need the right tools when compiling or testing
code, but it’s rather more restrictive if you have to arrange your life around
them just to look.

Moreover, what if the way that you think best when you review code
does not tie in with the way the tool pushes you into thinking?
Sometimes tool designers push you into a particular way of thinking for
a good reason, but at other times they’re just being short-sighted. It
reminds me of Green’s Cognitive Dimensions of Notations theory;
ordinary text editors and printouts, when applied to code that is designed
for them, tend to be good at allowing “viability” of the notation, avoiding
the need for “premature commitment”, and so on, whereas other tools
don’t always do so well. While they may make some developers more
effective, others become less effective, and that’s bad news when you’re
collaborating.

If you are a user of a code-generation tool, perhaps it would be a good
idea if you put your own code in a completely different file, and get the
automatically-generated stubs to call it. This should make it easier when
the code needs reviewing, or when you want to reuse parts of it in other
projects. It also makes it easier if for some reason you want to re-run the
tool, or to run some other tool (perhaps for a newer kind of interface)
without throwing away all of your work. If you can’t do such separation,
then at least keep clear comments about which parts of the code were
written by hand, otherwise you may be in trouble later.

Unfortunately, for the project in question, we ended up starting over,
because I thought that this would be less effort than trying to figure things
out from the forest of automatically-generated code that was camouflaging
the parts of interest. It shouldn’t have been that way.

Silas S Brown

31CVu/ACCU/Features

Professionalism in
Programming #29

An Insecurity Complex (Part Two)
Pete Goodliffe <pete@cthree.org>

The more you seek security, the less of it you have.
Brian Tracy

Last time we opened an ugly can of worms by investigating the seedy
world of software security. We learnt the nature of security problems
and discovered why it’s depressingly hard to secure our code. This
article concludes our tour by investigating specific code vulnerabilities and
working out how to prevent them in the programs we write.

Feeling Vulnerable
To learn how to write secure code and defeat our adversaries let’s look

at the security nuts-and-bolts. These are some specific types of code
vulnerability. Each is a hole that can be compromised by an attacker.

Insecure Design
This is the most fundamental flaw, and consequently the hardest to fix.

If you don’t consider security at the architectural level then you will be
committing security sins everywhere: sending unencrypted data over public
networks, storing it on easily accessible media, and running software
services that have known security flaws.

You could write a simple system, and rely on your host environment for
security, but then your application will only be as secure as that system.
For example, a Java program can be no more secure than the JVM it’s
running on.

Absolutely every system component must be considered for security
concerns. A computer system is only as safe as its least secure part.

Buffer Overrun
Many applications are public-facing, running an open network port or
handling input from a web browser or GUI interface. All of this input must
be parsed and acted on. If you’re not careful, these are prime sites for
security failure.

Parsing is often done using the standard C library function sscanf
(although this exploit is far from a C-only problem). You might see code
like this:

void parse_user_input(const char *input) {
/* first parse the input string */
int my_number;
char my_string[100];
sscanf(input, "%d %s", &number, my_string);
... now use it ...

}

The problem is simple (and obvious). A badly formed input string could cause
mayhem. Any string over 100 characters long will overrun the my_string
buffer, and smear arbitrary data across invalid memory addresses.

The results of this can vary in severity. Sometimes the program will
carry on unaffected; you’ve been very, very lucky. Sometimes the program
continues, but its behaviour is subtly altered – this can be hard to spot and
confusing to debug. Sometimes the program will crash as a consequence,
perhaps taking other critical system components down with it. But the
worst case is when the spilt data gets written somewhere in the CPU’s
execution path. This isn’t actually hard to do, and allows an attacker to
execute arbitrary code on your machine, potentially even gaining complete
access to it.

Overrun is easiest to exploit when the buffer is
located on the execution stack, as in the example
above. Here it’s possible to direct CPU behaviour
by overwriting the stack-stored return address of
a function call. However, buffer overrun exploits
can abuse heap-based buffers too.

Embedded Query Strings
This breed of attack can be used to crash
systems, execute arbitrary code, or fish for
unauthorised data. Like buffer overrun it relies
on a failure to parse input, but rather than burst
buffer boundaries these attacks exploit what the

program subsequently does with the unfiltered input.
In C programs format string attacks are a common example of the

problem. A great culprit is the printf function (and its variants), being
used as follows:

void parse_user_input(const char *input) {
printf(input);

}

The input string is used as printf’s format string parameter, and a
malicious user could provide an input string containing format tokens (like
%s and %x for example). This can be used to print data from the stack or
even from locations in memory, depending on the exact form of the
printf call. An attacker can also write arbitrary data to memory locations
using a similar ploy (exploiting the %n format token).

Solutions to this problem aren’t hard to find. Simply writing
printf("%s", input) instead of printf(input) will avoid the
problem, by ensuring that input is not interpreted as a format string.

There are many other contexts where an embedded query can be
inserted maliciously into program input. SQL database query statements
can be surreptitiously fed into database applications to force them to
perform arbitrary database lookups for an attacker.

Another variant is commonly exhibited by lax web-based applications.
Consider an online bulletin board system providing forums where users
post messages to be read by any other web browser. If an attacker posts a
comment containing hidden Javascript code, this will be executed by all
browsers rendering the page – without their users realising. This is known
as a cross site scripting exploit, due to the way the attack works ‘across’
the system; from an attacker’s input, through the web application, finally
manifesting on a victim’s browser.

Race Conditions
It is possible to exploit systems which rely on the subtle ordering of input
events, to provoke unintended behaviour or crash the code. This is
generally exhibited in systems with complex threading models, or which
comprise of many collaborating processes.

A threaded program might share its memory pool between two worker
threads. Without adequate guarding, one thread might read information in
the buffer that the writer thread did not intend to release yet.

This problem isn’t restricted to threaded applications, though. Consider
the following fragment of Unix C code. It intends to dump some output to
a file, and then change file permissions on it.

fd = open("filename");
/* point A */
write(fd, some_data, some_data_size);
close(fd);
chmod("filename", 0777);

There is a race here that at attacker can exploit. By removing the file at
point A and replacing it with a link to their own file the attacker gains a
specially privileged file. This can be used to further exploit the system.

Integer Overflow
Careless use of mathematical constructs can cause a program to cede
control in unusual ways. Integer overflow will occur when a variable type
is too small to represent the result of an arithmetic operation. An unsigned
8 bit data type renders this C calculation erroneous:

uint8_t a = 254 + 2;

More Terms
There are a few important pieces of security terminology. Understanding
them will help us to reason about security problems.
Flaw A flaw is an unintended problem in an application. It is a program
bug. Not all flaws are security problems.
Vulnerability A vulnerability exists when a flaw opens the possibility for
a program to be insecure.
Exploit This is an automated tool (or a manual method) that employs a
program vulnerability to force unintended – and insecure – behaviour.

The contents of awill be 0, not the 256 you’d expect; 8 bits can only count
up to 255. An attacker can supply very large numeric input values to
provoke overflow and generate unintended program results. It’s not hard
to see this causing significant problems; the following C code contains a
heap overrun waiting to happen thanks to integer overflow:

void parse_user_input(const char* input) {
uint8_t length = strlen(input) + 11;
char *copy = malloc(length);
if(copy) {

sprintf(copy, "Input is: %s", input);
... do something with copy ...

}
}

It’s true that uint8_t is an unlikely candidate for the string length
variable, but the exact same problem manifests itself with larger data types.

This kind of problem is just as likely with subtraction operations (where
it’s called integer underflow). It’s not only generated by such simple
operations, and can stem from mixed signed/unsigned assignments, bad
type casting, and multiplication or division.

Protection Racket
So what techniques will protect us from this mayhem? We’ll start to answer
this with a simple analogy from the Real World. If you were to secure a
building there’s a number of things you’d do:
● Close all the unnecessary entrances, brick up the back door, and board

over the windows.
● Obscure the remaining windows so people can’t easily see what’s inside.
● Secure the entry points. Lock all doors, hide the keys, and make sure

you use very good locks.
● Employ a guard to patrol inside and out.
● Add security mechanisms, like a burglar alarm, electronic pass cards,

identity badges, etc. There’s no point in installing these if they’re not
used properly, though. A door can be left ajar regardless of any fancy
lock devices. A burglar alarm can be left unset.

● Put all your valuables in a safe.
In summary, you would cut down on the possible attack points and employ
technology that deters, blocks, identifies, and repels attackers. These have
many software-writing analogues which we’ll investigate below. They can
each be applied at a number of different development levels, including:
● On a particular system installation . The exact OS configuration,

network infrastructure, and the version number of all running
applications each have radical security implications.

● The software system design. We need to address design issues like: can
the user remain ‘logged in’ for indefinite periods, how does each
subsystem communicate, and what protocols are used?

● The actual program implementation; it must be flaw-free. Buggy code
leads to security vulnerabilities.

● The system’s usage procedure. If it’s routinely used incorrectly, any
software system can be compromised. We should design to prevent this
as much as possible, but users must be taught not to cause problems.
How many people write down their username/password on paper beside
their terminals?

Creating a secure system is never easy. It will always require a
security/functionality compromise. The more secure a system is, the less
useful it becomes. The safest system has no inputs and no outputs; there’s
nowhere for anyone to attack. It won’t do much, though. The easiest system
has no authentication, and allows everyone full access to everything; it’s
just terribly insecure. We need to pick a balance. This depends on the nature
of the application, its sensitivity, and the perceived threat of attack. To write
appropriately secure code we must be very clear about such security
requirements.

Just as you would take steps to secure a building, the following
techniques will protect your software from malicious attackers.

System Installation Techniques
First we’ll look at practices that will protect your software once it’s been
installed. Perhaps this is backwards, but it will highlight what holes remain
to be plugged at a lower level. No matter how good your application, if the
target system is insecure then your program is unprotected.
● Don’t run any untrusted, potentially insecure software on your computer

system.

This raises the question: what makes you trust any piece of software?
You can audit open source software to prove that it’s correct (if you have
the inclination). You can opt for the same software that everyone else
uses, thinking that there’s safety in numbers. However, if a vulnerability
is found in that software you, and many other people, must all update.
Or you can pick a supplier based on their reputation, hoping that it’s a
worthwhile indicator.

● Employ security technologies, like firewalls and spam/virus filters.
Don’t let crackers in through a back door.

● Prepare for malicious authorised users by logging every operation,
recording who did what and when. Backup all data stores periodically
so that bogus modifications don’t lose all of your good work.

● Minimise the access routes into the system, give each user a minimal
set of permissions, and reduce the pool of users if you can.

● Set up the system correctly. Certain OSes default to very lax security,
just inviting a cracker to walk straight in. If you’re setting up such a
system then it’s vital to learn how to protect it fully.

● Install a honeypot: a decoy machine that attackers will find more easily
than your real systems. If it looks plausible enough then they’ll waste
their energy breaking into it, whilst your critical machines continue
unaffected. Hopefully you’ll notice a compromise of the honeypot and
repel the attacker long before they get near your valuable data.

Software Design Techniques
As programmers this is the essential place to get our security story straight.
You can try to shoehorn it into code at the end of a development cycle, and
you’ll fail. Security must be a fundamental part of your system’s
architecture and design.

So what design techniques will improve our software security? The
simplest software design is the easiest to secure. So don’t run any software
at all. Failing that, run your program in a sealed box in an underground
bunker in an undisclosed location in the middle of a desert. That way,
crackers can’t get anywhere near it. Otherwise you’ll have to think about
how your software will be used, and how to actively prevent anyone from
abusing it. Here are the winning strategies:
● Limit access to the system as much as possible. The hardest kind of

access to guard against is physical access to the computer itself; how
can you stop an attacker switching it off, or installing their own evil
software? Physical access notwithstanding, design your software to
block as many entry points as possible.

● Limit inputs in your design so that all communication goes through only
one portion of system. This way an attacker can’t get all over your code.
Their influence is limited to a secluded corner, and you can focus your
security efforts there1.

● Run every program at the most restrictive privilege level possible. Don’t
run a program as the system superuser unless it’s absolutely necessary,
and then take even more care than usual. This is especially important
for Unix programs that run setuid – these can be run by any user, but
are given special system privileges when they start.

● Avoid any features that you don’t really need. Not only will it save you
development time, it will reduce the chance of bugs getting into the
program – there’s less software for them to inhabit. In general, the less
complicated your code, the less likely it is to be insecure.

● Don’t rely on insecure libraries. An insecure library is anything you don’t
know to be secure. For example, most GUI libraries aren’t designed
forsecurity, so don’t use them in a program run as the superuser.

● Avoid storing sensitive data. If you must, obscure or encrypt it. When
you handle secrets be very wary where you put them; lock memory
pages containing sensitive information so that your OS’s virtual memory
manager can’t ‘swap’ it onto the hard disk, leaving it available for an
attacker to read.

● Obtain secrets from the user carefully. Don’t display passwords.
● Specify good locks. That is, use tightly controlled password access and

employ strong encryption to store data.
The least impressive security strategy is known as security through obscurity,
yet this is really the most prevalent. It merely hides all software design and
implementation behind a wall, so that no one can see how the code works
and figure out how to abuse it. ‘Obscurity’ means that you don’t advertise
your critical computer systems in the hope that no attacker will find them.

[concluded at foot of next page]

32 CVu/ACCU/Features

1 Of course, it’s never quite that simple. A buffer overrun could occur anywhere in your
code, and you must be constantly vigilant. However, most security vulnerabilities exist
at, or near, the sites of program input.

33CVu/ACCU/Reviews

It’s a flawed plan. Your system will one day be found, and will one day
be attacked.

It’s not always a conscious decision, and this technique works very
conveniently when you forget to consider security in the system design at
all. That is, it’s convenient until someone does compromise your system.
Then it’s a different matter.

Code Implementation Techniques
With a bullet-proof system design your software is unbreakable, right?
Sadly not. We’ve already seen how security exploits can capitalise on flaws
in code to wreak their particular brand of chaos.

Our code is the front line, the most common route an attacker will try
to enter through, and the place our battles are fought. Without a good
system design even the best code is unprotectable, but under the shadow
of a well thought out architecture we must build strong walls of defense
with robust code. Correct code is not necessarily secure code.
● Defensive programming is the main technique to achieve sound code.

Its central tenet – assume nothing – is exactly what secure programming
is about. Paranoia is a virtue, and you can never assume that the user
will employ your program as you expect or intend.
Simple defensive rules like: ‘check every input’ (including user input,
startup commands, and environment variables), and ‘validate every
calculation’ will remove countless security vulnerabilities from your
code.

● Perform security audits . These are careful reviews of the source code
by security experts. Normal testing won’t find many security flaws; they
are generally caused by bizarre combinations of use that ordinary testers
wouldn’t think of, for example very long input sequences which
provoke buffer overrun.

● Spawn child processes very carefully. If an attacker can redirect the sub-
task then they can gain control of arbitrary facilities. Don’t use C’s
system function unless there’s no other solution.

● Test and debug mercilessly. Squash bugs as rigorously as you can. Don’t
write code that can crash; its use could bring down a running system
instantly.

● Wrap all operations in atomic transactions so an attacker can’t exploit
race conditions to their advantage. You could fix the earlier chmod
example by using fchmod on the open file handle, rather than
chmoding the file by name – it doesn’t matter if the attacker replaces
the file, you know exactly what file is being altered.

Procedural Techniques
This is largely a matter of training and education, although it helps to select
users who aren’t totally inept, if you have that luxury.

Users must be taught safe working practices: to not tell anyone their
password, to not install random software on a critical PC, and to use their
systems only as prescribed. However, even the most diligent people will
make mistakes. We design to minimise the risk of these mistakes, and hope
that the consequences aren’t ever too severe.

Conclusion
Programming is war.

Security is a real issue in modern software development; you can’t
stick your head in the sand and hide from it. Ostriches write poor code.
We can prevent most security breaches by better design, better system
architecture, and greater awareness of the problems. The benefits of a
secure system are compelling, since the risks are so serious.

Pete Goodliffe

Bookcase
Collated by Christopher Hill
<accubooks@progsol.co.uk>

A Note from Francis
While we are very happy to have reviews
submitted for books that you have bought please
make sure that you include all the relevant
information with your review (i.e. all the
information provided with our reviews below
apart from the £/$ ratio.)

In addition if you want to ask a publisher for
a review copy on behalf of ACCU you must go
through the correct process, that includes asking
the book review editor. Publishers get unhappy
when they are asked for a review copy when their
records show they already provided one. They
often recognise the names of our more prolific
reviewers and assume that if one of those asks
for a review copy they have been authorised to
do so. I do not want our excellent relationship
with book publishers damaged by
thoughtlessness. They accept our, sometimes
caustic, reviews and in return we should stick to
the process. Just drop me an email and usually
the answer will be to go ahead.

Prices

While I was in Redmond I stocked up with a
couple of dozen Science Fiction books, not just
because some of them were not yet available in
the UK but because I was paying the same
number of dollars that I would expect to pay in
pounds this side of the Atlantic. That is just to put
a little perspective on relative book prices.

However I think US readers might have a good
reason to grumble about a book price that
converted to more than two dollars to the pound
(Wiley accomplished that this time with a
conversion of 2.13) while Addison-Wesley
managed the worst rate the other way (with a
conversion of 1.03). That these are two of the best
technical publishers around is no excuse for such
terrible price comparisons across the Atlantic.

Prize Draw

(extended time – now closes midnight
December 31st/January 1st)
Now to turn to something positive, and something
you can all join in. I would like readers to do three
things. First select the book that you have read that
you think has been most underrated or overlooked.
Just one, and I know that makes it hard for some
but the effort of choosing can focus the mind. Of
course there are no right answers but it will be
interesting if some books turn up more than once
(and if only three readers respond ...)

The second thing is to choose a category
(novice programmer, newcomer to C++,
embedded systems developer, games developer,
etc.) and list which books you would recommend
given a) a budget of £100 ($180) and b) a budget
of £250 ($450).

And lastly, given a budget of £2000 ($3600) list
what software development tools and references
you would take with you for a year’s stay on a
desert island. The desert island comes equipped
with the essentials for life and electric power.

There will be a prize draw for all responses
submitted to francis@robinton.demon.co.uk
by midnight December 31st/January 1st Greenwich

Mean Time. The size of the prize will depend on
the number of entrants so being the only entrant
won’t win very much.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members – if you ever have a problem with this,
please let me know – I can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.
The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. I consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). I consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

Reviews

34 CVu/ACCU/Reviews

C & C++
C++ Coding Standards by Sutter
& Alexandrescu (0-321-11358-
6), Addison-Wesley, 220pp @
£26.99 (1.30)
reviewed by Francis Glassborow

Herb Sutter gave me a manuscript copy of this
book when I was in Redmond recently. I thought
readers might like the benefit of a fast review
from me before someone else does a more in
depth review for a later issue of C Vu. (Note that
at the time of writing the book is only on
distribution in North America but by the time
you read this it should be available in Europe –
check elsewhere in this issue of C Vu because I
hope to arrange some form of special Christmas
deal including this book with Blackwells.)

Before I go any further, I should make it
clear that this is a book about best practices for
programming in C++. I find that some people
do not clearly distinguish between ‘language
standards’ (nothing to do with this book) and
‘programming guidelines’ (essentially what this
book presents the basis for).

The book starts with some general (largely
non-code specific) guidelines. The first of these
can be summarised as exhorting the reader to
not waste time on such minor issues as code
layout, just be consistent (with the style used
by the file you are maintaining, the rest of your
code or with the team you are a member of). I
suspect that there are readers who will get very
heated about example 4 in guideline 0. This
concerns SESE (single entry, single exit). Now
I happen to agree with the authors that
requiring SESE in a coding standard is archaic
and no longer appropriate, however there are
well-respected members of the C++
community who would very strongly disagree.
The solution is to accept the basic spirit of the
guideline and not get over-heated if your
instructor insists your code should be SESE.

The reason that I took time to call out the
above example is that it is a particular example
of a general objective of the authors; this is not
a book telling the reader what they must do, it
is a book setting out some general principles. If
you understand the intent of the book as a
whole and the individual guidelines in
particular you will be able to adopt and adapt
to your own needs and environment.

Despite there being two authors, both highly
competent, who have done their research with
care and attention to detail there is, inevitably,
a degree of subjectivity in their 101 ‘rules’.

The individual guidelines vary from very
simple, very specific ones such as ‘Avoid
magic numbers’ (#17) to rather more general
ones such as ‘Design and write error-safe code’
(#71).

I think that #17 does not go far enough in
either explaining when a numerical constant is
a magic number. There is a difference between
an arbitrary limit (such as the maximum size
for an array) and a mathematical constant such
as π. Both deserve to be named but for rather
different reasons. On the other hand there are
simple integer values (such as the number of
feet in a yard) that do not deserve to be named
if you are only using them in a context where
the meaning is clear (length_in_feet =
3 * length_in_yards).

I also believe that this guideline would have
been more powerful had it been ‘Avoid magic’
and then gone on to explain that using named
(inline) functions avoids overly complicated
‘magic’ expressions and that a typedef can
giving more meaning to the type you are reusing.

Almost every one of the 101 items provides
a basis for discussion. That is as it should be. I
would offer a meta-guideline ‘Do not slavishly
follow guidelines’. I will leave it to another
place and time to expand on that.

Many of the items in this book are already
known to experienced programmers but they
deserve their place because this book should be
one that is read and digested by everyone from
the aspiring novice to the long-term expert.

Now, I wonder if the authors have started on
‘More C++ Coding Standards’. If they haven’t,
they should because there is still much more
wisdom that deserves encapsulation.

An Introduction to GCC by Brian
Gough (0-9541617-9-3), Network
Theory Limited., 116pp @ £12-95
(1.54)
2nd review by Ian Bruntlett

This book is a good introduction to GNU
C/C++ let down by three serious omissions: a)
it does not show you how to use gdb to debug
programs; b) it overlooks make, a critical tool
for non-trivial applications; c) it omits to
mention the -Weffc++ compiler option that
warns about violations of the style guidelines
from Scott Meyer’s Effective C++ book.

On the other hand, it does provide
information about useful system utilities:
● file – list details about an executable;
● nm – list an executable/object file’s symbol

table / name table;
● ldd – list an executable/object file’s

dynamically linked libraries;
● gcov – GNU coverage testing tool; and
● gprof – GNU profiler
Verdict: Print a copy for yourself – I would not
buy it until the next edition appears hopefully
covering the omitted topics. (GNU Free
documentation downloadable from
www.network-theory.co.uk/gcc/intro.)

The Definitive Guide to GCC by
Wall & Hagen (1-59059-109-7),
Apress, 500pp @ £35-50 (1.41)
reviewed by Ian Bruntlett
The big question that I intend to

address is: why buy this book instead of
relying on the free book “An introduction to
GCC for the GNU compilers gcc and g++?”

Well, this book does cover more ground
than its rival – sadly, like its competitor it fails
to document the GNU debugger (gdb) or the -
Weffc++ option or even make – it does cover
automake which makes the make oversight
surprising. However, in this book’s favour it is
unique in covering:
● How to build GCC from source.
● Using autocong and automake.
● Using libtool.
● Trouble shooting GCC (including build &

installation problems).
● GCC online help (GNU info) - although it

fails to mention that info is obsolete if you’re
using KDE - just open a Konqueror window
and type in ##gcc.

Verdict: If you want a comprehensive
reference, buy this book. Otherwise buy or
print “An introduction to GCC”.
Recommended.

C# & Java
Learning Java 2ed by Patrick
Niemeyer & Jonathan Knudsen (0
596 00285 8), O’Reilly, 807pp +
CD @ £31-95 (1.41)
reviewed by Ivan Uemlianin

‘Learning Java’ is a well-written exploration of
Java’s features. However, its support for
learning the language is poor. Ironically, given
the book’s history, ‘Exploring Java’ would have
been a better title.

After two chapters introducing Java,
chapters 3-8 cover the language basics,
chapters 12-14 cover network and Internet
programming, and chapters 15-20 cover the
Swing GUI toolkit (the Swing chapters take up
around a quarter of the book). Other chapters
cover various topics like text, i/o, JavaBeans,
Applets and XML.

The book is not organised into parts and, apart
from the fact that simple topics are generally
discussed before complex topics, the course of
discussion can feel arbitrary. For example, the
XML chapter is the last in the book, 14 chapters
away from the text chapter, and 10 chapters away
from web programming. This can make progress
through the book feel a little haphazard.

It is clear that the reader is assumed to have
a programming background, and the basics are
covered very tersely (e.g., on p.90, do/while
gets, “the do and while iterative statements
have the familiar functionality”).

There are no exercises. This means that the
book cannot be used for self-study, and is of
limited use for study with an instructor:
instructors will have to use their own ingenuity
or find another source for exercises. There are
plenty of examples, however, almost all of
which work as advertised.

The book is at its best when most
discursive, (e.g., chapters 5-7 on Java’s style of
object-orientation). The authors explain their
topics well when they give themselves the
space: for example, five pages on
internationalisation is not enough space, but I
found the section on sockets (15 pages in a
chapter on network programming) quite useful.

For its first two editions this book had the
title ‘Exploring Java’. ‘Exploring Java’ is still
a better title and fits the book better than
‘Learning Java’. As a discussion of Java’s
features, with the reader released from the
pressure of having to ‘learn’, the book works
very well. The pitch of the book makes sense:
the reader knows a bit of Java and would like a
more rounded appreciation. As a book for
learners, it is flawed: there are no exercises; the
structure is piecemeal rather than progressive;
the pitch level is not consistent.

I could perhaps recommend this book for
either (a) an experienced programmer who wants
to become familiar with the details of Java
without bothering too much about the basics
(although in this case something more focussed
on a problem domain might be preferable); or (b)
a learner who has a basic course under their belt
and wants to explore the language a bit more.

35CVu/ACCU/Reviews

Technical Java by Grant Palmer (0
13 101815 9), Prentice Hall, 466pp
@ £39.99 (1.25)
reviewed by Ivan Uemlianin
Technical Java has two target

audiences: the newcomer to Java from a natural
science background; the seasoned programmer
who is sceptical about using Java in this domain.
I recommend the book for either audience.

The book has four parts. The first set of
chapters deals briefly with Java’s differences
with Fortran, C and C++. The second section
(chapters 5-16) covers the Java language itself.
Then comes the ‘technical’ section (chapters
17-24) on mathematical modelling. The
examples covered in this section come
primarily from fluid mechanics (modelling gas
mixtures, air flow, etc.), but the techniques are
general, and include the Fourier transform.
Finally, come three chapters on building the i/o
wrappers (simple i/o, GUI and web) that turn
models into applications.

Each of the technical chapters has a good
project feel. A problem is clearly stated, along
with its mathematical representation. In
discussing a Java solution, due consideration is
given to analysis and design (e.g., class
hierarchies, public methods). The code that
implements the mathematics is a succinct and
‘obvious’ response to the problem as defined.
These are good examples of how to approach
scientific programming.

Those who know the language can safely skip
the first 16 chapters, but for those new to Java,
these chapters provide a workable introduction.
In particular, the science and engineering flavour
is there right from the beginning: instead of
“Hello world!” we have “compute area of
circle”; interfaces are illustrated by an
“Electrostatic interface ... to be implemented by
classes that represent charged bodies”.

The language is terse almost to the point of
being brusque (“If you want to create a GUI with
Fortran you are out of luck”), but very clear. The
author favours simple, direct sentences. This
makes the text easy to follow. Similarly, it is easy
to navigate, as the relevance of any particular
section is apparent immediately.

The content seems clear and correct - apart
from the peculiar assertion in the C and C++
chapters that Java has no void type (the most
common line of code in the book is ‘public static
void main(String args[]) {’). I was surprised to
find no discussion of floating point arithmetic, as
this can be relied on to trip up the uninitiated.

This book will be useful to people evaluating
languages for a scientific project. Although it
cannot answer the question of whether Java is
the language to use for scientific programming,
it certainly makes a good case.

For the right person, this book could also be
a good introduction to Java. I imagine someone
from a natural science background would feel
very at home with it, just as I did.

Logging in Java with the 3DK 1.4
Logging API and Apache by
Samudra Gupta (1-59059-099-6),
Apress, 324pp @ £32-00 (1.56)
reviewed by Silvia de Beer

This book describes two logging APIs. The
first third of the book describes the simpler
JDK 1.4 logging API, and the second part the

more complex Apache log4j API, which also
offers more features and flexibility. I think it is
a good choice to cover both APIs in one book,
because for small projects, the JDK Logging
API might be sufficient. By reading this book,
a developer can make a choice whether he
needs the more complex Apache log4j, or
whether the simple JDK logging API might do
the job. The similarities and differences are
well explained between the two APIs.

This book is not a reference with a complete
interface of the two APIs, and it does not give a
reference of the syntax of the configuration files,
especially for log4j. However, I did not think that
this is such a negative point of the book, because
it would have added many pages that might not
be very useful. If you want to find out about the
details of the APIs, there is no better place than
the JavaDoc and possible a few other documents
online. The book is well written, and explains
correctly the ideas behind the two logging APIs.
A few UML class and interaction diagrams are
given to explain the interaction between the
various classes and interfaces that constitutes the
two logging frameworks. The examples do
support the text very well and I found this a very
pleasant book to read. One thing is maybe not yet
stressed enough in this book and that is the
enormous value of good configurable logging
statements in your application. It is very
important that a developer learns to discern the
points where a logging statement is required, to
be able to correctly trace problems in the future.

C# in Easy Steps by Tim Anderson
(1-84078-150-5), Computer Step*,
192pp @ £10-99 (no US price)
reviewed by Francis Glassborow
I guess for the raw amateur novice or

for the professional who only wants a superficial
quick once over this book might be of some use
but for most its superficial approach makes it
useless.

I have no doubt that it will get good reviews
from first timers who will not realise that the ease
with which they work through it has little to do
with its use of English or its use of colour and
interminable screenshots. The reason it will seem
so much easier than many other books is that it is
completely superficial and makes no immediate
demands of the reader’s intelligence.

It is only when the newcomer tries to
actually do some programming for themselves
(there are no exercises or other things that
might disturb the reader’s peace of mind by
letting them discover how much more there is
to both programming and C# than has been
revealed in this book) will soon find that they
are having problems with anything other than
the most trivial of programs.

Yes, the book is cheap for a book on
programming but even impoverished students
understand the concept of value for money. As
for the back-cover claim that it offers ‘cost-
effective training for your staff’, well I think
that if I had an employer who considered this
book a substitute for proper training I would be
looking for new employment.

The only person for whom this book has
anything substantive to offer is one who is
content with superficial knowledge. If you
genuinely want to learn either C# or
programming this is not the book for you.

Python & Other
Languages

Perl for Oracle DBAs by Andy
Duncan & Jared Still (0 596 00210
6), O’Reilly, 602pp @ £31-95 (1.41)
reviewed by Joe McCool
Perl, Oracle and Database

Administration, along with the world wide
web, go together like “horses and carriages”.
The ability of Perl to enable quick, knock-
together, yet rugged scripts suits the tasks of
the DBA admirably well.

My own exposure to Oracle has been
limited. I am much more familiar with
MySQL, but this does not at all limit my
appreciation of the current efforts. Indeed the
similarities are immediately obvious. A
complete munging example is given where data
is sucked from a MySQL database and poked
into an equivalent Oracle one.

Perl’s strength derives from the availability
of Modules – ready built blocks of code that
can be seamlessly incorporated into user
programs. This is particularly true in the area
of databases. The Perl DBI (database interface)
is one of the most popular. (It is currently
maintained by a friend of mine from Belfast).
Modules can be pulled down from the web and
installed effortlessly - there is even a module
available to do this. All this is described fully.

Part III describes a complete DBA Toolkit
developed by the authors in Perl. It is available
for both Win32 and Unix operating systems.

Another area of covered is the user
interface, again implemented by modules. One
being the Perl/Tk module, which enables the
user to build professional Oracle DBA GUI’s
with little heartache. All explained well,
especially GUI’s for DB tuning.

Another thing that that I found useful about
this book was an appendix on regular
expressions - not just the technical aspects, but
the historical development. I had no idea that
Alan Turing played a part, nor that Godel was
involved. It seems that the mathematics
department at Princeton was central to the
development of regexes. Godel, Turing,
Stephen Kleene and Alonzo Church all lent a
hand there at some stage.

Yes, I can thoroughly recommend this work.
I got a lot out of it. The style is clear, jovial and
a pleasure to read.

Methodologies &
Testing

Software Testing Fundamentals
by Marnie L. Hutcheson (D-471-
4302O-X), Wiley, 408pp @ £27-95
(1.43)
reviewed by Chris Hills

Another book on testing, this is good! It means
that more people are taking testing seriously. It
also means that testing is becoming a formal
part of system design.

The book covers some familiar ground and
gives the usual definitions but if you have not
done much formal (I mean organised not Formal
Methods) testing before these are needed.
Actually they are needed anyway in a skill

36 CVu/ACCU/Reviews

where everyone seems to have their own
definitions. The book is testing in general and
will suite most commercial software: That is not
the safety critical (usually embedded) systems.

The reason I suggest this is that the book
has its feet firmly on the ground when it comes
to how much work you can realistically do in
general commercial development. One of the
premises in the book is Most Important Tests
method. What you need to test first and what
can be left to later. This tends to suggest it is
testing for desktop systems rather than
embedded systems.

The other main theme is planning:
Equipment, people, effort, cost and time. The
book requires a Test Inventory and gives
suggested templates for this method. Another
method described is automating as much of the
system infrastructure. That is the reporting and
documentation not the actual testing. This uses
MS Office, which most people have on their
PC. The methods suggested here make this
book worth the money on it’s own.

There are some exercises and I became
suspicious that this was going to be another
“Course Book” but no, some of the answers are
in the back of the book and the rest, along with
other resources such as the templates used in the
book are on www.testersparadice.com.
The site is rather light but it is up to the readers
to give some feedback and start something on the
discussion forum. However I should not
complain as I have several books that promised a
web based support that never materialised.

The exercises and suggestions at the end of
some chapters are reasonably generic and they
data analysis is reminiscent of Macabes
Metrics. Though the only two coverage
methods shown are statement and branch.

One fascinating area for me is the
questionnaire at the back along with the results
the author has at the time of going to press.
These questionnaires the author has used on
course on testing both sides of the Atlantic. The
results are interesting, more so those that are
split between the US and UK.

The book is written from many years
experience and is honest. The author explains
that at one time they were on “the other side of
the fence” for some arguments and what
changed her mind. She also understands why
people have other views. This is refreshing in a
book where an author usually evangelises their
method against all others.

Personally I think this book is worth the
money for all team and project leaders just for
page 28… come to that just for the last
paragraph on that page. Those 9 lines will be
one of the most persuasive arguments for
getting “creative”, “free thinking,
“programming is an art” programmers in line
with procedures, standards and testing.

Overall I like this book. More for the web,
database and desktop programmers than the
embedded and high integrity areas but on
balance a good book. Recommended.

The Art of Software Architecture
by Stephen T. Albin (0-471-22886-
9), Wiley, 312pp @ £31-50 (1.43)
reviewed by Mark Easterbrook
I approached this book with some

trepidation, partly because both “Art” and

“Architecture” when applied to software can be
controversial subjects, and partly because the
title and cover hint at a difficult subject
covered comprehensively and I have been
disappointed in the past when books fail to
deliver their promises. However, once I opened
the book I found it lived up to and exceeded
my expectations.

If “Art” is the “application of imaginative
skill” (Collins Concise) then it does not
preclude practising it using procedures and
process as well as accepting an element of
creativity. Architecture invites a comparison to
civil architecture, but the author addresses the
metaphor early on, comparing software
systems with urban developments rather than
individual buildings, and warns against the
fallacy of this metaphor by analogy.

After introducing the subject in chapter one,
the next few chapters delve deeper into the
subject: Chapter two, with the slightly
misleading title “Software Product Lifecycle”,
covers the development or project lifecycles
from different viewpoints based on the
Rational Unified Process (RUP). Chapter three
“Architecture Design Process” looks at
architecture design compared with engineering
design looks at the interdependencies of design
elements. Chapter 4 “Introduction to Software
Design” discusses Function (what it does),
Form (What it looks like) and Fabrication (how
it is built) and reflects that software design is
more a creative or artistic process rather than
an engineering discipline. Chapter 5 covers
complexity, modularity, coupling, cohesion and
interdependences illustrated with examples of
design structure matrix diagrams.

At this point, almost half way through the
book, the narrative takes a step back from the
detail of design and implementation and
chapter 6 looks at models and knowledge
representation: UI models, behavioural and
functional models, and models of form.
Chapter 7 follows on with architectural
representation such as data view and process
view. Chapter 8 covers the conflicting and
differing views of quality including the use of
metrics to measure quality.

The remaining chapters delve more deeply
into software architecture building on the
material introduced earlier in the book, and the
book ends with a chapter on software
architecture quality.

If I can find fault at all, it is in that, by
necessity, it is a difficult book to read as it
covers a complex subject area in depth. Thus, it
is not a text to be consumed quickly, but a
valuable resource to be sampled in manageable
chunks over months and years in-between
applying the knowledge and principals gained.
Recommended.

Convergent Architecture by
Richard Hubert (0 471 10560 0),
Wiley, 276pp @ £29-95 (1.34)
reviewed by Silvia de Beer
Convergent Architecture is a high

ceremony methodology for developing
software. The term Convergent Architecture
indicates the whole process of development,
from business modelling through to code
generation, including testing and deployment.
The author advocates one stream of

development, using (where possible) one tool
to refine the models of previous steps. By
doing this, no information is lost between the
different phases of the development.

The book is well written, but uses too many
abbreviations to my taste. Halfway through the
book I lost interest a bit, because Convergent
Architecture was advocated as the new solution
to all the software development problems. The
descriptions given were very theoretical and
repetitive and, above all, aimed at very large
companies. The IT-organisational model
discusses all the roles in the organisation,
which you will never be able to fill in a small
company, but only in a company of over 100
people if you would count the number of roles.
Of course, a person can fulfil more than one
role, but still, in my opinion there are too many
roles for a small company.

I think that it is a good thing that the author
advocates that the whole process of
development should become a more continuous
flow. Supported with tools during the whole
development process, and with as much as
possible be automated, i.e. code generation and
automatic model validation, to avoid as much
as possible the tedious programming and
debugging phase, which might generate
implementations which do not match
completely with the model. The author
advocates that we should avoid changing the
source code, but rather we should change the
model, and regenerate the code. Software
development should become more repetitive, to
avoid reinventing the wheel for every new
project.

The Object-Oriented Thought
Process 2ed by Matt Weisfeld (0-
672-32611-6), Developer’s
Library*, 270pp @ £21-99 (1.36)
reviewed by James Roberts

When I first picked up this book, I was hoping
to read insightful commentary on the process
of developing object-oriented software.
Instead, the book opens up with basic
information about OO constructs (e.g. ‘what
exactly is a class?’), illustrated with Java code.
I found this somewhat baffling. Surely, anyone
that can understand Java understands what a
class is?

Some of the chapters of the book were
potentially useful, discussing (in a relatively
basic way), for example, the advantages of
clearly defined interfaces, and abstraction.
These chapters might be useful reading to
someone who had just got to grips with the
syntax of an OO language, but was lacking
guidance for system design. A detailed example
showing how a blackjack game might be
designed worked well, and was clearly written.

Towards the end, I felt that the author was
trying to bulk out the book. A nod to patterns
included an implementation of ‘Singleton’.
Mentioning patterns I thought appropriate, but
the level of detail was almost certainly not.
Perhaps a more general description of the
wider use of rather more interesting patterns
might have been more useful here.

Some sections left me slightly baffled. A
comparison of XML and HTML did not seem
appropriate for this title, and neither did a
section on JavaScript. They seemed to be

37CVu/ACCU/Reviews

somewhat off-topic, and although they might
form an interesting discursion for some readers
were probably a little too detailed for this
purpose. Some readers might also find them
somewhat patronising (not having studied
object orientation does not imply that you
know nothing about computers).

In short, about half of this book would be
reasonably good introduction to OO
programmers who have just started learning a
programming language but needed help seeing
the big picture. Much of the rest, in my opinion,
fails due to a lack of focus on the target audience.

Critical Testing Processes by Rex
Black (0-201-74868-1), Addison-
Wesley, 566pp @ £37-99 (1.32)
reviewed by Mark Symonds
Do not buy this book if you want to

improve your debugging skills. This book is
about the test process, giving examples from a
fictional case study of a new release of a word
processor.

The case study is for a major project at a
large company with separate departments
dedicated to programming and testing. The
impression given is that the author’s
consultancy specialises in testing for large
companies and no guidance is given on how to
scale down the processes.

The book has four sections: Plan, Prepare,
Perform and Perfect.

Plan covers risk analysis, and work
planning. Much emphasis is given on obtaining
stakeholder involvement. This does seem
overlong and could have been improved with
some pruning of the text.

Prepare covers hiring and building test teams,
implementing test systems and system coverage.

Perform is the testing phase and covers
handling new test releases.

Perfect describes the bug reporting process
and the emphasis here is prioritising bugs and
making sure that they can be reproduced before
reporting them.

Throughout the book, the recurring theme is
of using test feedback to improve both the
testing process and the software under test.

There are errors in the book such as the
graphics and text on page 392 being out of
sync which should have been found during
proof reading.

Much additional useful material is also
contained on the author’s web site at
www.rexblackconsulting.com.

Embedded and Real
Time

Real Time Systems Design and
Analysis by P Laplante (0-471-
22855-9), Wiley, 504pp @ £52-95
(1.53)
reviewed by Chris Hills

“This book is an introduction to real time-systems.
It is intended not as a cookbook, but rather as a
stimulus for thinking about hardware and software
in a different way. It is necessarily broader than
deep. It is a survey book, designed to heighten the
reader’s awareness or real-time issues.”
At least that is what the first paragraph of the

book’s preface says and so far, it seems an

accurate description. It goes on to say it is broad
rather than deep and that, as it is pragmatic, some
of the author’s views may be controversial. I
would agree with that too! I would argue some of
the points in the book but I think controversial is
a bit strong. This book is in its third edition so it is
clearly doing something right.

This book covers real-time systems in general.
As such it is not going to cover many topics
people will need. This is inevitable in a book of
less than several thousand pages. It looks at
POSIX (mainly used by Linux/Unix) and real
time OS so this is a book aimed mainly at the
16/32bit and upward systems. It is not going to be
a great deal of use for those working in the 8-bit
field (which is the largest group). That said it is a
good general book on real time systems. I would
suggest that students should have this book.
Whilst the author is a lecturer I do not think this is
a course book as such but would make a good
general background and reference.

One chapter I was very please to see is the
one on requirements and documentation. This
includes a section, which I have not seen
outside some standards, on words and phrases
to use and avoid… for example “adequate”, “if
practical”. It is this that helps set the reader
thinking and hopefully realising how important
properly worded specifications and
requirements are. This leads into system design.
That is “system” not software because real time
systems are 50% software, 50% hardware and
50% Systems. The example used is a four-way
traffic system. Not exactly tight, milli-second
timing but a useful safety critical example.

As with all things in this book formal
methods are lightly covered and, I think,
objectively covered. Other things covered are
Petri-nets, UML and, with less emphasis,
structured methods.

The hardware side of the book is light but I
would think students would need a separate
book on digital electronics and MCU. However,
the book is OK for the target audience. At the
level of systems discussed there would be
separate hardware and software teams.

As the author said in the introduction, this is
a pragmatic book and reads more like an
engineering book than an academic tome. This
explains the chapters on performance analysis,
engineering considerations and metrics. These
are written with a “real-world” feel to them.
Every time I dip into the book, it seems larger
than its 450 pages…

I think the author has written a very good
book. His notes indicate that this third edition
is a complete re-write with 50% new material.
So I would think even owners of the second
edition might want to look at this book.

I would recommend this book for all
students, though it is expensive, and for all new
engineers as a general reference book. You will
need other books for in depth information but
this will be a good starting point.
Recommended.

Linux for Embedded and Real-Time
Applications by Doug Abbot (0-
7506-7546-2), Butterworth-
Heinemann, 250pp @ £32-50 (1.54)
reviewed by Chris Hills

This is a short book… The page count is 250
but in fact, a lot of this is the RTAI and POSIX

API information. The text itself is less than 195
pages of large type. Much of the information is
very basic and in the Linux man pages or part
of the installation guides.

The book starts with a simple description of
the memory models for x86 (real and
protected) before going into Linux at a fairly
superficial level including the installation of
Blue Cat Linux. (This is by a company
originally called Lynx who also do a hard real-
time POSIX RTOS. I did a couple of device
driver courses at their offices in Sunnyvale one
January).

However, the author seems to have not
taken to Linux in that he relates everything,
some times erroneously, to MS Windows and
does not seem to know some of the reasons,
history or background behind some things. For
example, the author says that device
independent IO is nothing new but Linux takes
it further by treating every device as an entry in
the file system. This is nothing new it is how
UNIX has worked for a decade or so before
DOS let alone Windows.

I found the book superficial and rather
lightweight with a large type on small pages. I
thought that I was being too harsh as I have a
Unix background so I gave it to a colleague of
mine who is just getting to grips with Linux
and building some systems for embedded use.
His comments were the same as mine. There is
little that is not in the man pages or freely
available in many on line documents. There is I
am afraid no added value that would warrant
buying the book. I cannot see why Newnes
have done this book as they already have
Lewin Edwards: “Embedded System Design on
a Shoestring” which is also an embedded Linux
book (targeting an ARM7 board).

Ironically, the CD with the book contains an
electronic copy of the book. It is ironic because
the last Appendix of the book is Richard
Stallman’s text “Why Software should not have
owners” which, as far as I can see, would
suggest that should be free to copy the
electronic version of the book for free…
Perhaps the author should make this version
available on a web site and use the feedback,
and more research, to create a better second
edition. Not Recommended.

Embedded Control Systems in
C/C++ by Jim Ledin (1-57820-
127-6), CMP Books, 239pp + CD
@ £38-00 (1.31)
reviewed by Francis Glassborow

I was browsing in Blackwells a few weeks ago
when I noticed this book. What intrigued me
was not the title but the sub-title, An
Introduction for Software Developers Using
MATLAB. My contact happily provided me
with a review copy.

The interesting thing about that sub-title is
that it couples software developers with
MATLAB. For those of you that do not know,
commercial licences for the latter start at
around $1900 for an individual. That is an
awful lot of money in the context of most
development tools. It is not an unreasonable
sum for someone working on high-integrity or
safety-critical software. A considerable
proportion of control system software would
come under that heading. A company working

38 CVu/ACCU/Reviews

on products that would include one or more
embedded control systems should be happy to
pay out substantial blocks of money to ensure
their employees have relevant tools.

I was not far into reading this book before I
realised that there was a curious juxtaposition
of a premise that the software developer
reading the book would be unfamiliar with the
mathematics of control systems and that the
reader would be comfortable with
mathematical formulae up to and including
ones involving definite integrals.

It seems to me that the author expects the
reader to use MATLAB as a simulation tool to
test out his models before implementing them
in either C or C++.

I think I have to stop this review here
because without access to a copy of MATLAB
it is effectively impossible to explore the
potential experiences of someone in the target
readership. The author’s assertions that this
book is for software developers without prior
experience in control systems and without any
mastery of advanced mathematics may be true.
However I lack both the time and the tools
(MATLAB) to validate the claim.

If there is a reader who meets the
requirements (including that of lack of
experience) and has access to MATLAB I
would be happy to pass the review copy on to
them for an in depth review.

Games Programming
MUD Game Programming by Ran
Penton (1-59200-090-8), Premier
Press*, 666pp + CD @ £32-00
(1.56)
reviewed by Paul F. Johnson

This book started well, albeit a tad slowly.
Given the difficulty in teaching Multi User
Dungeon (MUD) programming techniques, this
is all well and good. I would have preferred if a
properly platform independent stance had been
taken, but that really is not that important given
everything was explained clearly with time
taken for those not using the Win32 platform.

The code examples and networking (an
extremely important aspect in MUD games) are
well thought out and well documented. The
only downside is not really to do with the
author, but the really awful way Premier Press
lay out their books. They are not pleasant to
read. The grey boxes (usually some form of
note) and odd fonts are unfriendly – I have
seen this in many Premier Press books. I find it
really does get on my nerves as it detracts so
much from the book’s content.

MUD programming is not easy. Imagine a
typical adventure game on your computer. You
interact with the computer, it responds and that
is how it plays. Cause and effect. Very simple;
an idea which has been around since
Crowther’s “Adventure” game.

Now, imagine you have thousands of
players, all at varied points in the game, all
putting in some form of input, all of the input
playing some role or other in the adventure
arena and all the time, a central server having
to control and play the game. Now you can see
the difficulty in writing a Multi User Dungeon
game. Through lots of explanation, the book
demonstrates how best to do this task.

The CD, which comes with the book, is
rather good with not only the code samples, but
a better implementation, various libraries and
even some bonus material.

The Web & Networking
Network Troubleshooting Tools by
Joseph Sloan (0 596 00186 X),
O’Reilly, 345pp @ £28-50 (1.40)
reviewed by Mark Easterbrook
This is an essential reference for

anyone who has to diagnose and resolve
problems with IP networks. Although the target
audience is individuals new to network
administration, it contains a wealth of
information for anyone working with IP
networks. The focus of the book is networks as
seen by software at the hosts connected to
those networks, and this it covers
comprehensively, but it does not attempt to
cover the core network infrastructure such as
cabling and routers (nor the software running
on routers) except for what can be seen and
inferred at the edge of the network.

Each subject area is tackled by describing
the technical detail including: the principles of
good network design, examples of what can go
wrong and how to look for and identify
problems, and the tools needed to diagnose and
fix them. Both *nix (Solaris, RedHat Linux and
FreeBSD are explicitly covered) and Windows
(95 to 2000, but not XP) based tools are
covered in a pragmatic way, recognising that
both have their place and should be in the
toolbox of the network trouble-shooter, but the
emphasis of the book is definitely Unix.

The subject areas covered include host and
network addressing, network characteristics,
low-level packet analysis, automatic and
dynamic network configuration, device and
performance monitoring, and application-level
tools, as well as chapters focusing on network
management and troubleshooting strategies.
Finally, there are two appendices for software
sources and resources and references.

In a fast changing industry, detailed
technical information often becomes dated
quickly, but apart from the appendix, this book
is likely to remain relevant and topical until the
widespread introduction of IPv6 networking.
2nd review by Alan Lenton
This is a useful book for those who are not full
fledged system administration professionals,
but who have to administer small networks as
part of another job, such as programming.

One of the key problems when something
goes wrong on a network is knowing where and
how to start looking for the problem. This book
is a good place to start. Apart from anything
else, it tells you which tools are useful for
dealing with which sort of problems. Always a
big help when you are dealing with something
that is not part of your primary work.

One of the things I did like about the book
was the way it did not neglect the boring but
important hardware level - including cabling
problems, which in my experience are all too
often overlooked. From there the book moves
on through the different levels of the network
including device driver problems, TCP and UP
packets, software connectivity and application
level programs.

The best way to read this book is to scan it
through from cover to cover, so that you have
an idea of where to look in it when something
goes wrong. However, a good case could also
be made for installing, and using, at least some
of the measurement tools at an early stage. As
the author correctly points out, unless you
know how your network normally behaves,
you are not like to spot trouble early enough to
nip it in the bud.

The only caveat I have is to warn readers
that none of the tools are dealt with in depth,
because that is not the purpose of the book.
However, the tools are covered in sufficient
depth to get you up and running with each tool.

Definitely a useful book.

RADIUS by Jonathan Hassell (0-
596-00322-6), O’Reilly, 190pp @
£24-95 (1.40)
reviewed by Mark Easterbrook
If you did not know that RADIUS

is the “Remote Access Dial In User Service”, a
challenge and response authorisation access
protocol, then you probably would not give this
book (and this review) a second glance. The
target audience is therefore those who already
know basically what RADIUS is and what it
can do for them, but need either a tutorial or a
reference manual, possibly both.

The first four chapters take the reader from
an introduction to AAA (Authentication,
Authorisation, Accounting) through to detailed
explanation of the base RADIUS message
structure and use. There then follows two
chapters describing how to configure and use
freeRADIUS, an open source RADUIS server.
The remainder of the book completes the study
of RADIUS by examining other uses, security
and new developments.

This book is a good introduction and
tutorial and is worth reading before delving
into the RADIUS RFCs. It is also a good
reference with clear description of RADUIS
attributes and a useful attribute reference
appendix. However, the RADUIS standard is
defined in RFC2058 and the book should be
considered a complement to, and not a
replacement for, the RFC document.

RADUIS is a base protocol containing
many optional elements or context sensitive, it
is also intended to be extended by use of the
Vendor Specific Attribute. This means that for
most uses of RADIUS a description of the base
protocol is insufficient and needs to be
supplemented with vendor or implementation
specific documentation.

In the AAA domain, RADIUS is being
superseded by Diameter (RFC3588) and so the
RADUIS protocol, and thus this book, is only
of use to those already committed to using it.

Fun Web Pages with JavaScript by
J. Shelley (0-85934-520-3),
Bambini Computer Books, 344pp @
£7-99 (1.83)
reviewed by Paul F. Johnson

JavaScript is one of those things you either like
or dislike. In one respect, it brings interactivity
to the Internet. On other hand, due to vendors
implementing JavaScript differently it makes
cross-browser compatibility troublesome. Then
you have the additional problem of graceful

39CVu/ACCU/Reviews

degradation for non-JS browsers. Such are the
pleasures of Internet programming.

The Babani range is cheap, cheerful and
surprisingly good. Fun Web Pages is no
exception. It is assumed you know nothing at
the start and takes you through the language.
Even better the code has been tested on the
main web-browsers and is new enough to be
happy with the newest of Internet standards.

The book’s strength is that everything is
clearly explained and does not try to baffle the
reader with the complexities. It even takes
security and security issues seriously.

Where it falls down though is that
interfacing to SQL is not covered neither are
other newer technologies. Cookies, form
validation and transparencies are in the book
and well documented.

The questions are taxing enough to be
enjoyable and make the reflective process of
what you have learned.

General Programming
Object Thinking by David West
(0-7356-1965-4), Microsoft
Press*, 334pp @ £33-99 (1.47)
reviewed by Alan Lenton
This very useful book will provide

much food for thought to those who think their
programming is object oriented.

The aim of the author is to teach
programmers to think in an object-oriented
manner from the very start of a project, rather
than confining it to a consideration of the
solution domain. While David West favours
agile programming methodologies, the book is
far wider in scope, and contains lessons for all
programmers.

The book starts by setting the concepts of
object orientation and agile development firmly
in their historical context. They are seen not
merely as part of the debate in computer
science between structural and object methods,
but within the broader sweep of the debate
about the role of formalism and hermeneutics
in science. I confess that as a sociologist as
well as a programmer, I loved this part of the
book and was inspired to dig out my copy of
Paul Feyerabend’s ‘Against Method’ for a re-
read.

The key idea of the book is that objects
should be sought in the problem domain. West
calls this ‘domain anthropology’. Some of the
analogies with regular anthropology are a little
forced, but the fundamental idea is sound.

West is keen to change the culture of
programming, which he identifies, correctly in
my view, as crucial to improving the skills and
abilities of programmers. The book is an
excellent start, but there is a long way to go
yet!

Recommended.

User Interface Design for
Programmers by Joel Spolsky (1-
893115-94-1), Apress, 159pp @
£21-50 (1.39)
reviewed by Mark Easterbrook

This book should be compulsory reading for
anyone designing man-machine interfaces.
This book could also be called “User Interface
Annoyances” or “The Dummy’s Guide to

irritating your users”. It will strike a chord with
anyone who has struggled with a computer
interface as the author barges his way through
numerous examples of bad user interfaces,
trashing the designers ruthlessly, and then
shows how a little thought and better
intentions, and to be honest, probably some 20-
20 vision, could have produced something so
much easier on the user.

Have you ever clicked the mouse but the
pointer moved ever so slightly and it did the
wrong thing? Or tried to get the cursor between
two lower case l’s in an edit box? Joel exposes
the stupidity in chapter 10 “People Can’t
Control the Mouse”, then shows how easy it is
to change the design so accurate mouse control
is no longer required.

“This will delete your file. Are you sure?
Yes, No, Cancel”. Are you confident you know
which button to click? We all know nobody
reads manuals. Joel shows they do not read the
screen either. In most cases they just hit “Yes”
to “Are you sure?” without thinking – the
dialog box does not protect, it just annoys.
What is wrong with providing an “undo”
instead?

Why is it so difficult to take the Windows
briefcase home with you? You do not have any
problems with your real one! If you write on a
document on your real desktop, it stays written
on. So why does this not happen on your
computer’s desktop? Why do you have to save
it? The “Broken Metaphors” chapter examines
these issues and more.

The Microsoft Windows interface that is not
the only target of Joel’s tirade. The Macintosh
interface also takes a bashing (Empty the trash
can because it looks untidy – oops, you cannot
undelete now). The [Li|U]nix command line
interface is impossible without the manual or a
guru, and we know “People don’t read
manuals”.

The title of the final chapter sums up the
book quite nicely: User Interface design is
“Programming for Humans”. Highly
Recommended.

Interaction Design by Preece,
Rogers & Sharp (0 471 49278 7),
Wiley, 519pp @ £29-99 (2.13)
reviewed by Paul Usowicz
Owning a large number of books, I

have various methods of organising them. One
portion of one shelf is dedicated to the books
that I consider special. These books are on
various subjects but are all books that I will
read repeatedly due to their excellent content,
well written text and personal relevance
(perhaps an ACCU article is brewing here!).
Luckily there are only a few books in this
section, which leaves enough room for this title
to take its place along side my other ‘classics’.

Interaction Design is quite simply a superb
book. The authors know their subject and
present it well. Although three separate people
author the book, it was in no way disjointed
and was a pleasure to read.

The book is about human-computer
interfaces with a strong bias towards software.
It would be wrong, however, to classify this
book as ‘software engineering’. It so much
more than this and covers the whole aspects of
human-computer interfaces including graphical

user interfaces, the World Wide Web and
wearable computers. Throughout the book are
interviews with clever people, exercises to
complete and tasks to carry out.

The book is well supported by its
companion web site. It contains examples of
tasks completed, links to sites of interest
mentioned in the text and extras like power-
point slides and case studies. This is the best
HCI portal I have come across and have visited
it regularly during the course of reading the
book.

The preface lists various suggestions for
usage of the book suggesting various relevant
chapters to read dependant upon your particular
needs. I would recommend that if you choose
this route and read the relevant chapters
suggested that you should then immediately
read the rest of the book as I found no chapter
lacking in useful information.

Everyone is recommended to read chapters
1 (What is interaction design?), 6 (The process
of interaction design) and 10 (Introducing
evaluation) with software developers also
recommended chapters 7 (Identifying needs
and establishing requirements) and 8 (Design,
prototyping and construction). Chapters 7 and
8 were especially good with lots of common
sense and good advice. As stated above, these
five chapters will give you a good working
knowledge but the rest of the book is worth
reading as well. My software development
methods are already changing for the better and
I am trying to get my company to buy the book
(I’m not letting mine go) so the rest of the
department can read it. The book is also not
limited in scope to just the software developers.
Sales and marketing would learn a lot from this
book and would end up requesting much more
useable products.

The whole book is written with hardly any
references to specific languages or operating
systems making it a book that I will have
around for some time and one that will not
easily date. As a multi-platform developer (PC,
PDA and Smartphone) I was glad to see some
good advice on the need for differing
interaction based upon the device being
targeted. Too many people think porting to
another device is simply a matter recompiling
without realising the huge part that the user
interaction plays. I think it will be some time
before I find a better book than this on HCI
(unless the authors are planning another one!).
This book is definitely recommended for all
software developers who target devices that
require user-interaction.

Solutions to Parallel and
Distributed Computing Problems by
Albert Y Zomaya et al. (Editors) (0
471 35352 3), Wiley, 272pp @ £58-
95 (1.70)

reviewed by Christoph Ludwig
This book is a collection of ten independent
research papers by different authors that mostly
report experimental results about heuristics for
solving optimization problems. Though
familiar with academic texts, I cannot access
their academic contributions since they are not
from my area of expertise.

The heuristics considered are inspired by
ideas taken from nature: Genetic algorithms are

most common, but cellular automata, simulated
annealing and neural networks are also
considered. However, the discussions stay
abstract; they ignore the details and
complications one faces when implementing
such algorithms on parallel or distributed
hardware.

Most of the articles consider resource
scheduling problems (e.g., Flow Shop
Problems, Load Balancing Problems etc.) that
are NP-hard in general. In practice, one relies
on heuristics in order to find solutions that are
“good enough”. However, the fact that the
presented heuristics are tailored to the specific
problem they were developed for narrows the
readership that can easily profit from these
results. Only their general approach can be
transferred to different problem domains.

Eight articles discuss aspects of genetic
algorithms whence their general approaches are
quite similar and there is some redundancy.
The different priorities assigned by the
respective papers are most likely significant
only for readers interested in the specific
problems discussed.

In the articles that study cellular automata
and neural networks, readers without some
background knowledge of the context where
will not see how the results fit in. Thanks to
their comprehensive bibliographies, they may
serve as a starting point for further reading
though.

Overall, I think this book fits well in an
academic library where articles and textbooks
for further reading are easily accessible.
However, it is not suited for readers who want
to learn how they can adapt the ideas of genetic
algorithms etc. to their problem at hand.

The Shellcoder’s Handbook by
Jack Kozi et al. (0-7645-4468-3),
John Wiley & Sons Ltd, 620pp @
£33-99 (1.47)
reviewed by Richard Putman

It is forgivable, looking at the main title, to
think that this book is a reference for writing
bash or korn shell scripts, but in fact
‘shellcode’ is the name given to the piece of
code that is run after gaining control of a
vulnerable program. Shellcode is so named
because often the injected codes are
instructions that will launch a root shell under
unix.

If you have ever wondered about the story
behind the security holes announced seemingly
daily this book will show you why they occur,
how the exploits work and the methods that led
them to be discovered in the first place.

The book has four parts: the first hundred
pages covers an introduction to exploitation on
Linux x86 systems, the second hundred looks
at Windows and another hundred covering
Solaris and HP Tru64 systems. The third part
looks at how to discover vulnerabilities with
some useful tools and a final more advanced
section looks at alternative shellcodes, database
and kernel hacking.

There are a number of typos in the text and
no errata page has yet appeared on the
publisher’s website, indeed the links to
resources mentioned throughout the book have
yet to appear either, although the example code
is there for download. The text is well written

and structured with a conclusion at the end of
each chapter.

Much of the book is assembler, often
embedded in C code, or occasionally python
scripts and although there is a brief review, you
should already be comfortable reading
assembler, or be prepared to learn quickly, to
enjoy this book.

Many of the ideas are simple – overfilling
buffers that are processing user input, but the
low-level nature, restricted memory spaces and
unknown elements, such as where the code will
be executing in memory, often create layers of
dependent problems magnifying the complexity.
It can take considerable skill and ingenuity to
turn a vulnerability into an exploit, not to
mention a certain amount of luck, unsurprisingly
it is often thought of as a black art.

This book then is essentially a compendium
of the techniques and resources used by several
clearly experienced hackers; the aim being to
teach a creative approach rather than list
known exploits. What comes across in the tone
of the book is the authors’ desire for the reader
to succeed and enjoy the challenge as much as
they obviously do.

There is quite a bit of hand holding and
encouragement early on to get past the point
where most people give up but it is also a rich
source of information with index and deserves
the title ‘handbook’.

For programmers who have no interest in
creating their own exploits, is there anything in
this book? Well yes, the section on
vulnerability discovery contains interesting
information about the authors’ favourite tools;
there is a chapter on fuzzing (generating
automated test input to discover bugs in your
program) and source code auditing showing
many common faults in C code. However, the
direction of the book is very clear – to subvert
a target system.

Writing shellscripts is surprisingly good fun
and the book will appeal to those who enjoy
tricky programming puzzles and those who
want an advanced but accessible low level
security perspective on the programs they write
and the operating systems they use. Highly
recommended.

It seems to me you should read this book even
if you never intend to crack anyone else’s system.
You need to understand what you must protect
your programs from. Francis

Computer Graphics and Virtual
Environments by Mel Slater et al
(0 201 62420 6), Addison-Wesley,
571pp @ £34-99 (1.86)
reviewed by Alan Lenton

This is a competent book covering similar
territory to Foley and van Dam. As always with
books on this subject a solid grasp of matrices,
calculus and geometric algebra is needed
although the authors provide a mini refresher
course at the start. The book breaks with
convention by starting from illumination rather
than polygon drawing. I am not sure how much
better this is as a teaching device, but it
certainly does not detract from the book, which
covers all the components of the standard
graphics pipeline.

The last few chapters are, to my mind, a bit
scrappy, being a whistle stop tour round the

options available for a number of more
advanced topics. I am not really sure that they
add very much to the book, given their brevity.

One particularly useful aspect of the book is
that the examples are in OpenGL and VRML97
as well as some ‘C’, which makes it relatively
easy to ‘borrow’ examples for your own use. A
lot of material is packed into the pages of this
book and, in my opinion, it represents good
value for money, although I suspect it would be
more useful as a college textbook than as a
reference for working programmers.

A useful book on a specialist subject.

Practical Qt by Dalheimer et al. (3-
89864-280-1) 253pp. Available
from amazon.de or from
http://www.kdab.net
/practicalqt . 36 Euros

reviewed by Paul F. Johnson
For those who have the O’Reilly book
“Programming with Qt”, you will already be
familiar with Kalle’s style. Clear, concise and
easy on the eye.

This book is the perfect companion to it.
The difference being though that this is an
answers book. You need to be familiar with
using moc to compile some of the code
example.

The uberfurer of dire programming books
(Schildt) has something on the front of his
books which goes along the lines of if you
want answers quickly, just ask the expert.
Unlike Schildt though, this is one book I would
dip into.

It quickly and clearly explains how to do
certain things in Qt (such as circular widgets –
it really is an answers book, but it still teaches
the reader how it works and how to best
approach a problem. Matthias (and his co-
authors) really do know what they are on about.

There is only one thing wrong with the
book: it is not big enough. I hope the authors
bring out a volume 2 (and 3) and possibly even
a Qt4 companion.

I have been using Qt for quite a few years
now and the material in there has made me
look afresh at some of the practices I had
adopted – it is an eye-opener.

Highly recommended.

Non-Programming
High Tech Crimes Revealed by
Steven Branigan (0 321 21873 6),
Addison-Wesley*, 412pp @ £22-99
(1.30)
reviewed by Francis Glassborow

I am not going to do much more than draw
your attention to this book because it is only
indirectly of interest to readers of C Vu.

There is an element of the autobiographical
in that the contents rely heavily on the author’s
direct experience. The author covers his
(largely US based) experience with a range of
IT based crime over the last decade. It makes
disturbing reading in places because frequently
detection depended on chance, or an
exceptional level of curiosity from one of the
participants.

The book starts with a chapter about an
incursion on a telecom company’s computers
circa 1995 and then documents various other

40 CVu/ACCU/Reviews

41CVu/ACCU/Reviews

computer based crimes before concluding with
a number of chapters on what not to do and
what the experience of the last ten years has
taught the author (and hopefully, at least a few
of the law-enforcement agencies).

If you want a clearer understanding of what
is behind some of the headline stories, or you
are curious as to what happened after the story
faded out from the public consciousness this
book is well worth your attention.

Teach Yourself OpenOffice.org
All in One by Greg Perry (0-672-
32618-3), SAMS*, 515pp + CD @
£21-99 (1.36)
reviewed by Francis Glassborow

OpenOffice is a very useful free application
bundle from the OpenOffice foundation (which
is supported by Sun Microsystems). Among its
advantages are that it handles most Microsoft
Office files and it exists for Linux and Mac OS
X machines as well as for Windows. I keep a
copy on my laptop so that I can use material I
have prepared with Office 2000 when away
from home. (Note that if MS had more
reasonable licensing for individuals, I would
not need to do this).

The book is divided into five sections, one
for each of Writer (word processor), Calc
(spreadsheet), Impress (presentations) and
Draw (simple graphics tool) and a final short
section some other features of OpenOffice.

I think this book would make a good
companion for anyone who has decided that
they want to break their reliance on MS Office
as well as those who want to use a office
application suite that is largely independent of
their choice of platform. It does not go into
excessive detail and probably does not cover
enough for those who are expert users of office
applications (certainly I require more detail
before I could use OpenOffice as more than a
secondary suite).

In Search of Stupidity by Merrill
Chapman (1-59059-104-6), Apress,
256pp @ $24.95 (no UK price)
reviewed by Chris Hills
This is a fascinating book. It is not

technical and neither is it a business book,
neither is it an autobiography but it is a
sideways look at the computer (PC) software
industry. Rick Chapman has spent his life in
the US software industry. At various times as a
programmer, an FAE, a salesman and in
marketing with many of the Big Names. He has
seen it all and in some cases was in the middle
of some of the incidents in the book. This is a
book written with hindsight and a lot of
honesty. As the author says in a couple of
places “I was completely right…. For all the
wrong reasons!” and “I was wrong… for the
right reasons!” There are lessons to be learned,
if we can learn them. Though history does
seem doomed to repeat itself.

This book looks at why 9 out of the top 10
computer software companies of 1984 are not
in the same list for 2001. In the intervening 17
years all the market leaders “committed
suicide”... Yes, the only one in both lists is
Microsoft. Not, according to the author,
because it was clever or its software was the
best but because it made fewer of the major

“stupid mistakes” the author attributes to
Aston-Tate, Novell, DR, Microfocus, Visicorp
etc. He asks: “Given that Microsoft software is
‘that bad’ why are we all still using in it? What
happened to Quattro-Pro, Word-Star, Lotus 1-
2-3, D-Base. It is not just the software, what
happened to the IBM-PC? (not the “PC-
compatible” of DELL et al). Why did OS/2 not
sweep the world?” The possible answers are in
this book.

Just because something is better it does not
mean that the world will use it. E.g.
“Everyone” uses VHS video, except the
professionals who use Betamax, which is
technically superior, and no one uses, what was
at the time, the technically even better Philips
system. This book looks at the marketing
equivalents of the Charge of the Light Brigade
that caused the downfall of the, often
technically better, market leaders.

The author worked for many of the
companies concerned, or a closely related
company, at the time of many of the stories told
and has a unique, inside view. I did wonder if
his middle name might be Jonah at one point!
This is the sort of story that can only be told
with hindsight and far enough away to avoid
the law suites. Though that said the book was
published in 2003 and covers up to mid 2002
so the later chapters are almost current.

For many this book will be a trip down
memory lane for others a look into pre-
history. It may only cover 25 years but for
some in the industry they probably know
more about the dinosaurs than some of the
names from the 80’s that are in this book. I
am not sure if this is business, history,
sociology or gossip.

The style is easy to read and humorous in
a relaxed way. This is a fascinating read that
will make a good book for the holiday or the
long summer days. It should be required
reading for all marketing departments,
project managers, strategy groups and
computer courses. This is a book for the
summer holiday or to settle down with at
Christmas. Recommended.

Inside Internet Security - What
Hackers Don’t Want You to Know
by Jeff Crumme (0-201-67516-
1), Addison-Wesley, 270pp @
£30-99 (1.03)
reviewed by Chris Hills

This was going to be one of four types of
book: lots of technical detail and code
fragments for programmers or sensational
stories of the type found in the popular press.
It could have dived off deep in to maths of
algorithms and ciphers. Fortunately it is the
fourth type – a sane sensible look at network
security for managers.

I know it says Internet security but these
days the Internet is just an extension of a
normal office network. At one time viruses
were spread on floppy disks, now the vast
majority get on to the PC either directly from
the Internet or across the office network.

The book has no source code, no maths or
protocol bits and bytes. What it does have is a
non-sensational look at who hackers are, why
they do it and what sort of holes there are.
Most importantly, it tells you how to go about

stopping them. Well actually it does point out
you cannot stop hackers. So there are constant
warnings that all you can do is minimise the
risks and never get complacent. This is strategy
and management rather than how to use
specific software or systems.

Interestingly this book is going to make you
see that antivirus software and firewalls are not
infallible. You cannot just fit them and relax
contented that you are safe. Then again it is not
full of “scare stories” It is balanced, reasoned
and at a level that most managers (technical or
non-technical) are going to understand the
problems and the solutions in general without
getting demoralised or thinking it is easy.

Whilst the book has a slight US bias it is not
a problem and everything should apply in most
countries and hackers are of course
international as on the ‘net all geographical
places are the same place.

There is the obligatory section on
cryptography, public keys etc. and a very
useful section on VPN, which is something,
many companies now use and many do not for
the exact same reasons!

This is by far the most dispassionate and
well-balanced book I have come across in this
subject. It handles a subject that is both precise
yet very nebulous and riddled with myths in a
way that lets you see clearly and assess the
risks without panic. I recommend it for all non-
technical managers... actually all managers, I
bet half the technically astute managers do not
know the realities of the myths etc.

Penguin Guide to Punctuation by
R. L. Trask (0-140-51366-3),
Penguin Reference, 162pp @ £6-99
(1.83)
reviewed by Christopher Hill

As collator of the ACCU book reviews, I come
across many of styles of writing, spelling and
punctuation. I know that there is not one
correct form for these aspects of writing, but
there ought to be some firmish guidelines, so
that you know when you push against one of
the mores of writing English.

I enjoyed reading Eats, Shoots and Leaves;
Lynne Truss has a very comical turn of phrase
and I did learn a little about punctuation, but
the lack of an index made it very difficult to
use as a reference book.

The Penguin Guide on the other hand has
not left my desk. While it does not have the
humorous input, Trask writes very clearly with
an eye to the detail of the issues under
consideration, while at the same time making it
easy to remember the points. Did you know
there are four separate uses for the comma:
listing, joining, gapping and bracketing?

There are many examples of good and poor
punctuation on almost every page, with the
poor examples flagged with an asterisk to
remove any possibility of confusion or doubt.
Having read the book from cover to cover,
which is very easy to do, the four pages of
index make this a really useful reference.

If you are writing (specifications,
requirements, books, emails, letters) or editing
the same, then you cannot but benefit from
reading this book, after which it will find a
cosy place sat next to your mouse and
keyboard. Highly Recommended.

Secrets & Lies (revised) by Bruce
Schneier (0-471-25311-1), Wiley,
414pp @ £11-99 (1.50)
2nd review by Mark Easterbrook
We all live in an increasingly digital

and networked world. We also live in a world
that seems increasingly hostile, at both the
personal level and the global level. Yet, so few
of us really take security really seriously:
maybe we all lock our doors and windows and
install firewalls and virus scanners, but this is
just basic stuff – when did you last perform a
security audit on your house or your Internet
connection?

This book examines the security of the
digital networked world and the domains that
interface and interact with it, including us, in a
pragmatic, myth-busting, sometimes
humorous, and often worry-inducing way. It is
divided into three parts:

Part 1 – The Landscape – sets the scene,
who are they, what do they want, why they
want it, how might they get it, and why are
they targeting you. If the answer is “I don’t
know”, as it is often the case, you just have to
guess and hope you are somewhere close.

Part 2 – Technologies – is the largest section
and comprehensively covers the technology
used in attack, defence, detection and alerting.
The common theme here is that security is like
a chain, and is only as strong as its weakest
link.

Part 3 – Strategies – looks at the practical
side of securing your part of the world. This
takes a realistic look at threat and risk analysis
and how sufficient defence strategy can be
created. Not surprisingly, technology is only
part of the problem, and only part of the answer
– security is a human issue as much as it is a
technical one.

When you have read this book, and I
strongly urge that you do, there will be one of
two outcomes: You will take security much
more seriously, or you will sleep much less
easily at night. Recommended.

The E-Myth Revisited by Michael
Gerber (0-88730-728-0), Harper
Business, 268pp @ £10-99 (1.46)
reviewed by Chris Hills
The E-Myth is the Entrepreneur
Myth. It has nothing to do with the

Internet, Email or Dot.Com. This book was
recommend to me by a successful business
owner. He told me that his only regret was not
reading it 10 years earlier! I read it and I must
say it fires you up with an [organised]
enthusiasm. I showed it to a friend and he is
now using this book as a start up guide for a
business he is planning.

This is not a Get-Rich-Quick book, nor does
it seek to sell you anything else. However,

there is a web site with additional resources
and curses the author runs but these are US
based and not needed to use the book.

This will be a difficult review to do as
explaining the content gives all the secrets
away! The model used for this book is a pie
shop run by one person (no, not the well
known breakfast/fast food illustration) but it
will work for any business. Indeed there are
illustrations from other industries including the
hotel business. Which is interesting as I
recently read the Marriot (hotel) story…. It was
in the draw next to the Gideon and Mormon
Bibles in the Marriot in Heidelberg! I can see
traces of the ideas in this book in the Marriot
system.

The story in the E-Myth how the owner of a
failing, one person, independent pie shop looks
at their business, under the guidance of the
author. They analyse the problems and look at
the way to get it back on it’s feet is in the style
of the stories by Plato where the questions set
up the next explanation. It is almost readable as
a story. At each meeting the pie shop owner has
with the narrator more things are explained and
suggestions on what to do next is suggested.
However this book will work for a business
that you have not yet started as well as one that
has been running a decade.

I found the book fascinating as it covered
various things I have seen in small companies
before. It explained the underlying reasons. It
explains why most small companies run into
the problems they do after the initial wave of
enthusiasm. Why many small companies fall
over or do not progress after an initial growth
of personnel.

Recognising the symptoms is half the
problem the other half is what to do about it.
There are several novel solutions which, when
you look at them are plain common sense. A
couple of the ideas and illustrations come from
the authors own company with mistakes they
made. So the author has been there and done it
himself. Interestingly there is no patented
system to buy, no franchise method, just
sensible ideas. Though in the US the author
does do lectures and business consultancy on
the subject. Much like the Team-Start /Mustard
and Small business advisory groups in the UK

This is a business book, therefore it is
orthogonal to all businesses from IBM to
MacDonald’s to small SW house to a one-man
contractor be it in IT, carpentry or the fishing
industry.

The important thing to note is this book is
simply ideas and methods. It is not a silver
bullet. You have to have a viable business;
goods or services to sell that are in need. Be
prepared to work hard, the money to start and
the discipline to do the paperwork. What this
book does is give you the map to the obstacles,

and the navigation skills; it does not give you
the transport to reach the goal. You have to
provide that yourself.

As will be clear from my comments I
recommend this book highly. I would use it
myself were I to start a business. Further to that
I recommend that any one with a small
business, including “one-man” outfits to look
at it even if you have been running a decade. It
could do you a lot of good. I would say at the
price (lass than 11GBP) you can not afford to
miss this book. However non- business owners,
be careful! It could enthuse you to start one
yourself. Highly recommened.

Cryptography For Dummies by
Chey Cobb (0 7645 4188 9), John
Wiley & Sons Ltd, 304pp @ £16-
99 (1.47)
reviewed by James Roberts

I was not really sure what to expect from this
book. I was interested how cryptography could
be described in such a way as it would be
suitable for ‘dummies’, and wondered what the
content could possibly be.

It turned out to be a bit of a mixed bag,
some of which was potentially useful, while
some seemed to be padding rather than sensible
content.

On the plus side, the book gave a reasonable
summary of the installation of PGP (most
examples in the book revolved around how
cryptography applied to PGP). In addition, the
book gave some good advice on selection and
remembering passphrases (although if you read
the book from cover to cover you notice a
certain amount of repetition in this area).

The book includes some basics – for
example, a description of how binary numbers
work. Perhaps this is sensible for a book aimed
at complete beginners. However, this technical
detail was not carried forward beyond a
description of the XOR function. (The use of
the XOR function in conjunction with a 1-time
pad was not explicitly covered). This left me
wondering what the intended audience of the
book would have made of it.

Other annoyances included little clear
overview of how the protocol of use of public
keys is used. (A diagram of the interactions
required to generate and use a PKI might have
been useful.)

In short, this book might be suitable for
someone needing basic information about
cryptography and cryptographic products that did
not want to understand the details. However, in
this case I think that there might be several
chapters which would not be particularly useful
or relevant - the book would condense down to a
‘how to use PGP, with some handy hints on
remembering your password’.

Not recommended.

42 CVu/ACCU/Reviews

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

