Contents

Reports & Opinions
Editorial 4
Reports
View From the Chair 5
Membership Report, Standards Report, Letter from America 6
Dialogue
Student Code Critique (competition) entries for #30 and code for #31 6
Francis’ Scribbles 9
Features
Blue Fountain Systems - An Open Source Company interviewed by Paul Johnson 11
Writing Custom Widgets in Qt by Jasmin Blanchette 12
Memory for a Short Sequence of Assignment Statements by Derek M Jones 15
Wx - A Live Port - Part 2 by Jonathan Selby 20
An Introduction to Programming with GTK+ and Glade - Part 3 by Roger Leigh 23
What’s in a Namespace? by Paul Grenyer 26
An Introduction to Objective-C - Part 3 by D A Thomas 28
Automatically-Generated Nightmares by Silas S Brown 30
Professionalism in Programming #29 by Pete Goodliffe 31
Reviews
Bookcase 33
Copy Dates
C Vu 17.1: January 7th 2005

C Vu 17.2: March 7th 2005

Contact Information:

Editorial:

Advertising:

Treasurer:

Paul Johnson

77 Station Road, Haydock,
StHelens,

Merseyside, WA11 0JL
cvu@ccu. org

Chris Lowe
ads@ccu. org

Stewart Brodie

29 Campkin Road,
Cambridge, CB4 2NL
treasurer @ccu. org

ACCU Chair:

Secretary:

Membership
Secretary:

Cover Art:
Repro:
Print;
Distribution:

Ewan Milne
0117 942 7746
chair @ccu. org

Alan Bellingham
01763 248259
secretary@eccu. org

David Hodge
01424 219 807
nmenber shi p@ccu. or g

Alan Lenton

Parchment (Oxford) Ltd
Parchment (Oxford) Ltd
Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vuonly): £25

Full (C Vu and Overload): £35

Corporate: £120

Students: half normal rate

ISDF fee (optional) to support Standards
work: £21

There are 6 issues of each journal produced
every year.
Join on the web at ww. accu. or g with a
debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
member shi p@ccu. org for an
application form.

Any questions - just email
menber shi p@ccu. org

Reports & Opinions

Editorial

| really do enjoy being part of the open source movement. It really does
make the mind boggl e at the speed of development of software. |’ve been
tracking Novell’ s Mono application for quite awhile now and sincethe 1.0
release (which was roughly 8 months ago), things have gone on in leaps
and bounds. Probably the most interesting part has been the devel opment
of System.Windows.Forms.

In the original version, Mono relied on Winelib to provide the SWF
parts. Unfortunately, Winelib and Wine moved al the time, which meant
that rather than concentrating on SWF, the Novell team and those around
the world which contribute to the source would be trying to hit a moving
target. Inthe end, it was decided that there would be a ground up effort to
implement SWF natively. That was roughly 4 monthsago. Itis (at thetime
of writing) somewhere close to being 88% complete. To anyone, that isa
big achievement and probably, without the sort of community which is
found in the open source movement, the completion would be closer to
60%.

Of course, | could bewrong, but | can only call what | see. It certainly
has been arollercoaster of aride and has been alot of fun.

The Student Code Critique

The SCC is acritical part of C Vu. It is one of the ways for you to all
participate in the magazine. However, the numbers seem to have dropped
and dropped to such a point that in thisissue, there is one entrant. While it
does make my judging for the book alot easier, it isworrying the level of
members who will take about 20 minutes to enter. Please get involved —
not only do you make it moreinteresting, but you' re also helping to educate
others.

Ever Had One of Those Moments?

I’'m sure that you've all had one of those moments, those gloriously
inspired moments when you know exactly how to fix that piece of code
which has been bugging you for days now and better than that, by making
acouple of changesto said code, you can fix a number of other problems
plus make it run faster and take less time to compile? It's wonderful isn’t
it.

| had one of those awhile back when | was hand optimising some code
within aprogram | help devel op. By replacing alot of inefficient code with
something like

String conbo[] = { "Text", "Link", "External

"External Web-Link" };
size_t conboArray = sizeof (conbo)/sizeof (*conbo);
for(uint prop = 0; prop < conboArray; ++prop)

ConboBox1->i nsertlten(tr(conbo[prop]));

Li nk",

it made the program alot tighter and quicker. There was a problem with it
which wasn'’t apparent under the test conditions (aka on my machine with
different EU locales set). t r () isthe Qt trandator —it isavery powerful
piece of kit, but unfortunately with it set inside of thei nsertltem
method, the translator wasn't called. This did bite into the efficiency (as
shown by various calls to memory and CPU profilers) and the second
version was to replace

String conbo[] = { "Text", "Link", "External Link",
"External Wb-Link" };
with
String conbo[] = { tr("Text"), tr("Link"),
tr("External Link"), tr("External Web-Link") };

which oddly enough worked. At first, | thought the problem was in the
conboAr r ay line, but then that really didn't make sense — al that line
does is give the size of the created array. That could only mean that the
i nsert |t emmethod couldn’t takethet r conversion step. Swine! | had

a

atered a substantial amount of code to use my original method and then
find it doesn’t work as well as anticipated (though it did work).

This did lead me to suspect that perhaps my testing and programming
methodology was incorrect. Up to now, | had been a single programmer,
working on a project which really, not many people would use and if they
did, well, the problems would not be that huge to work around. In other
words, I'm not being lazy per se, just not being as considerate as perhaps
| should; software, after all, isagloba commodity.

What | finally concluded was that | should not have made so many
changes, had one and sent that out as asimple test case and worked on the
results of that. Okay, grepping through the code wasn't that big a task,
neither were the changes, but it was time | could have spent doing things
| enjoy — like having a relaxing pint of some foaming nut brown ale and
reading my collection of Dr Who books (hey, even | have to rest
sometimes!)

Leading on from that, | decided to do some more code — this time,
replacing normal code with template code to try and speed things up — if
not from the user’s point of view, then definitely from the system’s point
of view. Thistime, | started small...

/* While this version is sinpler to read and the
final binary is around 4k snmaller than the
tenpl ate version, gcc 3.4 with a few
optimisation tools being run show this to be
slightly less efficient in terns of processor
tine. */

#i ncl ude <gappl i cation. h>
#i ncl ude <gslider. h>
#i ncl ude <ql cdnunber. h>

int main(int argc, char* argv[]) {
QAppl i cation nyapp(argc, argv);

QN dget* nywi dget = new QW dget();

nyw dget - >set Geonet ry(400, 300, 170, 110);
@&lider* nyslider = new @Slider(0, 9, 1, 1,
Slider::Horizontal, nyw dget);
nysli der->set Geonetry(10, 10, 150, 30);

QCON\unber * nyl cdnum = new Q.CDNunber (1, nyw dget);

nyl cdnum >set Geonet ry(60, 50, 50, 50);

nyl cdnum >di splay(1); // display initial value

/1 connect slider and nunber display

Qbj ect : : connect (nyslider, SIGNAL(sliderMved(int)),
nyl cdnum SLOT(di splay(int)));

nyapp. set Mai nW dget (nywi dget) ;
nywi dget - >show() ;
return nyapp. exec();

}

Okay, not exactly rocket science in terms of code (and as you’' ve all been
reading the Qt series over the past couple of issues, you can tell me what
it does). However, some of the methods are very similar and how they work
even more so.

Now, | could have written a simple wrapper, but instead came up with
this

/1 slider v2 — tenpl ate version.
/1 gslider-tenplate.cpp

#i ncl ude <qapplication. h>
#i ncl ude <qgslider. h>
#i ncl ude <ql cdnunber. h>

CVu/ACCU/Reports & Opinions

#i ncl ude "nenory. h"

tenpl ate <typenane N, typenane T>
void setCGeonmetry(Nm T *x) {

m >set Geonetry(x[0], x[1],
}

x[2], x[3]);

int main(int argc, char* argv[]) {
QAppl i cation nyapp(argc, argv);
QN dget *nywi dget (al | ocat e_nenor y<QAN dget >()) ;
test Al | oc(nyw dget);

int geonid4];
geoni 0] = 400; geonil1] = 300; geonf2] = 170;
geoni 3] = 100;

set Geonet ry(nmyw dget, geonj;

geonf0] = 0; geonil1] = 9;

geonf2] = geonf3] = 1,

&Sl ider *nyslider(allocate_nenory<QSlider>(geom
Sl ider::Horizontal, nyw dget));

test Al l oc(nyslider);

geonf 0] = geoni 1] = 150;

geon{ 3] = 30;

set Ceonet ry(nyslider,

= 10; geoni?2]

geonm ;

Q.CDNunber *nyl cdnun{(
al | ocat e_nenor y<@Q.CDNunber >(1, nyw dget));
test Al I oc(nyl cdnunj;

geonf 0] = 60; geonil] = geoni?Z2]
set Geonet ry(nyl cdnum geon;

= geoni 3] = 50;

nyl cdnum >di spl ay(1); // display initial value
QObj ect : : connect (nyslider, Sl GNAL(sliderMved(int)),

nyl cdnum SLOT(di splay(int)));

nyapp. set Mai nW dget (nywi dget) ;
nywi dget - >show() ;
return nyapp. exec();

}

/1 memory. cpp

#i ncl ude <gapplication. h>
#i ncl ude <qgslider. h>

#i ncl ude <ql cdnunber. h>
#i ncl ude <new>

#i ncl ude <cstdlib>

usi ng std:: nothrow,

tenpl ate <typenane N>

N *al | ocate_nenory() {
return new(std::nothrow) N

}

tenpl ate <typename N, typenanme M

N *al | ocate_nenory(int val, M*&m {
return new(std::nothrow Nval, n);

}

tenpl ate <typenane N,
typename T>
N *al l ocate_nmenory(T *t, Mm O o) {
return new(std::nothrow) Nt[O], t[1],
m, 0);

typenane M typenane O

t[2], t[3],

}

tenpl ate <typenanme N>

void testAll oc(N &) {
if(lw

exi t (EXI T_FAI LURE) ;

CVu/ACCU/Reports & Opinions |

What is the advantage over the original version? Well, for a start in
menory. cpp | have avery simple, yet very effective memory handling
routine—given it was only atest bed, it is probably not win any prizesfor
the best and tightest code around, but the important thing was for what |
threw at it, the code worked and worked well (the profilers | use showed
roughly a 10% improvement over the original).

Was there really a point to the exercise though? The code never did
makethereleaseversion fter all. Yes. Y estherewas. Itisaproof of concept
that demonstratesthat it is entirely possible not only make the code tighter
and more importantly, more secure (there is a planned network of the
application so everything has to be as secure as possible).

Sad Times

Unfortunately, | haveto report that our production editor of many moons has
decided to very reluctantly move on to pastures new. Pippahas been possibly
one of the best production editors I’ ve had the pleasure to work with. Not
only has she been patient, but has that rare quality of knowing about the
subject matter in hand.

Wewill all missher and wish her well. C Vu and Overload are now after
anew production editor. If you would like further details, please contact
John Merrells (publ i cat i ons@ccu. or g).

And So...

W, thisisthe final edition of C VVu for 2004. All that remains for me to
say isthat from all of the ACCU Committee and C Vu + Overload
production staff, may we all wish you awarm and merry yuletide and that
2005 be afantastic year for you all. See you in 2005!

Paul F. Johnson

View From the Chair

Ewan Milne <chai r @Gccu. or g>

Aswe approach the end of 2004, it istimeto look back on a past year and
recognise just afew of the great contributions made by C VVu and Overload
authors, as we announce the winners of the 2003 ACCU Authors’
Competition. Err, 2003? Yes, I'm afraid that over-optimistic planning and
project overruns can affect the best of us, so that the intended
announcement of these winners at this year’s conference has obviously
been missed by, well, some months. Announcing a release date before
having a plan in place — who would ever think of doing that?

But adedicated team of judges have now spent several autumn evenings
poring over every article published in C Vu and Overload in 2003, and we
have finally reached the end of our deliberations. To say that the judging
was made difficult by the universally high quality of articles that are
published in both magazines might sound like an awards ceremony cliché,
but it istrue nonethel ess. We have mentioned some of the articles that just
missed the top spots, but in truth there were many other strong contenders.
The committee would like to thank everyone who has contributed to the
magazines. So without further ado, the winners are...

Best C Vu Article

An Introduction to Optimising Programs by Roger Orr

Honourable mentions: 10 Things Y ou Always Wanted To Know About
Assert (But Were Afraid To Ask) by Garry Lancaster, the Professionalism
in Programming series by Pete Goodliffe

Best C Vu Article by a New Author

When Worlds Collide #1 - Embedded Systems and General Purpose
Computersby Mark Easter brook

Honourable mentions: Brackets Off! by Thomas Guest, Maintaining
Context for Exceptions by Rob Hughes

Best Overload Article

A Return Type That Doesn’'t Like Being I gnored by Jon Jagger
Honourable mentions: Singleton - the Anti-Pattern by Mark Radford,
Ruminations on Knowledge in Software Development by Allan Kelly

Best Overload Article by a New Author

Choosing Template Parameters by Raoul Gough
Honourable mentions: Stream-Based Parsing in C++ by Frank
Antonsen, EXPR_TYPE - An Implementation of t ypeof Using Current
Standard C++ by Anthony Williams, Exported Templates by Jean-Marc
Bourget, Labouring: An Analogy by Seb Rose
[reports concluded at foot of next page]

S

Dialogue

Student Code Critiq

Competition 31

Set and collated by David A. Caabeiro <scc@ccu. or g>
Prizes provided by Blackwells Bookshops & Addison-Wesley

ue

Student Code Critique 30 Entry

Here is a program Francis collected which is riddled with poor design,

naming, etc. as well as the actual problem:

Please note that participation in this competition is open to all members.

The title reflects the fact that the code used is normally provided by a

student as part of their course work.

Thisitemis part of the Dialogue section of C Vu, which isintended to
designateit asan itemwherereader interaction is particularly important.
Readers' commentsand criticisms of published entries are alwayswel come.

Before We Start

Have you ever come across atricky bug at work that took you the whole
day tofind, or an exercise at school that didn’t work the way you expected

string Day2=

I'm getting a “parse error before el se ” at the line indicated by the arrow

void IS IT_A DDR(string& ntgrec,

string& tenprec,int& ddrrc) {

"SunMonTueWedThuFri Sat " ;

string Dayt oken="0123456";

int

ddrrc=0;
return;

}

for (int

to? Those could be good opportunities not only to share it with other

members, but to receive feedback from them. After all, thisbelongsto the

Dialogue section, so who better than you to take part?

Remember that you can get the current problem set on the ACCU
website (ht t p: / / www. accu. or g/ j ournal s/). Thisisamed at
people living overseas who get the magazine much later than membersin

the UK and Europe.

badday=0;
if (ngrec.size() < 8) {

i =0;
if (ntgrec.substr (0, 3)

i <= 6; i++) {

== Day2. substr((i+1)*3-3,3)) {

if ((mtgrec.substr(3,1) == "0")
(mtgrec.substr(3,1) == "1")) {
if ((mgrec.substr(7,1)).
find_first_of ("BCLMOPSTW") = -1) {

t enpr ec=Dayt oken. substr (i, 1)

+ mtgrec.substr(1);

[continued from previ ous page]

Membership Report

David Hodge <nenber shi p@ccu. or g>

With the main renewal period over the
membership stands at about 895.

From my point of view the rolling
membership system is going well. The joining
envelope now contains just one issue instead of
the back issues for thewholeyear, soiseasier to
manage. A new member usually gets their
journals, handbook and welcome letter posted
within 48 hours of joining. If you have a UK
bank account and would like to save £5.00 on
your next year’'s subscription by paying by
standing order, just email me.

Standards Report

Lois Goldthwaite
<l 0i s@ oi sgol dt hwai t e. con»

One of the discussions at the meeting of the
C++ standard committee in Redmond,
Washington, in October could have a big effect
on the future of C++ asone of theworld’s most
important programming languages. Thiswas a
presentation by Andrei Alexandrescu, who has
been a popular speaker at several ACCU
conferences.

In a paper with severa co-authors (the UK’s
Kevlin Henney being one of them), Andrei is
proposing that C++ define a memory model
which will serve as a reliable basis for
multithreaded programming. The C++ standard
iswrittenin terms of the operations of an abstract
machine. A conforming implementation need not
copy or emulate the structure of this abstract
machine, so long as it produces the same
observable behaviour resulting from a well-
formed program with proper inputs. The
observable behaviour of the abstract machineis

6

“its sequence of reads and writesto volatile data

and callsto library 1/0 functions.”

As regards non-volatile data, compilers are
free to reorder reads and writes as much as they
like, so long as conforming observable behaviour
istheresult. Apart from compiler optimisations,
processors and operating systems may contain
their own logic which affects when changes to
memory locations become visible.

Many multi-threading libraries are explicitly
or implicitly based on the idea of a single main
thread of control which assigns time-slices to
different execution contexts. Asmulti-processor
and multi-core computers become more common
- and there are desktop systems right now with
two or more processors- truly parallel executing
threads will become the norm. What will it take
to ensure that two threads looking at the same
memory location will definitely see the same
valuethere?

The paper, which you can find at
http://ww:. open-std.org/jtcl/ sc22
/wg21/ docs/ paper s/ 2004/ n1680. pdf,
attemptsto set out the rational e for why the C++
committee should undertake the effort to define
a more robust memory model for the future,
clearly specifying the interactions between
threads and memory. Future tasks, outlined by
Andrei in his presentation to the committee, are
to define a small set of primitive operations
necessary to support multi-threading, on top of
which athreading library can be built.

The main questions addressed by a memory
model include:

» Atomicity: Which memory operations have
indivisible effects?

» Visibility: Under what conditions will the
effects of awrite action by onethread be seen
by aread by another thread?

e Ordering: Under what conditions are
sequences of memory operations by one or

more threads guaranteed to be visible in the

same order by other threads?

These factors cannot be guaranteed by a
threads library alone; they are fundamental to
the meaning of any code as simple as a=1;
b=2; . Some of the basic theoretical work has
already been done during the rethink of the
memory model for Java programming; the
authors hope to reuse some of that work in the
C++ project.

This effort is not expected to result in any
changes to C++ syntax, but it may well change
some of the underlying semantics — if only by
tightening up the rules on how optimisation can
alter the flow of control written into source code.

If you would like to participate in this
important work, and especially if you have
expertise in this area, please write to
st andar ds@ccu. or g for information on
how to join the UK C++ panel.

Letter from America

Reg Charney
<char ney@har neyday. conr

Hereisthe report on the U.S. chapter.

« Membership/attendance at the local Silicon
Valey meeting hasbeenfairly stable—10-20
people at each mesting.

« Dueto cost considerations, we have stopped
printing the ACCent news letter. It did not
seem to be generating enough
interest/attendance.

e Most membership dues must be going
through the ACCU main web site. | have had
only one member renew by chequeinthelast
two months.

« | am trying to revamp our U.S. web site and
am in negotiations with some people to give
us the basis for some unique content. It will
entail amajor rework of our site.

» We have ahealthy bank balance.

CVu/ACCU/Dialogue

ddrrc=1;
return;
}
el se {

ddrrc=2;
return;
}

el se { <<< conpiler diagnostic
ddrrc=3;
return;

}

}

el se badday++;

}

i f (badday == 7) {
ddrrc=4;
return;

el se ddrrc=5;
return;

}

From Neil Youngman <ny @ oungman. or g. uk>

This piece of code is abit of a problem. On afirst reading it’s hard to tell
what it'strying to achieve. | can see that there’'s some sort of date related
functionality from the definition of variable Day2, but it really doesn’t
make it obvious what it’s doing with those dates.

First things first, | guess, start with the compiler error and then try to
deal with the other issues. Thisis at somelevel obvious, i.e. the el se is
mismatched, but whichi f statement doesit go with?

It looks asif it probably matches

if((ntgrec.substr(3,1)
|| (mtgrec.substr(3,1)

== "Q")
== "17))

but with erratic indentation and without any clear idea of intent, that’ s not
really certain.

To go much deeper | need someidea of meaning. Thefunctioniscalled
I'S | T_A DDR. DDR to meis atype of memory, which doesn’t help.
The parameter names don’t offer much of aclue either. Thefirst parameter
is caled nt gr ec. | guess that would be 2 components it g and r ec.
nt g could be mortgage or meeting and r ec could be record. Given the
date related details | would guess that meeting record is the most likely
meaning.

Thefirsti f statement inside the f or loop looks for a 3 letter day of
the week at the start, the second for a‘0’ or a‘1’ and the 3rd for any of the
charactersin “BCLMOPSTW*” anywhere from the 8th character on. the
value of ddr r ¢ will be set according to which of theseit finds. As| seem
to be no closer to deducing the purpose of this code, so | guess I’ d better
consider the many stylistic abominations.

First off naming. As pointed out in the question the naming is poor. |
have been unable to determine what the code isintended to achieve. There
should of course be comments to assist with maintenance, but there aren’t.
Even with comments, clear use of names is invaluable in understanding
the detail of aprogram. Here | have neither.

Looking at the function definition ALL_CAPS is a common stylistic
convention to denote amacro or aconstant. | can’'t seewhy it isused here.
The choice of nameswe have already criticised. Thefirst parameter seems
to beread only and should therefore be const. Thelast parameter seemsto
be areturn code, indicating the result of the function. It seems to me that
this should be the function’ s return value instead of the function returning
void.

Looking at the variables both Day2 and Dayt oken should both be
constants and some sort of collection structure, e.g. an array or a vector,
seems more appropriatethan astring. Thismakesclear that they areagroup
of separate, if related values, not a single value. The variable badday
seemsentirely redundant, as| can't seethat it’ s value can be anything other
than 7 if the loop runs to completion. Of course that makesthe last el se
clause entirely redundant.

Next we come to a size check. Thisisfairly straightforward, but
involves a magic number “8”. Generally hard coded constants should be
declared somewhere central with a name, both to minimise the number of

CVu/ACCU/Dialogue

places where you they have to be changed, should a change be needed and
to make the code more readable.

That brings us to the values assigned to the variable ddr r c. The 8in
the size check could be related to the code we see, which clearly expects
at least 8 characters. The numbers going into ddr r ¢ carry no meaning
whatsoever. These should definitely be defined as constants somewhere. |
would probably declare an enumeration and make the function return a
value of the enumeration type.

There are also some efficiency concerns. The first 3 characters of
nt gr ec are potentially extracted up to 7 times as we iterate through the
loop. The obvious solution to thisis to extract them just once, with a
statement like

const string ntgDay = ntgrec.substr(0, 3);
but | suspect that this would be missing an opportunity to improve the
design further, by introducing a proper structure to be used in place of
a string. The string appears to be a collection of structured data and
using a string for the data hides that structure. Defining a proper class
(or struct) for that data would bring that structure out as well as being
more efficient than using string: : substr () to extract the
components.

The Winner of SGC 30

The editor’s choiceis:

Neil Youngman
Please email f r anci s@ obi nt on. denon. co. uk toarrangefor your
prize.

Francis’ Commentary

My first reaction to the student’s question is ‘Are you surprised that the
code hasan error? | would rapidly follow it up with *If the corrected code
passes the compiler, would you trust it? | think that the only acceptable
answer to both these questionsis‘no’.

My next questionis‘What should you do about it? | would try to guide
the student into * Redesign the code and factor the separate actionsinto their
own informatively named functions.’ If performance becomes an issue after
doing that, it is time to consider helping the compiler with the i nl i ne
keyword.

Most of the reorganisation | want to do is concerned with the
implementation so | will move that out into the unnamed namespace.

Beforel do any of that, | take strong objection to both the function name
(spelt in all uppercase) and the function return type. Any function whose
name asks a question should return abool . However it seems to me that
the function does not answer a simple binary question but asks something
else for which there answer is a choice of five things. | have no ideawhat
DDR means in this context (I am pretty sure it does not refer to ‘ Dance
Dance Revolution’, ‘ Developers Diversified Reality’ nor to some form of
SDRAM), nor what the classification stored in an out-parameter (ddr r c)
means so | will have to use some placeholders. These placeholders should
be replaced with meaningful names. enuns are designed to deal with this
kind of issue. Asthe enumeration constants need to be availablein multiple
trandation units, it needs to be declared in a header file. Let me start with
that:

#i f ndef DDR_DECLARATI ONS _H
#def i ne DDR_DECLARATI ONS_H
#i ncl ude <string>

enum ddr _cl assi fication{
ok, too_short, bad_day,
bad_synbol, err5
H
ddr_classification classify(
std::string const & ntgrec,
std::string & outrec);

bad_fI ag,

inline
void IS IT A DDR(std::string const & mrec,
std::string & tenprec,
int & ddrrc) {
ddrrc = classify(ntrec, tenprec)+1;

}
#endi f

| have provided asimpleforwarding function to provide temporary support
for the ill-named function so that no immediate changes need to be made
to code elsewhere. | would expect that to be rapidly replaced. | have made
ok take a zero value so that in future it will be possible to use the return
valueof cl assi fy() for arapid check of validity. Note that | use fully
qualified namesin the header fileand that | have added aconst qualifier
to thefirst parameter.

There is also the question of those two string variables; they aren’t
variable nor are the local (though they could be static). Such items belong
in the associated unnamed namespace.

Here isthe start for the implementation file:

#i nclude "ddr_decl arations. h"
using std::string;
nanespace {

string const daynanes[] = {"Sun", "Mon",
"Tue", "Wed", "Thu",
"Fri", "Sat"};

char * const daynunber = "0123456";

char * const synmbols = "BCLMOPSTW";

}

| would favour a better name for symbols but without knowing the context
that is the best | can do. Now let me try to write a halfway sensible
definition for cl assi fy().

ddr _cl assification classify(
std::string const & ntgrec,
std::string & outrec)(
if(ntgrec.size() < 8) return too_short;
i nt daynunm(daynane_to_int(ntgetrec));
i f(daynum > 6) return bad_day;

if(not valid_flag(ntgrec.substr(3, 1)))
return bad_fl ag;
i f(valid_synbol (ntgrec.substr(7, 1))){

outrec = daynunber[daynuni
+ mtgrec. substr(1);
return ok;
}

el se return bad_synbol ;

}

Now notice that if the original code's f or -loop ever exited that the
student’sbadday variable must be equal to 7. Therejustisn’t any other
way through that nest of i f’s. That was far from obviousin the original.
Separating out the various conditions and only continuing if everything
is still checking out leads to much clearer code. It also much better
models the way would handle the problem ourselves. First check that
thefirst three charactersrepresent an abbreviation for aday, next check
that the fourth symbol is acceptable then check that the eighth one is
OK. Human beings might only notice that there were too few symbols
at that last stage, though it is easier to check it first from a program
perspective.

Now let me go back and add the requisite helper functions (which will
go in the unnamed namespace).

int dayname_to_int(string const & nmtgetrec){

for(int i(0); i !'=7;, ++i){
if(mgrec.substr(0, 3) == daynanes[i]{
return i;
}
}
return 7,

}

Yes, | know there is a magic number lurking in there, but | am running
short of timeif David isto get thisin timeto useit.

bool valid_flag(char flag)({
if(flag == '0") return true;
if(flag == "1'") return true;
return false;
}
8

bool valid_synbol (char synbol){
for(int i(0); i != strlen(synbols); ++i){
i f(synbol == synbols[i])
return true;
}

return false;

}

Now I think that this code represents the intention of that provided by the
student. It would have been much easier had the student specified what the
code was intended to do.

Notice that the coding error was a direct consequence of an
inappropriate view of how to code the problem. The student was willing
to use al kinds of tools he had found in the Standard C++ Library but the
tool hereally needed was his own brain. Sadly once the code was working
too many instructors would accept it.

Remember that thisis part of the Dial ogue section of C Vu so you have
animplicit invitation to critique my solution aswell as add any other useful
information you have about the actual problem.

Student Code Critique 31

(Submissionsto scc@ccu. or g by January 10th)

Here is the code | have using the equation to drop the lowest number from the
grades. The problem is, if | change up number 3 and number 4, | get a different
answer. | used the numbers 80, 84, 60, 100 and 90. Putting the numbers in like
that, | get 88 but, if | mix up the 100 and 60 then | get a grade of 81. Can anyone
tell me why it is not finding the lowest number and just dropping it when | tell it
to (- lowest)?

#i ncl ude <i ostreane
#i ncl ude <i omani p>

usi ng nanmespace std;

int main() {

int testl, test2, test3, test4,testb, average,

aver agescor e, di vi de;

cout <<"This programwi |l gather five test
scores and\n";
giving you the
average\ n";

cout <<"drop the | owest score,
cout <<"\n";

cout <<"Please enter Five Test scores\n";
cin >> test1>>test2>>t est 3>>t est 4>>t est 5;

int | owest = testl;

// test 1 is the | owest nunber unl ess
if (test2 < testl)lowest = test2;

/] test 2 is smaller than test 1 unless
if (test3 < test2)lowest = test3;

/] test 3 is smaller than test 2 unl ess
if (test4 < test3)lowest = test4;

/l test 4 is smaller than test 3 unless

if (testb < test4)lowest = testb5;
/] test 5is snmaller than test 4.

average = (testl+test2+test3+test4+test’);

/1 all test scores averaged together
aver agescore = average - |owest;

/1 average score mnus the | owest grade

di vi de = averagescore /4;

/'l average grade is then divided by 4
cout << divide<< endl;

/1 final grade after division
return O;

}

Besides the question asked by the student, this code gives you a chanceto
discuss topics such as extensibility, design and style. Please address

as many issues as you consider necessary, without omitting the answer to
the original question.

CVu/ACCU/Dialogue

Francis’ Scribbles

Francis Glassborow <f r anci s@ obi nt on. denon. co. uk>

Redmond Meetings

| spent the last two weeks of October in Redmond attending three
Standards meetings, WG21 (C++), ECMA’s TC3/TG5 (C++/CLI) and
then WG14 (C).

WG21 isworking very hard on developing the next release of the C++
Standard (scheduled for some time about 2008/9). There are agreat many
good ideas for improving or developing C++. Quite anumber of these are
originating in the UK.

The Most Important Paper

However, to my mind, the most important paper N1680 (available at
www. open-std.org/jtcl/sc22/wg21l/ docs/ papers/) was
not a direct proposal but a discussion document. It is co-authored by A.
Alexandrescu, H. Boehm, K. Henney, D. Lea, B. Pugh, and entitled
‘Memory Model for Multithreaded C++’. The paper makes it clear that
providing proper support for efficient multi-threading is more than just
adding afew libraries. It is not necessary to change the syntax of the
language to provide correct underpinnings for multi-threading but some
changes to the semantics are essential.

Trying to implement multi-threading on top of a single thread abstract
machine simply cripples modern multi CPU, multi-core hardware. In fact
even such primitive developments as Intel’ s hyper-threading has to be
turned off for many programs to avoid complete chaos. It isn't just the
assumptions that programmers make, but those that are made by the
compilers.

If we had to design a suitable abstract machine from scratch we would
have atask that we would almost certainly get wrong the first time (Java
did, and its designers were neither naive nor ignorant). However we can
capitalise on the experience of others and we have suitable expertise within
the C++ community. What | have some doubts about iswhether we actually
havethewill. Many people seem to think that the solutionsthat are already
available through such libraries as the Boost one are good enough. | do not
think they are and | think that once you spend time understanding the above
paper you will agree. However the argument that what we have is ‘good
enough’ is a very seductive one because, if accepted, it allows us to go
away and do those other simpler things that we understand and want in
C++.

How urgent isit to provide asuitable memory model for multi-threaded
C++?Well C++ will have many fruitful years|eft even if we do not change
the abstract machine. But those yearswill be numbered. Already AMD has
sampled a dual-core CPU (i.e. two independent processors on a single
chip). Intel have announced that future versions of their Pentium line will
be multi-core and Sun Microsystems are soon to release an 8-core
processor. The upshot isthat we are only avery few years away (perhaps
as small as two) from entry-level machines having, effectively, multiple
processors.

Note that this development has been clearly coming for several years
though the present competition between AMD and Intel has probably
brought it forward a couple of years. Every attempt at increasing
performance by increasing CPU speed involvesincreased heat production.
The current speeds are now pushing the limit of what can be handled by
air-cooling. When chip designers start muttering about having to go to
water-cooling you know we will have problems, particularly with low-end
hardware.

The only viable option is to increase computing power by having more
processors doing the work. From the hardware designer’ s perspective this
is not a big problem. The problem comes from the software end. The big
number-crunchers have been using multiple processors and big array
processors for years. But getting effective use from such hardware has
meant developing specific development tools for the hardware in an area
where software tools are expected to cost orders of magnitude more than
those we customarily use for desk-top software development.

Now simple mathematics comesinto play. Place C++ head-to-head with
alanguage such as Java on a single CPU machine and all the traditional
arguments of compiled versus interpreted code, manually managed
memory resources versus garbage collection come into play. In its own
specialist areas each language will be ableto capitalise onits strengths and
make a case for continued use.

CVu/ACCU/Dialogue

Move to amulti-processor environment and any language, which can
be used to make efficient use of all the computational resources available,
will outperform one that is tied to a more primitive model. A lock that
stops all other threads is a potential disaster on a multi-processor
machine. Suddenly half your power is lost on a primitive dual core
machine, much more on the more advanced hardware that is on the
horizon.

The upshot isthat either C++ evolves to make good use of the coming
hardware or it will lose out to newer languages. Such issues as support for
garbage collection are of minor importance.

Now the interesting thing is that if we get the fundamental memory
model right library designerswill be able to provide efficient components
for the application level programmer. The latter will have to learn a bit
about multi-threading (actually. probably less than what you have to learn
today) but will get good use of the available hardware. If we do not get the
underlying model correct, no amount of excellent library design will
compensate.

C++ Evolution

WG21 deliberately make all the devel opment papers availablefor general
reading because they hope that others will review them and add their
insights and knowledge in order to improve them.

Just because a paper makes a proposal does not mean that it will be
in the next version of C++. Indeed a great many good ideas will fall by
the wayside. One certain way for an ideato fail isif it is not actively
pursued. WG21 have more than enough to do without taking on work
from others. If you see a proposal that you would like to see followed
through, at the very least provide the authors with moral support and
encouragement. They need to know that others think the effort
worthwhile.

If you arein aposition to do more such as contributing your knowledge
and experience of prior art, or volunteering to try the idea out by modifying
a compiler whose source code you have access to then please come
forward.

One of the hidden costs in pursuing any proposal is the fact that other
good proposalswill die. We just do not have the resources to follow every
good idea. And even if wedid, doing so would not be good for C++. | know
some people think that there should be a nice coherent development plan
for C++. Great idea but it just does not happen that way. What gets done
iswhat people are willing to do.

If you want to add amajor featureto C++ like full support for functional
programming (just to choose an area where there is some interest but no
existing proposals so | will not be hurting anyone’ s feglings) you will have
amuch better chance for success by getting together agroup of peoplewho
will do the work (and that includes coming to meetings). Sorry if you do
not like that message but it is the practicality of the situation.

If You Want, You Must Do

An example of how that worksisthe ‘Embedded C' TR that was produced
by WG14. Those that wanted support for such things as DSPs got together,
came to WG14 meetings and did the work.

Others have sat on the sidelines and criticised their doing the work for
awholerange of reasons. Such criticismisunfair, inappropriate and, in my
opinion, unprofessional. The group believed they needed support at least
to thelevel of an 1SO Technical Report, they put up the resources and no
little cost to themselves and did the work. With more support and more
expert eyes the result might have been better and more comprehensive,
however | do not know that. What | do know isthat thosewho simply tried
to vote the work away on the basis that it should never have been done
demean themselves and those they represent.

Shamefully, for reasonsthat | cannot explain here, the UK has been the
worst offender over the last few years. Steps are being taken to correct the
position but it would never have happened had the broad UK C community
participated rather than sitting on the sidelines expecting othersto represent
them and their needs.

By contrast the UK C++ community has been one of the most active
contributorsto the future development of C++. We may not be ableto send
many people to WG21 meetings but our BSI Panel meetings are well
attended and bubble with ideas and enthusiasm. Panel members have been
putting in time and personal resourcesto help make C++ better. We do our
best to ensure that C++ becomes better, and better meets the needs of its
users. Most participants have a broad programming base and actively
program in several languages.

9

ECMAVvISO

You will have noticed that one of the three meetings that | attended in
Redmond was an ECM A meeting concerned with the devel opment of what
iscaled C++/CLI. In other words a‘dialect’ (Herb Sutter likesto call it a
set of bindings, but most of us think that istoo simple aview) of C++ to
be used with the |SO Standard to which .NET conforms.

| hear agood deal of criticism of the ECMA process. | agree with much
of it but there is one thing of which | recently became conscious and that
is that the radical difference in the natures of ECMA and 1SO do
legitimately lead to a different process.

1SO Committees are composed of National Body delegations. Those
delegations are supposed to represent their national interests. Indirectly
those will include a substantial element of their nation’s commercial
interests. However note that thisisindirect. ECMA Committees are
composed of direct commercial representation.

It is perfectly natural that a decision made in TG5 should be dominated
by the commercial interests of the participating companies. Such things as
currently planned shipping dates are important. The process will be
designed to take much more direct consideration and input from the
participating companies.

1SO committees naturally have awider community to serve. Where it
becomes interesting iswhen we have asituation such asthat of WG21 that
is colocated with a strong, technically competent NB Committee (J16).
Like ECMA, J16 islargely based on corporate membership. Like ECMA,
J16 members are focused on the needs of the companies they represent
rather than a broader community. Often the tension between WG21 and
J16 goes unnoticed but sometimes it pokes above the surface.

| am greatly in favour of technical work being done together without
too much commercial influence but it would be a mistake to ignore that
the latter exists and that in the case of both WG14 and WG21 the
(overwhelming) majority of attending experts are actualy from J11 and
Ji6.

Sometimes areas (such aswhat new work should be done) are definitely
the domain of the SO Committee and not aNational Body. Y et sometimes
the way that proposals get discussed means that the dominant position of
experts from a single country can distort the outcome.

A casein point is a proposal from a UK expert that WG21 should
produceaTR on aStatistics Library. The UK had only two people at the
Redmond meeting. | had my hands full with the work of the Evolution
Group. Most attending NBs had only one or two representatives. The
result was that when the WG21 Library workgroup considered the UK
proposal for work on a Statistics Library the discussion was dominated
(overwhelmingly) by the J16 experts. A number of strong voices had
good commercial reasons for not wanting to add a Statistics Library even
asaTR. Notethat | am not criticising those J16 experts, they were doing
their job; the job that their employers expect and pay them to do. It just
is not the same job as that which should be done by a National delegation
to WG21. Indeed the official US Delegation often has a markedly
different as a national delegation to that of the members of J16 as
members of J16.

I think we need to address the issues that this raises. But before we do,
we need to bewilling to provide (or acquire from other NBs) the resources
to do the work. When it comes to the crunch, it is those who do the work
who will determine what happens.

It is no use sitting on the sidelines and whingeing about things we do
not like, we have to get in there and get involved.

While much of the above is from a UK perspective, much of it would
be valid from the perspective of other National Bodies.

Problem 18

Some programmers seem to hate to use more namesin their programsthan
they absolutely have to. Your challenge is to write a program in C++ that
outputs the first n members of the Fibonacci serieswherethevalueofnis
provided by user input at runtime.

That is easy for most readers. But there is a limitation, any variable,
function, type or namespace that you declare must be called i . You are
allowed to use anything you like from the Standard (such as mai n,
std::cinandstd::cout).

The requirement that it be written in C++ is because | do not think it
can be done in C, and there maybe some other languages in which the
problemistrivial.

In caseyouthink itisimpossible, | have asolution (which took me about
ten minutes to develop — but | have the advantage of knowing the key to

10

coding the problem) that is fifteen lines of code with not more than one
statement per line.

Commentary on Problem 17
Hereisaminimalist version of mai n() :

int main(){
a * b;
}

Given suitable precursors it will compile and execute. Can you provide
suitable precursors so that the resulting program executes and outputs:

int main(){
a* b;
}

Thisis aversion of an old problem, which is to write a program that
outputs itself. In considering answers | am interested in more than just
aprogram, | want to see the mental process by which the author arrived
atit.

The first problem with the above code is ensuring that (a * b)
compiles. There are two possihilities, either a isatype and b is a pointer
to that type or a and b are both global objectswithanoper at or * that
can be called.

If a isatypethen the output must be generated by some other code that
will be run by executing the program. That basically requires that there is
aglobal object with has a constructor or adestructor that somehow causes
the output.

If a is not atype then both a and b must be global objects (because
they must be declared somewhere.) There must also be a suitable
operator *.

Once you recognise that the output must be generated by some code
that runs outside nai n() you are left with a number of options. Here is
onethat | wrote earlier:

#i ncl ude <i ostrean»
struct work {

wor k() {
std::cout << "int main(){\n"
<< " a* b;\n"
<< "I\n";
}
P
int a, b;
int main() {
a* b;

}

The submissions | have had so far have gone for more complicated
solutions. That does hot make them bad but asageneral rule good programs
achieve their objective with a minimum of complexity.

| forgot to give aclosing date so | am not going to select awinner until
the end of November (which will be too late for inclusion in this issue of
CVu.) For obviousreasons, it will betoo late to enter by the timeyou read
this.

Cryptic Clues For Numbers

Last issue’s clue seems to have provided rather a different problem to
readers. Several of you wrote to me with the number itself but were
struggling to produce an alternative clue. Here is the clue again:

Oh for love in the sea! It only values the fifth bit.
Thefirst threewords give 040 (loveis conventionally used in cryptic clues
as'o (asaletter) or ‘O’ (as anumber) because of its use in such things as
tennis scores. Now, in C that means 32 (octal 40). The second sentences
provide confirmation because that isthe value of thefifth bitin abyte (hey,
we are C or C++ programmers and so count from zero).

Hereis another clue to keep your brain cells working over the holiday
Season:

Deuce, it sounds like they came for tea twice. (4 digits)
Thereisplenty of potential for aternative clues. Something that happened
on November 15, 1971 might be of use as clue material.

Francis Glassborow

CVu/ACCU/Dialogue |

Features

Blue Fountain Systems —
An Open Source Company

Paul F. Johnson <edi t or @ccu. or g>

A company which produces Open Source Software (OSS) is nothing new.
There are plenty in the US and Europe that have been trading very nicely
for quite anumber of years (RedHat and SuSE spring to mind). However,
these are companies who write the distributions. Can a company exist
which produces OSS, and if it can, how doesit survive?

Recently, | wasinformed of acompany based in Liverpool which does
just that. As Liverpool is my home city and only about 45 minutes away,
| arranged for ameeting and on the 3rd of November, in rather dull weather,
ventured forth to visit themin theworld famous IndiaBuildings, very close
to the River Mersey and a stone' s throw away from the town centre.

I was met by a very friendly environment, with a team of six
programmers and one receptionist. | was presently introduced to one of the
directors, Aidan McGuire. Over a coffee and quite alot of laughter, we
settled down to conduct the interview for C Vu. Okay, he did find out alot
about my involvement with OSS, programming and technical background,
CVuandlotsof other thingsfirst, but | wouldn’t have expected very much
else.

From past experience, interviewing company directors can be atricky
affair. Most don’t (or can't) reveal very much. In true Open Source tradition
though, Aidan offered more than | expected when he answered with a
candidness which was really refreshing!

How long has Blue Fountain Systems been around and what is your
primary business? How can an open sour ce company makemoney?1s
it funded on the back of writing bespoke code?

1991, though it became incorporated in 1996. Our primary business
is as a solution company. A client stipulates what they want and not
only do we write the software, but install the hardware, maintain the
both software and hardware, provide training — in fact, everything you
would expect.

As abusiness plan, we offer very reasonably priced maintenance
contracts (ranging between £100 and £750 per month), aswell asworking
with the likes of Southport Council to provide a free WiFi network for
the town centre (it would be funded by a nominal fee from local
businesses).

[At this point, we chatted about the problem of older buildings and |
used the exampl e of the conference building we used this year — only to
discover that Aidan had al so been there and gave a talk in one of the Python
sessions —we do move in a small world!]

We are effectively using an IBM style “utility” model.

We do not work on the typical IPR model. It is something which
surprisesalot of companiesin the sameline asus, aswefreely and openly
give away the source code, IPR is not a big issue and being an OSS
company, we are transparent in that if we make amistake, we can hold up
our hands, admit to the mistake and fix the problem. OSS also givesusan
advantagein that we can involve other devel opers and code without having
to go through the expense on non-disclosure agreements. We do not write
anything closed source.

We also work with our competitors. We are part of the Zope group and
as such, while we may be in competition with other companies, we are
working to the same common aim. This really confuses traditional
companies! We are in competition, but we all meet quite regularly with a
common aim.

You have described Liverpool asbeing “the open sour ce capital of the
UK”. How did you cometo that description?

That was from a PR company! That said, businesses and Liverpool
Council are starting to come to see the advantages of using the Open Source
model over the traditional way of purchasing software and licences.
Obviousdly, you have the two Universities a stroll from your offices as
well asa good supply of talent from colleges. Asthey are brought up
on the world of closed source (largely), how much of a culture shock
isit for them to move to open source?

CVu/ACCU/Features |

It is a culture shock and actually quite hard for them. However, they
adapt quickly. We are working with Liverpool John Moores and the
University of Liverpool on a mentoring programme. This means that
students will see both sides of the coin.

Do you source most of your employees locally or do you advertise
nationally and internationally?

Both — via the internet (we use JobCV as an agency). We aso employ
people on word of mouth aswe find it is one of the more reliable ways of
finding staff.

We are acompany with officesin Belgium and asmall officein London
as well as possibly a hew office opening in China due to their increased
uptake of OSS. Additionally, we have people who work from home who
are dotted around the UK and other countries.

What licence model do you use (GPL etc)?

LGPL
How do you feel when you have some of the big closed source
producer s denouncing open source as a flash in the pan and largely
unsustainable (as has been recently seen in the technical press)?

| personally don’t think that they understand the business model —and
that equally applies to some Open Source companies

Development environment

Do you have an in-house development environment or have you settled
on something like kdevelop / anjuta? Do you have a preferred
development language?

We use Python/ PostgreSQL / Zopefor all development —unlessthereis
aspecific requirement from aclient for another. Even if they do, we usually
find that our trio of set technologies will accomplish the task and they are
happy to use them when we demonstrate what they are capable of .

Does the company have a preferred widget set or isit a home grown
one?

Most of our work isweb based but for GUI projects we use wxWidgets

(wxPython).
As lots of non-software companies expect to pay, pay and pay some
mor e for commercial software, how, in your opinion, have they
responded to the surge in OSS and the ability to get something they
can tailor to their needs (or have you do) and still be able to see the
sour ce?

Wearestill fighting against scepticism and “ early adopter” syndromes.
Undoubtedly, the SM Es can see the big advantagein not only thetotal cost
of ownership in using OSS, but there is still alot of resistance given the
relative newness of OSS and the domination of the big playersin the
commercia world.

If you combine that with the Liverpool being home to some very large
companies, it is an uphill struggle, but one we are winning on.

Do you employ any form of extreme programming (or similar) and
how effective do you feel it is?

We have examined many different development methodologies. | can't
say we employ any specific one although our development methods do
utilise methods of XP (e.g. rapid feedback, embrace change) and others.
At various pointswewill try new ideas and embrace themif they work for
us or throw them away if they don’t.

What do you look for in a new employee? At the ACCU, we actively
promote best practice when it comes to new employment as well as
giving out a lot of advice on what to and what not to expect.

Welook for quite alot of qualities other than being agood programmer!
Aswe haveto go to the customer for their service contracts, the employee
has to have not only customer relations skills but also be technically
proficient to speak to them at the correct level.

Roughly, what proportion of local talent do you have to “ shipped in”
talent?

Currently, it' sabout 50/50. We do hope to be expanding soon and when
we do, the local number will increase.

Future prospects

As you know, software is a fickle beast, though OSS has been
increasing in adoption and use over the past yearson not just the Linux
[concl uded at foot of next page]

11

Writing Custom Widgets

in Ot
Jasmin Blanchette
In thefourth installment of our series on cross-platform GUI programming
with the Qt C++ toolkit, we are going to write a custom widget using Qt.
The widget in question is a “scribble” widget (see Figure 1) — that is, the
drawing area of asimple paint program. The user can draw by moving the
mouse pointer while holding down the left mouse button.

Writing a custom widget using Qt isn’t much different from writing an
gpplication’ smain window (CVu Volume 16 No 3) or adiaog (CVuVolume
16 No 4). It also involves deriving from a Qt base class, reimplementing
some virtual functions, and connecting signalsto dots. The main difference

isthat we al so need to handlelow-level events (also called “ messages’) such
as paint events and mouse events to give the widget its look and fed!.

The Scribble Class Definition
We'll start by looking at the definition of the Scribble class:

#i f ndef SCRI BBLE_H
#defi ne SCRI BBLE_H
#i ncl ude <qi mage. h>
#i ncl ude <qgw dget. h>
class Scribble : public QAN dget {
public:
Scri bbl e(QN dget *parent =
Si ze sizeHint() const;
voi d set Pi xmap(const QPi xmap &pi xmap) ;
QPi xmap pi xmap() const { return m_pixmap; }
voi d set PenCol or (const QCol or &col or);
Col or penColor() const { return mcolor; }
protect ed:
voi d nobusePressEvent (QvbuseEvent *event);
voi d mouseMoveEvent (QvbuseEvent *event);
voi d pai nt Event (QPai nt Event *event);
private:
ol or mcol or;
QPi xmap m_pi xmap;
QPoi nt m pr evPos;

}s
#endi f

0);

The Scri bbl e class inherits from QW dget , the base class for all
widgets and windows. Scr i bbl e provides public accessfunctions, three
protected event handles, and some private variables.

The m_col or data member holds the current pen colour. The
m_pi xmap member holds the image that the user is drawing. The
m_pr evPos member will be explained later; just ignoreit for the moment.

The protected event handles are virtual functions inherited from
QW dget that are called whenever the widget receives an event. Events

are sent by the window system whenever some condition occurs. For
example, if the user presses akey while the widget hasthe keyboard focus,
the window system dispatches a “key press’ event that the widget can
handle by reimplementing QW dget : : keyPressEvent (). The
Scri bbl e widget is interested in three kinds of event: “mouse press’,
“mouse move’ and “paint” events.

The Scribble Class Implementation

We will now go through the implementation of the Scri bbl e class,
starting with the constructor:

Scri bbl e:: Scri bbl e(QN dget
QW dget (parent) {
m col or = bl ack;
m_pi xmap. r esi ze(480, 320);
m_pi xmap. fill (OXFFFFFF);
set WFl ags(W6t at i cCont ent s) ;

*par ent)

}

The constructor takes a parent widget and passes it on to the base class
constructor. If parent is a null pointer, the widget is awindow in its own
right; otherwise the widget is displayed within the parent’s area.

In the constructor body we initialize them_col or and m_pi xmap
data members to default values. The pen colour is set to black; the pixmap
isinitialized to size 480 x 320 and filled with white (Ox FFFFFF). Finally
we set the Wt at i cCont ent s flag on the widget, telling Qt that the
widget' s content doesn’t scale when thewidget isresized, but rather it stays
rooted in the top-left corner. Thissimpletrick lets Qt optimize drawing and
reduce flicker drastically.

QSi ze Scribble::sizeH nt() const {
return m pi xmap. si ze();
}

Thesi zeH nt () function isreimplemented from QN dget . It should
return the ideal size of a widget. Layout managers take this into account
when assigning screen positions to widgets. Here we return the size of the
pixmap (480 x 320 by default) astheideal size for the widget.

voi d Scribbl e:: setPi xmap(const QP xmap
&pi xmap) {
m_pi Xxmap = pi xmap;
updat e();
updat eGeonet ry();

}

Theset Pi xmap() function setsthe pixmap which the user can draw on.
Noticethat we call updat e() andupdat eGeonet ry() inadditionto
assigning the new pixmap to m pi xmap. Thecall toupdat e() tellsQt
to repaint the widget, ensuring that the new pixmap is shown straight away.
The call to updat eGeonetry() tellsthe layout manager responsible
for thiswidget (if any) that thesi zeH nt () might have changed.

[continued from previ ous page]
(and other free OS) platform, but also the Windows platform. Can you
see this continuing for (say) the next 10 years and what effect will it
have on company business plans?

Open Source isincreasing at an almost exponential rate and should
assure us of agood future.

Our main concernisthe speed at which UK Plcisadopting open source.
If we compare the UK to our European neighbours, we see them moving
over and adopting Open Source more and more. The commercial edgeis
being lost to companies with far lower overheads due to their adoption of
OSS. If we decide to go with the proprietary system and everyone else
doesn’t, then UK Plc is not going to be very healthy and it will probably
take ages for usto claw our way back.
Hardwareisforever changing with the push currently for movement
to x64/1A64 and above. What haveyou got in place currently toensure
current productswill still work in (say) 3—5 yearsfrom now?

All our work is done within Python so we are shielded from the joys of
such things.

12

Have you seen any significant turn down or reluctance to using OSS
since SCO’s unfortunate FUD over their IP in Linux and subsequent
suits against RedHat, Autozone, IBM and Novell? And where do you
seethat ending up?

We haven't seen a down turn and really, it is up to SCO to prove their
claim. Evenif SCO win, it may slow things down, but certainly won’t stop
it. Open Sourceis here and it's here to stay

I must thank both Aidan for being so friendly and open with his answers
and lan Cottee (the company’ s technical manager) for the more technical
answers to some of my questions.

Asyou can see, it isnot only possiblefor an OSS company to exist, but
inthiscase, itisacompany whichisexpanding and succeeding despitethe
reluctance of some to accept the change.

Blue Fountain Systems can be contacted on 0870 0202 111,
http://ww. bl uef ountai n. comor
i nf o@l uef ount ai n. com

Paul F Johnson

CVu/ACCU/Features

-~ =m Jcrbhle

=] s

Pen Color...

Quit

Figure1: The Scribble Widget

voi d Scri bbl e: : set PenCol or (const QCol or
&col or) {
m col or = col or;

}

Theset PenCol or () function setsthe current pen colour. Thistimewe
don’'t need to call updat e() because the operation doesn't affect the
screen rendering of thewidget (it only affects pixelsthat the user will draw
inthefuture). Wedon't need to call updat eGeonet r y() either because
m _col or isn't used when computing the size hint.

voi d Scri bbl e:: nousePressEvent (QvwuseEvent
*event) {
i f(event->button() == LeftButton)
m_prevPos = event->pos();

}

The mousePr essEvent () function is called whenever the user
presses a mouse button while the mouse pointer is located on the
widget. The event parameter gives additional information, such as
the button that was pressed (but t on()) and the screen position of the
mouse cursor when the button was pressed (pos()). If the user pressed
the left button, we store the mouse position in m_pr evPos for later
use.

voi d Scri bbl e: : nouseMoveEvent (QvbuseEvent
*event) {
if(event->state() & LeftButton) {
QPai nter painter(&m pi xmap);
pai nter. set Pen(QPen(m col or,
pai nt er. drawLi ne(m_prevPos,

3));

event - >pos());

QRect rect(mprevPos, event->pos());
rect = rect.normalize();
update(rect.x() - 1, rect.y() - 1,
rect.width() + 2,
rect. height() + 2);

m _prevPos =

}
}

ThenouseMoveEvent () functioniscalled continuously when the user
moves the mouse pointer while holding down amouse button. The typical
seguence of events is one “mouse press’ event when the user presses a

event - >pos();

CVu/ACCU/Features

button, then a series of “mouse move”’ events that describe the path taken
by the mouse pointer, and finally a“mouse release” event when the user
releases the button.

We check if the left button is one of the buttons that are currently
pressed. If thisis the case we update m pi xmap and repaint the widget
using updat e() .

We createaQPai nt er todraw on the pixmap. We set the pen to have
the correct colour (m_col or) and athickness of 3 pixels. Then we draw
aline from the previous mouse position (m_pr ev Pos) to the new mouse
position (event - >pos()).

QPai nt er isthe entrance door to Qt's paint engine. It provides
functions to draw all sorts of geometric shapes (rectangles, circles, pie
sections, Bezier curves, etc.) and supports transformations such asrotating
and scaling. A QPai nt er object can be used to draw on a pixmap, a
widget, a vector diagram or a printer.

Once we' re done updating the pixmap we must update the on-screen
version. The reductionist approach would be to call updat e() with
no argument and be done with it; thiswould tell Qt to redraw the entire
widget area, a somewhat expensive operation. Instead we compute the
bounding rectangle for the line segment we just drew and pass it to
updat e() .

At the end of the function, we update m pr evPos so that the next
“mouse move” event will prolong the line segment we just drew.

voi d Scri bbl e: : pai nt Event (QPai nt Event *event) {
QPainter painter(this);
pai nter.drawPi xmap(0, 0, m_pixnmap);

}

The pai nt Event () function is called whenever the widget must be
repainted. Thiscan occur if the widget wastemporarily obscured by another
window and then made visible again, or asaresult of calling updat e() .
Here we simply draw the pixmap onto the widget.

At this point you might wonder why we bother drawing on a pixmap
then transfer the pixmap onto the widget. Couldn’t we draw directly on the
widget instead, eliminating the need for m_pi xmap? The answer is no.
Thisis because we can’t rely on the window system to keep a copy of the
widget's pixels if the window is obscured or minimized. A well-behaved
widget must implement pai nt Event () and be able to redraw itself
entirely at any moment.

The Application’s Main Window

We are done implementing the custom widget. To make it useful, we need
awindow around it, with a*“Pen Color...” button and a “Quit” button.
Here' s the class definition:

13

#i f ndef W NDOW H
#defi ne W NDOW H

#i ncl ude <qwi dget . h>
cl ass Scri bbl €;

cl ass Wndow :
Q OBJECT
publi c:
W ndow(QW dget
private slots:
voi d choosePenCol or () ;
private:
Scri bble *m scri bbl e;

b

#endi f

public QN dget {

*parent = 0);

We can call the class W ndow because it will be the only window in the
application. The class has one slot, choosePenCol or () , which pops
up acolour dialog.

W ndow. : W ndow(QN dget *parent)
QW dget (parent) {
m scribble = new Scribbl e(this);
m scri bbl e->set Si zePol i cy(
@QSi zePol i cy: : Expandi ng,
Si zePol i cy: : Expandi ng) ;

QPushButton *penCol orButton =
new QPushButton(tr("Pen Color..."),
this);
QPushButton *quitButton =
new QPushButton(tr("Quit"), this);

connect (penCol orButton, SIGNAL(clicked()),

this, SLOT(choosePenColor()));
connect (qui tButton, SIGNAL(clicked()),
this, SLOT(close()));

QG i dLayout *|ayout =

new QG i dLayout (this);

=w Select color

Basic colors

B R B B RERi
B R B § RERAE
_§ R B REREE
_f B B AR
N EETrT
M NEET T

Custom colors

0, 0) (0, 1)
(1, 1)

(1, 0)

(2, 0)

Figure 2: Grid Layout of Child Widgets

| ayout - >set Mar gi n(10) ;
| ayout - >set Spaci ng(5) ;

| ayout - >addMul ti Cel | W dget (m scri bbl e,
0, 0);

| ayout - >addW dget (penCol or Butt on, O,

| ayout - >addW dget (quitButton, 1, 1);

0, 2,

1);

set Caption(tr("Scribble"));
}

Inthe constructor we create three child widgets (the scribble areaand two
push buttons), connect the “Pen Color...” button to the
choosePenCol or () slot, connect the “Quit” button to the window’s
cl ose() dot, and put the child widgetsin agrid layout. Figure 2 shows
how the child widgets are laid out in the grid célls.

voi d W ndow: : choosePenCol or () {
Col or color =
QCol or Di al og: : get Col or (
m scri bbl e- >penCol or (),
if(color.isValid())
m scri bbl e- >set PenCol or (col or);

this);

}

When the user clicks “Pen Color...”, we pop up a QCol or Di al og that

alows the user to select a pen colour. We pass the old pen colour to the
didog astheinitial value.

O % This is all the code we need in

W ndow. To complete the

application, we need a mai n()

function:

int main(int argc,
char *argv[]){
QApplication
app(argc,
W ndow wi n;
app. set Mai nW dget (
&wi n) ;

argv);

4 w n. show();
return app.exec();

}

That's it! One of Qt’s striking
featuresis how easy it isto create

I
| § § N § 0 & ¥ |

Cancell

OK

Hue: 156 Red:

93 Green:

71

Sat: 71

Val: 61

Blue:

Add to Custom Colors

custom widgets. Infact all of Qt’s
built-in widgets (e.g.
QPushButton and
QCol or Di al og) are
implemented using the techniques
described in this article. While
with other toolkits writing custom
widgets is considered an
advanced topic, in Qt it is so easy
that it is taught straight away to

Figure 3: The Colour Dialog

14

beginnersasan introduction to the
Qt way of thinking.
Jasmin Blanchette

CVu/ACCU/Features

Memory for a Short
Sequence of Assignment
Statements

Derek M. Jones <der ek@nosof . co. uk>

The process of comprehending source code often involves reading some
statementson aline by line basis. Some of the information read only needs
to be remembered for a short period of time, while other information needs
to be remembered over alonger period.

This article reports on an experimental study, carried out during the
2004 ACCU conference, that investigates the consequences of a limited
capacity short term memory on subjects’ performancein some of the tasks
needed to comprehend short sequences of code. The source code used
contai ned two commonly occurring constructs, assignment statementsand
i f statements. Subjects’ ability to recall the numeric values assigned to
particular identifiers and to correctly deduce which arm of ani f statement
is executed were used as measures of their performance.

It is hoped that this study will provide information on the impact
different kinds of identifier character sequences have on the cognitive
resources needed during program comprehension.

Few developers appreciate how short the short in short term memory
actualy is. It only hasthe capacity to hold information on afew statements
at most. It is hoped that the results of this study will bring home to
devel opers the consequences of short term memory limitations on their
code comprehension performance.

Also, advantage was taken of thei f statements used in the experiment
totry and duplicate the pattern of subject performance seen in some studies
of human reasoning. The results seen in some of these studies suggest that
the ordering of operands in a pair of relational expressions has an impact
on peopl€e’ s performance in evaluating it.

This article is split into two parts, the first (this one) provides genera
background on the study. Part two discusses the results of the assignment
problem and discussesthei f statement results.

Characteristics of Human Memory

Models of human memory often divideit into two basic systems, short term
memory (while the term working memory is sometimes used, this really
refersto acollection of short term memory subsystems— see Figure 1) and
long term memory. This two subsystem model is something of an
idealization in that there is not a sharp boundary between short and long
term memory; thereis agradual transition between them.

The phonological oop, which can hold approximately 2 seconds worth
of sound, isthe primary short term memory system of interest in this study.
The information that can be held by the phonological loop is a sound-bite
corresponding to 7+2 digits [11] spoken in English (the variation is highly
correlated with differencesin the rate at which people speak; faster speakers
can remember more) and 9.9 digits spoken in Chinese.

While some of the characteristics of human memory (e.g. forgetting) are
often criticized, they can provide useful functionality. It would make sense
for human memory to be optimized for the information recall demands that
frequently occur in everyday life and various studies [1] appear to confirm
thisevolutionary priority. For instance, forgetting is not necessarily theresult
of apoorly designed memory system. Studies[1] have found an exponential
decay in the likelihood that information will be needed after agiven period

of time from when it was first encountered and that the rate at which
information is lost from memory also has an exponential form...

People who can readily remember and later accurately recall
information report that their conscious thoughts are repeatedly interrupted
by ‘unforgotten’ information [13].

It could be claimed that the underlying problem is one of using of a
computing platform (i.e. the human brain/mind) for a purpose for which it
was not designed.

Information recall performance has been found to be affected by the
extent to which the to-be-remembered information has associations with a
person’s existing network of memories.

Human Reasoning

A commonly used model of the human mind is that of a very powerful
computer with the reasoning faculties based on mathematical logical.
George Boole (after whom the term boolean is named) titled his book [3]
“ An investigation of the laws of thought on which are founded the
mathematical theories of logic and probabilities’ . However, theresults of
many studies are not consistent with this model of human reasoning.
Studies of various kinds of reasoning involving logical statements have
discovered patterns in subjects’ performance that are believed to be
characteristic of how people solve reasoning problems. If the performance
of subjects deducing the behaviour of source codei f statements also
exhibit patterns (e.g. differing numbers of errors made for different
representations of the same logical condition), it may be possible to use
this information to reduce the number of errors made by developersin
comprehending source code. Thistopiciscovered indetail in part 2 of this
article, which discusses subjecti f statements evaluation performance.

Experimental Setup

The experiment was run by your author during one 45 minute session of
the 2004 ACCU conference held in Oxford, UK. Approximately 300 people
attended the conference, 40 (13%) of whom took part in the experiment.
Subjects were given a brief introduction to the experiment, during which
they filled out background information about themselves, and they then
spent 20 minutes working through the problems. All subjects volunteered
their time and were anonymous.

The Problem to be Solved

Each problem seen by subjects wasintended to involve memory processes
that operate over a time frame of approximately 30 seconds. It was
expected that the characteristics of short term memory would have a
significant impact on subjects’ performance within thistime frame.

To obtain statigtically reliable data answers to a large number of related
problemswould be needed. Thereforeit had to be possibleto cresteanumber
of variations on the same underlying problem. Problemsa so had to be created
that were not too easy or too difficult. If al subjects answered al questions
correctly, or al incorrectly, no useful information would be obtained.

By using various rules of thumb (e.g. short term memory can contain
two secondsworth of sound), simplifying assumptions (discussed below),
and practising on himself, your author settled on a problem that involved
recalling information about three assignment statements and selecting the
appropriatearm of ani f statement.

There are several reasonsfor using two kinds of statementsin the code
read by subjects:

» both kinds of statements occur frequently in source and using them
together allowed the questions asked of subjectsto reflect the

Visuo-spatial

sketch pad

Phonological

loop

kind of questionsthey have to answer when comprehending
source code. The study thus has some claim to being
ecologically valid (i.e. the behaviour in the experimental
Situation is characteristic of areal life environment)

. experience from another (unpublished) experiment
found that when performing a single task some subjects
became very focused on improving their performance by
looking for, and using, patternsin the questions. It was hoped
that by forcing subjects to switch between two tasks this
unintended focusing behaviour would not be significant.
The following is an example of one of the problems seen by

degrades within about 1.5 seconds. From Baddeley [2].

Figure1l: Model of working memory. The phonological loop can hold approximately
2 seconds worth of sound, while the visuo-spatial sketch pad holds a visual image that

subjects. Oneside of asheet of paper contained three assignment
statementswhilethe second side of the same sheet contained the
i f statements and a table to hold the recalled information. A
series of X's were written on the second side to ensure that
subjects could not seethrough to identifiersand val ues appearing

CVu/ACCU/Features

15

on the other side of the sheet. Each subject received a stapled set of sheets
containing the instructions and 32 problems (one per sheet of paper).

first side of sheet starts here
prevented = 58;
|iberation = 83;
conception = 94;
second side of sheet starts here
if ((e >a) & (u < a))
if (u>e

remenber woul d refer back not seen
suspend
prevent ed
i beration

conception

Theinstructions given to subjectsfollowed that commonly used in memory
related experiments. Subjects see the material to be remembered, then
perform an unrelated task (chosen to last long enough for the contents of
short term memory to have degraded), and are then asked to recall the
previously seen information.

The sequence “ remember->unrelated task->recall” has an obvious
paralel in source code comprehension; i.e. “ sequence of assignments-
>conditional test->use of identifiers previously assigned to” .

In practice software devel opers do not make aremember/not remember
decision, there is always the opportunity to refer back to previously read
information. The selection rememberivould refer back more accurately
reflects the decision made by software developers.

The following written instructions were given to subjects:

This is not a race and there are no prizes for providing answers to all questions.
Please work at a rate you might go at while reading source code.

The task consists of remembering the value of three different variables and
recalling these values later. The variables and their corresponding values appear
on one side of the sheet of paper and your response needs to be given on the
other side of the same sheet of paper.

1 Read the variables and the values assigned to them as you might when
carefully reading lines of code in a function definition.

2 Turn the sheet of paper over. Please do NOT look at the assignment statements
you have just read again, i.e. once a page has been turned it stays turned.

3 Assuming that the condition specified in the first if-statement is true, which
arm of the nested if-statement will be executed? Treat the paper as if it were

a screen, i.e. it cannot be written on. Mark the arm you think will be executed

with a cross or a tick.

4 You are now asked to recall the value of the variables read on the previous page.

There is an additional variable listed that did not appear in the original list.

« if you remember the value of a variable write the value down next to the

corresponding variable,

« if you feel that, in a real life code comprehension situation, you would reread

the original assignment, tick the “would refer back” column of the

corresponding variable,

« if you don’t recall having seen the variable in the list appearing on the

previous page, tick the “not seen” column of the corresponding variable.

If you do complete all the questions do NOT go back and correct any of your
previous answers.

The Set of Possible Questions

It was hoped that at |east 32 people (on the day 40) would volunteer to take
part in the experiment and it was estimated that each subject would be able
to answer 32 problems (on the day 22.7) in 20-30 minutes (on the day 20
minutes). Based on these estimates the experiment would produce 1024
(on the day 884) answered problems.

Given the 8 different ways of ordering the operands and operators
appearing in the chosen form of the i f statement conditional expression
and the 4 different questions that can be asked, it is possible to create 32
differenti f statement problems.

It was decided to use four sets of identifiersin the assignment problems,
with each set containing four different identifiers. The possible values
assigned to these identifiers were drawn from a set of four possible two

16

digit integer literals (the rationale is discussed below). Given 16 possible
identifiers and 4 possible numeric values (8 had been intended, but a bug
in the generation script meant that only 4 were ever used), itispossibleto
generate 80,640 different sets of 3 assignments (the sameidentifier or value
only being allowed to occur once in any set of assignments).

However, if dl identifierswithin agiven set are considered to be equivalent
and all two digit values are considered equivalent, then there are only 4
different sets of assignments (a set containing single digit constants had also
been planned, which would have created 8 different sets of assignments).

Combining 32 differenti f statement problemswith 4 different sets of
assignment problems creates a total of 128 different problems (256 had
been intended). Given 1024 answers then there would be 8 answers for
each different problem (assuming subjects answered all problems).

The problems and associated page |ayout were automatically generated
using a C program and various awk scriptsto generate troff, whichin turn
generated postscript. Theidentifier and constant used in each assignment
statement was randomly chosen from the appropriate set and the order of
the assignment statements (for each problem) was also randomized. The
(corrected) source code is available on the experiments web page.

Selecting Identifiers and Integer Constants

Studies have found that people’s performance in processing character
sequences can vary between different kinds of sequences. For instance,
frequently used character sequences (i.e. words) are recognized faster and are
more readily recaled than rare ones, dso many performance characteristics
aredower and moreerror pronefor non-words compared to words, recognizing
known subsequences (e.g. ibmchairs) within alonger character sequence
alowsit to be divided up into a smaller number of larger chunks (i.e. such
recognition reduces information content and requires |ess storage resources).

Some of the factors affecting peopl€’ sperformancein recalling recently
read information include:

» theencoding used for theinformation. For instance, asequence having
the same form as a word in a language known by a person can be
encoded in a sequence of sounds that is shorter than the sequence of
sounds representing the individual characters,

 the extent to which people are able to maintain the information in short
term memory. This will depend on the short term memory resources
consumed by the encoded information and other calls on short term
memory resources between when the information isoriginally encoded
and when it needs to be recalled,

» the extent to which the information is already stored in longer term
memory subsystems. For instance, thisinformation may exist because
acharacter sequence has been encountered before, or its sound pattern
matches (or rhythmswith) that of aknownword. Itisalso possiblethat
apersons brain happensto store a given character sequenceinto alonger
term memory subsystem, when it is encountered.

Theidentifier attributes varied in this study were the amount of short term

memory storage required to hold their spoken form (the number of syllables

was used as an approximate indicator of storage requirements; the effects
of phonological complexity were ignored), and they were either aword

(i.e. they were established in long term memory) or asequence of unrelated

characters. The identifiers thus belonged to one of four possible sets of

character sequences.

Identifier Character Sequences

A variety of different kinds of character sequences are used to represent
identifiersin source code. Some are recognisable words or phrases, some
abbreviated forms of words or phrases, while others have no obvious
association with any known language (e.g. they may be acronymsthat are
unknown to the reader). It isto be expected that subjects memories of an
identifier will be sound based, rather than vision based. For instance, a
character sequence representing aknown word islikely to be remembered
as the spoken form of that word, while a sequence of unrelated characters
might be remembered as the spoken form of each individual character.
Subjects are likely to have read many distinct character sequences every
day for most of their lives. Many of these character sequenceswill have been
stored in every subject’ slong term memory and be readily available for recall.
Creating a character sequence that only evokes a response from a subject’s
short term memory is likely to be impossible. Whatever character sequence
is chosen, it islikely that there will be some form of association with the
contents of asubject’slong term memory. The best that can be achieved isto
use a set of character sequences, for identifiers, that al result in the contents
of long term memory having the sameimpact on performancefor al subjects.

CVu/ACCU/Features

Experience shows that devel opers sometimes read source code so
quickly that visually similar, but different, identifiers are treated as being
the same identifier. To reduce the possibility of this occurring during the
experiment an attempt was made to use visually distinct character
seguences (this involved arranging for ascending e.g. t, and descending
e.g. p, characters to occur at different relative locationsin a sequence).

All words used in the study had a frequency of occurrence of between
1 per 18 million words and 1 per 24 million words (word frequency counts
were based on the British National Corpus). The Collins Advanced
Learners English Dictionary was used for syllable counts.

The four sets of identifiers used in assignment statements were:

1 asingle character whose spoken form contained asingle syllable. The
least frequently used letters in written English are wybvkxjqz. For
reasons lost in the mists of time, the letters wxyz rather than the overall
less frequent (and not sequential) xjqz were used,

2 an English word whose spoken form contained one syllable (i.e.van,
guy, tip, mud),

3 three characters whose spoken form islikely to contain three syllables
(i.e. veq, gmt, bfj, rpl). That is the characters did not represent an
English word. Google was used to reduce the possibility that the
character sequence did not denote an acronym that was likely to be
contained in subjects long term memory (e.g. IBM). Google returned
a page count (at the start of 2004) of between 10,000 and 34,000
matches for the character sequences used (most other such sequences
each returned over 100,000 matched pages).

4 an English word whose spoken form contained three syllables (i.e.
conception, suspend, prevented, liberation).

Intherest of the article the term short identifier denotesan identifier whose
spoken form is short (i.e. it contains a single syllable) and the term long
identifier denotes an identifier whose spoken formislong (i.e. it contains
three syllables). In practice the only reliable method of finding out the
duration of the spoken form of word isto average the time taken by various
people to say the word repetitively.

The character sequences first selected did not appear to share any
common sounds that might result in increased interference between them
when held together in short term memory?2.

i f Statement Identifiers

It was intended that the only cause of interference between the identifiers
used in the two forms of statements should be contention for short term
memory resources. For thisreason theidentifiers chosen for the two kinds
of statements were distinct, both in terms of visible appearance and
sounding different.

The most frequently used letters in written English are etaoinsrhldcu
For reasonslost inthe mists of time, the singlelettersaeu rather than overall
more frequent (and not all vowel) eta were used,.

Selecting Integer Constants

Measurements of the frequency of integer constants in various contexts
have found that some values occur more frequently than others.
M easurements of source code have found various patterns between numeric
values and the frequency with which they appear in the visible source code
(see Figure 2).

The following integer constants were chosen (the digit 7 was not used

» twodigit numbers. These have the advantage over three digit numbers
in that they are all likely to be encoded using a single spoken form
(many three digit numbers have many possible spoken forms e.g. 869
might be spoken as eight-six-nine or eight hundred and sixty nine).

Threats to Validity

Experience shows that software developers are continually on the lookout
for ways to reduce the effort needed to solve the problems they are faced
with. Because each of the problems seen by subjects in this study has the
same structure it is possible that some subjects will have detected what
they believe to be a pattern in the problems and will then attempt to use
thisinformation to improvetheir performance. Possible patterns appearing
across problems include:

» abug inthe problem generation script meant that theidentifier that did not
appear inthelist of assignment statements always appeared first inthelist
of to be recalled information. At least one subject noticed this pattern (he
raised it during discussions after he completed the experiment),

 the number of identifiers used was a very smdl subset of those that could
have been used. This meant that the first character of each character
sequence was unique to that identifier (i.e. there was only one identifier
starting with any given letter of the alphabet). At least one subject noticed
this (in discussions after completing the study he said that he had saved
time by only encoding the first few letters of thelonger identifiers),

« theordering of theidentifiersin the assgnment statementsand in theto be
filled in list of recalled information was the same. It is not known if any
subjects noticed this pattern and used it to improve their performance.

While the kind of problems used commonly occur during program
comprehension, the mode of working (i.e. paper and pencil) does not.
Source code is invariably read within an editor and viewing is controlled
viaa keyboard or mouse. Referring back to previously seen information
(e.g. assignment statements) requires pressing keys (or using a mouse).
Having located the sought information more hand movements (i.e. key
pressing or mouse movements) are needed to return to the original context.
In this study subjects were only required to tick abox to indicate that they
would refer backto locate theinformation. The cognitive effort needed to
tick abox islikely to be less than would be needed to actually refer back.
Studies have found that subjects make cost/benefit decisionswhen deciding
whether to use the existing contents of memory (which may be unreliable)
or to invest effort in relocating information in the physical world. Itis
possible that in some cases subjects ticked the would refer back option
when in areal life situation they would have used the contents of their
memory rather than expending the effort to actually refer back.

A previous experiment (unpublished), involving a source comprehension
task that only contained conditionals, found that some subjects’ solution
strategies changed during the course of answering questions.

Initially these subjects obtained their answers by applying the traditional
algebraic strategies usually associated with solving logic problems.
However, developers' familiarity with problem solving is not confined to
source code comprehension and is often applied to the problem of
minimizing the effort they need to expend on the task.

In the case of having the solve a sequence of conditional problems some
subjects switched to a pattern matching strategy. That is, they looked for
(and claimed to have found) patternsin the questions that enabled them to
quickly provide what they believed to bethe correct answer (i.e. the answer

in any value because its spoken form
has two syllables):
« gingle digit numbers. The values

5, 6, 8, and 9 were chosen because oo poa |

they all have approximately the

same frequency of occurrencein | 0% — -
source code and other contexts, | ¥ | pon—|

and have a spoken form L

containing a single syllable. E L=

However, dueto abug inthe script o

generation program no singledigit
numbers were used in this study,

1 Your author would not claim to any special [T T T 1
knowledge on how common sounds o 2 g
(phonological similarityis the technically
correct term and proposals have been
made for measuring it) might be
measured or which sounds might

interfere with each other with different values.

daciniaicanstant value

Figure2: Occurrences, in thevisibleform of variousapplicationswritten in C. of integer constants

L L28 52 4] 2 B LI 128 L HEL

hevadecima]-canstam value

CVu/ACCU/Features

17

to a question was based on matching | =2sp000 — . b W L. . . - ™
it to a pattern having a known
answer). It is possible that the
intervening assignment problem did 200000 — sz : : t T * ® " ¥
not provide sufficient cognitive
demand (i.e. distraction) that in some | 1s0000—{ . . ats o
cases subjects gave answersto thei f
statement problem based on patterns 100000 —|)]))
they believed to exist in the sequence
of problems they saw.] v - -] * - -

50000 — . — R
Results
Subject Experience 0 | | I I i | i
Traditionally, developer experienceis 0 10 20 300 50000 100000 150000 200000
measured in number of years of Years employed Lines of code written
employment performing some | Figure 3: Developer Experience. The plot on the left depicts number of lines of code read against number of
software related activity. However, | yearsof professiona experience. The plot on the right depicts number of lines of code read against number of
the quantity of source code (measured | linesof codewritten, for each subject. Thesizeof thecircleindicatesthe number of subjects specifying thegiven
in lines) read and written by a| vaues. In caseswhere subjectslisted arange of values (i.e. 50,000-75,000) the median of that range was used.

developer (devel oper interaction with
source code overwhelmingly occurs in its written, rather than spoken,
form) islikely to be a more accurate measure of source code experience
than time spent in employment. Interaction with source codeisrarely a
social activity (asocial situation occursduring codereviews) and thetime
spent on these activities may be small enough to ignore. The problem
with this measure is that it is very difficult to obtain reliable estimates of
the amount of source read and written by developers. Thisissue was also
addressed in a study performed at a previous ACCU conference. While
it was hoped that some of the problems encountered in that study were
solved in the current study, the results (see Figure 3) suggest that the upper
range of possible answersis till insufficient to cover the amount of code
that subjects believe they have read.

Plotting the number of lines read against number of lineswritten gives
aratio of approximately 2.5 lines read per line written. Y our author’s
experience suggests this ratio ought to be greater than 25.

One possible reason for this difference is that the questions asked (e.g.
How many lines of code would you estimate you have{read|written}, in total,
over your career?) are open to various interpretations. For instance, does
reading previoudy read code count towards the total number of lines read
(previoudy read linesthat a devel oper has forgotten about might be thought
to resultin morelearning than linesreread after atime delay of afew minutes),
and how should changes that modify part of an existing line be counted?

It has to be accepted that reliable estimates of lines read/written are
not likely to be available until developer behaviour is closely monitored
(e.g. eye movements and key presses) over an extended period of time.

A plot of problems answered against experience (Figure 4) does not
show any correl ation between the two quantities. The number of subjects
in each quadrant is approximately the same.

Assignments

The following discussion breaks the results down by individual subject
and by kind of identifier used in the assignment statements. The raw
resultsfor each subject are available on the studiesweb page. Whilethere
is enough raw data to perform detailed statistical analysis, noneis
performed. There are enough threatsto validity to render the conclusions
from any such detailed analysis spurious. However, it is hoped that some
general conclusions can be drawn from the results obtained.

A total of 844 setsof assignment statementswere remembered/recalled
giving atotal of 2,547 answers to individual assignments. The answer
given to 43 assignment statement questions was an x in the remember
column (only for some of theinitial problems answered by afew subjects).
Thisresponsewastreated asindicating that the subject believed they knew
the answer. However, since no value was specified it was not possible to
verify the accuracy of the response. Therefore answers having thisform
were ignored (they were not counted in any category).

The number of incorrect not seen answers decreased from 13%
(averaged over answers from all subjects) for the first eight problems to
7% for the ninth and subsequent problems. It isinevitable that some
subjects will have noticed that the correct answers was always the first
identifier in the response list. However, not all subjects noticed this pattern
(i.e. they continued to give incorrect answers; in some cases a greater
percentage of incorrect answers).

18

xooxx % : * "
30— 1
3)(Ex *
>
o 25— ! x,
2 -, x
5 [e=se—== gssoRepetamene
th I |
EEU ™, N x
gt 1,
= * M o * *
= 15— !
™ I
* » I ®
I
10— ! ®
[[[
0 10 20 30

Yroars capericnce

Figure 4: Plot of the number of problems answered against the
number of years of professional experience of the subject.
Dashed lines represent the mean number of problems answered
(22.3) and the mean number of years of experience (14.5). The
problems answered/years experience pairs (22, 6), (32, 8), and (19,
15) occurred for two subjects each.

Individual Subject Performance

Thereisagreat ded of variation in subject performance. Correct recall
performance varied between 0 and 96%, instances where subjects would
refer back varied between 0 and 94%, while incorrect answers varied
between 1 and 40% of all answers given by any subject. This extreme
variation suggests that the experimental design aim of creating problems
whose solution stretched thelimits of subjects’ short term memory capacity
wasachieved. Had the problemsrequired more or less short term memory
capacity thenitislikely that the variationsin subjects’ performancewould
have been narrower (i.e. subjectswould have belikely to have provided a
fewer or agreater number of incorrect or would refer back answers).

A would refer back response does not imply that a problem has
exceeded a subject’ s short term memory capacity. It could imply that the
subject isavery cautiousindividual, or that they were distracted by other
thoughts while answering a particular problem.

If subject performance was consistent for all problems answered, it
would be expected that averaged results for the first few problems
answered would be the same asfor the last few problems. Figure 5 plots
would refer back and incorrect answer performance for the first eight and
for the ninth and all subsequent problemsanswered. Thelack of clustering
of the bullets with the crosses means there was little correl ation between
thetwo setsof results. Thereare approximately twice asmany dotsbel ow
the crosses as there are above, which suggests that an individual’s
performance improved as more problems were answered.

One possiblereason for anincreasein performanceisbecause answering
problems enabled subjects to learn something that was beneficial in
answering subsequent questions (e.g. the first identifier in the list of
assignment questionswas alwaysthe onethat did not appear in the previous

| CVu/ACCU/Features

assignment statements). One possible
reason for a decrease in performanceis
that subjects became fatigued through
having to answer so many questionsthat
constantly stretched the capacity limits
of their short term memory.

It might be thought that a subject
answering a greater number of
questionswould be morelikely to give
incorrect or would refer back answers.
Figure 6 shows that thisis not the case.
Fitting a least squares line through the
data shows that both the percentage of

% of all answers given

100—

15—

50—

wollld cefer back:

incorcoect answer

incorrect andwould refer backanswers
decreased as more questions were
answered. As pointed out earlier it is
possible that some subjectswere ableto
detect and use patterns in the
presentation of the problemsto improve
their performance. This improvement
in performance could take the form of

20

Individual subjects

Figure 5: Left graph is the percentage of would refer back answers for the first 8 problems (crosses) and
for the ninth and subsequent problems (bullet) answered (subjects are ordered by increasing would refer
back response rates). Right graph is the percentage of incorrect answers with subjects being ordered by
increasing percentage of incorrect.

20
lodividval subjects

an increase in the number of problems
answered aswell as an increase in the number of

Different Kinds of Identifiers

correct answers.

The analysis of individual subject results suggests that their performance
improved as more problemswere answered. The analysis of theresultsfor
different kinds of identifiers takes this behaviour into consideration by
dividing the results in two; those from the first eight problems answered
and those from the ninth and all subsequent problem answers.

There are a number of surprises in the results (Figure 7) (at least for

your author):

1 for thefirst eight problems the pattern of answers for the identifiers
composed of three unrelated |etters does not follow that of theidentifiers

composed of three syllable words.

One explanation for the three unrelated letter behaviour is that these
letter sequences are likely to be completely unknown to subjects (they
were selected on this basis). When asked to recall information about
previously seen assignment statements subjectswereinitialy unableto
make use of any longer term memory associations as a recall aid, and

so opted for the would refer back option.
As more problems were answered, and subj

ects encountered more

instances of the three unrelated letter sequences used, it is possible that
some information about these letter sequences became stored in longer

100 —
0,

g * *

E 75— . kS ,

[71]

ﬂ x %

: & .

2 30— . : x

-] = -

b ’ * X

o -

® 2] i ' L% *

0 R i 3
I I I I
15 20 25 30
Mumber of problems answered

Figure 6: The percentage of would refer back answers (crosses,
least squares line unbroken) and incorrect answers (bullet, least
squares line dashed) plotted against the number of problems
answered by each subject.

term memory subsystems and

subjects were able to make use of

this new existing knowledge.

for thefirst eight problems subject

performance is best for short

identifiers. For the ninth and

subsequent problems the results
showed what might be called a
word superiority effect (i.e. a
greater number of correct
answers). Thissuggeststhat after

some practice the contents of a
person’ slonger term memory (i.e.

60—

% of all answers given

31

x— 1 syllable word
* w1 letter
+— 3 syllable word
~ = 3 lctters

rst eight problems , Minth and all snbsequent

their experience in using words)
has a greater impact on
performance than limits on their
short term memory capacity.

The extent to which solving the
i f statement problem may have
resulted in a degrading of the

cefer back: cormect

Snbject answer statlls

Figure 7: The percentage of would refer back, correct and incorrect answers for each kind of identifier,
averaged over all subjects. Theleft graphishased on answersto thefirst eight problems, whiletheright graph
uses the answers from the ninth and subsequent problems answered.

cefer back Corect incoccect
Snbject answer statlis

incocrect

contents of short term memory (i.e. assignment statement information)

isdiscussed in part two of this article.
Kinds of Recall Errors

If the repetitive process of remembering assignment information caused
the numeric values seen to be stored in longer term memory, thenit would

3 Subjects were not asked to provide a guess for those cases where they would refer back,
so it is not possible to measure the accuracy of any information they might have believed

they had on a given assignment statement.

CVu/ACCU/Features

be expected that the set of valuesrecalled in error would converge to the
set of values seen during the experiment. The results (Table 1 on next
page) show a small increase (between the first eight, and the ninth and
subsequent answers) in the number of incorrect answers given that appear
somewhere in the list of assignment statements that a subject saw for a
given problem (fifth row). Thereis alarger increase in the number of
incorrect answers given that come from the set of all values seen during
the experiment (last row).
[concl uded at foot of next page]

19

Wx - A Live Port

Part 2: Connecting the User Interface
to Code

Jonathan Selby <j on@xaxer o. con®

Theprocessof connecting the user interface to codeis very similar to MFC.
The event table is as follows:

MFC

ON_COMVAND(| D_VI EW SOUNDI NGS, OnVi ewSoundi ngs)
ON_UPDATE_COVMAND_UI (1 D_VI EW SOUNDI NGS,
OnUpdat eVi ewSoundi ngs)

wxWidgets

EVT_MENU(| D_SOUNDI NGS,

WKW ndPl ot Vi ew. : OnVi ewSoundi ngs)
EVT_UPDATE_Ul (1 D_SOUNDI NGS,

WKW ndPl ot Vi ew. : OnUpdat eVi ewSoundi ngs)

For clarity | put the message/event handlers in the class that will
actually be handling it — this is the way the class wizard built the
application in the first place but this is not the a requirement. Class
wizard builds the event table with a few mouse clicks. Under
wxWidgets you have to code it manually, however there is very little
work to do.

As with MFC the wxWidgets framework handles the Ul changing in
idletime.

Here is the implementation of the code:

voi d VWKW ndPl ot Vi ew. : OnVi ewSoundi ngs() {
WKW ndPI ot Doc* doc
= (WKW ndPI ot Doc*) Get Docunent () ;

i f(!Soundi ngs->Dept hFi | ePresent) {
wxMessageBox (" Ocean depth features require
Regi stration and the Xaxero
CD ROM \ nVi sit www. Xxaxer 0. com
for details.");
return;

}

i f (bSound)
bSound=FALSE;
el se
bSound=TRUE;
doc- >Updat eAl | Vi ews(NULL, NULL);

}

voi d WKW ndPI ot Vi ew: : OnUpdat eVi ewSoundi ngs(
wxUpdat eUl Event & event) {
event . Check(bSound);

}

Almost identical to MFC —however onelittle pitfall to be careful of. If you
want to set acheck in an item make sure you have set it to checkablein the
wxDesigner properties panel or you will get assertion errorsin debug.

ARRAY Macros

Like MFC, wx allows an array of classes with its own dynamic array
alocation. Here | am trying to define an array of email addresses.

[continued from previ ous page]

Discussion

Based on both years of employment and the claimed number of lines of
code read/written the subjects taking part in the experiment have a
significant amount of software development experience.

The number of years of software development experience is likely to
have ahigh correlation with asubject’sage. While cognitive performance
has been found to decrease with age, age does not appear to have been a
factor affecting the number of questions answered in this experiment
(however, most subjects are likely to be younger than the age at which
studies find a significant age decrease in performance; 50s and over).

The aim of creating a problem that would require approximately 30
secondsto answer was not met. The average timetaken to answer problems
was 67 seconds, over twice that intended in the experimental design. Itis
possible that a subject’s short term memory resources were completely
consumed by solving thei f statement problem.

first eight ninth and subseguent total
total recall errors 126 158 284
both digits incorrect 64 (51%) 104 (66%) 168
only first digitincorrect 34 (27%) 27 (17%) 61
only last digit incorrect 28 (22%) 27 (17%) 55
answer giveninlist 56 (44%) 76 (48%) 132
first digitinlist 28 (22%) 23 (15%) 51
last digit in list 20 (16%) 18 (11%) 38
answer given in set 61 (48%) 91 (58%) 152

Table 1: Number of various kinds of recall errors made by subjects
when answering the assignment problem. The percentageis calculated
using the total at the top of the corresponding column. The phrase in list
refersto the constant values appearing in the list of assignment statements
read immediately prior tothei f statement. The phrasein set refersto the
set of all possible constant val ues appearing in assignment statements. The
first digit is the most significant digit.

20

Given the experience of the subjects participating in this experiment
any learning affectsthat occurred are likely to be caused by patternsin the
presentation of the problems (e.g. particular identifiers aways appearing
inagiven order). Known patternsinclude:

o using arelatively small, compared to the number of problems seen by a
subject, set of identifiers. The resultsshow that when answering theinitial
problems recall performance was significantly better for short identifiers.
The change in performance characteristics, as subjects answered more
problems, could have been caused by subjectslearning the limited number
of different identifiersused in the experiment, or it could have been caused
by something elsebeing learned. Repeating the experiment using agreater
number of different identifierswill help answer this question,

o using aredatively small, compared to the number of problems seen by
asubject, set of constant values. The issues here are the same as those
for using asmall set of identifiers,

o listingtheidentifiersin the same order intherecal list asthey appeared in
the assignment list. Subjects could have used this information to answer
problems without remembering any identifier information. While
identifiers sometimes need to be recalled in the same order in which they
areread inthe source, thisisnot dwaysthe case. Repeating the experiment
using different relative orderingswill removethis possiblethrest to validity,

» having the first identifier in the recall list as the identifier that did not
appear in theassignment list. While the problem appearsto be difficult
enough without this identifier, its presence provides a mechanism for
estimating the amount of guessing made by subjectsin their answers.

More results are discussed in the second part of this article.

Derek M Jones

Further Reading

For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley. A more advanced introduction is givenin
Learning and Memory by John R. Anderson. An excellent introduction to
many of the cognitive issues that software developers encounter is given
in Thinking, Problem Solving, Cognition by Richard E. Mayer.

Acknowledgements

The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making aconferencedot available
inwhich to runit.

CVu/ACCU/Features

2 wxDesigner - C:\Documents and Settings' jon’ WxwindPlotrc.wdr

File Edit Dialog Element Menus

Toolbars

Eitraps

Help

=10 x|

DB @ | == X| i@ clpdr|ces =Er]e e

B S8 WeawindPlotre.wdr
=45 Dialogs
=
-0 wxBoxSizer v
- weBoxSizer H

L weButtan
=00 weBoxSizer H

Lo wTextChl
----- MO w«BoxSizer'
----- Cd weStaticT ext
A2 Menubars
A2 Toolbars
f-[27] Bitmap lizts
=459 C++ zounces

I+1...[+1...[51

ml

3 weCheckBox

[wwStaticT ext

ooo | Lo

o | O =T oo 4]|

wcpp| mpy | wpl |uc= il
[o o]

=== =] e = W
o e || ==] ==] EE] A

0 [| e e =

ik file tirmes will dizplay in local timne.

time properties.

™ Do mot show this message again Ok |
YYour local time zone iz zet o UTC I

Y'au can adjust waur time 2one in Contral Panel D ate

v

Prior to the class that defines an email message we define an array

container for the addresses:

Figure 1. wxDesigner

similar to MFC. Now comes the tricky bit — to generate the code.
For the whole project | am using onewdr filecontaining all my dialogs,

Asyou create the controls you will be giving them resource names

WK_DECLARE_OBJARRAY(wx SMTPAddr ess,

cl ass Message {

arr_Reci pients);

tool bars, etc. When you press the C++ button the code is written to
wxwi ndpl ot r c. cpp that hasthe low level hard to read stuff that does
the actual painting of the resources.

arr_Reci pients
H

#i ncl ude <wx/arrinpl.cpp>
/1 this is a nmagic

/1 incantation which nust
/1 be done!

VK_DEFI NE_OBJARRAY/(
arr_ToReci pi ents);

| [eft the comment in the include statement. |
had link errors
WK_DEFI NE_OBJARRAY was|eft off and so
after reading the wx Ar r ay section of the
documentation fully it all started to make
sense. More important — | went to a clean
compile and link.

Creating a dialog.
Using wxDesigner (see Figure 1) you lay out
your dialog.

This simple example shows how 3 layers
of vertical sizers encapsulate a box. The top
two layers are horizontal sizerswith adjacent
controls. The hierarchy isalittletricky at first
but when you have the hang of it, design goes
really fast.

x
Reci pi ent s; — Clazz — Owerides
| | “alidate])
Mame: |TZDI
il I i [v TransferD ataT owindowl]
_ _ [v TransferD ataFrom'window(]
— Dialag function ™ OnSize()
| TimeZone =z | T onldep
[v Call weSizer:Fit]] and waSizer: SetSizeHints(] [OnPaint]
[OnChar]
~ Derived from — Containz [Orbdousze(]
() WHDIE'DQ I"/ Canstructar p‘ DHDK[]
when the " wuFrame [Default constructor ¥ OnCancel]
" wxPanel ™ Destructor
: [OnSetFocus(]
" weScrolledwindow [~ BTTI macros ™ OnKilFocus]
7 wdwindow [w Ewent table macros
7 wuTextChl
" Other...

CVu/ACCU/Features

OF.

Cancel

Figure2: The Add A ClassDialog

21

We need to generate adia og implementation classnow. We pressthe. cpp
button to add a C source. Give it aname (remember to add the suffix . cpp)

Thiswill generate an empty C++ container.

We now need to implement a class for our dialog. Easy enough. Press
the Class button (see Figure 2).

We have added the handlers on the right — everything we wanted our
dialog to do. We respond to either the OK or the cancel messages and we
have handlers to move data to the dialog and out of it.

That isall thereisto it —ashell is created that will compile and run. It
will not do anything yet though.

We have two ids that we wish to manipulate from the code.

o A check box: | D_TZCHECK
o Aneditbox: |1 D TZDI SP
We need to add inline functions to read and write from these ids.

Press the Get button on the source code editor to add the get functions:

Select the dialog you wish to use and press on the field you want to
alow reading and writing from.

The program will select amethod name. Y ou can alter thisif you like.
The Add getter button placesit in your code. Now we have:

/1 VDR nethod declarations for MyDi al og
-> wxCheckBox* Get Tzcheck() { return
(wxCheckBox!| *) Fi ndW ndow(| D_TZCHECK); }
-> wWwTextCirl* GetTzdisp() { return
(wxTextCtrl*) FindWndow(l D _TzZDI SP); }

So far wxDesigner has been doing all the work for us. Now we havetoroll
up our sleeves and start writing code.
Before we leave the header file we need to add variables to hold our
values. AwxSt ri ng —Di spUTCand BOOL Check.
In the code we need to connect thisto actions.
Look at the constructor — the first line should connect the dialog
resource name to code. The first line of the constructor is generated as:

MyDi al ogFunc(this, TRUE);

Double-check thisiswhat you want. Normally ameaningful nameisgenerated
as specified. Thiswill bein the constructor of the generated sourcefile.
Next we go to the following functions and flesh them out.

bool MDi al og: : Transf er Dat aToW ndow() {
/1 wxDesi gner has added two getters, used to
/'l set the values on startup and retrieve them
/] when closing the dial og (next nethod).
Get Tzdi sp() - >Set Val ue(Di spUTC) ;
Get Tzcheck() - >Set Val ue(Check) ;
return TRUE;

}

bool MDi al og: : Tr ansf er Dat aFr omN ndow() {
Di spUTC = Get Tzdi sp() - >Get Val ue();
Check = Get Tzcheck()->Get Val ue();
return TRUE;

}

There we are —a fully working dial og.
Y ou can include abunch of dialogsin one chunk of source code— useful
for keeping wizard and notebook pages together.

Invoking the Dialog

In your code include thet zdl g. h file and a calling subroutine in the
header of the calling program and create a call in the body.
Invoke the dialog as follows:

TzZDl g di al og(Get Mai nFrane(), -1,
wWxT("Ti me Zone Display"));
Initialization
di al og. Showwbdal () ;

Aseasy asthat !
Jonathan Selby

Resources

wxWidgets: www. wxwi dget s. or g
wxDesigner: www. r oebl i ng. de/
Another introduction to wxWidgets:
www. al | -t he-j ohnsons. co. uk/ accu/ i ndex. htm
Porting MFC to wxWidgets: ww« 106. i bm coni
devel operworks/linux/library/l-nfc/

x
Dialog clazs: ITEDIg j Diialog: ITimezl:nne j
Control type: IWHEhECkBDH
Cartral 1D ||D_T2|:HE|:K [Do not show this message again Ok |
G et T zcheck
ittt I Your local time zone iz zetto UTC I
Tip: Choose a dialog on the right hand zide
and click on a contral. The figlds will
get filled out autamatically and a name Gt file 1 i e
for the methiod will be suggeste;l fn_:um A e el
Eﬂfﬁdﬂythj[l]détL?—MY—TEXT L ‘fu:uu can adiust wowyr time zone in Control Panel D ate
tirme properties.
1] | ¥
wCheckBox” GetT zcheck[]

Add getter |

Leave |

Figure 3: The Add C++ Getter Dialog

22

CVu/ACCU/Features

An Introduction to Programming with GTK+ and Glade
in ISO C and ISO C++ - Part

Roger Leigh <r | ei gh@lebi an. or g>
GTK+ and GObject

In the previous sections, the user interface was constructed entirely by
hand, or automatically using | i bgl ade. The callback functions called
in response to signals were simple C functions. While this mechanism is
simple, understandable and works well, as a project gets larger the source
will become more difficult to understand and manage. A better way of
organising the source is required.

One very common way of reducing this complexity is object-
orientation. The GTK+ library is already made up of many different
objects. By using the same object mechanism (Gobj ect), theogcalc code
can be made more understandable and maintainable

The ogcalc program consists of a Gt KW ndow which contains a
number of other G kW dget s and some signal handler functions. If our
program was a class (Ogcal ¢) which derived from Gt KW ndow; the
widgets the window contains would be member variables and the signal
handlers would be member functions (methods). The user of the class
wouldn’t be required to have knowledge of these details, they just create
anew Ogcal c object and show it. By using objects one also gains
reusability. Previously only one instance of the object at a time was
possible, andmai n() had explicit knowledge of the creation and workings
of theinterface.

Thisexample bears many similaritieswith the C++ Glade example (next
edition). Some of the features offered by C++ may be taken advantage of
using plain C and GObj ect.

- [B OG & ABV Calculator —

PG:(39.57 [} RE:[63.55 |I| cR[dE |
0G: 65.57 ABV %: 3.48
] Quit ‘ ll___________ﬁ:é:.;:e__f________j Calculate |

Figure1: C/ gobj ect/ ogcal c in action.

Thelistings for the code are given at the end of the article (next two pages).
To build the source, do the following:
cd C/ gobj ect
cc 'pkg-config —eflags libglade-2.0" -c
ogcalc.c
cc 'pkg-config —eflags |ibglade-2.0" -c
ogcal c-main. c
cc 'pkg-config —+ibs libglade-2.0'
ogcal c. 0o ogcal c-main.o

Analysis

The bulk of the code is the same as in previous sections, and so
describing what the code does will not be repeated here. The Ogcal ¢
classis defined in C/ gobj ect / ogcal c. h. This header declares the
object and class structures and some macros common to all GObject-based
objects and classes. The macros and internals of GObj ect are out of the
scope of thisdocument, but sufficeit to say that thisboilerplateisrequired,
and isidentical for all GObj ect classes bar the class and object names.

The object structure (_Qgcal c¢) has the object it derives from as the
first member. Thisisvery important, sinceit allows casting between types
in the inheritance hierarchy, since all of the object structures start at an
offset of 0 from the start address of the object. The other members may be
in any order. In this caseit contains the Glade XML interface object and
the widgets required to be manipulated after object and interface
construction. Theclassstructure(_Ogcal cCl ass)isidentical tothat of
the derived class (G kW ndowCl ass). For more complex classes, this
might contain virtual function pointers. It has many similaritiesto a C++
vt abl e. Finally, the header defines the public member functions of the
class.

Theimplementation of thisclassisfoundinC/ gobj ect / ogcal c. c.
The major differenceto previous examplesisthe class registration and the

-0 ogcalc

CVu/ACCU/Features

extra functions for object construction, initialisation and notification of
destruction. The body of the methods to reset and calculate are identical
to previous examples.

ogcal c_get _type() isusedto get thethetypeid (GType) of the
class. Asaside effect, it also triggers registration of the class with the
GTypetype system. Remember, Gtypeisadynamic type system. Unlike
languages like C++, where the types of all classes are known at compile-
time, the majority of all the types used with GTK+ are registered on
demand, except for the primitive data types and the base classGObj ect
which areregistered asfundamental types. Asaresult, in additionto being
able to specify constructors and destructors for the object (or initialisers
and finalisersin Gtype parlance), it is also possible to have initialisation
and finalisation functions for both the class and base For example, the
class initialiser could be used to fix up the vtable for overriding virtua
functions in derived classes. In addition, there is also an
i nstance_i nit function, which is used in this example to initialise
the class. It's similar to the constructor, but is called after object
construction.

All these functions are specified in a GTypel nf o structurewhichis
passedtog_type_regi ster_static() toregister the new type.

ogcal c_cl ass_init() istheclassinitialisation function. This
has no C++ equivalent, since this istaken care of by the compiler. Inthis
caseit isused to overridethefi nal i ze() virtual function in the
Ghj ect A ass baseclass. Thisis used to specify avirtual destructor
(it snot specified inthe GTy pel nf o because the destructor cannot berun
until after aninstanceiscreated, and so has no placein object construction).
With C++, the vtable would be fixed up automatically; here, it must be
donemanually. Purevirtual functionsand default implementationsare also
possible, aswith C++.

ogcal c_init() is the object initialisation function (C++
constructor). Thisdoesasimilar job to themai n() function in previous
examples, namely contructing the interface (using Glade) and setting up
the few object properties and signal handlers that could not be done
automatically with Glade. In this example, a second argument is passed
togl ade_xml _new() ; in this case, there is no need to create the
window, since our Qgcal ¢ object isawindow, and so only the interface
rooted fromogcal c_rmai n_vbox isloaded.

ogcal c_finalize() istheobject finalisation function (C++
destructor). It'sused to free resources allocated by the object, in this case
the GladeXML interface description. g_obj ect _unref () isusedto
decrease the reference count on a Gobj ect . When the reference count
reaches zero, the destructor is run and then the object is destroyed. There
isalso adi spose() functioncalled priortofi nal i ze('), which may
be called multipletimes. Its purpose isto safely free resources when there
are cyclic references between objects, but thisisnot required in thissimple
case.

An important difference with earlier examples is that instead of
connecting thewindow dest r oy signal togt k_mai n_qui t () toend
the application by ending the GTK+ main loop, the del et e signal is
connected toogcal c_on_del et e_event () instead. Thisisbecause
the default action of the del et e event isto trigger a dest r oy event.
The object should not be destroyed, so by handling thedel et e signal and
returning TRUE, destruction is prevented. Both the “Quit” button and the
del et eeventend up calling gt k_wi dget _hi de() to hidethe widget
rather than gt k_mmai n_qui t () asbefore.

Lastly, C/ gobj ect / ogcal c- mai n. ¢ definesaminima mai n() .
The sole purpose of thisfunction isto create an instance of Ogcal ¢, show
it, and then destroy it. Notice how simple and understandable this has
become now that building the Ul is where it belongs — in the object
construction process. The users of Ogcal ¢ need no knowledge of its
internal workings, which is the advantage of encapsulating complexity in
classes.

By connecting the hi de signal of the Ogcal ¢ object to
gt k_mai n_qui t () theGTK+ event loop isended when the user presses
“Quit” or closes the window. By not doing this directly in the classit is
possible to have as many instances of it as one likes in the same program,
and control over termination isentirely in the hands of the user of the class
—whereit should be.

Roger Leigh

23

Listing 1: C/ gobj ect/ ogcal c. h

#i ncl ude <gt k/ gtk. h>
#i ncl ude <gl ade/ gl ade. h>
/* The foll owing nacros are Gobject boilerplate. */

/* Return the GIype of the Ogcal ¢ class. */
#defi ne OBCALC TYPE (ogcal c_get_type())

/* Cast an object to type Ogcalc. The object nust
be of type Ogcalc, or derived from Qgcalc for
this to work.

This is simlar to a C++ dynanic_cast<>. */

#defi ne OGCALC(obj) \

(G_TYPE_CHECK_| NSTANCE_CAST ((obj), \
OGCALC TYPE, Qgcalc))

/* Cast a derived class to an (Qgcal cd ass. */
#def i ne OGCALC CLASS(kl ass) \
(G_TYPE_CHECK _CLASS CAST ((klass), \
OGCALC TYPE, (Ogcal cd ass))

/* Check if an object is an Ogcalc. */
#define | S_ OGCALC(obj) \
(G _TYPE_CHECK TYPE ((obj), OGCALC TYPE))

/* Check if a class is an Qgcal cd ass. */
#define | S OCCALC CLASS(kl ass) \
(G TYPE_CHECK CLASS TYPE ((klass), \
OGCALC TYPE))

/* Get the Qgcal cd ass class. */
#defi ne OGCALC GET_CLASS(obj) \
(G_TYPE_I NSTANCE_GET_CLASS ((obj), \
OGCALC TYPE, Qgcal cd ass))

/* The Qgcal c object instance type. */
typedef struct _Qgcal ¢ Ogcal c;

/* The Ogcal ¢ class type. */

typedef struct _Qgcal cd ass Ogcal cd ass;

/* The definition of Ogcalc. */
struct _Qgcalc {
G kW ndow parent;
/* The obj ect derives from G kW ndow. */
A adeXM. *xmi ; /* The XM. interface. */
/* Wdgets contained within the wi ndow. */
G kSpi nButton *pg_val ;
G kSpi nButton *ri_val;
G kSpi nButton *cf _val ;
G kLabel *og_result;
G kLabel *abv_result;
G kButton* quit_button;
QG kButton* reset _button;
G kButton* cal cul ate_button;

}

struct _QOgcal cd ass {
/* The cl ass derives from G kW ndowd ass. */
G kW ndowd ass parent;
/* No other class properties are required (e.g.
virtual functions). */

}

/* The followi ng functions are described in ogcalc.c */

Glype ogcal c_get _type(void);

Qgcal ¢ * ogcal c_new(voi d);

gbool ean ogcal c_on_del et e_event (COgcal ¢ *ogcal c,
GdkEvent *event,
gpoi nter data);

voi d ogcal c_reset(Qgcal c *ogcal c, gpointer data);

voi d ogcal c_cal cul at e(Qgcal ¢ *ogcal c,

gpoi nter data);

24

Listing2: C/ gobj ect/ogcal c.c

#i ncl ude "ogcal c. h"

static void ogcal c_class_init(QOgcal cd ass *kl ass) ;

static void ogcal c_init(GlIypel nstance *instance,
gpoi nter g_cl ass);

static void ogcal c_finalize(Qgcalc *self);

/* Get the GIype of Ogcalc. This has the side
effect of registering Qycalc as a new Glype if it
has not already been registered. */

Glype ogcal c_get _type(void) {

static Glype type = 0;
if(type == 0) {

/* Glypel nfo describes a Glype. |In this case,
we only specify the size of the class and
obj ect instance types, along with an
initialisation function. W could have al so
speci fied both class and obj ect
constructors and destructors here as well. */

static const GlIypelnfo info = {

si zeof ((Qgcal cd ass),

NULL,

NULL,

(Gd asslnitFunc) ogcalc_class_init,
NULL,

NULL,

si zeof (Qgcal ¢),

0,

(A nstancel nitFunc) ogcalc_init

b

/* Actually register the type using the above
type information. W specify the type we are
deriving from the class name and type
information. */

type = g_type_register_static(GIK_TYPE W NDOWV

"Qgcal ¢c", & nfo,
(GTypeFl ags) 0);
}

return type;

}

/* This is the class initialisation function. It
has no conparabl e C++ equivalent, since this is
done by the conpiler. */

static void ogcal c_class_init(Ogcal cd ass *kl ass) {

Gbj ect A ass *gobj ect _cl ass

= G _OBJECT_CLASS (kl ass);

/* Override the virtual finalize method in the
Qbj ect class vtable (which is contained in
Qgcal cd ass). */

gobj ect _cl ass->finalize

= (Gj ect Fi nal i zeFunc) ogcal c_finali ze;

}

/* This is the object initialisation function. It
is conparable to a C++ constructor. Note the
simlarity between "self" and the C++ "this"
pointer. */

static void ogcal c_init(GlIypel nstance *instance,

gpoi nter g_class) {
Qgcal ¢ *self = (Qgcal c *) instance;
/* Set the window title */
gt k_wi ndow set title(GIK WNDOW (self),
"OG & ABV Cal culator");
/* Don't permt resizing */
gt k_wi ndow set _resi zabl e(GTK_ WNDOWN (sel f), FALSE);
/* Connect the wi ndow cl ose button ("destroy-
event") to a callback. */
g_si gnal _connect (G OBJECT (self), "delete-event",
G CALLBACK (ogcal c_on_del ete_event),
NULL) ;

| CVu/ACCU/Features

/* Load the interface description. */
sel f->xm = gl ade_xm _new("ogcal c. gl ade",
"ogcal c_mai n_vbox", NULL);

/* Get the wi dgets. */
sel f->pg_val = GIK_SPI N_BUTTON

(gl ade_xnl _get _wi dget (self->xm, "pg_entry"));
sel f->ri_val = GIK_SPI N _BUTTON

(gl ade_xm _get widget (self->xnl, "ri_entry"));
sel f->cf_val = GIK_SPI N BUTTON

(gl ade_xnl _get _wi dget (self->xm, "cf_entry"));
sel f->0g_result = GIK _LABEL

(gl ade_xm _get_w dget (self->xnl, "og_ result"));
sel f->abv_result = GIK LABEL

(gl ade_xm _get _wi dget (self->xnm, "abv_result"));
sel f->quit_button = GTK _BUTTON

(gl ade_xm _get _widget (self->xni, "quit_button"));
sel f->reset _button = GIK _BUTTON

(gl ade_xm _get _wi dget (self->xnl, "reset_button"));
sel f->cal cul ate_button = GTK_BUTTON

(gl ade_xm _get _wi dget (self->xm,

"cal cul ate_button"));

/* Set up the signal handlers. */
gl ade_xm _si gnal _aut oconnect (sel f->xm);

g_si gnal _connect _swapped
(G _OBJECT (sel f->cf_val), "activate",
G CALLBACK (gtk_wi ndow activate default),
(gpointer) self);
g_si gnal _connect _swapped
(G _OBJECT (sel f->cal cul ate_button), "clicked",
G CALLBACK (ogcal c_cal cul ate),
(gpointer) self);
g_si gnal _connect _swapped
(G _OBJECT (sel f->reset_button), "clicked",
G CALLBACK (ogcal c_reset),
(gpointer) self);
g_si gnal _connect _swapped
(G _OBJECT (self->quit_button), "clicked",
G CALLBACK (gtk_w dget _hide),
(gpointer) self);

/* Get the interface root and pack it into our
wi ndow. */
gt k_cont ai ner _add
(GTK_CONTAI NER (sel f), gl ade_xm _get_wi dget (
sel f->xm, "ogcal c_mai n_vbox"));

/* Ensure calculate is the default. The d ade
default was lost since it wasn't in a w ndow
when the default was set. */

gt k_w dget _grab_defaul t
(GTK_W DGET (sel f->cal cul ate_button));

}

/* This is the object initialisation function. It is
conparable to a C++ destructor. Note the simlarity
between "sel f" and the C++ "this" pointer. */

static void ogcal c_finalize(Qgcalc *self) {

/* Free the d ade XM. interface description. */
g_obj ect _unref (G OBIECT(sel f->xm));

}

/* Create a new instance of the Ogcalc class (i.e.
an object) and pass it back by reference. */
Qgcal ¢ * ogcal c_new(void) {
return (Qgcalc *) g_object_new(OGCALC TYPE, NULL);
}

/* This function is called when the wi ndow is about
to be destroyed (e.g. if the close button on the
wi ndow was clicked). It is not a destructor. */

CVu/ACCU/Features |

gbool ean ogcal c_on_del et e_event (Ogcal ¢ *ogcal c,
CdkEvent *event, gpointer user_data) {
gt k_wi dget _hi de(GTK_W DCGET (ogcal c));
/* W return true because the object should not be
automatical ly destroyed. */
return TRUE

}

/* Reset the interface. */

voi d ogcal c_reset (Qgcal ¢ *ogcal c, gpointer data) {
gt k_spi n_button_set_val ue(ogcal c->pg_val, 0.0);
gt k_spin_button_set val ue(ogcal c->ri _val, 0.0);
gt k_spi n_button_set val ue(ogcal c->cf_val, 0.0);
gt k_| abel _set _text(ogcal c->0g_result, "");
gtk_| abel _set _text(ogcal c->abv_result, "");

}

/* Performthe cal cul ation. */
voi d ogcal c_cal cul ate(Qgcal ¢ *ogcal ¢, gpointer data) {
gdoubl e pg, ri, cf, og, abv;
gchar *og_string;
gchar *abv_string;
pg = gtk_spin_button_get_val ue (ogcal c->pg_val);
ri = gtk _spin_button_get_value (ogcal c->ri _val);

cf = gtk_spin_button_get val ue (ogcal c->cf_val);
og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;
/* Do the suns. */
if (og < 60)

abv = (og - pg) * 0.130;
el se

abv = (og - pg) * 0.134;

/* Display the results. Note the GVarkup
tags to nake it display in Bold. */

og_string = g_strdup_printf("®. 2f </ b>", o0g);

abv_string = g_strdup_printf("%®. 2f </ b>", abv);

gt k_| abel _set _nar kup(ogcal c->0g_result, og_string);

gt k_| abel _set _nar kup(ogcal c->abv_resul t, abv_string);

g_free(og_string);

g_free(abv_string);

}

Listing 3: C/ gobj ect/ ogcal c-main. c

#i ncl ude <gtk/gtk. h>
#i ncl ude <gl ade/ gl ade. h>
#i ncl ude “ogcal c. h”

/* This main function merely instantiates the ogcalc
class and displays its main w ndow. */
int main(int argc, char *argv[]) {
/* Initialise GIK+. */
gtk_init(&rgc, &argv);
/* Create an Ogcalc object. */
Qgcal ¢ *ogcal ¢ = ogcal c_new);
/* When the widget is hidden, quit the GIK+ main
| oop. */
g_si gnal _connect (G OBJECT (ogcal c), "hide",
G CALLBACK (gtk_main_quit), NULL);

/* Show the object. */
gt k_w dget _show(GTK_W DCGET (ogcal c));

/* Enter the GIK Event Loop. This is where all

the events are caught and handled. It is
exited with gtk_main_quit(). */
gtk_main();

/* dean up. */
gt k_wi dget _destroy(GTK_W DGET (ogcal c));
return O;

25

What’s in a Namespace?

Paul Grenyer

In my experience most C++ developers have heard about hamespaces.
Most of them understand what namespaces are for and the problems they
solve. Some even make use of them!

Namespaces can be used for more than preventing name clashes. In this
article | will visit the mechanics of namespaces and anonymous
namespaces and explain how they are used to solve some of the problems
associated with linking C++ programs. Then | will move on to explain how
they can aso be used to provide context.

What are Namespaces?
The C++ standard has the following description of namespaces:

7.3.0.1 Anamespace is an optionally-named declarative region. The name of
a namespace can be used to access entities declared in that namespace; that
is, the members of the namespace. Unlike other declarative regions, the
definition of a namespace can be split over several parts of one or more
translation units.

Thistells you what anamespaceis, but not what oneis used for. Consider
the following example:

You are writing a COM object that is going to be used to split an input
file into a number of output files. For maximum ease of testability and
performanceyou writethe actual file processing codein standard C++ and
wrap itin aFacade [Facade] called Fi | eSplitter.A COM object can
then be written to wrap the file processing Fi | eSpl i tter class. The
COM object provides an interface that forwards to the file processing
FileSplitter class

The COM object client has no knowledge that the COM object is
actually just a wrapper, and has no need to know. As far as the client is
concerned the COM aobject isthefile splitter. Therefore the obvious name
for the COM object class is also FileSplitter (with
I FileSplitter theobviousnamefor the interface).

Having two classes with the same fully qualified name in a C++
program is not permitted. The solution isto introduce namespaces. From
Microsoft Visual C++ 7.0 onwards, all COM classes are placed in the
ATL namespace (in earlier versions COM classes were required to bein
the global namespace). However, although | will use theATL namespace
in this article; and putting COM objects in the ATL namespace is a
Microsoft convention, using the name of atechnology for a namespace
is not usually good practice as it does not provide the right sort of
context. For exampleit would not be sensible or useful to group together
all abstract base classes or all classes that implement a recognized
pattern.

Due to the limited scope of this example the name for the namespace
containing the file processing Fi | eSpl i tter classis not clear.
However, an appropriate name might be something like Pr ocess, asthe
class performs the actual processing of files within the program:

/] filesplitter.h

nanespace Process {
class FileSplitter {

oo
}

Thefile processing Fi | eSpl i tter class can then be used by fully
qualifying its name in the COM class:

/] filesplitter_comh
#include "filesplitter.h"

nanmespace ATL {
class FileSplitter public IFileSplitter {

private:

Process::FileSplitter inpl_;

b

H

26

Both classes can now happily coexist in the same program, despite the fact
that they have the same name, as they are both in different namespaces.
The namespaces a so help to make maintenance easier by providing local
context for each class.

What are Anonymous Namespaces?

The C++ standard hasthe following to say about anonymous (or unnamed)
namespaces:

7.3.1.1 An unnamed-namespace-definition behaves as if it were replaced by
nanespace unique{ /* enpty body */ }
usi ng namespace uni que;
nanmespace uni que { nanmespace-body }
where all occurrences of uni que in a translation unit are replaced by the
same identifier and this identifier differs from all other identifiers in the entire
program. (Although entities in an unnamed namespace might have external
linkage, they are effectively qualified by a name unique to their translation
unit and therefore can never be seen from any other translation unit.)

Thisisan even less useful description than the onefor regular namespaces.
Bjarne Stroustrup has the following to say about unnamed namespacesin
The C++ Programming Langue [TCPPPL]:

It is often useful to wrap a set of declarations in a namespace simply to
protect against the possibility of name clashes. That is, aim to preserve
locality of code rather than to present an interface for users...

In this case we can simply leave the namespaces without a name...
Clearly, there has to be some way of accessing members of an unnamed
namespace from the outside. Consequently, an unnamed namespace has
an implied using-directive...

..In particular unnamed namespaces are different in different translation
units. As desired, there is no way of naming a member of an unnamed
namespace from another translation unit.

This gets much closer to what an anonymous namespaceis for, but is still not
asclear asit could be. Mark Radford was kind enough to supply me with the
following description and examples of the use of anonymous namespaces:

Designers of C++ programs often encounter a need for some declarations
to have Translation Unit (TU) scope. For example, consider the encapsulation
of database access using SQL: it may well make sense for the SQL strings
to be encapsulated within the TU in which the database access is
implemented.

Having declared identifiers for string constants within a TU, the designer has
another issue to resolve: what if the same identifier is used in another TU?
Without support from the C++ language, it may not be possible to guarantee
avoiding this situation, without telling other people what identifiers have
been used. Putting it another way: without language support, such
encapsulated identifiers are not really encapsulated.

In early C++ the solution was one inherited from C: declare identifiers as
static to give them internal linkage. However, already this has the drawback
of overloading the keyword st at i c. Also, as the language evolved and
templates were added, it became apparent there was another drawback:
identifiers with internal linkage could not be template arguments.

To resolve the above issues, a more C++-centric solution was devised - the
unnamed namespace, or as it tends to be called in more common parlance,
the “anonymous namespace”. Identifiers declared in the anonymous
namespace have external linkage (and can be used as template arguments),
but are accessible only in the TU in which they are declared. The mechanism
by which this is achieved is implementation dependent, but a popular
approach is the use of a scheme where the compiler mangles the identifier
name with that of the TU.

The descriptions in the C++ standard and The C++ Programming
Language, together with the comments from Mark Radford cover the
importance and uses of anonymous namespaces well. Not only do they
prevent name clashes, they also provide context. The reader of a source
file (. cpp) knowsthat anything located within the anonymous hamespace
isonly intended for use within that trandation unit and no other.

Namespaces Provide Context

Namespaces do not only provide solutionsto the problems associated with
linking C++ programs. They can also provide context that helps a devel oper

CVu/ACCU/Features

determineaclass's, afunction’ sor avariable' sposition and purposewithin
aprogram just from looking at a single source file.

Before describing the mechanics of namespaces in The C++
Programming language, Stroustrup has the following to say about them:

A namespace is a mechanism for logical grouping. That is, if some
declarations logically belong together according to some criteria, they can
be put in a common namespace to express the fact....

So, namespaces are also about grouping related elements of a program
together. The file splitter example above can be expanded to demonstrate
this. Suppose your program not only splitsfiles, but can also merge them.

Again, the standard C++ processing code should be wrapped in afacade
class (Fi | eMer ger) and should be separate from the COM class. The
processing class processes files and therefore belongs in the Pr ocess
namespace along with Process: : Fil eSplitter.

/] filesplitter.h

nanespace Process {
class FileSplitter {

o
}

/1 filemerger.h

nanespace Process {
class FileMerger {

b
}

TheFi | eMer ger COM class, of course, goes into the ATL namespace
with ATL: : Fil eSplitter.

Elements that are grouped together by a namespace share a context.
Equally, when you look at a single class, function or variable declaration
you know what context it isin from its namespace.

For example, you could open any source or header file from the example
above and belookingat a Fi | eSplitter orFil eMerger classand
know immediately whether it was afile processing class or a COM class,
just from its namespace. This is a significant maintenance advantage as
you would not have to go searching through other source and header files
trying to determine the context of the file you had just opened.

There are, of course, other ways of providing this context. Some, such
as directory structure, complement the use of namespaces very well, but is
a subject beyond the scope of this article.

Appending Fi | e tothefrontof Fi | eSplitter and Fi | eMer ger
suggeststhat there can be other types of splittersand mergerswithin the context
of the program. Otherwise, they may aswell just be called Spl i tt er and
Mer ger . In the example presented so far that would be perfectly reasonable.

However, now consider that as well as splitting complete files, record
by record, the records themselves are split in some way. The logical name
for aclassthat splitsarecord is Recor dSpl i tter. Thisintroduces a
new context and should really introduce a new namespace:

/1 recordsplitter.h
nanespace Process {
nanespace Record {
class Splitter {

b
}
}

If arecord merging classis introduced into the program that too would go
into the Recor d namespace. The file processes should also be placed in
a nested namespace:

/1 filesplitter.h

nanespace Process {
nanespace File {
class Splitter {

b
}
}

| CVu/ACCU/Features

/1 filenmerger.h

nanespace Process {
nanespace File {
class Merger {

.
}
}

This technique can of course be taken too far and is probably overkill for
this example, but | hope it shows the concept of namespaces providing
context.

What about anonymous namespaces? Do they provide context too?
Absolutely! Anonymous namespaces provide context within a
translation unit. As stated above, they tell you that the contents of the
anonymous namespace are only intended for use in the current
translation unit.

Consider the following example. Y ou have alookup table of postcodes
that are to be loaded from a database:

/1 Post code. cpp

#i ncl ude "l ookup\ post code. h"

nanespace PostcodeTool s {
nanespace {

const std::string postcodeSql
= "SELECT postcode FROM postcodes”;

}

voi d Postcode: : Load() {
dbConn_- >Execute(...);

}

}

There are anumber of things that can be done with thepost codeSql
string. It could be alocal variable inside thel oad function, but it may
be something that changes if the database table moves or is renamed
for some reason. Therefore it should be as prominent as possible to
make finding it easy. This would suggest it should be brought out to
namespace scope so that it is near the top of thefile. This opens up the
possibility of a name clash (although const variables actually have
internal linkage) as other translation units containing the namespace
Post codeTool s, could also have a post codeSqgl member
also.

The obvious solution is to place post codeSql in an anonymous
namespace as shown. Even though members of an anonymous
namespace have external linkage, they cannot clash with names
declared in other translation units. The anonymous namespace also tells
you that the post codeSql stringisonly intended for use within the
source file.

In this article | have examined the use of namespaces and anonymous
namespaces and the context provided by them. | hope | have made a
good case for their usage and that | have encouraged readers to use
namespaces more widely and for context aswell asfor preventing name
clashes.

Paul Grenyer

References

[Facade] Alan Shalloway, James J. Trott, Design Patterns Explained: A
New Perspective on Object-oriented Design, ISBN: 0201715945

[TCPPL] Bjarne Stroustrup, The C++ Programming Language, Special
Edition, ISBN: 0201700735

Acknowledgments

Thank you to Adrian Fagg, Mark Radford, Phil Bass and Alan
Griffiths.

27

An Introduction to
Objective-C

Part 3 — An Example Using

Foundation
D.A. Thomas

The best way to get the feel of a programming language is to have a look
at actual code. This demonstration program I’ ve written consists of three
Objective-C sourcefiles:

Listing 1 shows mai n. m which reads file names from the command
line and prints the unique lexical tokens found in each file. Tokens are
strings of printable characters separated by whitespace and punctuation
marks.

Listing 2 shows St ri ngTokeni zer . h, which declares the public
interface of the class St ri ngTokeni zer . Private methods, being part
of the implementation, typically have no place in thisfile.

Listing 3 shows StringTokeni zer. m which contains the
implementation of theSt r i ngTokeni zer class.

Listing 1: mai n. m

#i nport <Foundati on/ Foundati on. h>
#i nport "StringTokeni zer. h"

/1 Prints unique tokens found in files
/1l supplied as argunents.

int main(int argc, const char *argv[]) {

/1l Create a pool of itens to be garbage-collected
NSAut or el easePool *pool
= [[NSAut or el easePool alloc] init];
if(argc > 1) {
int i;
for(i =1; i < argc; ++i) {
/1 Read contents of file into string
NSString *path
= [NSString stringWthCstring:argv[i]];
NSString *nmyString
= [NSString stringWthContentsO Fil e: path];
if(nmyString == nil) {
fprintf(stderr, "File % not found\n",
[path cString]);
/1 The systemw || clean up anyway when we
/1l exit, but we do this for fornis sake
[pool rel ease];
return 1,

}

/] Create our tokenizer
StringTokeni zer *tokeni zer
= [[[StringTokeni zer all oc]
initWthString: nyString
andDelimters: @ ,.!?;:\t\r\n"]
aut or el ease] ;

/Il Create a set with roomfor 100 itens to
/1 hol d uni que tokens
NSMut abl eSet *t heSet
= [NSMut abl eSet set Wt hCapaci ty: 100];

/1 Get the first token
NSString *token = [tokenizer next Token];
while(token !'=nil) {
/1 This will fail if there is an identical
/1 token there already
[theSet addObj ect:token];
/1 Get nore tokens
token = [tokeni zer next Token];

28

/1 Print out unique tokens in the set in case-

/'l insensitive al phabetical order

NSArray *tokens = [[theSet all (bjects]
sortedArrayUsi ngSel ect or: @el ect or (
casel nsensitiveConpare:)];

printf("Unique tokens in %:\n",
[path cString]);

int j;
for(j =0; j <[theSet count]; ++)
printf("\t% %\n", j+1,
[[tokens objectAtlndex:j] cString]);
}
}

el se
fprintf(stderr,
"Usage: StringTokenizer filel file2 ...\n");

/1 Trigger autorelease of allocated nmenory
[pool rel ease];
return O;

Listing2: Stri ngTokeni zer. h

/! Mninmal tokenizer class, useful for
// denonstration purposes only

#i nport <Foundati on/ Foundat i on. h>

@nterface StringTokeni zer : NSOoj ect {
NSString *dat a;
NSChar act er Set *delimters;
size_t position, dataSize;

}

/] Default initializer - object contains no data
// and delimters string set to space, tab, newine
// and return

- (id)init;

/] Initialise object with data string;

// delimters string is set to space, tab

/1 newline and return.

- (id)initWthString: (const NSString *)aString;

I/ Initialise object with data string to tokenise
I/l and a set of delinmters to ignore

- (id)initWthString: (const NSString *)aString
andDel i m ters: (NSString *)delins;

/] Assign the object a new data string to
/] tokenise
- (void)setData: (const NSString *)aString;

// Assign the object a new set of delimters to work
/1l with
- (void)setDelimters: (NSString *)delins;

/'l Return the next token fromthe data string or nil
/1 if none exists
- (NSString *)next Token;

@nd

Listing3: St ri ngTokeni zer. m

#inport "StringTokeni zer. h"

/] Default delimters are whitespace
#define DEFAULT_DELIMTERS @ \t\n\r"

CVu/ACCU/Features

/] Create a category to forward-declare

/1 private nethod in order to avoid

/1 conpiler warnings about undecl ared net hods.
@nterface StringTokeni zer (Private)

(voi d) ski pDelimters;

@nd

@npl enentati on StringTokeni zer

}

/1 This is the designated initialiser,
/1 is called by all
/1 does all

{

(idyinit

return [self initWthString:nil
andDel i m t ers: DEFAULT_DELI M TERS] ;

(id)initWthString: (const NSString *)aString

return [self initWthString:aString
andDel i m t ers: DEFAULT_DELI M TERS] ;

whi ch

the other initialisers and

t he wor k

(id)initWthString: (const NSString *)aString
andDel imters: (NSString *)delins

if(self = [super init]) {
position = 0;
data = [aString retain];

/1 Cache length of data string
dataSi ze = [data |l ength];
delimters = [[NSChar act er Set
charact er Set Wt hChar act ersl nStri ng: del i ns]
retain];
}

return self;
(void)setData: (const NSString *)aString
if(aString !'= data) {

[data rel ease];

position = 0; // W are starting fromscratch

data = [aString retain];
dataSi ze = [data | ength];

(void)setDelimters: (NSString *)delins

[deliniters rel ease];

delimters = [[NSChar act er Set
character Set Wt hChar act ersl nString: del i ns]
retain];

(NSString *)next Token

if(data == nil ||
return nil;

position >= dataSi ze)

[sel f skipDelimters];
i f(position >= dataSi ze)
return nil;

size t ol dPosition = position;
/1 Save current position

BOOL nonDel i m = YES;
/1 Assune that the next
/1 character is a non-delimter

CVu/ACCU/Features

whi | e(position < dataSi ze & nonDelin) {
/Il Test for a match in the delinmter string of
/1 the character at the current position in the
// data string; if no match is found, increnent
/1 position and proceed.
if(![delimters characterlsMenber:
[data characterAtlndex: position]])
posi ti on++;
el se
nonDel im = NO,
}

// Oreate a string containing the token and return
/1 it. Type NSRange is a struct containing two

/1 menbers: |ocation and | ength

NSRange range = {ol dPosition, position-ol dPosition};
return [data substringWthRange: range];

- (void)skipDelimters

BOOL nonDelim = NO
/1 Non-deliniter character not yet found

while (position < dataSi ze & !'nonDelin) {
/] Test for a match in the delinter string of
/1 the character at the current position in the
// data string; if a match is found, increnent
/1 position and proceed.
if([delimters characterlsMenber:
[data character At ndex: position]])
posi ti on++;
el se
nonbel i m = YES;
}
}

/1 I nvoked automatically when object is rel eased
- (void)deal |l oc
{
/1 Rel ease nenory allocated for our instance
/1 variabl es
[data rel ease];
[delimters rel ease];

[super dealloc];

}
@nd

Notes

The preprocessor directive#i npor t isgenerally used in Objective-C; it
differsfrom#i ncl ude inthat it ensuresthat a header fileisincluded only
once even if it does not contain guard macros.

Foundation’ s memory management involves semi-automated reference
counting. Pointers to all the objects allocated in the main function will be
added to the autorel ease pool, and when this pool is released, the method
- deal | oc iscalled on all the objects before the memory they occupy is
freed.

Memory allocation for objects is usually provided by the method
+al | oc intheroot class, NSObj ect .- r et ai nincreasesthereference
count by one, while- r el ease decrementsit. - aut or el ease addsthe
receiver to the autorelease pool.

NSSt ri ng is Foundation’s basic string-handling class. NSSt r i ng
objects hold Unicode strings that cannot be changed once created,;
objects of its subclass NSMut abl eSt r i ng allow their contentsto be
edited.

StringTokeni zer isaclass| have written to extract tokens from
astring. It has limited functionality but is sufficient for the purposes of
this demo. Tokens are extracted by callingnext Token repeatedly until
ni | isreturned. An instance of St ri ngTokeni zer is created by
calling the class method al | oc to alocate storage for the object and

[concl uded on next page]

29

Automatically-Generated
Nightmares

Silas S Brown <ssb22@am ac. uk>

A student sent me the source code for a mini-project of his. It came to
about 100 printed pages of Java code, and he had a problem with it. |
started looking through the code, but it was very difficult: there were
hardly any comments, and most variable names implied that the code
was something to do with a graphical interface but it was hard to see
exactly what was going on, and anyway the problem in question had
nothing to do with the interface. | searched in vain for the part of the
code that actually did something other than manipulating interface
objects, and wondered how on earth he can write all of this without
getting completely muddled. | thought “am | such alousy programmer
that 1 can only deal with small and manageable code while the new
students can write reams and reams like this?’ and “how many hours a
week is aprogrammer expected to work these days to come up with all
of this?” and “ perhaps I’ d better admit my utter lack of productivity now
and find a different job”. When | finally figured out roughly how it all
worked, | asked the student a question about part of the code that |
thought was more suspect than the rest, and his reply was “Oh, | don’t
know about that; the GUI wizard program wroteit all for me.” Ah! So
THAT’ Swhy it was so big and complicated. | shouldn’t have worried
so much. Or should ?

There are plenty of “GUI wizards’ and other tools that will generate
code for you, and that code will usually contain “TODO” comments to
show where you should add your own logic.

Unfortunately it seemsthat most programmers, after writing what they
are prompted to write, deletethe“TODO” comment and do not add another
in its place, which means that anyone else who wants to browse or debug
the code will first have to spend considerable time unravelling the
automatically generated code to try and figure out where the user-written
code is actually located. This must add up to an awful lot of wasted
programmer time in the industry. While some tools give you code that is
relatively easy tofollow when finished, othersgenerate such large amounts
of hard-coded graphical widget handling that you’d be pushed to find
anything else.

| can understand why programmerswant to delete“ TODO"” comments,
especially in thelight of toolsthat flag them up as “things not done”, but
| think it would be better if, instead of deleting the whole comment, they
simply delete the word “TODQO” when they’ ve doneit. That would leave
a comment that gives some description of what is happening and also
serves to highlight where the user-written code is to be found; as the
automatically generated parts usually have few if any comments, any
comments at all would make your code stand out. Even a complete
beginner who is not skilled at writing comments can adopt this method,
and it would make things agreat deal easier for anyone who has to check
their work.

What would be even nicer is if more of the wizards and other rapid
application development tools could promote a clearer separation of
concerns between your code and their code. Object-oriented languageslike

Java support this naturally (think of encapsulation and all the other
buzzwords you know) but it's not being used aswell asit could be. Why
do the tools promote obfuscation, turning Javainto alanguage of a much
lower level than it was designed to be?

Perhaps it is because they want you to spend alot of money on other
tools to help you maintain the code. In effect, they are creating a
language of their own which gets compiled into Java and then has to be
de-compiled by their tools beforeit makes sense. Javaisgoing the same
way as HTML: it was originally intended to be written and read by
humans, but now most of it is generated automatically and can’t easily
be made sense of without highly complex tools (and even then you' re not
guaranteed to seethe programmer’ sintentions). To seewhat | mean, take
astraightforward text editor and try to make sense of the source codein
an average Eclipse plugin. (Yes| know some of them are better than
others.)

The problemisthat thetools are not always available. What if you want
to review some code when you don’t happen to be sitting at your most
powerful computer? When you're not at any computer? When the tool
doesn’t co-operate with your specia disability access software, or itslayout
is too complex for the size of the display you're using? When there are
licenserestrictionsthat get in theway of your using it in the circumstances
at hand? When you don’t even know what tool you' re supposed to be using
because someone has handed you the code without telling you? It's
understandabl e that you need the right tools when compiling or testing
code, but it’ srather more restrictiveif you haveto arrange your life around
them just to look.

Moreover, what if the way that you think best when you review code
does not tie in with the way the tool pushes you into thinking?
Sometimes tool designers push you into a particular way of thinking for
a good reason, but at other times they’re just being short-sighted. It
reminds me of Green's Cognitive Dimensions of Notations theory;
ordinary text editors and printouts, when applied to code that is designed
for them, tend to be good at allowing “viability” of the notation, avoiding
the need for “premature commitment”, and so on, whereas other tools
don’t always do so well. While they may make some developers more
effective, others become less effective, and that’ s bad news when you're
collaborating.

If you are auser of a code-generation tool, perhaps it would be a good
idea if you put your own code in a completely different file, and get the
automatically-generated stubs to call it. This should make it easier when
the code needs reviewing, or when you want to reuse parts of it in other
projects. It also makesit easier if for some reason you want to re-run the
tool, or to run some other tool (perhaps for a newer kind of interface)
without throwing away all of your work. If you can’t do such separation,
then at least keep clear comments about which parts of the code were
written by hand, otherwise you may bein trouble later.

Unfortunately, for the project in question, we ended up starting over,
because | thought that thiswould be less effort than trying to figure things
out from theforest of automatically-generated code that was camouflaging
the parts of interest. It shouldn’t have been that way.

Silas S Brown

[continued from previ ous page]

then the object isinitialised by the instance method
initWthString: andDel i m ter:, which does the same kind
of work as a constructor in C++ and Java.

The Objective-C keyword ni | refers to a null object. It differs from
the macro NULL in that it is perfectly legal and safe to send messages to
nil.

NSMut abl eSet isasubclass of NSSet , from which it differs by
allowing objects to be inserted and deleted after it has been initialised.
Instances of NSSet and NSMut abl eSet are unordered collections of
values, where each value occurs at most once.

Objectsof classNSAr r ay areimmutable ordered collections of objects.
Theline:

NSArray *tokens = [[theSet all (ojects]

sort edArrayUsi ngSel ect or:
@el ector (casel nsensi tiveConpare:)];

30

deserves some comment. First the messageal | Obj ect s sent to the
set causesit to return an NSAr r ay of its contentsin arbitrary order; this
NSAr r ay object then receives the message
sortedArrayUsi ngSel ect or: withtheselector of NSSt ri ng’s
casel nsensi ti veConpar e: method as argument. (The compiler
directive @el ect or turns a method name into a selector.) The
NSAr r ay object’s method sort edArrayUsi ngSel ect or then
returns a new copy of itself with the NSSt r i ng objects in case-
insenstitive ascending collating order.

The Stri ngTokeni zer class contains an instance variable called
delimters of type NSCharacterSet. Its method,
char act er | sMenber : iscalled for each character of the string in turn;
if the character isfound inthe del i mi t er s character set, it is skipped,
and any non-delimiter or unbroken sequence thereof is recognised as a
token and returned.

D. A. Thomas

CVu/ACCU/Features

Professionalism in
Programming #29

i
2

Overruniseasest to exploit when the buffer is
located on the execution stack, asin the example
above. Hereit' s possibleto direct CPU behaviour

[9 [by overwriting the stack-stored return address of
An Insecurlty cOmplex (Part Two) Q -_F afunction call. However, buffer overrun exploits
can abuse heap-based bufferstoo.
Pete Goodliffe <pet e@t hr ee. or g> +|_ O] (Q Embedded Stri
The more you seek security, the less of it you have.) /- | (@) mbedde Query rings

Brian Tracy 0 A This breed of attack can be used to crash
[Q 0 systems, execute arbitrary code, or fish for
Last time we opened an ugly can of worms by investigating the seedy [unauthorised data. Like buffer overrun it relies
world of software security. We learnt the nature of security problems o Ydrd| O on afailure to parse input, but rather than burst

and discovered why it’s depressingly hard to secure our code. This
article concludesour tour by investigating specific codevulnerabilitiesand
working out how to prevent them in the programs we write.

Feeling Vulnerable

To learn how to write secure code and defeat our adversarieslet’slook
at the security nuts-and-bolts. These are some specific types of code
vulnerability. Each is ahole that can be compromised by an attacker.

Insecure Design

Thisisthe most fundamental flaw, and consequently the hardest to fix.
If you don’t consider security at the architectural level then you will be
committing security sinseverywhere: sending unencrypted dataover public
networks, storing it on easily accessible media, and running software
services that have known security flaws.

Y ou could writeasimple system, and rely on your host environment for
security, but then your application will only be as secure as that system.
For example, a Java program can be no more secure than the VM it's
running on.

Absolutely every system component must be considered for security
concerns. A computer system isonly as safe asiits least secure part.

Buffer Overrun

Many applications are public-facing, running an open network port or
handling input from aweb browser or GUI interface. All of thisinput must
be parsed and acted on. If you’'re not careful, these are prime sites for
security failure.

Parsing is often done using the standard C library function sscanf
(although this exploit is far from a C-only problem). Y ou might see code
like this:

voi d parse_user_input(const char *input) {
[* first parse the input string */
int ny_nunber;
char ny_string[100];
sscanf (i nput, "% %",
now use it

&nunber, ny_string);

}

Theproblemissimple (and obvious). A badly formed input string could cause
mayhem. Any string over 100 characterslong will overrunthernry_stri ng
buffer, and smear arbitrary data across invalid memory addresses.

The results of this can vary in severity. Sometimes the program will
carry on unaffected; you' ve been very, very lucky. Sometimesthe program
continues, but its behaviour is subtly altered — this can be hard to spot and
confusing to debug. Sometimes the program will crash as a consequence,
perhaps taking other critical system components down with it. But the
worst case is when the spilt data gets written somewhere in the CPU’s
execution path. Thisisn’t actually hard to do, and allows an attacker to
execute arbitrary code on your machine, potentially even gaining complete
access toit.

More Terms

There are afew important pieces of security terminology. Understanding
them will help us to reason about security problems.

Flaw A flaw is an unintended problem in an application. It is a program
bug. Not all flaws are security problems.

Vulnerability A vulnerability exists when aflaw opens the possibility for
aprogram to be insecure.

Exploit Thisis an automated tool (or a manual method) that employs a
program vulnerability to force unintended — and insecure — behaviour.

CVu/ACCU/Features |

buffer boundaries these attacks exploit what the
program subsequently does with the unfiltered input.
In C programs format string attacks are a common example of the
problem. A great culprit isthe pri nt f function (and its variants), being
used asfollows:

voi d parse_user_input(const char *input) {
printf(input);
}

The input string is used as pri nt f’s format string parameter, and a
malicious user could provide an input string containing format tokens (like
% and % for example). This can be used to print data from the stack or
even from locations in memory, depending on the exact form of the
printf cal. Anattacker canalsowritearbitrary datato memory locations
using asimilar ploy (exploiting the % format token).

Solutions to this problem aren’t hard to find. Simply writing
printf("9%", input) insteadof printf (i nput) will avoidthe
problem, by ensuring that i nput isnot interpreted as aformat string.

There are many other contexts where an embedded query can be
inserted malicioudly into program input. SQL database query statements
can be surreptitiously fed into database applications to force them to
perform arbitrary database lookups for an attacker.

Another variant iscommonly exhibited by lax web-based applications.
Consider an online bulletin board system providing forums where users
post messages to be read by any other web browser. If an attacker posts a
comment containing hidden Javascript code, this will be executed by all
browsers rendering the page — without their users realising. Thisis known
as a cross site scripting exploit, due to the way the attack works * across
the system; from an attacker’ s input, through the web application, finally
manifesting on avictim’s browser.

Race Conditions

Itis possible to exploit systems which rely on the subtle ordering of input
events, to provoke unintended behaviour or crash the code. Thisis
generaly exhibited in systems with complex threading models, or which
comprise of many collaborating processes.

A threaded program might share its memory pool between two worker
threads. Without adequate guarding, one thread might read information in
the buffer that the writer thread did not intend to release yet.

This problemisn’t restricted to threaded applications, though. Consider
the following fragment of Unix C code. It intends to dump some output to
afile, and then change file permissions on it.

fd = open("fil ename");
/* point A */
wite(fd, some_data,
close(fd);
chnod("fil enane",

sone_dat a_si ze);
0777);

There is arace here that at attacker can exploit. By removing the file at
point A and replacing it with a link to their own file the attacker gains a
specialy privileged file. This can be used to further exploit the system.

Integer Overflow

Careless use of mathematical constructs can cause a program to cede
control in unusua ways. Integer overflow will occur when avariabletype
istoo small to represent the result of an arithmetic operation. An unsigned
8 hit data type renders this C calculation erroneous:

uint8 t a = 254 + 2;

31

The contents of a will be 0, not the 256 you’ d expect; 8 bits can only count
up to 255. An attacker can supply very large numeric input values to
provoke overflow and generate unintended program results. It's not hard
to see this causing significant problems; the following C code contains a
heap overrun waiting to happen thanks to integer overflow:

voi d parse_user_input(const char* input) {
uint8_t length = strlen(input) + 11;
char *copy = malloc(length);
i f(copy) {
sprintf(copy, "lnput is: %",
do sonething with copy ...
}

}

It's true that ui nt 8_t is an unlikely candidate for the string length
variable, but the exact same problem manifestsitself with larger datatypes.

Thiskind of problemisjust aslikely with subtraction operations (where
it's called integer underflow). It’s not only generated by such simple
operations, and can stem from mixed signed/unsigned assignments, bad
type casting, and multiplication or division.

Protection Racket

So what techniqueswill protect usfrom thismayhem?We'll start to answer
this with a simple analogy from the Real World. If you were to secure a
building there's a number of things you'd do:

o Closedl the unnecessary entrances, brick up the back door, and board
over the windows.

» Obscuretheremaining windows so peoplecan’t easily seewhat’ sinside.

e Secure the entry points. Lock all doors, hide the keys, and make sure
you use very good locks.

» Employ aguard to patrol inside and out.

o Add security mechanisms, like a burglar alarm, electronic pass cards,
identity badges, etc. There's no point in installing these if they're not
used properly, though. A door can be left gjar regardiess of any fancy
lock devices. A burglar alarm can be left unset.

o Put al your valuablesin a safe.

In summary, you would cut down on the possibl e attack points and employ

technology that deters, blocks, identifies, and repels attackers. These have

many software-writing anal ogues which we' |l investigate below. They can
each be applied at a number of different development levels, including:

e On aparticular system installation. The exact OS configuration,
network infrastructure, and the version number of all running
applications each have radical security implications.

» The software system design. We need to address design issueslike: can
the user remain ‘logged in’ for indefinite periods, how does each
subsystem communicate, and what protocols are used?

» Theactua program implementation; it must be flaw-free. Buggy code
leads to security vulnerabilities.

» The system’s usage procedure. If it's routinely used incorrectly, any
software system can be compromised. We should design to prevent this
as much as possible, but users must be taught not to cause problems.
How many peoplewrite down their username/password on paper beside
their terminals?

Creating a secure system is never easy. It will always require a

security/functionality compromise. The more secure a system is, the less

useful it becomes. The safest system has no inputs and no outputs; there's
nowhere for anyoneto attack. It won’t do much, though. The easiest system
has no authentication, and alows everyone full access to everything; it's
just terribly insecure. We need to pick abalance. Thisdepends on the nature
of the application, its sensitivity, and the perceived threat of attack. Towrite
appropriately secure code we must be very clear about such security
requirements

Just as you would take steps to secure a building, the following
techniques will protect your software from malicious attackers.

System Installation Techniques

First we'll look at practices that will protect your software once it’s been

installed. Perhapsthisis backwards, but it will highlight what holesremain

to beplugged at alower level. No matter how good your application, if the

target system is insecure then your program is unprotected.

« Don't run any untrusted, potentially insecure software on your computer
system.

32

i nput);

This raises the question: what makes you trust any piece of software?
Y ou can audit open source softwareto provethat it' s correct (if you have
the inclination). Y ou can opt for the same software that everyone else
uses, thinking that there’ s safety in numbers. However, if avulnerability
isfound in that software you, and many other people, must all update.
Or you can pick a supplier based on their reputation, hoping that it's a
worthwhile indicator.

« Employ security technologies, like firewalls and spam/virus filters.
Don't let crackers in through a back door.

o Prepare for malicious authorised users by logging every operation,
recording who did what and when. Backup all data stores periodically
so that bogus modifications don’t lose all of your good work.

» Minimise the access routes into the system, give each user a minimal
set of permissions, and reduce the pool of usersif you can.

o Set up the system correctly. Certain OSes default to very lax security,
just inviting a cracker to walk straight in. If you’re setting up such a
system then it’s vital to learn how to protect it fully.

 Install ahoneypot: adecoy machine that attackers will find more easily
than your real systems. If it looks plausible enough then they’ |l waste
their energy breaking into it, whilst your critical machines continue
unaffected. Hopefully you' |l notice a compromise of the honeypot and
repel the attacker long before they get near your valuable data.

Software Design Techniques

Asprogrammersthisisthe essential placeto get our security story straight.

Y ou cantry to shoehornit into code at the end of adevelopment cycle, and

you'll fail. Security must be a fundamental part of your system’'s

architecture and design.

So what design techniques will improve our software security? The
simplest software design isthe easiest to secure. So don't run any software
at al. Failing that, run your program in a sealed box in an underground
bunker in an undisclosed location in the middle of a desert. That way,
crackers can’t get anywhere near it. Otherwise you' |l have to think about
how your software will be used, and how to actively prevent anyone from
abusing it. Here are the winning strategies:

» Limit access to the system as much as possible. The hardest kind of
access to guard against is physical access to the computer itself; how
can you stop an attacker switching it off, or installing their own evil
software? Physical access notwithstanding, design your software to
block as many entry points as possible.

o Limitinputsinyour design sothat all communication goesthrough only
one portion of system. Thisway an attacker can't get all over your code.
Their influenceislimited to a secluded corner, and you can focus your
security efforts therel.

» Runevery program at the most restrictive privilege level possible. Don't
run a program as the system superuser unlessit’s absolutely necessary,
and then take even more care than usual. Thisis especially important
for Unix programsthat runset ui d —these can berun by any user, but
are given specia system privileges when they start.

» Avoid any featuresthat you don't really need. Not only will it saveyou
development time, it will reduce the chance of bugs getting into the
program —there' sless software for them to inhabit. In general, theless
complicated your code, the less likely it isto be insecure.

o Don'trely oninsecurelibraries. Aninsecurelibrary isanything you don't
know to be secure. For example, most GUI libraries aren’t designed
forsecurity, so don’t use them in a program run as the superuser.

» Avoid storing sensitive data. If you must, obscure or encrypt it. When
you handle secrets be very wary where you put them; lock memory
pages containing sengitive information so that your OS'svirtual memory
manager can’t ‘swap’ it onto the hard disk, leaving it available for an
attacker to read.

o Obtain secrets from the user carefully. Don't display passwords.

» Specify good locks. That is, usetightly controlled password access and
employ strong encryption to store data.

Theleast impressive security strategy isknown assecurity through obscurity,

yet thisisreally the most prevalent. It merely hides al software design and

implementation behind a wall, so that no one can see how the code works

and figure out how to abuse it. ‘Obscurity’ means that you don’t advertise

your critical computer systemsin the hope that no attacker will find them.
[concl uded at foot of next page]

1 Of course, it's never quite that simple. A buffer overrun could occur anywhere in your
code, and you must be constantly vigilant. However, most security vulnerabilities exist
at, or near, the sites of program input.

CVu/ACCU/Features

Reviews

Bookcase

Collated by Christopher Hill
<accubooks@r ogsol . co. uk>

A Note from Francis

While we are very happy to have reviews
submitted for books that you have bought please
make sure that you include all the relevant
information with your review (i.e. all the
information provided with our reviews below
apart from the £/$ ratio.)

In addition if you want to ask a publisher for
areview copy on behalf of ACCU you must go
through the correct process, that includes asking
the book review editor. Publishers get unhappy
when they are asked for areview copy when their
records show they already provided one. They
often recognise the names of our more prolific
reviewers and assume that if one of those asks
for areview copy they have been authorised to
do so. | do not want our excellent relationship
with book publishers damaged by
thoughtlessness. They accept our, sometimes
caustic, reviews and in return we should stick to
the process. Just drop me an email and usually
the answer will be to go ahead.

Prices

While | was in Redmond | stocked up with a
couple of dozen Science Fiction books, not just
because some of them were not yet available in
the UK but because | was paying the same
number of dollars that | would expect to pay in
poundsthisside of the Atlantic. That isjust to put
alittle perspective on relative book prices.

However | think US readers might have agood
reason to grumble about a book price that
converted to more than two dollars to the pound
(Wiley accomplished that this time with a
conversion of 2.13) while Addison-Wesley
managed the worst rate the other way (with a
conversion of 1.03). That thesearetwo of the best
technical publishers around is no excuse for such
terrible price comparisons acrossthe Atlantic.

Prize Draw

(extended time — now closes midnight
December 31st/January 1st)

Now to turn to something positive, and something
you can dl joinin. | would like readersto do three
things. First select the book that you have read that
you think has been most underrated or overlooked.
Just one, and | know that makes it hard for some
but the effort of choosing can focus the mind. Of
course there are no right answers but it will be
interesting if some books turn up more than once
(and if only three readersrespond ...)

The second thing is to choose a category
(novice programmer, newcomer to C++,
embedded systems devel oper, games devel oper,
etc.) and list which books you would recommend
given a) abudget of £100 ($180) and b) abudget
of £250 ($450).

And lastly, given abudget of £2000 ($3600) list
what software development tools and references
you would take with you for ayear’s stay on a
desert island. The desert island comes equipped
with the essentias for life and eectric power.

There will be a prize draw for al responses
submitted to f r anci s@ obi nt on. denon. co. uk
by midnight December 31/January 1 Greenwich

Mean Time. The size of the prize will depend on
the number of entrants so being the only entrant
won’twinvery much.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members — if you ever have a problem with this,
please let me know — | can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list

Computer Manuals (0121 706 6000)

www. conput er - manual s. co. uk
Holborn Books Ltd (020 7831 0022)

www. hol bor nbooks. co. uk
Blackwell’s Bookshop, Oxford (01865
792792)

bl ackwel | s. extra@l ackwel | . co. uk
M odern Book Company (020 7402 9176)
books@rbc. sonnet. co. uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.

The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. | consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). | consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

It'saflawed plan. Y our system will one day be found, and will one day
be attacked.

It's not always a conscious decision, and this technique works very
conveniently when you forget to consider security in the system design at
al. That is, it's convenient until someone does compromise your system.
Then it's adifferent matter.

Code Implementation Techniques

With a bullet-proof system design your software is unbreakable, right?
Sadly not. We' ve already seen how security exploits can capitalise on flaws
in code to wreak their particular brand of chaos.

Our code is the front line, the most common route an attacker will try
to enter through, and the place our battles are fought. Without a good
system design even the best code is unprotectable, but under the shadow
of awell thought out architecture we must build strong walls of defense
with robust code. Correct code is not necessarily secure code.

» Defensive programming is the main technique to achieve sound code.
Itscentral tenet —assume nothing —is exactly what secure programming
is about. Paranoiais a virtue, and you can never assume that the user
will employ your program as you expect or intend.

Simple defensive rules like: ‘check everyinput’ (including user input,

startup commands, and environment variables), and ‘validate every

calculation” will remove countless security vulnerabilities from your
code.

» Perform security audits. These are careful reviews of the source code
by security experts. Normal testing won't find many security flaws; they
aregenerally caused by bizarre combinations of usethat ordinary testers
wouldn’t think of, for example very long input sequences which
provoke buffer overrun.

CVu/ACCU/Reviews

» Spawn child processesvery carefully. If an attacker can redirect the sub-
task then they can gain control of arbitrary facilities. Don't use C's
syst emfunction unless there's no other solution.

o Test and debug mercilesdy. Squash bugs asrigorously asyou can. Don't
write code that can crash; its use could bring down a running system
instantly.

» Wrap all operations in atomic transactions so an attacker can’t exploit
race conditions to their advantage. Y ou could fix the earlier chnod
example by using f chnod on the open file handle, rather than
chnoding the file by name — it doesn’t matter if the attacker replaces
thefile, you know exactly what file is being altered.

Procedural Techniques

Thisislargely amatter of training and education, although it hel psto select
users who aren't totally inept, if you have that luxury.

Users must be taught safe working practices: to not tell anyone their
password, to not install random software on a critical PC, and to use their
systems only as prescribed. However, even the most diligent people will
make mistakes. We design to minimisetherisk of these mistakes, and hope
that the consequences aren’t ever too severe.

Conclusion
Programming iswar.

Security is areal issue in modern software development; you can't
stick your head in the sand and hide from it. Ostriches write poor code.
We can prevent most security breaches by better design, better system
architecture, and greater awareness of the problems. The benefits of a
secure system are compelling, since the risks are so serious.

Pete Goodliffe

33

C++ Coding Standards by Sutter
& Alexandrescu (0-321-11358-
| 6), Addison-Wesley, 220pp @
i £26.99 (1.30)

=t reviewed by Francis Glasshorow
Herb Sutter gave me amanuscript copy of this
book when | was in Redmond recently. | thought
readers might like the benefit of afast review
from me before someone else doesamorein
depth review for alater issue of C Vu. (Note that
a the time of writing the book is only on
distribution in North America but by thetime
you read thisit should be available in Europe—
check elsawherein thisissue of C Vu because |
hope to arrange some form of special Christmas
deal including thisbook with Blackwells.)

Before | go any further, | should make it
clear that thisis abook about best practices for
programming in C++. | find that some people
do not clearly distinguish between ‘language
standards’ (nothing to do with this book) and
‘programming guidelines’ (essentially what this
book presents the basis for).

The book starts with some general (largely
non-code specific) guidelines. Thefirst of these
can be summarised as exhorting the reader to
not waste time on such minor issues as code
layout, just be consistent (with the style used
by the file you are maintaining, the rest of your
code or with the team you are a member of). |
suspect that there are readers who will get very
heated about example 4 in guideline 0. This
concerns SESE (single entry, single exit). Now
| happen to agree with the authors that
requiring SESE in a coding standard is archaic
and no longer appropriate, however there are
well-respected members of the C++
community who would very strongly disagree.
The solution is to accept the basic spirit of the
guideline and not get over-heated if your
instructor insists your code should be SESE.

The reason that | took timeto call out the
above exampleisthat it is a particular example
of ageneral objective of the authors; thisis not
abook telling the reader what they must do, it
isabook setting out some general principles. If
you understand the intent of the book as a
whole and the individual guidelinesin
particular you will be able to adopt and adapt
to your own needs and environment.

Despite there being two authors, both highly
competent, who have done their research with
care and attention to detail thereis, inevitably,
adegree of subjectivity in their 101 ‘rules’.

The individual guidelines vary from very
simple, very specific ones such as‘Avoid
magic numbers' (#17) to rather more general
ones such as ‘ Design and write error-safe code’
(#71).

| think that #17 does not go far enoughin
either explaining when a numerical constant is
amagic number. Thereis a difference between
an arbitrary limit (such as the maximum size
for an array) and a mathematical constant such
as p. Both deserve to be named but for rather
different reasons. On the other hand there are
simple integer values (such as the number of
feet in ayard) that do not deserve to be named
if you are only using them in a context where
themeaningisclear (| ength_in_feet =
3 * length_in_yards).

34

| dso believe that this guideline would have
been more powerful had it been ‘ Avoid magic’
and then gone on to explain that using named
(inline) functions avoids overly complicated
‘magic’ expressionsand that at ypedef can
giving more meaning to the type you are reusing.

Almost every one of the 101 items provides
abasisfor discussion. That isasit should be. |
would offer ameta-guideline ‘Do not slavishly
follow guidelines'. | will leave it to ancther
place and time to expand on that.

Many of the itemsin this book are already
known to experienced programmers but they
deserve their place because this book should be
onethat is read and digested by everyone from
the aspiring novice to the long-term expert.

Now, | wonder if the authors have started on
‘More C++ Coding Standards'. If they haven't,
they should because there is still much more
wisdom that deserves encapsulation.

L= An Introduction to GCC by Brian
; Gough (0-9541617-9-3), Network
o Theory Limited., 116pp @ £12-95
o=l (1.54)
m 2nd review by lan Bruntlett
This book is agood introduction to GNU
C/C++ let down by three serious omissions: @)
it does not show you how to usegdb to debug
programs; b) it overlooks make acritical tool
for non-trivial applications; c) it omitsto
mention the -Weffc++ compiler option that
warns about violations of the style guidelines
from Scott Meyer's Effective C++ book.
On the other hand, it does provide
information about useful system utilities:
o fil e—listdetailsabout an executable;
e nm-list an executable/object file's symbol
table/ nametable;
o | dd — list an executable/object file's
dynamically linked libraries;
e gcov —GNU coverage testing tool; and
e gprof —GNU profiler
Verdict: Print acopy for yourself — I would not
buy it until the next edition appears hopefully
covering the omitted topics. (GNU Free
documentation downloadable from
waww. net wor k-t heory. co. uk/ gcc/intro.)

The Definitive Guide to GCC by

Wall & Hagen (1-59059-109-7),

Apress, 500pp @ £35-50 (1.41)

reviewed by lan Bruntlett

The big question that | intend to

addressis: why buy this book instead of

relying on the free book “An introduction to

GCC for the GNU compilers gcc and g++7’
Weéll, this book does cover more ground

than itsrival — sadly, like its competitor it fails

to document the GNU debugger (gdb) or the -

Weffc++ option or even make— it does cover

automake which makes the make oversight

surprising. However, in this book’s favour it is

unigue in covering:

» How to build GCC from source.

« Using autocong and automake.

» Using libtool.

» Trouble shooting GCC (including build &
installation problems).

e GCC online help (GNU info) - although it
failsto mention that info is obsoleteif you're
using KDE - just open a Konqueror window

and type in ##gcc.

GCC

Verdict: If you want acomprehensive
reference, buy this book. Otherwise buy or
print “Anintroduction to GCC”.
Recommended.

C# & Java

Learning Java 2ed by Patrick
Niemeyer & Jonathan Knudsen (0
3 | 596 00285 8), 0’Reilly, 807pp +
&%| CD @ £31-95 (1.41)

reviewed by Ivan Uemlianin
‘Learning Java isawell-written exploration of
Java s features. However, its support for
learning the language is poor. Ironically, given
the book’ s history, ‘ Exploring Java’ would have
been abetter title.

After two chapters introducing Java,
chapters 3-8 cover the language basics,
chapters 12-14 cover network and Internet
programming, and chapters 15-20 cover the
Swing GUI toolkit (the Swing chapters take up
around a quarter of the book). Other chapters
cover various topics like text, i/o, JavaBeans,
Appletsand XML.

The book isnot organised into parts and, apart
from thefact that Smple topicsare generaly
discussed before complex topics, the course of
discussion can fed arbitrary. For example, the
XML chapter isthelast in the book, 14 chapters
away from thetext chapter, and 10 chapters away
from web programming. This can make progress
through the book fedl alittle haphazard.

Itisclear that the reader is assumed to have
a programming background, and the basics are
covered very tersely (e.g., on p.90, do/while
gets, “the do and while iterative statements
have the familiar functionality”).

There are no exercises. This means that the
book cannot be used for self-study, and is of
limited use for study with an instructor:
instructors will have to use their own ingenuity
or find another source for exercises. There are
plenty of examples, however, amost all of
which work as advertised.

The book is at its best when most
discursive, (e.g., chapters 5-7 on Java's style of
object-orientation). The authors explain their
topics well when they give themselves the
space: for example, five pages on
internationalisation is not enough space, but |
found the section on sockets (15 pagesin a
chapter on network programming) quite useful.

For itsfirst two editions this book had the
title ‘Exploring Java'. ‘Exploring Java’ is still
a better title and fits the book better than
‘Learning Java . Asadiscussion of Java's
features, with the reader released from the
pressure of having to ‘learn’, the book works
very well. The pitch of the book makes sense:
the reader knows a bit of Java and would like a
more rounded appreciation. Asabook for
learners, it is flawed: there are no exercises; the
structure is piecemeal rather than progressive;
the pitch level is not consistent.

| could perhaps recommend this book for
either (a) an experienced programmer who wants
to become familiar with the details of Java
without bothering too much about the basics
(athough in this case something more focussed
on a problem domain might be preferable); or (b)
alearner who has abasic course under their belt
and wants to explore the language a bit more.

4
Le 1rning

CVu/ACCU/Reviews |

el Technical Java by Grant Palmer (0
1A C 13 101815 9), Prentice Hall, 466pp
| @ £39.99 (1.25)

reviewed by Ivan Uemlianin
Technical Java has two target
audiences: the newcomer to Javafrom anatural
science background; the seasoned programmer
who is sceptical about using Javain this domain.
| recommend the book for either audience.

The book has four parts. The first set of
chapters deals briefly with Java s differences
with Fortran, C and C++. The second section
(chapters 5-16) covers the Javalanguage itself.
Then comes the ‘technical’ section (chapters
17-24) on mathematical modelling. The
examples covered in this section come
primarily from fluid mechanics (modelling gas
mixtures, air flow, etc.), but the techniques are
general, and include the Fourier transform.
Finally, come three chapters on building the i/o
wrappers (simplei/o, GUI and web) that turn
modelsinto applications.

Each of the technical chapters has a good
project feel. A problem is clearly stated, along
with its mathematical representation. In
discussing a Java solution, due consideration is
given to analysis and design (e.g., class
hierarchies, public methods). The code that
implements the mathematics is a succinct and
‘obvious’ response to the problem as defined.
These are good exampl es of how to approach
scientific programming.

Those who know the language can safely skip
thefirst 16 chapters, but for those new to Java,
these chapters provide aworkable introduction.
In particular, the science and engineering flavour
isthere right from the beginning: instead of
“Hello world!” we have “compute area of
circle’; interfaces areillustrated by an
“Electrodtatic interface ... to be implemented by
classes that represent charged bodies’.

The language isterse almost to the point of
being brusgque (“If you want to create a GUI with
Fortran you are out of luck”), but very clear. The
author favours simple, direct sentences. This
makes the text easy to follow. Similarly, it is easy
to navigate, asthe relevance of any particular
section is gpparent immediately.

The content seems clear and correct - apart
from the peculiar assertion inthe C and C++
chaptersthat Java has no void type (the most
common line of codein the book is‘ public static
void main(String argd[]) {’). | was surprised to
find no discussion of floating point arithmetic, as
this can be relied on to trip up the uninitiated.

This book will be useful to people evaluating
languages for a scientific project. Although it
cannot answer the question of whether Javais
the language to use for scientific programming,
it certainly makes a good case.

For the right person, this book could also be
agood introduction to Java. | imagine someone
from anatural science background would feel
very at homewithiit, just as| did.

.....
......

™| Logging in Java with the 3DK 1.4
2" | Logging API and Apache by
iiiimmin| Samudra Gupta (1-59059-099-6),
’ " | Apress, 324pp @ £32-00 (1.56)

o{ reviewed by Silvia de Beer

This book describes two logging APIs. The
first third of the book describes the simpler
JDK 1.4 logging API, and the second part the

CVu/ACCU/Reviews

more complex Apache log4j API, which also
offers more features and flexibility. | think itis
agood choiceto cover both APIsin one book,
because for small projects, the JDK Logging
API might be sufficient. By reading this book,
adeveloper can make a choice whether he
needs the more complex Apache log4j, or
whether the smple JDK logging API might do
the job. The similarities and differences are
well explained between the two APIs.
Thisbook isnot areference with acomplete
interface of thetwo APIs, and it doesnot givea
reference of the syntax of the configuration files,
especidly for logdj. However, | did not think that
thisis such anegative point of the book, because
it would have added many pages that might not
be very useful. If you want to find out about the
details of the APIs, thereis no better placethan
the JavaDoc and possible afew other documents
online. The book iswell written, and explains
correctly theideas behind the two logging APIs.
A few UML classand interaction diagrams are
given to explain the interaction between the
various classes and interfaces that congtitutes the
two logging frameworks. The examplesdo
support thetext very well and | found thisavery
pleasant book to read. One thing is maybe not yet
stressed enough in this book and that isthe
enormous value of good configurablelogging
statementsin your application. It isvery
important that a devel oper learnsto discern the
points where alogging statement is required, to
be ableto correctly trace problemsin the future.

C# in Easy Steps by Tim Anderson
-| (1-84078-150-5), Computer Step*,
1 192pp @ £10-99 (no US price)

3 Zteps reviewed by Francis Glasshorow
.4l | guessfor theraw amateur novice or
for the professiona who only wants a superficia
quick once over this book might be of some use
but for most its superficial approach makesit
useless.

| have no doubt that it will get good reviews
from first timers who will not realise that the ease
with which they work through it haslittle to do
with its use of English or its use of colour and
interminable screenshots. The reason it will seem
50 much easier than many other booksisthat it is
completely superficid and makes no immediate
demands of thereader’ sintelligence.

It is only when the newcomer triesto
actually do some programming for themselves
(there are no exercises or other things that
might disturb the reader’ s peace of mind by
letting them discover how much more thereis
to both programming and C# than has been
revealed in this book) will soon find that they
are having problems with anything other than
the most trivial of programs.

Yes, the book is cheap for abook on
programming but even impoverished students
understand the concept of value for money. As
for the back-cover claim that it offers ‘ cost-
effective training for your staff’, well | think
that if | had an employer who considered this
book a substitute for proper training | would be
looking for new employment.

The only person for whom this book has
anything substantive to offer isonewho is
content with superficial knowledge. If you
genuinely want to learn either C# or
programming thisis not the book for you.

Python & Other
Languages

) Perl for Oracle DBAs by Andy
“»(Duncan & Jared Still (0 596 00210

% 6), O’Reilly, 602pp @ £31-95 (1.41)
reviewed by Joe McCool
Perl, Oracle and Database
Administration, along with the world wide
web, go together like “horses and carriages”.
The ability of Perl to enable quick, knock-
together, yet rugged scripts suits the tasks of
the DBA admirably well.

My own exposure to Oracle has been
limited. | am much more familiar with
MySQL, but this does not at all limit my
appreciation of the current efforts. Indeed the
similarities are immediately obvious. A
complete munging example is given where data
is sucked from aMySQL database and poked
into an equivalent Oracle one.

Perl’s strength derives from the availability
of Modules—ready built blocks of code that
can be seamlessly incorporated into user
programs. Thisis particularly truein the area
of databases. The Perl DBI (database interface)
is one of the most popular. (It is currently
maintained by afriend of mine from Belfast).
Modules can be pulled down from the web and
installed effortlessly - there is even amodule
availableto do this. All thisis described fully.

Part 111 describes a complete DBA Toolkit
developed by the authorsin Perl. It isavailable
for both Win32 and Unix operating systems.

Another area of covered is the user
interface, again implemented by modules. One
being the Perl/Tk module, which enables the
user to build professional Oracle DBA GUI's
with little heartache. All explained well,
especially GUI’'sfor DB tuning.

Another thing that that | found useful about
this book was an appendix on regular
expressions - not just the technical aspects, but
the historical development. | had no idea that
Alan Turing played a part, nor that Godel was
involved. It seems that the mathematics
department at Princeton was central to the
development of regexes. Godel, Turing,
Stephen Kleene and Alonzo Church all lent a
hand there at some stage.

Yes, | can thoroughly recommend this work.
| got alot out of it. The styleisclear, jovia and
apleasureto read.

Methodologies &
Testing

| Software Testing Fundamentals

Testing by Marnie L. Hutcheson (D-471-

Fundamentaly 43020-X), Wiley, 408pp @ £27-95
£ (1.43)

reviewed by Chris Hills

Another book on testing, thisis good! It means

that more people are taking testing serioudly. It

also means that testing is becoming a formal

part of system design.

The book covers some familiar ground and
givesthe usua definitions but if you have not
done much formal (I mean organised not Formal
Methods) testing before these are needed.
Actually they are needed anyway in askill

35

where everyone seems to have their own
definitions. The book istesting in general and
will suite most commercia software: That is not
the safety critical (usually embedded) systems.

The reason | suggest thisis that the book
hasiits feet firmly on the ground when it comes
to how much work you can redlistically do in
general commercia development. One of the
premisesin the book is Most Important Tests
method. What you need to test first and what
can be left to later. Thistendsto suggest it is
testing for desktop systems rather than
embedded systems.

The other main theme is planning:
Equipment, people, effort, cost and time. The
book requires a Test Inventory and gives
suggested templates for this method. Another
method described is automating as much of the
system infrastructure. That is the reporting and
documentation not the actual testing. This uses
MS Office, which most people have on their
PC. The methods suggested here make this
book worth the money on it’'s own.

There are some exercises and | became
suspicious that thiswas going to be another
“Course Book” but no, some of the answers are
in the back of the book and the rest, dong with
other resources such asthe templatesused in the
book are on www. t est er spar adi ce. com
The siteisrather light but it is up to the readers
to give some feedback and start something on the
discussion forum. However | should not
complain as| have severa books that promised a
web based support that never materialised.

The exercises and suggestions at the end of
some chapters are reasonably generic and they
data analysis is reminiscent of Macabes
Metrics. Though the only two coverage
methods shown are statement and branch.

One fascinating areafor meisthe
questionnaire at the back along with the results
the author has at the time of going to press.
These questionnaires the author has used on
course on testing both sides of the Atlantic. The
results are interesting, more so those that are
split between the US and UK.

The book iswritten from many years
experience and is honest. The author explains
that at one time they were on “the other side of
the fence” for some arguments and what
changed her mind. She & so understands why
people have other views. Thisisrefreshingin a
book where an author usually evangelises their
method against all others.

Personaly | think this book is worth the
money for all team and project leaders just for
page 28... cometo that just for the last
paragraph on that page. Those 9 lineswill be
one of the most persuasive arguments for
gettlng ‘creative’, “free thinking,

“programming is an art” programmersin line
with procedures, standards and testing.

Overall | like this book. More for the web,
database and desktop programmers than the
embedded and high integrity areas but on
balance a good book. Recommended.

 Art| The Art of Software Architecture
«Software| by Stephen T. Albin (0-471-22886-
{-\rthltecture 9), Wiley, 312pp @ £31-50 (1.43)

reviewed by Mark Easterbrook

- | approached this book with some
trepidation, partly because both “Art” and

36

“Architecture” when applied to software can be
controversial subjects, and partly because the
title and cover hint at a difficult subject
covered comprehensively and | have been
disappointed in the past when books fail to
deliver their promises. However, once | opened
the book | found it lived up to and exceeded
my expectations.

If “Art” isthe “application of imaginative
skill” (Collins Concise) then it does not
preclude practising it using procedures and
process as well as accepting an element of
creativity. Architecture invites a comparison to
civil architecture, but the author addresses the
metaphor early on, comparing software
systems with urban devel opments rather than
individual buildings, and warns against the
fallacy of this metaphor by analogy.

After introducing the subject in chapter one,
the next few chapters delve deeper into the
subject: Chapter two, with the slightly
misleading title “ Software Product Lifecycle”,
covers the development or project lifecycles
from different viewpoints based on the
Rational Unified Process (RUP). Chapter three
“Architecture Design Process” 1ooks at
architecture design compared with engineering
design looks at the interdependencies of design
elements. Chapter 4 “Introduction to Software
Design” discusses Function (what it does),
Form (What it looks like) and Fabrication (how
it isbuilt) and reflects that software design is
more a creative or artistic process rather than
an engineering discipline. Chapter 5 covers
complexity, modularity, coupling, cohesion and
interdependences illustrated with examples of
design structure matrix diagrams.

At this point, ailmost half way through the
book, the narrative takes a step back from the
detail of design and implementation and
chapter 6 looks at models and knowledge
representation: Ul models, behavioural and
functional models, and models of form.
Chapter 7 follows on with architectural
representation such as data view and process
view. Chapter 8 covers the conflicting and
differing views of quality including the use of
metrics to measure quality.

The remaining chapters delve more deeply
into software architecture building on the
material introduced earlier in the book, and the
book ends with a chapter on software
architecture quality.

If | canfind fault at all, it isin that, by
necessity, it isadifficult book to read as it
covers a complex subject areain depth. Thus, it
isnot atext to be consumed quickly, but a
valuable resource to be sampled in manageable
chunks over months and years in-between
applying the knowledge and principals gained.
Recommended.

1 Convergent Architecture by
2 Richard Hubert (0 471 10560 0),

::cl;.‘:te:geﬂt Wiley, 276pp @ £29-95 (1.34)

wid reviewed by Silvia de Beer
Convergent Architectureisahigh
ceremony methodology for developing
software. Theterm Convergent Architecture
indicates the whole process of development,
from business modelling through to code
generation, including testing and deployment.
The author advocates one stream of

development, using (where possible) one tool
to refine the models of previous steps. By
doing this, no information is lost between the
different phases of the development.

The book iswell written, but uses too many
abbreviations to my taste. Halfway through the
book | lost interest a bit, because Convergent
Architecture was advocated as the new solution
to all the software development problems. The
descriptions given were very theoretical and
repetitive and, above all, aimed at very large
companies. The | T-organisational model
discusses al the rolesin the organisation,
which you will never be ableto fill in asmall
company, but only in acompany of over 100
peopleif you would count the number of roles.
Of course, aperson can fulfil more than one
role, but till, in my opinion there are too many
rolesfor asmall company.

| think that it is a good thing that the author
advocates that the whole process of
development should become a more continuous
flow. Supported with tools during the whole
development process, and with as much as
possible be automated, i.e. code generation and
automatic model validation, to avoid as much
as possible the tedious programming and
debugging phase, which might generate
implementations which do not match
completely with the model. The author
advocates that we should avoid changing the
source code, but rather we should change the
model, and regenerate the code. Software
development should become more repetitive, to
avoid reinventing the wheel for every new
project.

The Object-Oriented Thought
Process 2ed by Matt Weisfeld (0-
672-32611-6), Developer’s
Library*, 270pp @ £21-99 (1.36)
reviewed by James Roberts

When | first picked up this book, | was hoping
to read insightful commentary on the process
of developing object-oriented software.
Instead, the book opens up with basic
information about OO constructs (e.g. ‘what
exactly isaclass?), illustrated with Java code.
| found this somewhat baffling. Surely, anyone
that can understand Java understands what a
classis?

Some of the chapters of the book were
potentially useful, discussing (in arelatively
basic way), for example, the advantages of
clearly defined interfaces, and abstraction.
These chapters might be useful reading to
someone who had just got to grips with the
syntax of an OO language, but was lacking
guidance for system design. A detailed example
showing how ablackjack game might be
designed worked well, and was clearly written.

Towardsthe end, | felt that the author was
trying to bulk out the book. A nod to patterns
included an implementation of ‘ Singleton’.
Mentioning patterns | thought appropriate, but
the level of detail was almost certainly not.
Perhaps a more general description of the
wider use of rather more interesting patterns
might have been more useful here.

Some sections left me dightly baffled. A
comparison of XML and HTML did not seem
appropriate for thistitle, and neither did a
section on JavaScript. They seemed to be

CVu/ACCU/Reviews

somewhat off-topic, and although they might
form an interesting discursion for some readers
were probably alittle too detailed for this
purpose. Some readers might also find them
somewhat patronising (not having studied
object orientation does not imply that you
know nothing about computers).

In short, about half of this book would be
reasonably good introduction to OO
programmers who have just started learning a
programming language but needed help seeing
the big picture. Much of therest, in my opinion,
failsdueto alack of focus on the target audience.

it Critical Testing Processes by Rex
= g Black (0-201-74868-1), Addison-

QJ Wesley, 566pp @ £37-99 (1.32)

S 4 reviewed by Mark Symonds

L1 Do not buy this book if you want to

improve your debugging skills. This book is

about the test process, giving examplesfrom a

fictional case study of a new release of aword

processor.

The case study isfor amajor project at a
large company with separate departments
dedicated to programming and testing. The
impression given is that the author’s
consultancy specialisesin testing for large
companies and no guidance is given on how to
scale down the processes.

The book has four sections: Plan, Prepare,
Perform and Perfect.

Plan coversrisk analysis, and work
planning. Much emphasisis given on obtaining
stakeholder involvement. This does seem
overlong and could have been improved with
some pruning of the text.

Prepare covers hiring and building test teams,
implementing test systems and system coverage.

Perform is the testing phase and covers
handling new test releases.

Perfect describes the bug reporting process
and the emphasis hereis prioritising bugs and
making sure that they can be reproduced before
reporting them.

Throughout the book, the recurring themeis
of using test feedback to improve both the
testing process and the software under test.

There are errorsin the book such asthe
graphics and text on page 392 being out of
sync which should have been found during
proof reading.

Much additional useful material is also
contained on the author’s web site at
www. r exbl ackconsul ting. com

Embedded and Real
Time

Real Time Systems Design and
evear| Analysis by P Laplante (0-471-
22855-9), Wiley, 504pp @ £52-95
(1.53)
el reviewed by Chris Hills
“This book is an introduction to real time-systems.
It is intended not as a cookbook, but rather as a
stimulus for thinking about hardware and software
in a different way. It is necessarily broader than
deep. Itis a survey book, designed to heighten the
reader’s awareness or real-time issues.”
At least that iswhat the first paragraph of the
book’ s preface saysand so far, it seemsan

AND ANALYSIS

CVu/ACCU/Reviews

accurate description. It goeson to say it is broad
rather than deep and that, asit is pragmatic, some
of theauthor’ sviews may be controversid. |
would agree with that too! | would argue some of
the pointsin the book but | think controversia is
ahit strong. Thisbook isinitsthird edition soitis
clearly doing something right.

This book coversreal-time systemsin genera.
Assuchit isnot going to cover many topics
peoplewill need. Thisisinevitablein abook of
lessthan several thousand pages. It looks at
POSIX (mainly used by Linux/Unix) and real
time OS so thisisabook aimed mainly at the
16/32hit and upward systems. It is not going to be
agrest deal of usefor those working in the 8-bit
fidd (which isthe largest group). That said itisa
good genera book on real time systems. | would
suggest that students should have this book.
Whilst the author isalecturer | do not think thisis
acourse book as such but would make a good
generd background and reference.

One chapter | was very pleaseto seeisthe
one on requirements and documentation. This
includes a section, which | have not seen
outside some standards, on words and phrases
to use and avoid... for example “adequate’, “if
practical”. Itisthisthat helps set the reader
thinking and hopefully realising how important
properly worded specifications and
requirements are. Thisleads into system design.
That is“system” not software because real time
systems are 50% software, 50% hardware and
50% Systems. The example used is a four-way
traffic system. Not exactly tight, milli-second
timing but auseful safety critical example.

Aswith all thingsin this book formal
methods are lightly covered and, | think,
objectively covered. Other things covered are
Petri-nets, UML and, with less emphasis,
structured methods.

The hardware side of the book islight but |
would think students would need a separate
book on digital electronics and MCU. However,
thebook is OK for the target audience. At the
level of systems discussed there would be
separate hardware and software teams.

Asthe author said in the introduction, thisis
apragmatic book and reads more like an
engineering book than an academic tome. This
explains the chapters on performance analysis,
engineering considerations and metrics. These
are written with a“real-world” feel to them.
Every time | dip into the book, it seems larger
than its 450 pages...

| think the author has written a very good
book. His notes indicate that this third edition
is acomplete re-write with 50% new material.
So | would think even owners of the second
edition might want to look at this book.

| would recommend this book for all
students, though it is expensive, and for al new
engineers as agenera reference book. Y ou will
need other books for in depth information but
thiswill be agood starting point.
Recommended.

prmmm Linux for Embedded and Real-Time
‘.w:rmﬁ'ﬂ,?.‘;ﬂﬂsﬂa‘n";‘ Applications by Doug Abbot (0-

~ "3 7506-7546-2), Butterworth-
(3] ¥ Heinemann, 250pp @ £32-50 (1.54)
e | reviewed by Chris Hills
ThIS isashort book... The page count is 250
but in fact, alot of thisisthe RTAI and POSIX

API information. The text itself isless than 195
pages of large type. Much of theinformation is
very basic and in the Linux man pages or part
of the installation guides.

The book starts with a simple description of
the memory models for x86 (real and
protected) before going into Linux at afairly
superficia level including the installation of
Blue Cat Linux. (Thisis by a company
originally called Lynx who also do a hard real-
time POSIX RTOS. | did a couple of device
driver courses at their officesin Sunnyvale one
January).

However, the author seems to have not
taken to Linux in that he relates everything,
some times erroneously, to MS Windows and
does not seem to know some of the reasons,
history or background behind some things. For
example, the author says that device
independent 10 is nothing new but Linux takes
it further by treating every device asan entry in
thefile system. Thisis nothing new it is how
UNIX has worked for a decade or so before
DOS let alone Windows.

| found the book superficial and rather
lightweight with alarge type on small pages. |
thought that | was being too harsh as | have a
Unix background so | gaveit to a colleague of
minewho isjust getting to grips with Linux
and building some systems for embedded use.
His comments were the same as mine. Thereis
little that is not in the man pages or freely
available in many on line documents. Thereis|
am afraid no added value that would warrant
buying the book. | cannot see why Newnes
have done this book as they already have
Lewin Edwards: “ Embedded System Design on
a Shoestring” which is also an embedded Linux
book (targeting an ARM7 board).

Ironically, the CD with the book contains an
electronic copy of the book. It isironic because
the last Appendix of the book is Richard
Stallman’ s text “Why Software should not have
owners’ which, asfar as| can see, would
suggest that should be free to copy the
electronic version of the book for free...
Perhaps the author should make this version
available on aweb site and use the feedback,
and more research, to create a better second
edition. Not Recommended.

Embedded Control Systems in
C/C++ by Jim Ledin (1-57820-
127-6), CMP Books, 239pp + CD
@ £38-00 (1.31)

w4 reviewed by Francis Glassborow
| was brows1 ng in Blackwells a few weeks ago
when | noticed this book. What intrigued me
was not the title but the sub-title, An
Introduction for Software Developers Using
MATLAB. My contact happily provided me
with areview copy.

The interesting thing about that sub-titleis
that it couples software developers with
MATLAB. For those of you that do not know,
commercial licences for the |atter start at
around $1900 for anindividual. That isan
awful lot of money in the context of most
development tools. It is hot an unreasonable
sum for someone working on high-integrity or
safety-critical software. A considerable
proportion of control system software would
come under that heading. A company working

Embedded
Control Systems
in C/C++

37

on products that would include one or more
embedded control systems should be happy to
pay out substantial blocks of money to ensure
their employees have relevant tools.

| was not far into reading this book before |
realised that there was a curious juxtaposition
of apremise that the software devel oper
reading the book would be unfamiliar with the
mathematics of control systems and that the
reader would be comfortable with
mathematical formulae up to and including
ones involving definite integrals.

It seems to me that the author expects the
reader to use MATLAB asasimulation tool to
test out his models before implementing them
in either C or C++.

| think | have to stop thisreview here
because without access to a copy of MATLAB
it is effectively impossible to explore the
potential experiences of someone in the target
readership. The author’ s assertions that this
book isfor software devel opers without prior
experience in control systems and without any
mastery of advanced mathematics may be true.
However | lack both the time and the tools
(MATLAB) to validate the claim.

If there is areader who meetsthe
reguirements (including that of lack of
experience) and has accessto MATLAB |
would be happy to pass the review copy on to
them for an in depth review.

Games Programming

bemmeee—1 MUD Game Programming by Ran
[YIUD Penton (1-59200-090-8), Premier
=N Press*, 666pp + CD @ £32-00

=" (1.56)
= — | reviewed by Paul F. Johnson
Thls book started well, albeit atad slowly.
Given the difficulty in teaching Multi User
Dungeon (MUD) programming techniques, this
isal well and good. | would have preferred if a
properly platform independent stance had been
taken, but that really is not that important given
everything was explained clearly with time
taken for those not using the Win32 platform.

The code examples and networking (an
extremely important aspect in MUD games) are
well thought out and well documented. The
only downside is not really to do with the
author, but the really awful way Premier Press
lay out their books. They are not pleasant to
read. The grey boxes (usually some form of
note) and odd fonts are unfriendly — | have
seen thisin many Premier Press books. | find it
really does get on my nerves asit detracts so
much from the book’ s content.

MUD programming is not easy. Imagine a
typical adventure game on your computer. Y ou
interact with the computer, it responds and that
ishow it plays. Cause and effect. Very simple;
an ideawhich has been around since
Crowther’s“ Adventure’ game.

Now, imagine you have thousands of
players, al at varied pointsin the game, all
putting in some form of input, &l of the input
playing somerole or other in the adventure
arenaand all thetime, a central server having
to control and play the game. Now you can see
the difficulty in writing aMulti User Dungeon
game. Through lots of explanation, the book
demonstrates how best to do this task.

38

The CD, which comes with the book, is
rather good with not only the code samples, but
a better implementation, various libraries and
even some bonus material.

The Web & Networking

Network Troubleshooting Tools by
Joseph Sloan (0 596 00186 X),
@ O'Reilly, 345pp @ £28-50 (1.40)

%| reviewed by Mark Easterbrook
Thisis an essential reference for
anyone who has to diagnose and resolve
problems with IP networks. Although the target
audience isindividuals new to network
administration, it contains a wealth of
information for anyone working with 1P
networks. The focus of the book is networks as
seen by software at the hosts connected to
those networks, and thisit covers
comprehensively, but it does not attempt to
cover the core network infrastructure such as
cabling and routers (nor the software running
on routers) except for what can be seen and
inferred at the edge of the network.

Each subject areaiis tackled by describing
the technical detail including: the principles of
good network design, examples of what can go
wrong and how to look for and identify
problems, and the tools needed to diagnose and
fix them. Both *nix (Solaris, RedHat Linux and
FreeBSD are explicitly covered) and Windows
(95 to 2000, but not XP) based tools are
covered in a pragmatic way, recognising that
both have their place and should bein the
toolbox of the network trouble-shooter, but the
emphasis of the book is definitely Unix.

The subject areas covered include host and
network addressing, network characteristics,
low-level packet analysis, automatic and
dynamic network configuration, device and
performance monitoring, and application-level
tools, aswell as chapters focusing on network
management and troubleshooting strategies.
Finaly, there are two appendices for software
sources and resources and references.

In afast changing industry, detailed
technical information often becomes dated
quickly, but apart from the appendix, this book
islikely to remain relevant and topical until the
widespread introduction of |Pv6 networking.
2nd review by Alan Lenton
Thisisauseful book for those who are not full
fledged system administration professionals,
but who have to administer small networks as
part of another job, such as programming.

One of the key problemswhen something
goes wrong on a network is knowing where and
how to start looking for the problem. This book
isagood placeto start. Apart from anything
else, it tellsyou which tools are useful for
dealing with which sort of problems. Always a
big help when you are dealing with something
that is not part of your primary work.

One of the things | did like about the book
was the way it did not neglect the boring but
important hardware level - including cabling
problems, which in my experience are al too
often overlooked. From there the book moves
on through the different levels of the network
including device driver problems, TCP and UP
packets, software connectivity and application
level programs.

The best way to read this book isto scan it
through from cover to cover, so that you have
an idea of where to look in it when something
goes wrong. However, a good case could also
be made for installing, and using, at least some
of the measurement tools at an early stage. As
the author correctly points out, unless you
know how your network normally behaves,
you are not like to spot trouble early enough to
nip it in the bud.

The only caveat | have isto warn readers
that none of the tools are dealt with in depth,
because that is not the purpose of the book.
However, the tools are covered in sufficient
depth to get you up and running with each tool.

Definitely auseful book.

RADIUS by Jonathan Hassell (0-
596-00322-6), O’Reilly, 190pp @
K/ £24-95 (1.40)

reviewed by Mark Easterbrook

If you did not know that RADIUS
isthe “Remote Access Dia In User Service”, a
challenge and response authorisation access
protocol, then you probably would not give this
book (and this review) a second glance. The
target audience is therefore those who aready
know basically what RADIUS is and what it
can do for them, but need either atutorial or a
reference manual, possibly both.

Thefirst four chapters take the reader from
an introduction to AAA (Authentication,
Authorisation, Accounting) through to detailed
explanation of the base RADIUS message
structure and use. There then follows two
chapters describing how to configure and use
freeRADIUS, an open source RADUIS server.
The remainder of the book completes the study
of RADIUS by examining other uses, security
and new developments.

This book is agood introduction and
tutorial and isworth reading before delving
into the RADIUS RFCs. It isaso agood
reference with clear description of RADUIS
attributes and a useful attribute reference
appendix. However, the RADUIS standard is
defined in RFC2058 and the book should be
considered a complement to, and not a
replacement for, the RFC document.

RADUIS is abase protocol containing
many optional elements or context sensitive, it
isalso intended to be extended by use of the
Vendor Specific Attribute. This means that for
most uses of RADIUS adescription of the base
protocol isinsufficient and needs to be
supplemented with vendor or implementation
specific documentation.

Inthe AAA domain, RADIUS s being
superseded by Diameter (RFC3588) and so the
RADUIS protocol, and thus this book, is only
of use to those already committed to using it.

o Fun Web Pages with JavaScript by
- J. Shelley (0-85934-520-3),

) #| Bambini Computer Books, 344pp @
B | £7-99 (1.83)

S5 reviewed by Paul F. Johnson
JavaScript is one of those things you either like
or dislike. In one respect, it brings interactivity
to the Internet. On other hand, due to vendors
implementing JavaScript differently it makes
cross-browser compatibility troublesome. Then
you have the additional problem of graceful

CVu/ACCU/Reviews

degradation for non-JS browsers. Such are the
pleasures of Internet programming.

The Babani rangeis cheap, cheerful and
surprisingly good. Fun Web Pagesis ho
exception. It is assumed you know nothing at
the start and takes you through the language.
Even better the code has been tested on the
main web-browsers and is new enough to be
happy with the newest of Internet standards.

The book’ s strength is that everything is
clearly explained and does not try to baffle the
reader with the complexities. It even takes
security and security issues seriously.

Whereit falls down though is that
interfacing to SQL is not covered neither are
other newer technologies. Cookies, form
validation and transparencies are in the book
and well documented.

The questions are taxing enough to be
enjoyable and make the reflective process of
what you have learned.

General Programming

=] Object Thinking by David West
(0-7356-1965-4), Microsoft
Press*, 334pp @ £33-99 (1.47)
reviewed by Alan Lenton

28 Thisvery useful book will provide
much food for thought to those who think their
programming is object oriented.

The aim of the author isto teach
programmers to think in an object-oriented
manner from the very start of a project, rather
than confining it to a consideration of the
solution domain. While David West favours
agile programming methodol ogies, the book is
far wider in scope, and contains lessons for all
programmers.

The book starts by setting the concepts of
object orientation and agile development firmly
in their historical context. They are seen not
merely as part of the debate in computer
science between structural and object methods,
but within the broader sweep of the debate
about the role of formalism and hermeneutics
in science. | confessthat as a sociologist as
well as aprogrammer, | loved this part of the
book and was inspired to dig out my copy of
Paul Feyerabend's ‘Against Method' for are-
read.

The key idea of the book is that objects
should be sought in the problem domain. West
calls this ‘domain anthropology’. Some of the
analogies with regular anthropology are alittle
forced, but the fundamental ideais sound.

West is keen to change the culture of
programming, which heidentifies, correctly in
my view, as crucial to improving the skills and
abilities of programmers. The book is an
excellent start, but there isalong way to go
yet!

Recommended.

| User Interface Design for

K2 Programmers by Joel Spolsky (1-
o g ,,'w 893115-94-1), Apress, 159pp @
| £21-50 (1.39)

reviewed by Mark Easterbrook
This book should be compulsory reading for
anyone designing man-machine interfaces.
This book could also be called “ User Interface
Annoyances’ or “The Dummy’s Guide to

CVu/ACCU/Reviews

irritating your users’. It will strike a chord with
anyone who has struggled with a computer
interface as the author barges his way through
numerous examples of bad user interfaces,
trashing the designers ruthlessly, and then
shows how allittle thought and better
intentions, and to be honest, probably some 20-
20 vision, could have produced something so
much easier on the user.

Have you ever clicked the mouse but the
pointer moved ever so dlightly and it did the
wrong thing? Or tried to get the cursor between
two lower casel’sin an edit box? Joel exposes
the stupidity in chapter 10 “People Can’t
Control the Mouse”, then shows how easy it is
to change the design so accurate mouse control
isno longer required.

“Thiswill delete your file. Are you sure?
Yes, No, Cancel”. Are you confident you know
which button to click? We all know nobody
reads manuals. Joel shows they do not read the
screen either. In most cases they just hit “Yes’
to “Areyou sure?’ without thinking — the
dialog box does not protect, it just annoys.
What iswrong with providing an “undo”
instead?

Why isit so difficult to take the Windows
briefcase home with you? Y ou do not have any
problems with your real one! If you writeon a
document on your real desktop, it stays written
on. So why does this not happen on your
computer’s desktop? Why do you have to save
it? The “Broken Metaphors’ chapter examines
these issues and more.

The Microsoft Windows interface that is not
the only target of Joel’ stirade. The Macintosh
interface also takes a bashing (Empty the trash
can because it looks untidy — oops, you cannot
undelete now). The [Li|U]nix command line
interface isimpossible without the manual or a
guru, and we know “People don’t read
manuals’.

Thetitle of the fina chapter sums up the
book quite nicely: User Interface design is
“Programming for Humans’. Highly
Recommended.

INTER;\CGT,LON Interaction Design by Preece,
Rogers & Sharp (0 471 49278 7),
gl Wiley, 519pp @ £29-99 (2.13)
reviewed by Paul Usowicz

Owning alarge number of books, |
have various methods of organising them. One
portion of one shelf is dedicated to the books
that | consider special. These books are on
various subjects but are all books that | will
read repeatedly due to their excellent content,
well written text and personal relevance
(perhaps an ACCU article is brewing herel).
Luckily there are only afew booksin this
section, which leaves enough room for thistitle
to take its place along side my other ‘classics'.

Interaction Design is quite smply a superb
book. The authors know their subject and
present it well. Although three separate people
author the book, it was in no way disjointed
and was a pleasure to read.

The book is about human-computer
interfaces with a strong bias towards software.
It would be wrong, however, to classify this
book as ‘ software engineering’. It so much
more than this and covers the whol e aspects of
human-computer interfaces including graphical

user interfaces, the World Wide Web and
wearable computers. Throughout the book are
interviews with clever people, exercisesto
complete and tasks to carry out.

The book is well supported by its
companion web site. It contains examples of
tasks completed, links to sites of interest
mentioned in the text and extras like power-
point slides and case studies. Thisis the best
HCI portal | have come across and have visited
it regularly during the course of reading the
book.

The preface lists various suggestions for
usage of the book suggesting various relevant
chapters to read dependant upon your particular
needs. | would recommend that if you choose
this route and read the relevant chapters
suggested that you should then immediately
read the rest of the book as | found no chapter
lacking in useful information.

Everyoneis recommended to read chapters
1 (What isinteraction design?), 6 (The process
of interaction design) and 10 (Introducing
evaluation) with software devel opers also
recommended chapters 7 (Identifying needs
and establishing requirements) and 8 (Design,
prototyping and construction). Chapters 7 and
8 were especially good with lots of common
sense and good advice. As stated above, these
five chapters will give you agood working
knowledge but the rest of the book isworth
reading as well. My software devel opment
methods are already changing for the better and
| am trying to get my company to buy the book
(I"'m not letting mine go) so therest of the
department can read it. The book is also not
limited in scope to just the software developers.
Sales and marketing would learn alot from this
book and would end up requesting much more
useable products.

The whole book is written with hardly any
references to specific languages or operating
systems making it a book that | will have
around for some time and one that will not
easily date. As amulti-platform developer (PC,
PDA and Smartphone) | was glad to see some
good advice on the need for differing
interaction based upon the device being
targeted. Too many people think porting to
another device is simply a matter recompiling
without realising the huge part that the user
interaction plays. | think it will be sometime
before | find a better book than this on HCI
(unless the authors are planning another one!).
This book is definitely recommended for all
software developers who target devices that
reguire user-interaction.

Solutions to Parallel and
Distributed Computing Problems by
Albert Y Zomaya et al. (Editors) (0
471 35352 3), Wiley, 272pp @ £58-
e 95 (1.70)
reviewed by Christoph Ludwig
This book is acollection of ten independent
research papers by different authors that mostly
report experimental results about heuristics for
solving optimization problems. Though
familiar with academic texts, | cannot access
their academic contributions since they are not
from my area of expertise.

The heuristics considered are inspired by
ideas taken from nature: Genetic algorithms are

39

most common, but cellular automata, simul ated
annealing and neural networks are also
considered. However, the discussions stay
abstract; they ignore the details and
complications one faces when implementing
such algorithms on parallel or distributed
hardware.

Most of the articles consider resource
scheduling problems (e.g., Flow Shop
Problems, Load Balancing Problems etc.) that
are NP-hard in general. In practice, onerelies
on heuristics in order to find solutions that are
“good enough”. However, the fact that the
presented heuristics are tailored to the specific
problem they were developed for narrows the
readership that can easily profit from these
results. Only their general approach can be
transferred to different problem domains.

Eight articles discuss aspects of genetic
agorithms whence their general approaches are
quite similar and there is some redundancy.
The different priorities assigned by the
respective papers are most likely significant
only for readers interested in the specific
problems discussed.

In the articles that study cellular automata
and neural networks, readers without some
background knowledge of the context where
will not see how the resultsfit in. Thanksto
their comprehensive hibliographies, they may
serve as a starting point for further reading
though.

Overall, | think this book fitswell in an
academic library where articles and textbooks
for further reading are easily accessible.
However, it is not suited for readers who want
to learn how they can adapt the ideas of genetic
agorithms etc. to their problem at hand.

The Shelicoder’s Handbook by
Jack Kozi et al. (0-7645-4468-3),
John Wiley & Sons Ltd, 620pp @
£33-99 (1.47)

reviewed by Richard Putman
Itisforgivable, looking at the main title, to
think that this book is areference for writing
bash or korn shell scripts, but in fact
‘shellcode’ isthe name given to the piece of
code that is run after gaining control of a
vulnerable program. Shellcode is so named
because often the injected codes are
instructions that will launch aroot shell under
unix.

If you have ever wondered about the story
behind the security holes announced seemingly
daily this book will show you why they occur,
how the exploits work and the methods that led
them to be discovered in thefirst place.

The book has four parts: the first hundred
pages covers an introduction to exploitation on
Linux x86 systems, the second hundred looks
at Windows and another hundred covering
Solaris and HP Tru64 systems. The third part
looks at how to discover vulnerabilities with
some useful tools and afinal more advanced
section looks at alternative shellcodes, database
and kernel hacking.

There are anumber of typosin the text and
no errata page has yet appeared on the
publisher’s website, indeed the links to
resources mentioned throughout the book have
yet to appear either, athough the example code
isthere for download. The text is well written

Shellcoders
[{andbook

H

40

and structured with a conclusion at the end of
each chapter.

Much of the book is assembler, often
embedded in C code, or occasionally python
scripts and athough thereis a brief review, you
should aready be comfortable reading
assembler, or be prepared to learn quickly, to
enjoy this book.

Many of theideas are smple —overfilling
buffersthat are processing user input, but the
low-level nature, restricted memory spaces and
unknown elements, such as where the code will
be executing in memory, often create layers of
dependent problems magnifying the complexity.
It can take considerable skill and ingenuity to
turn avulnerability into an exploit, not to
mention a certain amount of luck, unsurprisingly
it is often thought of asablack art.

This book then is essentially a compendium
of the techniques and resources used by several
clearly experienced hackers; the aim being to
teach a creative approach rather than list
known exploits. What comes across in the tone
of the book is the authors' desire for the reader
to succeed and enjoy the challenge as much as
they obviously do.

Thereis quite abit of hand holding and
encouragement early on to get past the point
where most people give up but it isalso arich
source of information with index and deserves
thetitle ‘handbook’.

For programmers who have no interest in
creating their own exploits, is there anything in
this book? Well yes, the section on
vulnerability discovery containsinteresting
information about the authors' favourite tools;
there is a chapter on fuzzing (generating
automated test input to discover bugsin your
program) and source code auditing showing
many common faultsin C code. However, the
direction of the book is very clear — to subvert
atarget system.

Writing shellscriptsis surprisingly good fun
and the book will appeal to those who enjoy
tricky programming puzzles and those who
want an advanced but accessible low level
security perspective on the programs they write
and the operating systems they use. Highly
recommended.

It seemsto me you should read this book even
if you never intend to crack anyone else’ s system.
You need to understand what you must protect
your programs from. Francis

Computer Graphics and Virtual
Environments by Mel Slater et al
(0 201 62420 6), Addison-Wesley,
il 571pp @ £34-99 (1.86)

s=ru reviewed by Alan Lenton
Thisis acompetent book covering similar
territory to Foley and van Dam. As always with
books on this subject a solid grasp of matrices,
calculus and geometric algebrais needed
although the authors provide a mini refresher
course at the start. The book breaks with
convention by starting from illumination rather
than polygon drawing. | am not sure how much
better thisis as ateaching device, but it
certainly does not detract from the book, which
covers all the components of the standard
graphics pipeline.

The last few chapters are, to my mind, a bit

scrappy, being awhistle stop tour round the

options available for a number of more
advanced topics. | am not really sure that they
add very much to the book, given their brevity.

One particularly useful aspect of the book is
that the examples are in OpenGL and VRML97
aswell assome ‘C’, which makesit relatively
easy to ‘borrow’ examples for your own use. A
lot of material is packed into the pages of this
book and, in my opinion, it represents good
value for money, although | suspect it would be
more useful as a college textbook than as a
reference for working programmers.

A useful book on a specialist subject.

Practical Qt by Dalheimer et al. (3-
“+ 89864-280-1) 253pp. Available
Practical Qt| from amazon.de or from

[http: // www kdab. net
/ practi cal gt . 36 Euros
reviewed by Paul F. Johnson
For those who have the O’ Reilly book
“Programming with Qt”, you will already be
familiar with Kalle's style. Clear, concise and
easy on the eye.

This book is the perfect companion to it.
The difference being though that thisis an
answers book. Y ou need to be familiar with
using moc to compile some of the code
example.

The uberfurer of dire programming books
(Schildt) has something on the front of his
books which goes along the lines of if you
want answers quickly, just ask the expert.
Unlike Schildt though, thisis one book | would
dip into.

It quickly and clearly explains how to do
certain thingsin Qt (such as circular widgets —
it really is an answers book, but it still teaches
the reader how it works and how to best
approach a problem. Matthias (and his co-
authors) really do know what they are on about.

There isonly one thing wrong with the
book: it is not big enough. | hope the authors
bring out avolume 2 (and 3) and possibly even
a Qt4 companion.

| have been using Qt for quite afew years
now and the material in there has made me
look afresh at some of the practices | had
adopted — it is an eye-opener.

Highly recommended.

Non -Programming

7| High Tech Crimes Revealed by

Steven Branigan (0 321 21873 6),

e Addison-Wesley*, 412pp @ £22-99
(1.30)

| reviewed by Francis Glasshorow

I am not going to do much more than draw

your attention to this book becauseit is only

indirectly of interest to readers of C Vu.

There is an element of the autobiographical
in that the contents rely heavily on the author’s
direct experience. The author covers his
(largely US based) experience with arange of
IT based crime over the last decade. It makes
disturbing reading in places because frequently
detection depended on chance, or an
exceptional level of curiosity from one of the
participants.

The book starts with a chapter about an
incursion on atelecom company’ s computers
circa 1995 and then documents various other

CVu/ACCU/Reviews

computer based crimes before concluding with
anumber of chapters on what not to do and
what the experience of the last ten years has
taught the author (and hopefully, at least afew
of the law-enforcement agencies).

If you want a clearer understanding of what
is behind some of the headline stories, or you
are curious as to what happened after the story
faded out from the public consciousness this
book iswell worth your attention.

"\ Teach Yourself OpenOffice.org
All in One by Greg Perry (0-672-
32618-3), SAMS*, 515pp + CD @

4 reviewed by Francis Glasshorow
OpenOfflce isavery useful free application
bundle from the OpenOffice foundation (which
is supported by Sun Microsystems). Among its
advantages are that it handles most Microsoft
Officefilesand it exists for Linux and Mac OS
X machines aswell asfor Windows. | keep a
copy on my laptop so that | can use material |
have prepared with Office 2000 when away
from home. (Note that if MS had more
reasonable licensing for individuals, | would
not need to do this).

The book is divided into five sections, one
for each of Writer (word processor), Calc
(spreadsheet), Impress (presentations) and
Draw (simple graphicstool) and afinal short
section some other features of OpenOffice.

| think this book would make a good
companion for anyone who has decided that
they want to break their reliance on MS Office
aswell asthose who want to use a office
application suite that is largely independent of
their choice of platform. It does not go into
excessive detail and probably does not cover
enough for those who are expert users of office
applications (certainly | require more detail
before | could use OpenOffice as more than a
secondary suite).

In Search of Stupidity by Merrill
- | Chapman (1-59059-104-6), Apress,
4| 256pp @ $24.95 (no UK price)
4 reviewed by Chris Hills
Thisisafascinating book. It is not
technical and neither isit a business book,
neither isit an autobiography but itisa
sideways look at the computer (PC) software
industry. Rick Chapman has spent hislifein
the US software industry. At varioustimesasa
programmer, an FAE, asalesman and in
marketing with many of the Big Names. He has
seenit al and in some cases was in the middle
of some of theincidentsin the book. Thisisa
book written with hindsight and alot of
honesty. Asthe author saysin a couple of
places“| was completely right.... For all the
wrong reasons!” and “| waswrong... for the
right reasons!” There are lessonsto be learned,
if we can learn them. Though history does
seem doomed to repeat itself.

This book looks at why 9 out of the top 10
computer software companies of 1984 are not
in the same list for 2001. In the intervening 17
years al the market |eaders “ committed
suicide’... Yes, theonly onein both listsis
Microsoft. Not, according to the author,
because it was clever or its software was the
best but because it made fewer of the major

CVu/ACCU/Reviews

“stupid mistakes’ the author attributes to
Aston-Tate, Novell, DR, Microfocus, Visicorp
etc. He asks: “Given that Microsoft software is
‘that bad’ why arewe all still using in it? What
happened to Quattro-Pro, Word-Star, Lotus 1-
2-3, D-Base. It isnot just the software, what
happened to the IBM-PC? (not the “ PC-
competible” of DELL et a). Why did OS/2 not
sweep the world?’ The possible answersarein
this book.

Just because something is better it does not
mean that the world will useit. E.g.
“Everyone” uses VHS video, except the
professionals who use Betamax, which is
technically superior, and no one uses, what was
at the time, the technically even better Philips
system. This book looks at the marketing
equivalents of the Charge of the Light Brigade
that caused the downfall of the, often
technically better, market leaders.

The author worked for many of the
companies concerned, or aclosely related
company, at the time of many of the stories told
and has aunique, inside view. | did wonder if
his middle name might be Jonah at one point!
Thisisthe sort of story that can only betold
with hindsight and far enough away to avoid
the law suites. Though that said the book was
published in 2003 and covers up to mid 2002
so the later chapters are almost current.

For many this book will be atrip down
memory lane for others alook into pre-
history. It may only cover 25 years but for
some in the industry they probably know
more about the dinosaurs than some of the
names from the 80’ s that are in this book. |
am not sure if thisis business, history,
sociology or gossip.

The styleis easy to read and humorousin
arelaxed way. Thisis afascinating read that
will make a good book for the holiday or the
long summer days. It should be required
reading for all marketing departments,
project managers, strategy groups and
computer courses. Thisis abook for the
summer holiday or to settle down with at
Christmas. Recommended.

Inside Internet Security - What
ms.us.wm.w Hackers Don’t Want You to Know
by Jeff Grumme (0-201-67516-
1), Addison-Wesley, 270pp @

| £30-99 (1.03)

1 reviewed by Chris Hills

Thiswas going to be one of four types of
book: lots of technical detail and code
fragments for programmers or sensational
stories of the type found in the popular press.
It could have dived off deep in to maths of
algorithms and ciphers. Fortunately it is the
fourth type — a sane sensible look at network
security for managers.

| know it says Internet security but these
daysthe Internet is just an extension of a
normal office network. At one time viruses
were spread on floppy disks, now the vast
majority get on to the PC either directly from
the Internet or across the office network.

The book has no source code, no maths or
protocol bits and bytes. What it does haveisa
non-sensational look at who hackers are, why
they do it and what sort of holes there are.
Most importantly, it tells you how to go about

stopping them. Well actually it does point out
you cannot stop hackers. So there are constant
warnings that all you can do is minimise the
risks and never get complacent. Thisis strategy
and management rather than how to use
specific software or systems.

Interestingly this book is going to make you
see that antivirus software and firewalls are not
infallible. Y ou cannot just fit them and relax
contented that you are safe. Then again it is not
full of “scare stories’ It is balanced, reasoned
and at alevel that most managers (technical or
non-technical) are going to understand the
problems and the solutions in general without
getting demoralised or thinking it is easy.

Whilst the book has adlight US biasit is not
aproblem and everything should apply in most
countries and hackers are of course
international as on the ‘net all geographical
places are the same place.

Thereis the obligatory section on
cryptography, public keys etc. and avery
useful section on VPN, which is something,
many companies now use and many do not for
the exact same reasons!

Thisis by far the most dispassionate and
well-balanced book | have come acrossin this
subject. It handles a subject that is both precise
yet very nebulous and riddled with mythsin a
way that lets you see clearly and assess the
risks without panic. | recommend it for al non-
technical managers... actualy all managers, |
bet half the technically astute managers do not
know the realities of the myths etc.

== Penguin Guide to Punctuation by

~ | R. L. Trask (0-140-51366-3),
rncruaion| Penguin Reference, 162pp @ £6-99
(1.83)

reviewed by Christopher Hill

As collator of the ACCU book reviews, | come
across many of styles of writing, spelling and
punctuation. | know that thereis not one
correct form for these aspects of writing, but
there ought to be some firmish guidelines, so
that you know when you push against one of
the mores of writing English.

| enjoyed reading Eats, Shoots and L eaves;
Lynne Truss has a very comical turn of phrase
and | did learn alittle about punctuation, but
the lack of anindex madeit very difficult to
use as a reference book.

The Penguin Guide on the other hand has
not left my desk. While it does not have the
humorous input, Trask writes very clearly with
an eyeto the detail of the issues under
consideration, while at the same time making it
easy to remember the points. Did you know
there are four separate uses for the comma:
listing, joining, gapping and bracketing?

There are many examples of good and poor
punctuation on almost every page, with the
poor examples flagged with an asterisk to
remove any possibility of confusion or doubt.
Having read the book from cover to cover,
which is very easy to do, the four pages of
index make this areally useful reference.

If you are writing (specifications,
reguirements, books, emails, letters) or editing
the same, then you cannot but benefit from
reading this book, after which it will find a
cosy place sat next to your mouse and
keyboard. Highly Recommended.

41

8 Secrets & Lies (revised) by Bruce
Schneier (0-471-25311-1), Wiley,
414pp @ £11-99 (1.50)

| 2d review by Mark Easterbrook
[Weadll livein anincreasingly digital
and networked world. We also livein aworld
that seems increasingly hostile, at both the
personal level and the global level. Yet, so few
of usreally take security really serioudly:
maybe we al lock our doors and windows and
install firewalls and virus scanners, but thisis
just basic stuff —when did you last perform a
security audit on your house or your Internet
connection?

This book examines the security of the
digita networked world and the domains that
interface and interact with it, including us, in a
pragmatic, myth-busting, sometimes
humorous, and often worry-inducing way. Itis
divided into three parts:

Part 1 — The Landscape — sets the scene,
who are they, what do they want, why they
want it, how might they get it, and why are
they targeting you. If the answer is“| don’t
know”, asit is often the case, you just haveto
guess and hope you are somewhere close.

Part 2 — Technologies —is the largest section
and comprehensively covers the technology
used in attack, defence, detection and alerting.
The common theme here is that security islike
achain, and isonly as strong as its weakest
link.

Part 3 — Strategies — looks at the practical
side of securing your part of the world. This
takes arealistic look at threat and risk analysis
and how sufficient defence strategy can be
created. Not surprisingly, technology is only
part of the problem, and only part of the answer
— security isahuman issue asmuch asitisa
technical one.

When you have read this book, and |
strongly urge that you do, there will be one of
two outcomes: Y ou will take security much
more serioudly, or you will sleep much less
easily at night. Recommended.

<2 The E-Myth Revisited by Michael
| Gerber (0-88730-728-0), Harper
Business, 268pp @ £10-99 (1.46)
reviewed by Chris Hills
The E-Myth is the Entrepreneur
Myth. It has nothing to do with the
Internet, Email or Dot.Com. This book was
recommend to me by a successful business
owner. He told me that his only regret was not
reading it 10 years earlier! | read it and | must
say it fires you up with an [organised)]
enthusiasm. | showed it to afriend and heis
now using this book as a start up guide for a
business heis planning.

Thisisnot a Get-Rich-Quick book, nor does
it seek to sell you anything else. However,

there is aweb site with additional resources
and curses the author runs but these are US
based and not needed to use the book.

Thiswill be adifficult review to do as
explaining the content gives all the secrets
away! The model used for this book isapie
shop run by one person (no, not the well
known breskfast/fast food illustration) but it
will work for any business. Indeed there are
illustrations from other industries including the
hotel business. Which isinteresting as |
recently read the Marriot (hotel) story.... It was
in the draw next to the Gideon and Mormon
Biblesin the Marriot in Heidelberg! | can see
traces of the ideasin this book in the Marriot
system.

The story in the E-Myth how the owner of a
failing, one person, independent pie shop looks
at their business, under the guidance of the
author. They analyse the problems and look at
the way to get it back onit’'sfeet isin the style
of the stories by Plato where the questions set
up the next explanation. It is almost readable as
astory. At each meeting the pie shop owner has
with the narrator more things are explained and
suggestions on what to do next is suggested.
However this book will work for a business
that you have not yet started as well as one that
has been running a decade.

| found the book fascinating asiit covered
various things | have seen in small companies
before. It explained the underlying reasons. It
explains why most small companies run into
the problems they do after the initial wave of
enthusiasm. Why many small companies fall
over or do not progress after an initial growth
of personnel.

Recognising the symptomsiis half the
problem the other half iswhat to do about it.
There are several novel solutions which, when
you look at them are plain common sense. A
couple of the ideas and illustrations come from
the authors own company with mistakes they
made. So the author has been there and done it
himself. Interestingly thereis no patented
system to buy, no franchise method, just
sensibleideas. Though in the US the author
does do lectures and business consultancy on
the subject. Much like the Team-Start /Mustard
and Small business advisory groups in the UK

Thisis abusiness book, thereforeit is
orthogonal to all businesses from IBM to
MacDonad’sto small SW house to a one-man
contractor beitin IT, carpentry or the fishing
industry.

The important thing to note is this book is
simply ideas and methods. It is not a silver
bullet. Y ou have to have aviable business;
goods or servicesto sell that arein need. Be
prepared to work hard, the money to start and
the discipline to do the paperwork. What this
book does is give you the map to the obstacles,

and the navigation skills; it does not give you
the transport to reach the goal. Y ou haveto
provide that yourself.

Aswill be clear from my comments |
recommend this book highly. | would use it
myself were | to start abusiness. Further to that
| recommend that any one with asmall
business, including “one-man” outfits to look
at it even if you have been running a decade. It
could do you alot of good. | would say at the
price (lass than 11GBP) you can not afford to
miss this book. However non- business owners,
be careful! It could enthuse you to start one
yourself. Highly recommened.

Cryptography For Dummies by

Chey Cobb (0 7645 4188 9), John

s \Viley & Sons Ltd, 304pp @ £16-
499 (1.47)

reviewed by James Roberts

| was not really sure what to expect from this

book. | was interested how cryptography could

be described in such away asit would be

suitable for ‘dummies’, and wondered what the

content could possibly be.

It turned out to be a bit of a mixed bag,
some of which was potentially useful, while
some seemed to be padding rather than sensible
content.

On the plus side, the book gave areasonable
summary of the installation of PGP (most
examples in the book revolved around how
cryptography applied to PGP). In addition, the
book gave some good advice on selection and
remembering passphrases (although if you read
the book from cover to cover you notice a
certain amount of repetition in this area).

The book includes some basics — for
example, adescription of how binary numbers
work. Perhaps thisis sensible for a book aimed
at complete beginners. However, this technical
detail was not carried forward beyond a
description of the XOR function. (The use of
the XOR function in conjunction with a 1-time
pad was not explicitly covered). This left me
wondering what the intended audience of the
book would have made of it.

Other annoyances included little clear
overview of how the protocol of use of public
keysisused. (A diagram of the interactions
required to generate and use a PK1 might have
been useful.)

In short, this book might be suitablefor
someone needing basic information about
cryptography and cryptographic productsthat did
not want to understand the details. However, in
thiscase | think that there might be several
chapters which would not be particularly useful
or relevant - the book would condense downto a
‘how to use PGP, with some handy hintson
remembering your password'.

Not recommended.

Cryptography

Copyrights and Trade marks

Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

42

CVu/ACCU/Reviews

