
Reports & Opinions
Reports

Editorial 4
From the Chair, Membership Report, Standards Report 5

Dialogue
Student Code Critique (competition) entries for #29 and code for #30 6
Letters to the Editor 12
Francis’ Scribbles 14

Features
An Introduction to Programming with GTK+ and Glade - Part 2 by Roger Leigh 16
Rapid Dialog Design Using Qt by Jasmin Blanchette 20
Introduction to STL by Rajanikanth Jammalamadaka 23
Professionalism in Programming #28 by Pete Goodliffe 26
Wx - A Live Port by Jonathan Selby 28
An Introduction to Objective-C by D A Thomas 32

Reviews
Bookcase 33

Copy Dates
C Vu 16.6: November 7th 2004
C Vu 17.1: January 7th 2005

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Chris Lowe
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
This is my third edition editing C Vu. It’s been a
cracking experience which has been made all the
more pleasant by the help I’ve had along the way.
It’s always good when material comes in well in
time and more rewarding when readers write in
to the letters page with comments on the
material. This edition is a case in point – there
are more letters in this edition than I’ve seen in
quite a long time.

Is this down to the material being more
thought provoking, the range of articles being
more varied or simply people feel like emailing?
It’s hard to say.

Not all emails get published though. For
example, I’ve had some through expressing
concern on the focus I’ve brought to open source
coding (the GTK articles, wxWidgets [starting
this edition] and Qt have raised a few eyebrows).
This is in part quite deliberate, but also down to
one other reason : nobody has submitted material
on the likes of MFC. We can only publish what
is submitted!

Why Deliberate?
C,C++, C#, Python and Java (to name a few)
are platform independent languages. It makes
no difference which platform code is
developed on, as long as they use the pure
language and the compiler used at either end
is standards compliant (or close to it!), the
outcome will be the same. C on my RiscPC
will compile on my Linux box and on my
friend’s OS X machine. The outcome will be
the same. That is part of the beauty of these
languages. Write once, compile many,
outcome same.

The same applies for widget libraries. I
enjoy writing code which compiles on my
Linux box, take it into work and compile the
results on MSVS.NET and see the same
results. The independence of the widget library
is great in that way. To me, this is an extension
of the same ideas as are behind the platform
neutrality of the languages we all love and
know.

By using these cross platform libraries, it is
my firm opinion that there can be a massive
increase in productivity as well as stopping
some of these “we have this, you don’t”
arguments you see from time to time. Imagine
something like 3D Studio Max or Sibelius 2
being written using (say) wxWidgets – the
companies behind them could very quickly and
easily produce versions for many platforms (for
wxWidgets, it ranges from 16 to 64 bit
platforms). Upshot would be a great deal more
money for the companies.

What does need to be asked though is why
is this not done? Many pieces of software are
available for both OS X and Win32. They’re
not using the same widget sets and required
different teams of programmers. To me, this
seems very wasteful. Fair enough for
something which is Win32 only and requires
MFC and other proprietary libraries, but for the

rest where the two platform system is used, it
would make more sense to use an independent
widget set. One code base, compile many, lots
of money!

Despite what some of the worlds largest
companies say, the use of cross platform libraries
is gaining in popularity and moreover, gaining in
speed.

One of the largest problems though with
some of the cross platform libraries are the
licences. Qt is free for X11 and OS X, yet the
Windows version requires licences. Many
managers don’t understand the implications
and ramifications of using GPL libraries. I
don’t know the solution for this, though a
simplification of the licences would certainly
help.

Books Books Everywhere and Not
a Drop to Read

One of the problems you have when you
review lots of books is what to do with them
after you’ve reviewed them. Now, this is not a
problem for the better books. They are on my
bookshelves, waiting for their next set of being
used.

The problem comes with the books which
are dangerous. You know the sort – they have
“not recommended” in the book reviews and
after you read the review, you can imagine the
reviewer dancing around a small bonfire made
from the dead trees wasted on such a pile of
rubbish. No responsible person would try to
sell them on eBay or put them into a recycling
box in case some poor person at the recycling
plant gets hold of the book and decides to read
it.

You could leave them on the shelf, but then
they’re taking up valuable good book space. I
suppose putting them in the loft would be an
idea – however even that has its drawbacks
(mice).

What would be quite fun would be to get all
of the authors of these utter turkeys in a field
and have people pelt them with pages from the
books while chanting “you shall not write such
utter tosh in future”. For good measure, some
of the technical editors who have supposed to
have read these books should also be put in the
same field. Okay, it wouldn’t be very
productive, but it’s one way of getting rid of the
books! That said, I have a feeling that one or
two authors in particular would pay little or no
attention to such activity... (no names, no pack
drill).

It’s actually a pity that book companies don’t
do the same as record companies. I have two
books by Ammeral; C++ for Programmers and
STL for C++ Programmers. Both very
worthwhile books and both of which (in their
time) have been frequently referenced. There is
a lot of crossover between the two books (sorry
Francis, I know you’d disagree with me here –
but there is). What would be great is if there was
a sort of “Best of” for these books. One volume
without the crossover material, but all of the
great information.

This idea could be applied to a number of
other books – some of the XP ones have a good
chunk of similar (not the same) material. A bit of
rewording and instead of 4 books, it becomes 2.
Less space occupied and more information for
the page count.

All right, some books you would never
dream of doing that to. Josuttis’s C++
Standard Library being one of them. That book
is just so crammed pack full, it would be
pointless to try and merge it with (say) C++
Templates (which was co-written with
Vandevoorde).

Dead Websites (or A Tale of Two
Websites)

One of the most annoying aspects of any book is
when they reference a website in the text or on
the book itself. Now, I’m not that daft to imagine
for one moment that a book company or a
person’s ISP is going to exist forever. However,
book companies take over other book
companies, so at least some material should still
exist.

Case 1
Company ‘A’ have produced a lot of books. I
have 7 of their books on my shelf currently. Their
books make references to a number of websites,
all of which are required to some extent to
service the code in the book and in one particular
book, an entire chapter is pretty pointless without
one of the libraries listed.

The original company was bought out and
the new company doesn’t recognise the book as
being one of theirs, leaving the person with a
book which is practically useless for a couple
of the most important chapters. There is a CD
ROM with the book, but in a break with
tradition, it is filled almost entirely with
material that someone at the book’s original
company thought would be a good idea at the
time.

The original author’s website has vanished.
Waybackmachine can’t find the download and
even Google draws a blank.

Case 2
Company ‘B’ publishes a book which is a
couple of years old and hasn’t been updated.
The libraries referenced still all exist but have
been greatly modified since the original release
of the book. A person undertakes the job to
update the codebase, tells both the author and
the book company of the update and where it
can be found. Company B takes a copy and
posts it on the support area for the book and
drop a quick email back to say thanks. The
download is amazingly popular for both the
company and the person who has done the
update.

Company B publishes their books through
another company.

I suppose there is only one thing worse than
a company like company ‘A’ and that is one
which has updates but the updates are broken
and refuses to even email back to say “thanks,

5CVu/ACCU/Reports & Opinions

but we’re not going to fix it for reason a, b
and/or c”.

And So It Begins
By the time this edition hits the doormats, the
new academic year in the UK Universities will
be well underway. A fresh intake, all ready and
eager to learn. Plenty of parents worry about their
offspring being away from home for the first
time and hoping they’ll be fine.

While my child is only 6 (and so is not
ready for University yet!), I can say that they
will be. First year student life is a gas. Stop
worrying – the worst they can do is have some
really weird tattoo done and miss a couple of
lectures.

With all of this spare time you now have as
you’ve stopped worrying (a bit), what should you
do? Watch TV? Listen to that collection of I’m
Sorry I’ll Read That Again you have on CD?
Have a meal out?

Why not write for C Vu or Overload? We’re
always after new articles, book reviewers and
contributors to the Student Code Competition.
Let’s make both magazines even bigger and
better value for everyone!

Paul F. Johnson

View From the Chair
Ewan Milne <chair@accu.org>

The programme for the 2005 conference is
rapidly taking shape, and we are very happy to
be welcoming back Jim Coplien as a keynote
speaker. Always a highly entertaining and
challenging speaker, I can confidently say,
even from the early drafts I have seen, that
Cope’s talks will be unmissable highlights of
the event next year. Also lined up are Ross
Anderson, leading off a track dedicated to
security issues, and another big name whose
appearance is still subject to final
confirmation. But as a very broad hint, let’s
just say that there really isn’t a bigger name in
the C++ community.

As well as these heavy-hitting head liners,
the conference needs new, first-time speakers.
It is encouraging that we have had some very
strong proposals for short 45 minute sessions
from members, however as it stands we need
a few more. The deadline for proposals, still
ten days away as I write, will have passed by
the time you read this – and it is possible that
there will be a last minute influx. But if you
had a rough idea for a 45 minute session that
you didn’t quite get round to sending in, please
get in touch. It’s quite possible that there is still
a space for it in the programme. Remember,
we are not looking for exhaustive explorations

of large topics – an explanation of a useful
development technique, or experience report
of some aspect of a recent project would be
ideal.

Urgently Required - Advertising Officer

At this year’s AGM, Chris Lowe gave notice that
he wishes to step down as Advertising Officer.
Chris is generously still giving his time to
carrying out this role as a replacement is sought,
but the ACCU now has an urgent need for
someone to volunteer to replace him. The post
involves contacting potential advertisers to drum
up business, and once contracts are in place,
shepherding the advertising copy to our printers,
Parchment.

This is a very important role, with a direct
impact on the financial health of the
organisation. If you’re interested in this role,
please contact either ads@accu.org or
chair@accu.org.

Membership Report
David Hodge <membership@accu.org>

We are in the thick of the main renewal period
(11 Sept). So far 74% of the membership have
renewed, which is better than last year, so thank
you for that.

Don’t forget that next year you could have a
£5.00 reduction on your subscription by paying
by standing order. Note that this is not direct
debit, so it requires you to set it up with your
bank. If you want to do this just email me for
details.

Standards Report
Lois Goldthwaite <standards@accu.org>

The programming world needs good standards.
And we need them right now – or at least we
think we do.

The benefits of standardisation are many
and obvious: programs (and programmers!)
become more portable across platforms,
components from different sources can be
integrated more readily, and (it is greatly to be
hoped) a stable foundation is established for
future enhancements not yet envisioned.

There are some disadvantages also, it must
be recognised, but one prominent one is that
standardising a technology too early may
burden its users with features which turn out
to be inadequate or even undesirable.

The most successful standards have been
those that codified existing mature practice,
such as the 1990 C Standard. But standards
committees that are seduced into inventing
technology on the fly, without adequate
implementation experience, nearly always

come to regret some of their decisions. An
example is the C++ keyword export –
though controversial, it was included in the
C++ Standard to address issues which were
very important to some vendors. But six years
after the standard was adopted, only one
compiler vendor has actually implemented
export in a public release, and programmers
in general have shown little demand for the
feature.

One of Java’s early attractions was its boast
was that it hid the complexities of various
platform APIs and provided a standard,
portable, ‘Write Once, Run Anywhere’ way to
perform I/O and create GUI screens. But these
fundamental portions of the Java 1.0 library
have been extensively revised in subsequent
versions. I guess in making standards, as well
as software, you’d better ‘plan to throw one
away.’

The ISO standards process is frequently
criticised for being too slow, too bureaucratic,
too tied up in red tape, not nimble enough to
cope with an industry that moves in internet
time. An increasing number of standards are
being developed by trade groups and industry
consortia working to aggressive schedules,
partly because they aren’t hampered by ISO’s
leisurely pauses for preliminary and final
international ballots.

Which is better: to delay adoption and
publication while working to refine the best
possible standard, or to get something into the
marketplace as soon as possible, with the intent
to follow up with a frequent revision cycle?
How long can a committee linger over a
document before it becomes irrelevant? How
soon is too soon to rush into print with a half-
baked draft?

I don’t think there is one right answer to those
questions. But I do know that correctness and
consensus take time to mature, and that stability
is one of the primary benefits of having
standards. If the standards themselves are
changing every few months, industry can’t keep
up.

Experience has shown that it takes at least
five years for new innovations to graduate to
common practice. With that statistic in mind, I
would argue that it’s worthwhile for a standards
committee to favour getting everything right over
getting something out the door. Once a mistake
is set in standards concrete, it becomes a boil on
the industry bum for eternity. Even if it is
deprecated in a later revision, vendors feel
obligated to support it for backwards
compatibility.

And the much-maligned ISO standards
process, which forces pauses for review and
reflection, has a lot to recommend it.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

6 CVu/ACCU/Dialogue

Dialogue
Student Code Critique

Competition 30
Set and collated by David A. Caabeiro <scc@accu.org>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers’
comments and criticisms of published entries are always welcome.

Before We Start
It seems that praying for more participation among members is giving good
results, but anyway, let’s hope I don’t have to repeat the plea issue after
issue. Please note that you can participate not only by submitting critiques,
but also by contributing code snippets you came across which attracted
your attention. Remember that you can get the current problem set on the
ACCU website (http://www.accu.org/journals/). This is
aimed at people living overseas who get the magazine much later than
members in the UK and Europe.

Student Code Critique 29 Entries
Looks like an ordinary snippet, doesn’t it? Amazingly, it contains various
mistakes for such a few lines. Please provide a correct version.

#include <iostream>
using std::cout;
using std::endl;

#include <list>
using std::list;

int main() {
list<double>::iterator it;

list<double> lst;
*it = 34;
*++it = 45;

*++it = 87;
it = lst.begin();
for (;it < lst.end(); ++it){
cout << it << '\t' << *it << endl;

}
system("pause");

return 0;
}

From Tony Houghton <h@realh.co.uk>

There are three errors preventing the program from compiling. The first is that
< is not a valid operator for an iterator and needs to be replaced with !=. Then
it can not be printed to cout; we could print the the address of the data it
references, but that’s a useless piece of information in this context, so I think
it’s better to introduce a second variable called n showing the numerical
position we’ve reached in the list. This is only meaningful as a cue for the user.

I’ve chosen to initialise it outside the loop and increment it in the loop body
rather than in the loop statement to emphasise that the loop is iterating through
the list and n is supplemental. The final compile error is that we haven’t
included <cstdlib> so system is undefined. The pause command is
not portable anyway, and C++ makes such a meal of waiting for a user to press
Enter that I’ve just deleted that line and left it up to the user to run the program
in a shell or IDE that will give them a chance to read the output.

Even though it will now compile the code is still badly bugged and
likely to crash. We’re derefencing it without initialising it. Not only that,
it is not possible to add elements to a list by writing off the end of it. We

need to explicitly create a new element by appending to the list with its
push_back method.

Here is my version of the code:

#include <iostream>
using std::cout;
using std::endl;
#include <list>
using std::list;

int main() {
list<double> lst;
lst.push_back(34);
lst.push_back(45);
lst.push_back(87);
int n = 0;
for(list<double>::iterator it = lst.begin();

it != lst.end(); ++it)
cout << n++ << '\t' << *it << endl;

return 0;
}

From Roger Orr <rogero@howzatt.demon.co.uk>

The problem posed is to provide a correct version of the code.
The first question which needs answering is what is the purpose of this

code? It looks very much like someone’s first experiment with STL collections
and iterators – but they don’t really understand what they’re trying to do.

Solution one:

#include "Josuttis/The C++ Standard
Library/Chapter 5"

There’s little point simply fixing the code since the basic misunderstanding
seems so great; a good tutorial/reference is probably the best place to start.
However, if you insist...

Input

The code seems to be trying to fill a list using an iterator and then print out
the list to verify that it filled properly.

11 *it = 34;
12 *++it = 45;
13 *++it = 87;

Unfortunately, although a list can be populated with an iterator, a standard
list::iterator is not the right sort! There are classes of iterators
which are designed to allow insertion, so we need one of those to insert
either at the back or the front of the list. I’ll pick a back iterator since that
means the items will be printed in the order they’re inserted, which seems
more intuitive. So let’s replace these lines with:

back_insert_iterator<list<double> >
ins_it(lst);
*ins_it = 34;
*++ins_it = 45;
*++ins_it = 87;

This code is perfectly OK, but there is a potential performance issue with
using pre-increment. It’s probably not worth worrying the writer of the
code with this just yet (but you could refer them to one of the Effective
C++ books...)

Now we’ll need to include another header file, <iterator>, to be
compliant with the standard and add a using
std::back_insert_iterator.

On that note, programmers vary on their attitude to using. Again, I
wouldn’t worry this programmer too much about it at this point (unless
company coding rules apply!) Now the code.

7CVu/ACCU/Dialogue

Output

The code to output the list relies on operator< for the iterator – this
pretty well implies that the iterator is a random access iterator, such as an
iterator over a vector. The normal paradigm for iterators in STL is to use
!= for the loop condition.

The loop can be coalesced: currently we have 3 parts to the loop control
structure:

a) Declaration
list<double>::iterator it;

b) Initialisation
it = lst.begin();

c) Condition and update expression
it != lst.end(); ++it

I’d recommend putting these all into the for statement for clarity and to
reduce the scope of it:

for(list<double>::iterator it = lst.begin();
it != lst.end(); ++it)

or, since we’re trying to output from the list only,

for(list<double>::const_iterator it
= lst.begin();

it != lst.end(); ++it)

Again, more advanced techniques to avoid the for loop completely are
possible but would be likely to simply confuse the programmer at this
point. Now, what are we actually outputting inside the loop? The code as
written tries to print the iterator itself and then its contents. By analogy
with ‘iterator is a generalised pointer’ I guess the purpose is to display the
address of each item and its value. However there’s not a standard
operator<< defined to do this – the easiest solution is to use the &
operator:

cout << &*it << '\t' << *it << endl;

or possibly, for clarity, use a helper variable:

const double &value = *it;
cout << &value << '\t' << value << endl;

Now we’re almost done... on a Microsoft compiler on Windows anyway
:-) The last statement, system(“pause”) , is target environment
dependent. This might be fine and if so I’ve no problem with do the job
like this. I might like to include <cstdlib> of course, since system
currently works because, on my version of the standard library, one of the
other header files is pulling in <cstdlib> .

If the code has to be portable then you’d need to replace it with
something equivalent (or nearly so) from the C++ library. I’m assuming
the code is fine on the target OS. And that’s it – to get the code working
anyway. Explaining the changes – and in particular the two types of
iterators needed – might be a little more work!

From Roger Leigh <rleigh@whinlatter.ukfsn.org>

Overall, the intentions of the author are obvious, but it is clear that some
misunderstandings over the use of containers and iterators resulted in non-
functional code. The use of headers and using statements was fine, and
the general structure of the code was also acceptable, bar two lines that
required more indentation.

The first major error is with the use of iterators. When assigning values
to the list, the iterator is not initialised and so is invalid (cannot be
dereferenced). To compound the error, on the second and third
assignments, the iterator is incremented in addition to dereferencing. All
these mistakes will result in undefined behaviour.

The push_back()method is probably what the student wants. It looks
like there is some confusion over how iterators work. The student needs to
understand that iterators “point” to items within a container, and that they
are not by themselves responsible for inserting values. Likewise, while an
iterator can be incremented, this is only useful when there is a next element
in the container, and error checking should be done to check that the new
iterator is valid. Like pointers, they need to point to a valid location, and

only then may they be dereferenced to access the contained value. For
insertion, an iterator would typically only be used when inserting in a
specific location in the list (used with the insert() methods), or when
using an insert iterator, neither of which are applicable in this case.

The for loop iterator is initialised outside the for statement. While
valid, it’s not necessary and is bad style. Also, the for loop conditional
uses it < lst.end() rather than it != lst.end(). Not all
iterators implement operator<, but all implement operator== and
operator!=. We only need to know if we are at the end of the list. When
outputting the list contents, the iterator is output to an ostream, which is
not possible (the operator is not implemented). Iterators do not have a (user-
visible) index or a meaningful address, and so if the elements should be
numbered, a suitable container should be used (e.g. a vector, which allows
access by index), or the numbering should be done “by hand”.
std::endl is used after outputting each element. This adds a newline
and flushes the ostream. The flushing is unnecessary, and would have
a negative impact on performance when outputting the contents of a larger
container. ‘\n’ is adequate here. A more general issue is the use of
list<double>. The numbers could more easily be stored in an int,
or short int . I would also have used a vector<int> myself, given
that the additional features a list provides are not used, and impose a greater
overhead than a vector (e.g. memory usage).

Lastly, system(“pause”) is both system-dependent (non-portable)
and mostly useless. I’ve only come across its use in Windows
environments in order to stop the terminal window closing on program exit.
This won’t work on platforms without a pause command (e.g. UNIX),
and is a terminal configuration issue, not something to “fix” in the program
code itself. The solution is to configure the terminal window not to close
on exit, or to run the program directly from the shell. A version of the code
rewritten to take the above into consideration follows:

#include <iostream>
using std::cout;
using std::endl;
#include <vector>
using std::vector;

int main() {
vector<int> coll;
vector<int>::iterator pos;
coll.push_back(34);
coll.push_back(45);
coll.push_back(87);

int n = 0;
for(pos = coll.begin(); pos != coll.end();

++n, ++pos)
cout << n << '\t' << *pos << '\n';

return 0;
}

From Nevin Liber <nevin@eviloverlord.com>

Where to begin, where to begin...

Syntax error #1:

cout << it
list<double>::iterator it;
//...
cout << it //...

it is an iterator, not a pointer, and there is no standard way to output it
to a stream. Guessing here that the intent was to display the address of the
element in question, the following will work:

cout << &*it //...

The dereference operator*() is called on the iterator, returning a
reference to the element. Then the address-of operator&() is called
upon that, yielding the address of the element. Note: if the container were
of a user defined type instead of double, this idiom might not work if the
user defined type overloaded operator&().

8 CVu/ACCU/Dialogue

Syntax error #2:

system("pause")

system() is not a built in function. One way to get its function prototype
would be to #include a header which contained it, such as
#include<cstdlib>. Typically, system("pause") would call
another program called pause. While not a syntax error, my computer
does not contain such a program, and rather than guess at its semantics
(wait for a certain amount of time, wait for a key to be pressed, wait for a
signal, etc.), I’m going to leave it out for the rest of this discussion.

Syntax error #3:

it < lst.end()

Iterators are not pointers. list in particular has bidirectional iterators,
and should only be compared for equality (operator==()) or inequality
(operator!=()). Note: not all compilers will catch this at compile
time, depending on how its particular implementation of
list<T>::iterator was written. Whether or not it is a syntax error,
it is definitely a semantic error, and the fix is

it != lst.end()

Now that we are done with syntactical errors, on to the purely semantic ones.

Semantic error #1: what list does it refer to?

Looking at our declaration:

list<double>::iterator it;
list<double> lst;

it does not refer to any particular list. I’ll actually fix this later, since it
won’t be needed in the fix for the next three lines of code anyway...

Semantic error #2: *it does not synthesize space in the list

*it = 34;
*++it = 45;
*++it = 87;

This is one of the most common errors I’ve seen when people start using
the standard containers. I believe the intent here is to have a list of three
items. However, *it is illegal, not only because it doesn’t refer to lst,
but even if it did, lst started out empty, and the dereference of any iterator
into an empty collection is illegal.

Since there are only three elements, the simplest way to create this is:

lst.push_back(34);
lst.push_back(45);
lst.push_back(87);

Where push_back() places the element on the very end of the list.
Note: there is an implicit conversion of each of these numbers from type
int to double, which may or may not happen at compile time.

Since it isn’t actually needed until the for loop, just declare it there.
Before doing so, I’m going to add the following typedef to the

beginning of main() for a little bit of defensive programming:

typedef list<double> Collection;

The reason is that the iterator always has to match the type of the collection,
so if you need to change this, it only has to be changed in one place. Now, one
should pick a better name than Collection; however, better names will not
include the word list or double, as that is what we are trying to abstract away.
Names should reflect what something is for, not how it is implemented.

The typedef is placed inside main() itself because no one outside
of main() cares about it. Always limit scope as much as possible.

Putting this all together:

#include <iostream>
using std::cout;
using std::endl;
#include <list>
using std::list;

#include <cstdlib> // for system(char const*)

int main() {
typedef list<double> Collection;
Collection lst;
lst.push_back(34);
lst.push_back(45);
lst.push_back(87);

for(Collection::iterator it = lst.begin();
it != lst.end(); ++it)

cout << &*it << '\t' << *it << endl;

system("pause");
return 0;

}

Planning for a reasonable future

At this point, we could be done. The above code works, is simple and
straightforward, and does the job requested.

However, if this were the foundation of a bigger project, I might add a
little more complexity for future flexibility. This is ultimately a judgement
call; do too little, and you have under engineered the solution; do too much,
and you have over engineered it. That is why I say plan for a reasonable
future, and not all futures.

Future: Data driven initialization of lst

A future that I consider reasonable is one where the number of initial
elements may be larger than 3. push_back()works fine for 3 elements.
But what about 30? Or 300?

Making it data driven is more scaleable. The data driven way is to
initialize the list from an array, as in:

static const Collection::value_type
initialElements[] = {34, 45, 87,};
Collection lst(initialElements,
initialElements + 3);

Note: I prefer using Collection::value_type over double for
the type of the elements in the array to emphasize that the type here should
correspond to the type of the elements in lst. By typedefing
Collection , I have self-documented that there is a relation between
initialElements, lst, and it. While iterators are not (necessarily)
pointers, pointers can be used in place of iterators, and list has a
templated constructor that can take any type of input iterator. There still is
the matter of initialElements + 3. It is less error prone to have
the computer count the number of elements than for me to count it. Using
a C idiom:

Collection lst(initialElements,
initialElements

+ sizeof initialElements
/ sizeof initialElements[0]);

While I can do this without any helper functions, it is still error prone. If
initialElements was a pointer instead of an array (which could
happen if this code had changed to pass in a pointer to an array of initial
values), the calculation would be wrong, yet the code would still compile
and run. To solve this, I have a set of templates that always gets this
calculation right:

#include <cstddef> // for size_t
template <typename T, size_t N>
inline size_t size(T (&)[N]) { return N; }
template <typename T, size_t N>
inline T* begin(T (&a)[N]) { return a; }
template <typename T, size_t N>
inline T* end(T (&a)[N]) { return a + N; }

Basically, they make an array look like a collection, with begin() ,
end() , and size() functions (although they are free functions, not
member functions). The array is passed in by reference to these functions,
and uses template argument deduction to determine the number of elements

9CVu/ACCU/Dialogue

in the array. Note: if we pass in a pointer instead of an array, it is a compile
time error. In this case, they are used as follows:

Collection lst(begin(initialElements),
end(initialElements));

Note: technically, instead of begin(initialElements) as the first
iterator, I could have passed in initialElements directly, as the array
will decay into a pointer when passed by value. I prefer the former, both
as it is self-documenting, and I get an extra level of checking that
initialElements is an array. Combining all of this, we get the
following solution:

#include <iostream>
using std::cout;
using std::endl;
#include <list>
using std::list;
#include <cstdlib> // for system(char const*)
#include <cstddef> // for size_t
template <typename T, size_t N>
inline size_t size(T (&)[N]) { return N; }
template <typename T, size_t N>
inline T* begin(T (&a)[N]) { return a; }
template <typename T, size_t N>
inline T* end(T (&a)[N]) { return a + N; }

int main() {
typedef list<double> Collection;
static const Collection::value_type

initialElements[] = {34, 45, 87,};
Collection lst(begin(initialElements),

end(initialElements));
for(Collection::iterator it = lst.begin();

it != lst.end(); ++it)
cout << &*it << '\t' << *it << endl;

system("pause");
return 0;

}

From Mick Brooks <michael.brooks@physics.ox.ac.uk>

This is my first attempt at an SCC solution, so I may learn more than our
student. Anyway, here goes:

Trying to compile your code, GCC flags the line with the for loop as
an error. Trying to evaluate it < lst.end() is the problem, since the
list::iterator is a bidirectional iterator, and so doesn’t have the less-
than operation defined. It would work if we used a vector container instead
of the list, since vector::iterator is a random-access iterator which
is more powerful, and has more operations defined for it, including one for
less-than. In order to make this loop do what was intended, we can look to
a C++ idiom for help: use != as the loop condition check. This operation
is defined for all of the five iterator categories, and so will work for iterators
over any of the standard container types. The loop still looks unusual,
because the idiomatic style is to make use of the initialiser part of the for-
loop syntax. The maintenance programmer (which could be you in about
6 months) will see that combination of (; and will needlessly have to
wonder if that’s a mistake. Make it explicit, and put in the initialization.
This has the wonderful side-effect of limiting the scope of the it variable.
While we are here, we can notice that you don’t modify the value pointed
to by the iterator it, and can make that explicit in the code by using a
const_iterator instead. So now the loop looks like this:

for(list<double>::const_iterator it =
lst.begin();

it != lst.end(); ++it)
cout << it << '\t' << *it << endl;

which is made much clearer to a C++ programmer through its use of the
standard idioms.

Unfortunately, the code still won’t compile; this time because there is
no output operator (<<) defined for the const_iterator type. I assume
that the intention of cout << it was to print the address of the object

pointed to by the iterator. This might just happen to work if list iterators
were actually pointers, but they are more complicated than that. What I
think you want here is &*it, which is the address-of operator applied to
the result of dereferencing the iterator, and gives us the memory address
of the double that is pointed to by the iterator.

Well, now the code will compile, but running it gives a segmentation
fault on my Linux machine, which tells us that we aren’t finished yet. This
is due to using an iterator to access memory that we don’t own, and means
that there’s some work to be done on understanding how to create our list.
In the first line of main(), you define the iterator it but don’t give it a
value, which leaves it in an unknown state. Trying to dereference that
iterator is a big mistake, which causes the segfault. The iterator would have
to be made to point to a valid member of a list before we can use it, but
there are no valid members of an empty list. We have to find another way
of populating the list. My preferred solution would be to use push_back
on the list and drop the iterator altogether, which leaves us with the
following working code:

#include <iostream>
using std::cout;
using std::endl;
#include <list>
using std::list;

int main() {
list<double> lst;
lst.push_back(34);
lst.push_back(45);
lst.push_back(87);

for(list<double>::const_iterator it =
lst.begin();

it != lst.end(); ++it)
cout << &*it << '\t' << *it << endl;

system("pause"); // if we must...
return 0;

}

As an aside, if you really want to use an iterator interface to do the job,
you’ll have to learn about Insert Iterators. A back_insert_iterator
will call push_back for you, and you can then fill the list with the iterator
interface, like this:

#include <iterator>
using std::back_insert_iterator;
// other includes, as before

int main() {
list<double> lst;
back_insert_iterator<list<double> > it(lst);
*it = 34;
*it++ = 45;
*it++ = 87;
// ... as before

I’m not sure what this buys you though, except that you get to learn about
the added confusion that it++ and ++it are no-ops, and so both the
increments in that snippet could be dropped.

From Terje Slettebø <tslettebo@broadpark.no>

First, some comments about style, before we examine correctness. The
program starts with:

#include <iostream>
using std::cout;
using std::endl;
#include <list>
using std::list;

Now, in this case, for a source file (not header file), it’s generally safe to do:

using namespace std;

instead of the using-declarations. Any name clashes will be flagged by
the compiler, and you may save yourself considerable amounts of typing
this way. I know this is a hot topic, but anyway. Another alternative is
explicit qualification of the names in the code: std::cout << it .

The code has a weird indentation, with some lines indented a couple of
places for no apparent reason at all. This gives the code a messy/untidy
look, and clarity is important; unclear code is a good breeding ground for
bugs. Moving beyond pure layout, there are some other general comments
that can be made:
1. It’s a good idea to initialise the variables at the point of declaration, if

possible. This avoids the chance of accidentally accessing an
uninitialised variable. This is actually happening in the code (and that’s
just one of the bugs): it is declared but not initialised, and then
subsequently used, leading to undefined behaviour.

2. Also, you should not “reuse” a variable for a different purpose, as the
variable it is in the code (it’s reused for the loop) (this is a bad case
of reuse. ;)).

3. Keep scopes as small as possible. If it is declared in the for-loop, it
only exists in the loop, and you avoid accidentally using it after it should
no longer be used.

4. Moreover, you may want to use const_iterator , rather than
iterator, when the code doesn’t alter the container (despite what
Scott Meyers may say about preferring iterator).

5. The naming used in the code is not very good, to say the least. Names
should generally be chosen based on the role of the variable, not its type
(although some Hungarian Notation like ..._ptr might be
acceptable, as it reminds us that it requires a different usage). In the
code, the words lst and it are used. Avoid acronyms and
abbreviations, unless the name might be rather long without it, or the
acronym or abbreviation is well-known. However, this code doesn’t just
have bad style, it also have some real bugs (including the one mentioned
in point 1, above):

6. When the iterator it is assigned to, even if it had been a valid iterator
to the start of the container, the container is empty, so the iterator is the
past-the-end iterator. Assigning to and incrementing it leads again to
undefined behaviour.
The problematic assumption in the code seems to be that the
programmer thinks assigning to the iterator, and incrementing the
iterator, will insert the values into the container. It is not so. You have
to explicitly insert the values using the container object, for example
with push_back:

lst.push_back(34):
lst.push_back(45);
lst.push_back(87);

7. One small thing to note here is that there’s an integer to floating point
conversion when the values are inserted, but it gives the expected
behaviour. To avoid it (and its possible overhead), you might use values
of type double, instead: 34.0, etc.

8. The list iterator doesn’t have the less-than operator defined, only equal
and not equal, so the program won’t compile as it is. It may be
recommended to always use not equal, even for containers supporting
less-than, for consistency, and stronger post-conditions to the loop
(detecting bugs earlier).

9. The body of the for loop tries to print out the iterator, which fails, as
there isn’t a stream operator defined for it. The intention was possibly
to write out the index of each element. This isn’t available from the list,
so you have to track it separately, if you need it.

10. One final point to note is that system() is not a standard C++
function (and there’s no other header to include it in the program), so
even if the right header was included, the program wouldn’t be portable
to systems lacking that function.

11. endl is a manipulator that, in addition to writing a newline to the
stream, also flushes it, and you may want to avoid needless flushing,
especially if it’s done a lot. The output stream is flushed before any
input, anyway. (Ok, so this was the final note.) Let’s say the list is
a list of percentages. Here’s a possible corrected version of the
program (the using part has several correct possibilities, as
mentioned):

#include <iostream>
#include <list>

int main() {
std::list<double> percent_list;
percent_list.push_back(34.0);
percent_list.push_back(45.0);
percent_list.push_back(87.0);
for(percent_list_type::const_iterator it

= percent_list.begin();
it!=percent_list.end(); ++it)

std::cout << *it << '\n';
}

This corrects the problems mentioned in points 1-11.
If you thought I would stop here, you don’t know me well enough. ;) Let’s

step back, and try to see what is the intent of the code. The code should express
the intent as clearly as possible. Well, does it? Let’s find out. The code inserts
few values into a list, and then prints them out. The code above says quite a
bit more than this. One thing that is commonly mentioned is to use for_each,
rather than for, in such situations. However, using only the standard library,
you need to then create another class to do the printing. This isn’t necessarily
an improvement, as you can’t define the class at the point of use. However, as
Kevlin Henney shows in his “Omit Needless Code” article, there are several
alternatives to printing out the values. One is to use stream iterators:

typedef std::ostream_iterator<double> out;
std::copy(percent_list.begin(),

percent_list.end(),
out(std::cout,"\n"));

This makes it rather more succinct. Now, the code focuses on what to do –
printing or copying the values to the output stream – rather than how to do it.

If you need more advanced formatting (such as enclosing each value in
braces), this won’t do, though. Fortunately, there are libraries that allow us
to create function objects on the fly, usable with algorithms, such as
Boost.Lambda [1]. With it, we may substitute the above with:

std::for_each(percent_list.begin(),
percent_list.end(),
std::cout << _1 << "\n");

That takes care of the printing. What about the insertion of values? That
looks rather repetitive, doesn’t it? Well, Boost can again help us, here, with
the Assignment library [2]:

percent_list+=34.0,45.0,87.0;

Here’s the last revised version of the code:

#include <iostream>
#include <list>
#include <algorithm>
#include <boost/assign/std/list.hpp>
#include <boost/lambda/lambda.hpp>
using boost::assign::operator+=;
using boost::lambda::_1;

int main() {
std::list<double> percent_list;
percent_list+=34.0, 45.0, 87.0;
std::for_each(percent_list.begin(),

percent_list.end(),
std::cout << _1 << "\n");

}

Now, there’s no fluff; the code states what it does (at least when you learn
the abstractions involved). A further improvement might be if there were
overloaded versions of the standard algorithms taking containers, rather
than iterators:

std::for_each(percent_list,
std::cout << _1 << "\n"):

David wasn’t kidding when he said the code contains “various mistakes
for such a few lines”... This small snippet also turned out to be a good

10 CVu/ACCU/Dialogue

11CVu/ACCU/Dialogue

opportunity to demonstrate some software development fundamentals, as
well as more advanced techniques.
[1] http://www.boost.org/libs/lambda/doc/index.html
[2] Available in the CVS, but not yet in the current release.

The Winner of SCC 29
The editor’s choice is:

Mick Brooks
Please email francis@robinton.demon.co.uk to arrange for your
prize.

Francis’ Commentary
#include <iostream>
using std::cout
using std::endl

#include <list>
using std::list;

Let me start with a small style issue. I do not like interspersing using
declarations and headers. I like to see all the #includes up front.
Preferably I like to see any user header files first (in alphabetical order)
followed by the necessary standard headers (also in alphabetical order).
Placing the user header files first avoids accidentally masking a dependency
that should have been in visible in the user header. Placing the includes in
alphabetical order just makes it easier to check whether one has or has not
been included.

While I notice, std::endl is not required to be declared as a
consequence of #include <iostream>, it usually is but only because
iostream normally drags in ostream.

When it comes to using declarations and using directives I think we
should tend to use fully elaborated names (i.e. do not use either using
directives or using declarations) until the user knows enough to
understand the implications of each. I know this is contrary to what I did
in ‘You Can Do It!’ but the motive in that book was to get inexperienced
programmers writing code so I was willing to make some sacrifices.
However, even there I started with fully elaborated names and required that
they be used in all reader written header files.

int main() {
list<double>::iterator it;
list<double> lst;

I cannot say that I am enamoured by the choice of it as a name for an
iterator but I can live with it, but the choice of lst as a variable is beyond
my tolerance levels (well it is today). And what is that extra indent for?
Indents without purpose only serve to confuse.

Up until now, I have just being cantankerous. Now it is about to get
serious:

*it = 34;

Do you know if list<T>::iterator has a default constructor? No,
neither do I and I do not care to take time to look it up. Whether it does or
not, *it is surely introducing undefined behaviour because it has never
been initialised to point to any storage.

And now it gets worse:

*++it = 45;
*++it =87;

More purposeless indentation coupled with incrementing what is, at best,
an iterator that points nowhere. And only now does the student make any
attempt to relate it to lst. Had the program no had multiple instances of
undefined behaviour the next line would have been perfectly OK, just not
exactly the idiomatic way to do it.

it = list.begin();

Time to wind back to the beginning and write the code properly by avoiding
early or unnecessary declarations.

#include <iostream>
#include <list>

typedef std::list<double> list_of_double;

int main() {
list_of_double data;

Note that there are no using declarations, but I have used a typedef.
That is often a much more useful tool, and one that provides a modicum
of documentation. In fact it is the exact reverse of using declarations
because it adds information (not much in this case, but the problem is pretty
abstract) rather than removing it (the library that a name belongs to).

Next the list starts empty so there is nowhere to store values. My
preferred choice is to use push_back(), however we could have created
the object data is bound to with three default initialised nodes by changing
the definition to list_of_double data(3); . Sticking with my
preferred option we get:

data.push_back(34);
data.push_back(45);
data.push_back(87);

The reason that I prefer this option is because it makes it very clear to even
the rawest novice that data has nothing in it until we start pushing things
in. If teaching, I would break off here and have a brief discussion as to what
push_back() does.

Having created a list of values, I am ready to write them out:

for(list_of_double::iterator iter
= data.begin()

iter != data.end(); ++iter) {

You did notice that the student had used the wrong comparison?
std::list::iterator is not a random access iterator and so values of
it are not ordered. We simply cannot use a less than comparison. The only
thing that will work is to keep going until equality with the end marker is
achieved. Less than will work for most of the sequence containers but not
for this one. Comparison for inequality is idiomatic for C++, those that want
to do something else should understand why sticking with idioms is helpful.

std::cout << &*iter << '\t' << *iter
<< '\n';

I am guessing that the student wants to see the address used to store the value.
If he didn’t then he is completely out of luck because there is no requirement
that a value of a std::list::iterator object be acceptable to an
ostreamobject. The standard technique for getting the address of an object
in a container is to apply the address-of operator to the dereferenced value
of the iterator for the object; another idiom of modern C++.

Another feature is that I do not use std::endlunless I actually want
to force both an end-of-line and a flush to output. I only need an end-of-
line so I use the correct character for that; '\n'.

Now to finish:

}
std::cout.flush();
std::cin.get();
return 0;

}

Now I force the flush by calling the correct function. I don’t want to hunt
around to see which header declares system() and I certainly do not
want to introduce that kind of system dependence into my code unless I
really have to.

There are several other things that I might do to polish this program a bit,
but I think the above will do. Now I wonder how the rest of you got on, and
how many things I missed. The sad thing about much of the code we see here
is that it shows just how badly instructors are explaining what is happening.
Most of the code we publish comes from students who really want to get it
right rather than ones who went to sleep during the lectures. The kind of errors
they make expose fundamental misunderstanding of C, C++ etc.

[Code for SCC 31 at foot of next page]

Student Code Critique 31
(Submissions to scc@accu.org by November 10th)

Here is a program Francis collected which is riddled with poor design,
naming, etc. as well as the actual problem:

I’m getting a “parse error before else” at the line indicated by the arrow

void IS_IT_A_DDR(string& mtgrec,
string& temprec,int& ddrrc) {

string Day2="SunMonTueWedThuFriSat";
string Daytoken="0123456";
int badday=0;
if (mtgrec.size() < 8) {

ddrrc=0;
return;

}
for (int i=0; i <= 6; i++) {

if (mtgrec.substr(0,3)
== Day2.substr((i+1)*3-3,3)) {

if ((mtgrec.substr(3,1) == "0")
|| (mtgrec.substr(3,1) == "1")) {

if ((mtgrec.substr(7,1)).
find_first_of("BCLMOPSTW*") != -1) {

temprec=Daytoken.substr(i,1)
+ mtgrec.substr(1);

ddrrc=1;
return;
}
else {

ddrrc=2;
return;
}

else { <<< compiler diagnostic
ddrrc=3;
return;

}
}

}
else badday++;
}
if (badday == 7) {
ddrrc=4;
return;

}
else ddrrc=5;
return;

}

12 CVu/ACCU/Dialogue

Quite a few emails in this edition. As always, I welcome your comments about C
Vu, the articles and about the ACCU in general, keep them rolling in!

Student Critique
On reading the various answers for the code critique competition 27 in C
Vu Vol 16 No 3 (yes, I’m an issue behind at the moment!), involving “ugly”
numbers, I feel I must point out what I find to be some poor advice from
Francis in his commentary. He develops a solution, as most of us did, with
an IsUgly() , or is_ugly() function. This he gets to a near working
stage, i.e. it detects numbers whose prime factors are not all 2, 3 or 5. Then
he realises that the spec said that ugly numbers have to have at least 2 prime
factors, i.e. they cannot be 2, 3, and 5 themselves. Fine, except for the
implementation. He realises that he need not worry testing numbers below
6, oh, except for 4, because that is 2x2.

I can’t decide whether this is a form of premature optimisation or not.
Either way, the most significant problem is that we’ve now introduced the
literals 4 and 6 into the code. Why? Because 6 is bigger that the biggest
of the ugly prime factors, and 4 is the only number between them which
can be made by more than one factor of one of them. That to me is not the
kind of complicated derived logic you should have in code.

Suppose we made the definition of ugly such that its prime factors were
2, 7, 23. Now, what happens to the 4 and 6? Hmm, we need to tackle it
generically this time, or else make special cases of 4, 8, 14, 16.

Simon Sebright
simonsebright@hotmail.com

I put this to Francis and had this back..

We can spend an awful lot of time trying for generic solutions to specialised
problems. In my opinion the time for considering generic solutions is when
we are actually presented with several similar problems. At that stage it
may be worth looking for a suitable abstraction.

I contend that human time is one of the most expensive resources and
we need to develop work habits that reduce that cost. We can argue
interminably about how to do this and that in itself is a waste of precious
human resources. The degree to which a solution is specialised will always
be a judgement call and as such different people will draw the line in
different places.

By the way, you see the logic of my code as complicated, I don’t but
here again we differ and I am certainly not going to lose any sleep about
such differences of opinion.

Which in turn led to...

Of course, there is always a line to be drawn on the amount of time you
can scrutinise a piece of code. In a production environment, there’ll be
thousands or even millions of lines in a project, and spending half an hour
looking at 40 lines of code could have a dramatic effect on productivity.

But, in the context of a student code critique (real or ficticious), I think
investing time is a good thing. Not discouraging bad habits or shortcuts at
this stage has to be a bad thing. Making the novice aware of more
expressive, or generic ways of doing things gives them a greater toolkit later
on, and then it’s going to be more likely that future code reviews won’t need
such fine-scale attention. I’ve seen plenty of these kinds of shortcuts cause
bugs later in a program’s life, and they can be very hard to track down.

I’m increasingly of the opinion that maintenance starts the moment you
hit the compile button, not just two years later. The current project I’m on
has about 1 million lines of code, has been in development for 3-4 years,
is on the third or fourth generation of programmers, and won’t be finished
and out of the door for a number of months. Equipping students with the
awareness of issues in these environments is very important.

Applying that to this example, I’d rather see logic or assumptions in the
code than the comments. E.g.

const int small_ugly_exceptions[] = { 4 };
const int smallest_possible_ugly = 6;

and then we don’t need comments. I note that there was no comment on
the < 6 test, which I’d like to see a put in in a production environment
(except that I advocate coding it so comments are not necessary).

I’ll leave it there. As always, if you wish to comment, feel free.

Fortran and Professionalism in Programming
I am writing to you as Chairman of the British Computer Society Fortran
Specialist Group as well as a member of the ACCU of 10 years standing.

I would like to expand on your mention of restrictions on coding style
and formatting imposed by Fortran 77 in Pete Goodliffe’s article in C Vu
Volume16 No 4 and to let the readers of C Vu know that Fortran is alive
and well in the 21st century.

I spent 15 years writing and maintaining Fortran 66 and 77 code. While
the fixed format source form put some restrictions on the layout of program

Letters to the Editor

13CVu/ACCU/Dialogue

statements, they had to be within columns 7 to 72 of each line, there was no
restriction on using indentation to show code structure and you could continue
long statements over several lines. If I remember correctly the standard
allowed for 9 continuation lines but many compilers allowed up to 99.

The next revision of the ISO standard, Fortran 90, introduced the free
format source form, where there was no restriction on the positioning of
statements on a line other than a maximum line length of 132 characters,
which some compilers increased. It introduced more modern features to
complement Fortran’s well known strengths in numerical computation.
Fortran 90 and 95 introduced operations which could be carried out on
whole arrays or sections of arrays, rather than just on individual elements.
Also dynamic memory allocation and abstract data types were introduced.

The most recent version of the language, Fortran 2003, is due to be
published in the autumn of 2004 and contains features to enable object
orientated programming to be carried out in Fortran. For more information
on the development of Fortran standards since Fortran 95 please see the
Standardisation page on the Group’s web site at
http://www.fortran.bcs.org/standards/stanhome.htm.

If anyone is interested in exploring the modern features of Fortran a
version known as F has been developed. F is a subset of Fortran 90/95 that
enforces correct coding practices by removing antiquated and dangerous
features in F90/95. There are new versions for Linux, Solaris, and Windows
available for free download from http://www.fortran.com.

In response to some of the questions posed in Pete’s article I can say
that I tried to code in a consistent manner when writing new code, using 2
spaces for each level of indentation in both Fortran and C, and to “improve”
the layout and structure of existing Fortran code when I had to modify it
and had the time for cosmetic changes!

From my own experience I agree with Pete that tabs should not be used
for indenting. We were programming across several platforms, each of
which had its own editor, which handled tabs differently so that tab
indented code could look OK in one editor but be almost unreadable in
another. I aimed to globally replace all tabs with 6 or 8 spaces whenever
I came to work on a tab-indented file. This was possible because we were
only a small team, three to five developers, and we each tended to work on
a particular area of the code so formatting changes did not often get
changed back by someone else!

I should like to take this opportunity to say how much I have enjoyed
Pete’s articles on Professionalism in Programming over the last four years.
I have found relevant and informative points in every one.

While writing about professionalism I would like to remind members
of the ACCU that the British Computer Society undertook a major relaunch
earlier this year using the slogan “Making IT the profession for the 21st
century” and aimed at making individual membership more relevant to
professionals in IT. See http://www.bcs.orgfor more information.

Peter Crouch
pccrouch@bcs.org.uk

Book Reviews
The proposed change to the book reviews was enough for this email.

On the book reviews/ratings etc. discussion, I think that the base issue is
what a book rating is for. One of the main reasons for such a rating is for
someone to chose which book might be a good investment for some
particular purpose (e.g. learning, reference etc).

If we give ratings on books (i.e. just a number or a conclusion separately
from the full review) it would generally be used so that people can find the
excellent books quickly. (Why would you want to know whether a book
is average, or really, really bad? You should probably avoid it anyway. If
you inherit it, you might want to read the entire review to find out what is
right/wrong with it.). Perhaps we would have to qualify what the review
rating is designed to be used for.

The meaning of ‘excellent’ is probably going to be different depending
on who you are (super-expert/beginner) and quite possibly what you are
going to do with it (games programming v. financial applications v satellite
control. Reference, or discussion of finer points of syntax? etc.). Also, what
one would consider excellent would be expected to change with time. (What
would the original K&R book on C rate as 15 years ago? And what today?)

I think that rather than attempting to rate all books, an ACCU rating of
books that we would consider indispensable might be useful. This could
represent a general consensus of the membership, rather than just a single
reviewer, or even a review panel. (As lots of people would have read
Stroustrup, Meyers and a host of other top-rated books it would not involve

a huge amount of postage or even necessarily of organisation). It would be
then be reasonable to review this list once a year, to see if there are any
missing or ones that should be removed from this list. The number of times
books crop up in references in Overload might be an interesting place to start.

How many books should be on the list? Possibly only 10 core C++
ones – and another 5 or 10 for specialist purposes (and an appropriate
number for other languages)

It would also mean that we might be able to supply different people’s
opinions and any caveats on the books – which would be interesting reading
in its own right.

There are almost certainly problems with this scheme. Perhaps there
are other reasons people like to have ratings. Perhaps this could be just
an adjunct to the existing book review rating scheme (recommended, highly
recommended etc).

James Roberts
James.Roberts@logicacmg.com

Thanks for such a great email which more or less reflects what I’ve been saying
for quite a while!

The point over what constitutes the ratings is something which does have to
be ironed out.

As you’re aware, we have 4 ratings; not recommended, nothing,
recommended and highly recommended, with recommended being like a grade
2 degree (2i or 2ii – recommended or recommended with reservations). There is
nothing to say what has to done to achieve one of these grades.

What has been proposed is that the reviewers have a set of criteria to judge
the books against. It is not a tick list as it still allows for the reviewer to use his/her
judgement – I have reviewed some books which while technically correct, have
been written so badly that their use is very limited. A simple tick system would
have gained it (say) a recommended, but the judgement would drop it down.
In lay terms:

Highly recommended : It’s been written by Stroustrup, or Josuttis
going down to

Put it back on the shelf or if you’ve bought it, demand a refund : anything in
the “for dummies” series, Schildt or “C++ in 21 days” type books.

Of course, the review system is still in the early days domain, so what will
happens is still to be determined.

And Finally...
Having just read the ‘Time for Change’ segment by Francis Glassborow, I
realised how much I resembled the description! ACCU has changed
considerably since its inception, and the change in the Committee make-up
does reflect the change in balance of the membership. Back then C++ had
not made it out of the laboratory and C did not have a standard... hmmm.

These days I certainly do not do much programming, and essentially
none of it in C/C++/Java/Python. My work is all systems administration,
which means about 50% security. I keep with ACCU for several reasons.
It is interesting, and I suppose I have a proprietary interest of sorts having
spent a few years doing administration for the organisation. I don’t
begrudge the fees because I think I still get value, and the organisation
deserves the support.

I wouldn’t object to management and administration items, but I don’t
think it should be at the expense of the current design/coding bias. In fact,
principles in software design are definitely valuable to anyone. Explaining
to management why there is so much ‘thinking time’ in any project is a
perennial issue.

I wonder if the matter of book reviews being ACCU or individual
opinion may be arising because ACCU is succeeding in being considered
as a serious organisation. The comparable commercial journals – and I
think we can make that comparison now – are entities with staff writers for
this purpose. The ACCU reviews are done by individuals with either
expertise in the subject, or a desire to gain that expertise. Some may be
plain curious. But that is a very real audience. I sometimes wonder if
publishers do not set themselves up with the cover synopsis. A book may
meet the expectations raised by the synopsis, fall short, or exceed them.
And that is before comparison of content with competing books and current
standards and practice.

Graham Patterson

If you’d like to send me a letter or email (I’m happy to get either!), please drop
me a line to editor@accu.org – you can send post to the address at the
front of C Vu.

Paul F. Johnson

Francis’ Scribbles
Francis Glassborow <francis@robinton.demon.co.uk>

Professional What?
Pete Goodliffe has written 27 columns on Professionalism in Programming,
so presumably readers know what claims such as ‘I am a professional’ and
‘I am professional’ mean. But do you? Both those apparently complete
statements leave much unsaid.

What does the claim to being a professional mean? Let me be more
precise; what does a claim to being a professional software developer mean?

One answer is that it is a statement that the speaker earns their living
by developing software. It says nothing about competence nor about any
ethical dimension. It also says nothing about any qualifications to earn a
living in software development.

The claim to being professional in one’s software development may
seem the same but is a different claim. It is a claim concerned with
competence and ethics.

We have to watch the choice of words very carefully. In some countries the
claim to be a software engineer requires some form of certification. For
example Germany reserves the term ‘engineer’ to people who are certified as
such. Some people have the mistaken belief that certification guarantees
competence. I wish that were so because then we would have not need to de-
register or un-certify people because they are incompetent. The best that most
certification does is to ‘guarantee’ that the individual has received appropriate
training and satisfied the certification board that they knew what they were
supposed to know and had acquired the skills that were deemed necessary.

I still hold valid certification as a teacher and as a sailing instructor. My
certification as a teacher is unlimited and qualifies me to teach at any level.
It was only my professional standards that prevented me from attempting to
teach ages or subjects for which I lacked the appropriate skills and experience.

My NSSA certification as a tidal waters Sailing-master qualifies me to
be responsible for groups of young people sailing both inland and on tidal
waters. My qualification as a RYA Senior Instructor allows me to hold
similar responsibility for groups of adults. However it is too many years
since I last sailed on tidal waters and I would never consider taking
responsibility for any group of people sailing until I had taken several
refresher courses. We have to distinguish between what we are officially
certified as being able to do and an awareness of the current limits of our
competence. Part of being professional lies in that latter quality.

Exactly what does certification imply? I think it is a way to absolve an
employer from some of the responsibility if an employee is incompetent
or does something that has bad consequences. It certainly is not some magic
that makes the holder more skilful or knowledgeable.

Certification has no impact on an individual’s competence to do a job
though it does, often, have implications as regards employability. However
there are, in my opinion, other far more important issues that distinguish
professionalism.

Knowledge of one’s limitations is essential. A willingness to continue to
develop skills and knowledge is important. Some forms of certification require
periodic re-endorsement based on either a demonstration of ongoing practical
experience or on retraining. My life-saving certificate is an example; as I have
neither applied the skills nor taught others those skills that qualification lapsed
three years after the last time I had it re-endorsed. That does not mean that I
am unable to act to save someone’s life, but it does mean that I am not
currently employable in jobs that require I be certified as a lifesaver.

Should we extend the requirement for regular re-endorsement of
professional skills to all jobs that have safety implications?

Another feature of being ‘professional’ as opposed to being ‘a
professional’ is respect for the skills and knowledge of other people. There
were numerous occasions during my career as a teacher when I had
unqualified (i.e. not qualified as teachers) people present lessons. These
people had skills, knowledge and understanding that gave them something
worthwhile to contribute to my pupils. I respected that and mostly these
non-teachers also understood the limits of what they were allowed to do in
the context of a classroom.

Since retiring as a teacher I have turned my hand to quite a few things.
I believe that I have acted professionally throughout. I hold no qualification
as a journalist, conference organiser, book reviewer etc. But in each case
I have taken time to discover how such jobs should be done. I sometimes
make mistakes. When I recognise them, I willingly, though not happily,
put my hand up. To me, admitting mistakes is part of professional
behaviour.

I recently had a member of ACCU tell me that my claim to be a programmer
was meaningless because there was no qualification for doing that. The same
person opined that only certified engineers should be involved in Standardising
C (but chose not to add that requirement to Standardising C++).

I would have some sympathy for his view had the qualifications for
certification as a software engineer got anything to do with language design
as opposed to language use. I would have even more sympathy if said
certification was limited to developing software in a language or languages
in which the individual had proven competence. However that latter
requirement is left to the professionalism of the individual.

Like many other tasks, working on computer language standards requires
professionalism. It actually requires far more skill and knowledge than can
be contributed by any single individual. That means that those involved must
be able to respect the skills and contributions of other participants. It also
means that those involved must be willing to spend time both understanding
the current standards and understanding the issues raised by others.

I know of several individuals in the UK who put my knowledge of C to
shame but they are currently committed to other work. When a job has to
be done we sometimes have to make do with the people who are willing
to do it even if someone who is not available could do it better.

While the above is largely personal, I hope that it gives you food for
thought. There is no harm (indeed probably much good) in making software
development a job that requires appropriate certification. However we
should not consider certification as proof that an individual is competent,
nor should we require it unless it is relevant to the job.

‘I am a certified engineer therefore I am better than you.’ should be
relegated to the same garbage heap where ‘I am older therefore I know
better’ (a view so often held by adults when dealing with children) belongs.

Undefined Behaviour
We all know that programs that contain undefined behaviour are abhorrent and
no professional programmer would consciously write source code that included
undefined behaviour unless they had verified that the actual behaviour on the
specific platform was acceptable. So consider the following program:

#include <stdio.h>
int main() {
int i = 0;
puts("Please type in a number: ");
scanf("%d", &i);
printf("%d", i*i);
return 0;

}

I have been lazy by using scanf() rather than a more robust mechanism.
Just pretend that I have carefully written code that will extract an integer
value from stdin. Given that, where is the undefined behaviour in the
above program? How do we justify both C and C++ making that behaviour
undefined? Should we do anything about it?

The problem is that signed integer overflow is undefined behaviour in
both C and C++. All the five main arithmetic operators (+. -, *, / and %)
can result in integer overflow. The simplest one is the modulus operator,
which can only cause overflow if the divisor is 0. We can easily check for
this condition before using the operator.

The division operator is rather subtler because there are two conditions
for overflow; the first is division by zero. The second is restricted to 2s
complement machines where division of INT_MIN by -1 results in
overflow. Unfortunately 2s complement is the most common architecture
for desktop machines.

Addition and subtraction can both overflow, but again there is a fairly
simple pre-test. I leave it to the reader to write one.

Multiplication is the worst case because we have to pre-test by using a
division. Let me assume that we start with two positive numbers a and b.
Now compute INT_MAX/a . If the result is less than b then the result of
a*b definitely overflows. If the result is equal to b we must now check
the remainder, because if it is 0 a*b == INT_MAX. However if either
but not both of the values are negative we have to test against INT_MIN.
If both are negative, we have to test the absolute value of one of the values
against INT_MAX.

We can reduce the number of tests if we are willing to accept some false
negatives (i.e. rejected cases where the actual calculation does not overflow).

I have seen the argument for allowing overflow to be undefined because
any program in which it happens is erroneous. The proponents of the status

14 CVu/ACCU/Dialogue

15CVu/ACCU/Dialogue

quo then add that undefined behaviour will actually not cause anything
really bad to happen, such as reformatting your hard drive. Am I alone in
finding that argument to be specious? We ask programmers to treat
undefined behaviour as a serious issue and then tell them not to worry too
much about one of the primary instances of it.

Writing beyond the end of an array is not only undefined behaviour but can
result in genuinely bad things happening. I once reprogrammed the BIOS of
an expensive graphics card by accidentally writing of the end of an array. In
addition buffer overflows are one of the major sources of exploits for malware.

[I’m wouldn’t go that far. A large number of software exploits are down to
poorly written, insecure code – network code is riddled with such problems. It is
not always the case that buffer overflows are the problem. – Ed]

However before I go further along this line, let us see if there is any
legitimate code that is vulnerable to this undefined behaviour and that
cannot be eliminated by pre-testing. Consider this code snippet:

#include <time.h>

void work(void);

int main() {
clock_t start, end;
double elapsed;
start = clock();
work();
end = clock();
elapsed

= ((double)(end - start))/CLOCKS_PER_SEC;
printf("Elapsed time = %f", elapsed);
return 0;

}

Now the above program contains irremovable undefined behaviour if
clock_t is a signed integer type. Neither C nor C++ places any constraint
on the type of clock_t other than it be an arithmetic type. It does not
seem that the actual type requires to be documented (though you could look
in the time.h header if it has been provided as a file (again not required
by either Standard).

Of course most student programs will not have a problem because most
implementations will survive just over half an hour of CPU usage before
overflow might occur in the return from clock().

However suppose your application runs for much longer and you want to
use clock() to ‘time out’ a process. Given defined behaviour for signed
integer overflow you have a chance to write code that can handle the problem
but without defined behaviour you have no hope and clock() is useless to
you if you want to write clean code devoid of undefined behaviour.

What concerns me is that a number of C and C++ heavyweight experts
take the view that anything we have lived with for thirty years cannot be
a problem. So, am I wrong to be concerned with this issue?

Should we be comfortable with undefined behaviour that will do
nothing disastrous? Do we need another classification of behaviour that
basically says that the worst that can happen is that the program aborts? Of
course such behaviour is not acceptable in the control software for a nuclear
power station but it is acceptable for many other purposes. Yes the program
does not always do what the programmer intended but neither does it try
to reformat my hard drive.

Pure Functions
Those who come from a functional programming background will be
familiar with the concept of a pure function but for the rest, a pure function
is one that has no side effects, the opposite of a procedure that has only
side effects and no return value.

In C++ a pure function would be a free function that does not access
any globals, does not have any local statics in its definition and whose
parameters are all value based (no pointers either). Under such
circumstances the return value is solely based on the function’s arguments.
A pure function can only call pure functions.

Until recently the concept of pure functions has been interesting but of
no great direct value to languages such as C++. However hardware is
moving on. Multiple CPU machines are increasingly common. The latest
hardware from Intel allows a single CPU to look like two. CPUs have
multiple processing lines built in to them. In pursuit of ever faster hardware
the next logical step is to put array processors into our CPUs. Single

Instruction Multiple Data (SIMD) parallelism can result in great
performance improvements for certain types of processing (and graphical
processing is an example of such a specialist domain).

Given such hardware pure functions begin to become useful. Pure
functions are obvious candidates for SIMD parallelism.

Is it time that C++ considered adding some function qualifiers so that
we can identify functions as pure. Such information is statically
enforceable. We would need to consider such details as including such
qualifiers in the type of function pointers (the address of a pure function
should be assignable to any suitable function pointer, but only addresses
of pure functions should be assignable to pointers to pure functions.)

Please give some thought to this idea, write them down and email them
to the editor or to me.

Commentary on Problem 16
Here is what I invited you to comment on:

Have a look at the following tiny function. The problem is insidious; the same
code is legal in Java and does exactly what you want, while in C++ it
compiles without error.
string to_string(int n) {
if(n == 0) {

return "NULL";
}
else {

return "" + n;
}

}

The problem is because of the very different ways that the operator +
is overloaded in the two languages. In the case of Java operator +
creates a new string object that is the result of concatenating the left-hand
operand with the conversion of the right-hand one to a string by using
whatever method is provided by the rhs’ type.

In the case of C++ there is no operator +overload that takes either an
array of one char on the right. However there is an operator + that takes
a char const * and an int; the one that increments the pointer by the
specified value. If the int is 0 the result is to leave the pointer unchanged (but
in this function we trap that case and handle it differently). If n is one the result
is a one beyond the end pointer, which is OK until it gets used to initialise the
return value where the string constructor will dereference the pointer.

In all other cases the evaluated “” + n expression has undefined
behaviour even though nothing really bad happens on most systems. You
just get garbage as the program treats the bytes that start at the computed
address as if they were part of a null-terminated array of char.

Problem 17
Here is a minimalist version of main():

int main() {
a * b;

}
Given suitable precursors it will compile and execute. Can you provide
suitable precursors so that the resulting program executes and outputs:

int main() {
a * b;

}
I will send the author of the solution that I like best (yes, entirely subjective)
a copy of Exceptional C++ Style(and if I remember to get one autographed
by Herb Sutter when I am at the WG21 meeting in Redmond it will be an
autographed copy).

Cryptic Clues For Numbers

I had several clues offered. Ainsley Pereira offered ‘Before he ate, he had
to wait’. James Roberts offered both ‘A new slant to infinity, and again?’
(A good start but I think it needs some polish) and ‘Produce of the disciples
working every hour of the day and night.’ (I think ‘product’ works better).
Louis Lavery came up with ‘Told to double weight after initial loss? I’d
say that’s too gross!’ Any one of those would deserve to win and correctly
identify 288. I chose James’ so if he contacts me to tell me where to send
it he gets the copy of The Elements of C++ Style .

For next time, what are your clues for:
Oh for love in the sea! It only values the fifth bit.

Francis Glassborow

16 CVu/ACCU/Features

Last Time...
As you will recall from the first part, I showed how to construct a GTK
window with all of its associated parts in some detail, and it was clear that
to do this for every application would not be a good idea. In this part, I will
be showing how to use the Glade application for rapid window creation.

Analysis
The main() function is responsible for constructing the user interface,
connecting the signals to the signal handlers, and then entering the main
event loop. The more complex aspects of the function are discussed here.

g_signal_connect(G_OBJECT(window), "destroy",
gtk_main_quit, NULL);

This code connects the "destroy" signal to the gtk_main_quit()
function. This signal is emitted by the window if is to be destroyed, for example
when the “close” button on the titlebar is clicked). The result is that when the
window is closed, the main event loop returns, and the program then exits.

vbox1 = gtk_vbox_new(FALSE, 0);
gtk_container_add(GTK_CONTAINER(window), vbox1);

vbox1 is a GtkVBox. When constructed using gtk_vbox_new(), it
is set to be non-homogenous (FALSE), which allows the widgets contained
within the GtkVBox to be of different sizes, and has zero pixels padding
space between the containers it contains. The homogeneity and padding
space are different for the various GtkBoxes used, depending on the visual
effect intended.

gtk_container_add() packs vbox1 into the window (a
GtkWindow object is a GtkContainer).

eventbox = gtk_event_box_new();
gtk_widget_show(eventbox);
gtk_box_pack_start(GTK_BOX(hbox2), eventbox,

FALSE, FALSE, 0);

Some widgets do not receive events from the windowing system, and hence
cannot emit signals. Label widgets are one example of this. If this is
required, for example in order to show a tooltip, they must be put into a
GtkEventBox, which can receive the events. The signals emitted from
the GtkEventBox may then be connected to the appropriate handler.

gtk_widget_show() displays a widget. Widgets are hidden by
default when created, and so must be shown before they can be used.

It is typical to show the top-level window last, so that the user does not
see the interface being drawn.

gtk_box_pack_start() packs a widget into a GtkBox , in a
similar manner to gtk_container_add(). This packs eventbox
into hbox2. The last three arguments control whether the child widget
should expand into any extra space available, whether it should fill any
extra space available (this has no effect if expand is FALSE), and extra
space in pixels to put between its neighbours (or the edge of the box),
respectively. Figure 1 shows how gtk_box_pack_start() works.

The create_spin_entry() function is a helper function to create a
numeric entry (spin button) together with a label and tooltip. It is used to
create all three entries.

label = gtk_label_new(label_text);

A new label is created displaying the text label_text.

spinbutton = gtk_spin_button_new(adjustment,
0.5, 2);

gtk_spin_button_set_numeric(
GTK_SPIN_BUTTON(spinbutton), TRUE);

A GtkSpinButton is a numeric entry field. It has up and down buttons
to “spin” the numeric value up and down. It is associated with a
GtkAdjustment, which controls the range allowed, default value, etc.
gtk_adjustment_new() returns a new GtkAdjustment object.
Its arguments are the default value, minimum value, maximum value, step
increment, page increment and page size, respectively. This is
straightforward, apart from the step and page increments and sizes. The
step and page increments are the value that will be added or subtracted
when the mouse button 1 or button 2 are clicked on the up or down buttons,
respectively. The page size has no meaning in this context
(GtkAdjustments are also used with scrollbars).

gtk_spin_button_new() creates a new GtkSpinButton, and
associates it with adjustment. The second and third arguments set the
“climb rate” (rate of change when the spin buttons are pressed) and the
number of decimal places to display.

Finally, gtk_spin_button_set_numeric() is used to ensure
that only numbers can be entered.

tooltip = gtk_tooltips_new();
gtk_tooltips_set_tip(tooltip, eventbox,

tooltip_text, NULL);

A tooltip (pop-up help message) is created with gtk_tooltips_new().
gtk_tooltips_set_tip() is used to associate tooltip with the
eventbox widget, also specifying the message it should contain. The
fourth argument should typically be NULL.

The create_result_label() function is a helper function to
create a result label together with a descriptive label and tooltip.

gtk_label_set_selectable(
GTK_LABEL(result_value), TRUE);

Normally, labels simply display a text string. The above code allows the
text to be selected and copied, to allow pasting of the text elsewhere. This
is used for the result fields so the user can easily copy them.

button1
= gtk_button_new_from_stock(GTK_STOCK_QUIT);

This code creates a new button, using a stock widget. A stock widget
contains a predefined icon and text. These are available for commonly
used functions, such as “OK”, “Cancel”, “Print”, etc..

button2 = gtk_button_new_with_mnemonic(
"_Calculate");

g_signal_connect(G_OBJECT (button2),
"clicked",
G_CALLBACK(on_button_clicked_calculate),
(gpointer) &cb_widgets);

GTK_WIDGET_SET_FLAGS(button2,
GTK_CAN_DEFAULT);

An Introduction to Programming with GTK+ and Glade – Part 2
Roger Leigh <rleigh@debian.org>

Features

Figure 1: gtk_box_pack_start()

17CVu/ACCU/Features

Here, a button is created, with the label “Calculate”. The mnemonic is the
“_C”, which creates an accelerator. This means that when Alt-C is pressed,
the button is activated (i.e. it is a keyboard shortcut). The shortcut is
underlined, in common with other graphical toolkits.

The “clicked” signal (emitted when the button is pressed and released)
is connected to the on_button_clicked_calculate() callback.
The cb_widgets structure is passed as the argument to the callback.

Lastly, the GTK_CAN_DEFAULT attribute is set. This attribute allows
the button to be the default widget in the window.

g_signal_connect_swapped
(G_OBJECT(cb_widgets.pg_val), "activate",

G_CALLBACK(gtk_widget_grab_focus),
(gpointer)GTK_WIDGET(cb_widgets.ri_val));

This code connects signals in the same way as
gtk_signal_connect(). The difference is the fourth argument,
which is a GtkWidget pointer. This allows the signal emitted by one
widget to be received by the signal handler for another. Basically, the
widget argument of the signal handler is given cb_widgets.ri_val
rather than cb_widgets.pg_val. This allows the focus (where
keyboard input is sent) to be switched to the next entry field when Enter
is pressed in the first.

g_signal_connect_swapped
(G_OBJECT(cb_widgets.cf_val), "activate",

G_CALLBACK(gtk_window_activate_default),
(gpointer)GTK_WIDGET(window));

This is identical to the last example, but in this case the callback is the
function gtk_window_activate_default() and the widget to give
to the signal handler is window. When Enter is pressed in the CF entry
field, the default “Calculate” button is activated.

gtk_main();

This is the GTK+ event loop. It runs until gtk_main_quit() is called.
The signal handlers are far simpler than building the interface. The

function on_button_clicked_calculate() reads the user input,
performs a calculation, then displays the result.

void on_button_clicked_calculate(
GtkWidget *widget,
gpointer data) {

struct calculation_widgets *w;
w = (struct calculation_widgets *) data;

Recall that a pointer to cb_widgets , of type struct
calculation_widgets , was passed to the signal handler, cast to a
gpointer. The reverse process is now applied, casting data to a pointer
of type struct calculation_widgets.

gdouble pg;
pg = gtk_spin_button_get_value(

GTK_SPIN_BUTTON(w->pg_val));

This code gets the value from the GtkSpinButton .

gchar *og_string;
og_string = g_strdup_printf("%0.2f", og);
gtk_label_set_markup(GTK_LABEL(w->og_result),

og_string);
g_free(og_string);

Here the result og is printed to the string og_string. This is then set
as the label text using gtk_label_set_markup() . This function sets
the label text using the Pango Markup Format, which uses the and
 tags to embolden the text.

gtk_spin_button_set_value(
GTK_SPIN_BUTTON(w->pg_val), 0.0);

gtk_label_set_text(
GTK_LABEL(w->og_result), "");

on_button_clicked_reset() resets the input fields to their default
value, and blanks the result fields.

GTK+ and Glade
Introduction

In the previous section, the user interface was constructed entirely “by
hand”. This might seem to be rather difficult to do, as well as being messy
and time-consuming. In addition, it also makes for rather unmaintainable
code, since changing the interface, for example to add a new feature, would
be rather hard. As interfaces become more complex, constructing them
entirely in code becomes less feasible.

The Glade user interface designer is an alternative to this. Glade allows
one to design an interface visually, selecting the desired widgets from a
palette and placing them on windows, or in containers, in a similar manner
to other interface designers. Figure 3 (see next page) shows some
screenshots of the various components of Glade.

The file C/glade/ogcalc.glade contains the same interface
constructed in C/plain/ogcalc.c, but designed in Glade. This file can
be opened in Glade, and changed as needed, without needing to touch any code.

Even signal connection is automated. Examine the “Signals” tab in the
“Properties” dialog box.

The source code is listed below. This is the same as the previous listing,
but with the following changes:
● The main() function does not construct the interface. It merely loads

the ogcalc.glade interface description, auto-connects the signals,
and shows the main window.

● The cb_widgets structure is no longer needed: the callbacks are now
able to query the widget tree through the Glade XML object to locate
the widgets they need. This allows for greater encapsulation of data,
and signal handler connection is simpler.

● The code saving is significant, and there is now separation between the
interface and the callbacks.

The running C/glade/ogcalcapplication is shown in Figure 2. Notice
that it is identical to C/plain/ogcalc , shown in the last article. (No,
they are not the same screenshot!)

Analysis

The most obvious difference between the code using Glade (see listing at
end of article) and the previous code is the huge reduction in size. The
main() function is reduced to just these lines:

GladeXML *xml;
GtkWidget *window;

xml = glade_xml_new("ogcalc.glade", NULL, NULL);

glade_xml_signal_autoconnect(xml);

window = glade_xml_get_widget(xml,
"ogcalc_main_window");

gtk_widget_show(window);

glade_xml_new()reads the interface from the file ogcalc.glade.
It returns the interface as a pointer to a GladeXML object, which will be
used later. Next, the signal handlers are connected with
glade_xml_signal_autoconnect(). Windows users may require
special linker flags because signal autoconnection requires the executable
to have a dynamic symbol table in order to dynamically find the required
functions.

Figure 2: C/glade/ogcalc in action

The Opening window

The widget properties dialog The widget tree

The palette tree

The program being designed

18 CVu/ACCU/Features

The signal handlers are identical to those in the previous section. The
only difference is that struct calculation_widgets has been
removed. No information needs to be passed to them through the data
argument, since the widgets they need to use may now be found using the
GladeXML interface description.

GtkWidget *pg_val;
GladeXML *xml;
xml = glade_get_widget_tree(

GTK_WIDGET (widget));
pg_val = glade_xml_get_widget(xml, "pg_entry");

Firstly, the GladeXML interface is found, by finding the widget tree
containing the widget passed as the first argument to the signal handler.
Once xml has been set, glade_xml_get_widget() may be used to
obtain pointers to the GtkWidgets stored in the widget tree.

Compared with the pure C GTK+ application, the code is far simpler,
and the signal handlers no longer need to get their data as structures cast
to gpointer , which was ugly. The code is far more understandable,
cleaner and maintainable.

Roger Leigh

Figure 3: The Glade user interface designer

19CVu/ACCU/Features

Listing: C/glade/ogcalc.c

#include <gtk/gtk.h>
#include <glade/glade.h>

void on_button_clicked_reset(GtkWidget *widget,
gpointer data);

void on_button_clicked_calculate(GtkWidget *widget,
gpointer data);

/* The bulk of the program. Since Glade and
libglade are used, this is just 9 lines! */

int main(int argc, char *argv[]) {
GladeXML *xml;
GtkWidget *window;

/* Initialise GTK+. */
gtk_init(&argc, &argv);

/* Load the interface description. */
xml = glade_xml_new("ogcalc.glade", NULL, NULL);

/* Set up the signal handlers. */
glade_xml_signal_autoconnect(xml);

/* Find the main window and then show it. */
window = glade_xml_get_widget(xml,

"ogcalc_main_window");
gtk_widget_show(window);

/* Enter the GTK Event Loop. This is where all
the events are caught and handled. It is
exited with gtk_main_quit(). */

gtk_main();

return 0;
}

/* This is a callback. This resets the values of
the entry widgets, and clears the results. */

void on_button_clicked_reset(GtkWidget *widget,
gpointer data) {

GtkWidget *pg_val;
GtkWidget *ri_val;
GtkWidget *cf_val;
GtkWidget *og_result;
GtkWidget *abv_result;

GladeXML *xml;

/* Find the Glade XML tree containing widget. */
xml = glade_get_widget_tree(GTK_WIDGET (widget));

/* Pull the other widgets out the the tree. */
pg_val = glade_xml_get_widget(xml,

"pg_entry");
ri_val = glade_xml_get_widget(xml,

"ri_entry");
cf_val = glade_xml_get_widget(xml,

"cf_entry");
og_result = glade_xml_get_widget(xml,

"og_result");
abv_result = glade_xml_get_widget(xml,

"abv_result");

gtk_spin_button_set_value(GTK_SPIN_BUTTON(pg_val),
0.0);

gtk_spin_button_set_value(GTK_SPIN_BUTTON(ri_val),
0.0);

gtk_spin_button_set_value(GTK_SPIN_BUTTON(cf_val),
0.0);

gtk_label_set_text(GTK_LABEL(og_result), "");
gtk_label_set_text(GTK_LABEL(abv_result), "");

}

/* This callback does the actual calculation. */
void on_button_clicked_calculate(GtkWidget *widget,

gpointer data) {
GtkWidget *pg_val;
GtkWidget *ri_val;
GtkWidget *cf_val;
GtkWidget *og_result;
GtkWidget *abv_result;

GladeXML *xml;

gdouble pg, ri, cf, og, abv;
gchar *og_string;
gchar *abv_string;

/* Find the Glade XML tree containing widget. */
xml = glade_get_widget_tree(GTK_WIDGET(widget));

/* Pull the other widgets out the the tree. */
pg_val = glade_xml_get_widget(xml,

"pg_entry");
ri_val = glade_xml_get_widget(xml,

"ri_entry");
cf_val = glade_xml_get_widget(xml,

"cf_entry");
og_result = glade_xml_get_widget(xml,

"og_result");
abv_result = glade_xml_get_widget(xml,

"abv_result");

/* Get the numerical values from the entry
widgets. */

pg = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(pg_val));

ri = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(ri_val));

cf = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(cf_val));

og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;

/* Do the sums. */
if (og < 60)
abv = (og - pg) * 0.130;

else
abv = (og - pg) * 0.134;

/* Display the results. Note the GMarkup
tags to make it display in Bold. */

og_string = g_strdup_printf("%0.2f",
og);

abv_string = g_strdup_printf("%0.2f",
abv);

gtk_label_set_markup(GTK_LABEL(og_result),
og_string);

gtk_label_set_markup(GTK_LABEL(abv_result),
abv_string);

g_free(og_string);
g_free(abv_string);

}

To build the source, do the following:
cd C/glade
cc 'pkg-config --cflags libglade-2.0'

-c ogcalc.c
cc 'pkg-config --libs libglade-2.0'

-o ogcalc ogcalc.o

20 CVu/ACCU/Features

Rapid Dialog Design
Using Qt

Jasmin Blanchette

In this third installment of our series on GUI programming with the Qt C++
toolkit, we’re going to show how to design dialog boxes (or “dialogs”)
using Qt. Dialogs can be created entirely from source code, or with Qt
Designer, a visual GUI design tool. Whichever approach is chosen, the
result is invariably good looking, resizable, platform-independent dialogs.

Writing Dialogs in Code
Writing dialogs entirely in code using Qt isn’t the chore you’d expect if
you’re familiar with other toolkits such as Swing, GTK+ or MFC. Qt’s
layout manager classes take care of positioning widgets on screen. Qt
provides a horizontal box layout, a vertical box layout and a grid layout.
These can be nested to create arbitrarily complex layouts.

Qt’s layouts feature automatic positioning and resizing of child widgets,
sensible minimum and default sizes for top-level widgets, and automatic
repositioning when the contents, language or font changes. For cross-
platform applications, Qt’s layouts are a huge time-saver.

Layouts are also useful for internationalization. With fixed sizes and
positions, the translation text is often truncated; with layouts, the child
widgets are automatically resized. Furthermore, if you translate your
application to a right-to-left language such as Arabic or Hebrew, layouts
will automatically reverse themselves to follow the direction of writing.

To see how this works in practice, we will implement the “Login to
Database” dialog shown above. This is achieved by deriving from
QDialog (which in turn derives from QWidget) and writing the code
for a few functions. Let’s start with the header file:

// include guards omitted
#include <qdialog.h>

class QLabel;
class QLineEdit;
class QPushButton;

class LoginDialog : public QDialog {
Q_OBJECT

public:
LoginDialog(QWidget *parent = 0);

private slots:
void enableLoginButton();

private:
QLineEdit *dbNameLineEdit;
QLineEdit *userNameLineEdit;
QLineEdit *passwordLineEdit;
QLineEdit *hostNameLineEdit;
QLineEdit *portLineEdit;
QLabel *dbNameLabel;
QLabel *userNameLabel;
QLabel *passwordLabel;
QLabel *hostNameLabel;
QLabel *portLabel;
QPushButton *loginButton;
QPushButton *cancelButton;

};

The LoginDialog class has a typical Qt widget constructor that accepts
a parent widget (or window), a slot called enableLoginButton(),
and a dozen data member that keep track of the dialog’s child widgets. The
Q_OBJECT macro at the top of the class definition is necessary because
we are using Qt’s “signals and slots” mechanism in the class.

Let’s now review the implementation file:

#include <qlabel.h>
#include <qlayout.h>
#include <qlineedit.h>
#include <qpushbutton.h>
#include "logindialog.h"

LoginDialog::LoginDialog(QWidget *parent)
: QDialog(parent) {

dbNameLabel
= new QLabel(tr("&Database name:"), this);

userNameLabel
= new QLabel(tr("&User name:"), this);

passwordLabel
= new QLabel(tr("&Password:"), this);

hostNameLabel
= new QLabel(tr("&Host name:"), this);

portLabel = new QLabel(tr("P&ort:"), this);
// more follows

The constructor passes on the parent parameter to the base class
constructor. If parent is non-null, the dialog automatically centers itself
on top of the parent window and shares that window’s taskbar entry. In
addition, if the dialog is modal (which is achieved by calling
setModal() or exec() on the dialog), the user won’t be allowed to
interact with the parent window until the user closes the dialog.

Next, the constructor creates five QLabelwidgets showing the texts
“Database name:”, “User name:”, “ Password:”, “Host name:” and “Port:”.
The ampersand character (‘&’) indicates which letter is the shortcut key.
The tr() function that surrounds the string literals marks the strings as
translatable.

The second argument to the QLabel constructor is the parent widget
or window, in this case the dialog (this). Child widgets are shown on
screen inside their parent.

dbNameLineEdit = new QLineEdit(this);
userNameLineEdit = new QLineEdit(this);
passwordLineEdit = new QLineEdit(this);
passwordLineEdit->setEchoMode(

QLineEdit::Password);
hostNameLineEdit = new QLineEdit(this);
portLineEdit = new QLineEdit(this);

dbNameLabel->setBuddy(dbNameLineEdit);
userNameLabel->setBuddy(userNameLineEdit);
passwordLabel->setBuddy(passwordLineEdit);
hostNameLabel->setBuddy(hostNameLineEdit);
portLabel->setBuddy(portLineEdit);
// more follows

We create five QLineEdit widgets and set the “Password” widget’s echo
mode to QLineEdit::Password, so that characters typed by the user

Figure 1: Qt’s layout managers

Figure 2: The “Login to Database dialog under KTE

21CVu/ACCU/Features

are replaced by asterisks or bullets. After creating the widgets, we call
setBuddy() to create associations between the labels and the line
editors. When the user presses a label’s shortcut key (for example, Alt+P
for “Password:”), the associated line editor gets the focus.

connect(dbNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(userNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(passwordLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(hostNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(portLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

// more follows

We connect the textChanged() signal of each line editor to the dialog’s
enableLoginButton() slot. Whenever the user types in some text,
the textChanged() signal is emitted and the
enableLoginButton() slot is called. Based on the contents of the line
editors, enableLoginButton() enables or disables the dialog’s
“Login” button. Disabled widgets are typically greyed out.

loginButton = new QPushButton(tr("Login"),
this);

cancelButton = new QPushButton(tr("Cancel"),
this);

loginButton->setDefault(true);
loginButton->setEnabled(false);

connect(loginButton, SIGNAL(clicked()),
this, SLOT(accept()));

connect(cancelButton, SIGNAL(clicked()),
this, SLOT(reject()));

// more follows

We create the “Login” and “Cancel” buttons, make “Login” the default
button (meaning that pressing Enter will effectively click that button), and
disable it. Then we connect the “Login” button’s clicked() signal and
QDialog ’s accept() slot, and connect the “Cancel” button’s
clicked() signal and QDialog’s reject() slot. Both slots close the
dialog, but they set QDialog’s return code to a different value, which
applications can query afterwards.

Now that we’re done with creating the child widgets, we must set their
positions and sizes relative to the parent widget. This could be done using
QWidget::setGeometry() , but the result would be a hard-coded,
unresizable dialog. Furthermore, determining pixel coordinates for the
dialog’s widgets is a tedious task that is better performed by a machine.

To obtain the desired result, we need two layout managers, one nested
into the other. The dialog’s main layout (the outer layout) is a grid layout
with six rows and two columns. The inner layout is a horizontal box layout
that contains the “Login” and “Cancel” buttons. The inner layout occupies
the bottom row of the grid.

Here comes the code:

QHBoxLayout *buttonLayout = new QHBoxLayout;
buttonLayout->addStretch(1);
buttonLayout->addWidget(loginButton);
buttonLayout->addWidget(cancelButton);

QGridLayout *mainLayout
= new QGridLayout(this);

mainLayout->setMargin(10);
mainLayout->setSpacing(5);
mainLayout->addWidget(dbNameLabel, 0, 0);
mainLayout->addWidget(dbNameLineEdit, 0, 1);
mainLayout->addWidget(userNameLabel, 1, 0);

mainLayout->addWidget(userNameLineEdit, 1, 1);
mainLayout->addWidget(passwordLabel, 2, 0);
mainLayout->addWidget(passwordLineEdit, 2, 1);
mainLayout->addWidget(hostNameLabel, 3, 0);
mainLayout->addWidget(hostNameLineEdit, 3, 1);
mainLayout->addWidget(portLabel, 4, 0);
mainLayout->addWidget(portLineEdit, 4, 1);
mainLayout->addMultiCellLayout(buttonLayout,

5, 5, 0, 1);
// more follows

We start by creating the QHBoxLayout that contains the buttons. We insert
a stretch item, the “Login” button and the “Cancel” button into the layout.
The layout will place them side by side. The stretch item is there to fill the
space on the left of the buttons; without it, QHBoxLayoutwould stretch
the “Login” and “Cancel” buttons to fill the entire width of the dialog.

Then we create a QGridLayout. We set the layout’s margin to 10 pixels
and the spacing between widgets in the layout to 5 pixels. Then we add the
widgets to the layout. The addWidget() function takes a widget, a row
and a column as parameters. At the very end, we insert the QHBoxLayout
into the QGridLayout using addMultiCellLayout(), and specify
that it should extend from row 5 to row 5 and from column 0 to column 1;
i.e. occupy cells (5, 0) and (5, 1).

Here comes the rest of the constructor, where we set the window title:

setCaption(tr("Login to Database"));
}

The constructor code might have felt a bit long. The good news is that we’re
pretty much finished now. The only missing part is the
enableLoginButton() slot:

void LoginDialog::enableLoginButton() {
loginButton->setEnabled(

!dbNameLineEdit->text().isEmpty()
&& !userNameLineEdit->text().isEmpty()
&& !passwordLineEdit->text().isEmpty()
&& !hostNameLineEdit->text().isEmpty()
&& !portLineEdit->text().isEmpty());

}

When the user edits the contents of one of the line editors, the
enableLoginButton() slot is called. The slot sets the button’s state
to enabled if and only if all the QLineEdits contain some text.

At this point, you might wonder why LoginDialog has no destructor.
After all, who will delete all the objects created with new in the
constructor? The answer is that when you create a widget or layout with a
parent, the parent assumes ownership for the child. There is therefore no
need for a LoginDialog destructor that simply deletes the child widgets
and layouts; this is exactly what the QWidgetdestructor does. (Recall that
LoginDialog inherits QDialog, which inherits QWidget.)

Designing Dialogs Visually With Qt Designer
Qt Designer is a visual GUI design tool included with Qt. Although Qt’s
nice API makes it easy to write dialogs purely in code, most Qt developers
find that Qt Designer is faster to use and allows them to make prototypes
very quickly. In addition, if you work in an organisation where the user
interface design is done by a team of designers, the designers can use Qt
Designer themselves to create the dialogs instead of producing
specifications that the developers then need to implement.

To show how Qt Designer works, we will use it to redo the “Login to
Database” dialog.

Creating a dialog in Qt Designer usually consists of the following steps:
● Put child widgets on the form.
● Set up their properties.
● Group them into layouts.
● Specify the tab order.
The first step, putting the required child widgets on the form, is
accomplished by clicking the desired widget from the toolbox on the left
of Qt Designer’s main window followed by clicking the desired position
on the form. For the moment, we don’t need to worry too much about the
precise position and size of the child widgets; soon enough, we will put
them in layouts, which will take care of those aspects automatically.

22 CVu/ACCU/Features

We also need a stretch item to fill the extra space in the buttons’ layout.
It is represented by a blue “spring” in Qt Designer.

Next, we must set the child widgets’ properties using the property
editor located on the right side of Qt Designer’s main window. Start by
renaming all the widgets so that they have the same names as in the
previous example. Then click the background of the form and set the
form’s “name” property to “LoginDialogBase” and its “caption” property
to “Login to Database”.

The following table summarises the properties to set for each
widget:

We need to set the labels’ “buddies”. This is done by setting the “buddy”
property of each label to the corresponding widget. Once the properties are
set, the dialog should look like the one shown in Figure 4.

The next step is to put the widgets inside layouts. This is done by
selecting multiple widgets and choosing “Lay Out Horizontally”, “Lay Out
Vertically” or “Lay Out in a Grid” from the “Layout” menu.

First, we select the stretch item and the two buttons, and click “Lay
Out Horizontally”. The resulting layout is rendered as a red frame in Qt
Designer, to make it tangible. Then we click the background of the form
and click “Lay Out in a Grid”. This will produce the layout shown in
Figure 5.

If a layout doesn’t turn out quite right, we can always click “Undo”,
then roughly reposition the widgets being laid out and try again.

When everything else is done, we are ready to set the dialog’s tab order.
This is done by pressing F4, clicking the widgets in the order we want them
to be in the tab chain, and pressing Esc to terminate. Qt Designer will
display the tab order as numbers in blue circles.

We can now save the dialog as a .ui file that contains the dialog in
an XML format that Qt Designer can load and save. This file is converted
to C++ using a separate tool called uic (User Interface Compiler).
Assuming the .ui file is called logindialogbase.ui, the resulting
C++ code would appear in the logindialogbase.h and
logindialogbase.cpp files.

The dialog looks identical to the one we developed earlier purely in
code, but right now if the user fills in the line editors or presses “Cancel”,
nothing happens! This is solved by subclassing the uic-generated class
and adding the missing functionality there, as follows.

Figure 3: Qt Designer in action

Widget Property Value

dbNameLabel text "&Database name:"

userNameLabel text "&User name:"

passwordLabel text "&Password:"

hostNameLabel text "&Host name:"

portLabel text "P&ort:"

passwordLineEdit echoMode Password

loginButton text "Login"

default Truex

enabled Falsex

cancelButton text "Cancel"

Figure 4: The dialog with properties set

23CVu/ACCU/Features

Introduction to STL (Standard Template Library)
Rajanikanth Jammalamadaka <rajani@ece.arizona.edu>

[concluded from previous page]

// Header file:

// include guards omitted

#include "logindialogbase.h"

class LoginDialog : public LoginDialogBase {
Q_OBJECT

public:
LoginDialog(QWidget *parent = 0);

private slots:
void enableLoginButton();

};

// Implementation file:

#include <qlabel.h>
#include <qlayout.h>
#include <qlineedit.h>
#include <qpushbutton.h>
#include "logindialog.h"

LoginDialog::LoginDialog(QWidget *parent)
: LoginDialogBase(parent) {

connect(dbNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(userNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(passwordLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(hostNameLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(portLineEdit,
SIGNAL(textChanged(const QString &)),
this, SLOT(enableLoginButton()));

connect(loginButton, SIGNAL(clicked()),
this, SLOT(accept()));

connect(cancelButton, SIGNAL(clicked()),
this, SLOT(reject()));

}

The enableLoginButton() slot is not listed here, since it’s identical to
the slot of the same name in the original version of the LoginDialog class.

One of the main advantages of Qt Designer is that the code generated
by uic is kept totally separate from the application’s hand-written code.
This gives you the flexibility to change your user interface without needing
to rewrite the code or fearing that your modifications to generated code
will be lost.

This completes our review of creating dialogs with Qt. In the next
article, we will see how to create custom widgets with any look and
behaviour we want.

Jasmin Blanchette

Figure 5: The dialog with layout

A template is defined as “something that establishes or serves as a
pattern”

Websters
In C++, a template has more or less the same meaning. A template is
like a skeleton code which becomes “alive” when it is instantiated with
a type.

An algorithm is a well-ordered collection of unambiguous and
effectively computable operations that when executed produces a result
and halts in a finite amount of time [1].

A class holding a collection of elements of some type is commonly
called a container class, or simply a container [2].

A class is a user defined type which is very similar to the pre-defined
types like int, char, etc. So, the standard template library (STL) is a
collection of generic algorithms and containers which are orthogonal to
each other. By the word orthogonal, we mean that any algorithm can be
used on any container and vice-versa.

In C++, there are various generic classes like vector, string ,
etc.

Since STL is a very large topic to be covered in an article or two, we
will focus on the most commonly used generic classes: vector and
string . Before we discuss the standard containers let us take a simple
example to understand the word template .

// template.cpp

#include<iostream>
using std::cout;

template<typename T>
// Declares T as a name of some type

/* It is also common to see template<class T>.
The two mean the same */

/* The following template defines a function
which takes two constant references of type
T and returns the maximum value of type T.
*/

T Max(const T& a, const T& b) {
return (a > b)? a : b;

}

int main() {
cout << Max('i', 'r') << "\n";
cout << Max(1, 3) << "\n";

}

// Output of template.cpp
r
3

In the above example, a function Max is defined which takes two constant
references of type T and returns the maximum value.

But in the main function there are two function calls, one is
Max('i','r') and the other one is Max(1,3). We did not get any
compilation errors because we have used the template mechanism in this
function. At run-time, the compiler resolves what types are being passed
to the Max function and hence knows which output to return. It should be
noted that the final compiled binary will be larger as the compiler has to
create a function for every type in the code passed to it.

24 CVu/ACCU/Features

Now, let us start with the example of the vector container.
A vector is very similar to an array but has more advanced features,

some of which are utilized in the example below.

#include<iostream>
#include<vector>

using namespace std;

int main() {
/* I'll now create a vector of integers. It

is instantiated here, so vint can hold
integers */

vector<int> vectorint;
vectorint.reserve(5);

/* reserve pre-allocates memory for holding
five integers*/

for(int j = 1; j < 6; j++)
vectorint.push_back(j);

typedef vector<int> Vector_Of_Ints;
for(Vector_Of_Ints::const_iterator i

= vint.begin();
i != vint.end(); ++i)

cout << *i << "\t";
cout << endl;

}

It should be noted that the reserve function allocates memory but the
allocation is more akin to that of an array than using new. The capacity of
a vector is defined as the minimum number of objects that it can hold.
The reserve method makes sure that the vector has a capacity greater
than or equal to its argument [3]. In the above example, after this statement

vectorint.reserve(5);

the vector vectorint has a capacity of at least 5.
The push_back() method function pushes the five integers into the

vector . An iterator behaves in the same way as a pointer but is more
generic. Note that the iterator is made a constant in this example because
an iterator seldom modifies the contents of its vector .

In the above example, vectorint.begin() points to the first
element of the vector, which is 1. vectorint.end() points to an
element which is after the last element of the vector, which is 5 in this
case. Therefore, we cannot dereference vectorint.end(). This is as
shown below:

When we dereference the iterator using the * operator, we get the value
stored at the address to which the iterator points to.

When the above code is executed, gives the following output:

1 2 3 4 5

An even more convenient way of printing a vector would be to use the
copy algorithm as shown below:

copy(vint.begin(), vint.end(),
ostream_iterator<int>(cout, " "));

which basically means: copy the contents of the vector starting from
vint.begin() to vint.end() -1 (remember that vint.end()
points to an element after the last element of the vector) to the standard
output (cout) separating each of the numbers with four space
characters.

The header <algorithm> must be included for the copy algorithm
to work.

Of course, the vector can be of any type, int, char or even
another class such as string , and they are all handled in the same
way. This is possible because a vector is a generic container, or in
other words, a vector is a template class. For example after the
statement

vector<T> foo;

foo can hold objects of type T. Therefore, T can even be any class.
Consider a normal class foo. It will have a standard constructor,

destructor, some methods, and a couple of variables.

class foo {
public:
foo();
foo(int a, int b);
foo(int a, double b);
~foo() {};
int showValue() {
return something;

}
private:
int something;

};

A template class can be thought of as being the same, except that now
when we instantiate it, we do so with an unspecified type T rather than
an explicit int , char , etc. Everything else remains the same (more or
less).

template <typename A, typename B>
class foo {
public:
foo();
foo(A a, A b);
foo(A a, B b);
~foo() {};
A showValue() {
return something;

}
private:
A something;

};

Next let us consider the string class. A string container is very
similar to that of a vector class. A string object can be declared as
follows:

std::string sobject;

A string object can be initialized in some of the following ways (there
are plenty of other ways)

1 string sobject("hello");

2 string sobject = "hello";

3 string s1 = "Hello, ";

4 string sobject = s1;

5 string s2 = "World";

6 string sobject =s1 + s2;

In the first form of initialization the constructor of the string class is
invoked with the value of "hello" and therefore the sobject has the
value of "hello" once this line is executed.

In the second, third and fifth forms of initialisation, a string is assigned
to the string object and so the string objects will hold the respective
strings after these statements are executed.

In the fourth and fifth form of initialization, the copy constructor of the
string class is invoked in order to copy the contents of the strings at
the right hand side to the string objects.

1 2 3 4 5

vectorint.begin() vectorint.end()

25CVu/ACCU/Features

Let us take another example which uses both the string and vector
class to understand how both of them work together.

// vecstringSimple.cpp

#include<iostream>
#include<string>
#include<vector>
#include<iterator>

using namespace std;

int main() {
vector<string> vector_of_strings;
vector_of_strings.reserve(5);
string text;
cout << "\n";
cout << "Enter the strings\n";
cout << "\n";
for (int a = 0; a < 5; ++a) {
cin >> text;
vector_of_strings.push_back(text);

}

cout << "\n";
cout << "Output of the program\n";
cout << "\n";
for(vector<string>::iterator i

= vector_of_strings.end()-1;
i >= vector_of_strings.begin();
i--)

cout << *i << "\n";
}

In the above example a vector of strings is created and strings are
read into the vector until the input is end. The strings are then output
in the reverse order in which they were entered, as shown below

Enter the strings:

Rajanikanth
Ravikanth
Srimannarayana
VijayaLakshmi
hello

Output of the program:

hello
VijayaLakshmi
Srimannarayana
Ravikanth
Rajanikanth

Let us take a more complex example which uses both the string and
vector classes.

// vecstr.cpp

#include<iostream>
#include<vector>
#include<algorithm>
#include<iterator>
#include<string>

using namespace std;

int main() {
vector<string> vector_of_strings;
string s;

cout << "Enter the strings to be sorted: "
<< "\n";

while(getline(cin,s) && s != "end")
vector_of_strings.push_back(s);

sort(vector_of_strings.begin(),
vector_of_strings.end());

vector<string>::const_iterator pos
= unique(vector_of_strings.begin(),

vector_of_strings.end());
vs.erase(pos, vector_of_strings.end());
copy(vector_of_strings.begin(),

vector_of_strings.end(),
ostream_iterator<string>(cout,

"\t"));
cout << '\n';

}

Let us first understand how this code works and then we will look at how
it runs.

First of all, the line

vector<string> vector_of_strings;

declares vector_of_strings as a vector of strings.
Next, the condition

while(getline(cin,s) && s != "end")

means read a line of input from stdin as a string until the input is
end. So, "end" cannot be an input string for this program. Next, the
program pushes each of these strings into the vector
vector_of_strings.

The algorithm sorts the strings in the vector
vector_of_strings in ascending order. The unique algorithm
moves all but the first string for each set of consecutive strings to
the end of the unique set of strings in the vector container. It returns
an iterator which points to the end of the unique set of strings; in our
code this iterator is stored in pos. Next, we call the erase iterator which
actually deletes the duplicate elements from pos to
vector_of_strings.end().

The copy algorithm then copies the unique set of strings to the
standard output.

Following is the output of the program vecstr.cpp

Enter the strings to be sorted:
Srimannarayana Jammalamadaka
VijayaLakshmi Jammalamadaka
Rajanikanth Jammalamadaka
Ravikanth Jammalamadaka
aaaaa
a
a
k
k
end

Rajanikanth Jammalamadaka
Ravikanth Jammalamadaka
Srimannarayana Jammalamadaka
VijayaLakshmi Jammalamadaka
a aaaaa k

We will discuss a more complicated program using the vector and
string containers in the next article.

Rajanikanth Jammalamadaka

References
[1] Schneider, M. and J. Gersting (1995), An Invitation to Computer

Science , West Publishing Company, New York, NY, p. 9.
[2] Stroustrup, B., The C++ Programming Language (Special Edition),

Addison Wesley, p. 41.
[3] Sutter, H., Exceptional C++ Style : 40 New Engineering Puzzles,

Programming Problems, and Solutions (C++ in Depth Series), Pearson
Education; (July, 2004).

26 CVu/ACCU/Features

Professionalism in
Programming #28

An Insecurity Complex (Part One)
Pete Goodliffe <pete@cthree.org>

Security is mostly a superstition. It does not exist in nature... Life is either
a daring adventure or nothing.

Helen Keller
Not so long ago computer access was a scarce commodity. The world
contained only a handful of machines, owned by a few organisations,
accessed by small teams of highly trained personnel. In those days
computer security meant wearing the right labcoat and pass card to get past
the guard on the door.

Fast forward to today. We carry more computational power in a pocket
than those operators ever dreamt of. Computers are plentiful and, more
pertinently, highly connected.

The volume of information carried by computer systems is growing at
a fantastic rate. We write programs to store, manipulate, interpret, and
transfer this data. Our software must guard against data going astray: into
the hands of malicious attackers, past the eyes of accidental observers, or
even disappearing into the ether. This is critical; a leak of top-secret
company information could spell financial ruin. You don’t want sensitive
personal information (your bank account or credit card details, for example)
leaking out for anyone to use. Most software systems require some level
of security1.

Whose responsibility is it to build secure software? Here’s the bad news:
it’s our headache. If we don’t consider the security of our handiwork
carefully, we will inevitably write insecure, leaky programs and reap the
rewards.

Software security is a really big deal, but generally we’re very bad at
it. Nearly every day you’ll hear of a new security vulnerability in a
popular product, or see the results of viruses compromising system
integrity.

This is an enormous topic, far larger than we have scope to go into here.
It’s a highly specialised field, requiring much training and experience.
However, even the basics are still not adequately addressed by modern
software engineering teaching. The aim of this series is to highlight security
issues and explore the problem. We’ll learn a number of basic techniques
for protecting our code.

Why Do We Get It So Wrong?
Building secure software requires a mindset that is sadly lacking in the
average programmer. In the day-to-day madness of the software factory
we’re too focused on getting the program working, on getting it out of
the door on time and in a reasonable state. We sit back and breathe a sigh
of relief when our streamlined application appears to be doing what its
supposed to. Rarely do we turn our attention to how secure the code is.
Unless the test department is particularly skilled in this area, it’s easy to
ignore the whole issue – we’d rather not think the worst of a new
creation.

If you do eventually turn your gaze to security issues, perhaps with
a little test department prodding, it’s probably too late anyway. Once a
system is built, patching up any security problems is a hard job; the
problems are either too fundamental, too prevalent, or far too hard to
identify.

It’s probably hard to believe that anyone would take the time and
effort to hack your applications. But these people exist. They’re
talented, motivated, and they are very, very patient. Why do they do it?
Some malicious crackers intend to steal, commit fraud, or cause
damage, but their motive can equally be to prove superior skills or to
cause a little mischief. They might not want to compromise your
application specifically, but won’t hesitate to exploit its flaws if you
leave a hole open.

Sadly, no application is totally hack-proof. Writing a secure program is
no easy task. Yet even the most secure application must run in its operating
environment: under a particular OS, on some specific piece of hardware,
on a network, and with a certain set of users. An attacker is just as likely

to compromise one of these as your actual
code. Indeed they’re probably more likely to;
social engineering – the art of acquiring
important information from people, items in an
office, or even the outgoing trash – is usually
a lot easier (and often quicker) than worming
a way into your computer system.

Software security presents a myriad of
problems and challenges for the poor
overworked programmer.

The Risks
Better be despised for too anxious apprehensions, than ruined by too
confident security.

Edmund Burke
Why would anyone bother to attack your system? It’s usually because
you’ve got something that they want. This could be:
● your processing power,
● your ability to send data (e.g. send spam emails),
● your privately stored information,
● your capabilities; perhaps the specific software you have installed, or
● your connection to more interesting remote systems.
They might even attack you for the sheer fun of it, or because they dislike
you and want to cause harm by disrupting your computer resources. Of
course, we must remember that whilst malicious people are lurking around
looking for easy, insecure prey, a security vulnerability might equally be
caused by a program that accidentally releases information to the wrong
audience. Sometimes this won’t matter. More often it’s just embarrassing.
In the worst case, though, that lucky user can opportunistically exploit the
leak and cause you harm.

To understand the kinds of attack you might suffer, it’s important to
mark the difference between protecting an entire computer system
(comprising of several computers, a network, and a number of
collaborating applications) and writing a single secure program. Both are
important aspects of computer security; they blur together since both are
necessary. The latter is a subset of the former. It takes just one insecure
program to render an entire computer system (or network) insecure, so we
must take the utmost care at all times.

Let’s take a look at the ways you can be caught with your pants down.
These are some of the most common security risks and compromises of a
live, running computer system:

● Physically acquiring a machine, for example by stealing a laptop or
PDA containing unsecured sensitive data. This data is freely readable
by anyone with the inclination. Similarly, the stolen device might be
configured to automatically dial into a private network, allowing a
simple route straight through all your company’s defences. This is a
serious security threat, and one that you can’t easily guard against in
code! What we can do is write systems that aren’t immediately
accessible to computer thieves.

● Exploiting flaws in a program’s input routines. Not checking input
validity can lead to many types of compromise, even to the attacker
gaining access to the whole machine. We’ll see examples of this later.

● Breaking in through an unsecured public network interface is a
specific variant of the previous point. This is particularly worrying. UI
flaws can only be exploited by people actually using that UI, but when
your insecure system is running on a public network the whole world
could be trying to break down your doors.

1 As we’ll see, this is true whether they handle sensitive data or not. If a ‘non-critical’
component has a public interface then it poses a security risk to the system as a whole.

A Promise Kept
In the last article I promised you the answer to my riddle: how many
programmers does it take to change a light bulb?How many answers did you
come up with? Here are mine:
1. None. The bulb’s not broken. It’s a power saving feature.
2. Just the one, but it will take all night and an inordinate amount of pizza

and coffee.
3. Twenty. One to fix the initial problem, and nineteen to debug the

resultant mess.
4. The question’s wrong. It’s a hardware problem, not a software one.

27CVu/ACCU/Features

● Malicious authorised users copying and sharing data they’re not
supposed to. It’s hard to guard against this one. You have to trust that
each user is responsible enough to handle the level of system access
they’ve been designated.

● Malicious authorised users entering bad data to compromise the
quality of your computer system. Any system has a small set of trusted
users. If they’re not trustworthy then you can’t write a program to fix
them. This shows that security is as much about administration and
policy as it is about writing code.

● Setting incorrect permissions, allowing the wrong users to gain access
to sensitive parts of your system. This could be as basic as setting the
correct access permissions on database files so casual users can’t see
everyone’s salary details.

● Privilege escalation. This occurs when a user with limited access rights
tricks the system to gain a higher security level. The attacker could be
an authentic user, or someone who has just broken into the system. Their
ultimate aim is to achieve root or administrator privilege, where the
attacker has total control of the machine.

● “Tapping into” data as it is transmitted on the wire. If communication
is unencrypted and traverses an insecure medium (e.g. the internet) then
any computer en route can syphon off and read data without anyone
else knowing. A variant of this is known as a man-in-the-middle attack
– when an attacker’s machine pretends to be the other communicant and
sits between both senders, snooping on their data.

● Virus attacks (self-replicating malicious programs, commonly spread
by email attachment), trojans (hidden malicious payloads in seemingly
benign software), and spyware (a form of trojan that spies on what you
are doing, the webpages you visit, etc). These programs can capture
even the most complex password with keystroke loggers, for example.

● Careless users (or bad system design) can leave a system unnecessarily
open and vulnerable. For example, users often forget to log off, and if
there is no session timeout anyone can later pick up your program and
start using it.

● Storing data ‘in the clear’ (unencrypted). Even leaving it in memory
is dangerous; memory is not as safe as many programmers think. A virus
or trojan can scan computer memory and pull out a lot of interesting
titbits for an attacker to exploit. This depends on how secure your OS
is – does it allow this kind of memory access and can you lock your
applications’s memory pages manually?

● Copying software. For example: running multiple installations in an office
only licensed for one user, or allowing copies to spread on the internet.

● Allowing weak, easily guessable passwords. Many attackers use
dictionary-based password cracking tools that fire off many login
attempts until one works. It’s a sad fact that easily memorable passwords
are also easily guessable passwords. More secure systems will suspend
a user account after a few unsuccessful logins.

● Out-of-date software installations. Many vendors issue security
warnings and software patches. They come at a phenomenal rate and
should really be carefully checked before being deployed. A computer
system administrator can easily fall behind the cutting edge.

The problem scales as the number of routes into a system grows. It gets
worse with: the more input methods (web access, command line, or GUI
interfaces), the more individual inputs (different windows, prompts, web
forms, or XML feeds), and the more users (there is more chance of
someone discovering a password). With more outputs there is more chance
for bugs to manifest in the display code, leaking out the wrong information

How do you know when your program has been compromised? Without
detection measures you’ll have no idea – and will just have to keep an eye
out for unusual system behaviour or different patterns of activity. This is
hardly scientific. A hacked system can remain a secret indefinitely. Even
if the victim (or their software vendor) does spot an attack, they probably
don’t want to release detailed information about it to invite more intruders.

What company would publicise that their product has security issues that
are effectively wide-open doors? If they are conscientious enough to release
a security patch not everyone will upgrade, leaving a well-documented
security flaw in many operational systems.

The Opposition
To defend yourself adequately it’s important to know whom you’re fighting
against. As they say: know your enemies. We must understand exactly what
they’re doing, how they do it, the tools they’re using, and their objectives.
Only then can we formulate a strategy to cope.

Your attacker might be a common crook, a talented cracker, a ‘script
kiddie’2, a dishonest employee cheating the company, or a disgruntled ex-
employee seeking revenge for unfair dismissal.

Thanks to pervasive networking they could be anywhere, in any
continent, using any type of computer. When working over the internet
attackers are very hard to locate; many are skilled at covering their tracks.
Often they crack easy machines to use as a cover in more audacious attacks.

They could attack at any time, day or night. Across continents one
person’s day is another’s night. You need to run secure programs around
the clock, not just in business hours.

There is a cracker subculture where knowledge is passed on and easy-
to-use cracker tools are distributed. Not knowing about this doesn’t make
you innocent and pure, just naive and open to the simplest of attack.

With such a large bunch of potential attackers, the motives for an attack
are diverse. It might be malicious (a political activist wants to ruin your
company, or a thief wants to access your bank account), or it might be for
fun (a college prankster wants to post a comical banner on your website).
It might be inquisitive (a hacker just wants to see what your network
infrastructure looks like, or practice their cracking skills), or might be
opportunist (a user stumbles over data they shouldn’t see, and works out
how to use it to their advantage).

Excuses, Excuses
How do attackers manage to break into code so often? They’re armed with
weapons we don’t have or (due to lack of education) know nothing about.
Tools, knowledge, skills: these all work in their favour. However, they have
one key advantage that makes all the difference: time. In the heat of the software
factory, programmers are pressed to deliver as much code as humanly possible
(probably a little bit more), and to do so on time: or else. This code has to meet
all requirements (for functionality, usability, reliability, etc) leaving precious
little time to focus on other ‘peripheral’ concerns, like security. Attackers don’t
share this burden, have plenty of time to learn the intricacies of your system,
and have learnt to attack from many different angles.

The game is stacked heavily in their favour. As software developers we
must defend all possible points of the system; an attacker can pick the
weakest point and focus there. We can only defend against the known
exploits; an attacker can take their time to find any number of unknown
vulnerabilities. We must be constantly on the lookout for attacks; the
attacker can strike at will. We have to write good, clean software that works
nicely with the rest of the world; an attacker can play as dirty as they like.

What does this tell us? Simply that we must do better. We must be better
informed, better armed, more aware of our enemies, and more conscious
of the way we write code. We must design in security from the outset and
put it into our development processes and schedules.

Next Time
We’ll conclude this topic by investigating some specific code
vulnerabilities, and working out good techniques to defend our code from
attack.

Pete Goodliffe

2 A derogatory name for crackers who run automated ‘crack er scripts’. They exploit well-
known vulnerabilities with little skill themselves.

Cracker vs Hacker
These two terms often get confused and used inappropriately. Let’s stop
briefly and set the record straight. Their correct definitions are:
Cracker: Someone who purposefully attacks computer systems by

exploiting their vulnerabilities to gain unauthorised access.
Hacker: Often used incorrectly to mean cracker, a hacker is really

someone who ‘hacks’ at code. This is a term used with pride by a
particular breed of programming geek. A hacker is a computer expert
or enthusiast.

28 CVu/ACCU/Features

Wx – A Live Port
Part 1: The Rationale
Jonathan Selby <jon@xaxero.com>

Moving beyond MFC and opening new horizons with wxWidgets.
This is a collection of notes I have made while porting an application from
MFC to wxWidgets. It is intended partly as a tutorial and partly to
document some of the roadblocks I met on the way. Right now it has gaping
holes in it that are gradually being filled.

When I upgraded from DOS to Windows 3.1 and purchased
Microsoft Visual C++ version 1, a whole new world opened up. The
massive framework allowed me to be writing fully fledged GUI
applications in a few short weeks and a world of creative opportunity
was opened up

The software was exceptional value coming with a formidable array of
manuals that I would leaf through in my spare time. Over the years I and
my software company built up a large software library of applications
related to marine weather, communication and navigation, and our products
sold well on the world market. With recent events in the software world
and a global shifting towards Linux as a viable alternative there is a
growing need for code that is portable.

As this trend seemed to gather momentum, I started to refine my search
and start to look more actively for avenues to port my software. With the
launch of Visual Studio .NET I had to make a decision. Most of what .NET
was about seemed to lack co-ordination and it did not seem to have
relevance to ships at sea far away from broadband internet. So I chose to
stop with Visual Studio 6 and keep up to date with MSDN subscriptions.
Not allowed – my next set of disks had “For Use with Visual Studio .NET
only” written on them. And that was the end of that – I was out in the
pasture and in need of a new approach to keep 20 man-years of work viable
long term.

I looked again at Linux and KDevelop, to mention a few environments.
While I am extremely encouraged by the progress Linux is making it is
still not up to Windows when it comes to bringing new users in, and
hardware installation though robust is still extremely intimidating if you
are not an expert. The documentation is excellent but it does need
somebody with a leaning towards systems to get into it. This is changing
though very rapidly and I am predicting that Linux will overtake Windows
in the very near future as the momentum builds up. So this makes a port
even more urgent.

I discovered wxWidgets almost by accident. A friend mentioned in
passing and I visited the website, downloaded the kit and started to play
with it.

The Initial Impression
I started with version 2.4.0 and compared it to MFC. I was surprised to
discover that the framework is 10 years old, very mature and stable. Quite
a few hands have contributed over the years. Most important it is all source
code, well written and intuitive. Well the first job I had to do was compile
it all. Oh dear – here we go I thought, gritting my teeth, and selected
Batch build from the Visual Studio options. I went off to make a cup
of tea and almost spilled it over the keyboard when I got back because the
whole thing had compiled properly and built all the libraries. A very
encouraging start.

So what could the kit do?
I ran up the samples and they all compiled. I looked at the code and

although the architecture was not the same as I was used to I could see
the similarities. I was used to the Stygian macros and confusing
comments App Wizard puts in. Not being too concerned with the nitty
gritty, I would normally let App Wizard build a template and I would
plug in the bits as I learned in my old scribble tutorial many years ago.
So it took a little bit of exploring and tracing to see what was actually
going on.

At this point I went back on the internet to see if I could find some
resources.

I found two excellent articles by Marcus Neifer: Porting MFC
Applications to Linux, and also a good wxWidgets primer: Looking
Through wxWidgets: An Intro to the Portable C++ and Python GUI
Toolkit.

These two articles convinced me that there was something worth
pursuing here. So I started my evaluation in earnest to see how the kit
could meet our needs. Firstly I looked at the DocView MDI sample that

emulates the Scribble sample that all MFC trainees used to start with.
The code is a good deal lighter in weight though. I was particularly
interested to see if all the little nuances our clients were used to were
supported. Tool tips and Help on the status bar ware two I items I went
looking for. Menu creation and toolbar interaction with the code were
other areas that differed quite a bit from the old MFC way of doing things.
I could not find an easy way to make the toolbar dockable but I did not
look very hard – that is a bit of a gimmick at least in our apps. There was
the option of trying to convert the MFC .rc to the new XML format that
wxWidgets is using. I had only very limited success with that route and
preferred to go the conservative mothod of putting everything in C++
code, I followed that methodology. In my opinion clearly commented
code beats everything else when it comes to reviewing something a few
years down the road.

Next the interaction with the users was examined. I latched on to
wxDesigner as the tool of choice. The tool uses a completely different
concept to the VC++ method of constructing a dialog. It uses what we
call sizers to group and encapsulate controls in boxes or groups. Once
you get the hang of it, it is a very quick way of creating an attractive
looking dialog. The software also generates a wrapper so you can run
the dialog as a stand alone program. An excellent way to jump start an
application.

However my main focus was to take an existing application and port it
to wxWidgets. This required an in-depth view as to how the two
architectures differ. It also needs a thorough review of all the underlying
capabilities of the GUI, how the tool bars and menus behave, what context
help support is around. One of the biggest advantages of Windows is the
redundancy of the help system and the embedded context-sensitive actions
that are available.

Navigating the Library
Now we have decided that wxWidgets as the tool of choice, we now
have to come to grips with it. In my trainee programming days I was
taught to help myself and to find the resources I need in the
documentation. In those days this meant poring over voluminous books.
Today of course the CD-ROM and HTML have made this all a lot easier.
The wxWidgets help file comes in many flavours. My choice is the
HTML help version. Now we are going to be reading this a lot. Unlike
many programming tomes, I am not proposing to fill out the pages with
vast chunks from the manual. You are going to have to go out there
yourself and find it.

The first thing I did was to add the wxWidgets help into the MSVC++
tools menu – an area where you can add custom features.

In the tools menu:
● Go to Customize
● Go to the Tools tab and add an entry wxWidgets help
● Create a keyboard shortcut SHIFT F1
● Add the the following command: hh.exe
● Add as arguments:

C:\wxWidgets_2.4.0\docs\htmlhelp\wx.chm

A Tour of the wxWidgets Documentation
The core of the wxWidgets documentation is the alphabetical class library
reference. It is largely complete however some sections may be very terse.
All the source code is available and if you are struggling – why not use the
MSVC browser and take a look through some of the source code. Unlike
some GUI libraries it is very clear and well written.

Some of the tutorials I have mentioned to date can help although to get
a basic understanding of the framework components I strongly recommend
you take a tour of the samples supplied. They are clear and address a very
specific point. As a last resort there is is wx-Users@lists.
wxwidgets.org. Here you will get an answer to a question very quickly.
Several of the sticking points I encountered were answered, once within 3
minutes on a Sunday. Try getting commercial support of that quality!

The downside is that you need to be patient and do not expect anything.
The open source model is a two-edged sword. The contributors are not
paid.

Let’s Create a Window
This is the very basis of a nugget of user interface code.

The class you will be using is wxFrame – derived from wxWindow.
Like CWnd, wxWidgets has a huge bewildering array of sub functions that
drive the application.

29CVu/ACCU/Features

Here is the basic code to pop up a single window.

wxPoint pt(20,20); // where the window will
// appear

wxSize sz (600,400); // the window size

WxFrame *FrameWindow = new wxFrame;;
WxFrame->Create(frame, -1, "Key",

pt, sz,
wxDefault,
"wxWindow sample");

A More Complex Window
Both MFC and wxWidgets support the Document/View approach. The
concept here is the application launches a Main Frame that contains the
primary controls. The Main Frame has Child Frames (in the Multiple
Document Interface world) The Child Frame has views and and a class that
manipulates the document and supports reading, writing, etc.

The Visual C++ App wizard makes one’s life very easy by generating
a bare bones application with the following components:

● Application registration – Associating a file type with the application.
● Drag and drop support of files onto the application main frame.
● Context sensitive help
● Command line processing
● Print and Print Preview

In wxWidgets all this has to be done yourself. Of course many simple
applications do not need all this baggage, however if you are developing
a full fledged application that meets the criteria of a modern day system
you must include this functionality. We will start by laying out a bare bones
framework and build our application from there.

The MFC Document template approach has close parallels. You draw
up a document that has a filter for the File open and a specific
extension. The framework uses this template to manipulate your data via
file open, most recently used document etc.

In MFC the View is subclassed from the Child Frame, whereas in
wxWidgets you need to explicitly create your own Frame. This was the
most important difference I found and thus the OnDraw member of the
view class had to be invoked from the Sub Frame Window class. I
followed the design of the docviewmdi sample and used the
MyCanvas class from there. Other little differences were the more
modular way the menus work and especially getting the help tips to
show on the main frame status bar. I ended up creating a second status
bar on the Frame window for the time being for reading the menu help
tips. It is a good idea to port the App routine first. Command line
processing Drag and Drop, Document template, and Registry profile
strings should be sorted out at the very first step. The wxConfig
function is very useful here for storing profile data, windows size and
other variables you need to store. Non persistent applications where
you have to set everything up again when you run the program are a
trademark of the amateur.

Since we have the view creating a child window we need to make
sure it is closed when the view is closed. I followed the examples and
used a scroll window called canvas locally. This code is lifted almost
verbatim from the DocViewMDI sample that forms a reasonable basis
for starting.

// Clean up windows used for displaying the
// view.
bool WXWindPlotView::OnClose(

bool deleteWindow) {
if(!GetDocument()->Close())
return FALSE;

// Clear the canvas in case we’re in single-
// window mode, and the canvas stays
canvas->Clear();
canvas->view = (WXWindPlotView *)NULL;
canvas = (MyCanvas *)NULL;

wxString s(wxTheApp->GetAppName());

if (frame)
frame->SetTitle(s);

SetFrame((wxFrame*)NULL);
Activate(FALSE);

if(deleteWindow) {
delete frame;
return TRUE;

}
return TRUE;

}

Once I had everything in place I could start dropping in chunks of code
from the MFC app and let the compiler crank through the errors.

The Port in Detail
Step 1 was to remove all includes for windows.h and stdafx.h. Now
we are are a huge step to throwing off the Microsoft yoke and out there in
the real world at last. All those windows functions that are not in the
wxWidgets library are going to have to be found in the the ANSI C libraries.
The first one I came up against was GlobalLock to allocate memory.
Several lines of code were replaced with a simple malloc statement –
and a free in the destructor.

The sidebar contains a great little macro to speed up your work.

'————————————————-
'FILE DESCRIPTION: New Macro File
'————————————————-
Sub wxconvert()
'DESCRIPTION: Convert MFC to wxWindows
'Begin Recording
ActiveDocument.ReplaceText "Bool","bool"
ActiveDocument.ReplaceText "CString","wxString"
ActiveDocument.ReplaceText "CFile","wxFile"
ActiveDocument.ReplaceText "CTime","wxDateTime"
ActiveDocument.ReplaceText ".GetLength",".Length"
ActiveDocument.ReplaceText ".GetBuffer",".GetData"
ActiveDocument.ReplaceText "CCmdUI* pCmdUI",

"wxUpdateUIEvent& event"
ActiveDocument.ReplaceText "ON_COMMAND","EVT_MENU"
ActiveDocument.ReplaceText "ON_UPDATE_COMMAND_UI",

"EVT_UPDATE_UI"
ActiveDocument.ReplaceText " afx_msg ",""
ActiveDocument.ReplaceText "CSize","wxSize"
ActiveDocument.ReplaceText "AfxGetApp()->",

"wxGetApp()."
ActiveDocument.ReplaceText "AfxMessageBox",

"wxMessageBox"
ActiveDocument.ReplaceText "CFrameWnd","wxFrame"
ActiveDocument.ReplaceText "::modeRead","::Read"
ActiveDocument.ReplaceText "DWORD","unsigned int"
ActiveDocument.ReplaceText "GlobalAlloc(

GMEM_MOVEABLE | GMEM_ZEROINIT,",
"(unsigned char *) malloc"

ActiveDocument.ReplaceText "GlobalAlloc(
GMEM_MOVEABLE | GMEM_ZEROINIT, ",

"(unsigned char *) malloc"
ActiveDocument.ReplaceText "LPSTR","char *"
ActiveDocument.ReplaceText "pCmdUI->SetCheck",

"event.Check"
ActiveDocument.ReplaceText "pCmdUI->","event."
ActiveDocument.ReplaceText "CPen","wxPen"
ActiveDocument.ReplaceText "CBrush","wxBrush"
ActiveDocument.ReplaceText "CRect","wxRect"
ActiveDocument.ReplaceText "CPoint","wxPoint"
ActiveDocument.ReplaceText "pDoc->","doc->"
ActiveDocument.ReplaceText "->TextOut","->DrawText"
ActiveDocument.ReplaceText "->LineTo","->DrawLine"
ActiveDocument.ReplaceText "DWORD","unsigned int"

'End Recording
End Sub

30 CVu/ACCU/Features

Most wxWidgets classes are counterparts of MFC and there is normally
a 1-to-1 correlation. wXstring and CString are very similar as is DC
– wxDC. Others are not quite the same. CTime is replaced by
wxDateTime that has slightly different construction and considerably
more functionality. MoveTo and LineTo are replaced by one call in
wxWidgets – DrawLine . Eventually somebody will write a porting
macro. I was tempted to batch some edit commands together but resisted.
The process went quite fast and it is better to keep an eye on where the
code is changing.

One thing to look out for is making sure you have all the right includes.
If a class is not found whizz over to the documentation. Every class has a
#include associated with it.

It is certainly not a plug compatibility and where there is a difference
you can be sure that wxWidgets is more intuitive and better thought out.
Best of all the compiler does all the hard work. I linked the Shift F1 key in
Visual Studio to bring up the wxWidgets help file. It is very complete and
it is very easy to jump to the relevant section and find out what each class
is about. In a very short time I was reaming out whole sections of code and
getting them to run. File IO was simplified. try and catch were not
supported but then I do not use exceptions much.

Certain things to look out for: wxString::Format has the same
syntax as the MFC equivalent but with a difference you need to assign
it i.e.

CString str;
str.Format("%i",Integer);

wxString str;
str = str.Format("%i",Integer);

I personally like to expand out my code for readability and thus the wX
implementation makes more sense.

Another difference is the drawing functions of wxDC.
Functions like ellipse (DrawEllipse) use starting coordinates and

dimension as opposed to starting and ending coordinates.
wXDC::DrawText is similar to CDC::TextOut but the text only is

drawn making an initial rectangle draw necessary to wipe out the old text
and avoid overlaying. This in fact solved a lot of irritating quirks I
experienced with MFC and trying to get a mixture of text and graphics to
stop interfering with each other.

So you see that there is some work to do here and it is not a straight
conversion exercise at all. However the compiler is a great help and guides
your work. My methodology was to open up little bits of functionality at
a time. Now the first port is behind me I will probably adopt a more
confident holistic strategy.

Designing the User Interface
I started creating the toolbar manually from the samples. This is reasonably
easy but is time-consuming and takes a bit of care as the coding is quite
critical in places. Using wXDesigner automates this process. The menus
and tool bars can be very easily laid out .

To generate an app from scratch using existing bitmaps and menu
structures from the old program took an hour and a half with 15 toolbar
buttons and 8 main menus.

Visual C++ is a bit easier and more intuitive but of course you are only
coding for one platform. After a few minutes with wXDesigner you will
get the hang of it and you will find it is a very much worth the money you
have paid for it.

You need to be aware of the symbolic event Ids – some of them exist
already as system events. See Table 1 for these

You need to add to the file Resource.h to manually code in the ID
number where your user interface interacts with the above functions You
can put the ID anywhere in a header file, however, I like to use
Resource.h.
Otherwise you leave the ID as –1 and wXDesigner will generate the event
entries for you. wXDesigner starts from ID=10000. All you need to do is
use the symbols in your code.

To generate the CPP code press the C++ button in the wXDesigner and
the file nnnn_wdr.cpp is generated, this file contains all the nasty menu
generation code you used to have. Our Menu bar was called
MainMenuBarFunc. All you need to do to invoke it in your main app is
to put the following line in the App::OnInit() section:

m_mainFrame->SetMenuBar(MainMenuBarFunc());

wXDesigner has already created a shell for you but you probably want to
use your own template. The class browser in MSVC is very useful. The
code generated by wXDesigner does not parse well and all the functions
are in one file. The wrapper wXDesigner generates it seems is primarily
an example shell rather than a starting point for a GUI application and so
far we have been evolving a full scale MDI program. The shell provided
though is very useful to explain where all the bits plug in.

On the creation of pop-up menus, WXDesigner forces you to use a menu
bar. You can try to override this however I found it easier to dump the
generated code right into the canvas class. This code is fairly static and
if we regenerate it is will be fairly easy to dump it in again.

This is what wXDesigner generates:

wxMenuBar *PopUpMenuBarFunc() {
wxMenuBar *item0 = new wxMenuBar;
wxMenu* item1 = new wxMenu(wxMENU_TEAROFF);
item1->Append(wxID_NEW,

wxT("&New\tCtrl-N"),
wxT("New chart"));

item1->Append(ID_GRIB,
wxT("&Open\tCtrl-O"),
wxT("Open a Grib File"));

item1->AppendSeparator();
item1->Append(ID_1X,

wxT("&1x"),
wxT("Zoom 1 times"));

item1->Append(ID_2X,
wxT("&2x"),
wxT("Zoom 2 times"));

item1->Append(ID_3X,
wxT("&3x"),
wxT("Zoom 3 times"));

item1->Append(ID_4X,
wxT("&4x"),
wxT("Zoom 4 times"));

item1->Append(ID_5X,
wxT("&5x"),
wxT("Zoom 5 times"));

Name Value Name Value

wxID_LOWEST 4999 wxID_PASTE 5032

wxID_OPEN 5000 wxID_CLEAR 5033

wxID_CLOSE 5001 wxID_FIND 5034

wxID_NEW 5002 wxID_DUPLICATE 5035

wxID_SAVE 5003 wxID_SELECTALL 5036

wxID_SAVEAS 5004 wxID_FILE1 5050

wxID_REVERT 5005 wxID_FILE2 5051

wxID_EXIT 5006 wxID_FILE3 5052

wxID_UNDO 5007 wxID_FILE4 5053

wxID_REDO 5008 wxID_FILE5 5054

wxID_HELP 5009 wxID_FILE6 5055

wxID_PRINT 5010 ID_FILE7 5056

wxID_PRINT_SETUP 5011 ID_FILE8 5057

wxID_PREVIEW 5012 wxID_FILE9 5058

wxID_ABOUT 5013 wxID_OK 5100

wxID_HELP_CONTENTS 5014 wxID_CANCEL 5101

wxID_HELP_COMMANDS 5015 wxID_APPLY 5102

wxID_HELP_PROCEDURES 5016 wxID_YES 5103

wxID_HELP_CONTEXT 5017 wxID_NO 5104

wxID_CUT 5030 wxID_STATIC 5105

wxID_COPY 5031 wxID_HIGHEST 5999

Table 1: Symbolic Event IDs

31CVu/ACCU/Features

item0->Append(item1,
wxT(""));

return item0;
}

By stripping off the menubar class and implementing this directly in your
code you get:

void MyCanvas::ShowDContextMenu(
const wxPoint &pos) {

wxMenu* item1 = new wxMenu(wxMENU_TEAROFF);

item1->Append(wxID_NEW,
wxT("&New\tCtrl-N"),
wxT("New chart"));

item1->Append(ID_GRIB,
wxT("&Open\tCtrl-O"),
wxT("Open a Grib File"));

item1->AppendSeparator();

item1->Append(ID_1X,
wxT("&1x"),
wxT("Zoom 1 times"));

item1->Append(ID_2X,
wxT("&2x"),
wxT("Zoom 2 times"));

item1->Append(ID_3X,
wxT("&3x"),
wxT("Zoom 3 times"));

item1->Append(ID_4X,
wxT("&4x"),
wxT("Zoom 4 times"));

item1->Append(ID_5X,
wxT("&5x"),
wxT("Zoom 5 times"));

PopupMenu(item1,
pos.x,
pos.y);

// test for destroying items in popup menus
#if 0 // doesn’t work in wxGTK!

menu.Destroy(Menu_Popup_Submenu);
PopupMenu(&menu,

event.GetX(),
event.GetY());

#endif // 0
}

The above function is invoked via the Canvas class that handles all mouse
events.

void MyCanvas::OnMouseEvent(
wxMouseEvent& event) {

wxClientDC dc(this);
PrepareDC(dc);
wxPoint pt=event.GetLogicalPosition(dc);

// Popup support
if(event.RightUp())
ShowDContextMenu(pt);

// Standard mouse events
if(event.LeftDClick())
view->OnLButtonDblClk(0, pt);

if(event.Moving())
view->OnMouseMove(0, pt);

if(!view)
return;

}

Now we have a path where the UI can be altered on the fly and we just
recompile. About as simple as using native MFC and Visual C++. Only
difference is that you have a lot more control over what is going on.

Finer Points
Status Bar Under Sub-Window

Easy enough to do: in the Frame all you need to add is:

CreateStatusBar(4);

to create four equally sized panes, and then in your body code you set the
text:

SetStatusText(_("Ready"),1);

to put the word Ready in the first pane.

Persistence and the Registry
The function GetApp() that returns addressability is accessed by simply
putting MyApp.h in the view path of the class you want to allow access
to the App. In the case of MyDoc putting MyApp.h in the front of the file
and calling GetApp() you can access variables.

This is very important when we use profile variables.
Those from the golden days of windows programming will remember

the ini file and GetPrivateProfile string and
WritePrivateProfileString.

Persistence in wxWidgets is similar in concept except the concept is
portable. For Win32 we will use the windows registry and wxRegConfig.
For Unix & Linux we will need to use the fileConfig. The underlying
philosophy is the same so the definitions will change but the use of the
config base will not. The wxWidgets document ion explains the concept
very well.

In MyApp.h define the config base variable config.
This will be our point of contact for all our persistent variables.

wxRegConfig *config;
config = new wxRegConfig("MYKEY");

Now in the application code we can do something like this:

wxGetApp().config->Read("LAT",
&LAT,
(double)0);

wxGetApp().config->Write("LAT",
worklat)

Posting Messages
You can issue messages within the code very much like making a mouse
click. Very useful for invoking functions or perhaps a timer:

wxUpdateUIEvent ev(ID_TIMER);
frame->GetEventHandler()->ProcessEvent(ev);

Next time...
Next time, we’ll talk about connecting to the user interface.

Jonathan Selby

Resources
wxWidgets: http://www.wxwidgets.org
wxDesigner: http://www.roebling.de/
Another introduction to wxWidgets:

http://www.all-the-johnsons.co.uk/accu/
index.html

Porting MFC to wxWidgets:
http://www-106.ibm.com/developerworks/linux/
library/l-mfc/

32 CVu/ACCU/Features

An Introduction to
Objective-C
Part 2 – Basic Principles
D.A. Thomas

Unlike C++, Objective-C is standard C with a small object-oriented
extension; an Objective-C compiler will compile all conforming C code in
exactly the same way as a C compiler.

Objective-C source files traditionally have the suffix .m; and with
the Apple/NeXT compiler, a file that contains a mixture of Objective-
C and C++ code (so-called Objective C++) needs to be suffixed with
.mm.

Objective-C adds one type to the C language, namely id, which is a
pointer to any object.

id myObject;

declares an object pointer with the name myObject.
If the class of the object is known, the above declaration is equivalent

to:

MyClass *myObject;

which declares a pointer to an object of class MyClass. This syntax allows
the compiler to perform static type-checking, so that the programmer can
be informed at compile time that an object of that class does not support a
particular operation.

In Objective-C, unlike C++, all objects are referenced by means of
pointers.

Classes are declared as follows:

#import "BaseClass.h"

@interface MyClass : BaseClass
{
// Instance variables
int n;
float x;

}

// Method declarations

// Class method
+ (id)new;

// Instance method with arguments
- (id)initWithValues:(int)nn and:(float)xx;

@end

This is the public interface of the class MyClass, which inherits from
BaseClass .

By default, instance variables have ‘protected’ visibility; this means
that they can be read and written to directly only by objects of the class
in which they are declared or of a class inheriting from it. The default
visibility can be varied by means of the compiler directives @public
and @private ; public variables are visible to all outside code, while
private ones are accessible only to instances of the class in which they
are declared.

A class method is prefixed by + and could be called in the following
manner to create an instance of the class and its address stored in a
variable:

MyClass *newObject = [MyClass new];

Every class is an object in Objective-C and typically contains methods,
like new above, to create instances of itself.

The return type of a method and the type of its arguments are written
within parentheses. If the type is not provided, type id is assumed. It is
important to understand that type names within parentheses resemble the

C syntax for ‘casting’ a value from one type to another, in this context no
casting is involved.

Instance methods belong to an instance of the class and can access its
instance variables. Their declarations are preceded by the token -.

Arguments are declared after keywords terminating in colons; the
name of the method is understood to consist of all the keywords
together with the colons. The instance method above has the name
initWithValues:and:, and it is pronounced: ‘init with values
colon and colon’. The method could be invoked in the following
manner:

[newObject initWithValues:42 and:12.576];

This style of naming methods will initially seem strange to those who are
unfamiliar with Smalltalk, from which it is derived.

The implementation of a class is defined as follows:

#import "MyClass.h"

@implementation Myclass

+ (id)new
{
// Allocate memory for an object and
// initialise to default values.
return [[super alloc] init];

}

// -init is a private method and is thus not
// declared in the interface.
- (id)init
{
// Initialise self to default values.
return [self initWithValues:0 and:0.0];

}

- (id)initWithValues:(int)nn and:(float)xx
{
// Call BaseClass init method.
[super init];

// Initialise the instance variables and
// return a pointer to this object.
n = nn;
x = xx;
return self;

}

@end

The keyword self is a pointer to the current object; super is a directive
that instructs the compiler to invoke a method in the superclass (i.e. the
class from which the current one is derived, otherwise known as ‘base
class’).

The normal way to invoke methods in Objective-C is the write the
object name (known as the receiver) followed by the method name (with
arguments, if required) between square brackets; the whole is known as a
message expression.

The method name is called a ‘selector’ because the receiving object uses
it to select the appropriate method for the required operation. The message
expression:

[self initWithValues:0 and:0.0]

above could be described in English as: ‘send self a message with selector
initWithValues and parameters 0 and 0.0’.

The reader should now have enough information to know how to
write Objective-C classes, how instances are created and how to invoke
methods.

Apart from knowledge of supplied class libraries, little else is
required in order to become a competent user of the language.

D. A. Thomas

33CVu/ACCU/Reviews

Bookcase
Collated by Christopher Hill
<accubooks@progsol.co.uk>

A Note from Francis
About ten years ago I had an appointment to see
James Lake who was the proprietor of PC
Bookshops in Sicilian Avenue, Holborn, London.
I was a bit early so spent a few minutes browsing.
While doing so I noticed a book Morphing
Magic. Nothing would have made me check this
book other than having an idle few minutes in a
bookshop. However I found a brilliant book that
used C to develop, among other things, a great
little application for developing and displaying
simple cartoons. It ran on pretty minimal
hardware even by the standards of the day,
MSDOS on a 286-based machine was enough.

Such chance findings are becoming increasingly
rare. There is no longer a PC Bookshop on Sicilian
Avenue. The company has morphed into Holborn
Books and has move to Hampshire. It trades
electronically so there is no longer an opportunity
to simply browse and find the nugget of gold
hidden in the thousand pieces of dross.

This loss of real bookshops where you can go
and browse is a matter for concern. We need
specialist shops rather than small departments in
chain stores. Or alternatively we need better
mechanisms for finding both what we are
looking for, and the things that we did not even
know were there.

Even when you know what you are looking for,
browsing for titles on the web can be a very hit and
miss affair. Try going to www.amazon.co.uk
and typing in ‘beginners programming’ as search
criteria. Now repeat the exercise for ‘introduction
programming’ and ‘beginner’s programming’. Not
that my book is listed in the top ten for both the
latter criteria but completely ignored by the first
search.

I do not even begin to have a solution to
finding things that you do not know are there.
This means that good sources of information are
becoming increasingly important. Most
magazines only review a couple of books per
issue, and it is in the nature of things that those
will be books that are likely to interest the average
reader. But those same people will already search
for suitable books in the subject area.

This makes large-scale collections of book
reviews all the more valuable, but it also places
an extra burden on such collections to be as
complete as possible as regards their core topics.
A comprehensive collection of reviews needs to
be actually comprehensive.

In days gone by, ACCU reviews did a pretty
good job at covering books for newcomers to C and
C++, not least because I covered many of them. As
an author of a book for newcomers to programming
I no longer feel I should review the work of my
potential competitors, but I also feel aggrieved that
almost a year on from publication there is still no
mention of my book on ACCU’s website. I hope
this will have been corrected by the time this goes
to print, not because the book is by me, but because

two ACCU reviewers took copies to review more
than six months ago. Accepting the task of
reviewing a book is not something casual to be
fitted into the odd moment but is an increasingly
serious undertaking with a commitment to both the
author and the potential readers.

Prize Draw

Now to turn to something positive, and something
you can all join in. I would like readers to do three
things. First select the book that you have read that
you think has been most underrated or overlooked.
Just one, and I know that makes it hard for some
but the effort of choosing can focus the mind. Of
course there are no right answers but it will be
interesting if some books turn up more than once
(and if only three readers respond...)

The second thing is to choose a category
(novice programmer, newcomer to C++,
embedded systems developer, games developer,
etc.) and list which books you would recommend
given a) a budget of £100 ($180) and b) a budget
of £250 ($450).

And lastly, given a budget of £2000 ($3600) list
what software development tools and references
you would take with you for a year’s stay on a
desert island. The desert island comes equipped
with the essentials for life and electric power.

There will be a prize draw for all responses
submitted to francis@robinton.demon.co.uk
by midnight November 30th/December 1 st

Greenwich Mean Time. The size of the prize will
depend on the number of entrants so being the only
entrant won’t win very much.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members – if you ever have a problem with this,
please let me know – I can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.
The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. I consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). I consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

C & C++
Exceptional C++ Style by Herb
Sutter (0 201 76042 8), Addison-
Wesley*, 325pp @ $39.99/£30-99
reviewed by Francis Glassborow
I thought that readers of C Vu would

like a quick review of Herb Sutter’s latest
volume in his Exceptional C++ series. As the
author kindly sent me an autographed copy I
can safely review it without being accused of
skimming cream off the top of the pile of
books awaiting review.

This book consists of 40 chapters in the
same format as he used in the previous two
volumes. Most chapters lead with a one or
more Junior Guru questions (things that any
competent local expert should be able to
tackle, but too many cannot). All the chapters
have at least one Guru question. Those
require a great deal of expertise to get
entirely right. A couple of the Guru questions
might stretch even the author’s
understanding – I am not entirely convinced
that everything he writes in the two chapters
on export is correct.

After the questions come the author’s
answers and sprinkled among those are sound-
bites masquerading as guidelines. Well every
good guideline should be expressible as a
sound-bite, the skill is in ensuring that the
sound-bites are also good guidelines.

One of the features Herb’s book shares with
Scott Meyer’s books is that they are written for
normal C++ programmers who are sufficiently
professional to want to understand what they
are doing and want to write correct code.

A typical example is item 16 (Mostly
Private) that has no Junior Guru question. Herb
has his feet solidly on the ground in
recognising just how extensive
misunderstanding of visibility and access is
among even pretty expert C++ programmers.
This is one of Herb’s characteristics that make
him an exceptional (pun intended) author, he
spends time learning about the things that
cause real problems to practitioners in the field
and then tries to address them.

I have heard people dismiss some of his
writing as dealing with things that are far too
difficult for the working programmer. Such
dismissal is seriously mistaken; working
programmers who think books such as this are
beyond them should find some other job
because they are accidents waiting to happen.

Now before I am accused of waffling again,
let me draw this review to a close. If you
already have Exceptional C++ and More
Exceptional C++ you will already be planning
to buy this book. If you do not have the
previous books, buy those first. Whichever
group you are in do not confuse this book with
the soon to be published book on C++ Coding
Guidelines which is co-authored by Herb Sutter
and Andrei Alexandrescu. Time to start
dropping hints to your loved ones because that
book should be out in time for Christmas.

Reviews

34 CVu/ACCU/Reviews

Visual C++ Optimization with
Assembly Code by Yury Magda (1
931769 32 X), alist, 450pp + CD @
$39.95/£27-99
review by Francis Glassborow

The title immediately made me doubtful, turning
to the back-cover only deepened my sense of
unease. Here is the start of the back-cover blurb:

Describing how assembly language can be used
to develop highly effective C++ applications, this
guide covers the development of 32-bit
applications for Windows. Areas of focus include
optimising high-level logical structures, creating
effective mathematical algorithms, and working
with strings and arrays…
My first problem is that optimisation is always

something that should not be taken lightly, indeed
we should avoid it unless testing shows that it is
necessary. All forms of hand optimisation tend to
make code more fragile and harder to maintain,
going down to assembly level is an even further
step in the direction of maintenance problems.

Attempting to use assembly code as a way to
optimise high-level anything seems to be entirely
wrong to me. From where I am sitting, assembly
code belongs in the lowest layers if at all.

Writing mathematical functions is an
extraordinarily skilled task, and one that I am
more than willing to consign to talented library
implementers. I have some sympathy with
regards to working with strings were that to mean
using std::string, but it does not, it refers to
using nul-terminated arrays of char.

So let me turn to the content. The first thing
that quickly becomes apparent is that for the most
part the author is not actually writing C++ nor
even Visual C++, he is writing C with a small
spicing of C++ and a large dose of Microsoft
extensions. What puzzles me is why he is using
_asm instead of the C++ asmkeyword where
he is putting assembly code into C++ source
code. Maybe that is a VC++ issue.

The assembly code parts of the book seem to
be fine (but remember that for the last ten years
my attitude to knowing assembler code for a
machine is that its main value is in identifying
bugs in the compiler. The author covers both free
standing assembly code in their own modules that
will be linked in at link time, together with
assembly code embedded in C++.

The author’s optimistic estimate of the
potential improvement by using assembly code is
around 17%. That should be balanced with the
way that assembly code will kill some of the
optimisations available to Microsoft’s most recent
link technology. I also think it is being more than
a tad optimistic and based on measurement of
limited parts of an application rather than on
overall performance.

However let me accept the author’s estimate,
and then pose the question as to how many
months would go by before the current hardware
was providing more than a 17% performance
improvement. There are very few applications
where maximal performance is an absolute
requirement. In most cases once a certain level of
performance has been achieved further
improvements are of little added value.

I think that a much shorter book showing the
reader how to add assembly code to already well
written C++ would be much more to the point.
Even such a book would have (or should have) a
very limited sale.

If you absolutely need to write assembly code
for your C++ application and are already a good
C++ programmer you can probably distil what
you need to know from reading this book.
However most C++ programmers would do
better to spend the equivalent time improving the
quality of their C++.

I guess the amateur games programmers
might find something useful in this book. The
professional ones have to worry about issues of
portability which makes use of inline assembly
code problematic.

You Can Do It– A beginner’s
introduction to Computer
Programming! by Francis
Glassborow & Roberta Allen (0 470
86398 6), Wiley, 353pp + CD @

$30/£19-99
reviewed by Ian Bruntlett
Months from now a more detailed review will be
posted on the ACCU book reviews web site. This
brief review is presented now to answer the
question “Should I buy this book?”.

“Should I buy this book?” Well, if you are a
learner programmer or someone who wants to
brush up their C++ skills, this is the book for you.
It’s not perfect but it is a very good book for
beginners. Once you have mastered this book
then you should consider buying “Accelerated
C++ ” (Koenig & Moo) or the “C++ Primer” by
Lippman & Lajoie. After that then try “The C++
Programming Language” by Bjarne Stroustrup.
Take a look at www.wileyeurope.com/go/
glassborow or www.spellen.org/
youcandoit/ for more information.

YCDI! Is a book that will take months to read.
It took months to review. It is split into chapters
but should have been split up into parts. The first
set of chapters provide intense study material and
the remainder of the book continues at a gentler
pace.

The approach taken by the author (Francis
Glassborow, aka fgw) is to explain matters and
then provide exercises to confirm that the reader
has assimilated the subject material. Fgw thinks
that programming is fun and provides tools and
libraries (Using the MingW port of the Gnu
C/C++ compiler and the Quincy IDE on the
accompanying CD) so that the beginner can
produce rapid results, boosting the student’s
morale. The library that comes with this book is
called “playpen” and provides a canvas to display
things on – this is good because it means that
beginners gets something visual to look at early
on in their career.

Flaws. One is the lack of Linux support – the
book demands access to a Windows PC. This is a
disappointment because I have seen plenty of
messages on Linux mailing lists looking for help
in learning to program. The other flaw is lack of
information in using an interactive debugger.
Another flaw is that fgw insists on pulling all the
standard library names into the global namespace
– the “using namespace std” command is an
aberration and should not appear in a
programming book. It is one of the few places
where fgw provides bad code that has to be
unlearnt later.

The book gives an authentic programming
experience, the reader has to dig for certain
details to get things going. If you are a complete
beginner (with no one to help you) then I would

suggest you join the accu-general mailing
list and ask questions there.

VERDICT: Highly recommended for
beginners and intermediate C++ programmers.

C# & Java
Beginning C# XML by Stewart
Fraser & Steven Livingstone (1-
86100-628-4), WROX*, 729pp @
$39.99/£28-99
reviewed by Paul Usowicz

One of my next tasks at work is to extend an
application I am working on so that it can export
XML files destined for an SQL server.
Conveniently the application is written in C# and
I am just beginning to learn XML so this book
was eagerly awaited. To say this book does
exactly what it says on the cover (Beginning C#
XML – Essential skills for C# programmers) is
spot on. Upon opening the package, I
immediately read the first two chapters (‘Why
use XML with C#?’ and ‘Overview of XML’).
Over the next couple of evenings I devoured the
rest of the book typing in the examples where I
felt them necessary.

The speed at which I read the book highlights
several factors. Firstly, I was extremely keen to
learn XML. Secondly, this book was exactly what
I needed. Thirdly, this is a very well written book.
I found the explanations very easy to understand
and the examples were short enough to actually
type in – more on that in a minute! As I am
relatively new to C# and have never before used
XML I cannot vouch for the authors technical
validity or experience but the book provided
enough advice to get my application up and
running quickly and reliably.

As well as the XML format the book also
covers reading and writing XML and various
acronyms including DOM, XSLT, XML Schema
and XPath. The book also addresses XML in
ADO.net and web services. At the end of the
book is a case study for a simple news portal.

Now on to the source code I hinted at earlier.
As I said, most of the code was very short and not
too much trouble to type in. I felt it best to get the
source code anyway so duly went to the web site
highlighted on the front of the book,
www.beginningdotnet.com. Instead of a
Wrox-owned web site, I was confronted with a
search engine. Undeterred I tried the web site on
the back of the book, www.wroxbase.com.
Not even found. Finally, I went to
www.wrox.combut there was no mention of
the book anywhere. After 10 minutes of
searching, I finally found a little FAQ that
explained that Wrox had recently gone bankrupt
and sold a load of titles to Apress
(www.apress.com), which is where I finally
found the source code. Given the high quality of
the book this was extremely frustrating, but
obviously, the book was printed before the
company’s troubles.

[However the actual Wrox imprint was sold to
Wiley & Sons. Francis]

Java Collections by John Zukowski
(1 893115 92 5), APress, 415pp @
$49.95/£35-50
reviewed by Christer Lofving
This is yet one more of these easy-at-

hand titles. Excellent to have behind you on the

35CVu/ACCU/Reviews

desktop when working. But to read them through
becomes tiring after a while. I started to read my
copy with some expectations though, because the
cover promise a “Comprehensive coverage of the
Java Collections Framework”, and “Real world
examples, no toy code”.

My enthusiasm also remained after the
starting chapter about arrays. I learned some odd
but interesting facts about this “primitive”
collection and often forgotten area of Java
programming. The first part of the book is
dedicated to the so called “Historical” Collection
Classes; Vector, Hash Table and Bit Set classes
sort under this label, as well as the Enumeration
interface. Later years updates of the Collection
classes seems to be well covered. For example,
the Bit Set class is not final anymore.

Core of the book is the coverage of Java
Collection API. After a brief introduction and
some pages about the newer Iteration interface
which is meant to replace Enumeration, reading
now becomes a little boring. Everything is still
well explained, but the style starts to feel more
like programmer’s documentation.

What about “No toy code” then? Well, in my
opinion there is still a lot of toy code. Maybe the
code listings presented in the “advanced” ending
part (describing COLT) are more professional and
useful.

The book gives an interesting and reliable
insight in Java Collections, but unless you are
particularly interested in the subject or work with
very advanced collections, you do not really need
it. The Java API documentation gives enough
information with good code examples to solve the
main part of your Java Collection problems.

Mono – a Developer’s Handbook
by Edd Dumbill & Neil Borstein (0
596 00792 2), O’Reilly, 302pp @
$24.95/£17-50
reviewed by Paul F. Johnson

If you are new to Mono then you need to buy this
book. It covers GtkSharp (the Gtk C# bindings),
Monodevelop (a rather snazzy IDE for Mono),
Webservices (you can now deploy ASP on a non-
Windows platform) and everything else Mono
has.

The writing style is clear and concise with
plenty of code examples all of which will compile
and run. The examples are well explained and as
the book is logically set out, helping those
wanting to develop under Mono to get going.

What the book does not teach is C#, which is
fine and is best left to other books (see the ACCU
website for an array of them).

My only bind with the book is that in an
attempt to make the book look like a textbook,
the pages are made to look like a schoolbook with
feint blue squares on every page. It is not that
annoying, but when you are trying to find
something at 1am...

This is a very new book and replaces the
SAMS book “ Mono Kick Start” very effectively
(okay, it is not a SAMS book, but it covers all of
the parts not in the Mono Kick Start book).
Highly Recommended

Mono Kick Start by Schonig &
Geschwinde (0 672 32579 9),
SAMS, 400pp @ $34.99/£25-50
reviewed by Paul F. Johnson
With the exception of the chapters

on Qt# and GTK# and the simpler reading style,
there really is not anything to recommend this
book over any other beginners C# book.

This book really does suffer due to it’s age –
and it’s not that old which on one hand is quite
worrying, but on the other does say something
about the speed of development of Novell’s
Mono package.

Even the GTK# code has large problems in
that some of it does not compile and some is very
much out of date. There are no updates on the
SAMS website either to correct the mistakes
which makes this book even less use for the C#
beginner. The Qt# material is easily missed as
there really is not very much of it.

This is all quite a pity as the book itself is very
easy to read, but in itself, that is not enough for
the price. Not Recommended

Other Languages
Perl Template Toolkit by Darren
Chamberlain, et al. (0-596-00476-1),
O’Reilly, 575pp @ $39.95/£28-50
reviewed by Jon Wilks
Template Toolkit (TT2) is a template

processing system typically used for web site
creation. The input data could be anything from
variables specified at run time, an XML file or a
database accessed via DBI for example. The
templates could be structured to produce HTML
but could just as easily be used to create XML,
PDF or conceivably even source code - any
application where there is the requirement to
separate data and presentation. The book itself
was written in Perl’s pod system and processed
using TT2.

This first edition of the book is based on
version 2.1 of TT2. Its chapters describe TT2 in
detail and go through, in tutorial fashion, the
construction of a web site. The beauty of TT2 is
that knowledge of Perl is not actually required to
use this tool and the template language itself
could be embedded easily by non-technical
personnel (for form layout for example). Optional
scripts are supplied with the Perl module that will
process a single page or an entire tree of
templates. Their use is covered well in the book.

The 12 chapters and 1 appendix cover all
aspects of this tool from the syntax and
directives up to internals and extension. TT2 is
not the only template kit around and the
“getting started” chapter offers a comparison of
the other template systems available. All the
code examples in the book are available from
the O’Reilly website. After reading the first
two chapters the rest of the book is written in a
style that can be easily browsed as required.
The reader is initially led gently from one
concept to the next with later chapters offering
a description of the template language,
template directives, filters and plugins. Over
two chapters, the anatomy of the system is
described and information describing how to
further extend TT2 is given.

I found the very easy to follow and in fact I
have been using the template toolkit
extensively for creating Unix system recovery
documentation in a format independent
manner, creating html, rtf and man pages from
a single source tree. The template toolkit has
made this simple and for that reason I highly
recommend this book.

Learning Python 2nd ed. by Mark
Lutz and David Ascher (3-596-
00281-5), O’Reilly, 592pp @
$34.95/£24-95
reviewed by Ivan Uemlianin

The book uses the traditional bottom-up
approach. After an opening part motivating the
language and introducing the interpreter we
progress, from data types, through statements,
and up through functions, modules, classes and
exceptions. Classes get 100 pages; other parts get
about 50 pages each. A closing part covers
common tasks, advanced uses, and Python
resources. Appendices give details on installation
and configuration, and provide solutions to all the
exercises.

The book is thorough and patient. Topics are
discussed in detail and at a steady pace.
Repetition is used more than cross-reference. This
book would be very good for self-study, as there
is plenty of room for the plodder or the dipper.
The exercises are worthwhile and to the point,
and the solutions are explanatory.

Documentation and design issues are
addressed early and often, and are clearly a
central part of what is being taught in this book.
The example code is of the highest quality.

The book’s faults are minor. Although the
preface says PyUnit and doctest are in Chapter 11;
they are not, being given just a paragraph each in
the core language summary in Chapter 26.

The book is not comprehensive (not a fault in
itself), and a small number of language features
are deemed ‘too advanced’ to be covered in
depth, among them generators and the ‘new style’
classes. These features are sketched and given use
cases, and the interested reader is directed to the
documentation. Other features – like the useful
little enumerate(object) – are not mentioned, but
you have to draw the line somewhere. At 591
pages, the book is already large, but not unwieldy.

This book is a good example of Python
culture, in the clarity of its text as much as in the
quality of its code. Anyone working their way
through it will have a solid foundation upon
which to explore Python’s potential. Highly
recommended.

Patterns
Design Patterns in C# by Steven John
Metsker (0-321-12697-1), Addison-
Wesley*, 455pp @ $49.99/£37-99
reviewed by Paul Grenyer
The index of the book lists all 23 of the

original GoF design patterns. A number of them
are described in great depth and some even delve
into examples of their use in the .Net framework
and a description of what might be found when
searching for the pattern name in MSDN. Some
patterns also have examples of different methods
of implementation. For example, the Adapter
pattern describes a solution involving sub-
classing and another using composition.

The description of Façade is particularly good
and has a well thought out example that most
people, and especially people who have written
database clients, can relate too.

Some patterns such as Composite and
Flyweight get the idea behind the pattern across
but fail to provide a real world example.
Singleton has quite a brief description and covers
issues that arise from using singletons in threaded

36 CVu/ACCU/Reviews

environments. However, there is no mention of
the controversy over the use of Singleton, as there
is for Visitor.

The author has left a number of diagrams and
code fragments incomplete as exercises for the
reader, with the complete diagrams and code in
the Solutions appendix. I found this incredibly
irritating and frustrating as I was trying to relate
the text to the supplied figure. It also makes this
book more difficult to use as a reference.
Protected data is used throughout the examples
even in classes that would most likely remain the
most derived (leaf) class.

There were a lot of things I did not like about
this book, but most of that was style and a bit of
bad practice in the code. However, there was a lot
more I liked about it. Comparing with GoF, for
the most part, the patterns are explained more
clearly in this book and in greater depth and with
better examples. If it is the patterns that you are
interested in learning about then I rate this book
over GoF. I think you should still read Design
Patterns Explained by Alan Shalloway and James
J. Trott first.

Tools
Contributing to Eclipse: Principles,
Patterns and Plug-I by Erich
Gamma & Kent Beck (0-321-20575-
8), Addison-Wesley, 395pp @
$39.99/£30-99

reviewed by Silas Brown
Eclipse is an open-source editor/development
environment that is extensible in a way that is
reminiscent of EMACS, but based on Java rather
than Lisp and the user interface looks more like
Visual Studio. This book is aimed at developers
who want to extend Eclipse, it assumes you have
a working installation of Eclipse 2.x to play with.

The back cover says it’s “comprehensive” but
it’s not. It is more of an introduction than a
complete guide, because it aims to give you an
idea of how to work and find more information
by yourself. It does this by developing an
example; there are many details specific to that
example, but they may or may not relate to what
you want to do. For a start, you will have a
problem if you want to make tools for editing
anything other than Java (yes I know Eclipse is
implemented in Java, but the editing environment
is supposed to be language-agnostic).

I do not like their apparently last-minute
treatment of accessibility and internationalisation.
There is a short chapter on it, along with an
admission (on page 262) that the book’s example
code is inadequate in this respect. I can
understand such corner cutting when things need
to be kept simple, but this book’s code is
otherwise very detailed, so it could have set a
better example. It looks like they were asked to
address this issue shortly before the book went to
press, rather than being aware of it from the
outset. Even their admission fails to point out the
full implications of conveying information using
hard-coded red and green coloured rectangles,
such as the effect on people with colour-blindness
and those in cultures where red means happiness
instead of danger. And yet about 30% of the book
discusses the code to do it wrongly.

Overall, I think Chapter 1 is good, but how
useful the rest will be depends very much on how
well it happens to match what you want to do.

Eclipse 2 for Java Developers by
Berthold Daum (0-470-86905-4),
Wiley, 470pp @ $40.00/£32-50
reviewed by Rob Alexander
This book aims to give a broad

overview of the Eclipse platform, and as such is
divided into three sections. The first of these
covers the use of Eclipse as a Java IDE, including
the refactoring and code generation features. The
second part describes the SWT and JFace
toolkits, and the third details the creation of
Eclipse plug-ins. It follows that the book in its
entirety is useful only to those who want to create
such plug-ins. For anyone using Eclipse purely as
an IDE, only the first hundred pages are relevant.

The overview of the IDE is somewhat useful,
although I do not expect that experienced users
will refer to it frequently.

Some areas are touched on only briefly – the
debugger receives a mere 8 pages. The coverage
of the SWT and JFace toolkits is thorough. The
brief comparison between AWT/Swing and
SWT/JFace is concise and quite instructive.

Both the GUI toolkits and the plug-in system
are illustrated by large examples (a MP3 player
and a spell-checker, respectively). However,
Eclipse version 3 is now available, and some of
the changes cause problems. For example, the
second example crashes because of a change in a
core Eclipse library.

The text itself is far from sparkling. There are
few actual language errors (oddly enough, the
Introduction contains relatively many) but the
writing is very drab and lacking in zest. The book
is consequently tedious to read.

If your interest in Eclipse is only as an IDE,
then this book will not be a worthwhile purchase.
If you are interested in Eclipse plug-in
development, or at least in SWT and JFace, then
it may be of use. There are several similar books
available, however, and I would suggest
investigating those first. I can find little reason to
condemn this book, but little to recommend it
either.

MDA Distilled by Stephen J. Mellor
et al. (0-201-78891-8), Addison-
Wesley, 148pp @ $34.99/£30-99
reviewed by Nicola Musatti
The Model Driven Architecture is an

initiative by the OMG Consortium with the
ambitious goal of replacing programming with
design. This is to be achieved by providing ways
to augment design diagrams with enough
information to make it possible to automatically
generate full applications.

This book is a short, easy to read description
of the general principles on which the MDA is
based. It only assumes that the reader is familiar
with the UML and, possibly, with the relationship
between models and metamodels (e.g. how the
UML is specified in itself). In my opinion, it is
more oriented towards analysts and team leaders,
rather than programmers or managers.

The book’s worst defect is the lack of concrete
examples. The relative youth of the topic and the
scarcity of implementations may explain this, but
the difficulty in envisioning how the described
techniques might work in practice makes the
book less convincing than it might be. A great
improvement would be the introduction of a
detailed case study, so that each chapter could be
completed by a few practical examples that

showed how each of the MDA features might
work in practice.

Another thing I did not like is the authors’
apparently conceited attitude, which is better
suited for a sales pitch than for a technical book.

Overall, I do not consider this a bad book, but
I find it hard to identify a category of readers who
might find it really useful. If you’re interested in
finding out what the Model Driven Architecture
really is I think you should start by checking out
the documents available from the OMG web site
(http://www.omg.org/mda); then, if you
still feel you would like to read a coherent
overview, this book may be a reasonable choice.

Comparing and Merging Files by
David MacKenzie et al. (0-9541617-5-
0), Network Theory Ltd, 112pp @
$13.97/£12-95
reviewed by Mathew Davies

This is a bound version of the manual that forms
part of the GNU diff and patch package. The diff
and patch tools provide you with a means of not
only spotting differences between files but also
distributing (source code) patches for your
software. I have used diff a fair bit over the years
and can vouch for it being a really useful tool.

Ten years ago, I might have considered buying
this book; after all, it used to be time-consuming
to load the manual pages into your favourite word
processor and relatively expensive to run them off
on your dot matrix printer, let alone binding the
resulting document afterwards. Nowadays, I
would not buy this book, given that I can
download the manual in a selection of formats,
including HTML, directly from the GNU web
site. In fact, I have to admit to being rather baffled
by the purpose of this book.

The back cover suggests that the publisher is
donating $1 to GNU for each copy sold. Unless
you particularly want a soft back, bound copy of
the diff and patch manual, my advice would be
the following: download the manual from the
GNU web site, where you can be assured that it is
completely up to date; then make a donation
directly to GNU.

Methodologies
Agile Modeling by Scott Ambler (0-
471-20282-7), John Wiley & Sons
Ltd, 384pp @ $34.99/£22-96
reviewed by Anthony Williams
This is a reasonably long book, at

nearly 400 pages; it would be even longer if it
weren’t for the excessively large number of
words per page. I found this book hard to read, in
part due to the layout, and in part due to Scott’s
writing style. Though he is a stout member of the
Agile camp, Scott clearly also believes in the
benefit of repetition to get his message across;
there is many a repeated phrase or sentence, and
there is at least one whole paragraph repeated
word-for-word. All this detracts from the book,
which is unfortunate since Scott has many good
things to say.

The book is divided into 5 parts. The first two
parts cover the principles you should work to and
practices you should be doing to say that you are
doing Agile Modelling as Scott defines it. The
values of Agile Modelling are the four values of
eXtreme Programming, plus a fifth (Humility),
and the principles and practices are then derived

37CVu/ACCU/Reviews

from applying these values to a modelling
perspective. For example, the value of Courage
leads one to Discard Temporary Models, and the
values of Humility and Communication lead one
to realise that Everyone Can Learn From
Everyone Else, and that you should Model With
Others. This description of the principles and
practices forms the real meat of the book. Most
(perhaps all) of what Scott says here is sensible
advice that should be followed by anyone
pursuing an Agile approach to software
development.

The remaining parts describe the how Agile
Modelling fits into XP and the Universal Process,
with a discussion on introducing Agile Modelling
into your process. This also includes a discussion
of when Agile Modelling is not a good fit; a
check list of things you must be doing to say you
are Agile Modelling; and a list of things which
you must not be doing if you want to say you are
Agile Modelling. The book finishes off with an
appendix listing a host of modelling techniques to
consider when the need arises; Scott is quite clear
that you need to Apply the Right Artefact, and
having a wide range to choose from makes this
easier since you are not stretching a model
beyond what it can easily cover.

If you are interested in modelling, and want to
know how it fits into Agile projects, or you are
looking to make your current process more Agile
by reducing unnecessary modelling work, then
this book is well worth a read; I just wish it was
easier to read. Recommended.

Agile Modeling by Scott Ambler (0-
471-20282-7), John Wiley & Sons
Ltd, 384pp @ $34.99/£22-96
reviewed by Jon Steven White
User Stories Applied is an excellent

guide to writing User Stories and understanding
how they can be best incorporated into the
development lifecycle. The book is clearly
written by an author who has not only an obvious
wealth of experience in agile development, but
also the ability to provide information to the
reader in a simple effective manner.

In the first part of the book, the author
provides a good overview of user stories,
including detail on writing stories, gathering
stories through user role modelling, writing
stories when you do not have access to real end
users, and testing user stories. Each chapter
concludes with a clear summary, followed by an
outline of exactly what the developer and
customer are responsible for, clearing up any
ambiguity.

The second part of the book covers estimating
and planning, whilst the third part covers
frequently discussed topics, including excellent
chapters on bad user story application and using
stories with Scrum. Again, these sections are very
well written and offer both good explanation and
practical advice.

The fourth part of User Stories Applied
describes a comprehensive example, bringing
together all of the earlier material. This works
very well, giving the user extra confidence in the
material, and a chance to revisit the concepts
again.

Overall, I think that Mike Cohn has produced
a great book in User Stories Applied, directly
tackling an area that is often condensed and
confused elsewhere. Requirements gathering is

more important than ever today, and I would not
hesitate in recommending this book because I am
confident that the guidance it provides will help
to produce better software.

Extreme Programming Adventures
in C# by Ron Jeffries (0-7356-1949-
2), Microsoft Press*, 518pp @
$39.99/£27-99
reviewed by Anthony Williams

I thoroughly enjoyed reading this book. It is
neither a guide to XP, nor a tutorial for C#; rather
it is a description of Ron’s efforts to produce a
working program that provides real customer
value whilst learning a new language. The
program in question is an XML notepad, with the
aim of making it easier for Ron to edit his
website, and Ron guides us through it in the
humorous manner common to all his writing. Ron
being Ron, the project is undertaken in an
eXtreme Programming style, though the
limitations of the book project mean that he has
not employed all the practices “as written”; he is
his own customer, and he doesn’t always manage
to find a pair, for example. As you follow Ron
through the project, with the aid of the lessons he
pulls out, you get a better understanding of the
way he develops software, and are given an
opportunity to judge how it compares to what you
would have done. You might also learn a little C#
along the way, as Ron explains each new
language feature when he first uses it, though this
is not the key focus of the book.

The project is not just one big success story;
Ron shares his mistakes with us so that we may
learn from them. The book is interspersed with
“lessons”, where Ron reflects on the preceding
section and tries to identify important points,
either things that he felt worked well, or the
mistakes he made, and what he thinks could be
done to try and avoid similar mistakes. Also
throughout the book are sentences marked “sb”,
for “sound bite”. These are short phrases which
summarise a point, like “It’s Chet’s fault” (don’t
focus on finding who is at fault when things go
wrong, rather focus on fixing the problem), or
“You Aren’t Gonna Need It” (focus on what
needs doing now, rather than what you think you
will need for later). It is these lessons and sound
bites which provide the “message” of the book –
Ron’s belief that incremental development, done
test-first, with simple design, continuous
refactoring and a focus on producing value for the
customer is an effective method of producing
high quality software.

If you like Ron’s other writing you will love
this book. If you have never read Ron’s work
before and are interested in learning a little about
how he applies the principles of XP (and maybe a
little C#), it is worth reading; you might even
enjoy it. Highly Recommended.

Games Programming
Andrew Rollings and Ernest Adams
on Game Design by (1-5927-3001-
9), Mew Riders, 617pp @
$49.99/£38-99
reviewed by Alan Lenton

I have to admit that I approached this book with
more than a little cynicism. As a game designer I
often get asked to comment on books about game
design, and frankly most of them are crap. This

time though I was pleasantly surprised – a well
written book whose authors clearly know what
they are talking about.

This is not a book for those who ‘want to get
into the business’; it is strictly about the art and
science of game design. The book will appeal to
those in the computer games business who are
already games designers, or who are aiming to
move sideways into games design. It will also
appeal to anyone who just wants to find out how
it is done.

The book is in two sections. The first part
covers general issues that crop up in games
design, while the second half of the book is a
systematic look each of the different game genres.

What weaknesses there are tend to show up in
this second half, which is a little uneven, since the
authors don’t (understandably) have first hand
experience of each genre. There is also something
of a tendency to try to jam all the genres into the
same framework.

The weakest part of the book is the chapter on
multi-player games where there is a failure to
realise that game technical and social
management tools have to be part of the design –
they can’t be bolted on afterwards – boring, I
know, but important.

But these are not mega problems and they
don’t detract from the overall usefulness of the
book. I’ve been designing persistent world multi-
player games (and one commercial single player
game) for nearly 20 years, and there was much in
the book that I found helped articulate and
systematise my experience.

Very useful indeed.

Linux Game Programming by Mark
Collins et al. (0 7615 3255 2), Prima*,
330pp + CD @ $39.99/£29-99
reviewed by Paul F. Johnson
Where to start with this?

Code that is broken, but compiles; code that is
broken and does not compile; insecure network
advice and code; using libraries that will not work
on quite a large number of Linuxes, and code
samples for sound which do not work.

The average Linux distribution has just about
everything a user needs; however, the one final
area where there is completely inadequate
number of packages is in the games domain.
Without games, the appeal is diminished; which
is a pity given the strength of Linux now.

Unfortunately, this book will not help. It is
neither in depth enough or clear enough in how to
write a game. There is nothing on game timing,
the planning or other game essentials.

A number of the websites listed on the back of
the book do not exist, neither does the website
given inside the book for the network socket
library. All of these diminish the value of the
book.

To add insult to injury, the CD supplied is dire
– it is written using the MS end of line, which
means under Linux, there is no line wrapping.

This is a very poor book. Do not buy it. Not
Recommended.

Programming Linux Games by Loki
Software (1 886411 49 2), No
Starch, 424pp @ $39.95/£29-99
reviewed by Paul F. Johnson
This is a very good book that has one

downfall; it uses code snippets rather than proper

38 CVu/ACCU/Reviews

code examples. It feels more of a “proof of
concept” book.

The other problem is that the book needs some
minor updates – the main one being the coverage
of the OpenAL code. While not a major problem
(it’s quite easy to fix the code by looking at just
the header), having code that does not just
compile out of the box can cause problems for
those new into the games programming arena.

Most of the main aspects of game
programming are covered – scripting, SDL,
sound (compressed and uncompress –
encouragingly, it demonstrates how to use vorbis
files) and event handling. Game timing is the only
part that perhaps is not covered quite as much as
it should be. While keeping a baseline of update
every 1/30th of a second will work, it is perhaps
not the best way of ensuring everything keeps
moving.

I did enjoy the games engine code and
description. I have read many books dedicated to
the subject and to be honest, this holds its own to
them.

Had there been someway of getting hold of
updates with the OpenAL code fixed, this would
have gained a highly recommended.
Unfortunately, it does not so, only achieves a
recommended.

The Web
Hardening Apache by Tony Mobily
(1-59059-378-2), Apress, 270pp @
$29.99/£18-50
reviewed by Richard Lee
The aim of this book is to provide a

starting point for anyone needing to secure an
Apache server. Each chapter deals with a different
security issue before pointing the reader at a few
good sites for further information. The author
assumes a Unix-derived operating system but half
of the book still remains useful to Windows.

The first chapter illustrates how this book
differs from others. There is brief introduction to
digital signatures and encryption before
explaining how to verify the download has not
been tampered with. Instead of just providing
commands to install Apache, the author
immediately delves into testing for problems
including steps to remove vulnerabilities.

While the first chapter may follow a cookbook
approach, the book aims to be more than just a
simple set of recipes. It also explains how the
server may get compromised, to look for
suspicious behaviour in logs and web sites to visit
to keep up-to-date with emerging security issues.

Given the responsibility of setting up an
Apache based server, should you buy this book?
It boils down to whether you can find all the
information you need from the Internet or if you
prefer a little helping hand along the way.

Web Development with Apache and
Perl by Theo Petersen (1 930110 06
5), Manning, 410pp @ $44.95
reviewed by Joe McCool
Petersen makes a strong case for

using Perl on Web development. Perl text
handling capabilities are legendary. It is easy to
learn. The richness of features derives from its
maturity. It is widespread; most systems
administrators have access to it and have some
sort of notion on its workings.

He also makes a strong case for mod_perl,
where the perl code can be built into the web
servers directly. mod_perl is stable,. enjoys
ongoing development and is well documented.
Where Perl is already in house, mod_perl adds
considerable leverage.

Considerable attention is given to the
installation of mod_perl, where the conventional
CPAN installation methods of Perl fall slightly
short.

The whole of part 3, 110 pages are devoted to
example web sites. These include a store front,
office applications, systems administration, build
your own portal and a little bit on credit card
processing (hardly adequate).

Part 4, 80 pages, is devoted to site
management, both content and performance.
Here the discussion on development life cycles
and phased testing is but a glance at a complex
and dangerous subject. Most of us join teams
with this already in place or learn precariously
through practice.

Security is now a horrendous issue on the web
and Petersen’s treatment might not be sufficient
(9 pages on user authentication and 3 on
management).

My main reservation is that Petersen is so
taken with the Open Source world that he is
inclined to waste a lot of space preaching to the
converted. The first few chapters are taken up
with a discussion of the ubiquitous nature of
Apache and its close cousins: perl, mysql, cgi etc.
Most sites thinking of web server applications
will already be up to speed on these. A lot of the
material on the use of CPAN and installing
MySql are already covered in other, less
specialised, books.

Thankfully, he does not even pretend to offer
an introduction to the Perl language itself.
Familiarity with that is assumed.

Despite this, Petersen’s book is useful and I
am happy to recommend it. Most experienced
readers can afford to skip the first few chapters. It
is good value for money and well worth the shelf
space, but it will probably need accompaniment
with a few other texts to get readers up to speed.

Web Privacy with P3P by Lorrie
Faith Cranor (0-596-00371-4),
O’Reilly, 321pp @ $39.95/£28-50
reviewed by Tim Pushman
This book covers the P3P Project

(the Platform for Privacy Preferences), from its
inception and development through to a
discussion of the current state of the proposal.
Further chapters also provide an overview of
related protocols and tools, such as APPEL. The
author of the book is one of the co-authors of the
specification and so has a good understanding of
the issues involved in creating the standard.

The book is arranged in three parts:
background and history, enabling a web site, and
software and tools. At the end are appendices
covering some odds and ends.

P3P is a protocol to allow web sites to inform
their users of what kind of privacy they can
expect on the site, how their data will be collected
and used, and what recourse the user has if she
believes the data is being misused. In short, it is a
Privacy Policy as one would find on a site such as
Amazon, but with the added twist that it can be
installed in a machine-readable format and
directly interpreted by a P3P enabled browser.

And the machine-readable format is, of course,
XML. The second part of the book gives a
detailed explanation of how to create a P3P
policy, both by hand or by using a policy editor.
There are many levels of complexity in a privacy
policy and the author does a good job of
explaining the various possibilities, from the
simplest (we collect no data) through to the most
complex, as would be needed by a large
commercial organisation.

The question is: do people really care about
their privacy online? Probably not as much as
they should do. P3P is an attempt to make
protecting our privacy as transparent as possible.
We should be able to specify what information
about ourselves we want to make available to a
web site or organisation and then let the software
take care of it for us. There are many places that
software can be P3P enabled, browsers being an
obvious example, but also web proxies,
installation programs, registration programs and
so on. Unfortunately there seems to be very little
available in the real world.

When reviewing the book I had expected to
find more on the code side, and was a bit
disappointed to realise that the book covers only
the protocol, albeit with a large chunk of XML.
As far as discussing the P3P protocol goes, the
book is excellent reading, if occasionally rather
dry. The author clearly knows the technology and
explains it clearly. Whether any of it matters is
another thing entirely, but if you are in the
business of P3P enabling your company’s web
site, then this book is recommended.

General Programming
Imitation of Life by Nancy Forbes (0-
262-06241-0), MIT, 171pp @
$25.95/£16-95
reviewed by Francis Glassborow
The sub-title of this book is ‘How

Biology is Inspiring Computing’. I think that only
tells half the story because by the time you have
finished reading this book you will realise that
computing is also inspiring biology.

This book is a comprehensive overview of the
ways that biology and computing are interacting.
Every one of the ten chapters provides food for
thought. Some such as chapter 4 on artificial life
also provide enough data so that you can find
interesting work on the Web. I found a good place
to start was http://www.his.atr.jp/~ray/
tierra/. I won’t spoil it for you by saying more
than ‘have a look at that site and follow the links’.

Chapter 8 is titled ‘Computer Immune
Systems’ and covers some of the lessons from
biology that can be applied to dealing with
computer viruses and the like.

The author manages to focus on providing
information rather than regurgitating the hype of
enthusiasts for a specific area. For example she
steers straight down the middle on the subject of
DNA computing. She provides enough
information to inform the reader as to what this is
and what has so far been done but avoids the wild
speculation of some popularisers.

The book is readable and short enough so that
you will not need to spend you Christmas
holidays reading it. If you want to think about
where computing is going and some possibilities
being currently explored in the laboratory this is a
book worth taking the time to read.

