Contents

Reports & Opinions
Reports
Editorial 4
From the Chair, Membership Report, Standards Report 5
Dialogue
Student Code Critique (competition) entries for #29 and code for #30 6
Letters to the Editor 12
Francis’ Scribbles 14
Features
An Introduction to Programming with GTK+ and Glade - Part 2 by Roger Leigh 16
Rapid Dialog Design Using Qt by Jasmin Blanchette 20
Introduction to STL by Rajanikanth Jammalamadaka 23
Professionalism in Programming #28 by Pete Goodliffe 26
Wx - A Live Port by Jonathan Selby 28
An Introduction to Objective-C by D A Thomas 32
Reviews
Bookcase 33
Copy Dates

G Vu 16.6: November 7th 2004
C Vu 17.1: January 7th 2005

Contact Information:

Editorial: Paul Johnson ACCU Chair: Ewan Milne
77 Station Road, Haydock, 0117 942 7746
StHelens, chair @ccu. org
Merseyside, WA11 0JL
cvu@ccu. org Secretary: Alan Bellingham
01763 248259
secretary@ccu.org
Advertising: Chris Lowe Membership David Hodge
ads@ccu. or g Secretary: 01424 219 807
nmenber shi p@ccu. or g
Treasurer: Stewart Brodle Cover Art: Alan Lenton
29 Campkin Road, Repro: Parchment (Oxford) Ltd
Cambridge, CB4 2NL Print: Parchment (Oxford) Ltd

treasurer @ccu. org Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vuonly): £25

Full (C Vu and Overload): £35

Corporate: £120

Students: half normal rate

ISDF fee (optional) to support Standards
work: £21

There are 6 issues of each journal produced
every year.
Join on the web at ww. accu. or g with a
debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
member shi p@ccu. org for an
application form.

Any questions - just email
menber shi p@ccu. org

Reports & Opinions

Editorial

Thisismy third edition editing C Vu. It'sbeen a
cracking experience which hasbeen madeall the
more pleasant by the help I’ ve had a ong the way.
It' salways good when material comesinwell in
time and more rewarding when readers write in
to the letters page with comments on the
material. This edition is a case in point — there
are more letters in this edition than I've seen in
quite along time.

Is this down to the material being more
thought provoking, the range of articles being
more varied or simply peoplefed like emailing?
It's hard to say.

Not all emails get published though. For
example, I’ve had some through expressing
concern onthefocus|’ ve brought to open source
coding (the GTK articles, wxWidgets [starting
thisedition] and Qt haveraised afew eyebrows).
Thisisin part quite deliberate, but also down to
one other reason : nobody has submitted material
on the likes of MFC. We can only publish what
is submitted!

Why Deliberate?

C,C++, C#, Python and Java (to name a few)
are platform independent languages. It makes
no difference which platform code is
developed on, as long as they use the pure
language and the compiler used at either end
is standards compliant (or close to it!), the
outcome will be the same. C on my RiscPC
will compile on my Linux box and on my
friend’s OS X machine. The outcome will be
the same. That is part of the beauty of these
languages. Write once, compile many,
outcome same.

The same applies for widget libraries. |
enjoy writing code which compiles on my
Linux box, take it into work and compile the
results on MSVS.NET and see the same
results. Theindependence of thewidget library
isgreat inthat way. To me, thisis an extension
of the same ideas as are behind the platform
neutrality of the languages we all love and
know.

By using these cross platform libraries, it is
my firm opinion that there can be a massive
increase in productivity as well as stopping
some of these “we have this, you don’t”
arguments you see from time to time. Imagine
something like 3D Studio Max or Sibelius 2
being written using (say) wxWidgets — the
companies behind them could very quickly and
easily produce versionsfor many platforms (for
wxWidgets, it ranges from 16 to 64 bit
platforms). Upshot would be a great deal more
money for the companies.

What does need to be asked though is why
is this not done? Many pieces of software are
available for both OS X and Win32. They're
not using the same widget sets and required
different teams of programmers. To me, this
seems very wasteful. Fair enough for
something which is Win32 only and requires
MFC and other proprietary libraries, but for the

a

rest where the two platform system is used, it
would make more sense to use an independent
widget set. One code base, compile many, lots
of money!

Despite what some of the worlds largest

companies say, the use of cross platform libraries
isgaining in popularity and moreover, gainingin
speed.
One of the largest problems though with
some of the cross platform libraries are the
licences. Qtisfreefor X11 and OS X, yet the
Windows version requires licences. Many
managers don't understand the implications
and ramifications of using GPL libraries. |
don’t know the solution for this, though a
simplification of the licences would certainly
help.

Books Books Everywhere and Not
a Drop to Read

One of the problems you have when you
review lots of books is what to do with them
after you' ve reviewed them. Now, thisisnot a
problem for the better books. They are on my
bookshelves, waiting for their next set of being
used.

The problem comes with the books which
are dangerous. Y ou know the sort — they have
“not recommended’ in the book reviews and
after you read the review, you can imagine the
reviewer dancing around a small bonfire made
from the dead trees wasted on such a pile of
rubbish. No responsible person would try to
sell them on eBay or put them into arecycling
box in case some poor person at the recycling
plant gets hold of the book and decides to read
it.

Y ou could leave them on the shelf, but then
they’re taking up valuable good book space. |
suppose putting them in the loft would be an
idea — however even that has its drawbacks
(mice).

What would be quite fun would beto get all
of the authors of these utter turkeysin afield
and have people pelt them with pages from the
bookswhile chanting “you shall not write such
utter tosh in future’. For good measure, some
of the technical editors who have supposed to
have read these books should also be put in the
same field. Okay, it wouldn’t be very
productive, but it’'s one way of getting rid of the
books! That said, | have a feeling that one or
two authorsin particular would pay little or no
attention to such activity... (no names, no pack
drill).

It' sactually apity that book companiesdon’t
do the same as record companies. | have two
books by Ammeral; C++ for Programmers and
STL for C++ Programmers. Both very
worthwhile books and both of which (in their
time) have been frequently referenced. Thereis
alot of crossover between the two books (sorry
Francis, | know you’'d disagree with me here —
but thereis). What would be great isif therewas
asort of “Best of” for these books. One volume
without the crossover material, but all of the
great information.

This idea could be applied to a number of
other books — some of the XP ones have a good
chunk of similar (not the same) material. A bit of
rewording and instead of 4 books, it becomes 2.
Less space occupied and more information for
the page count.

All right, some books you would never
dream of doing that to. Josuttis's C++
Sandard Library being one of them. That book
is just so crammed pack full, it would be
pointless to try and merge it with (say) C++
Templates (which was co-written with
Vandevoorde).

Dead Websites (or A Tale of Two

Websites)

One of the most annoying aspects of any book is

when they reference a website in the text or on

thebook itself. Now, I'm not that daft toimagine
for one moment that a book company or a
person’s ISP is going to exist forever. However,

book companies take over other book
companies, so at least some material should still

exist.

Case 1

Company ‘A’ have produced a lot of books. |
have 7 of their books on my shelf currently. Their
books make references to a number of websites,
all of which are required to some extent to
servicethe codein the book and in one particular
book, an entire chapter is pretty pointlesswithout
one of thelibraries listed.

The original company was bought out and
the new company doesn’t recogni se the book as
being one of theirs, leaving the person with a
book which is practically useless for a couple
of the most important chapters. There isa CD
ROM with the book, but in a break with
tradition, it is filled almost entirely with
material that someone at the book’s original
company thought would be a good idea at the
time.

The original author’s website has vanished.
Waybackmachine can’t find the download and
even Google draws a blank.

Case 2

Company ‘B’ publishes a book which is a
couple of years old and hasn't been updated.
The libraries referenced still all exist but have
been greatly modified since the original release
of the book. A person undertakes the job to
update the codebase, tells both the author and
the book company of the update and where it
can be found. Company B takes a copy and
posts it on the support area for the book and
drop a quick email back to say thanks. The
download is amazingly popular for both the
company and the person who has done the
update.

Company B publishes their books through
another company.

| suppose there is only one thing worse than
a company like company ‘A’ and that is one
which has updates but the updates are broken
and refuses to even email back to say “thanks,

CVu/ACCU/Reports & Opinions

but we’re not going to fix it for reason a, b
and/or c”.

And So It Begins

By the time this edition hits the doormats, the
new academic year in the UK Universities will
be well underway. A fresh intake, all ready and
eager tolearn. Plenty of parentsworry about their
offspring being away from home for the first
time and hoping they’ll befine.

While my child is only 6 (and so is not
ready for University yet!), | can say that they
will be. First year student life is a gas. Stop
worrying —the worst they can do is have some
really weird tattoo done and miss a couple of
lectures.

With al of this spare time you now have as
you' ve stopped worrying (abit), what should you
do? Watch TV? Listen to that collection of I'm
Sorry I'll Read That Again you have on CD?
Have amesl out?

Why not write for C Vu or Overload? We're
always after new articles, book reviewers and
contributors to the Student Code Competition.
Let’s make both magazines even bigger and
better value for everyone!

Paul F. Johnson

View From the Chair

Ewan Milne <chai r @ccu. or g>

The programme for the 2005 conference is
rapidly taking shape, and we are very happy to
be welcoming back Jim Coplien as a keynote
speaker. Always a highly entertaining and
challenging speaker, | can confidently say,
even from the early drafts | have seen, that
Cope's talks will be unmissable highlights of
the event next year. Also lined up are Ross
Anderson, leading off a track dedicated to
security issues, and another big name whose
appearance is still subject to final
confirmation. But as a very broad hint, let's
just say that therereally isn’t abigger namein
the C++ community.

As well as these heavy-hitting head liners,
the conference needs new, first-time speakers.
It is encouraging that we have had some very
strong proposals for short 45 minute sessions
from members, however as it stands we need
a few more. The deadline for proposals, still
ten days away as | write, will have passed by
the time you read this— and it is possible that
there will be alast minute influx. But if you
had a rough idea for a 45 minute session that
you didn’t quite get round to sending in, please
get in touch. It's quite possible that thereis still
a space for it in the programme. Remember,
we are not looking for exhaustive explorations

of large topics — an explanation of a useful
development technique, or experience report
of some aspect of a recent project would be
ideal.

Urgently Required - Advertising Officer

Atthisyear’ sSAGM, ChrisLowe gave notice that
he wishes to step down as Advertising Officer.
Chris is generously still giving his time to
carrying out thisrole as areplacement is sought,
but the ACCU now has an urgent need for
someone to volunteer to replace him. The post
involves contacting potential advertisersto drum
up business, and once contracts are in place,
shepherding the advertising copy to our printers,
Parchment.

Thisisavery important role, with a direct
impact on the financial health of the
organisation. If you're interested in this role,
please contact either ads@ccu. org or
chai r @ccu. org.

Membership Report

David Hodge <nenber shi p@ccu. or g>

We are in the thick of the main renewal period
(11 Sept). So far 74% of the membership have
renewed, which is better than last year, so thank
you for that.

Don't forget that next year you could have a
£5.00 reduction on your subscription by paying
by standing order. Note that thisis not direct
debit, so it requires you to set it up with your
bank. If you want to do this just email me for
details.

Standards Report

Lois Goldthwaite <st andar ds@ccu. or g>

The programming world needs good standards.
And we need them right now — or at least we
think we do.

The benefits of standardisation are many
and obvious: programs (and programmers!)
become more portable across platforms,
components from different sources can be
integrated morereadily, and (it is greatly to be
hoped) a stable foundation is established for
future enhancements not yet envisioned.

There are some disadvantages also, it must
be recognised, but one prominent one is that
standardising a technology too early may
burden its users with features which turn out
to be inadequate or even undesirable.

The most successful standards have been
those that codified existing mature practice,
such as the 1990 C Standard. But standards
committees that are seduced into inventing
technology on the fly, without adequate
implementation experience, nearly always

come to regret some of their decisions. An
example is the C++ keyword export —
though controversial, it was included in the
C++ Standard to address issues which were
very important to some vendors. But six years
after the standard was adopted, only one
compiler vendor has actually implemented
export inapublic release, and programmers
in general have shown little demand for the
feature.

One of Java's early attractions was its boast
was that it hid the complexities of various
platform APIs and provided a standard,
portable, ‘Write Once, Run Anywhere’ way to
perform /O and create GUI screens. But these
fundamental portions of the Java 1.0 library
have been extensively revised in subsequent
versions. | guess in making standards, as well
as software, you'd better ‘plan to throw one
away.’

The ISO standards process is frequently
criticised for being too slow, too bureaucratic,
too tied up in red tape, not nimble enough to
cope with an industry that moves in internet
time. An increasing number of standards are
being developed by trade groups and industry
consortia working to aggressive schedules,
partly because they aren’t hampered by ISO’s
leisurely pauses for preliminary and final
international ballots.

Which is better: to delay adoption and
publication while working to refine the best
possible standard, or to get something into the
marketplace as soon as possible, with theintent
to follow up with a frequent revision cycle?
How long can a committee linger over a
document before it becomes irrelevant? How
soon is too soon to rush into print with a half-
baked draft?

| don’t think thereis oneright answer to those
guestions. But | do know that correctness and
consensus take time to mature, and that stability
is one of the primary benefits of having
standards. If the standards themselves are
changing every few months, industry can’'t keep
up.
Experience has shown that it takes at |east
five years for new innovations to graduate to
common practice. With that statistic in mind, |
would argue that it's worthwhile for a standards
committeeto favour getting everything right over
getting something out the door. Once a mistake
is set in standards concrete, it becomes a boil on
the industry bum for eternity. Even if it is
deprecated in a later revision, vendors feel
obligated to support it for backwards
compatibility.

And the much-maligned 1SO standards
process, which forces pauses for review and

reflection, has alot to recommend it.

Copyrights and Trade marks

Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

CVu/ACCU/Reports & Opinions |

Dialogue

Student Code Critique
Competition 30

Set and collated by David A. Caabeiro <scc@ccu. or g>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers’
comments and criticisms of published entries are always welcome.

Before We Start

It seemsthat praying for more participation among membersisgiving good
results, but anyway, let's hope | don’t have to repeat the plea issue after
issue. Please notethat you can participate not only by submitting critiques,
but also by contributing code snippets you came across which attracted
your attention. Remember that you can get the current problem set on the
ACCU website (ht t p: / / www. accu. or g/ j our nal s/). Thisis
aimed at people living overseas who get the magazine much later than
membersin the UK and Europe.

Student Code Critique 29 Entries

Looks like an ordinary snippet, doesn’t it? Amazingly, it contains various
mistakes for such afew lines. Please provide a correct version.

#i ncl ude <i ostreanp
using std::cout;
using std::endl;

#i nclude <list>
using std::list;

int min() {

|i st<double>::iterator it;
| i st <doubl e> | st;

*it = 34;

*++it = 45;
*++it = 87;
it = Ist.begin();
for (;it < |Ist.end();

cout << it << "\t
}

syst en(" pause");
return O;

++it){
<< *jit << endl;

From Tony Houghton <h@ eal h. co. uk>

Therearethreeerrors preventing the program from compiling. Thefirstisthat
<isnot avaid operator for an iterator and needsto bereplaced with ! =. Then
i t cannot be printed to cout ; we could print the the address of the data it
references, but that’ s a useless piece of information in this context, so | think
it's better to introduce a second variable called n showing the numerical
positionwe vereached inthelist. Thisisonly meaningful asacuefor theuser.

I’'vechosentoinitidiseit outsidetheloop and increment it in theloop body
rather than intheloop statement to emphasise that theloop isiterating through
the list and n is supplemental. The final compile error is that we haven't
included <cst dl i b> s0 syst emis undefined. Thepause command is
not portable anyway, and C++ makes such amed of waiting for auser to press
Enter that |’ vejust deleted that line and | eft it up to the user to run the program
inashdl or IDE that will give them a chance to read the output.

Even though it will now compile the code is still badly bugged and
likely to crash. We're derefencingi t without initialising it. Not only that,
it is not possible to add elementsto a list by writing off the end of it. We

6

need to explicitly create a new element by appending to the list with its
push_back method.
Hereis my version of the code:

#i ncl ude <i ostreanp
using std::cout;
using std::endl;
#i nclude <list>
using std::list;

int main() {
|'i st<doubl e> | st;
| st. push_back(34);
| st. push_back(45);
| st. push_back(87);

int n=0;
for(list<double>: :iterator it = Ist.begin();
it !'=1Ist.end(); ++it)
cout << n++ << '"\'t' << *it << endl;
return O;

From Roger Orr <r oger o@owzat t . denon. co. uk>

The problem posed is to provide a correct version of the code.

The first question which needs answering is what is the purpose of this
code? |t looksvery much like someone' sfirst experiment with STL collections
and iterators — but they don’t really understand what they’ re trying to do.

Solution one:

#i nclude "Josuttis/ The C++ Standard
Li brary/ Chapter 5"
There' slittle point simply fixing the code since the basic misunderstanding
seems so great; agood tutorial/referenceis probably the best placeto start.
However, if you insist...

Input

The code seemsto betrying to fill alist using an iterator and then print out
thelist to verify that it filled properly.

11 *it = 34;
12 *++it = 45;
13 *++it = 87;

Unfortunately, although alist can be populated with an iterator, a standard
list::iterator isnottheright sort! There are classes of iterators
which are designed to allow insertion, so we need one of those to insert
either at the back or the front of thelist. I'll pick aback iterator since that
meansthe itemswill be printed in the order they’ reinserted, which seems
more intuitive. So let’s replace these lines with:

back _insert _iterator<list<double> >
ins_it(lst);

*ins_ it = 34;

*++ins_ it 45;

*++ins_it 87;

This code is perfectly OK, but there is a potential performance issue with
using pre-increment. 1t’s probably not worth worrying the writer of the
code with this just yet (but you could refer them to one of the Effective

C++ books...)
Now we'll need to include another header file, <i t er at or >, to be
compliant with the standard and add a using

std::back_insert_iterator.

On that note, programmers vary on their attitude to usi ng. Again, |
wouldn’'t worry this programmer too much about it at this point (unless
company coding rules apply!) Now the code.

| CVu/ACCU/Dialogue |

Output

The code to output the list relies on oper at or < for the iterator — this
pretty well implies that the iterator is a random access iterator, such as an
iterator over avector. The normal paradigm for iteratorsin STL isto use
! = for the loop condition.

The loop can be coalesced: currently we have 3 partsto the loop control
structure:

a) Declaration
|'i st <doubl e>: :iterator
b) Initialisation
it = 1st.begin();
¢) Condition and update expression
it !'=1Ist.end(); ++it

it;

I’d recommend putting these all into thef or statement for clarity and to
reduce the scopeof i t :

for(list<double>::iterator it =
it I=1Ist.end(); ++it)

| st. begin();

or, since we're trying to output from thelist only,

for(list<double>::const_iterator it

= | st. begin();

it !'=1Ist.end(); ++it)

Again, more advanced techniques to avoid the f or loop completely are
possible but would be likely to simply confuse the programmer at this
point. Now, what are we actually outputting inside the loop? The code as
written tries to print the iterator itself and then its contents. By analogy
with ‘iterator isageneralised pointer’ | guessthe purposeisto display the
address of each item and its value. However there’s not a standard
oper at or << defined to do this — the easiest solution is to use the &
operator:
<< "\t o< Rt

cout << & it << endl ;

or possibly, for clarity, use a helper variable:

const doubl e &val ue =
cout << &value << "\t'

*it;
<< val ue << endl;

Now we're amost done... on a Microsoft compiler on Windows anyway
:-) The last statement, syst em(“ pause”) , is target environment
dependent. This might be fine and if so I've no problem with do the job
like this. | might like to include <cst dl i b> of course, since syst em
currently works because, on my version of the standard library, one of the
other header filesis pullingin<cst dl i b>.

If the code has to be portable then you'd need to replace it with
something equivalent (or nearly so) from the C++ library. 1I’m assuming
the code is fine on the target OS. And that’s it — to get the code working
anyway. Explaining the changes — and in particular the two types of
iterators needed — might be alittle more work!

From Roger Leigh <r | ei gh@hi nl at t er. ukf sn. or g>

Overall, the intentions of the author are obvious, but it is clear that some
misunderstandings over the use of containers and iterators resulted in non-
functional code. The use of headers and usi ng statements was fine, and
the general structure of the code was also acceptable, bar two lines that
reguired more indentation.

Thefirst major error iswiththe use of iterators. When assigning values
to the list, the iterator is not initialised and so is invalid (cannot be
dereferenced). To compound the error, on the second and third
assignments, the iterator isincremented in addition to dereferencing. All
these mistakes will result in undefined behaviour.

The push_back() methodisprobably what the student wants. It looks
likethere is some confusion over how iteratorswork. The student needsto
understand that iterators “ point” to items within a container, and that they
are not by themselvesresponsiblefor inserting values. Likewise, whilean
iterator can beincremented, thisis only useful when thereisanext element
in the container, and error checking should be done to check that the new
iterator is valid. Like pointers, they need to point to a valid location, and

CVu/ACCU/Dialogue

only then may they be dereferenced to access the contained value. For
insertion, an iterator would typically only be used when inserting in a
specific location in the list (used with thei nsert () methods), or when
using an insert iterator, neither of which are applicablein this case.

Thef or loop iterator isinitialised outside thef or statement. While
valid, it's not necessary and is bad style. Also, the f or loop conditional
usesit < |st.end() raherthanit != |st.end(). Notall
iterators implement oper at or <, but all implement oper at or == and
oper at or ! =. Weonly needto know if we areat the end of thelist. When
outputting the list contents, the iterator is output to anost r eamwhichis
not possible (the operator is not implemented). Iteratorsdo not have a (user-
visible) index or a meaningful address, and so if the elements should be
numbered, asuitable container should be used (e.g. avector, which allows
access by index), or the numbering should be done “by hand”.
st d: : endl isused after outputting each element. This adds a newline
and flushesthe ost r eam The flushing is unnecessary, and would have
anegative impact on performance when outputting the contents of alarger
container. ‘\'n’ isadequate here. A more general issue is the use of
| i st <doubl e>. The numbers could more easily be storedinan i nt,
orshort int. |wouldasohaveusedavect or <i nt > myself, given
that the additional featuresalist providesare not used, and impose agreater
overhead than a vector (e.g. memory usage).

Lastly,syst en{ “ pause”) isboth system-dependent (non-portable)
and mostly useless. I've only come across its use in Windows
environmentsin order to stop the terminal window closing on program exit.
This won't work on platforms without a pause command (e.g. UNIX),
and isaterminal configuration issue, not something to “fix” in the program
code itself. The solution isto configure the terminal window not to close
on exit, or to run the program directly from the shell. A version of the code
rewritten to take the above into consideration follows:

#i ncl ude <i ostreanr
usi ng std::cout;
using std::endl;

#i ncl ude <vector>
using std::vector;

int main() {
vector<int> coll;
vector<int>::iterator
col | . push_back(34);
col | . push_back(45);
col | . push_back(87);

pos;

int n=0;

for(pos = coll.begin(); pos !'= coll.end();
++n, ++pos)

cout << n << "\t'

<< *pos << '\n';

return O;

From Nevin Liber <nevi n@vi | over| ord. conp
Where to begin, where to begin...
Syntax error #1:

cout << it

| i st<doubl e>::iterator
/...

cout << it [//...

it;

i t isaniterator, not a pointer, and there is no standard way to outputi t
to astream. Guessing here that the intent was to display the address of the
element in question, the following will work:

cout << &it //...

The dereference oper at or * () is called on the iterator, returning a
reference to the element. Then the address-of oper at or &() iscalled
upon that, yielding the address of the element. Note: if the container were
of auser defined typeinstead of doubl e, thisidiom might not work if the
user defined type overloaded oper at or &() .

7

Syntax error #2:
syst en("pause")

syst en() isnotabuiltinfunction. Oneway to get itsfunction prototype
would be to #i ncl ude a header which contained it, such as
#i ncl ude<cstdl i b>. Typicaly, syst em " pause") would call
another program called pause. While not a syntax error, my computer
does not contain such a program, and rather than guess at its semantics
(wait for a certain amount of time, wait for a key to be pressed, wait for a
signal, etc.), I'm going to leave it out for the rest of this discussion.

Syntax error #3:

it < |Ist.end()
Iterators are not pointers. | i st in particular has bidirectiona iterators,
and should only be compared for equality (oper at or ==()) or inequality
(operator! =()). Note: not all compilerswill catch this at compile
time, depending on how its particular implementation of

list<T>::iterator waswritten. Whether or notitisasyntax error,
it is definitely a semantic error, and thefix is

it '=1st.end()

Now that we are donewith syntactical errors, on to the purely semantic ones.
Semantic error #1: what list doesi t refer to?
Looking at our declaration:

|ist<double>::iterator it;
|'i st <doubl e> | st;

i t doesnot refer to any particular list. I'll actually fix this later, since it
won't be needed in the fix for the next three lines of code anyway...

Semanticerror #2: *i t doesnot synthesize spacein thelist

*it = 34;
*++it = 45;
*++it = 87;

Thisis one of the most common errors I’ ve seen when people start using
the standard containers. | believe the intent here is to have alist of three
items. However, *i t isillega, not only because it doesn’t refer to | st ,
but evenifitdid,| st started out empty, and the dereference of any iterator
into an empty collectionisillegal.

Since there are only three elements, the simplest way to create thisis:

| st. push_back(34);
| st. push_back(45);
| st. push_back(87);

Where push_back() places the element on the very end of the list.
Note: thereisan implicit conversion of each of these numbers from type
i nt to doubl e, which may or may not happen at compile time.
Sincei t isn't actually needed until thef or loop, just declare it there.
Before doing so, I'm going to add the following t ypedef to the
beginning of mai n() for alittle bit of defensive programming:
typedef |ist<doubl e> Collection;
The reason is that the iterator always has to match the type of the callection,
soif you need to changethis, it only hasto be changedin oneplace. Now, one
should pick abetter namethan Col | ect i on; however, better nameswill not
include the word list or double, asthat iswhat we are trying to abstract away.
Names should reflect what something isfor, not how it isimplemented.
Thet ypedef isplaced insidemai n() itself because no one outside
of mai n() caresabout it. Alwayslimit scope as much as possible.
Putting this al together:

#i ncl ude <i ostrean>
using std::cout;
using std::endl;
#i ncl ude <list>
using std::list;

#include <cstdlib> // for system(char const*)
int main() {

typedef i st<doubl e> Collection;

Col l ection |st;

| st. push_back(34);

| st. push_back(45);

| st. push_back(87);

for(Collection::iterator it
it I'=lst.end(); ++it)
cout << & it << "\t' << *it << endl;

= | st. begin();

syst en(" pause");
return O;

}

Planning for areasonablefuture

At this point, we could be done. The above code works, is simple and
straightforward, and does the job requested.

However, if this were the foundation of a bigger project, | might add a
little more complexity for future flexibility. Thisisultimately ajudgement
call; dotoolittle, and you have under engineered the solution; do too much,
and you have over engineered it. That iswhy | say plan for areasonable
future, and not all futures.

Future: Datadriven initialization of | st

A future that | consider reasonable is one where the number of initial
elementsmay belarger than 3. push_back() worksfinefor 3 elements.
But what about 307 Or 300?

Making it data driven is more scaleable. The data driven way isto
initialize the list from an array, asin:

static const Collection::value_type
initial Elenents[] = {34, 45, 87,};
Col lection Ist(initialElements,
initial El ements + 3);

Note: | prefer using Col | ecti on: : val ue_t ype over doubl e for
thetype of the elementsin the array to emphasize that the type here should
correspond to the type of the elementsin| st. By typedefing
Col | ecti on, | have self-documented that there is a relation between
initial El enents,|st,andi t.Whileiteratorsare not (necessarily)
pointers, pointers can be used in place of iterators, and| i st has a
templated constructor that can take any type of input iterator. There still is
the matter of i ni ti al El enents + 3. Itislesserror proneto have
the computer count the number of elements than for meto count it. Using
aCidiom:

Col l ection Ist(initialElenents,
initial El enents
+ sizeof initial El enents
/ sizeof initial Elenents[0]);

While | can do this without any helper functions, it is still error prone. If
i nitial El enents wasapointer instead of an array (which could
happen if this code had changed to pass in a pointer to an array of initial
values), the calculation would be wrong, yet the code would still compile
and run. To solve this, | have a set of templates that always gets this
calculation right:

#i ncl ude <cstddef> // for size_t

tenpl ate <typenane T, size_t N>
inline size_t size(T (&[N) { return N }
templ ate <typenane T, size_t N>

inline T begin(T (&)[N]) { return a; }
tenpl ate <typenane T, size_t N>
inline T end(T (&)[N) { return a + N }

Basically, they make an array look like a collection, withbegi n() ,
end() ,and si ze() functions (although they are free functions, not
member functions). Thearray ispassed in by referenceto these functions,
and uses template argument deduction to determine the number of elements

| CVu/ACCU/Dialogue

inthearray. Note: if we passinapointer instead of an array, itisacompile
time error. In this case, they are used asfollows:

Coll ection | st(begin(initialElenents),
end(initial El enents));

Note: technically, instead of begi n(i ni ti al El ement s) asthefirst
iterator, | could havepassedini ni ti al El enent s directly, asthearray
will decay into a pointer when passed by value. | prefer the former, both
as it is self-documenting, and | get an extra level of checking that
initial El ements isanarray. Combining all of this, we get the
following solution:

#i ncl ude <i ostreanr
usi ng std::cout;
using std::endl;

#i nclude <list>
using std::list;

#i ncl ude <cstdlib>
#i ncl ude <cstddef> // for size_t
tenmpl ate <typenane T, size_t N>
inline size t size(T (&[N) {
tenpl ate <typenanme T, size_t N>
inline T begin(T (&)[N]) { return a; }
tenmpl ate <typenane T, size_t N>

inline T end(T (&)[N) { return a + N, }

/1 for system(char const*)

return N, }

int main() {

typedef |ist<doubl e> Collection;

static const Collection::value_type
initial Elements[] = {34, 45, 87,};

Col l ection Ist(begin(initialElenments),
end(initial El ements));

for(Collection::iterator it = Ist.begin();
it I'=1Ist.end(); ++it)
cout << & it << "\t' << *it << endl;
systen(" pause");
return O;
}

From Mick Brooks <ni chael . br ooks@hysi cs. ox. ac. uk>

Thisismy first attempt at an SCC solution, so | may learn more than our
student. Anyway, here goes:

Trying to compile your code, GCC flags the line with thef or loop as
aneror. Tryingto evaluateit < | st. end() isthe problem, sincethe
l'ist::iterator isabidirectional iterator, and so doesn’t havetheless-
than operation defined. It would work if we used a vector container instead
of thelist, sncevect or : : i t er at or isarandom-accessiterator which
ismore powerful, and has more operations defined for it, including onefor
less-than. In order to make this|oop do what was intended, we can |ook to
aC++ idiom for help: use! = as the loop condition check. This operation
isdefined for all of thefiveiterator categories, and sowill work for iterators
over any of the standard container types. The loop still looks unusual,
because theidiomatic styleisto make use of theinitialiser part of thef or -
loop syntax. The maintenance programmer (which could be you in about
6 months) will see that combination of (; and will needlessly have to
wonder if that's a mistake. Make it explicit, and put in the initialization.
Thishasthewonderful side-effect of limiting the scope of thei t variable.
While we are here, we can notice that you don’t modify the value pointed
to by the iterator i t , and can make that explicit in the code by using a
const _i terator instead. So now the loop looks like this:

for(list<double>::const_iterator it =
| st. begin();

it !'=1Ist.end(); ++it)
cout << it << '\t' << *it << endl;

which is made much clearer to a C++ programmer through its use of the
standard idioms.

Unfortunately, the code still won't compile; this time because thereis
no output operator (<<) defined for theconst _i t er at or type. | assume
that theintention of cout << it wasto print the address of the object

CVu/ACCU/Dialogue

pointed to by the iterator. This might just happen to work if list iterators
were actually pointers, but they are more complicated than that. What |
think you want hereis &* i t , which is the address-of operator applied to
the result of dereferencing the iterator, and gives us the memory address
of thedoubl e that is pointed to by the iterator.

Weéll, now the code will compile, but running it gives a segmentation
fault on my Linux machine, which tells usthat we aren’t finished yet. This
isdueto using an iterator to access memory that we don’t own, and means
that there’ s some work to be done on understanding how to create our list.
Inthefirst line of mai n(), you define the iterator i t but don’t giveita
value, which leaves it in an unknown state. Trying to dereference that
iterator isabig mistake, which causesthe segfault. Theiterator would have
to be made to point to a valid member of alist before we can use it, but
there are no valid members of an empty list. We have to find another way
of populating thelist. My preferred solution would beto usepush_back
on the list and drop the iterator altogether, which leaves us with the
following working code:

#i ncl ude <i ostreane
usi ng std::cout;
usi ng std::endl;
#i nclude <list>
using std::list;

int main() {
|'i st<doubl e> | st;
| st. push_back(34);
| st. push_back(45);
| st. push_back(87);

for(list<double>: :const_iterator it =
| st.begin();
it I'=Ist.end(); ++it)
cout << & it << '"\t' << *it << endl;
systen("pause"); // if we nust...
return O;

}

As an aside, if you really want to use an iterator interface to do the job,
you'll haveto learn about Insert Iterators. A back_i nsert _iterator
will call push_back for you, and you can thenfill thelist with theiterator
interface, like this:

#i ncl ude <iterator>
using std::back_insert_iterator;
/1 other includes, as before

int main() {
|'i st<doubl e> | st;
back insert_iterator<list<double> > it(lst);

*it = 34;
*|t++ = 45;
*it++ = 87,

/1l ... as before

I’m not sure what this buys you though, except that you get to learn about
the added confusion that i t ++ and ++i t are no-ops, and so both the
incrementsin that snippet could be dropped.

From Terje Slettebg <t sl et t ebo@r oadpar k. no>

First, some comments about style, before we examine correctness. The
program starts with:

#i ncl ude <i ostreanr
usi ng std::cout;
using std::endl;
#i ncl ude <list>
using std::Ilist;

Now, in this case, for asource file (not header file), it's generally safeto do:

usi ng nanespace std;

9

instead of the usi ng-declarations. Any name clashes will be flagged by

the compiler, and you may save yourself considerable amounts of typing

this way. | know thisis a hot topic, but anyway. Another alternative is
explicit qualification of the namesinthecode: st d: : cout << it.

The code has aweird indentation, with some lines indented a couple of
places for no apparent reason at all. This gives the code a messy/untidy
look, and clarity is important; unclear code is a good breeding ground for
bugs. Moving beyond purelayout, there are some other general comments
that can be made:

1. It'sagood ideato initialise the variables at the point of declaration, if
possible. This avoids the chance of accidentally accessing an
uninitialised variable. Thisisactually happening inthe code (and that’s
just one of the bugs):i t is declared but not initialised, and then
subsequently used, leading to undefined behaviour.

2. Also, you should not “reuse” avariable for a different purpose, as the
variablei t isin the code (it's reused for the loop) (thisis abad case
of reuse. ;)).

3. Keep scopes as small aspossible. Ifi t isdeclared in thef or -loop, it
only existsin theloop, and you avoid accidentally using it after it should
no longer be used.

4. Moreover, you may want to useconst _i t er at or , rather than
i t erat or, when the code doesn't alter the container (despite what
Scott Meyers may say about preferringi t er at or).

5. The naming used in the code is not very good, to say the least. Names
should generally be chosen based on ther ole of the variable, not itstype
(although some Hungarian Notation like ... _ptr might be
acceptable, as it reminds us that it requires a different usage). In the
code, the words | st and it are used. Avoid acronyms and
abbreviations, unless the name might be rather long without it, or the
acronym or abbreviation iswell-known. However, this code doesn’t just
have bad style, it aso have somereal bugs (including the one mentioned
in point 1, above):

6. When theiterator i t isassigned to, even if it had been avalid iterator

to the start of the container, the container is empty, so theiterator isthe
past-the-end iterator. Assigning to and incrementing i t leads again to
undefined behaviour.
The problematic assumption in the code seems to be that the
programmer thinks assigning to the iterator, and incrementing the
iterator, will insert the values into the container. It is not so. Y ou have
to explicitly insert the values using the container object, for example
with push_back:

| st. push_back(34):
| st. push_back(45);
| st. push_back(87);

7. One small thing to note here is that there’' s an integer to floating point
conversion when the values are inserted, but it gives the expected
behaviour. Toavoidit (and its possible overhead), you might use values
of typedoubl e, instead: 34.0, etc.

8. Thelist iterator doesn’t have the less-than operator defined, only equal
and not equal, so the program won’'t compile as it is. It may be
recommended to always use not equal, even for containers supporting
less-than, for consistency, and stronger post-conditions to the loop
(detecting bugs earlier).

9. The body of thef or loop triesto print out the iterator, which fails, as
there isn’t a stream operator defined for it. The intention was possibly
to write out the index of each element. Thisisn't available from thelist,
so you have to track it separately, if you need it.

10. One final point to note isthatsyst em() is not a standard C++
function (and there's no other header to include it in the program), so
even if theright header wasincluded, the program wouldn’t be portable
to systems lacking that function.

11. endl isamanipulator that, in addition to writing a newline to the
stream, also flushesit, and you may want to avoid needless flushing,
especialy if it'sdone alot. The output stream is flushed before any
input, anyway. (Ok, so this was the final note.) Let’s say thelist is
a list of percentages. Here's a possible corrected version of the
program (the usi ng part has several correct possibilities, as
mentioned):

#i ncl ude <i ostrean>
#i ncl ude <list>

10

int main() {
std::|ist<doubl e> percent _list;
percent _|ist. push_back(34.0);
percent _|ist. push_back(45.0);
percent _|ist. push_back(87.0);
for(percent _list_type::const_iterator it
= percent _list.begin();
it!=percent_list.end(); ++it)
std::cout << *it << '\n';

}

This corrects the problems mentioned in points 1-11.

If you thought | would stop here, you don’'t know mewell enough. ;) Let’'s
step back, and try to seewhat istheintent of the code. The code should express
theintent as clearly as possible. Well, doesit? Let’sfind out. The code inserts
few valuesinto alist, and then prints them out. The code above says quite a
bit morethan this. Onething that iscommonly mentionedisto usef or _each,
rather than f or , in such situations. However, using only the standard library,
you need to then create another classto do the printing. Thisisn't necessarily
animprovement, asyou can't define the class at the point of use. However, as
Kevlin Henney showsin his“Omit Needless Code” article, there are several
aternatives to printing out the values. One isto use stream iterators:

typedef std::ostream.iterator<doubl e> out;
std:: copy(percent_list.begin(),

percent _|ist.end(),

out (std::cout,"\n"));

This makes it rather more succinct. Now, the code focuses on what to do —
printing or copying the valuesto the output stream —rather than how to doit.
If you need more advanced formatting (such as enclosing each valuein
braces), thiswon'’t do, though. Fortunately, there arelibrariesthat allow us
to create function objects on the fly, usable with algorithms, such as
Boost.Lambda[1]. With it, we may substitute the above with:

std::for_each(percent_Ilist.begin(),
percent _|list.end(),
std::cout << _1 << "\n");
That takes care of the printing. What about the insertion of values? That
looks rather repetitive, doesn’t it? Well, Boost can again help us, here, with
the Assignment library [2]:
percent _|ist+=34.0, 45.0, 87. 0;

Here' sthe last revised version of the code:

#i ncl ude <i ostreanp

#i nclude <list>

#i ncl ude <al gorithne

#i ncl ude <boost/assign/std/list. hpp>
#i ncl ude <boost/ | anbda/ | anbda. hpp>

usi ng boost: :assign:: operator+=;
usi ng boost::lanbda:: _1;

int main() {
std::list<doubl e> percent_list;
percent |ist+=34.0, 45.0, 87.0;
std::for_each(percent_Ilist.begin(),
percent _list.end(),
std::cout << _1 << "\n");

}

Now, there' s no fluff; the code states what it does (at least when you learn
the abstractions involved). A further improvement might be if there were
overloaded versions of the standard algorithms taking containers, rather
than iterators:

std::for_each(percent_Iist,
std::cout << _1 << "\n"):

David wasn't kidding when he said the code contains “various mistakes
for such afew lines’... This small snippet also turned out to be a good

CVu/ACCU/Dialogue

opportunity to demonstrate some software development fundamentals, as
well as more advanced techniques.

[1]htt p:// wwmv boost . org/|ibs/| anbda/ doc/ i ndex. ht m
[2] Availablein the CV'S, but not yet in the current release.

The Winner of SGC 29

The editor’s choiceis:

Mick Brooks
Pleaseemail f r anci s@ obi nt on. denon. co. uk to arrange for your
prize.

Francis’ Commentary

#i ncl ude <i ostrean
using std::cout
using std::endl

#include <list>
using std::list;

Let me start with a small style issue. | do not like interspersing usi ng
declarations and headers. | like to see all the #i ncl udes up front.
Preferably | like to see any user header files first (in alphabetical order)
followed by the necessary standard headers (also in alphabetical order).
Placing the user header filesfirst avoids accidentally masking a dependency
that should have been in visible in the user header. Placing the includesin
alphabetical order just makesit easier to check whether one has or has not
been included.

While | notice, st d: : endl is not required to be declared as a
consequence of #i ncl ude <i ost rean®,itusualy isbut only because
i ost r eamnormally dragsinost r eam

Whenit comestousi ng declarationsand usi ng directives| think we
should tend to use fully elaborated names (i.e. do not use either usi ng
directives or usi ng declarations) until the user knows enough to
understand the implications of each. | know thisis contrary to what | did
in‘You Can Do It!" but the motive in that book was to get inexperienced
programmers writing code so | was willing to make some sacrifices.
However, even there | started with fully elaborated names and required that
they be used in al reader written header files.

int min() {
| i st<double>::iterator it;
|'i st <doubl e> | st;

| cannot say that | am enamoured by the choice of i t as a name for an
iterator but | can live with it, but the choice of | st asavariableisbeyond
my tolerance levels (well it is today). And what is that extra indent for?
Indents without purpose only serve to confuse.

Up until now, | have just being cantankerous. Now it is about to get
serious:

*It = 34;
Do you know if | i st <T>:: it erator hasadefault constructor? No,
neither do | and | do not care to take time to look it up. Whether it does or
not, * i t issurely introducing undefined behaviour becausei t has never
been initialised to point to any storage.

And now it gets worse:

*++it = 45;
*++jt =87;

More purposeless indentation coupled with incrementing what is, at best,
an iterator that points nowhere. And only now does the student make any
attempt to relateit to | st . Had the program no had multiple instances of
undefined behaviour the next line would have been perfectly OK, just not
exactly the idiomatic way to do it.

it = 1list.begin();

Timeto wind back to the beginning and write the code properly by avoiding
early or unnecessary declarations.

CVu/ACCU/Dialogue

#i ncl ude <i ostreanr
#i nclude <list>

typedef std::list<double> |ist_of_double;

int main() {
|ist_of double data;

Note that there are no usi ng declarations, but | have used at ypedef .
That is often a much more useful tool, and one that provides a modicum
of documentation. In fact it is the exact reverse of usi ng declarations
because it adds information (not much in this case, but the problem is pretty
abstract) rather than removing it (the library that a name belongs to).

Next the list starts empty so there is nowhere to store values. My
preferred choiceisto usepush_back() , however we could have created
the object datais bound to with three default initialised nodes by changing
the definitionto | i st _of _doubl e dat a(3); . Sticking with my
preferred option we get:

dat a. push_back(34);
dat a. push_back(45);
dat a. push_back(87);

Thereasonthat | prefer thisoption isbecauseit makesit very clear to even
the rawest novice that data has nothing in it until we start pushing things
in. If teaching, | would break off here and have abrief discussion asto what
push_back() does.

Having created alist of values, | am ready to write them out:

for(list_of double::iterator iter

= dat a. begi n()

iter != data.end(); ++iter) {

You did notice that the student had used the wrong comparison?
std::list::iterator isnotarandom accessiterator and so valuesof
it are not ordered. We simply cannot use a less than comparison. The only
thing that will work is to keep going until equality with the end marker is
achieved. Less than will work for most of the sequence containers but not
for thisone. Comparison for inequality isidiomatic for C++, those that want
to do something el se should understand why sticking with idiomsis helpful.
<< &Fiter << '"\t' << *iter
<< '"\n';

std: : cout

| am guessing that the student wantsto see the address used to store the value.
If hedidn’t then heis completely out of luck because thereisno requirement
that avalueof astd::list::iterator object beacceptable to an
ost r eamobject. The standard technique for getting the address of an object
in acontainer is to apply the address-of operator to the dereferenced value
of theiterator for the object; another idiom of modern C++.

Another featureisthat | do not usest d: : end| unless| actually want
to force both an end-of-line and a flush to output. | only need an end-of-
line so | use the correct character for that;' \ n' .

Now to finish:

}
std::cout.flush();

std::cin.get();
return O;

}

Now | force the flush by calling the correct function. | don’t want to hunt
around to see which header declares syst em() and | certainly do not
want to introduce that kind of system dependence into my code unless |
really haveto.

There are severd other thingsthat | might do to polish this program ahit,
but | think the above will do. Now | wonder how the rest of you got on, and
how many things | missed. The sad thing about much of the code we see here
isthat it shows just how badly instructors are explaining what is happening.
Most of the code we publish comes from students who really want to get it
right rather than oneswho went to deep during the lectures. Thekind of errors
they make expose fundamental misunderstanding of C, C++ €tc.

[Code for SCC 31 at foot of next page]

11

Letters to the Editor

Quite a few emails in this edition. As always, | welcome your comments about C
Vu, the articles and about the ACCU in general, keep them rolling in!

Student Critique

On reading the various answers for the code critique competition 27 in C
VuVol 16 No 3 (yes, I'm anissue behind at the moment!), involving “ugly”
numbers, | feel | must point out what | find to be some poor advice from
Francisin hiscommentary. He developsasolution, asmost of usdid, with
anlsUgly(),oris_ugly() function. Thishe getsto anear working
stage, i.e. it detects numberswhose primefactorsarenot all 2, 3or 5. Then
herealisesthat the spec said that ugly numbershaveto haveat least2 prime
factors, i.e. they cannot be 2, 3, and 5 themselves. Fine, except for the
implementation. Herealisesthat he need not worry testing numbers bel ow
6, oh, except for 4, because that is 2x2.

| can’t decide whether thisis aform of premature optimisation or not.
Either way, the most significant problem isthat we' ve now introduced the
literals 4 and 6 into the code. Why? Because 6 is bigger that the biggest
of the ugly prime factors, and 4 is the only number between them which
can be made by more than one factor of one of them. That to meis not the
kind of complicated derived logic you should havein code.

Suppose we made the definition of ugly such that its prime factors were
2,7, 23. Now, what happens to the 4 and 6? Hmm, we need to tackle it
generically thistime, or else make special cases of 4, 8, 14, 16.

Simon Sebright
si monsebri ght @ot mai | . com

| put this to Francis and had this back..

We can spend an awful lot of timetrying for generic solutionsto specialised
problems. In my opinion thetimefor considering generic solutionsiswhen
we are actually presented with several similar problems. At that stage it
may be worth looking for a suitable abstraction.

| contend that human time is one of the most expensive resources and
we need to develop work habits that reduce that cost. We can argue
interminably about how to do this and that in itself is a waste of precious
human resources. The degreeto which asolution isspecialised will aways
be ajudgement call and as such different people will draw the line in
different places.

By the way, you see the logic of my code as complicated, | don’t but
here again we differ and | am certainly not going to lose any sleep about
such differences of opinion.

Which in turn led to...

Of course, there is always a line to be drawn on the amount of time you
can scrutinise a piece of code. In a production environment, there’ll be
thousands or even millions of linesin aproject, and spending half an hour
looking at 40 lines of code could have a dramatic effect on productivity.

But, in the context of a student code critique (real or ficticious), | think
investing timeisagood thing. Not discouraging bad habits or shortcuts at
this stage has to be a bad thing. Making the novice aware of more
expressive, or generic ways of doing things givesthem agreater toolkit later
on, and thenit’ sgoing to be morelikely that future code reviewswon’t need
such fine-scale attention. I’ ve seen plenty of these kinds of shortcuts cause
bugs later in aprogram’s life, and they can be very hard to track down.

I’'mincreasingly of the opinion that maintenance startsthe moment you
hit the compile button, not just two yearslater. The current project I’'m on
has about 1 million lines of code, has been in development for 3-4 years,
ison the third or fourth generation of programmers, and won't be finished
and out of the door for a number of months. Equipping students with the
awareness of issues in these environmentsis very important.

Applying that to thisexample, I’ d rather seelogic or assumptionsin the
code than the comments. E.g.

i nt
i nt

const
const

smal | _ugly_exceptions[] ={ 4 };
smal | est _possi ble_ugly = 6;

and then we don’'t need comments. | note that there was no comment on
the < 6test, which I'd like to see a put in in a production environment
(except that | advocate coding it So comments are not necessary).

I'll leave it there. As always, if you wish to comment, feel free.

Fortran and Professionalism in Programming

| am writing to you as Chairman of the British Computer Society Fortran
Specialist Group as well as amember of the ACCU of 10 years standing.

I would like to expand on your mention of restrictions on coding style
and formatting imposed by Fortran 77 in Pete Goodliffe' s articlein C Vu
Volumel6 No 4 and to let the readers of C Vu know that Fortran is aive
and well in the 21st century.

| spent 15 years writing and maintaining Fortran 66 and 77 code. While
the fixed format source form put some restrictions on the layout of program

Student Code Critique 31
(Submissionsto scc@ccu. or g by November 10th)

Here is a program Francis collected which is riddled with poor design,
naming, etc. aswell asthe actual problem:

I'm getting a “parse error beforeel se” at the line indicated by the arrow

void IS IT A DDR(string& ntgrec,
string& tenprec,int& ddrrc) {
string Day2="SunMonTueWedThuFri Sat";
string Daytoken="0123456";

i nt badday=0;

if (mgrec.size() <8) {
ddr r c=0;
return;

}

for (int i=0; i <=6; i++) {

if (ntgrec.substr (0, 3)
Day2. substr ((i+1)*3-3,3)) {
if ((mgrec.substr(3,1) "o")

|| (ntgrec.substr(3,1) == "1")) {
if ((mtgrec.substr(7,1)).
find_first_of ("BCLMOPSTW") = -1) {

12

t enpr ec=Dayt oken. substr (i, 1)
+ mtgrec.substr(1);

ddrrc=1;
return;
}

el se {
ddrrc=2;
return;

el se { <<< conpiler diagnostic
ddrrc=3;
return;

}

}

el se badday++;

}

if (badday ==
ddrrc=4;
return;

7 A

el se ddrrc=5;
return;

}

CVu/ACCU/Dialogue

statements, they had to be within columns 7 to 72 of each line, there was no
restriction on using indentation to show code structure and you could continue
long statements over several lines. If | remember correctly the standard
dlowed for 9 continuation lines but many compilers alowed up to 99.

The next revision of the 1SO standard, Fortran 90, introduced the free
format source form, where there was no restriction on the positioning of
statements on aline other than a maximum line length of 132 characters,
which some compilers increased. It introduced more modern features to
complement Fortran’s well known strengths in numerical computation.
Fortran 90 and 95 introduced operations which could be carried out on
whole arrays or sections of arrays, rather than just on individual elements.
Also dynamic memory allocation and abstract datatypes were introduced.

The most recent version of the language, Fortran 2003, is due to be
published in the autumn of 2004 and contains features to enable object
orientated programming to be carried out in Fortran. For more information
on the development of Fortran standards since Fortran 95 please see the
Standardisation page on the Group’'s web site at
http://ww. fortran. bcs. or g/ st andar ds/ st anhone. ht m

If anyone is interested in exploring the modern features of Fortran a
version known as F has been developed. Fisasubset of Fortran 90/95 that
enforces correct coding practices by removing antiquated and dangerous
featuresin F90/95. Therearenew versionsfor Linux, Solaris, and Windows
available for free download from ht t p: / / www. f ortran. com

In response to some of the questions posed in Pete’s article | can say
that | tried to code in a consistent manner when writing new code, using 2
spacesfor each level of indentation in both Fortran and C, and to “improve”
the layout and structure of existing Fortran code when | had to modify it
and had the time for cosmetic changes!

From my own experience | agree with Pete that tabs should not be used
for indenting. We were programming across several platforms, each of
which had its own editor, which handled tabs differently so that tab
indented code could look OK in one editor but be almost unreadable in
another. | aimed to globally replace all tabs with 6 or 8 spaces whenever
| came to work on atab-indented file. Thiswas possible because we were
only asmall team, threeto five devel opers, and we each tended to work on
a particular area of the code so formatting changes did not often get
changed back by someone elsel

| should like to take this opportunity to say how much | have enjoyed
Pete’ sarticleson Professionalismin Programming over thelast four years.
I have found relevant and informative pointsin every one.

While writing about professionalism | would like to remind members
of the ACCU that the British Computer Society undertook amajor relaunch
earlier this year using the slogan “Making IT the profession for the 21st
century” and aimed at making individual membership more relevant to
professionalsinIT. Seehtt p: // www. bcs. or gfor more information.

®eter Crouch
pccrouch@cs. or g. uk

Book Reviews
The proposed change to the book reviews was enough for this email.

On the book reviews/ratings etc. discussion, | think that the base issue is
what a book rating is for. One of the main reasons for such arating is for
someone to chose which book might be a good investment for some
particular purpose (e.g. learning, reference etc).

If we giveratings on books (i.e. just anumber or aconclusion separately
fromthefull review) it would generally be used so that peoplecanfind the
excellent books quickly. (Why would you want to know whether a book
isaverage, or really, really bad? Y ou should probably avoid it anyway. |If
you inherit it, you might want to read the entire review to find out what is
right/wrong with it.). Perhapswe would have to qualify what the review
rating is designed to be used for.

The meaning of ‘excellent’ is probably going to be different depending
on who you are (super-expert/beginner) and quite possibly what you are
going to do with it (games programming v. financial applications v satellite
control. Reference, or discussion of finer pointsof syntax?etc.). Also, what
onewould consider excellent would be expected to changewithtime. (What
would the original K& R book on Crateas 15 yearsago? Andwhat today?)

| think that rather than attempting to rate all books, an ACCU rating of
books that we would consider indispensable might be useful. This could
represent a general consensus of the membership, rather than just a single
reviewer, or even areview panel. (Aslots of people would have read
Stroustrup, Meyers and ahost of other top-rated booksit would not involve

CVu/ACCU/Dialogue |

ahuge amount of postage or even necessarily of organisation). Itwouldbe
then be reasonable to review this list once a year, to see if there are any
missing or ones that should be removed from thislist. The number of times
books crop up in referencesin Overload might be an interesting place to start.

How many books should be on the list? Possibly only 10 core C++
ones — and another 5 or 10 for specialist purposes (and an appropriate
number for other languages)

It would also mean that we might be able to supply different people’s
opinionsand any caveats on the books—which would beinteresting reading
initsown right.

There are almost certainly problems with this scheme. Perhaps there
are other reasons people like to have ratings. Perhaps this could be just
an adjunct to the existing book review rating scheme (recommended, highly
recommended etc).

James Roberts
James. Robert s@ ogi cacng. com

Thanks for such a great email which more or less reflects what I've been saying
for quite a while!

The point over what constitutes the ratings is something which does have to
be ironed out.

As you’re aware, we have 4 ratings; not recommended, nothing,
recommended and highly recommended, with recommended being like a grade
2 degree (2i or 2ii — recommended or recommended with reservations). There is
nothing to say what has to done to achieve one of these grades.

What has been proposed is that the reviewers have a set of criteria to judge
the books against. It is not a tick list as it still allows for the reviewer to use his/her
judgement — | have reviewed some books which while technically correct, have
been written so badly that their use is very limited. A simple tick system would
have gained it (say) a recommended, but the judgement would drop it down.

In lay terms:

Highly recommended : It's been written by Stroustrup, or Josuttis
going down to

Put it back on the shelf or if you’ve bought it, demand a refund : anything in
the “for dummies” series, Schildt or “C++ in 21 days” type books.

Of course, the review system is still in the early days domain, so what will
happens is still to be determined.

And Finally...

Having just read the ‘Time for Change’ segment by Francis Glassborow, |
realised how much | resembled the description! ACCU has changed
considerably sinceitsinception, and the change in the Committee make-up
does reflect the change in balance of the membership. Back then C++ had
not made it out of the laboratory and C did not have a standard... hmmm.

These days | certainly do not do much programming, and essentially
none of it in C/C++/Java/lPython. My work is all systems administration,
which means about 50% security. | keep with ACCU for severa reasons.
Itisinteresting, and | suppose | have aproprietary interest of sorts having
spent a few years doing administration for the organisation. | don’t
begrudge the fees because | think | still get value, and the organisation
deserves the support.

| wouldn’t object to management and administration items, but | don’'t
think it should be at the expense of the current design/coding bias. In fact,
principlesin software design are definitely valuable to anyone. Explaining
to management why there is so much ‘thinking time’ in any project is a
perennial issue.

| wonder if the matter of book reviews being ACCU or individual
opinion may be arising because ACCU is succeeding in being considered
as a serious organisation. The comparable commercial journals —and |
think we can make that comparison now — are entities with staff writersfor
this purpose. The ACCU reviews are done by individuals with either
expertise in the subject, or a desire to gain that expertise. Some may be
plain curious. But that is a very real audience. | sometimes wonder if
publishers do not set themselves up with the cover synopsis. A book may
meet the expectations raised by the synopsis, fall short, or exceed them.
And that is before comparison of content with competing books and current
standards and practice.

Graham Patterson

If you’d like to send me a letter or email ('m happy to get either!), please drop
me a line to edi t or @ccu. or g — you can send post to the address at the
front of C Wu.

Paul F. Johnson

13

Francis’ Scribbles

Francis Glasshorow <f r anci s@ obi nt on. denon. co. uk>

Professional What?

Pete Goodliffe haswritten 27 columns on Professionalism in Programming,
so presumably readers know what claims such as‘| am aprofessiona’ and
‘I am professional’ mean. But do you? Both those apparently complete
statements leave much unsaid.

What does the claim to being a professional mean? Let me be more
precise; what doesaclaim to being aprofessiona software devel oper mean?

One answer isthat it is a statement that the speaker earns their living
by developing software. It says nothing about competence nor about any
ethical dimension. It also says nothing about any qualificationsto earn a
living in software development.

The claim to being professional in one’s software development may
seem the same but is a different claim. It is a claim concerned with
competence and ethics.

Wehaveto watch the choice of wordsvery carefully. In some countriesthe
claim to be a software engineer requires some form of certification. For
example Germany reservestheterm ‘engineer’ to peoplewho are certified as
such. Some people have the mistaken belief that certification guarantees
competence. | wish that were so because then we would have not need to de-
register or un-certify people because they areincompetent. The best that most
certification doesisto ‘ guarantee’ that theindividua hasreceived appropriate
training and satisfied the certification board that they knew what they were
supposed to know and had acquired the skills that were deemed necessary.

| till hold vaid certification as a teacher and as a sailing instructor. My
certification as ateacher is unlimited and qualifies me to teach at any level.
It was only my professiona standards that prevented me from attempting to
teach ages or subjectsfor which | lacked the appropriate skillsand experience.

My NSSA certification asatidal waters Sailing-master qualifiesmeto
be responsible for groups of young people sailing both inland and on tidal
waters. My qualification as a RYA Senior Instructor allows me to hold
similar responsibility for groups of adults. However it is too many years
since | last sailed on tidal waters and | would never consider taking
responsibility for any group of people sailing until | had taken several
refresher courses. We have to distinguish between what we are officially
certified as being able to do and an awareness of the current limits of our
competence. Part of being professional liesin that latter quality.

Exactly what does certification imply?1 think it isaway to absolve an
employer from some of the responsibility if an employee is incompetent
or does something that has bad consequences. It certainly isnot somemagic
that makes the holder more skilful or knowledgeable.

Certification has no impact on an individual’s competence to do ajob
though it does, often, haveimplications asregards employability. However
there are, in my opinion, other far more important issues that distinguish
professionalism.

Knowledge of one'slimitationsis essential. A willingness to continue to
develop skillsand knowledgeisimportant. Someforms of certification require
periodic re-endorsement based on either ademonstration of ongoing practical
experienceor onretraining. My life-saving certificateisan example; as| have
neither applied the skills nor taught othersthose skillsthat qualification lapsed
three years after the last time | had it re-endorsed. That does not mean that |
am unable to act to save someone’s life, but it does mean that | am not
currently employablein jobsthat require | be certified as a lifesaver.

Should we extend the requirement for regular re-endorsement of
professional skillsto all jobs that have safety implications?

Another feature of being ‘professional’ as opposed to being ‘a
professional’ isrespect for the skillsand knowledge of other people. There
were numerous occasions during my career as a teacher when | had
unqualified (i.e. not qualified as teachers) people present lessons. These
people had skills, knowledge and understanding that gave them something
worthwhile to contribute to my pupils. | respected that and mostly these
non-teachers al so understood the limits of what they wereallowedtodoin
the context of a classroom.

Since retiring as ateacher | have turned my hand to quite afew things.
| believethat | have acted professionaly throughout. | hold no qualification
as ajournalist, conference organiser, book reviewer etc. But in each case
| have taken time to discover how such jobs should be done. | sometimes
make mistakes. When | recognise them, | willingly, though not happily,
put my hand up. To me, admitting mistakes is part of professional
behaviour.

14

| recently had amember of ACCU tell methat my claim to beaprogrammer
was meaningless because there was no qualification for doing that. The same
person opined that only certified engineersshould beinvolved in Standardising
C (but chose not to add that requirement to Standardising C++).

I would have some sympathy for his view had the qualifications for
certification as a software engineer got anything to do with language design
as opposed to language use. | would have even more sympathy if said
certification waslimited to devel oping softwarein alanguage or languages
in which the individual had proven competence. However that |atter
requirement is left to the professionalism of the individual.

Like many other tasks, working on computer language standards requires
professionalism. It actudly requires far more skill and knowledge than can
be contributed by any singleindividual. That meansthat those involved must
be able to respect the skills and contributions of other participants. It dso
means that those involved must be willing to spend time both understanding
the current standards and understanding the issues raised by others.

| know of several individualsinthe UK who put my knowledge of Cto
shame but they are currently committed to other work. When ajob hasto
be done we sometimes have to make do with the people who are willing
to do it even if someone who is hot available could do it better.

While the above is largely personal, | hope that it gives you food for
thought. Thereisno harm (indeed probably much good) in making software
development a job that requires appropriate certification. However we
should not consider certification as proof that an individual is competent,
nor should we reguireit unlessit is relevant to the job.

‘| am a certified engineer therefore | am better than you.’ should be
relegated to the same garbage heap where ‘| am older therefore | know
better’ (aview so often held by adultswhen dealing with children) belongs.

Undefined Behaviour

Weall know that programsthat contain undefined behaviour are abhorrent and
no professiond programmer would conscioudy write source codethat included
undefined behaviour unlessthey had verified that the actual behaviour on the
specific platform was acceptable. So consider the following program:

#i ncl ude <stdi o. h>
int main() {

int i = 0;

puts("Please type in a nunber: ");
scanf ("%l", &);

printf("%", i*i);

return O;

}

| have been lazy by using scanf () rather than amore robust mechanism.
Just pretend that | have carefully written code that will extract an integer
value fromst di n. Given that, where is the undefined behaviour in the
above program?How do wejustify both C and C++ making that behaviour
undefined? Should we do anything about it?

The problem is that signed integer overflow is undefined behaviour in
both C and C++. All the five main arithmetic operators (+. - , *,/ and %
can result in integer overflow. The simplest one is the modulus operator,
which can only cause overflow if the divisor is 0. We can easily check for
this condition before using the operator.

The division operator israther subtler because there are two conditions
for overflow; the first is division by zero. The second is restricted to 2s
complement machines where division of | NT_M Nby -1 results in
overflow. Unfortunately 2s complement is the most common architecture
for desktop machines.

Addition and subtraction can both overflow, but again thereisafairly
simple pre-test. | leave it to the reader to write one.

Multiplication is the worst case because we have to pre-test by using a
division. Let me assume that we start with two positive numbers a and b.
Now compute | NT_MAX/ a. If the result islessthan b then the result of
a* b definitely overflows. If the result is equal to b we must now check
the remainder, because if itis0 a*b == | NT_MAX However if either
but not both of the values are negative we have to test against| NT_M N.
If both are negative, we have to test the absol ute val ue of one of the values
against | NT_MAX

We can reduce the number of tests if we are willing to accept some false
negatives (i.e. rejected cases where the actual cal culation does not overflow).

I have seen the argument for allowing overflow to be undefined because
any program in which it happensis erroneous. The proponents of the status

CVu/ACCU/Dialogue |

quo then add that undefined behaviour will actually not cause anything
really bad to happen, such as reformatting your hard drive. Am | alonein
finding that argument to be specious? We ask programmers to treat
undefined behaviour as a serious issue and then tell them not to worry too
much about one of the primary instances of it.

Writing beyond the end of an array isnot only undefined behaviour but can
result in genuinegly bad things happening. | once reprogrammed the BIOS of
an expensive graphics card by accidentally writing of the end of an array. In
addition buffer overflowsare one of themajor sourcesof exploitsfor malware.

[I'm wouldn’t go that far. A large number of software exploits are down to
poorly written, insecure code — network code is riddled with such problems. It is
not always the case that buffer overflows are the problem. — Ed]

However before | go further along this line, let us see if there is any
legitimate code that is vulnerable to this undefined behaviour and that
cannot be eiminated by pre-testing. Consider this code snippet:

#i ncl ude <tine. h>
voi d work(void);

int main() {

clock t start,
doubl e el apsed;
start = cl ock();
wor k() ;
end = clock();
el apsed

= ((double)(end - start))/CLOCKS PER SEC,
printf("El apsed time = %", el apsed);
return O;

end;

}

Now the above program contains irremovable undefined behaviour if
cl ock_t isasignedinteger type. Neither C nor C++ placesany constraint
on the type of cl ock_t other than it be an arithmetic type. It does not
seem that the actual type requiresto be documented (though you could ook
inthet i me. h header if it has been provided as afile (again not required
by either Standard).

Of course most student programswill not have a problem because most
implementations will survive just over half an hour of CPU usage before
overflow might occur in the return from cl ock() .

However suppose your application runs for much longer and you want to
usecl ock() to‘timeout’ aprocess. Given defined behaviour for signed
integer overflow you have achanceto write code that can handle the problem
but without defined behaviour you have no hopeand cl ock() isusdessto
you if you want to write clean code devoid of undefined behaviour.

What concerns meisthat anumber of C and C++ heavyweight experts
take the view that anything we have lived with for thirty years cannot be
aproblem. So, am | wrong to be concerned with thisissue?

Should we be comfortable with undefined behaviour that will do
nothing disastrous? Do we need another classification of behaviour that
basically saysthat theworst that can happen isthat the program aborts? Of
course such behaviour isnot acceptablein the control softwarefor anuclear
power station but it isacceptable for many other purposes. Y esthe program
does not always do what the programmer intended but neither does it try
to reformat my hard drive.

Pure Functions

Those who come from a functional programming background will be
familiar with the concept of apurefunction but for therest, apure function
is one that has no side effects, the opposite of a procedure that has only
side effects and no return value.

In C++ a pure function would be a free function that does not access
any globals, does not have any local statics in its definition and whose
parameters are all value based (no pointers either). Under such
circumstancesthe return value is solely based on the function’ s arguments.
A pure function can only call pure functions.

Until recently the concept of pure functions has been interesting but of
no great direct value to languages such as C++. However hardware is
moving on. Multiple CPU machines are increasingly common. The latest
hardware from Intel allows a single CPU to look like two. CPUs have
multiple processing linesbuilt in to them. In pursuit of ever faster hardware
the next logical step isto put array processors into our CPUs. Single

CVu/ACCU/Dialogue

Instruction Multiple Data (SIMD) parallelism can result in great
performance improvements for certain types of processing (and graphical
processing is an example of such a specialist domain).

Given such hardware pure functions begin to become useful. Pure
functions are obvious candidates for SIMD parallelism.

Isit time that C++ considered adding some function qualifiers so that
we can identify functions as pure. Such information is statically
enforceable. We would need to consider such details as including such
qualifiersin the type of function pointers (the address of a pure function
should be assignable to any suitable function pointer, but only addresses
of pure functions should be assignable to pointers to pure functions.)

Please give somethought to thisidea, write them down and email them
to the editor or to me.

Commentary on Problem 16
Hereiswhat | invited you to comment on:

Have a look at the following tiny function. The problem is insidious; the same
code is legal in Java and does exactly what you want, while in C++ it
compiles without error.
string to_string(int
if(n ==0) {
return " NULL";
}
el se {
return "" + n;

}

n) {

}

The problem is because of the very different waysthat theoper at or +
is overloaded in the two languages. In the case of Javaoper at or +
creates anew string object that is the result of concatenating the left-hand
operand with the conversion of the right-hand one to a string by using
whatever method is provided by therhs' type.

Inthe case of C++ thereisno oper at or + overload that takes either an
aray of onechar ontheright. However thereisanoper at or + that takes
achar const * andani nt; the onethat increments the pointer by the
specified vaue. If thei nt isOtheresult istoleave the pointer unchanged (but
inthisfunction wetrap that case and handleit differently). If n isonetheresult
isaone beyond the end pointer, whichis OK until it getsused to initidise the
return value where the string constructor will dereference the pointer.

In all other cases the evaluated“” + n expression has undefined
behaviour even though nothing really bad happens on most systems. Y ou
just get garbage as the program treats the bytes that start at the computed
address asif they were part of a null-terminated array of char .

Problem 17

Hereisaminimalist version of mai n() :
int main() {
a* b;

Given suitable precursors it will compile and execute. Can you provide
suitable precursors so that the resulting program executes and outputs:
int main() {
a* b;

I will send the author of the solution that | like best (yes, entirely subjective)
acopy of Exceptional C++ Style(and if | remember to get one autographed
by Herb Sutter when | am at the WG21 meeting in Redmond it will be an
autographed copy).

Cryptic Clues For Numbers

| had severd clues offered. Ainsley Pereiraoffered ‘ Before he ate, he had
to wait’. James Roberts offered both ‘A new slant to infinity, and again?
(A good start but | think it needs some polish) and * Produce of thedisciples
working every hour of the day and night.’ (I think ‘product’ works better).
Louis Lavery came up with ‘Told to double weight after initial loss? 1'd
say that'stoo gross!’ Any one of those would deserve to win and correctly
identify 288. | chose James' so if he contacts me to tell me where to send
it he gets the copy of The Elements of C++ Syle.

For next time, what are your cluesfor:

Oh for love in the sea! It only values the fifth bit.

Francis Glassborow

15

Features

An Introduction to Programming with GTK+ and Glade - Part 2

Roger Leigh <r | ei gh@lebi an. or g>

Last Time...

As you will recall from the first part, | showed how to construct a GTK
window with all of itsassociated partsin somedetail, and it was clear that
to do thisfor every application would not be agood idea. Inthispart, | will
be showing how to use the Glade application for rapid window creation.

Analysis

Themai n() function is responsible for constructing the user interface,
connecting the signals to the signal handlers, and then entering the main
event loop. The more complex aspects of the function are discussed here.

g_si gnal _connect (G_OBJECT(w ndow), "destroy",
gtk_main_quit, NULL);

This code connectsthe " dest r oy" signd tothe gt k_mai n_qui t ()
function. Thissignd isemitted by thewindow if isto be destroyed, for example
whenthe“close” button on thetitlebar isclicked). Theresult isthat whenthe
window is closed, the main event loop returns, and the program then exits.

vbox1l = gt k_vbox_new(FALSE, 0);
gt k_cont ai ner _add(GTK_CONTAI NER(w ndow), vbox1);
vboxlisa @& kVBox. When constructed using gt k_vbox_new(), it
is set to be non-homogenous (FAL SE), which alowsthe widgets contained
within the G kVVBox to be of different sizes, and has zero pixels padding
space between the containers it contains. The homogeneity and padding
space aredifferent for the various& k Box esused, depending onthevisual
effect intended.

gt k_cont ai ner _add() packs vbox1 into the window (a
G kW ndow objectisa@& kCont ai ner).

event box = gtk_event _box_new();

gt k_wi dget _show(event box) ;

gt k_box_pack_start (GTK_BOX(hbox2), eventbox,
FALSE, FALSE, 0);

Some widgets do not receive eventsfrom the windowing system, and hence
cannot emit signals. Label widgets are one example of this. If thisis
required, for example in order to show a tooltip, they must be put into a
& kEvent Box, which can receive the events. The signals emitted from
the @ kEvent Box may then be connected to the appropriate handler.

gt k_wi dget _show() displaysawidget. Widgets are hidden by
default when created, and so must be shown before they can be used.

Itistypical to show the top-level window last, so that the user does not
see the interface being drawn.

gt k_box_pack_start () packsawidgetintoa & kBox, ina
similar manner to gt k_cont ai ner _add() . This packsevent box
into hbox2. The last three arguments control whether the child widget
should expand into any extra space available, whether it should fill any
extra space available (this has no effect if expand is FALSE), and extra
space in pixels to put between its neighbours (or the edge of the box),
respectively. Figure 1 shows how gt k_box_pack_start () works.

gtk_box_pack_starti)

OO —

OO

gtk_kox pack_end{}

Figure1l: gt k_box_pack_start ()

16

Thecreat e_spi n_entry() functionisahelper function to create a
numeric entry (spin button) together with alabel and tooltip. Itisused to
create all three entries.

| abel = gtk_| abel _new(l abel _text);

A new label is created displaying thetext | abel _t ext .

spi nbutton = gtk_spi n_button_new(adj ust nent,

0.5, 2);
gt k_spin_button_set _nuneric(
GTK_SPI N_BUTTON(spi nbutton), TRUE);

A &G kSpi nBut t on isanumeric entry field. It has up and down buttons
to “spin” the numeric value up and down. It is associated with a
& kAdj ust ment , which controls the range allowed, default value, etc.
gt k_adj ust ment _new() returnsanew G kAdj ust nent object.
Its arguments are the default value, minimum value, maximum val ue, step
increment, page increment and page size, respectively. This is
straightforward, apart from the step and page increments and sizes. The
step and page increments are the value that will be added or subtracted
when the mouse button 1 or button 2 are clicked on the up or down buttons,
respectively. The page size has no meaning in this context
(& kAdj ust ment sare also used with scrollbars).

gt k_spin_button_new() createsanew G kSpi nBut t on, and
associatesit with adj ust ment. The second and third arguments set the
“climb rate” (rate of change when the spin buttons are pressed) and the
number of decimal placesto display.

Findly, gt k_spi n_button_set nuneric() isusedtoensure
that only numbers can be entered.

tooltip = gtk_tooltips_new);
gtk _tooltips_set tip(tooltinp,
tool tip_text,

event box,
NULL) ;

A tooltip (pop-up help message) is created withgt k_t ool ti ps_new() .
gtk _tooltips_set _tip() isusedtoassociatet ool ti p withthe
event box widget, also specifying the message it should contain. The
fourth argument should typically be NULL.

Thecreate_resul t_I abel () function is a helper function to
create aresult label together with a descriptive label and tooltip.

gt k_| abel _set _sel ect abl e(

GITK_LABEL(result_val ue), TRUE);
Normally, labels simply display atext string. The above code alows the
text to be selected and copied, to allow pasting of thetext elsewhere. This
is used for the result fields so the user can easily copy them.

buttonl
= gtk_button_new from stock(GIK_STOCK_QUI T);

This code creates a new button, using a stock widget. A stock widget
contains a predefined icon and text. These are available for commonly
used functions, such as“OK", “Cancel”, “Print”, etc..
button2 = gtk_button_new wi th_mmenoni c(
" Calculate");

g_si gnal _connect (G _CBJECT (button2),

"clicked",

G _CALLBACK(on_button_clicked_cal cul ate),

(gpointer) &cb_wi dgets);
GTK_W DGET_SET_FLAGS(but t on2,

GTK_CAN_DEFAULT) ;

| CVu/ACCU/Features

Here, abutton is created, with the label “ Calculate”. The mnemonicisthe
“_C’, which createsan accelerator. Thismeansthat when Alt-Cispressed,
the button is activated (i.e. it is a keyboard shortcut). The shortcut is
underlined, in common with other graphical toolkits.

The “clicked” signal (emitted when the button is pressed and rel eased)
is connected to the on_but t on_cl i cked_cal cul at e() callback.
Thecb_wi dget s structure is passed as the argument to the callback.

Lastly, the GTK_CAN_DEFAULT attributeis set. This attribute allows
the button to be the default widget in the window.

g_si gnal _connect _swapped
(G_OBJECT(cb_wi dgets. pg_val), "activate",
G _CALLBACK(gt k_wi dget _grab_focus),
(gpoi nter) GTK_ W DGET(cbh_wi dgets.ri _val));

This code connects signals in the same way as
gt k_si gnal _connect (). The difference is the fourth argument,
whichisaG kW dget pointer. This allows the signal emitted by one
widget to be received by the signal handler for another. Basicaly, the
widget argument of the signal handler isgiven cb_wi dgets. ri _val
rather than cb_wi dget s. pg_val . Thisallows the focus (where
keyboard input is sent) to be switched to the next entry field when Enter
ispressed in thefirst.

g_si gnal _connect _swapped
(G_OBJECT(ch_wi dgets.cf_val), "activate",
G _CALLBACK(gt k_wi ndow_activate_default),
(gpoi nter) GTK_W DGET(w ndow)) ;

Thisisidentical to the last example, but in this case the callback is the
function gt k_wi ndow_act i vat e_def aul t () andthewidget to give
to the signal handler is wi ndow. When Enter is pressed in the CF entry
field, the default “ Calculate” button is activated.

gtk_main();

Thisisthe GTK+ eventloop. Itrunsuntil gt k_mai n_qui t () iscalled.

The signal handlers are far simpler than building the interface. The
functionon_button_cli cked_cal cul at e() readsthe user input,
performs a calculation, then displays the result.

voi d on_button_clicked_cal cul at g(
G kW dget *wi dget,
gpoi nter data) {
struct cal cul ati on_wi dgets *w;
w = (struct cal culation_wi dgets *) data;

Recall that a pointer to cb_wi dgets, of type struct
cal cul ati on_wi dget s, was passed to the signal handler, cast to a
gpoi nt er . Thereverseprocessisnow applied, castingdat ato apointer
of typestruct cal cul ati on_w dgets.

gdoubl e pg;
pg = gtk_spin_button_get_ val ue(
GTK_SPI N_BUTTON(w- >pg_val));

This code gets the value from the G kSpi nBut t on.

gchar *og_string;

og_string = g_strdup_printf("%®. 2f </ b>", o0Q);

gtk_| abel _set _mar kup(GTK_LABEL(w >o0g_result),
og_string);

g_free(og_string);

Here the result og is printed to the string og_st ri ng. Thisisthen set
asthelabel textusinggt k_| abel _set _mar kup() . Thisfunction sets
the label text using the Pango Markup Format, which uses the and
</ b> tags to embolden the text.

gt k_spi n_button_set _val ue(

GTK_SPI N_BUTTON(w >pg_val),
gtk_Il abel _set _text(

GTK_LABEL(w >o0g_result), "");

0.0);

CVu/ACCU/Features |

on_button_clicked_reset () resestheinputfieldstotheir default
value, and blanks the result fields.

GTK+ and Glade
Introduction

In the previous section, the user interface was constructed entirely “by
hand”. Thismight seem to berather difficult to do, aswell asbeing messy
and time-consuming. In addition, it also makes for rather unmaintainable
code, since changing theinterface, for exampleto add anew feature, would
be rather hard. As interfaces become more complex, constructing them
entirely in code becomes less feasible.

The Glade user interface designer isan aternative to this. Glade allows
one to design an interface visually, selecting the desired widgets from a
palette and placing them on windows, or in containers, in asimilar manner
to other interface designers. Figure 3 (see next page) shows some
screenshots of the various components of Glade.

Thefile C/ gl ade/ ogcal c. gl ade contains the same interface
congructed in C/ pl ai n/ ogcal c. ¢, but designed in Glade. Thisfile can
be openedin Glade, and changed as needed, without needing to touch any code.

Even signal connection isautomated. Examinethe”Signals’ tab in the
“Properties’ dialog box.

The sourcecodeislisted below. Thisisthe sameasthepreviouslisting,
but with the following changes:

« Themai n() function does not construct the interface. It merely loads
theogcal c. gl ade interface description, auto-connects the signals,
and shows the main window.

e Thecb_wi dget s structureisno longer needed: the callbacks are now
able to query the widget tree through the Glade XML object to locate
the widgets they need. This allows for greater encapsulation of data,
and signal handler connection issimpler.

» Thecode saving issignificant, and thereis now separation between the
interface and the callbacks.

TherunningC/ gl ade/ ogcal capplicationisshowninFigure2. Notice

that itisidentical to ¢/ pl ai n/ ogcal c, shown in thelast article. (No,

they are not the same screenshot!)

- mOG & ABV Calculator

PG:39.57 [} Ri:[63.55 [I CR [|3
0G: 65.57 ABV %: 3.48
] Quit l .__________I_:{:é-_.-;__é_f________j Calculate !

Figure2: C/ gl ade/ ogcal c in action

Analysis

The most obvious difference between the code using Glade (see listing at
end of article) and the previous code is the huge reduction in size. The
mai n() function isreduced to just these lines:

d adeXM. *xmi ;
G kW dget *wi ndow,
xm

= gl ade_xm _new "ogcal c. gl ade", NULL, NULL);

gl ade_xm _si gnal _aut oconnect (xm) ;

wi ndow = gl ade_xm _get _wi dget (xni,
"ogcal c_mai n_wi ndow") ;
gt k_w dget _show(w ndow) ;

gl ade_xm _new() readstheinterface fromthefileogcal c. gl ade.
It returns the interface as a pointer to ad ade XML object, which will be
used later. Next, the signal handlers are connected with
gl ade_xm _si gnal _aut oconnect (). Windows users may require
special linker flags because signal autoconnection requires the executable
to have a dynamic symbol table in order to dynamically find the required
functions.

17

The signal handlers are identical to those in the previous section. The
only differenceisthatstruct cal cul ati on_wi dget s hasbeen
removed. No information needs to be passed to them through the data
argument, since the widgets they need to use may now be found using the
G ade XM interface description.

G kW dget *pg_val ;

d adeXM. *xmi ;

Firstly, the G ade XML interface is found, by finding the widget tree
containing the widget passed as the first argument to the signal handler.
Oncexm hasbeen set, gl ade_xm _get _wi dget () may be used to
obtain pointersto the Gt kW dget sstored in the widget tree.

Compared with the pure C GTK+ application, the code is far simpler,
and the signal handlers no longer need to get their data as structures cast
to gpoi nt er , which was ugly. The code is far more understandable,

xm = gl ade_get _wi dget _tree(cleaner and maintainable.
GTK_W DGET (wi dget));
pg_val = glade_xnl _get widget(xm, "pg_entry"); Roger Leigh
7 Glade: ogcalc e Rl
Project Edit View Settings Help
R R .
| New | Open Save | Options Build || TheOpeningwindow
[Tl ogcalc_main_window
|Project opened.
- T
| k1 Selector _
— Properties: cf_entry
GTK+ Basic Widget]PackinglCommonlSignals|cb.
. Name: of entr A ~ [logcalc_main_window it
GTK+ Additi f_entry - ={vbox1
Class: ‘GtkSplnButton —{vbox2
Deprecated - -
pr Cl-m.'lb Rate|0.2 i = [l]hbox1
D EIIHI] J_I DIgItS:]1 "‘ [>J_|_|hb0){2
7 -_I - Numeric: No b |||hbox3
o B ® Update Pol Always & < ||/hbox4
A [=B | |Snee: No b 4 eventbox3
=]
Wrap: No
I E Ve < |||hbox5
S Value: 10 11|hboxé
e~ [nH . * v ox
T Min. ’ 50 b % eventbox4
— B r Max: 150 e A og_result
; ; StepInc: (0.1 - ||
P | 11Jnbox7
Page Inc: Jl v %y eventbox5
=
T = =i Page Size: [0 B A label6 -
=
s _él_l __DI The widget propertiesdialog Thewidget tree
e ol e
PG:[0.00 [:] RI:[0.00 BRACENE
The palettetree EDG: J ABV %
ui Rese Calculate
%] Quit Reset Calculat
The program being designed
Figure 3: The Glade user interface designer
18 CVu/ACCU/Features

Listing: C/ gl ade/ ogcal c. c

#i ncl ude <gt k/ gt k. h> /* This cal |l back does the actual cal culation. */
#i ncl ude <gl ade/ gl ade. h> void on_button_clicked _cal cul ate(& kW dget *wi dget,
gpoi nter data) {
voi d on_button_clicked_reset (& kWdget *wi dget, G kWdget *pg_val ;
gpoi nter data); G kWdget *ri_val;
void on_button_clicked _cal cul ate(& kW dget *wi dget, G kWdget *cf_val;
gpoi nter data); G kW dget *og result;

G kWdget *abv_result;
/* The bul k of the program Since d ade and

|'ibgl ade are used, this is just 9 lines! */ d adeXM. *xmi ;
int main(int argc, char *argv[]) {
d adeXML *xmi ; gdoubl e pg, ri, cf, og, abv;
G kW dget *w ndow; gchar *og_string;

gchar *abv_string;
/* Initialise GIK+. */
gtk_init(&rgc, &argv); /* Find the d ade XM. tree containing wdget. */
xm = gl ade_get _wi dget _tree(GTK_W DCET(w dget));
/* Load the interface description. */

xm = gl ade_xm _new "ogcal c. gl ade", NULL, NULL); /* Pull the other widgets out the the tree. */
pg_val = gl ade_xnl _get wi dget (xmi,
/* Set up the signal handlers. */ "pg_entry");
gl ade_xni _si gnal _aut oconnect (xm) ; ri _val = glade_xnl _get widget (xm,
"ri_entry");
/* Find the main wi ndow and then showit. */ cf_val = glade_xm _get_wi dget (xni,
wi ndow = gl ade_xm _get _wi dget (xni, "cf _entry");
"ogcal c_mai n_wi ndow") ; og_result = glade_xm _get widget(xni,
gt k_wi dget _show(w ndow) ; "og_result");
abv_result = glade_xnl_get_w dget (xm ,
/* Enter the GIK Event Loop. This is where all "abv_result");
the events are caught and handled. It is
exited with gtk_main_quit(). */ /* Get the nunerical values fromthe entry
gtk_main(); wi dgets. */
pg = gtk_spin_button_get_val ue(
return O; GTK_SPI' N_BUTTON(pg_val));
} ri = gtk_spin_button_get_val ue(

GTK_SPI N _BUTTON(ri _val));

/* This is a callback. This resets the val ues of cf = gtk_spin_button_get val ue(
the entry widgets, and clears the results. */ GIK_SPI N BUTTON(cf _val));
voi d on_button_clicked _reset (& kWdget *wi dget,
gpoi nter data) { og = (ri * 2.597) - (pg * 1.644) - 34.4165 + cf;
G kW dget *pg_val ;
G kW dget *ri_val; /* Do the suns. */
G kW dget *cf_val; if (og < 60)
G kW dget *og_result; abv = (og - pg) * 0.130;
G kWdget *abv_result; el se
abv = (og - pg) * 0.134;
A adeXM. *xm ;
/* Display the results. Note the GVarkup
/* Find the d ade XM. tree contai ning w dget. */ tags to make it display in Bold. */
xm = gl ade_get widget tree(GITK WDGET (w dget)); og_string = g_strdup_printf("%®. 2f </ b>",
09);
/* Pull the other wi dgets out the the tree. */ abv_string = g_strdup_printf("%®. 2f </ b>",
pg_val = gl ade_xm _get_wi dget (xm , abv) ;
"pg_entry");
ri _val = glade_xm _get_wi dget (xmn, gtk_| abel _set nmar kup(GTK_LABEL(og_result),
"ri_entry"); og_string);
cf_val = glade_xm _get _wi dget (xm , gt k_| abel _set _nmar kup(GTK_LABEL(abv_result),
"cf_entry"); abv_string);
og_result = glade_xm _get wi dget (xm ,
"og_result"); g_free(og_string);
abv_result = glade_xm _get_wi dget (xm, g_free(abv_string);
"abv_result"); }
gt k_spin_button_set_val ue(GTK_SPI N BUTTO\(pg_val),
0.0);
gt k_spi n_button_set_val ue(GTK_SPI N BUTTON(ri _val), Tobuild the source, do the following:
0.0); cd C/ gl ade
gt k_spin_button_set val ue(GIK_SPI N BUTTON(cf _val), cc 'pkg-config --cflags |ibglade-2.0
0.0); -c ogcalc.c
gtk | abel set text(GIK LABEL(og result), ""); cc 'pkg-config --libs |ibglade-2.0'
gtk_| abel _set _text (GIK_LABEL(abv_result), ""); -0 ogcal c ogcalc.o

CVu/ACCU/Features | 19

Rapid Dialog Design
I:lsing Qt

Jasmin Blanchette

Inthisthirdinstallment of our serieson GUI programming with the Qt C++
toolkit, we're going to show how to design dialog boxes (or “dialogs”)
using Qt. Dialogs can be created entirely from source code, or with Qt
Designer, a visual GUI design tool. Whichever approach is chosen, the
result isinvariably good looking, resizable, platform-independent dialogs.

Writing Dialogs in Code

Writing dialogs entirely in code using Qt isn’t the chore you' d expect if
you're familiar with other toolkits such as Swing, GTK+ or MFC. Qt's
layout manager classes take care of positioning widgets on screen. Qt

provides a horizontal box layout, a vertical box layout and a grid layout.
These can be nested to create arbitrarily complex layouts.

s |

WilE

Figure 1: Qt'slayout managers

Qt' slayoutsfeature automatic positioning and resizing of child widgets,
sensible minimum and default sizes for top-level widgets, and automatic
repositioning when the contents, language or font changes. For cross-
platform applications, Qt's layouts are a huge time-saver.

Layouts are also useful for internationalization. With fixed sizes and
positions, the tranglation text is often truncated; with layouts, the child
widgets are automatically resized. Furthermore, if you translate your
application to a right-to-left language such as Arabic or Hebrew, layouts
will automatically reverse themselves to follow the direction of writing.

. =w Login to Database 7= 0 X

Database name: [musicdb

User name: ljamie

Passward: |

Host name: |mozart moosetech.co.uk
Port [3224

Login Cancel

Figure2: The*“Login to Database dialog under KTE

To see how this works in practice, we will implement the “Login to
Database” dialog shown above. This is achieved by deriving from
Qi al og (which in turn derives from QW dget) and writing the code
for afew functions. Let’s start with the header file:

/'l include guards onitted
#i ncl ude <qdi al og. h>

cl ass
cl ass
cl ass

QLabel ;
QLi neEdi t;
QPushBut t on;

cl ass LoginDial og :
Q OBJECT

public QD al og {

public:

Logi nDi al og(QN dget
private slots:

voi d enabl eLogi nButton();

20

*parent = 0);

private:
QLi neEdi t *dbNaneLi neEdi t;
QLi neEdi t *user NaneLi neEdi t;
Qi neEdi t *passwordLi neEdit;
QLi neEdit *host NaneLi neEdi t;
QLineEdit *portLineEdit;
QLabel *dbNanmeLabel ;
QLabel *user NanelLabel ;
QLabel *passwordLabel ;
QLabel *host NaneLabel ;
QLabel *portLabel;

QPushButton *I ogi nButton;
QPushButton *cancel Button;

}s

TheLogi nDi al og classhasatypica Qt widget constructor that accepts
a parent widget (or window), aslot called enabl eLogi nBut t on(),
and adozen datamember that keep track of thedialog’ schild widgets. The
Q_OBJECT macro at the top of the class definition is necessary because
we are using Qt's “signals and slots” mechanism in the class.

Let’s now review the implementation file:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<ql abel . h>

<qgl ayout . h>

<ql i needit. h>
<gpushbut t on. h>
"1 ogi ndi al og. h"

Logi nDi al og: : Logi nDi al og(QN dget *parent)
QDi al og(parent) {

dbNaneLabel
= new QLabel (tr (" &Dat abase nane: "), this);
user NanelLabel
= new Q.abel (tr("&User nane:"), this);
passwor dLabel
= new Q,abel (tr("&Password: "), this);
host NaneLabel
= new Q.abel (tr("&Host nane:"), this);
portLabel = new Q.abel (tr("P&ort:"), this);

/1 nore follows

The constructor passes on the par ent parameter to the base class
constructor. If par ent isnon-null, the dialog automatically centersitself
on top of the parent window and shares that window’s taskbar entry. In
addition, if the dialog is modal (which is achieved by calling
set Mbdal () or exec() on the dialog), the user won't be alowed to
interact with the parent window until the user closes the dialog.

Next, the constructor creates five QLabel widgets showing the texts
“ Database name.”, “ User name:”, “ Password:”, “Host name:” and“Port:”.
The ampersand character (‘&) indicates which letter is the shortcut key.
Thetr () function that surrounds the string literals marks the strings as
tranglatable.

The second argument to the@Q_abel constructor is the parent widget
or window, in this case the dialog (t hi s). Child widgets are shown on
screen inside their parent.

dbNaneLi neEdit = new QLi neEdit (this);
user NaneLi neEdit = new QLi neEdit(this);
passwor dLi neEdit = new Qi neEdit (this);
passwor dLi neEdi t - >set EchoMbde(

QLi neEdi t: : Password) ;
host NaneLi neEdit = new QLi neEdit(this);
portLineEdit = new Q.ineEdit(this);

dbNaneLabel - >set Buddy(dbNaneLi neEdi t);
user NaneLabel - >set Buddy(user NaneLi neEdi t) ;
passwor dLabel - >set Buddy(passwor dLi neEdi t);
host NaneLabel - >set Buddy(host NaneLi neEdi t) ;
port Label - >set Buddy(portLi neEdit);

/1 more foll ows

We create fiveQLi neEdi t widgetsand set the“ Password” widget’ secho
modeto QLi neEdi t : : Passwor d, so that characterstyped by the user

CVu/ACCU/Features

are replaced by asterisks or bullets. After creating the widgets, we call
set Buddy() to create associations between the labels and the line
editors. When the user presses alabel’ s shortcut key (for example, Alt+P
for “Password:”), the associated line editor gets the focus.

connect (dbNaneLi neEdi t,
SI GNAL(t ext Changed(const QString &),
this, SLOT(enabl eLogi nButton()));
connect (user NaneLi neEdi t,
SI GNAL(t ext Changed(const QString &),
this, SLOT(enabl eLogi nButton()));
connect (passwor dLi neEdi t,
SI GNAL(t ext Changed(const QString &),
this, SLOT(enabl eLogi nButton()));
connect (host NaneLi neEdi t,
SI GNAL(t ext Changed(const QString &),
this, SLOT(enabl eLogi nButton()));
connect (portLi neEdit,
SI GNAL(t ext Changed(const QString &),
this, SLOT(enabl eLogi nButton()));
/1 more foll ows

We connect thet ext Changed() signal of each line editor tothedialog’s
enabl eLogi nButt on() slot. Whenever the user types in some text,
the textChanged() signal is emitted and the
enabl eLogi nBut t on() dotiscalled. Based onthe contentsof theline
editors, enabl eLogi nBut t on() enables or disables the dialog's
“Login” button. Disabled widgets are typically greyed out.

| ogi nButton = new QPushButton(tr("Login"),
this);
cancel Button = new QPushButton(tr("Cancel "),
this);

| ogi nBut t on->set Def aul t (true);
| ogi nBut t on- >set Enabl ed(f al se);

connect (1 ogi nButton, SIGNAL(clicked()),
this, SLOT(accept()));

connect (cancel Button, SIGNAL(clicked()),
this, SLOT(reject()));

/1 more foll ows

We create the “Login” and “Cancel” buttons, make “Login” the default
button (meaning that pressing Enter will effectively click that button), and
disableit. Then we connect the“Login” button’s cl i cked() signal and
QDi al og’'s accept () slot, and connect the “Cancel” button’'s
clicked() signa and QDi al og'srej ect () slot. Bothslotsclosethe
dialog, but they set QDi al og’s return code to a different value, which
applications can query afterwards.

Now that we're done with creating the child widgets, we must set their
positions and sizes relative to the parent widget. This could be done using
QW dget : : set Geonet ry() , but the result would be a hard-coded,
unresizable dialog. Furthermore, determining pixel coordinates for the
dialog’ swidgetsis atedious task that is better performed by a machine.

To obtain the desired result, we need two layout managers, one nested
into the other. The dialog’s main layout (the outer layout) is agrid layout
with six rows and two columns. Theinner layout isahorizontal box layout
that containsthe“Login” and “ Cancel” buttons. Theinner layout occupies
the bottom row of the grid.

Here comes the code:

(HBoxLayout *buttonLayout =
but t onLayout - >addStretch(1);
but t onLayout - >addW dget (| ogi nBut t on) ;

butt onLayout - >addW dget (cancel Button);

new QHBoxLayout ;

QG i dLayout *nmi nLayout

= new QG i dLayout (this);
mai nLayout - >set Mar gi n(10) ;
mai nLayout - >set Spaci ng(5) ;

mai nLayout - >addW dget (dbNaneLabel , 0, 0);
mai nLayout - >addW dget (dbNamneLi neEdit, 0, 1);
mai nLayout - >addW dget (user NaneLabel , 1, 0);

CVu/ACCU/Features |

mai nLayout - >addW dget (user NaneLi neEdit, 1, 1);
mai nLayout - >addW dget (passwor dLabel , 2, 0);
nmai nLayout - >addW dget (passwor dLi neEdit, 2, 1);
mai nLayout - >addW dget (host NaneLabel , 3, 0);
mai nLayout - >addW dget (host NaneLi neEdit, 3, 1);
mai nLayout - >addW dget (port Label, 4, 0);

mai nLayout - >addW dget (portLi neEdit, 4, 1);

mai nLayout - >addMul ti Cel | Layout (but t onLayout
5 5, 0, 1);
/1 more foll ows

We start by cresting theQHBox Layout that containsthe buttons. Weinsert
a dtretch item, the “Login” button and the “Cancel” button into the layout.
The layout will place them side by side. The stretch item isthere to fill the
space on the |eft of the buttons; without it, QHBoxLayout would stretch
the“Login” and “Cancel” buttonsto fill the entire width of the dialog.

ThenwecreateaQa i dLayout . We set thelayout’ smarginto 10 pixels
and the spacing between widgetsin the layout to 5 pixels. Then we add the
widgets to the layout. The addW dget () function takes a widget, a row
and acolumn as parameters. At the very end, weinsert the QHBox Layout
into the Q& i dLayout usingaddMul ti Cel | Layout (), and specify
that it should extend from row 5 to row 5 and from column O to column 1;
i.e. occupy cells (5, 0) and (5, 1).

Here comesthe rest of the constructor, where we set the window title:

set Caption(tr("Login to Database"));
}

The constructor code might havefelt abit long. The good newsisthat we're
pretty much finished now. The only missing part is the
enabl eLogi nButton() dot:

voi d Logi nDi al og: : enabl eLogi nButton() {
| ogi nBut t on- >set Enabl ed(
I dbNaneLi neEdi t->text ().isEnpty()
&& 'user NameLi neEdi t->text().isEmpty()
&& ! passwor dLi neEdi t->text().isEmpty()
&& !host NanmeLi neEdi t->text().isEmpty()
&& !'portLineEdit->text().isEmpty());

}

When the user edits the contents of one of the line editors, the
enabl eLogi nButt on() dlotiscaled. The slot sets the button’s state
to enabled if and only if all the QLi neEdi t s contain some text.

At thispoint, you might wonder why Logi nDi al og has no destructor.
After all, who will delete all the objects created with new in the
constructor? The answer isthat when you create awidget or layout with a
parent, the parent assumes ownership for the child. There is therefore no
need for aLogi nDi al og destructor that ssmply deletesthe child widgets
and layouts; thisis exactly what the QN dget destructor does. (Recall that
Logi nDi al og inherits@Di al og, which inherits QN dget .)

Designing Dialogs Visually With Qt Designer

Qt Designer isavisual GUI design tool included with Qt. Although Qt's
nice APl makesit easy to write dialogs purely in code, most Qt devel opers
find that Qt Designer is faster to use and alows them to make prototypes
very quickly. In addition, if you work in an organisation where the user
interface design is done by a team of designers, the designers can use Qt
Designer themselves to create the dialogs instead of producing
specifications that the devel opers then need to implement.

To show how Qt Designer works, we will useit to redo the “Login to
Database” dialog.

Creating adialog in Qt Designer usually consists of thefollowing steps:
 Put child widgets on the form.
o Set up their properties.
o Group them into layouts.
o Specify the tab order.
The first step, putting the required child widgets on the form, is
accomplished by clicking the desired widget from the toolbox on the |eft
of Qt Designer’s main window followed by clicking the desired position
on the form. For the moment, we don’t need to worry too much about the
precise position and size of the child widgets; soon enough, we will put
them in layouts, which will take care of those aspects automatically.

21

F‘;-n Qt Designer by Trolltech

File Edit Project Search Tools Layout Preview Window Help
| § B [<NoProect> - |1 Ay XEBIIBJJ”WI ||l E B8 1 E 52| b
i =] . . - e
Common Widgets . | Properties ISignal Hand
PushButton i e Property Value
@ RadioButton o name JlineEdi
i CheckB enabled True
s geometry |[179, 1
ButtonGroup _| sizePalicy Expand
ListBax - f I e N minimumSize |[0,0]
L B R EAmEmale . | 435
e A il paletteForeg... | NN
22l sninRAv 2l R paletteBack. ..
BUHUHS pa|etteBa|:k___
Gontainers 0 il i palette
VIEWS background... |Widget
Database font Arial-11(
ey cursar Arrow
.p mouseTracki...|True
Display focusPolicy |Strongh
Custom Widgets accentNrons 1True
Db,

Figure 3: Qt Designer in action

Wealso need astretch itemtofill the extraspacein the buttons' layout.
It is represented by ablue “spring” in Qt Designer.

Next, we must set the child widgets' properties using the property
editor located on the right side of Qt Designer’s main window. Start by
renaming all the widgets so that they have the same names as in the
previous example Then click the background of the form and set the
form’'s“name” property to“LoginDialogBase” and its“caption” property
to “Login to Database

The following table summarises the properties to set for each
widget:

Widget Property Value
dbNaneLabel text " &Dat abase nane:"
user NanmeLabel t ext "&User nane:"
passwor dLabel t ext " &Password: "
host NanmeLabel text "&Host nane: "
port Label t ext "P&ort:"
passwor dLi neEdit | echoMbde Password
| ogi nBut t on t ext "Logi n"

def aul t Truex

enabl ed Fal sex
cancel Button text "Cancel "

We need to set the labels' “buddies’. This is done by setting the “buddy”
property of each label to the corresponding widget. Once the properties are
set, the dialog should look like the one shown in Figure 4.

The next step is to put the widgets inside layouts. This is done by
selecting multiplewidgets and choosing “Lay Out Horizontally”, “Lay Out
Verticaly” or “Lay OutinaGrid” from the “Layout” menu.

First, we select the stretch item and the two buttons, and click “Lay
Out Horizontally”. Theresulting layout isrendered asared framein Qt
Designer, to make it tangible. Then we click the background of the form
and click “Lay Out in a Grid”. This will produce the layout shown in
Figure 5.

22

If alayout doesn’t turn out quite right, we can always click “Undo”,
then roughly reposition the widgets being laid out and try again.

When everything elseisdone, we are ready to set the dialog’ stab order.
Thisisdoneby pressing F4, clicking the widgetsin the order we want them
to be in the tab chain, and pressing Esc to terminate. Qt Designer will
display the tab order as numbersin blue circles.

We can now savethe dialog asa. ui filethat contains the dialog in
an XML format that Qt Designer can load and save. Thisfileisconverted
to C++ using a separate tool called ui ¢ (User Interface Compiler).
Assumingthe. ui fileiscaledl ogi ndi al ogbase. ui , theresulting
C++ code would appear in the | ogi ndi al ogbase. h and
| ogi ndi al ogbase. cppfiles.

The dialog looks identical to the one we developed earlier purely in
code, but right now if the user fillsin the line editors or presses “Cancel”,
nothing happens! Thisis solved by subclassing theui c-generated class
and adding the missing functionality there, as follows.

ms L0gin to Database

Figure 4: Thedialog with properties set

CVu/ACCU/Features

Introduction to STL (Standard Template Library)

Rajanikanth Jammalamadaka <r aj ani @ce. ari zona. edu>

A template is defined as “something that establishes or serves as a
pattern’
Websters
In C++, atemplate has more or less the same meaning. A template is
like a skeleton code which becomes “alive’ when it isinstantiated with
atype.

An algorithm is a well-ordered collection of unambiguous and
effectively computable operations that when executed produces a result
and haltsin a finite amount of time[1].

A class holding a collection of elements of some type is commonly
called acontainer class or simply acontainer [2].

A classisauser defined type which is very similar to the pre-defined
typeslike i nt , char, etc. So, the standard template library (STL) isa
collection of generic algorithms and containers which are orthogonal to
each other. By the word orthogonal, we mean that any algorithm can be
used on any container and vice-versa.

In C++, there are various generic classes likevect or, string,
etc.

Since STL isavery large topic to be covered in an article or two, we
will focus on the most commonly used generic classes: vect or and
st ri ng. Before we discuss the standard containers let us take asimple
example to understand the word templ ate.

/1 tenplate.cpp

#i ncl ude<i ostr eanr
using std::cout;

t enpl at e<t ypenanme T>
/] Declares T as a nane of sone type

/* It is also comon to see tenpl ate<class T>.
The two nmean the same */

/* The followi ng tenplate defines a function
whi ch takes two constant references of type
T and returns the maxi mum val ue of type T.

*/

T Max(const T& a, const T& b) {
return (a > b)? a: b;

int main() {
cout << Max('i', 'r') << "\n";

cout << Max(1, 3) << "\n";

}

/1 Cutput of tenplate.cpp
r
3

In the above example, afunction Max isdefined which takestwo constant
references of type T and returns the maximum value.

But in the main function there are two function calls, one is
Max('i','r") and the other oneis Max(1, 3).Wedid not get any
compilation errors because we have used the template mechanism in this
function. At run-time, the compiler resolves what types are being passed
to the Max function and hence knowswhich output to return. It should be
noted that the final compiled binary will be larger as the compiler hasto

[concl uded from previous page]

/! Header file:

/1 include guards onitted

#i ncl ude "I ogi ndi al ogbase. h"

class LoginDial og :
Q OBJECT
public:
Logi nDi al og(QW dget
private slots:
voi d enabl eLogi nButton();

h
11

public Logi nDi al ogBase {

*par ent 0);

| npl enentation file:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<ql abel . h>

<gl ayout . h>
<qglineedit.h>
<gpushbut t on. h>
"l ogi ndi al og. h"

Logi nDi al og: : Logi nDi al og(QN dget
Logi nDi al ogBase(parent) { b
connect (dbNaneLi neEdi t, i
S| GNAL(t ext Changed(const QString &), i .
this, SLOT(enabl eLogi nButton())); L
connect (user NaneLi neEdi t, b
SI GNAL(t ext Changed(const QString &), & .
this, SLOT(enabl eLogi nButton())); Rl
connect (passwor dLi neEdi t,
SI GNAL(t ext Changed(const QString &)),
this, SLOT(enabl eLogi nButton()));
connect (host NaneLi neEdi t,

*parent)

User name;:

|

|
Password: |
Host name: |
|

create afunction for every typein the code passed to it.

QBtring &),

connect (portLineEdit,
SI GNAL(t ext Changed(const
this, SLOT(enabl eLogi nButton()));

connect (| ogi nButton, SIGNAL(clicked()),
this, SLOT(accept()));

connect (cancel Button, SIGNAL(clicked()),
this, SLOT(reject()));

}

Theenabl eLogi nBut t on() dotisnot listed here, sinceit’sidentical to
thedot of thesamenameintheoriginal version of theLogi nDi al og class.

One of the main advantages of Qt Designer is that the code generated
by ui c iskept totally separate from the application’s hand-written code.
Thisgivesyou theflexibility to change your user interface without needing
to rewrite the code or fearing that your modifications to generated code
will belost.

This completes our review of creating dialogs with Qt. In the next
article, we will see how to create custom widgets with any look and
behaviour we want.

Jasmin Blanchette

#m Login to Database

SI GNAL(t ext Changed(const QString &)),

this, SLOT(enabl eLogi nButton()));

CVu/ACCU/Features |

Figure5: Thedialog with layout

Now, let us start with the example of thevect or container.
Avect or isvery similar to an array but has more advanced features,
some of which are utilized in the example below.

#i ncl ude<i ostr eanr
#i ncl ude<vect or >

usi ng nanespace std;

int min() {
/* 1"l now create a vector of
is instanti ated here,
i ntegers */
vector<int> vectorint;
vectorint.reserve(5);

integers. It
so vint can hold

/* reserve pre-allocates menory for holding

five integers*/
for(int j =1; j < 6; j++)

vectorint. push_back(j);
typedef vector<int> Vector_O _Ints;
for(Vector _OF Ints::const_iterator i

= vint.begin();
i !'=vint.end(); ++i)
cout << *j << "\t";

cout << endl;

}

It should be noted that ther eser ve function alocates memory but the
allocation is more akin to that of an array than using new. The capacity of
avect or isdefined as the minimum number of objects that it can hold.
The reserve net hod makes sure that thevect or hasa capacity greater
than or equal toitsargument [3]. In the above example, after this statement

vectorint.reserve(5);

thevect or vect ori nt hasacapacity of at least 5.

Thepush_back() method function pushesthe five integersinto the
vect or . Aniterator behaves in the same way as a pointer but is more
generic. Note that the iterator is made a constant in this example because
an iterator seldom modifies the contents of its vect or .

In the above example, vect ori nt. begi n() points to the first
element of thevect or, whichis1. vectorint. end() pointsto an
element which is after the last element of thevect or, whichis 5 in this
case. Therefore, we cannot dereferencevect ori nt . end(). Thisisas
shown below:

vectorint. begi n() vectorint.end()

When we dereference the iterator using the * operator, we get the value
stored at the address to which the iterator points to.
When the above code is executed, gives the following output:

1 2 3 4 5

An even more convenient way of printing avect or would beto use the
copy agorithm as shown below:

copy(vint.begin(), vint.end(),
ostream.iterator<int>(cout, " "));

which basically means. copy the contents of thevect or starting from

vi nt. begin() tovint.end() -1 (rememberthatvi nt.end()

points to an elementafter the last element of thevect or) to the standard

output (cout) separating each of the numbers with four space

characters

24

The header <al gor i t hn®> must be included for thecopy algorithm
to work.

Of course, the vect or can be of any type, i nt, char or even
another class such as st ri ng, and they are all handled in the same
way. Thisis possible because avect or is ageneric container, or in
other words, avect or is atemplate class. For example after the
statement

vect or <T> foo;
f 0o can hold objects of typeT. Therefore, T can even be any class.
Consider anormal class f 0o. It will have a standard constructor,

destructor, some methods, and a couple of variables.

class foo {

publi c:
foo();
foo(int a, int b);
foo(int a, double b);
~foo() {};

int showval ue() {
return sonet hing;
}
privat e:
i nt sonet hi ng;

b

A template class can be thought of as being the same, except that now
when we instantiate it, we do so with an unspecified typeT rather than
an expliciti nt , char , etc. Everything else remains the same (more or
less).

tenmpl ate <typenane A,
class foo {
publi c:
foo();
foo(A a, ADb);
foo(A a, B h);
~foo() {};
A showal ue() {
return somet hing;
}
private:
A sonet hi ng;

};

t ypename B>

Next let us consider the stri ng class. A string container isvery
similar to that of avect or class. A st ri ng object can be declared as
follows:

std::string sobject;

Astring object can beinitialized in some of the following ways (there
are plenty of other ways)

1 string sobject("hello");

2 string sobject = "hello";
3 string s1 = "Hello, ";

4 string sobject = si;

5 string s2 = "Wrld";

6 string sobject =s1 + s2;

In the first form of initialization the constructor of the stri ng classis
invoked with the value of " hel | 0" and therefore thesobj ect hasthe
valueof " hel | 0" oncethislineis executed.

In the second, third and fifth forms of initialisation, a string is assigned
tothest ri ng object and so the st r i ng objectswill hold the respective
strings after these statements are executed.

Inthefourth and fifth form of initialization, the copy constructor of the
st ri ng classisinvoked in order to copy the contentsof thest r i ngsat
theright hand sidetothe st ri ng objects.

CVu/ACCU/Features

L et us take another example which usesboth thest r i ng and vect or
class to understand how both of them work together.

/'l vecstringSi npl e.cpp

#i ncl ude<i ost r eanr
#i ncl ude<string>
#i ncl ude<vect or >
#i ncl ude<i t er at or >

usi ng nanespace std;

int main() {
vector<string> vector_of _strings;
vector_of _strings.reserve(5);
string text;

cout << "\n";
cout << "Enter the strings\n";
cout << "\n";
for (int a =0; a<5; ++ta) {

cin >> text;
vector _of _strings. push_back(text);

}

cout << "\n";
cout << "Qutput of the programin”;
cout << "\n";

for(vector<string>: :iterator i
= vector_of _strings.end()-1;
i >= vector_of_strings. begin();
i--)
cout << *i << "\n";

}

In the above exampleavect or of st ri ngsiscreatedandst ri ngsare
read intothevect or until theinputisend. Thest r i ngsarethen output
in the reverse order in which they were entered, as shown below

Enter the strings:

Raj ani kant h
Ravi kant h

Sri mannar ayana
Vi j ayalLakshmi

hel | o
Output of the program:
hel | o

Vi j ayaLakshm
Sri mannar ayana
Ravi kant h

Raj ani kant h

Let us take a more complex example which uses both the st ri ng and
vect or classes.

/'l vecstr.cpp

#i ncl ude<i ostr eanr
#i ncl ude<vect or >
#i ncl ude<al gori t hne
#i ncl ude<i t erat or >
#i ncl ude<stri ng>

usi ng nanespace std;

int main() {
vector<string> vector_of _strings;
string s;
cout << "Enter the strings to be sorted: "
<< "\n":

CVu/ACCU/Features

whil e(getline(cin,s) & s !'= "end")
vector _of _strings. push_back(s);

sort (vector_of _strings. begin(),
vector_of _strings.end());
vector<string>::const_iterator pos
= uni que(vector _of _strings. begin(),
vector_of _strings.end());
vs. erase(pos, vector_of _strings.end());
copy(vector_of strings. begin(),
vector_of _strings.end(),
ostream.iterator<string>(cout,

"))
cout << '\n';
}
Let usfirst understand how this code works and then we will ook at how
it runs.

First of dl, theline
vector<string> vector_of _strings;

declaresvect or _of _strings asavector of strings.
Next, the condition

whil e(getline(cin,s) & s !'= "end")

means read a line of input from st di n asa st ri ng until theinput is
end. So, "end" cannot be an input string for this program. Next, the
program pushes each of these strings into the vector
vect or _of _strings.

The algorithm sorts the strings in the vector
vect or _of _stri ngs inascending order. The uni que agorithm
moves al but the first st ri ng for each set of consecutive st ri ngsto
the end of the unique set of st ri ngsinthevect or container. It returns
an iterator which points to the end of the unique set of st ri ngs; in our
codethisiterator isstored inpos. Next, we call theer ase iterator which
actually deletes the duplicate elements from pos to
vector _of _strings.end().

The copy algorithm then copies the unique set of st ri ngsto the
standard output.

Following is the output of the programvecstr. cpp

Enter the strings to be sorted:
Sri mannar ayana Jamual anadaka

Vi j ayaLakshm Janmmal anadaka

Raj ani kant h Janmal anadaka

Ravi kant h Janmal amadaka

aaaaa

Raj ani kant h Janmmal amadaka
Ravi kant h Janmal anadaka
Sri mannar ayana Janmmal amadaka
Vi j ayaLakshm Jammual amadaka
a aaaaa k

We will discuss a more complicated program using thevect or and
st ri ng containersin the next article.
Rajanikanth Jammalamadaka

References

[1] Schneider, M. and J. Gersting (1995), An Invitation to Computer
Science, West Publishing Company, New York, NY, p. 9.

[2] Stroustrup, B., The C++ Programming Language (Special Edition),
Addison Wedley, p. 41.

[3] Sutter, H., Exceptional C++ Style : 40 New Engineering Puzzles,
Programming Problems, and Solutions (C++ in Depth Series), Pearson
Education; (July, 2004).

25

Professionalism in

[0 [to compromise one of these as your actual
P H #28 Q :l: cod_e. Indee_d the;_/’ re probably more Ilkel_y_to;
rog ra m m I ng o Q social engineering — the art of acquiring
i) [important information frqm people, it_ems inan
An Insecurity Complex (Part One) O'H', AR\ (O] Jfioe o cvenihe ougang taeh s iy
Pete Goodliffe <pet e@t hr ee. or g> o away into your computer system.
[Q [-l-l' Software security presents a myriad of
Security is mostly a superstition. It does not exist in nature... Life is either o problems and challenges for the poor
a daring adventure or nothing. N v a overworked programmer.
Helen Keller h—
Not so long ago computer access was a scarce commodity. The world The Risks

contained only a handful of machines, owned by a few organisations,
accessed by small teams of highly trained personnel. In those days
computer security meant wearing the right labcoat and pass card to get past
the guard on the door.

Fast forward to today. We carry more computational power in apocket
than those operators ever dreamt of. Computers are plentiful and, more
pertinently, highly connected.

The volume of information carried by computer systemsis growing at
a fantastic rate. We write programs to store, manipulate, interpret, and
transfer this data. Our software must guard against data going astray: into
the hands of malicious attackers, past the eyes of accidental observers, or
even disappearing into the ether. Thisis critical; a leak of top-secret
company information could spell financial ruin. You don’'t want sensitive
personal information (your bank account or credit card details, for example)
leaking out for anyone to use. Most software systems require some level
of securityl.

Whose responsibility isit to build secure software? Here' sthe bad news:
it's our headache. If we don’t consider the security of our handiwork
carefully, we will inevitably write insecure, leaky programs and reap the
rewards.

Software security isareally big deal, but generally we're very bad at
it. Nearly every day you'll hear of a new security vulnerability in a
popular product, or see the results of viruses compromising system
integrity.

Thisisan enormoustopic, far larger than we have scopeto go into here.
It's a highly specialised field, requiring much training and experience.
However, even the basics are still not adequately addressed by modern
software engineering teaching. The aim of this seriesisto highlight security
issues and explore the problem. We'll learn a number of basic techniques
for protecting our code.

Why Do We Get It So Wrong?

Building secure software requires a mindset that is sadly lacking in the
average programmer. In the day-to-day madness of the software factory
we're too focused on getting the program working, on getting it out of
the door ontime and in areasonabl e state. We sit back and breathe asigh
of relief when our streamlined application appears to be doing what its
supposed to. Rarely do we turn our attention to how secure the codeis.
Unlessthe test department is particularly skilled in thisarea, it's easy to
ignore the whole issue — we’d rather not think the worst of a new
creation.

If you do eventually turn your gaze to security issues, perhaps with
alittle test department prodding, it's probably too late anyway. Once a
system is built, patching up any security problems is a hard job; the
problems are either too fundamental, too prevalent, or far too hard to
identify.

It's probably hard to believe that anyone would take the time and
effort to hack your applications. But these people exist. They're
talented, motivated, and they arevery, very patient. Why do they do it?
Some malicious crackers intend to steal, commit fraud, or cause
damage, but their motive can equally be to prove superior skills or to
cause a little mischief. They might not want to compromise your
application specifically, but won’t hesitate to exploit its flaws if you
leave a hole open.

Sadly, no application istotally hack-proof. Writing a secure programis
no easy task. Y et even the most secure application must runinitsoperating
environment: under a particular OS, on some specific piece of hardware,
on anetwork, and with a certain set of users. An attacker isjust as likely

1 As we’ll see, this is true whether they handle sensitive data or not. If a ‘non-critical’

component has a public interface then it poses a security risk to the system as a whole.

26

Better be despised for too anxious apprehensions, than ruined by too
confident security.
Edmund Burke

Why would anyone bother to attack your system? It’s usually because
you' ve got something that they want. This could be:
your processing power,
your ahility to send data (e.g. send spam emails),
your privately stored information,
your capabilities; perhaps the specific software you have installed, or
your connection to more interesting remote systems.
They might even attack you for the sheer fun of it, or because they dislike
you and want to cause harm by disrupting your computer resources. Of
course, we must remember that whilst malicious peopleare lurking around
looking for easy, insecure prey, a security vulnerability might equally be
caused by a program that accidentally releases information to the wrong
audience. Sometimes thiswon’t matter. More often it’ s just embarrassing.
Intheworst case, though, that lucky user can opportunistically exploit the
leak and cause you harm.

To understand the kinds of attack you might suffer, it's important to
mark the difference between protecting an entire computer system
(comprising of several computers, a network, and a number of
collaborating applications) and writing a single secure program. Both are
important aspects of computer security; they blur together since both are
necessary. The latter is a subset of the former. It takes just one insecure
program to render an entire computer system (or network) insecure, so we
must take the utmost care at all times.

Let'stake alook at the ways you can be caught with your pants down.
These are some of the most common security risks and compromises of a
live, running computer system:

» Physically acquiring a machine for example by stealing a laptop or
PDA containing unsecured sensitive data. This datais freely readable
by anyone with the inclination. Similarly, the stolen device might be
configured to automatically dial into a private network, allowing a
simple route straight through all your company’s defences. Thisisa
serious security threat, and one that you can't easily guard against in
code! What we can do is write systems that aren't immediately
accessible to computer thieves.

Exploiting flawsin a program’sinput routines Not checking input
validity can lead to many types of compromise, even to the attacker
gaining access to the whole machine. We'll see examples of thislater.

Breaking in through an unsecured public network interfaceis a
specific variant of the previous point. Thisis particularly worrying. Ul

flaws can only be exploited by people actually using that Ul, but when
your insecure system is running on a public network the whole world
could be trying to break down your doors.

A Promise Kept

In the last article | promised you the answer to my riddle: how many
programmers does it take to change a light bulb?How many answers did you
come up with? Here are mine:

1. None. The bulb’s not broken. It's a power saving feature.

2. Justtheone, but it will take all night and an inordinate amount of pizza
and coffee.

Twenty. One to fix the initial problem, and nineteen to debug the
resultant mess.

The question’swrong. It's a hardware problem, not a software one.

3.

4.

CVu/ACCU/Features

» Malicious authorised users copying and sharing data they’re not
supposed to. It's hard to guard against this one. Y ou have to trust that
each user is responsible enough to handle the level of system access
they’ ve been designated.

» Malicious authorised users entering bad data to compromise the
quality of your computer system. Any system hasasmall set of trusted
users. If they’re not trustworthy then you can’t write a program to fix
them. This shows that security is as much about administration and
policy asit is about writing code.

« Settingincorrect per missions alowing the wrong usersto gain access
to sensitive parts of your system. This could be as basic as setting the
correct access permissions on database files so casual users can’t see
everyone' s salary details.

» Privilegeescalation. Thisoccurswhen auser with limited accessrights
tricks the system to gain a higher security level. The attacker could be
an authentic user, or someone who hasjust broken into the system. Their
ultimate aim is to achieve root or administrator privilege, where the
attacker hastotal control of the machine.

» “Tappinginto” data asitistransmitted on thewire. If communication
isunencrypted and traverses an insecure medium (e.g. theinternet) then
any computer en route can syphon off and read data without anyone
eseknowing. A variant of thisis known as aman-in-the-middle attack
—when an attacker’ s machine pretends to be the other communicant and
sits between both senders, snooping on their data.

o Virusattacks (self-replicating malicious programs, commonly spread
by email attachment), trojans (hidden malicious payloadsin seemingly
benign software), and spyware (aform of trojan that spies on what you
are doing, the webpages you visit, etc). These programs can capture
even the most complex password with keystroke loggers, for example.

o Careessusers (or bad system design) can leave a system unnecessarily
open and vulnerable. For example, users often forget to log off, and if
there is no session timeout anyone can later pick up your program and
start using it.

« Storing data ‘in the clear’ (unencrypted). Even leaving it in memory
isdangerous; memory isnot as safe as many programmersthink. A virus
or trojan can scan computer memory and pull out alot of interesting
titbits for an attacker to exploit. This depends on how secure your OS
is—does it allow this kind of memory access and can you lock your
applications’'s memory pages manually?

» Copying softwar e. For example: running multipleingtalationsin an office
only licensed for one user, or alowing copiesto spread on the internet.

« Allowing weak, easily guessable passwords. Many attackers use
dictionary-based password cracking tools that fire off many login
attempts until one works. It'sasad fact that easily memorable passwords
are also easily guessable passwords. More secure systemswill suspend
auser account after afew unsuccessful logins.

« Out-of-date softwar e installations. Many vendors issue security
warnings and software patches. They come at a phenomenal rate and
should really be carefully checked before being deployed. A computer
system administrator can easily fall behind the cutting edge.

The problem scales as the number of routes into a system grows. It gets
worse with: the more input methods (web access, command line, or GUI
interfaces), the more individual inputs (different windows, prompts, web
forms, or XML feeds), and the more users (there is more chance of
someone discovering apassword). With more outputs thereis more chance
for bugsto manifest inthe display code, |eaking out thewrong information

How do you know when your program has been compromised? Without
detection measures you'll have no idea—and will just have to keep an eye
out for unusual system behaviour or different patterns of activity. Thisis
hardly scientific. A hacked system can remain a secret indefinitely. Even
if the victim (or their software vendor) does spot an attack, they probably
don’t want to release detailed information about it to invite more intruders.

CVu/ACCU/Features |

Cracker vs Hacker

These two terms often get confused and used inappropriately. Let's stop

briefly and set the record straight. Their correct definitions are:

Cracker: Someone who purposefully attacks computer systems by
exploiting their vulnerabilities to gain unauthorised access.

Hacker: Often used incorrectly to mean cracker, a hacker isreally
someone who ‘hacks' at code. Thisis aterm used with pride by a
particular breed of programming geek. A hacker isacomputer expert
or enthusiast.

What company would publicise that their product has security issues that
are effectively wide-open doors? I f they are conscientious enough to release
a security patch not everyone will upgrade, leaving a well-documented
security flaw in many operational systems.

The Opposition

Todefend yourself adequately it’ simportant to know whom you’ refighting
against. Asthey say:know your enemies Wemust understand exactly what
they’ re doing, how they do it, the toolsthey’ re using, and their objectives.
Only then can we formulate a strategy to cope.

Your attacker might be a common crook, a talented cracker, a ‘ script
kiddie'2, adishonest employee cheating the company, or adisgruntled ex-
employee seeking revenge for unfair dismissal.

Thanks to pervasive networking they could be anywhere, in any
continent, using any type of computer. When working over the internet
attackers are very hard to locate; many are skilled at covering their tracks.
Often they crack easy machinesto use asacover in more audacious attacks.

They could attack at any time, day or night. Across continents one
person’s day is another’ s night. Y ou need to run secure programs around
the clock, not just in business hours.

Thereis a cracker subculture where knowledge is passed on and easy-
to-use cracker tools are distributed. Not knowing about this doesn’t make
you innocent and pure, just naive and open to the simplest of attack.

With such alarge bunch of potential attackers, the motivesfor an attack
are diverse. It might be malicious (a political activist wants to ruin your
company, or athief wants to access your bank account), or it might be for
fun (a college prankster wants to post a comical banner on your website).
It might be inquisitive (a hacker just wants to see what your network
infrastructure looks like, or practice their cracking skills), or might be
opportunist (a user stumbles over data they shouldn't see, and works out
how to useit to their advantage).

Excuses, Excuses

How do attackers manage to break into code so often? They're armed with
weapons we don’t have or (due to lack of education) know nothing abouit.
Tooals, knowledge, skills: these al work in their favour. However, they have
onekey advantagethat makesdl the difference: time. Inthe hest of the software
factory, programmersare pressed to deliver asmuch code ashumanly possible
(probably alittlebit more), and to do so ontime: or else. Thiscode hasto meet
al requirements (for functiondity, usahility, reliability, etc) leaving precious
littletimeto focuson other ‘ periphera’ concerns, like security. Attackersdon't
share this burden, have plenty of timeto learn the intricacies of your system,
and have learnt to attack from many different angles.

Thegameisstacked heavily in their favour. As software devel operswe
must defend all possible points of the system; an attacker can pick the
weakest point and focus there. We can only defend against the known
exploits; an attacker can take their time to find any number of unknown
vulnerabilities. We must be constantly on the lookout for attacks; the
attacker can strike at will. We have to write good, clean software that works
nicely with the rest of the world; an attacker can play asdirty asthey like.

What doesthistell us? Simply that wemust do better. We must be better
informed, better armed, more aware of our enemies, and more conscious
of the way we write code. We must design in security from the outset and
put it into our development processes and schedules.

Next Time

WEe'll conclude this topic by investigating some specific code
vulnerabilities, and working out good techniques to defend our code from
attack.

Pete Goodliffe

2 Aderogatory name for crackers who run automated ‘crack er scripts’. They exploit well-
known vulnerabilities with little skill themselves.

27

Wx - A Live Port
Part 1: The Rationale

Jonathan Selby <j on@axer 0. conr

Moving beyond MFC and opening new horizons with wxWidgets.
Thisisacollection of notes| have made while porting an application from
MFC to wxWidgets. It is intended partly as a tutorial and partly to
document some of the roadblocks | met on theway. Right now it has gaping
holesinit that are gradually being filled.

When | upgraded from DOS to Windows 3.1 and purchased
Microsoft Visual C++ version 1, a whole new world opened up. The
massive framework allowed me to be writing fully fledged GUI
applications in a few short weeks and a world of creative opportunity
was opened up

The software was exceptional value coming with aformidable array of
manualsthat | would leaf through in my spare time. Over the years | and
my software company built up a large software library of applications
related to marine weather, communication and navigation, and our products
sold well on the world market. With recent events in the software world
and a global shifting towards Linux as a viable alternative there is a
growing need for code that is portable.

Asthistrend seemed to gather momentum, | started to refine my search
and start to look more actively for avenues to port my software. With the
launch of Visual Studio .NET | had to make adecision. Most of what .NET
was about seemed to lack co-ordination and it did not seem to have
relevance to ships at sea far away from broadband internet. So | chose to
stop with Visua Studio 6 and keep up to date with MSDN subscriptions.
Not allowed —my next set of disks had “For Use with Visual Studio .NET
only” written on them. And that was the end of that — | was out in the
pasture and in need of anew approach to keep 20 man-years of work viable
long term.

I looked again at Linux and KDevelop, to mention afew environments.
While | am extremely encouraged by the progress Linux is making it is
still not up to Windows when it comes to bringing new users in, and
hardware installation though robust is still extremely intimidating if you
are not an expert. The documentation is excellent but it does need
somebody with aleaning towards systemsto get into it. Thisis changing
though very rapidly and | am predicting that Linux will overtake Windows
in the very near future as the momentum builds up. So this makes a port
even more urgent.

| discovered wxWidgets almost by accident. A friend mentioned in
passing and | visited the website, downloaded the kit and started to play
with it.

The Initial Impression

| started with version 2.4.0 and compared it to MFC. | was surprised to
discover that the framework is 10 years old, very mature and stable. Quite
afew hands have contributed over the years. Most important it isall source
code, well written and intuitive. Well thefirst job | had to do was compile
it all. Oh dear — here we go | thought, gritting my teeth, and selected
Bat ch bui | d from the Visual Studio options. | went off to make a cup
of teaand almost spilled it over the keyboard when | got back because the
whole thing had compiled properly and built all the libraries. A very
encouraging start.

So what could the kit do?

| ran up the samples and they all compiled. | looked at the code and
although the architecture was not the same as | was used to | could see
the similarities. | was used to the Stygian macros and confusing
comments App Wizard puts in. Not being too concerned with the nitty
gritty, | would normally let App Wizard build a template and | would
plug in the bitsas | learned in my old scribble tutorial many years ago.
So it took alittle bit of exploring and tracing to see what was actually
going on.

At this point | went back on the internet to see if | could find some
resources.

I found two excellent articles by Marcus Neifer: Porting MFC
Applications to Linux, and also a good wxWidgets primer: Looking
Through wxWidgets: An Intro to the Portable C++ and Python GUI
Toolkit.

These two articles convinced me that there was something worth
pursuing here. So | started my evaluation in earnest to see how the kit
could meet our needs. Firstly | looked at the DocView MDI sample that

28

emulates the Scribble sample that all MFC trainees used to start with.
The code is a good deal lighter in weight though. | was particularly
interested to see if all the little nuances our clients were used to were
supported. Tool tips and Help on the status bar ware two | items | went
looking for. Menu creation and toolbar interaction with the code were
other areasthat differed quite abit from the old MFC way of doing things.
I could not find an easy way to make the toolbar dockable but | did not
look very hard —that isabit of agimmick at least in our apps. Therewas
the option of trying to convert the MFC . r ¢ to the new XML format that
wxWidgetsisusing. | had only very limited success with that route and
preferred to go the conservative mothod of putting everything in C++
code, | followed that methodology. In my opinion clearly commented
code beats everything else when it comes to reviewing something a few
years down the road.

Next the interaction with the users was examined. | latched on to
wxDesigner as the tool of choice. The tool uses a completely different
concept to the VC++ method of constructing a dialog. It uses what we
call sizersto group and encapsulate controls in boxes or groups. Once
you get the hang of it, it is a very quick way of creating an attractive
looking dialog. The software also generates a wrapper so you can run
the dialog as a stand alone program. An excellent way to jump start an
application.

However my main focus was to take an existing application and port it
to wxWidgets. This required an in-depth view as to how the two
architectures differ. It also needs a thorough review of al the underlying
capabilities of the GUI, how the tool bars and menus behave, what context
help support is around. One of the biggest advantages of Windows is the
redundancy of the help system and the embedded context-sensitive actions
that are available.

Navigating the Library

Now we have decided that wxWidgets as the tool of choice, we now
have to come to grips with it. In my trainee programming days | was
taught to help myself and to find the resources | need in the
documentation. In those days this meant poring over voluminous books.
Today of coursethe CD-ROM and HTML have madethisall alot easier.
The wxWidgets help file comes in many flavours. My choiceis the
HTML help version. Now we are going to be reading this alot. Unlike
many programming tomes, | am not proposing to fill out the pages with
vast chunks from the manual. Y ou are going to have to go out there
yourself and find it.

Thefirst thing | did was to add the wxWidgets help into the MSV C++
tools menu — an area where you can add custom features.
In the tools menu:
Goto Cust oni ze
Gotothe Tool s tab and add an entry wxW dget s hel p
Create a keyboard shortcut SHI FT F1
Add the the following command: hh. exe
Add as arguments:
C. \wxW dgets_2. 4. 0\docs\ ht M hel p\ wx. chm

A Tour of the wxWidgets Documentation

The core of the wxWidgets documentation isthe alphabetical classlibrary
reference. Itislargely complete however some sections may be very terse.
All the source codeisavailable and if you are struggling —why not use the
MSV C browser and take alook through some of the source code. Unlike
some GUI librariesit is very clear and well written.

Some of thetutorials| have mentioned to date can help although to get
abasic understanding of the framework components| strongly recommend
you take atour of the samples supplied. They are clear and address avery
specific point. As a last resort there is is wx- Users@ i sts.
wxwi dget s. or g. Hereyou will get an answer to aquestion very quickly.
Severa of the sticking points | encountered were answered, once within 3
minutes on a Sunday. Try getting commercial support of that quality!

Thedownsideisthat you need to be patient and do not expect anything.
The open source model is a two-edged sword. The contributors are not
paid.

Let’s Create a Window

Thisisthe very basis of anugget of user interface code.

The classyou will be using is wx Fr ane — derived from wx W ndow.
Like CWhd, wxWidgets has ahuge bewildering array of sub functionsthat
drive the application.

CVu/ACCU/Features

Hereisthe basic code to pop up a single window.

/1 where the w ndow will
/| appear
wxSi ze sz (600, 400); // the w ndow size

wxPoi nt pt (20, 20);

WkFr ane *FraneW ndow = new wxFr ane; ;

WcFr ame- >Create(frame, -1, "Key",
pt, sz,
wxDef aul t,

"wxW ndow sanpl e");

A More Complex Window

Both MFC and wxWidgets support the Document/View approach. The
concept here is the application launches a Main Frame that contains the
primary controls. The Main Frame has Child Frames (in the Multiple
Document Interface world) The Child Frame hasviews and and aclassthat
manipul ates the document and supports reading, writing, etc.

The Visual C++ App wizard makes one’s life very easy by generating
a bare bones application with the following components:

« Application registration — Associating afile type with the application.
« Drag and drop support of files onto the application main frame.

« Context sensitive help

o Command line processing

e Print and Print Preview

In wxWidgets all this has to be done yourself. Of course many simple
applications do not need all this baggage, however if you are developing
afull fledged application that meets the criteria of a modern day system
you must include thisfunctionality. Wewill start by laying out abare bones
framework and build our application from there.

The MFC Document template approach has close parallels. Y ou draw
up a document that has a filter for the Fi | e open and a specific
extension. The framework uses this template to manipulate your data via
file open, most recently used document etc.

In MFC the View is subclassed from the Child Frame, whereas in
wxWidgets you need to explicitly create your own Frame. Thiswasthe
most important difference | found and thus the OnDr aw member of the
view class had to be invoked from the Sub Frame Window class. |
followed the design of the docvi ewndi sample and used the
My Canvas class from there. Other little differences were the more
modular way the menus work and especially getting the help tips to
show on the main frame status bar. | ended up creating a second status
bar on the Frame window for the time being for reading the menu help
tips. It is a good idea to port the App routine first. Command line
processing Drag and Drop, Document template, and Registry profile
strings should be sorted out at the very first step. The wxConfig
function is very useful here for storing profile data, windows size and
other variables you need to store. Non persistent applications where
you have to set everything up again when you run the program are a
trademark of the amateur.

Since we have the view creating a child window we need to make
sure it is closed when the view is closed. | followed the examples and
used a scroll window called canvas locally. This codeis lifted almost
verbatim from the Doc Vi ewMDI sample that forms a reasonable basis
for starting.

/1 Clean up wi ndows used for displaying the
[l view.
bool WKW ndPl ot Vi ew. : OnCl ose(
bool
i f(!GetDocunent()->C ose())
return FALSE;

del et eW ndow) {

/] Cear the canvas in case we're in single-
/'l wi ndow node, and the canvas stays
canvas->C ear();

canvas->vi ew = (WKW ndPl ot Vi ew *) NULL;
canvas = (MyCanvas *) NULL;

wxSt ring s(wxTheApp->Get AppNane());

CVu/ACCU/Features |

if (frame)
frame->Set Title(s);

Set Frame((wxFrame*) NULL) ;
Acti vat e(FALSE) ;

i f(del eteW ndow) ({
del ete frane;
return TRUE;

return TRUE;
}

Once | had everything in place | could start dropping in chunks of code
from the MFC app and let the compiler crank through the errors.

The Port in Detail

Step 1 wasto removeall includesforwi ndows. h and st daf x. h. Now
we are are a huge step to throwing off the Microsoft yoke and out therein
the real world at last. All those windows functions that are not in the
wxWidgetslibrary are going to haveto be found in thethe ANSI Clibraries.
The first one | came up against was G obal Lock to alocate memory.
Several lines of code were replaced with asimplernal | oc statement —
and af r ee in the destructor.
The sidebar contains a great little macro to speed up your work.

' FI LE DESCRI PTION: New Macro File

Sub wxconvert ()
' DESCRI PTI O\ Convert MFC to wxW ndows
' Begi n Recordi ng

Act i veDocument . Repl aceText "Bool ", "bool "
Act i veDocunent . Repl aceText "CString", "wxString"
Acti veDocunent . Repl aceText "CFile","wxFile"
Act i veDocunent . Repl aceText "CTi me", "wxDat eTi ne"
Act i veDocurnent . Repl aceText ". CGetlLength",". Length"
Act i veDocunent . Repl aceText ". GetBuffer",". Get Data"
Act i veDocunent . Repl aceText " CCndU * pCndU ",
"wxUpdat eUl Event & event"
Act i veDocument . Repl aceText " ON_COWAND', " EVT_MENU'
Act i veDocunent . Repl aceText " ON_UPDATE COMVAND U ",
" EVT_UPDATE_U "
ActiveDocunent . Repl aceText " afx_nsg ",""
Acti veDocunent . Repl aceText "CSi ze", "wxSi ze"
Act i veDocunent . Repl aceText " Af xGet App() ->",
"wxGet App() . "
Acti veDocunent . Repl aceText " Af xMessageBox",
"wxMessageBox"
Acti veDocunent . Repl aceText " CFranmeWd", " wxFr ane"
Acti veDocunent . Repl aceText ":: npbdeRead",":: Read"
Act i veDocunent . Repl aceText "DWORD', "unsi gned int"
Act i veDocumnent . Repl aceText "d obal Al | oc(

GVEM MOVEABLE | GVEM ZERO NI T, ",
"(unsi gned char *) mall oc"

. Repl aceText "d obal Al |l oc(
GVEM MOVEABLE | GVEM ZERONI'T, ",
"(unsi gned char *) mall oc"

Act i veDocunent

Act i veDocunent .

Acti veDocurnent . Repl aceText "pCndU - >Set Check",
"event . Check"

Acti veDocunent . Repl aceText "pCmU ->", "event."

Acti veDocunent . Repl aceText "CPen", "wxPen"

Act i veDocunent . Repl aceText " CBrush", "wxBrush"

Acti veDocunent . Repl aceText "CRect","wxRect"

Act i veDocunent . Repl aceText " CPoi nt", "wxPoi nt "

Acti veDocunent . Repl aceText "pDoc->", "doc->"

Acti veDocunent . Repl aceText "->TextQut","->Drawlext"

Act i veDocument . Repl aceText "->Li neTo", "->DrawLi ne"

Act i veDocunent . Repl aceText " DWORD', "unsi gned int"

' End Recording
End Sub

Repl aceText "LPSTR',"char *"

29

Most wxWidgets classes are counterparts of MFC and thereisnormally
al-to-1 correlation. wXst ri ng and CSt ri ng are very similar asis DC
— wxDC. Others are not quite the same. CTi nme is replaced by
wxDat eTi ne that has slightly different construction and considerably
more functionality. MoveTo and Li neTo are replaced by one call in
wxWidgets —Dr awli ne. Eventually somebody will write a porting
macro. | was tempted to batch some edit commands together but resisted.
The process went quite fast and it is better to keep an eye on where the
codeis changing.

Onething to look out for ismaking sureyou have all theright includes.
If aclassis not found whizz over to the documentation. Every class has a
#i ncl ude associated with it.

It is certainly not a plug compatibility and where there is a difference
you can be sure that wxWidgets is more intuitive and better thought out.
Best of al the compiler does adl the hard work. | linked the Shift F1 key in
Visua Studio to bring up the wxWidgets help file. It is very complete and
itisvery easy to jump to the relevant section and find out what each class
isabout. In avery short time| was reaming out whol e sections of code and
getting them to run. File |O was simplified. t r y and cat ch were not
supported but then | do not use exceptions much.

Certain things to look out for: wxSt r i ng: : For mat hasthe same
syntax as the MFC equivalent but with a difference you need to assign
iti.e.

CString str;
str.Format ("% ", | nteger);

wxString str;
str = str.Format ("% ", | nteger);

| personally like to expand out my code for readability and thus the wX
implementation makes more sense.

Another difference is the drawing functions of wx DC.

Functions like ellipse (Dr awEl | i pse) use starting coordinates and
dimension as opposed to starting and ending coordinates.

WXDC: : Dr awText issimilarto CDC: : Text Qut butthetextonlyis
drawn making an initial rectangle draw necessary to wipe out the old text
and avoid overlaying. This in fact solved a lot of irritating quirks |
experienced with MFC and trying to get a mixture of text and graphics to
stop interfering with each other.

Name Value | Name Value
wx| D_LOVWEST 4999 | wxl D_PASTE 5032
wx| D_OPEN 5000 | wxl D CLEAR 5033
wx| D_CLCSE 5001 | wx| D_FI ND 5034
wx| D_NEW 5002 | wxl D_DUPLI CATE 5035
wx| D_SAVE 5003 | wx| D_SELECTALL 5036
wx| D_SAVEAS 5004 | wxl D_FI LE1 5050
wx| D_REVERT 5005 | wxI D_FI LE2 5051
wxI D EXIT 5006 | wxl D_FI LE3 5052
wx| D_UNDO 5007 | wxI D_FI LE4 5053
wx| D_REDO 5008 | wxl D_FI LE5 5054
wx| D_HELP 5009 | wxl D_FI LE6 5055
wx| D_PRI NT 5010 | | D_FI LE7 5056
wx| D_PRI NT_SETUP 5011 | I D_FI LE8 5057
wx| D_PREVI EW 5012 | wxl D_FI LE9 5058
wx| D_ABOUT 5013 | wxI D_OK 5100
wx| D_HELP_CONTENTS 5014 | wx| D_CANCEL 5101
wx| D_HELP_COVIVANDS 5015 | wxI D_APPLY 5102
wx| D_HELP_PROCEDURES 5016 [wxl D_YES 5103
wx| D_HELP_CONTEXT 5017 | wxl D_NO 5104
wx| D_CUT 5030 | wxl D_STATI C 5105
wx| D_COPY 5031 | wxI D_HI GHEST 5999
Table 1: Symbolic Event 1Ds
30

So you see that there is some work to do here and it is not a straight
conversion exercise at al. However the compiler isagreat help and guides
your work. My methodology was to open up little bits of functionality at
atime. Now the first port is behind me | will probably adopt a more
confident holistic strategy.

Designing the User Interface

| started creating the toolbar manually from the samples. Thisisreasonably
easy but is time-consuming and takes a bit of care as the coding is quite
critical in places. Using wXDesigner automates this process. The menus
and tool bars can be very easily laid out .

To generate an app from scratch using existing bitmaps and menu
structures from the old program took an hour and a half with 15 toolbar
buttons and 8 main menus.

Visual C++ isabit easier and more intuitive but of course you are only
coding for one platform. After a few minutes with wXDesigner you will
get the hang of it and you will find it is avery much worth the money you
have paid for it.

Y ou need to be aware of the symbolic event Ids — some of them exist
already as system events. See Table 1 for these

Y ou need to add to the file Resour ce. h to manually codein the ID
number where your user interface interacts with the above functions Y ou
can put the ID anywhere in a header file, however, | like to use
Resour ce. h.

Otherwise you leave the ID as—1 and wXDesigner will generate the event
entries for you. wXDesigner starts from ID=10000. All you needto dois
use the symbolsin your code.

To generate the CPP code press the C++ button in the wXDesigner and
thefilennnn_wdr . cppisgenerated, thisfile containsall the nasty menu
generation code you used to have. Our Menu bar was called
Mai nMenuBar Func. All you need to do to invokeit in your mainappis
to put the following lineinthe App: : Onl ni t () section:

m_nmai nFr anme- >Set MenuBar (Mai nMenuBar Func()) ;

wXDesigner has already created a shell for you but you probably want to
use your own template. The class browser in MSVC is very useful. The
code generated by wXDesigner does not parse well and al the functions
are in one file. The wrapper wXDesigner generates it seems is primarily
an example shell rather than a starting point for a GUI application and so
far we have been evolving afull scale MDI program. The shell provided
though is very useful to explain where all the bits plug in.

Onthe creation of pop-up menus, WXDesigner forcesyou to useamenu
bar. You can try to override this however | found it easier to dump the
generated code right into thecanvas class. This codeisfairly static and
if weregenerateitiswill befairly easy to dumpitin again.

Thisiswhat wXDesigner generates:

wxMenuBar *PopUpMenuBar Func() {
wxMenuBar *itenD = new wxMenuBar;
wxMenu* iteml = new wxMenu(wx MENU_TEAROCFF) ;
i tenl- >Append(wxl D_NEW
WXT("&NewA t Ctrl-N"),
wWxXT(" New chart"));
i teml->Append(| D_GRI B,
WXT(" & pen\tCtrl-0"),
WXT("Open a Gib File"));
i tenl->AppendSeparator ();
i teml->Append(| D_1X,
WX T("&1x"),
WXT("Zoom 1
i teml->Append(| D_2X,
WX T(" &2x"),
WX T(" Zoom 2
i tenml->Append(| D_3X,
WXT(" &3x"),
wxT(" Zoom 3
i teml->Append(| D_4X,
WXT(" &4x"),
wWxXT(" Zoom 4
i teml->Append(| D_5X,
WX T(" &x"),
WXT("Zoom 5

times"));

times"));

times"));

times"));

times"));

| CVu/ACCU/Features

i tenD- >Append(itemnt,
VVXT(n ll));
return itenD;

}

By stripping off the menubar class and implementing this directly in your
code you get:

voi d MyCanvas: : ShowDCont ext Menu(
const wxPoi nt &pos) {
wxMenu* iteml = new wxMenu(wxMENU_TEAROCFF) ;
i tenl->Append(wxl D_NEW
WXT("&Newt Ctrl-N'),
WXT("New chart"));
i tenl->Append(| D_GRI B,
WXT(" & pen\tCtrl-0'"),
WXT("QOpen a Gib File"));

i tenl- >AppendSepar at or () ;

i teml->Append(| D_1X
wWxT(" &1x"),
WXT("Zoom 1 tines"”
i tenl->Append(| D_2X,
wWwxT(" &2x"),
WXT("Zoom 2 tinmes"
i tenl- >Append(| D_3X,
WX T(" &3x"),
WXT("Zoom 3 tines"));
i tenl- >Append(| D_4X,
WXT(" &4x"),
WXT("Zoom 4 tines"));
i teml->Append(| D_5X
wxT(" &x"),
WXT("Zoom 5 tines"”

)

)

)

PopupMenu(i t emt,
pos. X,
pos.y);

/] test for destroying itens in popup nmenus
#if 0 // doesn’t work in wxGIK!
menu. Dest r oy(Menu_Popup_Submenu) ;
PopupMenu(&renu,
event . Get X(),
event. GetY());
#endif // O

}

The above function isinvoked viathe Canvas classthat handlesal mouse
events.

voi d MyCanvas: : OnMouseEvent (
wxMouseEvent & event) {
wxCl i ent DC dc(this);
Pr epar eDC(dc) ;
wxPoi nt pt =event. Get Logi cal Posi tion(dc);

/1 Popup support
i f(event.Ri ghtUp())
ShowDCont ext Menu(pt) ;

/1 Standard nmouse events
if(event.LeftDd ick())

vi ew- >OnLBut t onDbl C k(0, pt);
i f(event. Mving())

vi ew- >OnMbuseMove(0, pt);

i f(!view

return;

| CVu/ACCU/Features

Now we have a path where the Ul can be altered on the fly and we just
recompile. About as simple as using native MFC and Visual C++. Only
difference isthat you have alot more control over what is going on.

Finer Points
Status Bar Under Sub-Window

Easy enough to do: inthe Fr ane al you need to add is:
CreateStatusBar (4);

to create four equally sized panes, and then in your body code you set the
text:

Set St at usText (_(" Ready"), 1);

to put the word Ready in thefirst pane.

Persistence and the Registry

The function Get App() that returns addressability isaccessed by ssmply
putting My App. h in the view path of the class you want to allow access
to the App. Inthe case of MyDoc putting My App. h inthefront of thefile
and calling Get App() you can access variables.

Thisis very important when we use profile variables.

Those from the golden days of windows programming will remember
the ini file and GetPrivateProfile string and
WitePrivateProfileString.

Persistence in wxWidgets is similar in concept except the concept is
portable. For Win32 we will usethewindowsregistry andwxRegConf i g.
For Unix & Linux wewill need to usethef i | eConfi g. Theunderlying
philosophy is the same so the definitions will change but the use of the
config base will not. The wxWidgets document ion explains the concept
very well.

In MyApp. h define the config base variableconf i g.

Thiswill be our point of contact for all our persistent variables.

wxRegConfig *config;
config = new wxRegConfi g(" MYKEY");

Now in the application code we can do something like this:

wxGet App() . confi g- >Read(" LAT",
&LAT,
(doubl e) 0);

wxGet App() . config->Wite("LAT",
wor kl at)

Posting Messages
Y ou can issue messages within the code very much like making a mouse
click. Very useful for invoking functions or perhaps atimer:

wxUpdat eUl Event ev(| D_TI MER);
f rame- >Get Event Handl er () - >Pr ocessEvent (ev) ;

Next time...
Next time, we' |l talk about connecting to the user interface.

Jonathan Selby
Resources

wxWidgets: ht t p: / / www. wxwi dgets. org
wxDesigner: htt p: / / www. r oebl i ng. de/
Another introduction to wxWidgets:
http://ww. al | -t he-j ohnsons. co. uk/ accu/
i ndex. ht ni
Porting MFC to wxWidgets:
http://ww- 106.i bm com devel operwor ks/ | i nux/
library/l-nfc/

31

An Introduction to
Objective-C

Part 2 - Basic Principles

D.A. Thomas

Unlike C++, Objective-C is standard C with a small object-oriented
extension; an Objective-C compiler will compileall conforming C codein
exactly the same way as a C compiler.

Objective-C source files traditionally have the suffix . m and with
the Apple/NeXT compiler, afile that contains a mixture of Objective-
C and C++ code (so-called Objective C++) needs to be suffixed with
.mm

Objective-C adds one type to the C language, namely i d, whichisa
pointer to any object.

id nmyObject;

declares an object pointer with the nameny Cbj ect .
If the class of the object is known, the above declaration is equivalent
to:

M/Cl ass *nyObj ect ;

which declares apointer to an object of classMyd ass. Thissyntax allows
the compiler to perform static type-checking, so that the programmer can
beinformed at compile time that an object of that class does not support a
particular operation.

In Objective-C, unlike C++, all objects are referenced by means of
pointers.

Classes are declared as follows:

#i nport "BaseC ass. h"

@nterface MyCl ass : Based ass
{

/1 lInstance vari abl es

int n;

float x;

}

/1l Method decl arations

/! d ass nethod
+ (id)new,

/1 1nstance method wi th argunents
- (id)initWthVal ues: (i nt)nn and: (fl oat) xx;

@nd

Thisisthe public interface of the class MyCl ass, which inherits from
Based ass.

By default, instance variables have ‘ protected’ visibility; this means
that they can be read and written to directly only by objects of the class
in which they are declared or of a class inheriting from it. The default
visibility can be varied by means of the compiler directives @ubl i ¢
and @r i vat e; public variables are visible to all outside code, while
private ones are accessible only to instances of the class in which they
are declared.

A class method is prefixed by + and could be called in the following
manner to create an instance of the class and its address stored in a
variable:

MyCl ass *newChj ect = [MyCl ass new ;

Every class is an object in Objective-C and typically contains methods,
like newabove, to create instances of itself.

The return type of a method and the type of its arguments are written
within parentheses. If the type is not provided, type i d isassumed. It is
important to understand that type names within parentheses resemble the

32

C syntax for ‘casting’ avalue from one type to another, in this context no
casting isinvolved.

Instance methods belong to an instance of the class and can access its
instance variables. Their declarations are preceded by the token - .

Arguments are declared after keywords terminating in colons; the
name of the method is understood to consist of all the keywords
together with the colons. The instance method above has the name
initWthVal ues: and: , and it is pronounced: ‘init with values
colon and colon’. The method could be invoked in the following
manner:

[newObj ect initWthVal ues: 42 and: 12. 576] ;
This style of naming methods will initially seem strange to those who are
unfamiliar with Smalltalk, from which it is derived.

The implementation of a classis defined as follows:

#i mport "MyC ass. h"

@ npl ement ati on Mycl ass
+ (id)new

/1 Allocate nmenory for an object and

/1l initialise to default val ues.
return [[super alloc] init];

}
/1 -init is a private method and is thus not
/] declared in the interface.
- (id)init
{
/1 Initialise self to default val ues.
return [self initWthVal ues:0 and: 0.0];
}
- (id)initWthVal ues: (int)nn and: (fl oat) xx
{
[/l Call Based ass init nethod.
[super init];
/1 Initialise the instance variables and
/] return a pointer to this object.
n = nn;
X = XX;
return self;
}
@nd

The keywordsel f isapointer to the current object;super isadirective
that instructs the compiler to invoke a method in the superclass (i.e. the
class from which the current one is derived, otherwise known as ‘ base
class).

The normal way to invoke methods in Objective-C is the write the
object name (known as the receiver) followed by the method name (with
arguments, if required) between square brackets; the whole is known asa
message expression.

Themethod nameiscalled a‘selector’ because thereceiving object uses
it to select the appropriate method for the required operation. The message
expression:

[self initWthVal ues: 0 and: 0. 0]
above could be described in English as: ‘ send self a message with selector
i ni t Wt hVal ues and parameters 0 and 0.0'.

The reader should now have enough information to know how to
write Objective-C classes, how instances are created and how to invoke
methods.

Apart from knowledge of supplied class libraries, little else is
required in order to become a competent user of the language.

D. A. Thomas

CVu/ACCU/Features

Reviews

Bookcase

Collated by Christopher Hill
<accubooks@r ogsol . co. uk>

A Note from Francis

About ten yearsago | had an appointment to see
James Lake who was the proprietor of PC
Bookshopsin Sicilian Avenue, Holborn, London.

| wasabit early so spent afew minutes browsing.

While doing so | noticed a book Morphing
Magic. Nothing would have made me check this
book other than having an idle few minutesin a
bookshop. However | found abrilliant book that
used C to develop, among other things, a great
little application for developing and displaying
simple cartoons. It ran on pretty minimal
hardware even by the standards of the day,

MSDOS on a 286-based machine was enough.

Such chancefindingsare becoming increasingly
rare. Thereisno longer aPC Bookshop on Sicilian
Avenue. The company has morphed into Holborn
Books and has move to Hampshire. It trades
eectronicaly so thereis no longer an opportunity
to simply browse and find the nugget of gold
hidden in the thousand pieces of dross.

Thislossof real bookshopswhereyou can go
and browse is a matter for concern. We need
specialist shopsrather than small departmentsin
chain stores. Or alternatively we need better
mechanisms for finding both what we are
looking for, and the things that we did not even
know were there.

Even when you know what you arelooking for,
browsing for titleson theweb can beavery hit and
miss affair. Try going to www. anmazon. co. uk
and typing in ‘beginners programming’ as search
criteria. Now repesat the exercise for ‘introduction
programming’ and ‘ beginner’ s programming’. Not
that my book is listed in the top ten for both the
latter criteria but completely ignored by the first
search.

I do not even begin to have a solution to
finding things that you do not know are there.
This means that good sources of information are
becoming increasingly important. Most
magazines only review a couple of books per
issue, and it is in the nature of things that those
will bebooksthat arelikely to interest the average
reader. But those same peoplewill already search
for suitable books in the subject area.

This makes large-scale collections of book
reviews al the more valuable, but it also places
an extra burden on such collections to be as
complete as possible as regards their core topics.
A comprehensive collection of reviews needs to
be actually comprehensive.

In days gone by, ACCU reviews did a pretty
good job at covering booksfor newcomersto C and
C++, not least because | covered many of them. As
an author of abook for newcomersto programming
I no longer feel | should review the work of my
potential competitors, but | also feel aggrieved that
amost ayear on from publication there is ill no
mention of my book on ACCU’s website. | hope
thiswill have been corrected by the time this goes
to print, not because the book isby me, but because

CVu/AGCU/Reviews |

two ACCU reviewers took copies to review more
than six months ago. Accepting the task of
reviewing a book is not something casual to be
fitted into the odd moment but is an increasingly
serious undertaking with acommitment to both the
author and the potential readers.

Prize Draw

Now to turn to something positive, and something
you can dl joinin. | would like readersto do three
things. First select the book that you have reed that
you think has been most underrated or overlooked.
Just one, and | know that makes it hard for some
but the effort of choosing can focus the mind. Of
course there are no right answers but it will be
interesting if some books turn up more than once
(andif only three readersrespond...)

The second thing is to choose a category
(novice programmer, newcomer to C++,
embedded systems devel oper, games devel oper,
etc.) and list which books you would recommend
given a) abudget of £100 ($180) and b) abudget
of £250 ($450).

And lastly, given abudget of £2000 ($3600) list
what software development tools and references
you would take with you for ayear’s stay on a
desert island. The desert island comes equipped
with the essentials for life and eectric power.

There will be a prize draw for al responses
submitted to f r anci s@ obi nt on. denon. co. uk
by midnight November 30%/December 1
Greenwich Mean Time. The size of the prize will
depend on the number of entrants so being the only
entrant won't win very much.

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members — if you ever have a problem with this,
please let me know — | can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list

Computer Manuals (0121 706 6000)

www. conput er - manual s. co. uk
Holborn Books Ltd (020 7831 0022)

www. hol bor nbooks. co. uk
Blackwell’s Bookshop, Oxford (01865
792792)

bl ackwel | s. extra@l! ackwel | . co. uk
Modern Book Company (020 7402 9176)
books@rbc. sonnet . co. uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.

The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. | consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). | consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

Exceptional G- styiq

o geciog s rogrmn

Exceptional C++ Style by Herb

| Sutter (0 201 76042 8), Addison-

Wesley*, 325pp @ $39.99/£30-99

M reviewed by Francis Glasshorow
o o] thought that readers of C Vu would
like aquick review of Herb Sutter’s latest
volumein his Exceptional C++ series. Asthe
author kindly sent me an autographed copy |
can safely review it without being accused of
skimming cream off the top of the pile of
books awaiting review.

This book consists of 40 chapters in the
same format as he used in the previous two
volumes. Most chapters lead with a one or
more Junior Guru questions (things that any
competent local expert should be able to
tackle, but too many cannot). All the chapters
have at least one Guru question. Those
require a great deal of expertise to get
entirely right. A couple of the Guru questions
might stretch even the author’s
understanding — | am not entirely convinced
that everything he writes in the two chapters
on export is correct.

After the questions come the author’s
answers and sprinkled among those are sound-
bites masquerading as guidelines. Well every
good guideline should be expressible as a
sound-bite, the skill isin ensuring that the
sound-hites are also good guidelines.

One of the features Herb’ s book shares with
Scott Meyer’s books is that they are written for
normal C++ programmers who are sufficiently
professional to want to understand what they
are doing and want to write correct code.

A typical exampleisitem 16 (Mostly
Private) that has no Junior Guru question. Herb
has his feet solidly on the ground in
recognising just how extensive
misunderstanding of visibility and accessis
among even pretty expert C++ programmers.
Thisisone of Herb's characteristics that make
him an exceptional (pun intended) author, he
spends time learning about the things that
cause real problemsto practitionersin the field
and then tries to address them.

| have heard people dismiss some of his
writing as dealing with things that are far too
difficult for the working programmer. Such
dismissal is seriously mistaken; working
programmers who think books such asthis are
beyond them should find some other job
because they are accidents waiting to happen.

Now before | am accused of waffling again,
let me draw thisreview to aclose. If you
already have Exceptional C++ and More
Exceptional C++ you will aready be planning
to buy this book. If you do not have the
previous books, buy those first. Whichever
group you are in do not confuse this book with
the soon to be published book on C++ Coding
Guidelines which is co-authored by Herb Sutter
and Andrei Alexandrescu. Timeto start
dropping hints to your loved ones because that
book should be out in time for Christmas.

33

Visual C++ Optimization with
Assembly Code by Yury Magda (1
931769 32 X), alist, 450pp + CD @
$39.95/£27-99
g review by Francis Glasshorow
Thetitleimmediately made me doubtful, turning
to the back-cover only deepened my sense of
unease. Here isthe start of the back-cover blurb:
Describing how assembly language can be used
to develop highly effective C++ applications, this
guide covers the development of 32-bit
applications for Windows. Areas of focus include
optimising high-level logical structures, creating
effective mathematical algorithms, and working
with strings and arrays. ..

My firgt problem isthat optimisation is dways
something that should not be taken lightly, indeed
we should avoid it unlesstesting showsthat itis
necessary. All forms of hand optimisation tend to
make code more fragile and harder to maintain,
going down to assembly level isan even further
step in the direction of maintenance problems.

Attempting to use assembly code as away to
optimise high-level anything seemsto be entirely
wrong to me. From where | am sitting, assembly
code belongsin the lowest layersif at all.

Writing mathematical functionsisan
extraordinarily skilled task, and onethat | am
more than willing to consign to talented library
implementers. | have some sympathy with
regards to working with strings were that to mean
usingst d: : stri ng, but it doesnot, it refersto
using nul-terminated arrays of char .

So let meturn to the content. Thefirst thing
that quickly becomes apparent is that for the most
part the author is not actually writing C++ nor
even Visud C++, heiswriting C with asmall
spicing of C++ and alarge dose of Microsoft
extensions. What puzzles meiswhy heisusing
_asm ingtead of the C++ as mkeyword where
heis putting assembly code into C++ source
code. Maybe that isaVC++ issue.

The assembly code parts of the book seem to
be fine (but remember that for the last ten years
my attitude to knowing assembler code for a
machineisthat itsmain valueisin identifying
bugsin the compiler. The author covers both free
standing assembly code in their own modules that
will belinked in at link time, together with
assembly code embedded in C++.

The author’ s optimistic estimate of the
potential improvement by using assembly codeis
around 17%. That should be balanced with the
way that assembly code will kill some of the
optimisations available to Microsoft' s most recent
link technology. | dso think it is being more than
atad optimistic and based on measurement of
limited parts of an application rather than on
overal performance.

However let me accept the author’ s estimate,
and then pose the question as to how many
months would go by before the current hardware
was providing more than a 17% performance
improvement. There are very few applications
where maximal performanceis an absolute
requirement. In most cases once acertain leve of
performance has been achieved further
improvements are of little added value.

| think that a much shorter book showing the
reader how to add assembly codeto aready well
written C++ would be much more to the point.
Even such abook would have (or should have) a
very limited sde.

34

If you absolutely need to write assembly code
for your C++ application and are already agood
C++ programmer you can probably distil what
you need to know from reading this book.
However most C++ programmerswould do
better to spend the equivaent time improving the
quality of their C++.

| guess the amateur games programmers
might find something useful in this book. The
professional ones have to worry about issues of
portability which makes use of inlineassembly
code probleméatic.

You Can Do It- A beginner’s
introduction to Computer
Programming! by Francis

You Can D‘ Glasshorow & Roberta Allen (0 470
al 1™ 86398 6), Wiley, 353pp + CD @

L3
g

rewewed by lan Bruntlett

Months from now amore detailed review will be
posted on the ACCU book reviewsweb site. This
brief review is presented now to answer the
question “Should | buy this book?’.

“Should | buy thisbook?” Well, if you area
learner programmer or someone who wants to
brush up their C++ sKills, thisisthe book for you.
It'snot perfect but it isavery good book for
beginners. Once you have mastered this book
then you should consider buying “ Accelerated
C++" (Koenig & Moo) or the “ C++ Primer” by
Lippman & Laoie. After that then try “The C++
Programming Language’ by Bjarne Stroustrup.
Takealook a www. wi | eyeur ope. cont go/
gl assbor oworwwv. spel | en. or g/
youcandoi t/ for moreinformation.

YCDI! Isabook that will take months to read.
It took monthsto review. It is split into chapters
but should have been split up into parts. The first
set of chapters provide intense study material and
the remainder of the book continues at a gentler
pace.

The approach taken by the author (Francis
Glasshorow, akafgw) isto explain matters and
then provide exercises to confirm that the reader
has assimilated the subject material. Fgw thinks
that programming is fun and providestools and
libraries (Using the MingW port of the Gnu
C/C++ compiler and the Quincy IDE on the
accompanying CD) so that the beginner can
produce rapid results, boosting the student’s
morale. Thelibrary that comeswith thisbook is
called “playpen” and provides a canvasto display
things on —thisis good because it means that
beginners gets something visual to look at early
onintheir career.

Flaws. Oneisthelack of Linux support —the
book demands accessto aWindows PC. Thisisa
disappointment because | have seen plenty of
messages on Linux mailing listslooking for help
in learning to program. The other flaw islack of
information in using an interactive debugger.
Another flaw isthat fgw inssts on pulling al the
standard library namesinto the globa namespace
—the " using namespace std” commandisan
aberration and should not appear ina
programming book. It is one of the few places
where fgw provides bad code that hasto be
unlearnt later.

The book gives an authentic programming
experience, thereader hasto dig for certain
detailsto get things going. If you are acomplete
beginner (with no oneto help you) then | would

suggest you jointheaccu- gener al mailing
list and ask questionsthere.

VERDICT: Highly recommended for
beginners and intermediate C++ programmers.

C# & Java

Beginning C# XML by Stewart
Fraser & Steven Livingstone (1-
86100-628-4), WROX*, 729pp @
S| $39.99/£28-99

- reviewed by Paul Usowicz
One of my next tasks at work isto extend an
aoplication | am working on so that it can export
XML files destined for an SQL server.
Conveniently the gpplication iswritten in C# and
| am just beginning to learn XML so this book
was eagerly awaited. To say thisbook does
exactly what it says on the cover (Beginning C#
XML —Essential skillsfor C# programmers) is
spot on. Upon opening the package, |
immediately read the first two chapters (Why
use XML with C#? and ‘Overview of XML").
Over the next couple of evenings | devoured the
rest of the book typing in the exampleswhere|
felt them necessary.

The speed at which | read the book highlights
severd factors. Firdly, | was extremely keento
learn XML. Secondly, this book was exactly what
| needed. Thirdly, thisisavery well written book.
| found the explanations very easy to understand
and the examples were short enough to actudly
typein—moreon that inaminute! Asl am
relaively new to C# and have never before used
XML | cannot vouch for the authors technical
validity or experience but the book provided
enough advice to get my application up and
running quickly and reliably.

Aswell asthe XML format the book aso
coversreading and writing XML and various
acronymsincluding DOM, XSLT, XML Schema
and XPath. The book also addresses XML in
ADO.net and web services. At theend of the
book is a case study for asimple news portal.

Now on to the source code | hinted at earlier.
As| said, most of the code was very short and not
too much troubleto typein. | felt it best to get the
source code anyway so duly went to the web site
highlighted on the front of the book,
www. begi nni ngdot net . com Instead of a
Wrox-owned web site, | was confronted with a
search engine. Undeterred | tried the web Site on
the back of the book, www. wr oxbase. com
Not even found. Findly, | went to
WWW. W 0X. combut there was no mention of
the book anywhere. After 10 minutes of
searching, | finally found alittle FAQ that
explained that Wrox had recently gone bankrupt
and sold aload of titlesto Apress
(wwv. apr ess. com), whichiswherel finally
found the source code. Given the high quality of
the book this was extremely frustrating, but
obvioudy, the book was printed before the
company’ stroubles.

[However the actual Wrox imprint was sold to
Wiley & Sons. Francis]

Java Collections by John Zukowski
{ . (1893115 92 5), APress, 415pp @
conecions | $49.95/£35-50
: reviewed by Christer Lofving
= | Thisisyet one more of these easy-at-
hand titles. Excellent to have behind you on the

CVu/ACCU/Reviews

desktop when working. But to read them through
becomestiring after awhile. | started to read my
copy with some expectations though, because the
cover promise a“Comprehensive coverage of the
Java Collections Framework”, and “Red world
examples, no toy code”.

My enthusiasm also remained after the
starting chapter about arrays. | learned some odd
but interesting facts about this“primitive”’
collection and often forgotten area of Java
programming. The first part of the book is
dedicated to the so called “Historical” Collection
Classes; Vector, Hash Table and Bit Set classes
sort under thislabel, aswell asthe Enumeration
interface. Later years updates of the Collection
classes seems to be well covered. For example,
the Bit Set classis not final anymore.

Core of thebook isthe coverage of Java
Collection API. After abrief introduction and
some pages about the newer Iteration interface
which is meant to replace Enumeration, reading
now becomes alittle boring. Everything is il
well explained, but the style starts to fedl more
like programmer’ s documentation.

What about “No toy code’ then? Well, in my
opinion thereis till alot of toy code. Maybe the
code listings presented in the “advanced” ending
part (describing COLT) are more professiona and
useful.

Thebook gives an interesting and reliable
insght in Java Collections, but unless you are
particularly interested in the subject or work with
very advanced collections, you do not really need
it. The Java APl documentation gives enough
information with good code examplesto solvethe
main part of your Java Collection problems.

Mono — a Developer’s Handbook
by Edd Dumbill & Neil Borstein (0
596 00792 2), 0'Reilly, 302pp @
$24.95/£17-50

® reviewed by Paul F. Johnson

If you are new to Mono then you need to buy this
book. It covers GtkSharp (the Gtk C# bindings),
Monodevelop (arather snazzy 1DE for Mono),
Webservices (you can now deploy ASP onanon-
Windows platform) and everything e'se Mono
has.

Thewriting styleis clear and concise with
plenty of code examplesall of which will compile
and run. The examples are well explained and as
the book islogicaly set out, hel ping those
wanting to develop under Mono to get going.

What the book does not teach is C#, which is
fineand isbest l€ft to other books (seethe ACCU
webgte for an array of them).

My only bind with the book isthat in an
atempt to make the book ook like atextbook,
the pages are made to look like a schoolbook with
feint blue squares on every page. It is not that
annoying, but when you aretrying to find
something at lam...

Thisisavery new book and replacesthe
SAMSbook “ Mono Kick Start” very effectively
(okay, it isnot a SAMS book, but it coversdl of
the parts not in the Mono Kick Start book).
Highly Recommended

Mono Kick Start by Schonig &
Geschwinde (0 672 32579 9),

2 SAMS, 400pp @ $34.99/£25-50
reviewed by Paul F. Johnson

With the exception of the chapters

CVu/AGCU/Reviews |

on Qt# and GTK# and the smpler reading style,
thereredlly is not anything to recommend this
book over any other beginners C# book.

Thisbook really does suffer duetoit'sage—
and it’ s not that old which on one hand is quite
worrying, but on the other does say something
about the speed of development of Novell's
Mono package.

Even the GTK# code haslarge problemsin
that some of it does not compile and someisvery
much out of date. There are no updates on the
SAMSwebsite either to correct the mistakes
which makes this book even less use for the C#
beginner. The Qt# materia iseasily missed as
thereredly isnot very much of it.

Thisisal quite apity asthe book itself isvery
easy to read, but initsalf, that is not enough for
the price. Not Recommended

Other Languages

Perl Template Toolkit by Darren
Chamberlain, et al. (0-596-00476-1),
3| O'Reilly, 575pp @ $39.95/£28-50
“ reviewed by Jon Wilks
Template Toolkit (TT2) isatemplate
proc sing system typically used for web site
cregtion. The input data could be anything from
variables specified a runtime, an XML fileor a
database accessed via DBI for example. The
templates could be structured to produce HTML
but could just aseasily be used to create XML,
PDF or conceivably even source code - any
application where thereisthe requirement to
separate data and presentation. The book itself
waswritten in Perl’ s pod system and processed
usng TT2

Thisfirst edition of the book isbased on
verson2.1of TT2. Itschaptersdescribe TT2in
detail and go through, in tutorial fashion, the
congtruction of aweb Ste. The beauty of TT2is
that knowledge of Perl isnot actualy required to
usethistool and the template language itself
could be embedded easily by non-technical
personnd (for form layout for example). Optional
scripts are supplied with the Perl module that will
process asingle page or an entire tree of
templates. Their useis covered well in the book.

The 12 chapters and 1 appendix cover al
aspects of thistool from the syntax and
directives up to internals and extension. TT2 is
not the only template kit around and the
“getting started” chapter offers acomparison of
the other template systems available. All the
code examplesin the book are available from
the O’ Reilly website. After reading the first
two chapters the rest of the book iswrittenin a
style that can be easily browsed as required.
Thereader isinitially led gently from one
concept to the next with later chapters offering
adescription of the template language,
template directives, filters and plugins. Over
two chapters, the anatomy of the system is
described and information describing how to
further extend TT2 isgiven.

| found the very easy to follow and in fact |
have been using the template toolkit
extensively for creating Unix system recovery
documentation in aformat independent
manner, creating html, rtf and man pages from
asingle source tree. The template toolkit has
made this simple and for that reason | highly
recommend this book.

Perl Template
Toolk

oolkit.

] Learning Python 2nd ed. by Mark
Lutz and David Ascher (3-596-
00281-5), 0'Reilly, 592pp @
$34.95/£24-95

reviewed by Ivan Uemlianin

The book uses the tradiitional bottom- up
approach. After an opening part motivating the
language and introducing the interpreter we
progress, from data types, through statements,
and up through functions, modules, classes and
exceptions. Classes get 100 pages; other parts get
about 50 pages each. A closing part covers
common tasks, advanced uses, and Python
resources. Appendices give detailsoninstalation
and configuration, and provide solutionsto al the
EXercises.

The book isthorough and patient. Topics are
discussed in detail and at a steady pace.
Repetition is used morethan cross-reference. This
book would be very good for sdf-study, asthere
isplenty of room for the plodder or the dipper.
The exercises are worthwhile and to the point,
and the solutions are explanatory.

Documentation and design issues are
addressed early and often, and are clearly a
central part of what is being taught in this book.
The example code is of the highest qudlity.

Thebook’ sfaultsare minor. Although the
preface says PyUnit and doctest are in Chapter 11;
they are not, being given just a paragraph eachin
the core language summary in Chapter 26.

The book is not comprehensive (not afault in
itself), and asmal number of language features
are deemed ‘too advanced’ to be coveredin
depth, among them generators and the ‘ new styl€’
classes. These features are sketched and given use
cases, and the interested reader is directed to the
documentation. Other features—like the useful
little enumerate(object) — are not mentioned, but
you haveto draw the line somewhere. At 591
pages, the book is already large, but not unwieldy.

Thisbook isagood example of Python
culture, in the clarity of itstext asmuch asinthe
quality of its code. Anyone working their way
through it will have asolid foundation upon
which to explore Python's potential. Highly
recommended.

Patterns

nesiox| Design Patterns in C# by Steven John
L 'I‘\‘ (\; Metsker (0-321-12697-1), Addison-
sz Wesley*, 455pp @ $49.99/£37-99
3
| reviewed by Paul Grenyer
| Theindex of the book lists all 23 of the
origind GoF design patterns. A number of them
are described in great depth and some even delve
into examples of their usein the .Net framework
and a description of what might be found when
searching for the pattern namein MSDN. Some
patterns also have examples of different methods
of implementation. For example, the Adapter
pattern describes a solution involving sub-
classing and another using composition.

The description of Fagade is particularly good
and hasawell thought out example that most
people, and especialy people who have written
database clients, can relate too.

Some patterns such as Composite and
Flyweight get the idea behind the pattern across
but fail to provide area world example.
Singleton has quite a brief description and covers
issuesthat arise from using singletonsin threaded

35

environments. However, there is no mention of
the controversy over the use of Singleton, asthere
isfor Vistor.

The author hasleft anumber of diagrams and
code fragments incompl ete as exercises for the
reader, with the complete diagrams and code in
the Solutions appendix. | found thisincredibly
irritating and frustrating as | wastrying to relate
thetext to the supplied figure. It also makesthis
book more difficult to use as areference.
Protected datais used throughout the examples
evenin classes that would most likely remain the
most derived (legf) class.

Therewerealot of things| did not like about
this book, but most of that was style and abit of
bad practice in the code. However, therewas alot
more| liked about it. Comparing with GoF, for
the most part, the patterns are explained more
clearly inthisbook and in greater depth and with
better examples. If it isthe patternsthat you are
interested in learning about then | rate this book
over GoF-. | think you should still read Design
Patterns Explained by Alan Shalloway and James
J Trott firgt.

Tools

== Contributing to Eclipse: Principles,
Patterns and Plug-1 by Erich
Gamma & Kent Beck (0-321-20575-
8), Addison-Wesley, 395pp @

s $39.99/£30-99
reviewed by Silas Brown
Eclipseis an open-source editor/devel opment
environment that isextensiblein away that is
reminiscent of EMACS, but based on Java rather
than Lisp and the user interface looks morelike
Visud Studio. This book isamed a developers
who want to extend Eclipse, it assumes you have
aworking ingtallation of Eclipse 2.x to play with.

The back cover saysit’s " comprehensive’ but
it'snot. It ismore of an introduction than a
complete guide, because it @amsto give you an
idea of how to work and find more information
by yoursdlf. It doesthis by developing an
example; there are many details specific to that
example, but they may or may not relate to what
you want to do. For a start, you will have a
problem if you want to make tools for editing
anything other than Java (yes| know Eclipseis
implemented in Java, but the editing environment
is supposed to be language-agnostic).

| do not liketheir apparently last-minute
treatment of accessibility and internationalisation.
Thereisashort chapter onit, dlong with an
admission (on page 262) that the book’s example
code isinadeguate in this respect. | can
understand such corner cutting when things need
to be kept smple, but thisbook’s codeis
otherwise very detailed, so it could have set a
better example. It lookslike they were asked to
address thisissue shortly before the book went to
press, rather than being aware of it from the
outset. Even their admission failsto point out the
full implications of conveying information using
hard-coded red and green coloured rectangles,
such as the effect on people with colour-blindness
and those in cultures where red means happiness
ingtead of danger. And yet about 30% of the book
discusses the code to do it wrongly.

Overal, | think Chapter 1 isgood, but how
useful the rest will be depends very much on how
well it happens to match what you want to do.

36

Eclipse 2 for Java Developers by
Berthold Daum (0-470-86905-4),
Developers | \\filey, 470pp @ $40.00/£32-50
reviewed by Rob Alexander

This book amsto give a broad
overview of the Eclipse platform, and assuchis
divided into three sections. Thefirst of these
coversthe use of Eclipse asaJavalDE, including
the refactoring and code generation features. The
second part describesthe SWT and JFace
toolkits, and the third details the creation of
Eclipse plug-ins. It follows that the book in its
entirety isuseful only to those who want to create
such plug-ins. For anyone using Eclipse purely as
an IDE, only thefirst hundred pages are relevant.

The overview of the IDE is somewhat useful,
although | do not expect that experienced users
will refer to it frequently.

Some areas are touched on only briefly —the
debugger receives amere 8 pages. The coverage
of the SWT and JFace toolkitsisthorough. The
brief comparison between AWT/Swing and
SWT/JFaceis concise and quite instructive.

Both the GUI toolkits and the plug-in system
areillustrated by large examples (a MP3 player
and aspell-checker, respectively). However,
Eclipse version 3 is now available, and some of
the changes cause problems. For example, the
second example crashes because of achangein a
core Eclipse library.

Thetext itsef isfar from sparkling. There are
few actua language errors (oddly enough, the
Introduction contains relatively many) but the
writing is very drab and lacking in zest. The book
is consequently tediousto read.

If your interest in Eclipseisonly asan IDE,
then this book will not be aworthwhile purchase.
If you areinterested in Eclipse plug-in
development, or at least in SWT and JFace, then
it may be of use. There are several similar books
available, however, and | would suggest
investigating thosefirst. | can find little reason to
condemn thisbook, but little to recommend it
ether.

“| MDA Distilled by Stephen J. Mellor
et al. (0-201-78891-8), Addison-

- | Wesley, 148pp @ $34.99/£30-99
reviewed by Nicola Musatti

21 [TheMode Driven Architectureisan
i n|t| atlve by the OMG Consortium with the
ambitious goa of replacing programming with
design. Thisisto be achieved by providing ways
to augment design diagrams with enough
information to make it possible to automaticaly
generate full gpplications.

This book isashort, easy to read description
of the genera principleson whichthe MDA is
based. It only assumesthat the reader isfamiliar
with the UML and, possibly, with the relationship
between models and metamodels (e.g. how the
UML isspecifiedinitsaf). Inmy opinion, itis
more oriented towards analysts and team leaders,
rather than programmers or managers.

The book’ sworst defect isthe lack of concrete
examples. Theréative youth of the topic and the
scarcity of implementations may explain this, but
the difficulty in envisioning how the described
techniques might work in practice makesthe
book less convincing than it might be. A great
improvement would be the introduction of a
detailed case study, so that each chapter could be
completed by afew practical examples that

showed how each of the MDA features might
work in practice.

Another thing | did not like isthe authors
apparently conceited attitude, which is better
suited for a sales pitch than for atechnical book.

Overdl, | do not consider this abad book, but
| find it hard to identify a category of readers who
might find it really useful. If you'reinterested in
finding out what the Model Driven Architecture
redly is| think you should start by checking out
the documents available from the OMG web site
(ht t p: // wwv. ong. or g/ nda); then, if you
till feel you would liketo read a coherent
overview, this book may be a reasonable choice.

Comparing and Merging Files by
David MacKenzie et al. (0-9541617-5-
0), Network Theory Ltd, 112pp @
$13.97/£12-95

reviewed by Mathew Davies

d
ing Files with
G aand patch

Thisisabound version of the manual that forms
part of the GNU diff and patch package. The diff
and patch tools provide you with ameans of not
only spotting differences between files but dso
distributing (source code) patches for your
software. | have used diff afair bit over theyears
and can vouch for it being aredly useful tool.

Tenyearsago, | might have considered buying
this book; after al, it used to be time-consuming
to load the manual pagesinto your favourite word
processor and relatively expensive to run them off
on your dot matrix printer, let alone binding the
resulting document afterwards. Nowadays, |
would not buy thisbook, giventhat | can
download the manual in a selection of formats,
including HTML, directly from the GNU web
dte. Infact, | have to admit to being rather baffled
by the purpose of this book.

The back cover suggeststhat the publisher is
donating $1 to GNU for each copy sold. Unless
you particularly want a soft back, bound copy of
the diff and patch manual, my advice would be
the following: download the manual from the
GNU web ste, where you can be assured thet it is
completely up to date; then make a donation
directly to GNU.

Methodologies

Agile Modeling by Scott Ambler (0-
d ‘J]J 2 | 471-20282-7), John Wiley & Sons
IS | 4, 384pp @ $34.99/£22-96
reviewed by Anthony Williams
Thisisareasonably long book, a

nearly 400 pages, it would be even longer if it
weren't for the excessively large number of
words per page. | found this book hard to read, in
part due to the layout, and in part due to Scott's
writing style. Though heisastout member of the
Agile camp, Scott clearly also believesinthe
benefit of repetition to get his message across,
there is many arepeated phrase or sentence, and
thereis at least one whole paragraph repeated
word-for-word. All this detracts from the book,
which is unfortunate since Scott has many good
thingsto say.

Thebook isdivided into 5 parts. The first two
parts cover the principles you should work to and
practices you should be doing to say that you are
doing Agile Modelling as Scott definesit. The
vauesof AgileModelling are the four values of
eXtreme Programming, plus afifth (Humility),
and the principles and practices are then derived

CVu/ACCU/Reviews |

from applying these valuesto amodelling
perspective. For example, the value of Courage
leads one to Discard Temporary Models, and the
values of Humility and Communication lead one
to redlise that Everyone Can Learn From
Everyone Else, and that you should Model With
Others. This description of the principles and
practices forms the rea meat of the book. Most
(perhaps all) of what Scott says hereis sensible
advice that should be followed by anyone
pursuing an Agile approach to software
development.

The remaining parts describe the how Agile
Modelling fitsinto X P and the Universal Process,
with adiscussion on introducing Agile Modelling
into your process. Thisaso includes adiscussion
of when Agile Moddling isnot agood fit; a
check list of things you must be doing to say you
are AgileModelling; and alist of thingswhich
you must not be doing if you want to say you are
Agile Modelling. The book finishes off with an
appendix listing a host of modelling techniquesto
consider when the need arises; Scott is quite clear
that you need to Apply the Right Artefact, and
having awide range to choose from makesthis
easier sinceyou are not stretching amodel
beyond what it can eadily cover.

If you areinterested in modelling, and want to
know how it fitsinto Agile projects, or you are
looking to make your current process more Agile
by reducing unnecessary modelling work, then
thisbook iswell worth aread; | just wish it was
easier to read. Recommended.

Agile Modeling by Scott Ambler (0-
471-20282-7), John Wiley & Sons
2l | td, 384pp @ $34.99/£22-96
reviewed by Jon Steven White

User Stories Appliedisan excellent
gui idetowriti ng User Stories and understanding
how they can be best incorporated into the
development lifecycle. Thebook isclearly
written by an author who has not only an obvious
wedth of experiencein agile development, but
aso the ahility to provideinformation to the
reader in asimple effective manner.

Inthefirst part of the book, the author
provides agood overview of user sories,
including detail on writing stories, gathering
stories through user role moddlling, writing
stories when you do not have accessto redl end
users, and testing user stories. Each chapter
concludes with a clear summary, followed by an
outline of exactly what the developer and
customer are responsiblefor, clearing up any
ambiguity.

The second part of the book covers estimating
and planning, whilst the third part covers
frequently discussed topics, including excellent
chapters on bad user story application and using
storieswith Scrum. Again, these sections are very
well written and offer both good explanation and
practical advice.

The fourth part of User Stories Applied
describes acomprehensive example, bringing
together al of the earlier materia. Thisworks
very well, giving the user extra confidencein the
material, and a chanceto revisit the concepts
again.

Overdl, | think that Mike Cohn has produced
agrest book in User Stories Applied, directly
tackling an areathat is often condensed and
confused elsawhere. Requirements gethering is

CVu/ACCU/Reviews

more important than ever today, and | would not
hesitate in recommending this book because | am
confident that the guidance it provideswill help
to produce better software.

Extreme Programming Adventures
in C# by Ron Jeffries (0-7356-1949-
2), Microsoft Press*, 518pp @
|| $39.99/£27-99

=2 reviewed by Anthony Williams
| thoroughly enjoyed reading this book. It is
neither aguideto XP, nor atutoria for C#; rather
itisadescription of Ron’s efforts to produce a
working program that providesreal customer
vaduewhilst learning a new language. The
program in question isan XML notepad, with the
aim of making it eesier for Ron to edit his
website, and Ron guides usthroughitinthe
humorous manner common to al hiswriting. Ron
being Ron, the project is undertaken in an
eXtreme Programming style, though the
limitations of the book project mean that he has
not employed al the practices“aswritten”; heis
his own customer, and he doesn’t dways manage
tofind apair, for example. Asyoufollow Ron
through the project, with the aid of the lessonshe
pullsout, you get a better understanding of the
way he develops software, and are given an
opportunity to judge how it compares to what you
would have done. Y ou might dso learn alittle C#
along theway, as Ron explains each new
language feature when hefirst usesit, though this
is not the key focus of the book.

The project isnot just one big success story;
Ron shares his mistakes with us so that we may
learn from them. The book isinterspersed with
“lessons’, where Ron reflects on the preceding
section and tries to identify important points,
either thingsthat he felt worked well, or the
mistakes he made, and what he thinks could be
doneto try and avoid similar mistakes. Also
throughout the book are sentences marked “sb”,
for “sound bite’. These are short phrases which
summarise apoint, like“It's Chet’ sfault” (don't
focus on finding who is at fault when things go
wrong, rather focus on fixing the problem), or
“You Aren't GonnaNeed It” (focus on what
needs doing now, rather than what you think you
will need for later). It isthese lessons and sound
hites which provide the “message” of the book —
Ron’s belief that incremental development, done
test-first, with smple design, continuous
refactoring and afocus on producing value for the
customer is an effective method of producing
high quality software.

If you like Ron’s other writing you will love
this book. If you have never read Ron’s work
before and are interested in learning allittle about
how he appliesthe principles of XP (and maybe a
little C#), it isworth reading; you might even
enjoy it. Highly Recommended.

Games Programming

Andrew Rollings and Ernest Adams
on Game Design by (1-5927-3001-
9), Mew Riders, 617pp @

= $49.99/£38-99

reviewed by Alan Lenton

| have to admit that | approached this book with
more than alittle cynicism. Asagame designer |
often get asked to comment on books about game
design, and frankly most of them are crap. This

time though | was pleasantly surprised —awell
written book whose authors clearly know what
they are talking abouit.

Thisis not abook for those who ‘want to get
into thebusiness'; it is gtrictly about the art and
science of game design. The book will appeal to
those in the computer games businesswho are
already games designers, or who are aiming to
move sidewaysinto gamesdesign. It will also
appedl to anyone who just wantsto find out how
itisdone.

Thebook isin two sections. Thefirgt part
covers generd issues that crop up in games
design, while the second half of thebook isa
systematic look each of the different game genres.

What weaknesses there are tend to show up in
this second haf, which is alittle uneven, sncethe
authorsdon't (understandably) have first hand
experience of each genre. Thereisalso something
of atendency to try to jam al the genresinto the
same framework.

The weakest part of the book is the chapter on
multi-player gameswherethereisafalureto
realise that game technical and socid
management tools have to be part of the design —
they can’t be bolted on afterwards— boring, |
know, but important.

But these are not mega problems and they
don't detract from the overall usefulness of the
book. I" ve been designing persistent world multi-
player games (and one commercia single player
game) for nearly 20 years, and there was much in
the book that | found helped articulate and
systematise my experience.

Very useful indeed.

e Linux Game Programming by Mark

9 [\ {8)4 Collins et al. (0 7615 3255 2), Prima*,
SEsULE 330pp + CD @ $39.99/£29-99
= reviewed by Paul F. Johnson

= | Whereto start with this?

Code that is broken, but compiles; codethat is
broken and does not compile; insecure network
advice and code; using libraries that will not work
on quite alarge number of Linuxes, and code
samples for sound which do not work.

The average Linux distribution has just about
everything a user needs, however, the onefind
areawhere there is completely inadequate
number of packagesisin the games domain.
Without games, the apped is diminished; which
isapity given the strength of Linux now.

Unfortunately, this book will not help. Itis
neither in depth enough or clear enough in how to
write agame. Thereis nothing on game timing,
the planning or other game essentials.

A number of the websites listed on the back of
the book do not exist, neither does the website
given inside the book for the network socket
library. All of these diminish the value of the
book.

To add insult to injury, the CD supplied isdire
—itiswritten using the MS end of line, which
means under Linux, thereis no line wrapping.

Thisisavery poor book. Do not buy it. Not
Recommended.

Programming Linux Games by Loki
‘i:‘i‘ﬁ”u”ﬁ Software (1 886411 49 2), No
G A M E S| Starch, 424pp @ $39.95/£29-99
@ reviewed by Paul F. Johnson
| Thisisavery good book that has one
downfdl it uses code snippets rather than proper

37

code examples. It feels more of a*“ proof of
concept” book.

The other problem isthat the book needs some
minor updates —the main one being the coverage
of the OpenAL code. While not amagjor problem
(it'squite easy to fix the code by looking at just
the header), having code that does not just
compile out of the box can cause problems for
those new into the games programming arena.

Most of the main aspects of game
programming are covered — scripting, SDL,
sound (compressed and uncompress —
encouragingly, it demonstrates how to use vorbis
files) and event handling. Gametiming isthe only
part that perhapsis not covered quite as much as
it should be. While keeping a basdline of update
every 1/30th of asecond will work, it is perhaps
not the best way of ensuring everything keeps
moving.

| did enjoy the games engine code and
description. | have read many books dedicated to
the subject and to be honest, this holdsits own to
them.

Had there been someway of getting hold of
updates with the OpenAL code fixed, thiswould
have gained ahighly recommended.
Unfortunately, it does not so, only achievesa
recommended.

The Web

*4| Hardening Apache by Tony Mobily
Hardening (1 '5%59'378'2), Apress, 270pp @
LTI $29.99/£18-50
reviewed by Richard Lee

=] Theaim of thisbook isto providea
starting point for anyone needing to secure an
Apache server. Each chapter dealswith adifferent
security issue before pointing the reader at afew
good sites for further information. The author
assumes a Unix-derived operating system but half
of the book still remains useful to Windows.

Thefirst chapter illustrates how this book
differsfrom others. Thereis brief introduction to
digital sgnatures and encryption before
explaining how to verify the download has not
been tampered with. Instead of just providing
commandsto install Apache, the author
immediately delvesinto testing for problems
including steps to remove vulnerahilities.

Whilethefirst chapter may follow a cookbook
approach, the book aimsto be morethan just a
simple set of recipes. It aso explains how the
server may get compromised, to look for
suspicious behaviour in logs and web sitesto visit
to keep up-to-date with emerging security issues.

Given the respongbility of setting up an
Apache based server, should you buy this book?
It boils down to whether you can find dl the
information you need from the Internet or if you
prefer alittle helping hand along the way.

Web Development with Apache and
Perl by Theo Petersen (1 930110 06
11| 5), Manning, 410pp @ $44.95
reviewed by Joe McCool

I Petersen makes a strong case for
using Perl on Web devel opment. Perl text
handling capabilities are legendary. It iseasy to
learn. The richness of features derives from its
maturity. Itiswidespread; most systems
administrators have accessto it and have some
sort of notion on its workings.

38

He also makes a strong case for mod_perl,
where the perl code can be built into the web
serversdirectly. mod_perl is stable,. enjoys
ongoing development and iswell documented.
Where Perl isalready in house, mod_perl adds
considerable leverage.

Considerable attention is given to the
ingtalation of mod_perl, where the conventional
CPAN ingtallation methods of Perl fall dightly
short.

Thewhole of part 3, 110 pages are devoted to
example web sites. These include a store front,
office applications, systems administration, build
your own portal and alittle bit on credit card
processing (hardly adequate).

Part 4, 80 pages, is devoted to Site
management, both content and performance.
Here the discussion on development life cycles
and phased testing is but a glance at a complex
and dangerous subject. Most of usjoin teams
with thisalready in place or learn precariousy
through practice.

Security is now a horrendous issue on the web
and Petersen’ streatment might not be sufficient
(9 pages on user authentication and 3 on
management).

My main reservation isthat Petersenis so
taken with the Open Source world that heis
inclined to waste alot of space preaching to the
converted. Thefirst few chapters are taken up
with adiscussion of the ubiquitous nature of
Apache and its close cousins: perl, mysql, cgi etc.
Most sites thinking of web server gpplications
will dready be up to speed onthese. A lot of the
material on the use of CPAN and installing
MySql are aready covered in other, less
speciaised, books.

Thankfully, he does not even pretend to offer
an introduction to the Perl language itself.
Familiarity with that is assumed.

Despite this, Petersen’s book is useful and |
am happy to recommend it. Most experienced
readers can afford to skip thefirst few chapters. It
isgood value for money and well worth the shelf
space, but it will probably need accompani ment
with afew other textsto get readers up to speed.

" Web Site Web Privacy with P3P by Lorrie
Privacy Faith Cranor (0-596-00371-4),

with PJP O’Reilly, 321pp @ $39.95/£28-50
reviewed by Tim Pushman

i " This book covers the P3P Project
(the Patform for Privacy Preferences), fromiits
inception and development through to a
discussion of the current state of the proposd.
Further chapters dso provide an overview of
related protocols and tools, such as APPEL. The
author of the book is one of the co-authors of the
specification and so has agood understanding of
theissuesinvolved in creating the standard.

The book is arranged in three parts:
background and history, enabling aweb site, and
software and toals. At the end are appendices
covering some odds and ends.

P3Pisaprotocol to alow web sitesto inform
their users of what kind of privacy they can
expect on the site, how their datawill be collected
and used, and what recourse the user hasiif she
believesthe datais being misused. In short, itisa
Privacy Policy as onewould find on asite such as
Amazon, but with the added twist that it can be
ingtalled in amachine-readable format and
directly interpreted by a P3P enabled browser.

And the machine-readable format is, of course,
XML. The second part of the book givesa
detailed explanation of how to create a P3P
policy, both by hand or by using a policy editor.
There are many levels of complexity in a privacy
policy and the author does agood job of
explaining the various possibilities, from the
simplest (we collect no data) through to the most
complex, aswould be needed by alarge
commercial organisation.

Thequestionis: do peopleredly care about
their privacy online? Probably not as much as
they should do. P3P isan attempt to make
protecting our privacy as transparent as possible.
We should be able to specify what information
about ourselves we want to make availableto a
web site or organisation and then let the software
take care of it for us. There are many placesthat
software can be P3P enabled, browsers being an
obvious example, but aso web proxies,
installation programs, registration programs and
so on. Unfortunately there seemsto be very little
availablein the real world.

When reviewing the book | had expected to
find more on the code side, and was a hit
disappointed to realise that the book coversonly
the protocol, dbeit with alarge chunk of XML.
Asfar as discussing the P3P protocol goes, the
book is excellent reading, if occasionally rather
dry. The author clearly knows the technology and
explainsit clearly. Whether any of it mattersis
another thing entirely, but if you arein the
business of P3P enabling your company’ sweb
sSite, then this book is recommended.

General Programming

Imitation of Life by Nancy Forbes (0-
262-06241-0), MIT, 171pp @
$25.95/£16-95

reviewed by Francis Glasshorow

The sub-title of thisbook is‘How
Biology is Inspiring Computing'. | think that only
tells half the story because by the time you have
finished reading this book you will redlise that
computing is also inspiring biology.

This book is a comprehensive overview of the
ways that biology and computing are interacting.
Every one of the ten chapters provides food for
thought. Some such as chapter 4 on atificid life
also provide enough data so that you can find
interesting work on the Web. | found agood place
togartwashtt p: //waww his. atr. jp/ ~ray/
tierra/ .l won'tspail it for you by saying more
than ‘have alook at that site and follow thelinks'.

Chapter 8istitled ‘ Computer Immune
Systems' and covers some of the lessons from
biology that can be applied to dealing with
computer viruses and the like.

The author managesto focus on providing
information rather than regurgitating the hype of
enthusiastsfor aspecific area. For example she
steers straight down the middle on the subject of
DNA computing. She provides enough
information to inform the reader asto what thisis
and what has so far been done but avoids the wild
speculation of some popularisers.

The book is readable and short enough so that
you will not need to spend you Christmas
holidays reading it. If you want to think about
where computing is going and some possibilities
being currently explored in the laboratory thisisa
book worth taking the time to read.

CVu/ACCU/Reviews

