Contents

Reports & Opinions
Reports
Editorial 4
From the Chair, Standards Report, Membership Report 5
Dialogue
Letter to the Editor 5
Francis’ Scribbles 6
Student Code Critique (competition) entries for #28 and code for #29 8
Features
Professionalism in Programming #27 by Pete Goodliffe 13
Creating Standard GUI Applications by Mark Summerfield and Jasmin Blanchette 18
Using a Live Linux Distribution by Silas S Brown 19
An Introduction to Programming with GTK+ and Glade by Roger Leigh 20
An Introduction to Objective-C by DA Thomas 27
C++ Templates - A Simple Example by Rajanikanth Jammalamadaka 28

XML as a Model-View-Controller System for Documents by Matthew Strawbridge 30

Introduction to G# - Part 2 by Mike Bergin 33
Reviews

Bookcase 37
Copy Dates

C Vu 16.5: September 7th
C Vu 16.6: November 7th

Contact Information:

Editorial:

Advertising:

Treasurer:

Paul Johnson
77 Station Road, Haydock,

StHelens,
Merseyside, WA11 0JL

cvu@ccu. org

Chris Lowe
ads@ccu. org

Stewart Brodie

29 Campkin Road,
Cambridge, CB4 2NL
treasurer @ccu. org

ACCU Chair:

Secretary:

Membership
Secretary:

Cover Art:
Repro:
Print;
Distribution:

Ewan Milne
0117 942 7746
chair @ccu. org

Alan Bellingham
01763 248259
secretary@eccu. org

David Hodge
01424 219 807
nmenber shi p@ccu. or g

Alan Lenton

Parchment (Oxford) Ltd
Parchment (Oxford) Ltd
Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vuonly): £25

Full (C Vu and Overload): £35

Corporate: £120

Students: half normal rate

ISDF fee (optional) to support Standards
work: £21

There are 6 issues of each journal produced
every year.
Join on the web at ww. accu. or g with a
debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
member shi p@ccu. org for an
application form.

Any questions - just email
menber shi p@ccu. org

Reports & Opinions

Editorial

Another end to another academic year and the
usual cohort of students have passed through the
doors of the country’s universities with their
pieces of paper signifying the sum of their past
three or four years of study. For some, it’s their
first step into thewideworld of employment, for
others —who can say. Sounds nice doesn't it?

The problem redlly isthat thereis aworld of
difference between the world of academia and
the world of business and unfortunately for the
students, they don’t seem to realise this. Being
up and inwork for 9amisnot normal, neither are
long vacations or the excuse of having roadworks
in the centre of Manchester enough to cut theice.

For businessthere is a problem not only with
this transition, but also when interviewing.

At the April conference, | was talking with a
very nice chap about this problem. He cited one
example (the waiter in the restaurant problem)
which required a threading model. Now that in
itself is not a big hassle, the difficulty comesin
which threading model is used — the posix
implementation or the one used by Microsoft?
Typically, universities use the Microsoft. NET
packages, therefore use the M S implementation
and are not generally taught the posix model.
Without knowing the posix model and without the
employer specifying which model to use, the
prospective employee really only has at best a
50/50 chance of using the correct threading model.

Is this the fault of the employer or the
university? | would suggest it’s six of one, half a
dozen of the other. Yes, it is the responsibility of
the university to teach both threading models
(and to use both), but there is then the problem
of having to have more than one compiler per
machine. Not a huge problem, but given most
machines work on a standard ghost image, this
does mean additional problems when installing.
There is also the time factor — a typical 3 year
course really only lasts 18 months which is
simply not enough time to include a second
threading model without the detriment of another
aspect. For the employer, it’s both not talking to
institutions about requirements and also possibly
not specifying which thread model to use; aUnix
(or variant) company will have almost no usefor
someone using the MS model!

The Importance of One

Eh?

By the time this edition hits the doormat, the
free implementation of the .NET framework,
Mono, will be at version 1.0 and released to the
waiting masses.

Mono givesall supported platforms accessto
the C# language and everything that .NET offers.
How isthis possible?

Well, unlike Sun, Microsoft decided to make
the APl for .NET open and have a published
standard for the language. This has meant that
anyonewho wishesto sit down and implement the
API will have accessto thisrather good language.
I must admit that | didn’t like C# originaly (being
moreacrossover language than adistinct language

a

—or ol wasledtobelieve), but having used it both
for fun and to review books with, | am very
impressed with Mono and the C# language.
Thereareversionsfor MacOSX, Linux, Unix,
BSD, Windows and quite a few others in
development at ht t p: / / waiv. go- nobno. com

More Changes....

There isyet another new series starting . This
time it's Objective C.

Please, don't think that just because there are
lots of articles already in C Vu, that we're not
after anything for awhile, that's not the case. If
you have something you think is up to being in
C Vu, please send it in. Currently, I'm looking
for a good introduction to C++ as well as
material on Java and over on the Overload side
of things, | know Alan is screaming for material!

A Diversion...

There has recently been quite an interesting
discussion ontheaccu- gener al mailing list
regarding the temperature at which water boils
at for agiven pressure. Thisisright up my street
having been a physical chemist in a previous
regeneration.

Water, as we all know, boils at 100°C (1
atmosphere pressure) — perfect for a cup of tea.
If you were to go up a mountain though, the
temperature at which the water boils drops,
sometimes as low as 75.5°C (roughly 8000m
above sealevel) — absolutely uselessfor making
acup of Earl Grey or Darjeeling.

Thereis adependency therefore between the
height (and therefore pressure) and the
temperaturewater boilsat. Thishascaused about
aweek’s worth of debate. Anyway, I'll provide
the answer for someone to provide the solution
asaprogram. The shortest gets a prize out of the
editor’s lucky bag.

How to work it out though?

The answer is quite simple.

At ground mark, atmospheric pressure (in
mm mercury) is29.921 and asyou move up from
ground level, the pressure will decrease. This
decrease can be calculated using the formula:

Pressure (in. Hg) =

29.921 * (1-6.8753*0. 000001
* altitude, ft.)"5.2559
(these are from really old notes given during my
degree, which is why I’'m using inches of
mercury instead of standard atmospheric units
and feet instead of metres).

We know (from what we' ve seen) that asyou
move up into the atmosphere, thereisadecrease
in the boiling point of water. Again, it's quite
simple to work this out:

Boi I i ng point = 49.161
* In (in. Hg) + 44.932
(thisisal perfect spreadsheet fodder)
Again, thisisin °F rather than °C, so:

C=5/9* (tenp in °F — 32)

1m = 3.282 ft
What the actual numbers represent have been lost
in the mists of time (they had a nasty accident
with some Old Peculier a few days after my
finals!)

What you should be able to do now is
transform this into a quick and simple program
(you choose the language). Happy hacking!

A Cautionary Tale

I’ve had quite an interesting week this week.

Besides the usual rush to have the magazine
ready for putting to bed (for which I’'m sure we
should all be charging our respective glasses to
the sterling and hard work of our Production
Editor who doesn’t seem to get anywhere near as
much credit as she deserves), | had an unusual
phonecall from somewherethat | had applied for
ajob at awhile ago.

While that may not seem odd to quite a few
people, it was odd to me as normally in the
education sector, if you don’t get the job, that’s
it —you don’t hear anything back. This was
unusual asit wasto give mefeedback on exactly
why | didn’t get the post.

Now, despite knowing everything required
and being possibly the best candidate for the
position, the reason for not getting the post was
that the employer had done a web search on
gr oups. googl e to seewhat could be seen.

On usenet, | have quite a high profile (and not
just onthe programmersgroups) and unfortunately
have beeninvolved in avery smal number of flame
wars — one of which happened last year on the
uk. conp. os. | i nux group. Now, asthisis
actually a matter of some ongoing legal action
againg the chap who started it al (and dso along
running Palice invegtigation into this character's
nefariousactivities), | can’t comment onthenature
of the flame, but because of it it the company
decided to dig further... and further... and further.

Inonesensg, it actually helped my application
as it showed the nature of how | work with a
disperse group and the methods | employ to solve
problems. On the other hand, the number of open
source groups | contribute to made the company
consider me possibly not the best candidate for
proprietary work.

Let this be alesson then: while usenet is fun
and a very useful forum for learning on, it can
act as a double edged sword.

Now, Applying That Here...

But how doesthisapply to theus, the ACCU?Wéll,
we do have a number of publicly open groups
where not only members of the ACCU reside, but
aso prospective employersand thosewho just need
help. Itistherefore of paramount importancethat a
professiond attitudeisgiven and threadson thelist
kept on topic. All too often a thread begins with
something sane, but by about 10 replies down the
line, the origind topic has changed, but the email
subject title hasn’t — very confusing and if you get
the same number of emails as | do, then the
probability of missing something useful increases.

It also demonstrates an important difference
that should be recognised between apersona and
professional persona.

For instance, it would be unprofessional for
me to post from my ACCU account and be
expressing a detrimental opinion against any
particular vendor of any particular product as it

CVu/ACCU/Reports & Opinions

could be considered as being that of the ACCU;
something which may definitely not be the case.
Now, the case is different if | post from my
personal email address. Many who subscribe to
theaccu- gener al listwill know my opinions
of London, it definitely isn't endorsed by the
ACCU or anything like that, but for some, the
difference between me as the editor and me as,
well, me is not aways clear. Which is another
problem with people when scanning usenet!

Enough of that ramble, many will be puzzled
asto why | brought it up. The answer issimple.

One fund raising idea the committee has been
considering is “selling” ACCU email addresses
(inthe sameway asisdonewiththe ACM), soiit
would be possible to have the email address
paul f.j ohnson@ccu. or g —soundsnice,
but having such an email address would put a
distinct number of problems on us which would
need a disclaimer to be added. However, how
many bother reading disclaimers?

We have a standard one at work

“Any views or opinions are solely those of the

author and do not necessarily represent those of

the University of Salford unless specifically

stated. This email and any files transmitted are

confidential and intended solely for the use of the

individual or entity to which they are addressed.”
Would that be enough if we were to make
available ACCU email addresses? | personally
don’t think it would be.

Thisideais till being discussed, but I'm sure
your opinion would be greatly appreciated. If you
have comments, please send them to the committee.

An ACCU email address and its inherent
problems are not the only aspect where this
distinction between ACCU-endorsed and not
endorsed material raisesits head. The other place
is obvioudly in the book reviews.

A claim levelled by some book companiesis
that as we publish the reviews, they therefore
must be the views of the ACCU. Again, thisis
not the case; all reviews are a personal opinion
of thereviewer. Thisis definitely aproblem with
respect to the website. While we have a limited
readership of the printed magazine, the book
reviews are publicly available for all to see
without any form of disclaimer asto the personal
nature of the reviews. Y ou can now appreciate
the problem of adisclaimer...

Paul F. Johnson

View From the Chair

Ewan Milne <chai r @ccu. or g>

Just a brief report from me thisissue. This does
not reflect alack of activity by the committee:
far fromit, wearecurrently involved in areview
of our system for book reviews, arranging for the
long-awaited website revamp, and getting
underway with the development of next year's
conference. But all these are ongoing tasks till
to reach fruition, and so more details on each
soon.

You may have noticed that the last issues of
C Vu and Overload (16.3 and 61 respectively)
coincidentally marked the arrival of two new
editors.

Paul Johnson was elected C Vu editor at this
year’'s AGM, and John Merrells was elected
Publications Officer: John’sfirst actionin hisnew
post wasto appoint Alan Griffiths as his successor
inthe Overload editor’ schair. I’ d liketo welcome
both new editors to their jobs, undoubtedly both
key rolesfor the association. Thelife of editor of
an ACCU journal can be stressful, but luckily
there is something we can al do to alleviate this
—write and submit articles! Both Paul and Alan
will begrateful for your submissions. If you have
never previousdly written and are concerned about
producing a piece of high enough quality,
remember that there is an excellent editorial
support system in place to carry articles from
draft to publication. All our regular contributors
will tell you that it isamost fulfilling exercise.

Standards Report

Lois Goldthwaite <st andar ds@ccu. or g>

The future of C++ is aready taking shape. The
international C++ standard committee, WG21, is
stepping up the workload asthey movetoward a
revised standard, still several yearsin the future.
A visible sign of thisis that the committee are
adding two more “mailings’ of documents per
year to the four existing ones. (They are still
called mailings even though the days of shipping
paper copies around the world are long gone.)
The additional mailings are scheduled for July
and January, midway between the committee’s
face-to-face meetingsin April and October every
year. This gives committee members longer to
study the issues and solicit comments from the
public.

Nearly all committee papers are publicly
available on the WG21 website at
http://ww. open-std.org/jtcl/
sc22/wg21/ docs/ paper s/ . An exception
to this policy is documents relating to the
C++/CLI effort in an ECMA technical group —
those are password-protected. However, the
regular policy does apply to the current working
draft of the C++ standard itself. This draft
incorporates not only Technical Corrigenduml
(theversion available at bookstoresin the Wiley
edition) but also any defect reportsresol ved after
TC1 was voted out. The committee has no plans
to issue asecond TC.

Speaking of C++/CLI, it appears that the
schedule for this document is slipping. Thisis
partly because it is closely tied to a revision of
the ECMA Common Language Infrastructure
standard (more commonly known as .Net), and
the people working on that document have
decided it will not be ready in time to meet
ECMA's fall deadline for a vote this year.
Correctness and consensus take time to mature,
even in avery small group of experts working
under avery lightweight process.

Theinternational C committee, WG14, have
reconfirmed the C standard without intention to
reviseit, although they do plan to issue a second
Technical Corrigendum at some point. They have
decided that TC2 will beissued in the form of an
integrated document, as the C++ TC1 was. (The
Wiley edition of the C standard does feature its
TCL1 integrated into the 1999 standard, but 1SO
originally published the revisions as a small
separate document. BSI have long had a policy
of integrating such changes and issuing a
complete version.)

Membership Report

David Hodge <nenber shi p@ccu. or g>

Thefinal membership total for thisyear was 1099,
26 down on the sametime last year. It isrenewa
time, so please be aware that thereisasubscription
increase, see the June C Vu for details. Please
make surethat you renew in timeasunder the new
system we no longer distribute back issues. You
should be renewing by the 31t August.

If you renew after 30t September youwill not
receive the October issue. Y ou can however get
access to the journals on the website.

l

Letter to the Editor

Not exactly a huge mail bag this edition, but this interesting one came in from
Francis Glassborow.

A New Publishing Opportunity

I recently spent time with Parchments, ACCU’ s printers, discussing how
their technology is changing and what those changes enabled.

One of the dramatic changes is that they can no produce single copies
of booksin much the same way that you might previously have asked them
to produce a single copy of a poster. The feature that | found interesting
was their estimated cost for a 100 page * perfect bound’ book with a full
colour laminated cover. Thiswas substantially under £4 for any production
run between 1 (yes asingle copy) and 150. After that the price goes down
because a cheaper option cutsin for reproducing the pages.

This has set me thinking. Probably many of you have a book that you
could write, probably not a best seller and probably not one that a major
publisher would contemplate, but nonetheless a good book.

There are anumber of processes in going from an author’ s grey matter
to adelivered book and quite afew authors make amistake by under-rating

CVu/ACCU/Reports & Opinions

the added value of a good editor, good design and layout, careful copy-
editing etc. Thenthere areissueslike | SBNsand the requirement to provide
(in the UK) copyright copiesto the British Library.

Now | am well familiar with most of those issues. On the other hand |
really do hate administration. | wonder if any of you would be interested
in exploring creating a partnership or small company to specialise in
producing very high quality (validated technical content, properly copy-
edited and professional standard of layout and production) short run books.
| have thought about many of the issues but won't take up ACCU’ s space
by going into them here. If the idea interests you please contact me (+44
(0)1865 246490 or f r anci s@ obi nt on. denon. co. uk)

And if you have an idea for a short (80 to 200 page) book you would
like to write and have published let me know about that as well.

Francis Glassborow

It certainly looks an interesting idea.

As always, should you have any comments or other items of interest, please
don’t keep them to yourself — send them in. I'm always happy to receive your
views.

Paul F. Johnson

S

Dialogue

Francis’ Scribbles

by Francis Glasshorow aka ‘The Video Guy’
Time for Change

When | picked up the current issue of C Vu, | was surprised to say the least
by the item on theinside back cover. Over its seventeen years of existence
ACCU has very rarely changed its membership rates. When ACCU was
first founded as CUG(UK) the cost was £10 for six issues of the newsletter.

A few yearslatter when we had stabilised to an annual membership feeand
a guaranteed number of issues of C Vu per year the cost went up to £12.

Severa yearslatter when we re-organised to two levels of membership and
added a Corporate membership the costs went to £15, £25 and £80. Since
then careful housekeeping and the acquisition of substantial advertising
revenue has kept the costs at those level s despite going to full colour covers,

professional production and so on.

Advertising revenue is fine but it does require someone with
considerable expertise to bring in and hang on to advertisers. Thisistrue
for al publications. Getting advertising is hard work.

A second quiet change has been happening. The growth of ACCU over
thelast ten years has been almost entirely in non-UK membership. The cost
of postage has steadily increased. Originaly the contribution madeto general
administration costs by non-UK membership feeswas low but positive. By
that | mean that if we worked out the cost of the printing and distribution of
C Vu and Overload to non-UK members it was only alittle less than they
were paying in membership. None of us had any concern about that because
we believed in the principlethat atruly international organisation should not
have differential fees depending on geographical location.

With the steady increase in production and distribution costs for our
periodicals, overseas membership has moved from marginally in the black
to substantially in the red. Couple that with a very welcome increase in
non-UK membership (over 40 countriesthe last time| looked) and theloss
of advertisers and we can all see that a substantial readjustment of
membership fees became necessary.

Now there are two things you can do to help keep ACCU membership
fees stable for another decade. First you can help increase the number of
members. That allows the administration overheads to be spread over more
people. The second thing is to think carefully about how to bring in more
advertisers. In days gone by my rule of thumb wasthat selling all six cover
pages should pay for the professional production editing of our periodicals.
Other advertising should be such that a page of advertising pays the costs
of two pages of editorial content. That would mean that an issue of C Vu
with 32 full pages of editorial content would befully paid for if all thethree
cover pages were sold and an extra 16 pages of advertising were included.
To actually achieve that you would need to pay a full time advertising
manager so it will not happen. Nonetheless every little bit helps.

So what hasthisto do with thetitle of thisitem? Well it was seeing that
change in membership fees that started a train of thought. Things are not
immutable. We need to take stock from time to time and make necessary
and purposeful changes. What we should not do is change for change’s
sake. We should always strive to understand why things are the way they
are, and understand what we are trying to achieve.

| am reminded of thevery first essay in Programming Pearls(Jon Bentley,
0-201-65788-0) which should be required reading for everyonewhois asked
questions of the form ‘How do | do...” Overtly the essay is about sorting but
that would be a very shallow view. The point that Jon Bentley was making
isthat we should be wary of answering such questions with anything other
than *Why do you want to do that? Until we have the answer to that question,
even the most erudite direct answer is unlikely to actualy help.

Now go back to what | have written above and see how, | hope, | have
applied that lesson to the question of membership fees. Thereisalot more
that | have not written, but the essence is that reactions to changes to the
membership fees must be based on an understanding of what they are for
and why ACCU needs more income.

If al that our Committee did was to up the fees they would be doing a
poor job but you know as well as | do that they are one of the most

6

hardworking committees of any purely voluntary organisation. Quite apart
from keeping ACCU running on aday-to-day basisthey are aso reviewing
many aspectsof ACCU. In many casesthese arethingsthat have just grown
out of an accumulation of small decisions that made sense at the time.

The nature of ACCU has changed slowly but surely. In the early days
the Committee was almost entirely composed of enthusiasts and there was
afair sprinkling of amateurs (those for whom programming was no part of
their paid work). These days the ACCU Committee is composed almost
entirely of professional developers with a sprinkling of language experts.

Each year a number of people resign from membership because they
have moved on from programming. Some of those have genuinely moved
out of IT and no longer have any interest in software devel opment.
However for a good humber thisis not the case, they have simply moved
up the hierarchy to jobs that do not involve expertise in use of one or more
computer languages.

Now the point | want to put to you iswhether ACCU should expand so
that those longer-term members whose careers have developed still have
aplacein ACCU.

| feel the answer should be yes but | am far from certain that |1 know
how we could achieve that. Of course thereis away in which such issues
are entirely academic for me but that does not prevent me from raising the
question and pondering about an answer.

Book Review Classification

One of the things that has grown by accretion is our book review system.
I think it is past time that we gave it agood shaking and decided the degree
to which it should change. To do this we must focus on why we review
books and why we add a classification to reviews on the website.

A book review carried out by a single reviewer is aways a personal
statement by that reviewer. As a reviewer | can choose to recommend a
book or tell youthat | think you should leaveit firmly ontheretailer’ sshelf.
Itisvery important that publishers of reviews are open to publishing second
reviewsthat arein radical disagreement with the first. The publisher must
aso willingly withdraw any statement that is factually incorrect.

Now asthe number of reviews grew and we started publishing them on
the web we started adding a recommendation. This was intended to help
people who lacked time to read al the reviews by steering them towards
ones they might find worth consideration. Unfortunately, astime has gone
by these recommendations have become increasingly perceived as either
an ACCU one or that of the reviewer (which sometimes they were). | find
that very dangerous. And it istime for change.

However my view isthat in that change we need to make it much clearer
that the any recommendation is that of a specific reviewer and not and
ACCU one. Thereviewson our website are not and never have been ACCU
reviews. |If we wanted to do that we would need a review panel and a
consensus devel oped before we published a recommendation. For books
that are already published we would never have the resources even if we
had the will.

For now | want you to think about theissues around thisonevery public
area of ACCU’s work. Should ACCU as a body ever endorse a book? If
so, how should we do it? In coming to an answer we must first understand
what we are doing. We must also understand what we can reasonably
deliver.

| have some very specific ideas about thiswhich | will present in alater
column.

Another Portable IDE

While searching for amulti-platform IDE for my next book | came across
JGrasp. Thisis an IDE explicitly developed for teaching purposes. The
developers are agroup at Auburn University. While the implementationis
in Java and the original work was done for assist with teaching Java, it is
multi-lingual aswell as multi-platform.

It supports aconsiderable range of C++ compilers and has some very nice
features. At the moment there are a number of flaws on the C++ side. For
example, it does not currently have asimpleway to give both asimplelibrary
path and enable use of third party libraries. It is fairly smple to modify the
scriptsto solvethat problem, and inthe next rel ease that will have been done.

| CVu/ACCU/Dialogue

In the meantime, if you have a moment have a look at it from
http://ww. j grasp. or g/ and let me know your thoughts about it.

And while | am thinking about it, can someone explain why G++ has
that horrible way of modifying file names on the command line (adding
‘lib’ to the start of alibrary name to determine the file name.)

Other Periodicals

Over the last few years there has been aterrible decimation of periodicals
for software devel opersover thelast few years. The highly specialised ones
such asthosefor the embedded software devel oper have managed to hang
onintheir niches. Dr Dobbs' Journal has survived the general carnage but
the breadth of its coverage means that for most readers only a few items
are of potential interest in any single issue.

CUJ (The C/C++ Users Journal) traces its origins back to being the
newsletter of the C User Group (aUS based group that was founded alittle
before ACCU —originally called CUG(UK) though it had nothing to do with
the US group). While CUG(UK) devel oped into the ACCU we havetoday,
CUG became no more than the tail on the CUJ body. Our periodicals serve
ACCU memberswhilst what isleft of CUG isasmall added value for CUJ
subscribers. | have not seen a copy of CUJ for some time but understand
that various changes have happened over the last couple of yearswhich have
culminated in Chuck Allison departing aseditor (and | notethat Bill Plauger
is no longer listed in its editorial staff). If anyone can provide details, or
better still write areview of CUJasit isin 2004 | would be grateful.

Now those who went to Chuck’ s Keynote at thisyear’ s conference will
know that he is heading up a new electronic publication specificaly for
C++. That has now gone live and you can see what is happening by visiting
http://ww. artima. com cppsource/

Now from the newest to the oldest (at least | think it is). Software
Practice and Experienceis currently in its 34" year of publication. Like
DDJ, it covers a very broad range, unlike DDJ it is a genuinely peer
reviewed ‘academic’ publication. Unfortunately it is extremely expensive.
Through the early 90s it tended, in my opinion, to be too academic in the
prose style of its contributions. Thisresulted in thousands of words of turgid
prose whose aim seemed to be to hide great information behind text that
did everything but assist in communication. Either this has greatly
improved over the last few years or | have become better able to handle
the academic prose style.

A New Sort Algorithm

The last of the four papers in the current issue of SP&E (Vol. 34, No 8)
concernsanew sort functionfor the C Library. Thisisagenerally excellent
paper on asort algorithm with a performance of O(nlogn), | wasirritated
by the author’s lack of understanding of what the C Standard actually
requiresof itsqsor t () function. The author seemsto make the common,
but erroneous, assumption that gsort () implements some variation of
Hoare's Quicksort. It does not. | have little doubt that many
implementations of the C Library do in fact use Quicksort but nowhere
does the Standard require that to be the case. Actually the author seemsto
assert that qsort () will normally be the Bentley and Mclliroy
modification of Quicksort.

Asl read through the paper my irritation grew. Asthe opening sentence
of the section titled * Conclusions’ begins ‘So far, all sort library functions have
been based on Quicksort, ...’ . Such assertions have no placein an academic
paper.

Why doesthis matter? Well apart from perpetrating an error it a so might
lead peopleto believe that a Standard C Library could not use the author’s
(Jing-Chao Chen) Proportion Extended Sort. However a library
implementor can use any sort that meets the very limited criteria provided
by the C Standard. C++ is rather more demanding in its requirements for
std::sort (), however even those have been outdated by the
development of ahybrid sort in the late 1990s.

| have no doubt that Proportion Extended Sort is a worthy addition to
the catalogue of available sorting algorithms and that generally an
implementor would be advised to select it in preference to any of the
variants of Quicksort that are frequently used to implementgqsort () .
Knowing that it exists enables ordinary programmers to point to it when
asking for a better library implementation. If you are interested you can
get the code from: http://ww. dhu. edu. cn/ dhuwangye/
kxyj/psort.htm

However | should warn you that the code is not exactly the kind of
portable code that | would expect from a fully competent C or C++
programmer.

CVu/ACCU/Dialogue

Commentary on Problem 15

Hereisthe code again:
#i ncl ude<i ostr eanw
#i ncl ude<cst di o>
usi ng nanespace std;

mai n() {
int n;
int waste;
char name[51];
cout << "Enter any integer nunber...\n";
cin >>n;
cout << "Enter your nanme...\n";
cin >> waste; // 'gets' does not read the
// name if this line is omtted.
get s(nane) ;

Experienced C++ programmers will immediately spot the problem; the
programmer has hacked out asolution to it. The code mixes different forms
of access to the standard input stream (aka, console input). After getting
the value for n there will be, at a minimum (unless the programmer uses
that horrible* Ctrl Z' for Windowsor * Ctrl D’ for Unix (and variants) which
is, in my opinion, one of the few blots on Accelerated C++) a newline
character left in the input buffer. Using any of get s(), fgets() or
getline() will read that character and stop.

The hack that the programmer has come up with isto try to read a
number. Now that read will succeed if the user carelessly typesin anumber
before entering their name on the same line. Or it might fail because the
next non-whitespace character read from st di n is not a digit or a
plus/minus sign. However whichever happens (aslong as the number isn’t
on the same line as the integer entered for n) the newline character
terminating the previous input has been consumed.

Now either get s() or f get s() will correctly read the following
whitespace terminated entry. However all versions of the C++ get | i ne
will fail unlessthe user actually did providewast e with anumerical value.
Thereason being that st d: : ci n will now bein afail state and so ignore
al input requests.

The positive aspect of thisexampleisthat the original programmer had the
sense to ask why his hack worked. However the warning is that learning to
program ismuch morethan just getting code to compileand producetheresult
you expect. Itisessentia that the programmer understandswhy the codeworks.

Problem 16

Comment on the following both as Java and as C++.
Have a look at the following tiny function. The problem is insidious; the same
code is legal in Java and does exactly what you want, while in C++ it
compiles without error.
string to_string(int
if(n ==0) {
return "NULL";
}
el se {
return "" + n;

}

n) {

}
Cryptic clues for numbers

Last time | gave you:

Sounds like a perfect result when a score dine together. (2 digits)
Perhaps it was too tough for most of you, as | have had no responses.
Perhaps the clue needs abit more polishing. The answer is 28 which isthe
second perfect number (anumber which isthe sum of all its proper divisors;
28=14+7+4+2+1). Aloud that soundslike ‘twenty ate’. However the
positioning of the ‘sounds like’ in the clue is wrong. Perhaps a better
version would have been:

Sounds like a score dining together was a perfect result.
Taking abasicideafor aclue and honing it takes both time and experience.
The latter | have but the former was lacking last time. My apologies.

Now, try this one:

Looking to two fat ladies for a solution? Too gross!
When you have the answer see if you can provide either a new clue or
improve my one. Asan incentive | will send the author of the best clue (in
my judgement) a copy of The Elements of C++ Style

Francis Glassborow

7

Student Code Critique
Competition 29

Set and collated by David A. Caabeiro <scc@ccu. or g>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers’
comments and criticisms of published entries are always welcome.

Before We Start

Thanks to the helping hand given by our editor and by a member of the
committee, I’ ve been able to get my hands on the only two entries for the
current issue. It's quite sad to receive collaboration from people who
contribute to ACCU in many other ways, and not from you. Being a 1000+
members association, if roughly 0.5% of the members participated, there
could be plenty of material to provide food for thought. Pleaselet us change
this statistic for the better.

Remember that you can get the current problem set in the ACCU
website (ht t p: / / www. accu. or g/ j ournal s/). Thisisamed at
people living overseas who get the magazine much later than membersin
the UK and Europe.

Late submission to SCC 27
From Tony Houghton <h@ eal h. co. uk>

Let’sstart by solving theimmediate problem. If pf () encountersaprime
number it returnsan “empty” array i.e. thefirst element is zero. Thismeans
that the body of thewhi | e loopinmai n() isnot executed and theugl y
flag isnot altered; it retainsits value from the previous number in the range,
which is often ugly, at least for low ranges. The solution is therefore to
reset the ugl y flag to zero in each iteration of the enclosing f or loop.
Immediately before or after thel i ne idx = 0; isideal.

However, the code is still not performing the correct test. It only proves
whether or not thelast factor in thearray isugly, not thet they all are. Thismay
work with the defined set of ugly factors and because of the order in which
pf () fillsitsarrays, but we should rewrite the test instead of relying on this.
It's easiest to prove that a number is not ugly, so we'll start by assuming it is
until wefind anon-ugly factor, not forgetting theinitial problem with primes.

But we have something else to take into account: 2, 3 and 5 are prime,
s0 pf () will return an “empty” array and the test will not realise they’re
asougly. We could deal withthisinpf () by copyingquot i ent 'sinitia
value from the variable number rather than O, but this leads to an
inconsistency when thepf () functionisconsidered initsown right: prime
numbers have themselves listed as afactor, other numbers don't.

As we're also excluding the number 1 as a factor it makes sense to
continue to exclude the number itself and explicitly check for 2, 3and 5in
our test. Thusthe main f or loop becomes:

for(n = start; n < stop + 1; ++n) {
idx = 0;
flist = pf(n);
if(flist[0] == 0 & n > FIVE) ugly = O;

el se ugly = 1,

while(flist[idx]) {
if(flist[idx] !'= TVWO &&
flist[idx] !'= THREE &&
flist[idx] !'= FIVE) {
ugly = 0;
}
++i dx;
}
if(ugly == 1)
printf("%\n", n);
free(flist);
}
Now to give the code a complete makeover, starting from the top and
working down:

Thefirst issue we encounter isanumber of preprocessor macros. Macros
should only be used for jobs that nothing else can do, but these can be

8

replaced with const i nt and/or enum Furthermore, the purpose of
replacing “ magic numbers’ with named constantsisso that if the values need
to be changed they only need to be changed in one place. If we want to
change this program to deal with a different set of ugly factors, the current
names of the constants will be very confusing; if we don’t ever want to
change it the names are redundant. |’ ve rewritten these constants as:

const int MaxFactors = 20;

/* Max nunber of prime factors to find */
enum Ugl yFactors {

Ugl yFacl = 2,
Ugl yFac2 = 3,
Ugl yFac3 = 5
}
(Sorry about the pun).

Next we have a prototype for pf () . The nameisfar too terse, let's make
it more descriptive: pri me_f act or s() . The function is only used in
the same source file, so it should be declared st ati ¢c. I'm not sure
whether the student has covered linkage types yet, but | think it's a
relatively straightforward concept and a good habit to learn early.

It appears to be common practice to declare all function prototypes in
advance and define static functionstowardsthe end of afile. However, | prefer
to avoid separate prototypes except in headers on the grounds that they area
form of repetition. Therefore I’ ve brought the body of the function forward
to this point. The comment that precedes it should highlight any points of
interest about its parameters and return value — in this case that it returns an
array that’ s been allocated on the heap and that the array is zero-terminated.

Inside the function I’ ve separated the variable declarations because
i nt* andint areactually two quite different types and it's considered
bad form to make them share the declaration with commas. | also prefer to
give all variables their own distinct declarations unless two or more are
closely related and have no initialisers.

| also decided to use the variable name i instead of i dx. Thereis an
argument for short variable namesaswell aslong descriptive ones, and while
i dx was a good name to start with, being concise but still meaningful to
amost any programmer, | alwaysusei for the (primary) array index in loops
myself and sticking to that convention makes the code more readableto me.

I’ve changed thewhi | e loop conditionto(di vi sor <= nunber); |
think it’ slessclutter than theoriginal. But we should a so check that we haven't
exceeded the array bounds. If weredlly want to know al the primefactorswe
should extend the array when necessary or come up with arough figurethat's
guaranteed to be an overestimate — e.g. the upper limit of the range given to
the program —and makethe array thissizein thefirst place. However, for this
purpose it’s adequate to return when the array is filled, remembering to leave
room for the terminating zero —which does not need to be inserted explicitly
because of theuseof cal | oc instead of mal | oc. Thecomplete conditionis
now (di vi sor <= nunber && i < MaxFactors - 1).

| noticed that it's possible for the same factor to be entered more than
oncein thelist if its square is also afactor e.g. 2 will appear twice if
nunber is8or 12. We can prevent this by checking whether the previous
entry is equal to the one we' re about to add — remembering that if i isO
we mustn't try to check el enent - 1:

if(i =0 || flist[i - 1]

flist[i++] = divisor;
| dso have arule about braces around single statements such asasimplei f
or f or body. Although these are optiona | often include them, especidly if:
1. the parent statement, e.g. ani f conditional, islong and I’ ve wrapped
it to fit my editor window — the indentation makes it difficult to
distinguish the conditional from the body otherwise
2. it'sani f or el se clause and its sibling clause needs braces
3. there's any possibility that the statement is a macro which could be
switched off e.g. an assertion or extralogging in debug builds. | mention
al thisbecause I’ ve applied rule (2) to the el se statement here
Next |'ve done some refactoring. Breaking programs down into smaller
functions almost invariably makes them more readable, and providing a
function to test whether a given number isugly isalogical step. The body
of thisfunction is pretty much as above except that | replaced thewhi | e
loop withaf or loop. Also, bearing in mind being able to change the values
of the Ugl yFac constants, it’s unsafe to assume that there are no non-ugly
primesbelow Ugl yFac 3, so we should test against each of them instead
of testing whether n > Ugl yFac3.

I’'vegiven mai n() acomment about itsarguments, which isbasically
an alternative to the “enter a range” comment which | thought was
misleading: it implied the range would be read from st di n rather than

I'= divisor)

CVu/ACCU/Dialogue

arguments. Again |’ ve separated the variable declarations. |’ ve kept the
variable name n because it’sideal for aloop variable describing a number
other than an index, but I’'verenamed st art and stop tofirst and
| ast , which | think makesit clearer that the rangeisinclusive. Thef or
loop terminating condition is again changed to use <= instead of <

Just acouple of minor semanticsremaining. Asugl y isabooleanflag,
| prefer towritei f (ugl y) andi f (! ugl y) rather thani f (ugl y==1)
and i f (ugl y==0) . And aswe're using EXI T_FAI LURE we might as
well use EXI T_SUCCESS too. Hereismy first complete rewrite (keep on
reading for my description of adlightly different approach to the problem):

/* Find "ugly nunbers": their prine factors
are all 2, 3 or 5 */

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

const int MaxFactors = 20;

/* Max nunber of prinme factors to find */

enum Ugl yFactors {

Wl yFacl = 2,
Wl yFac2 = 3,
Wl yFac3 = 5

h

/* Returns a zero-termnated array of nunber's
prime factors, allocated on the heap */
static int *prine_factors(int nunber) {

int *flist;

int quotient = 0;

int divisor = 2;

int i = 0;

flist = calloc(MaxFactors, sizeof(int));

whi | e(di vi sor <= nunber

&% i < MaxFactors - 1) {
i f(divisor == nunber) {
flist[i] = quotient;
br eak;
i f(nunmber %divisor == 0) {
if(i == 0 || flist[i - 1] !'= divisor)
flist[i++] = divisor;
quotient = nunber / divisor;
nunber = quoti ent;
}
el se {
++di vi sor;
}
}
return flist;

}

/* Returns 1 if nunber is ugly, otherwise 0 */

static int is_ugly(int nunmber) {
int i = 0;
int ugly;
int *flist = prine_factors(nunber);
if(flist[0] == 0 && nunber != Ugl yFacl
&& nunber !'= Ugl yFac2
&& nunber != Ugl yFac3) {
ugly = 0;
}
else {
ugly = 1;
}
for(i =0; flist[i]; ++i) {
if(flist[i] !'= UglyFacl &&
flist[i] !'= UglyFac2 &&
flist[i] !'= UglyFac3) ({
ugly = 0;
}
}

| CVu/ACCU/Dialogue

free(flist);
return ugly;

}

/* Range is given in arguments */
int main(int argc, char **argv) {
int n;
int first, |ast;
if(argc !=3)
exi t (EXI T_FAI LURE) ;
first = atoi(argv[1]);
last = atoi(argv[2]);
for(n =first; n <= last;
if(is_ugly(n))
printf(“%\n”, n);
}

return EXI T_SUCCESS;

++n) {

}

This solution works, but is not the most efficient. We don’t actually need
tolist al the primefactors of ugly candidates, just check them until wefind
afactor that proves the number isn't ugly, again taking care not to pass
primes as false positives. Therefore the pri me_f act or s function can
bedeletedandi s_ugl y() replaced with the version below.

/* Returns 1 if a nunber is ugly, O if it
isnt */
static int is_ugly(int nunber) {

int divisor = 2;

int ugly = 0;

for(divisor = 2; divisor <= nunber;
++di vi sor) {
i f (nunmber % divisor == 0) {

i f(divisor % UglyFacl '= 0 &&
di visor % Ugl yFac2 !'= 0 &&

divisor % UglyFac3 !'= 0) {
ugly = 0;
br eak;
}
el se {
ugly = 1;
}

}
}

return ugly;

}

Student Code Critique 28

Program 1

I’'mnewbieto C++ and | would liketo know which would be the best (el egant
and correct) solution for thefollowing small (string) read problemwithget s.

#i ncl ude <i ostreanr
usi ng nanespace std;
#i ncl ude <cstdi o>

mai n() {
int n;
int waste; // needs this to work (read)
/] properly!!
char nane[51];
cout << "Enter any integer nunber...\n";
cin >>n;
cout << "Enter your name...\n";
cin >> waste; // 'gets' does not read the

/1 name wi thout this linel!
get s(nane) ;

}
Mixing C and C++ functions doesn’t seem the best way to write this

program. Please provide aternatives, taking also into account its security
implications.

9

Program 2

If | enter 23 and 5 the answer should be 23 * 5= 115 my answer is off by
five or whatever number 2 is. | was told | am not including the first two
numbersin the loop. | thought when | cin the numbersit isincluding them.
Does anyone have any suggestions on how | can fix this?

#i ncl ude<i ostr eanw
#i ncl ude<i omani p>

#i ncl ude<string>

usi ng nanespace std;

int main()
while (1){
int numl, nun®, total = O;

cout <<"Enter two nunbers: “;

ci n>>nunil>>nun?;

while (numl !'= 1)

cout <<set W 5) <<nuni<<set W(5) <<nun<<endl ;

numl /= 2;

numg *= 2;

if (numl %2 !'= 0)
total += nung;

}

cout<<"the total is
} //End Wiile 1

"<<total <<endl;

return O;

}

Thereare numerous errorsin both the code and the student’ s understanding.
Please address these comprehensively.

From Paul F. Johnson <edi t or @ccu. or g>

Program 1
If I ignore the obvious mistake of not havingi nt before mai n() , there
are acouple of problems with the code.

Firstly isthe use of get s —it’salicence for things going wrong with
undefined behaviour the most obviousto occur asachar array isbeing
used to store the person’s name. A far better solution would be for the
name to be stored in ast d: : st ri ng variable which does not have a
boundary (well, not in the same way as a char array does!). Buffer
overflows account for more and bloodier problems with security than
enough.

Thereis also aproblem with the entry of the number —asit stands, itis
possible for the user to enter just about anything they want as there are no
forms of bounds or type checking.

Finally, we have the “dummy” use of another variable which isn’t
required (and again, can lead to problemswithout checking for the correct
type). The stream can be cleared by use of ci n. i gnor e.

By the simple application of ci n. fai |l () andci n. getline(),
the code can be transformed into something which (a) works and (b) is
relatively secure.

A solution may be along the lines of

#i ncl ude <i ostreanr

#i ncl ude <string>

usi ng nanespace std;

int main() {
int n;
string nane
cout << "Please enter a nunber : ";
while(cin > n, cin.fail()) {
cout << "I need a nunber!"”
cin.clear();
cin.ignore(nunmeric_limts<
std::streansize> :max(), '\n');
/1 non conpliant conpilers may conpl ain
Il here. If they do use cin.ignore();
}
cin.ignore(nunmeric_limt<
std::streansize>: :max(),

<< endl;

"An');

10

"

cout << "Please enter your nane : ";
cin.getline(nane, '\n");
cout << "Nunber : " << n << ", nane : "

<< nanme << endl;

As newbie code goes, the original wasn’t that bad. It was well laid out
(which made debugging simpler) and contained many of the problems
faced by anewbie where the most obvious answer isnot always the correct
one.

Program 2

First, the easy ones...

#i ncl ude <string> isnot required and somewhere, an open{ is
missing. This second problem would have been obviousif the student had
bothered to try to compile the code!

| next cometo theset W() calls—what are they there for? We are
dealing with integersin numil, nun® andt ot al , therefore using set w
does seem to be a bit of awaste!

There doesn’t seem to be acheck on the entries either. Thereis nothing
to stop the user entering # and @for the numbers (or even CVu and
Overload for that matter!).

The next couple of faults arein thelogic. To start, we have the line

nunt /= 2;

If the user enters 0, theresult valueinnumil will be 1 which will throw the
answer.

Theline

if(nunl %2 !'= 0)
really isbemusing! What isthe point of it? Why does the program have to
check if numlisdivisible by 2 with a0 remainder? [The student is trying to
implement a Russian peasant multiplication algorithm. The point is to discriminate
whethernun is even or not. David

Finaly,t ot al only seemsto be having nun® added to it (and even
then, only as aresult of a condition); numl doesn’t seem to be used
anywhere other than as an entry. It istherefore completely possible for the
user to be enter as many numbers as they like without the correct answer
coming out ever.

Fixing the problem issimple—it requires being rewritten. Unfortunately,
the student hasn’t actually said what the question was, soit isatad pointless
trying to second guess what the original problem set was.

From Mark Easterbrook <mar k@ast er br ook. or g. uk>

Program 1

As suggested in the problem, mixing C and C++ |/O is not the best way to

write this program. As you are learning C++, it is best to replace the C-

type parts with C++. This requires two changes:

Change “char name[51] " to“string nane” (thiswill require
an #i ncl ude <stri ng> tocompile). It isnearly aways better to use
oneof the C++ collectionsrather than an array. InthiscaseaC++st ri ng
type will automagically expand to the size of the input name so you have
one less thing to worry about.

Use C++i st reaminstead of get s() : ci n << nane. Thewast e
varigble and input is no longer required, nor isthe#i ncl ude <cst di 0>.

It isworth pointing out a number of improvements that can be made to
the code. nai n awaysreturnsani nt so this needsto be specified: i nt
mai n() .

usi ng namespace st d will import thewhole st d namespace. It is
often better to only import names you actually need, or to qualify every use.

Single character variable names are often frowned upon. Think how
difficult it would be to search for all uses of the variablen in alarge
program!

At this point we have “fixed” the program and could let it rest, but it is
worth looking at why get s() isbad, evenin C code. get s() will read
an unknown number of charactersintoaC string (char * orchar[]) of
predetermined length, thereforeit is possible to read more characters than
are alowed for. Thisis called “buffer overrun” and accounts for many of
the security holes in software. The result of such a buffer overrun could
be:

« It writes over memory allocated but not used by the program. No
amount of testing will show this up so the bug can remain hidden until
something else changes: a different compiler, adifferent platform, or a
simple code change somewhere else in the program.

e It writes over memory not allocated to the program. If you are lucky
your operating system will detect this and stop the program.

CVu/ACCU/Dialogue

» |t overwritesmemory used by the program. This causes the program to
malfunction, and possibly later crash. Thiswill bevery difficult to track
down.

» |t overwrites memory used by the program in such a way that the
program does something completely different to that originally
intended. If you are unlucky you are connected to the internet and this
alows a stranger access to your computer!

As you cannot use get s(), what should you use instead?

There are a number of options:

Use f get s() to read up to aline of input. It takes as parameters a
pointer to the input buffer (likeget s), amaximum number of characters
(which prevents buffer overrun), and afile descriptor (e.g. st di n). ltwill
stop reading either when the maximum number of characters are read, or
at anew line character.

Use scanf () withthe 9% format string specifying a maximum length.
For example, %60s will read amaximum of 50 characters (plusaterminator!).

Input characters one at atime using get char () orgetc().

You will need to read the documentation for each of these to see
which meets your needs best. Each has different rules asto when it stops
reading.

Program 2

Note: The program as presented will not compile because the inner loop
has a closing brace but no opening brace. This can be corrected by adding
the opening brace after the while expression. | have assumed thisisjust a
printing error. [Actually the student provided the code as is. David|

I will take aguessthat the problem set isto perform multiplication using
binary arithmetic by adding in 2n x the second number for each bit set in
thefirst. E.g. 23*5is 10111 x 510 = 80+0+20+10+5.

The algorithm you have chosen is to shift the first number right bit
by bit, testing the least significant (right-most) bit, while at the same
time left-shifting the second number to obtain the powers of 2. Thisis
almost correct, but the first value of nunm? you are adding to the total
has already been shifted, whereas it can be seen from the example
above, the first addition should be the original entered value (5). This
iswhat is meant by “...not including the first two numbers...”. If you
move the add-to-total to the beginning of the loop, then the total will
be accumulated as 5+10+20..., which is what we want. We have now
fixed the start-up conditions, so let’s check the exit condition. We want
toinclude al the bits from numl, so we want to continue the loop while
there are still bits to process, in other words, whilenuni isnot all zero
bits. The current test (nunil! =1) does not do this, it will stop with
thelast bit still not processed. Let’ s change the conditionto (numni =0)
and give the program a test:

Enter two nunbers: 23 5
23 5
11 10
5 20
2 40
1 80
the total is 115

We now have a working program, but the code does not quite capture
the intent: it is required to demonstrate how binary multiply can be
performed by shift and add operations, but there are no shifts! Although
we know that in C and C++ n/ 2 isequivalent to n>>1 and n* 2 is
equivalent to n<<1, using the bit shift operators would illustrate the
intent more clearly. Similarly testing the least significant bit would be
better as a mask and test rather than the remainder of adivide. Finaly,
the source code would benefit from some comments to explain what it
isfor.
Thus we end up with:

#i ncl ude <i ostreanp
#i ncl ude <i onani p>
#i ncl ude <string>

usi ng namespace std;
/1 Performbinary multiply of two integers

/1 using shift and add. The total is built up
/1 by adding the matchi ng power of two from

CVu/ACCU/Dialogue

/'l the second nunber for each bit set in the
/1 first bit. Bits are tested in the first
/1 nunber by testing the LS bit and shifting
[/ right. The powers of two of the second

/'l nunber are generated by shifting left on
/1 each iteration

/l e.g. 23(10111)*5 =80 + 0 + 20 + 10 + 5
/1 (sumred in reverse order).

int main() {
while(1) {
int nunl, nun®, total =0;
cout << "Enter two nunbers: ";
cin >> numl >> nung;
while(numl !'= 0) {
cout << setw5) << numl
<< setwW(5) << nunR << endl;
i f((numl&0ox01l) !'= 0)
total += nun®;
numl >>= 1;
num <<= 1;
}

cout << "the total is "

}

return O;

<< total << endl;

}
The Winner of SCC 28

The editor’s choiceis:

Tony Houghton
Please email f r anci s@ obi nt on. denon. co. uk toarrangefor your
prize.

Francis’ Commentary

For my comments on the first little program for SCC28 see my Francis
Scribbles column elsewhere (working late and meeting deadlines resulted
in my sending David some code | had already used in my column.
Fortunately that does not matter too much.)

Here is my commentary on the second little program.

#i ncl ude<i ost r ean
#i ncl ude<i omani p>
#i ncl ude<string>

usi ng nanespace std;

int main() {
while(1) {
int numl, nun®, total = O;
cout << "Enter two nunbers: ";

cin >> nunml >> nung;
while (numl !'= 1) {
cout << setw(5) << nunil
<< setwW(5) << nunR << endl;

nunl /= 2;
nun *= 2;
if((num %2) !'=0) total += nung;
}
cout << "the total is " << total << endl;

} /] End Wiile 1
return O;

}

First, in the above restatement of the program | have reformatted the code
to makeits structure more visible. Now let me focus on that structure before
turning to the root of the problem.

Prepare For Exceptions

| strongly advocate that the default form of the definition of mai n()
should encapsulateits codein at r y block. That seemsto meto beagood
discipline for students as soon as they are conscious that errors may occur
at runtime that result in an exception. Indeed they should be encouraged
to validate such things as input and exceptions make it easy for them to
have a default action when validation fails. So | would start with:

11

int main() {

try {
/1 main code

}

catch(...) {
cerr << "An exception occurred.\n";
return EXI T_FAI LURE;

}
return EXI T_SUCCESS;

Now that isafixed framework and it isn’t even tedious to type because
you just copy and paste it from a text file of standard bits of source
code.

Repetition of Process

The first problem with the student’s code is that it has no termination. He
putsit all in aforever loop without any internal exit. | have no problem
with forever loops (except that | usewhi | e(t r ue)) aslong asthey have
an internal exit (that is unless you are writing a process which must
continue until the machine is switched off). In this case | would write
something such as:
while(true) {
/1 main process

cout << "Do you want another? (y/n)";
char yn;

cin >> yn;

if(yn =='n" || yn == "N) break;

}

Now we can argue about the details but the general idea should be
considered as an idiom of programming (not just C++).

Appropriate Variable Names

Asan ex-mathsteacher | quickly recognised thea gorithm being implemented
by this program (goes under several names, try using Google to search for
‘Russian Peasant Multiplication’) but the variable names were not helpful.
Let me suggest some others and polish up the code whilst | am &t it.

cout << "Enter the pair of nunmbers you want

<< "to nultiply together:

int rmultiplicand(getint());

int multiplier(getint());

i nt product(0);
Now the variable names give a hint as to what is being done. Validation
and handling bad input isall handled by theget i nt () function. Actually
I would use my r ead() set of templates but that is just a convenience.
However avoiding repetitious coding whilst always validating input should
be learnt from the very beginning.

Getting the Right Test

Now we get to the actual reason the program does not work. Look at that
inner whi | e loop. Look at the test. Surely thisistoo early, or it is the
wrong test because it failsimmediately if the multiplicand isone. In other
words multiplying one by anything will give a product of zero. There are
severa solutions but | would prefer:

whi l e(mul tiplicand)
or if you do not like that form:

whil e(nmul tiplicand !'= 0)

Getting the Right Order of Statements

For the algorithm (which is effectively using binary for multiplication) we
add in the current value of the multiplier into the product if the current
value of themultiplicand isodd (i.e. would end in onein binary), then the
multiplicand is halved (shifted left) and the multiplier is doubled (shifted
right). The order of these operationsisvital and isthe second point of error
inthe student’ scode. Leaving aside the display of theinterim results, which
| would have preferred to see include the interim value of the product in a
third column) the meat of the algorithm is coded as:

if(multiplicand % 2) product += nultiplier;

multiplicand /= 2;

multiplier *= 2;

Putting It All Together

Here is my complete program (well | have left out the front matter of
headers and using directive):

12

int main() {
try {
while(true) {
cout << "Enter the pair of nunbers you "
<< "want to multiply together: ";

int multiplicand(getint());
int multiplier(getint());
int product(0);

while(rmul tiplicand) {

cout << setw(5) << nultiplicand
<< setwW(5) << nultiplier
<< setw(10) << product
<< ‘\n’;

if(multiplicand % 2)

product += nultiplier;
mul tiplicand /= 2;
multiplier *= 2;

}
cout << "The product is " << product
<< ".\n\n";
cout << "Do you want another? (y/n)";
char yn;
cin >> yn;
if(yn =="n" || yn == "'"N) break;
}
}
catch(...) {
cerr << "An exception occurred.\n";}

return EXI T_FAI LURE;

}
return EXI T_SUCCESS,

Notethat the depth of nesting for structures suggests that some refactoring
into functions might be desirable. | would probably make the outermost
loop a do-whi | e one and use the return value from a function asking
about repeating the processin thewhi | e. Something like:

do {

/'l process

whi | e(do_agai n());
| would also move out the display of the intermediate results to afunction.
| would also probably replace the computation block with afunction call,
but that is much more marginal because all the arguments have to be passed
by reference and | doubt that we get much more clarity in exchange for
using afunction.

Now do feel freeto comment on the coding style and anything el sethat
you want to criticise. Remember that this column is supposed to be akind
of seminar and not alecture.

Student Code Critique 29
(Submissions to scc @ccu. or g by September 10th)

Looks like an ordinary snippet, doesn’t it? Amazingly, it contains various
mistakes for such afew lines. Please provide a correct version.

#i ncl ude <i ostreanp
using std::cout;
using std::endl;

#i nclude <list>
using std::list;

int main() {

| i st<double>::iterator it;
| i st<doubl e> | st;

*it = 34;

*++it = 45;
*++it = 87;
it = Ist.begin();
for (;it < Ist.end();

cout << it << "\t'
}

systen("pause");
return O;

++it){
<< *it << endl;

| CVu/ACCU/Dialogue

Features

Professionalism in
Programming #27

And Now For Something Completely
Different...

Pete Goodliffe <pet e@t hr ee. or g>

Isit that time already? Thisisthe 27th column in the professionalism series.
It's been running for 4%2 years now, in which time it's established itself as
a part of the furniture. You either take it for granted and have learnt to
carefully ignoreit, or you diligently read and inwardly digest every word.
Well, now it's time to break with tradition, and also to see how much
attention you’ ve been paying all these years.

The series index beside this article provides an overview of the
secluded tributaries we' ve explored in the vast software development
waterways. In this article we'll revisit some of this ground in a more
interactive manner. It’s your chance to see how ‘professional’

OjoohotadJo a)

before crossing the road? Do you eat your
greens? Do you check for every potential
error in your code, no matter how
unlikely?
How easy isit to do thisthoroughly?
Do you forget to think about errors?
b) Are there any ways to help yourself
write more thorough defensive
code?

Layout of Source Gode (C Vu 12.2, April 2000)

This first ever professionalism column looked into the contentious topic

of source code layout, demonstrating that consistency is more important

than any one particular coding style. We concluded that holy wars over

topics like this are pointless and unprofessional. So:

1. Should you alter the layout of legacy code to conform to your latest
code style? Isthis avaluable use of code reformatting tools?

2. One common layout convention isto split source lines at a set number
of columns. What are the pros and cons of this approach?

you really are. 3 A A A
Here' sthe game plan: for afew of these past topics| have posed PfOfﬁSSlonallsm in Programmlng Index
some thought-provoking questions for you to mull over. Some are
purely factual, some are more personal, probing your personal | Thisisacomprehensive catalogue of the professionalism series to date.
development practices and those of the team you work in. Consider
them and answer asfully and honestly asyou can. Thenturntothe | No CVu Title/description Date
end of the article, where | provide my musings on each question. | [1 12.2 Layout of Source Code April 2000
won't beso bold asto claim thisisadefinitiveanswer set, butmore [2 12.3 TeamWork June 2000
of agentle exploration of each problem. 3 124 Being Specific August 2000
You'll only get out of this exercise as much as you' re prepared Writing software specifications
to put in. So grab a cup of coffee, find a comfy chair inaquiet | 4 125 Code Reviews October 2000
corner, and it’'s eyes down for afull house... 5 126 Documenting Code December 2000
. 6 131 Good Design February 2001
Questions 7 13.2 Practising Safe Source April 2001
First, here arethe questions. Spend awhile considering your answer Source control systems
to each one before you move on to the following section. 8 13.3 TheProgrammer’s Toolbox June 2001
. . 9 134 Software Testing October 2001
Defensive Programming (C Vu 13.5, August 2001) 10, 135 Defensive Programiming August 2001
In this article we looked at the need for a ‘defensive’ approach | 11 13.6 Software Development: Fantasy, Fiction or Face December 2001
to programming, learnt to assume nothing, and investigated some A cautionary parable for software developers
practical defensive coding techniques. We saw how to use | 12 14.1 Recipe For aProgram February 2002
constraints effectively, as typified by C'sassert macro. Softwar e devel opment methodol ogies
However: 13 14.2 How LongisaPiece of String? April 2002
1. Could there be such a thing as too much defensive Softwar e time-scal e estimation
programming? 14 143 Thereand Back Again June 2002
2. Should assertions conditionally compile away to nothing in Personal devel opment
production builds? If not, which assertions should remainin | 15 14.4 The Outer Limits August 2002
release builds? Overview of programming disciplines
3. Should the defensive checking of pre- and postconditionsbeput | 16 145 What'sin aName? October 2002
inside each function, or beside each important function call? Naming program elements appropriately
4. Are constraints a perfect defensive tool? What are their | 17 14.6 The Code that Jack Built December 2002
drawbacks? Code build systems
5. Can you avoid defensive programming? 18 15.1 Engineering aRelease February 2003
a) If you designed a better language, would defensive Thereal software development process
programming still be necessary? How could you do this? | 19 15.2 A Passing Comment April 2003
b) Does this show that C and C++ are flawed because they Writing effective code comments
have so many areas for problems to manifest? 20 15.3 Software Evolution or Software Revolution? June 2003
6. What sort of code need you not worry about writing defensively? How software grows over time
7. When you document a function, do you state the pre- and | 21 15.4 Software Architecture August 2003
postconditions? 22 155 Finding Fault October 2003
a) Arethey alwaysimplicitinthedescription of what it does? Debugging your programs
b) If there are no pre/postconditions do you explicitly [23 15.6 To ErrisHuman December 2003
document this? Managing error conditions
8. Many companies pay lip service to defensive programming. | 24 16.1 The Need For Speed (Part One) February 2004
Does your team recommend it? Take alook at the code base — Optimisation series
do they really? How widely are constraints codified in |25 16.2 The Need For Speed (Part Two) April 2004
assertions? How thorough isthe error checking in each function? | 26 16.3 The Need For Speed (Part Three) June 2004
9. Areyou naturally paranoid enough? Do you look both ways | 27 16.4 And Now For Something Completely Different... August 2004
CVu/ACCU/Features 13

3. How detailed should areasonable coding standard be?

a) How serious are deviations from the style? How many limbs should
be amputated for not following it?

b) Can such aspecification becometoo detailed and restrictive? What
would happen if it did?

4. |Is good code presentation or good code design more important?
Why?

5. Do you write in a consistent style?

a) When you touch other people’s code, what layout style do you
adopt — theirs or your own?

b) How much of your coding style is dictated by your editor’s auto-
formatting? Is this an adequate reason for adopting a particular
style?

6. Tabs: are they awork of the devil, or the best thing since dliced bread?
Explain why.

a) Do you know if your editor inserts tabs automatically? Do you
know what your editor’ s tab stop is?

b) Some hugely popular editors indent with a mixture of tabs and
spaces. Does this make the code any |ess maintainable?

¢) How many spaces should atab correspond to?

7. Grab atext editor and have ago at this bit of C++, it calculates the nth
prime number. It swritten in one particular coding style. Have a crack
at presenting it as you'd like to see it. Don't try to change the
implementation at all.

/* Returns whet her
bool

numis prinme. */

isPrime(int num) {
for (int x =2; x &t; num ++x) {
if ('(num%x)) return fal se;
}
return true;
}
/* This function calculates the 'n"th prine
nunber . */
int
prinme(int pos) {
if (pos) {
int x = prine(pos-1) + 1;
while (lisPrine(x)) {
++X;
}
return x;
} else {
return 1;
}
}

What's in a Name? (C Vu 14.5, October 2002)

Thisarticle showed theimpact of good naming on the quality of our source

code, and demonstrated practical naming techniques for many common

code constructs. What do you think about these issues:

1. Arethese good variable names? Answer with either yes (explain why,
and in what context), no (explain why), or can't tell (explain why).

a) int num appl es
b) char foo

c) bool num_ appl es
d) char *string

e) int | oop_count er

2. When would these be appropriate function names? What return
types/parameters might you expect? What return types would make
them nonsensical?

a)dolt(...)

b) val ue(...)
c) sponge(...)
d) isApple(...)

3. Should a haming scheme favour the easy reading or easy writing of
code? How would you make either easy?

4. What do you do when naming conventions collide? Say you' reworking
on camel Case C++ code, and need to do STL (using_underscore) library
work. What' s the best way to handle this situation?

14

5. If assert isamacrowhy isitsnamelower case? Why should we name
macros so they stand out?

6. Long calculations can be made more readable by putting intermediate
resultsin temporary variables. Suggest good naming heuristicsfor these
types of variable.

7. Do you have to port code between platforms? How has this affected
filenames, any other naming, and the overall code structure?

A Passing Comment (C Vu 15.2, April 2003)

Thefinal articlewe’ Il exhumelooked at how to write code comments. We
learnt what makes a good comment, how to avoid pointless and intrusive
comments, and how to use comments to help us write source code. Given
this, then:

1. How might the need for and the content of comments differ in the
following types of code:

a) Low level assembly language (machine code)

b) Shell scripts

¢) A singlefiletest harness

d) A large C/C++ project

2. Youcanruntoolsto calculate what percentage of your source codelines
are comments. How useful are they? How accurate a measure is this of
comment quality?

3. When you document a C/C++ API with a code comment block, should
it go in the public header file that declares the function, or the source
file containing the implementation? What are the pros and cons of each
location?

4. Look carefully at the source files you' ve recently worked on. Inspect
your commenting. Isit honestly any good? (I bet as you read through
the code you'll find yourself making afew changes!)

5. How do you ensure that your comments are genuinely valuable and not
just personal ramblings that only you can understand?

6. Do the peopleyou work with all comment to the same standard, in about
the same way?

@) Who's the best at writing comments? Why do you think that?
Who' s the worst? How much of a correlation does this bear to their
genera quality of coding?

b) Do you think any imposed coding standards could rai se the quality
of the comments written by your team?

7. Do you include history logging information in each sourcefile? If yes:

a) Do you do maintain it manually? Why, if your revision control
system will insert this for you automatically? Is the history kept
particularly accurate?

b) Isthis areally sensible practice? How often is this information
needed? Why isit better placed in the source file than in another,
Separate mechanism?

8. Do you add your initias to or otherwise mark the comments you make
in other people’'s code? Do you ever date comments? When and why
do you do this—isit auseful practice? Has it ever been useful to find
someone else' sinitials and time stamping?

Discussion and Answers

Lazy readers will have jumped here aready. Please do spend some time
considering your answer to each question first. It will be interesting to
compare your response with mine. Do you disagree with anything? Do you
agree? Let me know.

Defensive Programming

1. Could therebe such a thing astoo much defensive programming?

Y es—just astoo many comments can degrade code readability, so too can
many defensive checks. Redundant checks can be avoided with careful
coding, for example with a good choice of types.

2. Should assertions conditionally compile away to nothing in
production builds? If not, which assertions should remain in release
builds?

People hold passionate beliefs on this subject. | don’t think the answer is
necessarily black and white; | can see the argument both ways. There are
aways some very nit-picky assertions that really won’t need to be left in
production builds. But some assertion occurrences may still interest you
inthefield. Now, if you do leave any constraint checksin, they mustchange
behaviour — the program shouldn’t abort on failure, just log the problem
and move on.

CVu/ACCU/Features

Remember, real run-time error checks should never be removed; they
should never be coded in assertions anyway.

3. Should the defensive checking of pre- and postconditions be put
inside each function, or beside each important function call ?

In the function, without adoubt. Thisway, you only need to write tests
once. The only reason you'd want to move them out is to gain
flexibility, to choose what happens when a constraint fails. Thisisn’'t a
compelling gain for such an explosion in complexity and potential for
failure.

4. Are constraints a perfect defensive tool? What are their
drawbacks?

No, they are nowhere near perfect. Redundant constraints can be at best a
pest, and at worst a hindrance. For example, you could assert that a
function parameteri >= 0. But it's much better to makei an unsigned
type that can’t contain ‘invalid values anyway.

Treat constraints that can be compiled out with a certain degree of
suspicion: we must carefully check for any side effects (assertions can
have subtle indirect consequences), and for timing issues in the debug
build that alters its behaviour from a release build. Ensure that
assertions are logical constraints and not genuine run-time checks that
mustn’t be compiled out. It is possible to put bugs in the bug-defence
code!

Carefully used, constraints are still far better than dancing barefoot over
the hot coals of chance.

5. Can you avoid defensive programming?

a) If you designed abetter language, would defensive programming
still be necessary? How could you do this?

b) Doesthisshow that C and C++ areflawed becausethey have so
many areasfor problemsto manifest?

Some language features certainly could be designed to avoid errors. For
example, C doesn’'t check the index of any array lookup you perform.
Asaresult you can crash the program by accessing an invalid memory
address. The Javaruntime, on the other hand, checksevery array index
before lookup, so such an catastrophe will never arise. (Bad indexes
will still cause an error though, which is just a better defined class of
failure).

Despite thelong list of ‘improvements’ you could make to the liberal
C specification (and | urge you to think of as many as you can) you'll
never be able to create a language that doesn’t need defensive
programming. Functions will always need to validate parameters, and
classes will always need invariants to check their data is internally
consistent.

Although C and C++ do provide plenty of opportunity for thingsto go
wrong, they also provide a great deal of power and expression. Whether
that makes the languages ‘flawed’ depends on your viewpoint — thisis a
topic ripe for holy war.

6. What sort of code need you not worry about writing defensively?

I’ve worked with people who refused to put any defensive code into an
old program because it was so bad that their defences would make no
difference. | managed to resist the urge to whack them with a large
mallet!

You might argue that a small, stand-alone, single file program or
perhaps a small test harness file doesn’t need this sort of careful
defensive code or any rigorous constraints — but even in these situations
not being careful is just being sloppy. We should be defensive al the
time.

7. When you document a function, do you state the pre- and
postconditions?

a) Arethey alwaysimplicit in the description of what it does?

b) If there are no pre/postconditions do you explicitly document
this?

No matter how obvious you think a contract is from the function name
or its description, explicitly stating the constraints removes any
ambiguity —remember, it’' s always better to remove areas of assumption.
Explicitly writing Preconditions: None will document a contract
explicitly.

CVu/ACCU/Features

8. Many companies pay lip service to defensive programming. Does
your team recommend it? Takealook at the codebase—dothey really?
How widely are constraints codified in assertions? How thorough is
theerror checking in each function?

Very few companies have a culture of excellent code with the right level
of defence. Code reviews are a good way to bring ateam’s code up to a
reasonable standard; many eyes see many more potential errors.

9. Areyou naturally paranoid enough? Do you look both waysbefore
crossing the road? Do you eat your greens? Do you check for every
potential error in your code, no matter how unlikely?

a) How easy isit to do thisthoroughly? Do you for get to think about
errors?

b) Arethere any ways to help yourself write more thorough
defensive code?

No onefindsit naturally easy —thinking the worst of your carefully crafted
new code runs contrary to the programmer instinct. Instead, expect the
worst of any people who will be using your code. They’re nowhere near
as conscientious a programmer as you!

A very helpful technique is to write unit tests for each function/class.
Some experts strongly advise doing this before writing a function; this
makes alot of sense. It helps you to think about all the error cases, rather
than blithely trusting that your code will work.

Layout of Source Code

1. Should you alter thelayout of legacy codeto conform to your latest
code style? I sthis a valuable use of code refor matting tools?

It's usually safest to leave legacy code however you find it, even if it's
ugly and hard to work with. I'd only entertain reformatting if | was
absolutely sure that none of the original authors would ever need to
return.

By reformatting you lose the ability to easily compare a particular
revision of the source with a previous one —you'll be thrown by many,
many, formatting changes which may hide the one difference you really
needed to see. You also risk introducing program errors in the
reformatting.

As far as code reformatting tools go, they’re nice curiosities, but |
don’t advocate the use of them. Some companies insist on running
source files through these tools before checking any code into their
repository. The advantage isthat all source is homogenised, pasteurised,
and uniformly formatted. The major disadvantage is that no tool is
perfect; you'll lose some helpful nuances of the author’ s layout. Unless
all the programmers on your team are gibbons, don’t use a reformatting
tool.

2. One common layout convention isto split source lines at a set
number of columns. What ar e the pros and cons of this approach?

Aswith many such presentation concernsthereis no absolute answer; itis
amatter of persona taste.

| like to split my code up so that it fits on an 80 column display. I've
aways donethat, so it’s amatter of habit as much as anything else. | don’t
disagree with peoplewho likelong lines, but | find long lines hard to work
with. | set my editor up to ‘wrap’ continuous lines rather than provide a
horizontal scrollbar (horizonta scrolling is clumsy). In this environment
long lines tend to ruin the effect of any indentation.

Asl seeit, the main advantage of fixed column widthsisnot printability,
as some would claim. It’ s the ability to have several editor windows open
side-by-side on the same display.

In practice, C++ seems to produce very long lines. It's more verbose
than C; you end up calling member functions on objects referenced by
another object through a templated container... There are other strategies
to manage the many, many, long lines this may lead to. Y ou could store
intermediate references in temporary variables, for example.

3. How detailed should a reasonable coding standard be?

a) How serious are deviations from the style? How many limbs
should be amputated for not following it?

b) Can such a specification become too detailed and restrictive?
What would happen if it did?

Six limbs should be amputated for deviations from any coding standard.

15

I have seen many coding standards that are so prescriptive and
paralysing that the poor programmers have just plain ignored it. To be
useful, and to be accepted, a coding standard should provide alittle room
for manoeuvre, perhapswith abest practi ceapproach given asan example.

4. Isgood code presentation or good code design more important?
Why?

Thisisreally avery artificial question. Both are fundamental for good code,
and you should never be asked to sacrifice one for the other. If you ever
are, fear. However, which one you just chose may say alot about you asa
programmer.

Bad formatting is certainly easier to fix than bad design, especidly if
you use clever tools to homogenise your code’ s formatting.

There is an interesting connection between presentation and design:
Bad presentation often shows that the code was produced by a bad
programmer, which probably means that it suffers from bad internal
design too. Or it may imply that the code has been maintained by aseries
of different programmers, with a subsequent loss of the initial code
design.

5. Doyou writein a consistent style?

a) When you touch other peopl€’s code, what layout style do you
adopt —theirsor your own?

b) How much of your coding styleisdictated by your editor’sauto-
formatting? | sthisan adeguatereason for adoptingaparticular
style?

If you can’t alter the way your editor positions the cursor for you then you
shouldn’t be using it (either you' re too inept, or your editor is).

If you can't write code in a consistent style then you should have your
programmer’s licence revoked. If you can't follow someone else’s
presentation style then you should be forced to maintain BASIC for the
rest of your career.

[FORTRAN 77 is far more restrictive on its code style and formatting. Depending
on the flavour of BASIC, style and format can be varied greatly — Ed]

6. Tabs: arethey a work of the devil, or the best thing since sliced
bread? Explain why.

a) Do you know if your editor insertstabs automatically? Do you
know what your editor’stabstop is?

b) Somehugelypopular editorsindent with a mixture of tabs and
spaces. Does this make the code any less maintainable?

¢) How many spaces should a tab correspond to?

Since thisis such areligiousissue, I'll just say tabs: they suck and back
away quickly. Well, actualy I'll add afterwards that the only thing more
evil than indenting with tabsisindenting with tabsand spaces— nightmare!

If your editor isinserting tabs (and probably spaces) without you
noticing, try using another editor for awhile, to appreciate how frustrating
it is. Try setting your tabstop to a different value and see what a mess it
makes of the code. Everyone uses the same editor, so it doesn’t matter is
not a professional attitude. They don’t.

You'll hear people recommend their choice of tabstop length and
carefully justify their opinion. That's all very well; in fact a respected
study claims that a three or four space tabstop provides optimum
readability. (I favour four spaces because | don’t like odd numbers!)
However, atab should ‘ correspond’ to no fixed number of spaces. A tab
is atab, which is not a space or any multiple thereof. For code laid out
using tabs, it shouldn’t matter exactly how many spaces the tab is
displayed as—the code should read well regardless. Unfortunately, | have
rarely seen tab-indented code that works thisway. All too often tabs and
spaces are mixed together to make code line up neatly. This works fine
with a tabstop set as the author intended. It makes an unholy mess with
any other setting.

7. Grab atext editor and haveago at thishit of C++, it calculatesthe
nth prime number. It'swritten in one particular coding style. Have a
crack at presenting it as you'd like to seeit. Don’t try to change the
implementation at all.

This is a representative bit of Real World code, so don’t dismissthisas a
stupid and tedious exercise. Note that | haven't given any suggested answer
here. My reformatting is just as valid as yours, and indeed as the original
format.

16

If you' re reading these answers without chewing over the questions at
al, go on —have ago at this one. The magazine can wait whilst you type
inafew lines...

Now, take alook at what you' ve written.

» How different is your version? How many specific changes did you
make?

» For each change: isit apersonal aesthetic preference, or can you justify
the change with some rationale? Question this rationale — is it truly
valid? How strongly would you be prepared to defend it?

» How comfortable were you with the original format? Did it bother you
to read? Could you work in that coding styleif you encountered code
like it? Should you be able to become comfortable with it?

[/ have to admit | found it very difficult to restrain myself from reformatting the

code as | processed this article! — Production Ed]

What’s in a Name?

1. Arethese good variable names? Answer with either yes (explain
why, and in what context), no (explain why), or can’ttell (explain why).

a) int num appl es
b) char foo

¢) bool num appl es
d) char *string

e int | oop_count er

The quality of a name depends on its context, and we can’t honestly tell
whether any of these are good or bad names. That' swhy the question asks
for example contexts. There are some obvious contexts where the names
might be bad: num appl es wouldn’t be a particularly good name for a
grapefruit counter.

f 0o is never a good name. |’ ve yet to see anyone counting foos.
| oop_count er isalsobad; evenif aloop getstoo big for ashort counter
name you can still pick amore descriptive name, one that reflects the actua
use of loop counter rather than its role as aloop counter.

Wecan't realy tell whether bool num_appl es isagood name, but
it looks like it’s not — a boolean cannot hold a number. Perhaps it's
recording whether a separate count of applesis valid, but in this case it
ought to be called something likei s_num appl es_val i d.

2. When would these be appropriate function names? What return
types/parameter s might you expect? What return types would make
them nonsensical?

a)dolt(...)
b) val ue(...)
c) sponge(...)
d) i sApple(...)

What each of these might mean depends on where you find them. Again
we see how ahame depends on its context, and that context can be provided
by the enclosing scope of the function. Context information can even be
given by function parameters or return variables.

3. Should a naming schemefavour the easy reading or easy writing of
code? How would you make either easy?

How many times do you write apiece of code? (Think about it). How many
times do you read it? That should give some indication as to the relative
importances.

4. What do you do when naming conventions collide? Say you're
working on camelCase C++ code, and need to do STL
(using_under score) library work. What’sthe best way to handle this
situation?

I’ve worked on C++ codebases that used such a collision of naming
conventionsto their advantage. Theinternal logic used camel Case, whereas
libraries and components that could be considered extensions of the
standard library followed STL naming conventions. It actually worked
quite well.

Unfortunately, it doesn’t always work that nicely. I’ ve seen plenty of
inconsi stent code where there was no rhyme or reason behind the changing
styles.

5. If assert isamacrowhy isitsnamelower case? Why should we
name macr os so they stand out?

CVu/ACCU/Features

assert isn't capitalised becauseassert isn't capitalised. In an ideal
world it would be, but standards being what they are we have to live with
this tatty macro name. Sigh.

Macros and #def i ned constant definitions are downright dangerous
— adopting the UPPER CASE name convention will prevent nasty
collisions with ordinary names. It's as sensible as wearing glasses when a
lunatic is walking round with a big pointy stick.

Because macros can be so painful you should chose namesthat arevery
unlikely to cause headaches. More importantly, avoid using the
preprocessor as much as humanly possible.

6. Long calculations can be made more readable by putting
intermediate results in temporary variables. Suggest good naming
heuristics for these types of variable.

Bad temporary names aret np, t np1, t np2... or a, b, c... These,
unfortunately, are all common intermediate names.

Like any other item, temporary names should be meaningful. Infact, in
acomplex calculation good names can really serveto document the internal
logic, showing what’s going on.

If you find avalue that really has no nameable purpose, if it truly isan
arbitrary intermediate value that’s hard to name, then you’ll begin to
understand why t nmp isso popular. Avoid calling anythingt np if possible
—1try to break the calculation in some other way to help it make more sense.

7. Doyou haveto port code between platfor ms? How hasthisaffected
filenames, any other naming, and the overall code structure?

Older filing systems limited the number of characters you could use in a
filename. This made file naming much messier. Unless you have to port
codeto such an archaic system thiskind of limitation can be safely ignored.

File-based polymorphism is a cunning way to exploit filenames to
achieve code substitutability at build-time. It's often used to select
platform-specific implementationsin portable code. Y ou can set up header
file search paths, allowing one #i ncl ude to pull in a different file
depending on the current build platform.

A Passing Comment

1. How might the need for and the content of comments differ in the
following types of code:

a) Low level assembly language (machine code)
b) Shell scripts

¢) A singlefiletest harness

d) AlargeC/C++ project

Assembly language is less expressive, providing fewer opportunities for
self-documenting code. You'd therefore expect more comments in
assembly code, and those comments to be at a much lower level than in
other languages. Although the golden comment ruleis* comments describe
why not how”, generally assembly comments would explain how as well
aswhy.

Thereisn’t an enormous adifference between the remaining three. Shell
scripts can be quite hard to read back; they are a proto-Perl in this respect.
Careful commenting helps. Y ou’ remorelikely to useliterate programming
techniques on alarge C/C++ codebase.

2. You can run toolsto calculate what percentage of your sour ce code
lines are comments. How useful arethey? How accurate a measureis
this of comment quality?

This kind of metric will give an insight into the code, but you shouldn’'t
get too concerned about it. It isn’'t an accurate reflection of code quality.
Well documented code might not contain any comments. Enormous
revision historiesor large corporate copyright messages can dominate small
files, affecting this metric.

3. When you document a C/C++ APl with a code comment block,
should it goin the public header filethat declaresthe function, or the
sour cefilecontaining theimplementation? What aretheprosand cons
of each location?

This question was the cause of a big fight at one place | worked. Some
argued for descriptions to go in the. c file. Being close to the function
means that it's harder to write an incorrect comment, and harder to write
code that doesn’t match the documentation. The comment is also more
likely to be changed in line with any code changes.

CVu/ACCU/Features

However, when placed in a header file, the description is visible
aongside the public interface; alogical location. Why should someone
have to look into the implementation to read any public API docs?

A literate programming documentation tool should be able to pull
comments out of either place, but sometimesit’ s quicker not to use the tool
and just read commentsin the source; abonus of the literate code approach.
| favour placing the comments in header files.

Of course, in Javait’sall onefile anyway, and you' d conventionally use
the Javadoc format.

4. Look carefully at thesour cefilesyou’ ver ecently wor ked on. | nspect
your commenting. Isit honestly any good? (I bet asyou read through
the code you'’ll find your self making a few changes!)

When you read and review your own code it’'s very easy to skip the
comments, presuming they’ re correct, or at | east adequate. It isagood idea
to spend some time looking at them, to assess how well they’ re written.
Perhaps you could ask atrusted colleague to give you their (constructive)
opinion on your commenting style.

5. How doyou ensur ethat your commentsar egenuinely valuableand
not just personal ramblingsthat only you can under stand?

Some considerations for this are: write whole sentences, avoid
abbreviations, keep comments neatly formatted, and in acommon language
(both the native language and the sel ection of words used from the problem
domain). Avoid in-jokes, any throw-away statements, or anything that
you're not entirely sure about.

Code reviews will highlight weaknessesin your comment strategy.

6. Dothe peopleyou work with all comment to the same standard, in
about the same way?

a) Who'sthe best at writing comments? Why do you think that?
Who's the worst? How much of a correlation does this bear to
their general quality of coding?

b) Do you think any imposed coding standards could raise the
quality of the commentswritten by your team?

Use code reviewsto inspect your peers: comment quality, and to move your
team towards a consistent quality of commenting.

7. Doyou include history logging information in each sour cefile? If yes:

a) Do you do maintain it manually? Why, if your revision control
system will insert thisfor you automatically? I sthe history kept
particularly accurate?

b) Isthisa really sensible practice? How often isthisinformation
needed? Why isit better placed in the sour cefilethan in another,
separ ate mechanism?

I’ shuman nature not to keep ahistory accurate, even with the best intentions
intheworld. It requiresalot of manual work that gets pushed out whentime
istight. You should use tools to help, and put the right information in the
right place (which | don't believeisthe sourcefile at all).

8. Do you add your initialsto or otherwise mark the comments you
makein other people'scode? Do you ever date comments? When and
why do you do this—isit a useful practice? Hasit ever been useful to
find someone else'sinitials and timestamping?

For some comments thisis a useful practice. In other places, it’s just
inconvenient — extra comment noise that you have to read past to get to the
really interesting stuff.

It's most useful with temporary FI XME or TODO comments, marking
work in progress. Released production code probably shouldn’t have these;
no finished code should need areader to understand the author or date of
aparticular change.

And Finally...

Just in case you got this far, here’s a parting shot — one final question for
afew bonus points. Answer this: How many programmers does it take to
change alight bulb?
| have five answers. If you're good then I'll tell you next time. Let me
know your answers.
Pete Goodliffe
[With apologies to the ghost of Monty Python for the second vague and
fleeting reference of this series. Do you remember the first one?]

17

Creating Standard GUI
Applications

Mark Summerfield and Jasmin Blanchette

In this second installment of our series on GUI programming with the Qt
C++ toolkit, we're going to see how to create a standard GUI application,
with a menu, toolbar, status bar, and a central area. The application is a
simpleimage viewer that can display imagesin any of the formatsthat your

installed version of Qt supports.
Themai n() function, inmai n. cpp, is straightforward:

#i ncl ude <gapplication. h>
#i ncl ude "viewer. h"

int main(int argc, char *argv[]) {
QAppl i cation app(argc, argv);
Vi ewer *viewer = new Viewer;
vi ewer - >show() ;
Vi ewer - >connect (&app,

SI GNAL(| ast W ndowCl osed()),

&app,
SLOT(quit()));
return app.exec();

}

We create a QAppl i cat i on object and then the form which we
immediately show. The “signal—slot” connection ensures that when the
last top-level window (in this case the only window) is closed, the
application will terminate. Finally we start the event loop and wait for

user interactions.

Qt provides the QVai nW ndow class as the base class for main
windows, so we will subclass thisand specialiseit to our needs. Here' sthe

definition which we'veputinvi ewer . h:

#i f ndef VI EMER_H
#define VI EWER H

#i ncl ude <gmai nwi ndow. h>

class QAction;
cl ass QLabel ;

class Viewer : public Qvai nWndow {
Q OBJECT

public:
Vi ewer (QWN dget *parent = 0);

private slots:
voi d openFile();

#i ncl ude <qi nage. h>

#i ncl ude <qgl abel . h>

#i ncl ude <gmenubar. h>
#i ncl ude <gpopupnenu. h>
#i ncl ude <gst at usbar. h>
#i ncl ude <qt ool bar. h>
#i ncl ude "vi ewer. h"

#i ncl ude "i con. xpnt

#i ncl ude "openfil e. xpnt

We include all the Qt classes we need, vi ewer . h, and also two XPM
files. The XPM fileformat isanimageformat that isalso valid C++. XPM
images are easy to find on the Internet, and Linux distributions come with
lots of them.

The constructor for a main window application is usually concerned
with the creation of “actions’: these are are “ activated’” when the user clicks
their associated menu option or toolbar button, or types their keyboard
shortcut. Main windows usually have very simple layouts since they often
contain either a single widget or an MDI (multiple document interface)
workspace.

Vi ewer : : Vi ewer (QN dget *parent)
Qvai nW ndow(par ent),
fileName(".") {
i mageLabel = new Q.abel (this);
i magelLabel - >set Al i gnnent (Al i gnCenter);
set Central W dget (i mageLabel) ;

openFi | eAction =
new QActi on(QPi xmap(openfil e_xpm,
"&pen. .. ",
CTRL+Key_O, this);
connect (openFi | eActi on,
SI GNAL(activated()),
this,
SLOT(openFile()));
qui tAction = new QAction("&uit",
CTRL+Key_Q
this);
connect (qui t Action, SIGNAL(activated()),
this, SLOT(close()));

QPopupMenu *fil eMenu = new QPopupMenu(this);
openFi | eAct i on->addTo(fil eMenu);

qui t Acti on->addTo(fil eMenu);

nmenuBar () ->i nsertlten("&File", fileMenu);

Qrool Bar *fileTools =
new Qrool Bar ("File Tool s", this);
openFi | eActi on->addTo(fil eTool s);

pri vat e: - |mage Viewer e~ O
QAct i on *openfFi | eActi on; File
QAction *quitAction; =i
| =

QLabel *imagelLabel ;
QString fil eNane;
}s

#endi f

We need the Q_OBJECT macro because we
areusing Qt’s“signals and slots’ mechanism
in our subclass. We will connect the “open
file” action (File| Open) to the
openFi | e() slot. We'll explaintherest as
we describe the implementation in
Vi ewer . cpp, piece by piece, starting with
the includes.

#i ncl ude <gaction. h>

#incl ude <qfiledial og. h> fhomeimarkitrolltech/qgt/gifitabletevent-ytilt.png 263x196

18

| CVu/ACCU/Features |

set Caption("I mage Viewer");
set | con(QPi xmap(vi ewer _xpn));

stat usBar () - >nessage(" Ready");

}

Webegin by creating alabel widget that will be used to display theimage.
We then create two actions, the first “open file’’, has an icon
(openfil e. xpm) and a shortcut of Ct r | +Q We connect the action to
our custom openFi | e() dot (implemented shortly). The “quit” action
isconnected to thebuilt-incl ose() dot. After theactions are created we
want to give them avisual representation in the user interface. We create
anew menu and add the “open file” action, and the “quit” action to it. We
aso create atoolbar and add the “open file” action to it. Qt automatically
keeps menus and toolbarsin sync.

Finally we set the application’ s caption and icon, and display “ Ready”
on the status bar. Thefirst timewe callmenuBar () and st at usBar () ,
Qt creates them; this ensures they are only created if they're actually used.

When the user invokes the “open file” action (by choosing
Fi | e] Open, by clicking the “open” toolbar button, or by pressing
Ctrl +0), theopenFi | e() dlotiscalled.

voi d Viewer::openFile() {
QStringList formats =
Q nage: : i nput For mat Li st () ;
"l mages (*."
+ formats.join(" *.")
lower() +")";

QString filters =

QString newFil eNane =
QFi | eDi al og: : get OpenFi | eNane(fil eNane,
filters, this);
if(!'newrileNane.isEmpty()) {
fileName = newFi | eNane;
QPi xmap pi xmap(fil eNane);

i mgelLabel - >set Pi xmap(pi xmap) ;
statusBar ()->nessage(Qstring("%d %2x%3")
.arg(fil eNane)
.arg(pi xmap. wi dth())
.arg(pi xmap. height()));
}
}

Qt can provide alist of the image formats it can read, and we use this to
create afile filter. For example, the filter might look like this, “Images
(*.bmp *.gif *.jpeg *.pbm *.pgm *.png * .ppm * .xbm * .xpm)”. We use one
of QFi | eDi al og’s static convenience functions to get an image file
name, and unless the user clicks Cancel (in which case
get QpenFi | eNane() returnsan empty string), we load theimage and
put someinformationin the status bar. If wedidn’t need to accesstheimage
after reading it we could have simply used:

i magelLabel - >set Pi xmap(QPi xmap(fil eName));

To build and run the application, save the filesin a directory of their own
(e.g.vi ewer), changeto that directory, and run thefollowing commands:

gmake - proj ect
grmeke vi ewer. pro
make

The first command creates a project file, the second creates a makefile
based on the project file, and the third builds the application. If you use
Visual Studio, usennake instead of nake.

Inthe previousarticle we saw how to create adialog and lay out widgets
insideit. Now we' ve seen how to create amain window application. Inthe
next installment we'll combine this knowledge to create an application that
can interact with the user through a dialog, and later on we'll see how to
create custom widgets with any look and behaviour we want.

Mark Summerfield and Jasmin Blanchette

Using a Live Linux
Distribution

Silas S. Brown

I think it wasin CVuthat | first heard about Knoppix, waw. knoppi x. or g—
a“live” Linux distribution that will run entirely from the CD, needing no
instalation or configuration. It isvery good for demonstrating Linux, or for
using aLinux desktop to sort something out on acomputer that otherwiseruns
Windows. It candso beused toingal Linux quickly; you get aDebian system
that runs a mixture of testing and unstable packages, and you can do package
management as you see fit. (A while ago | met someone who wanted a free
entry-level CAD package, and it was quicker for meto ingtall Linux and find
a suitable package fromwww. debi an. or g than it would have been to look
for an appropriate piece of Windows software.)

What is even more useful is a document called “Knoppix Remastering
HOWTOQO", available at ww. knoppi x. net/ docs/ i ndex. php/
Knoppi xRenmast er i ngHowt o —thisexplainshow to copy Knoppix into
agpare directory on your existing Linux hard drive,chr oot intoit and alter
it asyou seefit, and then create anew CD image of the altered version. This
is useful for anumber of reasons. Firdtly, if you need to experiment with
recent, less stable packages but you don’t want to upgrade your existing
stable Linux environment, you can safely mix both distributions using this
method (although if you are doing chr oot from adifferent distribution,
make sure to use something likesu — so asto set the environment variables
correctly). Secondly, you can make customised bootable CDswhenever you
want to (I turned the process into a script to make this easier, athough the
script israther specific to my system so I'll leave that as an exercise).

On slower computersit can take afew hoursto generate the CD image,
but it isworth it. It means you are able to take your exact customised
environment to anyone else’s PC and run it there, so long asit is able to
boot the CD (or the special floppy disk that you can write). You may have
problems persuading certain laptops to do this, but most computers “out
there” will be OK with it. An aternative is to use VNC to access your
desktop remotely, but that needs a good Internet connection; customised

CVu/ACCU/Features

CDsdo not. There are dl kinds of uses for this. If you're familiar with
Linux then it will save a lot of time in comparison with messing around
with everybody’ s Windows setups.

| experimented using re-writeable CDs rather than ordinary CDRs.
Rewriteables are slower (both in writing and reading) and have reduced
capacity, and they will only work if you can get your PC to boot off the
CD recorder (they are not readable on ordinary CD-ROMSs). However they
do save on resources when you' re testing, because they can be re-used.

If you are running on a machine with less than 256Mb of RAM then you
amogt certainly want to makeaswap fileto makethingsrunfaster. Swap files
can be made on the hard disk on any FAT partition, and any existing Linux
swap partitionswill beused automatically. Y ou can aso saveapersistent home
directory onthehard disk. (When you' re mastering the Knoppix CD, it'sworth
knowing that you shouldn’t rely on anything being in the home directory on
startup. If you need something to be there by default then you should arrange
aboot-up script to put it there, but please make the script do atest first because
the user might be running a persistent home directory on the hard drive and
doesn’t want it to be restored to the default each time.)

There are many other versions of Knoppix that other people have re-
mastered. Gnoppix (Www. gnoppi X. or g) isinteresting becauseit isbased
on the stable Debian distribution, rather than testing/unstable, although | find
that testing/unstable is fine in the context of bootable CDs because these
systems have comparatively short uptimes and are used as desktop machines,
not secure Internet servers. | tried Morphix (Wwww. nmor phi x. or g) which
is supposed to be easier to customise, but it does have its problems (in the
current version at thetime of writing, any extra packagesyou add are copied
to RAM when the CD loads, which could cause problemsif you want alot
of packages and RAM is limited) —it's probably better to invest timein
remastering Knoppix yourself. Another interesting variant is Oralux
(www. or al ux. or g) whichisdesigned for blind people and takesyou into
an Emacs desktop with software speech synthesis (go on, try it — everyone
should havethisexperience). If you need something other than Debian, there
are also some live CDs based on Red Hat and on BSD, but | haven't tried
these as yet. Use Google and Distrowatch if you want to find them.

Silas S Brown

19

An Introduction to
Programming with GTK+ and
Glade in ISO C and ISO C++

Roger Leigh <r | ei gh@lebi an. or g>

What is GTK+?

GTK+ is atoolkit used for writing graphical applications. Originally
written for the X11 windowing system, it has now been ported to other
systems, such as Microsoft Windows and the Apple Macintosh, and so may
be used for cross-platform software development. GTK+ was written asa
part of the GNU Image Manipulation Program (GIMP), but haslong been
a separate project, used by many other free software projects, one of the
most notable being the GNU Network Object Model Environment
(GNOME) Project.

GTK+ iswritten in C and, because of the ubiquity of the C language,
bindingshave been written to allow the devel opment of GTK + applications
in many other languages. This short tutorial isintended as a simple
introduction towriting GTK + applicationsin C and C++, using the current
2.0/2.2 version of | i bgt k. It also covers the use of the Glade user
interface designer for rapid application development (RAD).

It isassumed that the reader isfamiliar with C and C++ programming,
and it would be helpful to work through the “Getting Started” chapter of
the GTK+ tutorial beforereading further. The GTK+,d i b, | i bgl ade,
G knmand | i bgl ademmAPI references will be useful while working
through the examples.

I hope you find this tutorial informative.

Building the Example Code

Several working, commented examples accompany the tutorial. They are
also available from ht t p: / / peopl e. debi an. org/ ~rl ei gh/
gt k/ ogcal ¢/ . Tobuild them, type:

./configure
make

Thiswill check for therequired libraries and build the example code. Each
program may then be run from within its subdirectory.

| have been asked on various occasions to write a tutorial to explain
how the GNU autotools work. While thisis not the aim of thistutorial, |
have converted the build to use the autotool s as a simple example of their
use.

Legal Bit

This tutorial document, the source code and compiled binaries, and all
other files distributed in the source package are copyright © 2003 — 2004
Roger Leigh. Thesefilesand binary programs are free software; you can
redistribute them and/or modify them under the terms of the GNU General
Public Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.

A copy of the GNU General Public Licenceversion 2 isprovidedinthe
file COPYI NGin the source package this document was generated from.

GTK+ Basics
Objects

GTK+ is an object-oriented (OO) toolkit. I'm afraid that unless one is
aware of the basic OO concepts (classes, class methods, inheritance,
polymorphism), this tutorial (and GTK+ in general) will seem rather
confusing. On my first attempt at learning GTK+, | didn’t “get” it, but
after | learnt C++, the concepts GTK+ is built on just “clicked”, and |
understood it quite quickly.

The C language does not natively support classes, and so GTK+
provides its own object/type system, GObj ect. GObject providesobjects,
inheritance, polymorphism, constructors, destructors and other facilities
such asreference counting and signal emission and handling. Essentially,
it provides C++ classesin C. The syntax differsalittle from C++ though.
As an example, the following C++

mycl ass c;
c.add(2);

20

would be written like this using GObject:

mycl ass *c mycl ass_new() ;
nmycl ass_add(c, 2);

Thedifferenceisduetothelack of at hi s pointer in the C language (since
objects do not exist). This means that class methods require the object
pointer passing astheir first argument. Thishappensautomatically in C++,
but it needs doing “manually” in C.

Another difference is seen when dealing with polymorphic objects. All
GTK+ widgets (the controls, such as buttons, checkboxes, labels, etc.) are
derived fromQ& kW dget . Thatistosay, a& kBut t onisa@& kW dget ,
whichisaG kChj ect , whichisaGlbj ect . InC++, onecan cal member
functionsfrom both the classand the classesit isderived from. With GTK+,
the object needs explicit casting to the required type. For example

G kButton nybutton;
nybut t on. set _| abel (" Cancel ");
nmybut t on. show() ;

would be written as

G kButton *nybutton gt k_button_new();
gt k_button_set _| abel (nmybutton, "Cancel");
gt k_wi dget _show(GTK_W DGET(mybut t on))

Inthisexample, set _| abel () isamethod of & kBut t on, whilst show()
is a method of Gt KW dget, which requires an explicit cast. The
GTK_W DGET() castisactualy aformof run-timetypeidentification (RTTI).
This ensures that the objects are of the correct type when they are used.

Objects and C work well, but there are some issues, such as a lack of
type-safety of callbacks and limited compile-time type checking. Using
GObject, deriving new widgetsis complex and error-prone. For these, and
other, reasons, C++ may beabetter languagetouse. | i bsi gc++ provides
type-safe signal handling, and all of the GTK+ (and GLib, Pango et. al.)
objects are available as standard C++ classes. Callbacks may also be class
methods, which makes for cleaner code, since the class can contain object
data without having to resort to passing in data as a function argument.
These potential problemswill become clearer in the next sections.

Filename: File Edit View Help
A text label A menu bar
Heading 1 j I Save Preferences

A tick box

& OK

A push button

A drop-down selection (combo box)

Text Entry|
A text entry field

Family: Style: Size:
Sans |8 212
Serif Italic m ’;l
Standard Symbo Bold 13 |
URW Bookman L ! [Bold Italic 14
URW Chancerv | =] 16
o | I3 e =

Preview:
abcdefghiilk ABCDEFGHI K

A font selection
Figure 1: A selection of GTK+ widgets

CVu/ACCU/Features

Widgets

A user interface consists of different objects with which the user can
interact. These include buttons which can be pushed, text entry fields,
tick boxes, labels and more complex things such as menus, lists, multiple
selections, colour and font pickers. Some example widgets are shownin
Figure 1.

Not all widgets are interactive. For example, the user cannot usually
interact with a label, or a framebox. Some widgets, such as containers,
boxes and event boxes are not even visibleto the user (thereis more about
thisin the next section).

Different types of widget have their own unique properties. For
example, alabel widget contains the text it displays, and there are
functions to get and set the label text. A checkbox may be ticked or not,
and there are functions to get and set its state. An options menu has
functions to set the valid options, and get the option the user has chosen.

Containers

Thetop-level of every GTK+ interface isthe window. A window iswhat
one might expect it to be: it has a title bar, borders (which may alow
resizing), and it contains the rest of the interface.

In GTK+, a G kW ndowisa & kCont ai ner . In English, this
meansthat the window isawidget that can contain another widget. More
precisely, a& kCont ai ner can contain exactly one widget. Thisis
usualy quite confusing compared with the behaviour of other graphics
toolkits, which allow one to place the controls on some sort of “form”.

The fact that aG: kW dget can only contain one widget initially
seemsquite useless. After al, user interfacesusually consist of morethan
asinglebutton. In GTK+, thereare other kindsof & kCont ai ner. The
most commonly used are horizontal boxes, vertical boxes, and tables. The
structure of these containersis shown in Figure 2.

Figure 2 shows the containers as having equal size, but in areal
interface, the containersresize themselvesto fit the widgetsthey contain.

Horizontal box: Gt kHBox

Vertical box: G kVBox Table Gt kTabl e
Figure2: GTK+ containers
Each container may contain other widgets in the shaded areas. Containers
may contain more containers, allowing them to nest. Complex interfaces
may be constructed by nesting the different types of container.

The nesting of containersresultsin awidget tree, which has many useful
properties, some of which will be used uselater. Oneimportant advantage
isthat they can dynamically resize and accommodate different lengths of
text, important for internationalisation, when translations in different
languages may vary widely in their size.

The Glade user interface designer can be very instructive when
exploring how containers and widget packing work. It allows easy
manipulation of the interface, and all of the standard GTK+ widgets are
available. Modifying an existing interface is trivial, even when doing
major reworking. Whole branches of the widget tree may be cut, copied
and pasted at will, and a widget's properties may be manipulated using
the“ Properties’ dialogue. While studying the code examples, Glade may
be used to interactively build and manipulate the interface, to visualy
follow how the code isworking. More detail about Glade is provided in
a later section, where | i bgl ade is used to dynamically load a user
interface.

Signals

Most graphical toolkits are event-driven, and GTK+ is no exception.
Traditional console applications tend not to be event-driven; these
programs follow afixed path of execution. A typical program might do
something along these lines:

o Prompt the user for some input

» Do somework

o Print theresults

This type of program does not give the user any freedom to do thingsin
adifferent order. Each of the above steps might be asinglefunction (each
of which might be split into helper functions, and so on).

GTK+ applications differ from this model. The programs must react
to events, such as the user clicking on a button, or pressing Enter in an
text entry field. These widgets emit signals in response to user actions.
For each signal of interest, afunction defined by the programmer is called.
In these functions, the programmer can do whatever needed. For example,
inthe ogcal ¢ program, when the “Calculate” button is pressed, a
functioniscalled to read the data from entry fields, do some calculations,
and then display the results.

Each event causes asignal to be emitted from the widget handling the
event. The signals are sent to signal handlers. A signal handler is a
function which is called when the signal is emitted. The signal handler
is connected to the signal. In C, these functions are known as callbacks.
The processisillustrated graphically in Figure 3.

A signal may have zero, one or many signal handlers connected
(registered) withit. If thereismorethan onesignal handler, they arecalled
in the order they were connected in.

Without signals, the user interface would display on the screen, but
would not actually do anything. By associating signal handlers with

In other cases, widgets may be expanded or shrunk to fit the space alotted
to them. There are several ways to control this behaviour, to give fine
control over the appearance of the interface.

In addition to the containers discussed above, there are more compl ex
containers available, such are horizontal and vertical panes, tabbed
notebooks, and viewports and scrolled windows. These are out of the
scope of thistutorial, however.

Newcomersto GTK+ may find the concept of containers quite strange.
Usersof Microsoft Visud Basic or Visual C++ may be used to thefree-form
placement of controls. The placement of controlsat fixed positionson aform
has no advantages over automatic positioning and sizing. All decent modern
toolkitsuseautomatic positioning. Thisfixesseveral issueswithfixed layouts:
» The hours spent laying out forms, particularly when maintaining
existing code.

Windows that are too big for the screen.

Windows that are too small for the form they contain.

I ssues with spacing when accommodating trandlated text.

Bad things happen when changing the font size from the default.

CVu/ACCU/Features

An event
QOCUrS

L -_l.
Calculat -~

A signal

is emitted

clicked

A 3ignal handler
is called

cb_calculate()

Stuff
Happens ¥

- il -

Figure 3: A typical signal handler.
When the button is pressed, asignal is emitted, causing the registered
callback function to be called.

21

OG & ABV Calculator

- -

Quit) (Reset) (Calculate)

The ogcalc main window is drawn simply, to illustrate its functionality. The top
row contains three numeric entry fields, followed by two result fields on the
middle row. The bottom row contains buttons to quit the program, reset the

Figure 4: Sketching a user interface

interface and do the calculation.

signalsoneisinterested in, eventstriggered by the user interacting

with the widgets will cause things to happen.

Libraries

GTK+ iscomprised of several separate libraries:

atk Accessibility Toolkit, to enable use by disabled
people.

gdk GIMP Drawing Kit (XLib abstraction layer —
windowing system dependent part). [

gdk- pi xbuf Image loading and display.

glib Basic datatypes and common algorithms.

gnodul e Dynamic module loader (I i bdl portability
wrapper).

gobj ect Object/type system.

gtk GIMP Tool Kit (windowing system independent
part).

pango Typeface layout and rendering.

Whenusing | i bgl ade another library is required:

gl ade User Interface description loader/constructor.

Lastly, when using C++, some additional C++ libraries are also needed:

at knm C++ ATK wrapper.

gdkmm C++ GDK wrapper.

gt knm C++ GTK+ wrapper.

gl ademm C++ Glade wrapper.

pangonmm C++ Pango wrapper.

si gc++ Advanced C++ signal/slot event handling (wraps GObject
signals).

This looks quite intimidating! However, there is no need to worry, since
compiling and linking programs is quite easy. Since the libraries are
released together as a set, there are few library interdependency issues.

Designing an Application
Planning Ahead

Before starting to code, it is necessary to plan ahead by thinking about what
the program will do, and how it should do it. When designing a graphical
interface, one should pay attention to how the user will interact with it, to
ensure that it is easy to understand, and efficient to use.

When designing aGTK+ application, it isuseful to sketch theinterface
on paper, before constructing it. Interface designers such as Glade are
helpful here, but a pen and paper are best for the initial design.

Introducing ogcal c

As part of the production (and quality control) processes in the brewing
industry, it is necessary to determine the alcohol content of each batch at
several stages during the brewing process. This is calculated using the
density (gravity) in g/cms and the refractive index. A correction factor is
used to align the calculated value with that determined by distillation,
which is the standard required by HM Customs & Excise. Because
alcoholic beverages are only slightly denser than water, the PG value is
(density-1) x 100. That is, 1.0052 would be entered as 52.

Original gravity is the density during fermentation. As alcohol is
produced during fermentation, the density falls. Traditionally, thiswould
be similar to the PG, but with modern high-gravity brewing (at a higher
concentration) it tends to be higher. It isjust asimportant that the OG is
within the set limits of the specification for the product asthe ABV.

The ogcal ¢ program performs the following calculation:

0 = (Rx2.597) - (P x 1.644) — 34.4165 + C

Designing the Interface

The program needs to ask the user for the values of C, P, and R. It must
then display the results, Aand 0. A simple sketch of theinterfaceis shown
in Figure 4.

Creating the Interface

Due to the need to build up an interface from the bottom up, due to the
containers being nested, the interface is constructed starting with the
window, then the containers that fit init. The widgets the user will use go
inlast. Thisisillustrated in Figure 5.

Once a widget has been created, signal handlers may be connected to
itssignals. After thisiscompleted, theinterface can be displayed, and the
main event loop may be entered. The event loop receives events from the
keyboard, mouse and other sources, and causesthe widgetsto emit signals.
To end the program, the event loop must first be | eft.

GTK+ and C
Introduction

Many GTK+ applicationsarewritten in C alone. This section demonstrates
the pl ai n/ ogcal ¢ program discussed in the previous section. Figure
6 is a screenshot of the finished application.
This program consists of just three functions:
on_button_clicked_reset () —Reset theinterfaceto its default
Sate
on_button_clicked_cal cul at e — Get the values the user has
entered, do a calculation, then display the results.
mai n() — Initialise GTK+, construct the interface, connect the signal
handlers, then enter the GTK+ event loop.

Code Listing

Theprogram codeislisted on pages 23-26. The sourcecodeisextensively
commented, to explain what is going on.

To build the source, do the following:

cd Cplain

cc 'pkg-config —flags gtk+-2.0" -c ogcalc.c

cc 'pkg-config —+ibs gtk+2.0" -0 ogcalc

ogcal c.o

Roger Leigh

[/ would recommend entering the code, it would be a valuable exercise in
learning how a GTK application is built up. It may take a little while, but it
certainly helped me to understand what is going on. — Ed|

It 0isless than 60, then v B OG & ABV Calculator o
A=(0-P)x0.130

otherwise PG:(39.57 [R:(63.55 [CF:[E |3
A=(0-P)x0.134 0G: 65.57 ABV %: 3.48

The symbols have the following meanings:
A Percentage Alcohol By Volume — |}}{ ee— =
G Correction Factor #] Quit ‘ i Reset : Calculate |
0 Origina Gravity S ——— -
P Present Gravity
R Refractive Index Figure6: C/ pl ai n/ ogcal cin action

22 CVu/ACCU/Features |

OG & ABV Calculator OG & ABV Calculator

1. An empty window 2. Addition of a GtkVBox

OG & ABV Calculator OG & ABV Calculator

...

3. Addition of a second GtkVBox; thishas unifor mly-sized 4. Addition of three GtkHBoxes
children(it ishomogeneous), unlike the first

OG & ABV Calculator OG & ABV Calculator

Calculate)

i i 1 i
sadhamannn sasassanannananen snnslssnnannenaman LTy SasssssmsEEa s EEn snsamsndhanannn sesamsassnnasansansnslmsnnas

5. Addition of five more GtkHBoxes, used to ensure visually 6. Addition of all of the user-visible widgets
appealing widget placement

Figure5: Widget packing
The steps taken during the creation of an interface are shown, demonstrating the use of nested containers to pack widgets.

/1 Clplain/ogcalc.c struct cal cul ati on_w dgets {
#i ncl ude <gtk/ gtk.h> & kW dget *pg_val ; /1 PG entry wi dget
& kW dget *ri_val; /1 R entry wi dget

G kW dget *create_spin_entry(G kW dget *cf _val; /1 CF entry wi dget
const gchar *I abel _text, G kW dget *og_result; // OGresult |abel
const gchar *tooltip_text, G kW dget *abv_result; // ABV%result |abel
G kW dget **spi nbutton_pointer, }s
G kAdj ust nent *adj ust nent,
guint digits); int main(int argc, char *argv[]) {

G kW dget *create_result_| abel (/* These are pointers to widgets used in
const gchar *Iabel _text, constructing the interface, and | ater
const gchar *tooltip_text, used by signal handlers. */

G kW dget **result_I| abel _pointer); G kW dget *wi ndow;

voi d on_button_clicked_reset(& kW dget *vbox1, *vbox2, *hboxl, *hbox2,
G kW dget *wi dget, *puttonl, *button2;
gpoi nter data); G kQoj ect *adj ust nent, *hsep;

voi d on_button_clicked_cal cul at e(struct cal cul ati on_w dgets cb_wi dgets;

G kW dget *wi dget,
gpoi nter data); gtk_init(&rgc, &argv); // Initialise GIK+.
/* This structure holds all of the w dgets /* Create a new top-level w ndow. */
needed to get all the values for the wi ndow =
cal culation. */ gt k_wi ndow_new(GTK_W NDOW TOPLEVEL) ;

CVu/ACCU/Features 23

/* Set the window title. */
gt k_wi ndow _set _title(GTK_W NDOA wi ndow) ,
"OG & ABV Cal culator");
/* Di sabl e wi ndow resizing */
gt k_wi ndow_set _resi zabl e(GTK_W NDON wi ndow) ,
FALSE) ;
/* Connect the w ndow cl ose button
("destroy" event) to gtk_nmmin_quit(). */
g_si gnal _connect (G_OBJECT(w ndow) ,
"destroy", gtk_main_quit,
NULL) ;

/* Create a G kVBox to hold the other
wi dgets. This contains other w dgets,
which are packed in to it vertically. */

vbox1l = gtk_vbox_new(FALSE, 0);

/* Add the VBox to the Wndow. A G kW ndow
/is al G kContainer which /is al
G kW dget. GTK_CONTAI NER casts the
G kWdget to a G kContainer, |like a C++
dynam c_cast. */

gt k_cont ai ner _add(GTK_CONTAI NER(w ndow) ,

vbox1);

/* Display the Vbox. At this point, the
W ndow has not yet been displayed, so the
wi ndow isn’t yet visible. */

gt k_w dget _show(vbox1);

/* Create a second & kVBox. Unlike the
previous VBox, the widgets it wll
contain will be of uniformsize and
separated by a 5 pixel gap. */

vbox2 = gtk_vbox_new(TRUE, 5);

/* Set a 10 pixel border */

gt k_cont ai ner _set _border _wi dt h(

GTK_CONTAI NER(vbox2), 10);

/* Add this VBox to our first VBox. */

gt k_box_pack_start (GTK_BOX(vbox1), vbox2,

FALSE, FALSE, 0);

gt k_w dget _show(vbox2);

/* Create a G kHBox. This is identical to a
G kVBox except that the w dgets pack
hori zontally, instead of vertically. */

hbox1l = gtk_hbox_new FALSE, 10);

/* Add to vbox2. The function's other
argunments nean to expand into any extra
space alloted to it, to fill the extra
space and to add O pi xel s of padding
between it and its neighbour. */

gt k_box_pack_start (GTK_BOX(vbox2), hbox1,

TRUE, TRUE, 0);
gt k_wi dget _show (hbox1);

/* A G kAdjustrment is used to hold a nuneric
value: the initial value, mninmum and
maxi mum val ues, "step" and "page"

increments and the "page size". It’'s
used by spin buttons, scrollbars, sliders
etc. */

adj ust nent = gtk_adj ustnent _new(0.0, 0.0,
10000.0, 0.01, 1.0, 0);
/* Call a helper function to create a
G kSpi nButton entry together with a | abel
and a tooltip. The spin button is stored
in the cb_w dgets.pg_val pointer for
| ater use. */
hbox2 = create_spin_entry("PG",
"Present Gravity (density)",
&ch_wi dget s. pg_val ,
GTK_ADJUSTMENT(adj ust nent),
2);

/* Pack the returned G kHBox into the
interface. */
gt k_box_pack_start (GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);
gt k_w dget _show(hbox2) ;

/* Repeat the above for the next spin
button. */
adj ust ment = gt k_adj ust nent _new (0.0, 0.0,
10000.0, 0.01, 1.0, 0);
hbox2 = create_spin_entry("Rl:",
"Refractive | ndex",
&cb_wi dgets.ri_val,
GTK_ADJUSTMENT(adj ust nent), 2);
gt k_box_pack_start (GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);
gt k_w dget _show(hbox2) ;

/* Repeat again for the last spin button. */
adj ust nent = gt k_adj ustment _new (0.0, -50.0,
50.0, 0.1, 1.0, 0);
hbox2 = create_spin_entry(“CF.",
"Correction Factor",
&cb_wi dget s. cf _val,
GTK_ADJUSTMENT(adj ust nent),
1);
gt k_box_pack_start (GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);
gt k_w dget _show(hbox2) ;

/* Now we nove to the second "row' of the
interface, for displaying the results. */

/* Firstly, a new G kHBox to pack the |abels
into. */
hbox1l = gtk_hbox_new (TRUE, 10);
gt k_box_pack_start (GTK_BOX(vbox2), hbox1,
TRUE, TRUE, 0);
gt k_w dget _show (hbox1);

/* Create the OG result |abel, then pack and
di splay. */

hbox2 = create_result_Ilabel ("OG",
"Original Gavity (density)",
&cb_wi dgets. og_result);

gt k_box_pack_start (GTK_BOX(hbox1), hbox2,

TRUE, TRUE, 0);
gt k_w dget _show(hbox2) ;

/* Repeat as above for the second result
val ue. */

hbox2 = create_result_Ilabel ("ABV %",
"Percent Al cohol By Vol une",
&cb_wi dgets. abv_result);

gt k_box_pack_start (GTK_BOX(hbox1), hbox2,

TRUE, TRUE, 0);
gt k_w dget _show(hbox2) ;

/* Create a horizontal separator
(& kHSeparator) and add it to the VBox.*/
hsep = gtk_hseparator_new);
gt k_box_pack_start (GTK_BOX(vboxl), hsep,
FALSE, FALSE, 0);
gt k_w dget _show(hsep);

/* Create a G kHBox to hold the bottomrow
of buttons. */
hbox1l = gt k_hbox_new TRUE, 5);
gt k_cont ai ner _set _border _wi dt h(
GTK_CONTAI NER(hbox1), 10);
gt k_box_pack_start (GTK_BOX(vbox1), hboxl1,
TRUE, TRUE, 0);
gt k_w dget _show(hbox1) ;

24

| CVu/ACCU/Features

/* Create the "Quit" button. W use a
“stock” button—eommonl y-used buttons that
have a set title and icon. */

buttonl =
gtk_button_new from st ock(GTK_STOCK _QUI T);

/* W connect the "clicked" signal to the
gtk_main_quit() callback which will end
the program */

g_si gnal _connect (G _OBJECT(buttonl),

"clicked", gtk_main_quit, NULL);
gt k_box_pack_start (GTK_BOX(hbox1), buttonl,
TRUE, TRUE, 0);
gt k_wi dget _show buttonl);

/* This button resets the interface. */
buttonl =
gt k_button_new wi th_mmenoni c("_Reset");

/* The "clicked" signal is connected to the
on_button_clicked_reset() callback above,
and our "cb_wi dgets" widget list is
passed as the second argument, cast to a
gpointer (void). */

g_si gnal _connect (G_OBJECT(buttonl),

"clicked",
G CALLBACK(on_button_clicked_reset),
(gpoi nter)&hb_wi dgets);

/* g_signal _connect_swapped is used to
connect a signal fromone w dget to the
handl er of another. The last argunent is
the widget that will be passed as the
first argunent of the callback. This
causes gtk_w dget _grab_focus to swtch
the focus to the PGentry. */

g_si gnal _connect _swapped(G _OBJECT(buttonl),
"clicked",

G _CALLBACK(gtk_wi dget _grab_focus),
(gpoi nter) GTK_W DGET(cb_wi dgets. pg_val));

/* This lets the default action (Enter)
activate this wi dget even when the focus
is el sewhere. This doesn't set the
default, it just nakes it possible to
set.*/

GTK_W DGET_SET_FLAGS(but t on1,

GTK_CAN_DEFAULT) ;
gt k_box_pack_start (GTK_BOX(hbox1), buttonl,
TRUE, TRUE, O0);
gt k_wi dget _show buttonl);

/* The final button is the Calculate button.*/
button2 =
gtk_button_new w t h_menoni c("_Cal cul ate");
/* When the button is clicked, call the
on_button_clicked_cal cul ate() function.
This is the sane as for the Reset button.*/
g_si gnal _connect (G_OBJECT(button2),
"clicked",
G _CALLBACK(on_button_clicked_cal cul ate),
(gpoi nter) &hb_wi dgets);
/* Switch the focus to the Reset button when
the button is clicked. */
g_si gnal _connect _swapped(G _OBJECT(button2),
"clicked",
G _CALLBACK(gt k_wi dget _grab_focus),
(gpoi nter) GTK_W DGET(buttonl));
/* As before, the button can be the defaul t.*/
GTK_W DGET_SET_FLAGS(but t on2,
GTK_CAN_DEFAULT) ;
gt k_box_pack_start (GTK_BOX(hbox1),
button2, TRUE, TRUE, O0);
/* Make this button the default. Note the
thi cker border in the interface—this
button is activated if you press enter in
the CF entry field. */

gt k_wi dget _grab_defaul t (button2);
gt k_wi dget _show(button2);

/* Set up data entry focus novenent. This
makes the interface work correctly with
t he keyboard, so that you can touch-type
through the interface with no nouse usage
or tabbing between the fields. */

/* When Enter is pressed in the PG entry
box, focus is transferred to the Rl
entry. */

g_si gnal _connect _swapped(

G OBJECT(cb_wi dgets. pg_val), "activate",
G _CALLBACK(gtk_wi dget _grab_focus),
(gpoi nter) GTK_W DGET(cb_wi dgets.ri_val));

/* Rl -> CF. */

g_si gnal _connect _swapped(

G OBJECT(cb_wi dgets.ri_val), "activate",
G _CALLBACK(gt k_wi dget _grab_focus),
(gpoi nter) GTK_W DGET(cb_wi dgets. cf_val));

/* When Enter is pressed in the R field, it
activates the Calculate button. */

g_si gnal _connect _swapped(

G OBJECT(cb_wi dgets.cf_val), ™"activate",
G _CALLBACK(gt k_wi ndow_activate_default),
(gpoi nter) GTK_W DCGET(wi ndow)) ;

/* The interface is conplete, so finally we
show the top-level window This is done
| ast or else the user mght see the
interface drawing itself during the short
time it takes to construct. |It’s nicer
this way. */

gt k_wi dget _show(wi ndow) ;

/* Enter the GIK Event Loop. This is where
all the events are caught and handl ed.
It is exited with gtk_main_quit(). */
gtk_main();

return O;

}

[* Autility function for U construction. It
constructs part of the w dget tree, then
returns its root. */
G kW dget *create_spin_entry(
const gchar *| abel _text,
const gchar *tooltip_text,
G kW dget **spi nbutton_pointer,
G kAdj ust ment *adj ust nent,
guint digits) {
G kW dget *hbox, *eventbox, *spinbutton,
*| abel ;
G kTool tips *tooltip;

/* A GkHBox to pack the entry child w dgets
into. */
hbox = gt k_hbox_new(FALSE, 5);

/* An eventbox. This widget is just a
container for widgets (like |abels) that
don’t have an associated X wi ndow, and so
can't receive X events. This is just
used to we can add tooltips to each
| abel . */

event box = gtk_event _box_new();

gt k_w dget _show(event box) ;

gt k_box_pack_st art (GTK_BOX(hbox),

event box, FALSE, FALSE, 0);

/* Create a |abel. */

| abel = gtk_| abel _new(| abel _text);

CVu/ACCU/Features

25

}

/* Autility function for Ul

G kW dget

/* Add the | abel to the eventbox */

gt k_cont ai ner _add(GTK_CONTAI NER(event box) ,
| abel) ;

gt k_wi dget _show(| abel) ;

/* Create a G kSpinButton and associate it
with the adjustment. It adds/substracts
0.5 when the spin buttons are used, and
has digits accuracy. */

spinbutton = gtk_spin_button_new

adjustnment, 0.5, digits);

/* Only nunbers can be entered. */

gt k_spin_button_set _nuneri c(

GTK_SPI N_BUTTON(spi nbut ton),

gt k_box_pack_start (GTK_BOX(hbox) ,

spi nbutton, TRUE, TRUE, O0);
gt k_wi dget _show(spi nbutton);

TRUE) ;

/* Create a tooltip and add it to the
Event Box previously created. */
tooltip = gtk_tooltips_new);
gtk _tooltips_set_tip(tooltip, eventbox,
tool tip_text, NULL);

*spi nbutton_poi nter = spinbutton;
return hbox;

construction. It

constructs part of the widget tree, then

returns its root. */

*create_result_I abel (

const gchar *| abel _text,

const gchar *tooltip_text,

G kWdget **result_Il abel _pointer) {

G kW dget *hbox, *eventbox, *result_I abel,
*result_val ue;

G kTool tips *tool tip;

/*A G kHBox to pack entry child w dgets into*/
hbox = gtk_hbox_new(FALSE, 5);

/* As before,
tooltip. */

event box = gtk_event _box_new();

gt k_wi dget _show(event box) ;

gt k_box_pack_start (GTK_BOX(hbox), event box,

FALSE, FALSE, 0);
resul t_l abel = gtk_| abel _new(| abel _text);
gt k_cont ai ner _add(GTK_CONTAI NER(event box) ,
resul t_I abel);
gt k_wi dget _show(resul t _I abel);

a label in an event box with a

/* This is a |abel,
result. */
resul t _value = gtk_|l abel _new (NULL);
/* Because it's a result, it is set
“sel ectable”, to all ow copy/paste of the
result, but it’s not nodifiable. */
gt k_| abel _set _sel ect abl e(
GITK_LABEL(resul t _val ue),
gt k_box_pack_start (GTK_BOX(hbox),
result_value, TRUE, TRUE, 0);
gt k_wi dget _show(resul t _val ue);

used to display the OG

TRUE) ;

/* Add the tooltip to the event box. */

tooltip = gtk_tooltips_new);

gtk _tooltips_set_tip(tooltip, eventbox,
tool tip_text, NULL);

*result_| abel _pointer = result_val ue;
return hbox;

/* This is a callback function. It resets
the values of the entry w dgets, and
clears the results. "data" is the
cal cul ati on_wi dgets structure, which needs
casting back to its correct type froma
gpoi nter (void) type. */

voi d on_button_clicked_reset(

G kW dget *wi dget,
gpoi nter data) {
/* Wdgets to manipul ate. */
struct cal cul ati on_w dgets *w,

w = (struct cal cul ation_wi dgets *) data;

gt k_spi n_button_set_val ue(

GTK_SPI N_BUTTON(w >pg_val), 0.0);
gt k_spi n_button_set _val ue(

GTK_SPI N_BUTTON(w>ri _val), 0.0);
gt k_spi n_button_set_val ue(

GTK_SPI N_BUTTON(w >cf _val), 0.0);

gtk_| abel _set _text(

GTK_LABEL(w>0g result), "");
gt k_| abel _set _text(

GTK_LABEL(w >abv_result), "");

}

/* This call back does the actual calcul ation.
Its argunents are the sane as for
on_button_clicked_reset(). */

voi d on_button_clicked_cal cul ate(

G kW dget *wi dget,

gpoi nter data) {
gdoubl e pg, ri, cf, og, abv;
gchar *og_string, *abv_string;
struct cal cul ati on_w dgets *w;

w = (struct cal cul ation_wi dgets *) data;

/* Get the numerical
wi dgets. */

pg = gtk_spin_button_get_val ue(
GTK_SPI N_BUTTON(w >pg_val));

gt k_spin_button_get _val ue(
GTK_SPI N_BUTTON(w >ri _val));

cf = gtk_spin_button_get_val ue(
GTK_SPI N_BUTTON(w >cf _val));

val ues fromthe entry

ri

og = (ri*2.597) - (pg*l.644) - 34.4165 + cf;
/* Do the sums. */
if (og < 60)

abv = (og - pg)
el se

abv = (og - pg)

* 0. 130;
* 0. 134;

/* Display the results. Note the
 QGvarkup tags to nake it display

in Bold. */
og_string =
g_strdup_printf("%0. 2f </ b>", o0g);
abv_string =
g_strdup_printf("%®. 2f </ b>", abv);

gt k_| abel _set _mar kup(
GTK_LABEL(w>0g_result),
og_string);

gt k_| abel _set _mar kup(
GITK_LABEL(w >abv_result),
abv_string);

g_free(og_string);
g_free(abv_string);

26

| CVu/ACCU/Features

An Introduction to Objective-C
Part 1

D.A. Thomas

This series of articles aims to introduce the Objective-C programming
language to readers of C Vu, who are users of C and C++. | will try to show
how the language managesto add object-oriented facilitiesto the low-level
features of C in away that isradically different from that of C++.

Stroustrup, the designer of C++, has been at pains to emphasise that
C++isnot just C with an object-oriented extension but rather anew mullti-
paradigm language that happens to support objects; indeed, recent
developments in the language have been more in the direction of generic
types (‘templates’) rather than object-orientation astraditionally conceived.
The Standard Template Library, which is now part of the Standard C++
Library, aso shows someinfluence from the functional programming style.
In pursuit of thisgoal, the author and the later standardisers of the language
have had no compunctionin ‘improving’ on C by for instance strengthening
the type system and changing the namespace rules, with the result that a
standards-conforming C source is not guaranteed to perform as the
programmer expected after being passed to a C++ compiler.

The designer of Objective-C Brad J. Cox, had other ideas. His goal was
to make available some of the facilities of the high-level Smalltalk-80
programming environment to users of C, so as to enhance productivity
without taking away the advantages of efficiency, versatility and portability
that such alow-level language can offer. The object-oriented part of
Objective-C is entirely orthogonal to its C-based component, so that a
standard C source is aways a perfectly good Objective-C source. Cox’'s
problem, then, was how to extend C in such away so asto enable powerful
and easy object-oriented programming without impinging on the original
syntax and semantics of the language. The solution he found isto my mind
extraordinarily elegant, though it doesinvolve syntactical conventionsthat
seem quite strange to someone without a Smalltalk background; asaresult,
it only takes an hour or two's study and practice for a C programmer to
learn enough to become proficient at Objective-C.

In his book, Object-Oriented Programming, an Evolutionary
Approach, Cox addressed what he calls ‘the software crisis’, namely the
tendency of large IT projects to be delivered late, to end up costing much
morethan their allocated budget, not deliver theintended functionality, and
indeed, to fail entirely. Software development is contrasted unfavourably
with electronic engineering: software developers keep writing the code
over and over again with minor variations to suit the demands of each
individual system, whiletheir hardware counterparts are ableto create new
devices largely by dotting in and connecting components that they have
acquired from third parties and are thus much more productive. If
development could be largely reduced to putting together systems from
software |Cs with minimal wiring in between, this would go along way
to solving the software crisis, Cox argued. At the time, he knew of only
one devel opment system which provided such components at the IC level,
and that was Smalltalk, but the use of Smalltalk was limited by the fact
that it required its own ‘box’ or run-time environment to work, and being
interpreted rather than compiled, its performance was unspectacular on the
computers of the day. Much could be gained if one could programin C and
yet make use of libraries that are available to the Smalltalk programmer.

Cox’s company, the Stepstone Corporation, brought out an Objective-C
compiler in 1983 with a Smalltalk-like library called 1CPak(R).
1CPak101provided foundation classes, including Object, the root object, and
data-structure classes like Sets, Dictionaries, Arrays, Listsand Strings, while
1CPak201 had classes to build cross-platform graphical user interfaces; the
coroutine library TaskMaster was added |ater. Richard Stallman and others
developed open-source equivalents of the compiler, run-time system and
basic classlibrary for the GNU project, starting in 1992. However, arguably
the most signigicant event in the history of the language was its adoption in
1988 by NeXT Computer Corporation asthe devel opment language of choice
for their UNIX-based NexTStep operating system running on their
proprietary workstations. They made some extensionsto the language, such
as Categories and Protocols, and rather then use Stepstone’ sICPak libraries,
they developed their own, called Foundation and AppKit. NeXT’s
workstations, though they drew widespread admiration, did not sell well, and
so their development environment, now called OpenStep, was ported to other
architectures, asNeXT transformed itsdlf into asoftware company. OpenStep
became popular with financial institutions, scientists, and, so | am assured,
USintelligence agencies because it could be used to produce powerful

CVu/ACCU/Features

applications with a graphical front end in a remarkably short time; one of
these gpplicationswasthefirst World-Wide Web browser, written by Sir Tim
Berners-Lee at CERN in 1992. Unfortunately, support for multi-platform
OpenStep came to an end after NeXT was acquired by Applein 1996, but
the concept till livesin the Cocoa devel opment frameworks on Apple sMac
OS. The open-source GNUstep project provides libraries and tools to do
OpenStep-style development on non-Mac OS platforms.

Objective-C’s fortunes have been very different from those of C and
C++, and, unlike them, it has never become a mainstream devel opment
tool. It is beyond the scope of these articles to speculate as to why this
might have been so. (I do not believe Dr Cox minds too much, as hisidea
of exploiting reusable software components has been abundantly
vindicated, from Visual Basic custom controlsto Python libraries; he has
retained his enthusiasm for Smalltalk-style languages and is now amember
of the Ruby community.) The closest thing to astandard is A ppl€e’scompiler
and frameworks, sincethevast majority of Objective-C userswork either
with these or with GNUSstep. Subsequent articles will discuss Objective-C
asimplemented by NeX T/Apple, and the code exampleswill illustrate the
use of the Foundation framework. | have not tested the code on GNUstep
but have reason to expect that it will work there with little or no
modification.

Availability of Objective-C Resources

Apple’s development tools, including their compilerl, can be
downloaded free of chargefrom their site. Asfar as| am aware, theorigina
Objective-C compiler and ICPak libraries produced by the Stepstone
Corporation are no longer commercially available. The open-source GNU
Compiler Collection (GCC) version 3.4 offers a compiler with facilities
very similar to Apple's. The Portable Object Compiler (POC) isin reality
an Objective-C front-end to various C compilersand isavailablefreefrom
itsauthor, Mr David Stes. Metrowerks CodeWarrior development toolsfor
Mac OSwill interoperate with Apple’ sInterface Builder GUI construction
tool and include an Objective-C compiler that will produce code that links
with Apple' sframeworks. IBM’sVisual Age C/C++ Advanced Edition for
Mac OS X also has Objective-C support.

D A Thomas

Bibliography and References

Anguish, Scott, Erik Buck and Donad Y acktman, Cocoa Programming,
SAMS, 2002

Apple Computer Inc., The Objective-C Programming Language,
available online at http://devel oper. apple.conf
docunent at i on/ Cocoa/ Concept ual / Obj ecti ved

Apple Developer Connectionht t p: / / devel oper . appl e. conl

Beam, Michael and James Duncan Davidson, Cocoa in a Nutshell,
O'Relilly, 2003

Budd, Timothy, Introduction to Object-Oriented Programming, 3rd
ed., Addison-Wed ey, 2001

Cox, Brad J. and Andrew J. Novibilski, Object-Oriented Programming,
an Evolutionary Approach, 2nd ed., Addison-Wesley, 1991

Cox, Brad, Planning the Software Revolution,|EEE Software
Magazine, November 1990, available online at
http://wmv. virtual school . edu/ cox/ pub/ PSI R

Cox, Brad, TaskMaster available online at
http://ww. virtual school . edu/ cox/ pub/ TaskMast er/

Davidson, James Duncan and Apple Computer Inc., Learning Cocoa
with Objective-C, 2nd ed., O'Reilly, 2002

Duncan, Andrew M., Objective-C Pocket Reference O’ Reilly, 2002

GNU Compiler Collectionht t p: / / gcc. gnu. org

GNU Objective C ClassLibraryht t p: / / ww. cs. r ochest er . edu/
u/ ncecal lum |i bobj ects
http://theory. uw nni peg. ca/ gnu/ |l i bobj ects/
|'i bobj ects_toc. htnm

GNUstep ht t p: / / www. gnust ep. or g/

Hillegass, Aaron, Cocoa Programming for Mac OS X, 2nd ed.,
Addison-Wesley, 2004

IBM Inc. ht t p: // ww- 306. i bm cont sof t war e/ awdt ool s/
vacpp/ f eat ur es/ x| cpp- nac. ht m

[references concluded at foot of next page]

1 This compiler is a GCC derivative and also supports a dialect called Obj ective-C++,
which allows mixing of C++ and Objective-C source; this is meant to facilitate the porting
of legacy applications written in C++ to Cocoa.

27

C++ Templates
- A Simple Example

Rajanikanth Jammalamadaka <r aj ani @ce. ari zona. edu>

This article describes the C++ code for performing basic operations on
matrices using templates. That means we can create a matrix of any data
type using one line and call the respective functions.

The code listing opmat ri x. h isthe header file in which the matrix
classisdescribed. Note that the number of rowsand columnsis hard coded
in the header file. So, in the current code, a matrix of two rows and two
columns has been created. These numbers can be changed for matrices of
bigger dimensions. Also for convenience's sake, this code works only for
square matrices (matrices which have the same number of rows and
columns).

Theheader filedefinesthe matrix asatwo dimensional vector. A vector
isacontainer in C++ which is very similar to an array in the C language
but is more sophisticated (it manages its own memory and you can call a
number of functions to perform useful operations.) The functions
readm() and pri nt n{) areused to read in the elements of the matrix
and to print the matrix.

Note that ther eadm() and pri nt m() functions usethet hi s
pointer. The this pointer stores the address of the current object. For
example, if we declare an object of the matrix class of typei nt likethis

mat ri x<i nt> a;

then thet hi s pointer will contain the address of the object a,i.e.t hi s
= &a
Therefore, saying a. r eadne() isequivalent to saying

for(int i =0; i < ROAB, ++i)
for(int j =0; j < COLS; +4+j)
cin >> (&) ->s[il[jl];

The overloaded operators+, - , * and ~ are declared as friend functions of
the matrix, so that they can access the elements of the matrix (which are
private) in order to perform the operations. The overloaded operator ~ is
the transpose operator.

The + operator operates on two matrices and adds the corresponding
elements of the two matrices and prints the result.

The- operator is similar to the + operates except that it subtracts the
elements of two matrices, instead of adding them.

The* operator needs some explanation. Matrix multiplication works
only if the number of columns of the first matrix is equal to the number of
rows of the second matrix. For example, if we have to multiply matrices a
and b, then the number of columns of matrix a must be equal to the number
of rowsof matrix b. In our casethisisnot aproblem because we are dealing
with square matrices (whose sizes are fixed once the variables ROAS and
COLUMNS are initialized), so the number of columns of first matrix will
aways be equal to the number of rows of the second matrix.

In order to understand how the * operator works, let us consider a
simple example:

1 5
a 3 b 7
19 2
*
now, a*b 43 5

Now, both a and b are of dimensions 2 by 2.

Therefore, their product will be of dimension 2 by 2. The first element
of @ b is obtained by summing the product of the corresponding elements
of the first row of matrix aand first column of matrix b:

ie
(a*b),, = 1*5 + 2*7 = 5 + 14 = 19,

(a*b);; denotesthe element at the intersection of i frow andj thcolumn
of the product matrix a* b. Similarly, (a*b) ,, is obtained by summing
the product of the corresponding elements of thefirst row of matrix a and
second column of matrix b. Similarly the other two elements can be
obtained.

The ~ operator transposes the elements of a matrix. By transpose, we
mean interchanging the rows and columns of amatrix. So, amatrix (A)
after the transpose operation becomes (A) ;.

For example the matrix é
; 1
after transposing becom 5

The above examples may seem to be trivial, but they were purposefully
madetrivial in order to understand the concepts of basic matrix operations.
If the matrices were of large dimensions, it wouldn’'t be a trivial task to
multiply them manually. In the results section, operations are performed
on two matrices each of dimension 4 by 4. It is here that operator
overloading proves to be most useful. For example, if we have to find the
transpose of a+b*c, all weneedtodois~(a+b*c) and storethisina
matrix and print the resultant matrix using thepr i nt m() function.

Also note that each operator accepts a constant reference to the matrix,
this is because we want each operator to perform its function without
modifying the original matrix which was given to it.

Rajanikanth Jammalamadaka

[/l opmatrix.h - C++ header file
#i ncl ude <iostreanp
#i ncl ude <vector>

using std::cin;
using std::cout;

usi ng std::vector;
using std::endl;
const int RO = 2;
const int COLS = 2;
tenpl at e<cl ass T>

class matrix {
/1 declare a vector of vectors of type T
vector< vector<T> > s ;
publi c:
/Il Initialize the size of s to ROAM5 by COLS
mat ri x() s(RON5, vector<T>(COLS)) {}
voi d readm();
void printn();
/1 declare the operators +,-,*, ~ as
I/ and with return type matrix<T>
friend matrix<T> operat or +<>(const
const
mat ri x<T> oper at or - <>(const
const
mat ri x<T> oper at or *<>(
const matri x<T>& const
mat ri x<T> oper at or ~<>(
const matri x<T>&)

friends

mat ri x&,
matri x&) ;
mat ri x&,
nmatri x&) ;

friend
friend

mat ri x<T>&) ;
friend

}s

[concl uded from previ ous page]

IBM Inc. ht t p: // ww 306. i bm cont sof t war e/ awdt ool s/
vacpp/ f eat ur es/ x| cpp- mac. ht m

Mahoney, Michael and Simson Garfinkel, Building Cocoa Applications:
A Sep-by-Step Guide, O’ Reilly, 2003

Metrowerks Inc. ht t p: / / www. met r ower ks. comi MV Devel op/
Deskt op/ Maci nt osh/ Pr of essi onal / Mac9. ht m

28

Objective-C FAQ http://ww. f ags. or g/ f ags/ conput er -
| ang/ Qoj ecti ve-C/ faqg/

Pinson, Lewis J. and Richard S. Wiener, Objective-C: Object-Oriented
Programming Techniques, Addison-Wesley, 1991

Portable Object Compiler
http://users. pandora. be/ stes/ conpil er. ht m

| CVu/ACCU/Features

tenpl at e<cl ass T>
voi d matri x<T>::readm() {
for(int i = 0; i < RON5; i++)
for(int j =0; j < COS; j++)
cin >>this->s[i][j];

}

t enpl at e<cl ass T>
void matrix<T>::printnm() {
for(int i =0; i < ROA5;, i++) {
for(int j =0;] < COLS; j++)
cout << this->s[i][j] << "\t";
cout << endl;
}
}

tenpl at e<cl ass T>
matri x<T> operator+(const matri x<T>& a,
const matrix<T>& b) {
/] declare a matrix tenp of type T to store
/1 the result and return this matrix
matri x<T> tenp;
for(int i = 0; i < RON5; i++)
for(int j =0; j < COS; j++)
temp.s[i][j] = a.s[i][j] + b.s[i][j];
return tenp;

}

tenpl at e<cl ass T>
matri x<T> operator-(const matri x<T>& a,
const matrix<T>& b) {
mat ri x<T> tenp;
for(int i = 0; i < ROAS; i++)
for(int j =0; j < COS; j++)
temp.s[i][j] = a.s[i][j] - b.s[i][j];

return tenp;

}

tenpl at e<cl ass T>
mat ri x<T> operator*(const matrix<T>& a,
const matrix<T>& b) {
mat ri x<T> tenp;
for(int i = 0; i < ROA5, i++) {
for(int j =0; j < CAS; j++) {
temp.s[i][j] = 0;
for(int k = 0; k < COLS; k++)
} tenp.s[i][j] += a.s[i][k] * b.s[KI[j]:

}

return tenp;

}

tenpl at e<cl ass T>
matri x<T> operator~(const matri x<T>& trans) {
mat ri x<T> tenp;
for(int i =0; i < ROAN5; i++)
for(int j =0; j < COS; j++)
temp.s[j][i] = trans.s[i][j];
return tenp;

}

/1 matrix.cpp - C++ Source file
#i ncl ude "opmatri x. hpp"

int main() {
matrix<int> a,b,c; // we can also declare
/1 matrices of type int, float, double etc.
cout << "Enter matrix a:" << endl;

a.readm);

cout << "a is:" << endl;
a.printnm();

cout << "Enter matrix b:" << endl;
b. readm();

CVu/ACCU/Features

cout << "b is:

b.printm();

c =a + b;
cout << endl
c.printm();
c = a- b;
cout << endl
c.printm);
c =a* b;
cout << endl
c.printm();

cout << '\n' << "Result of

<<

<<

" << endl;

(a+b*c).printm);

¢ = ~(atb*c);
cout << "\n'

<< "Resul t

<< "a+b*c is:"

"Result of a+h:"

"Result of a-b:"

<< "Result of a*h:"

4
8

12
16

20
24
28
32

24
32
40
48

-16
-16
-16
-16

280
696
1112
1528

68980
83448
97916
112384

at+b*c is:

99697
103926
108155

c.printm();

return O;
}
/1 Qut put
> g++ matrix.cpp -0 matrix
> matri X
Enter matrix a:
1234
5678
9 10 11 12
13 14 15 16
ais:
1 2 3
5 6 7
9 10 11
13 14 15
Enter matrix b:
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
b is:
17 18 19
21 22 23
25 26 27
29 30 31
Result of a+b
18 20 22
26 28 30
34 36 38
42 44 46
Result of a-b:
-16 -16 -16
-16 -16 -16
-16 -16 -16
-16 -16 -16
Result of a*h:
250 260 270
618 644 670
986 1028 1070
1354 1412 1470
Result of a+b*c is
61189 63786 66383
74025 77166 80307
86861 90546 94231
99697 103926 108155
Result of transpose of
61189 74025 86861
63786 77166 90546
66383 80307 94231
68980 83448 97916

112384

atb*c is:" <<

<< endl ;

<< endl ;

<< endl ;

of transpose of
<'\n';

‘\n';

29

XML as a Model-View-
Controller System for
Documents

Matthew Strawbridge

Models and Views

The Model-View-Controller (MVC) paradigm is well known by
programmers as a way of separating the logical internals of a software
system (the model) from the code concerned with presenting information
to the user (the view). Any framework that co-ordinates the interaction
between models and views is termed a controller . This scheme has been
adopted by most modern development frameworks, sinceit hel ps software
to grow over timein aflexible way, and hel psto encapsul ate changes. Y ou
can add new viewsto existing model swithout having to change the models
themselves, and business logic can be modified without you needing to
change the way it is presented to the user.

Many programmerswould rightly condemn code that comprised amish-
mash of logic and presentation, but they are content to produce and
consume documents that do precisely this. Memos, technical notes,
meeting minutes: these are the bread and butter of the professional Software
Engineer, and yet most documents are simply dumped into a word
processor and |eft to stagnate. In this article | will describe how an MVC
approach to the generation of documents can yield the same benefits that
are traditionally seen with this approach to software design, and will
introduce some XML [1][2] tools that can support this method. Finally, |
will look at some of the aternatives to XML that could achieve the same
separation of concerns.

The Problem

Y ou may think that MV C is overkill for documents — after all, a memo
is simply text; there is only one view, and that's the document you're
looking at. However, what if you want to put a copy on your company
intranet? | daresay your word processor has a ‘save as HTML' facility.
Good. What if you want to make all document referencesinto hyperlinks;
or to change the copyright text in anumber of documentsyou’ ve already
saved asHTML; or to radically change the style of every memo. All less
good.

Asan example, let’ stake a simple document type with which we're all
familiar: an ACCU book review. We aready know about two views that
exist on these documents: the magazine text (lets assume it’s Rich Text
Format), and the online review on the ACCU website (in HTML).
Remember that, as well as having two different formats, the reviews can
also have different content, since some reviews have a short version
published in C Vu and an extended version on the Web site.

XML Solution
Model

The starting point for our XML solution is to develop a Document Type
Definition that describes the format of the raw information from which we
will generate our documents. Strictly speaking, we could bypass this step,
but then we would have no way of validating the input document — we
would just try to process whatever was given. Note also that XML Schema
[3][4] could have been used to provide a more detailed and robust way of
validating input documents.

<! ELEMENT bookrevi ew (bookdet ai | s,
revi ewbody) >

revi ewdet ai | s,

<! ELEMENT bookdetails EMPTY>

<! ATTLI ST bookdetails title CDATA #REQUI RED

aut hor CDATA #REQUI RED
i sbn CDATA #REQUI RED
publ i sher CDATA #REQUI RED
pages CDATA #REQUI RED

pricei npounds CDATA #REQU RED
pricei ndol | ars CDATA #REQU RED>

<! ELEMENT revi ewdetai |l s EMPTY>

30

<I ATTLI ST revi ewdetai | s date CDATA #REQUI RED
revi ewer CDATA #REQUI RED>

<! ELEMENT revi ewbody (para+)>
<l ELEMENT para (#PCDATA) >

<I ATTLI ST para filter (shortonly |
#| MPLI ED>

| ongonl y)

This simple DTD just says which XML elements are alowed in a book
review, and which attributes each of them may contain. Hereisan example
review adhering to thisDTD:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE BookRevi ew SYSTEM " BookRevi ew. dt d" >
<bookr evi ew>
<bookdetails title="How to Wite a Book Review'
aut hor="B. Wrnf
i sbn="0-123- 45678- 9"
publ i sher="A. B. Cee Ltd."
pages="123"
pri cei npounds="12. 50"
pri cei ndol | ars="16. 00"/ >
<revi ewdetai | s dat e="2003-11-19"
revi ewer =" Matt hew Strawbri dge"/ >
<r evi ewbody>
<para>This is an excellent book that tells you
al | about how to review books. </ para>
<para filter="longonly">You should buy this
book because..., and finally because it’s
two inches thick so it nust be good. </ para>
<para filter="shortonly">Buy this book.</para>
</ revi enbody>
</ bookr evi ew>

This example is a hypothetical review of the book How to Write a Book
Review by B. Worm, which was supposedly reviewed by me on the 19th
November 2003. Note that the final two paragraphs provide a long
description for the Web and a short description for the magazine
respectively.

Views

From this single source, we want to generate the following two documents.
Don’'t worry if you're not familiar with RTF or XHTML — the precise
content that gets generated in each case is not that important; the point is
that radically different target documents need to be generated from asingle
source.

RTF for Print
{\rtf

{\b Howto Wite a Book Revi ew}
\par By B. Wrm
\par A B. Cee Ltd
12.50 [$16.00 (1.28)]
\ par

| SBN. 0-123-45678-9, 123pp, WKP

\ par Revi ewed by Matthew Strawbri dge on 2003-11-19
\par This is an excellent book that tells you all
about how to revi ew books.

\par Buy this book.}

XHTML for Web

<?xm version="1.0" encodi ng="I|SO 8859-1"?>
<! DOCTYPE ht m
PUBLI C "-//WBC// DTD XHTM. 1.0 Transitional //EN'
"http://ww w3. org/ TR xht m 1/ DTDI xht m 1/ DTDY
transitional.dtd">
<ht ml ><head><title>
Book Review -
How to Wite a Book Review</title></head><body>

CVu/ACCU/Features

M’ Microsoft Word - output. rif

:E@ File Edit Wew Insert Format Tools Table Window Help

How to Wiite 2 Book Review
By B. Wonn

& E. Cee Ltd ISEN: 0-123-45676-9, 123pp, UKP 12.50 [$16.00 (1.257]

Eevdenred by Dlatthewr Strosbridge on 2003-11-19
This i ar excellerd ool that tells yo all dhont heear to revdear books .

Engyr this hooli.

R

Figure 1. RTF output

<p><enpHow to Wite a Book Revi ew</enp</p>
<p>By B. Wrnx/p>
<p>A. B. Cee Ltd.

| SBN: 0- 123-45678-9,

123pp,

WKP 12. 50

[$16.00 (1.28)]
</ p><hr/>

<p>Revi ened by Matthew Strawbridge on
2003- 11- 19</ p><hr/ >

<p>This is an excellent book that tells you all
about how to revi ew books. </ p>

<p>You shoul d buy this book because..., and
finally because it’'s two inches thick so it
must be good. </ p>

</ body></htm >

Controllers

The main benefit of using XML to capture the model isthe ease with which
it can be parsed, and reshaped into different formats. This is done using
XSLT [5][6], the Extensible Stylesheet Language for Transformations. An
XSLT stylesheet isan XML document that uses pattern matching rules to
transform an XML base document into some other form. Herearethe XSLT
stylesheets required for transforming our Bookreview base document into
the two output types.

XSLT for Converting Bookreview to RTF

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or n
version="1.0">
<xsl :out put mnethod="text"/>

<! —RTF shoul d not have any unintenti onal
so strip them —
<xsl:strip-space el ements="*"/>

bl anks,

<! —Tenpl ate that matches the outer bookrevi ew
el ement and constructs an RTF document from
it =
<xsl:tenpl ate nat ch="bookrevi ew'>
{\rtf<xsl:apply-tenplates/>}</xsl:tenplate>

<xsl : tenpl at e mat ch="bookdetai |l s">
<! —Make the title bold —
{\b <xsl:value-of select="@itle"/>}
\ par By <xsl:val ue-of sel ect="@uthor"/>
\ par <xsl :val ue-of select="@ublisher"/>

CVu/ACCU/Features |

| SBN: <xsl :val ue-of sel ect="@sbhn"/>,
<xsl :val ue-of sel ect =" @ages"/ >pp,
UKP <xsl : val ue-of sel ect="@ri cei npounds"/>
[$<xsl : val ue- of sel ect="@pri ceindol | ars"/>
(<xsl :val ue-of select="@riceindollars
div @riceinpounds"/>)]
\ par
</ xsl :tenpl at e>

<xsl:tenplate match="revi ewdetai | s">
\par Reviewed by <xsl:val ue-of select="@eviewer"/>
on <xsl :val ue-of sel ect="@ate"/>
</ xsl :tenpl at e>

<xsl:tenpl ate natch="para">
<! —Incl ude paragraphs only if they either
have no filter, or if the filter is set
to ‘shortonly’ —
<xsl:if test="not(@ilter) or
@ilter="shortonly" ">
\ par <xsl:val ue-of select="."/>
</xsl:if>
</ xsl :tenpl at e>
</ xsl : styl esheet >

XSLT for Converting Bookreview to XHTML

<?xm version="1.0" encodi ng="UTF- 8" ?>

<xsl : styl esheet
xm ns: xsl ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or m{
version="1.0">
<xsl : out put met hod="xm "
doct ype- public="-//WsC/ / DTD XHTM. 1.0
Transi tional //EN'
doct ype-systen¥"http://www. w3. or g/ TR/
xhtm 1/ DTDY xht m 1/ DTD/ tr ansi ti onal . dt d"
encodi ng="1 SO 8859- 1"
i ndent ="no"/>

<! —Tenpl ate that natches the outer bookrevi ew
el ement and constructs an XHTM. page fromit—
<xsl:tenpl ate mat ch="bookr evi ew'>
<htm >
<head>
<title>
Book Revi ew -
<xsl :val ue-of sel ect="bookdetails/ @itle"/>
</title>
</ head>

31

Performing the Transformation

<body>
<xsl : appl y-t enpl at es/ >
</ body>
</htni >
</ xsl :tenpl at e>

<xsl : tenpl ate mat ch="bookdet ai | s">
<p><enp<xsl:val ue-of select="@itle"/></enp</p>
<p>By <xsl :val ue-of sel ect="@uthor"/></p>
<p>
<xsl : val ue-of sel ect="@ubl i sher"/>
| SBN: <xsl :val ue-of select="@sbn"/>,
<xsl :val ue- of sel ect =" @ages"/ >pp,
UKP <xsl : val ue-of sel ect="@ri cei npounds"/>
[$<xsl : val ue-of sel ect="@ri ceindollars"/>
(<xsl:val ue-of select="@riceindollars
di v @ri cei npounds"/>)
]
</ p>
<hr/>
</ xsl :tenpl at e>

<xsl:tenpl ate match="revi ewdetai | s">
<p>Revi ewed by <xsl:val ue-of sel ect="@eviewer"/>
on <xsl:val ue-of sel ect="@late"/></p>
<hr/>
</ xsl : tenpl at e>

<xsl:tenpl ate nat ch="para">
<l —Include paragraphs only if they either have
no filter, or if the filter is set to
"longonly' —
<xsl:if test="not(@ilter) or
@ilter="1ongonly' ">

<p>
<xsl : val ue-of select="."/>
</ p>
</xsl:if>

</ xsl : tenpl at e>
</ xsl : styl esheet >

3 Book Beview - How to Write a Book Review - Microsoft Internet Ex..

It would be useful to add an enumerated summary, with options such
as ‘highly recommended’, ‘recommended’, ‘not recommended’ and
‘recommended with reservations'.

e Typically, you would want to batch process a number of reviews at
once (or even every existing review, in the case of applying an updated
template to the Web site). There should probably be an outer wrapper,
such as<r evi ewset >, which can contain one or more<r evi ew>
elements, and the XSLTs should handle generating either one long
document, or a separate document for each review, from this collection
of reviews. An dternativewould beto set up amakefile, perhapsusing
Ant [9], which includes support for XSLT transformations.

e Thedatesneed trandating from YYYY- Mt DD to aformat that ismore
pleasant to read.

e Inmany casesit may bebetter towriteasingle XSLT that will convert
from your bespoke format into Docbook, for which there are already
some comprehensive stylesheets for conversion into many formats
including HTML and PDF.

Asitiscustomary to say is such situations, these improvements are left as

an exercise for the reader.

Alternatives
Word Processor Styles

Most modern word processors support styles whereby a set of properties
can be assigned to segments of text. These styles can then be updated, and
the updateswill be automatically applied to al text having that style. While
thisfollowsthe ‘ separation of concerns' regarding content and presentation,
there are several key areas in which the XML method is to be preferred.
The main difference is that styles do not transform the contents of the
document, so our example using | ongonl y and shor t onl y attributes
for paragraphs could not be implemented without the use of macros. It
would also be difficult to regenerate a batch of documents if the template
changes, especialy if multiple Save As formats were needed.

Microsoft Word 2003

| have read about the XML support in Microsoft Office 2003, but
haven't used it myself. | would be interested to know if anyone usesit in
asimilar fashion to that described here— at the very least it promisesto be
amore user-friendly way of populating the raw XML files than simply

using atext editor.
[concl uded at foot of next page]

To actually apply these rules to the
base document, an XSLT processor
must be used. There are a number of
these available as open source
projects on the Web, the two most
well-known being Xalan [7] and
Saxon [8].

Thesetemplatesreally specify only
the minimum amount of information
that is needed to generate the final
documents—thereisvery little wasted
effort. Imagine deciding instead to
solve the program ‘programatically’,
and parse and transform the XML ina
C++ or Javaprogram. Indeed, XSLT is
alot more powerful than these simple
examples show.

Further Improvement

These files are only meant as ¢

demonstration of the method, and there

are many improvements that could be
madeto create abetter system for real -
world use:

e priceindoll ars should be
#1 MPLI ED (meaning optional),
rather than #REQUI RED. In fact,
the system should be changed tc
cope with various types of
currency.

32

k- L Pl F frarata i "
File Edit Yiew Favorites Tools @Back - : Address |: Links

. EE®

anr

)
-'f‘-

How to Write a Boolk Review

By B Worm

A B. Cee Ltd ISBI: 0-123-45678-9, 123pp, TKP 12.50 [$16.00 (1.28)]

Eewiewed by Matthew Strawbnidge on 2005-11-19

This 1z an excellent boolk that tells you all about how to review books.

Tou should buy thiz book because. ., and finally because it's two iches thick

so it tmust be good.

€one

'3' My Computer

Figure2: HTML output

CVu/ACCU/Features

Introduction to C# - Part 2

Mike Bergin <ni j obee@i nj en. con®
Welcome Back

Welcome to the second in a series of articles introducing the C#
programming language. In the previous issue the basics of the language
such as variables, methods and classes were covered. In thisissue classes
are covered in more detail highlighting an important feature called
inheritance. If you are just tuning in, and have some programming
experience, this article should till be digestible.

Classes, Objects and Types
A Touch of Class

One of the most common descriptions of classes that | have found is, “A
classisatemplatefor creating objects frequently used to model real world
entities such as a bank account or automobile” Thisis an excellent and
concise description of a class but for me it helped to relate the idea of an
“object template” to something | was already familiar with. Another place
templates are found is in word processing applications and as it turns out
thisisagood analogy.

Document templ ates specify fonts for different sections, nice borders
and graphics as well as the overall layout. A resume template might
define sections for contact information, objective, work history and
education, including appropriate formatting for headings and body text.
When | need to whip up a new resume | open my word processing
application and create a new document from the resume template. Now
all that’s left to do is fill in the information that is unique to me and |
have a shiny new resume.

A classcan also be created that specifiesthe different sections, borders,
graphics and layout for aresume.

public class Resune {
public string Nanme, PhoneNunber, Objective;
public void Print() {

_—
:

ThisResun®e classcontains st r i ng member variables that store text
for the same sections that the document template provides. It also hasa
Pr i nt method that might print the resume to the screen for review or to
aprinter.

Now that we have our template we follow a process similar to creating
our resume with the word processor. First we need to create a new object
from the classjust aswe created anew document from the word processor’s
resume template.

Resune nyResunme = new Resune();

Now that we have our handy new object we need to fill in our information.

nmyResune. Nane = "M ke Bergin";
nmyResune. PhoneNunber = "555-2234";
nmyResune. bj ective = "Make tons of noney!";

The resume now contains al of my relevant personal information so now
it'stime to print.

myResune. Print();

There are afew important pointsto note about thisexample. Thefirst point
is that when we modify an object, or document, it does not modify the
template. The second point isif we create two objects, or two documents,

from the same template, changes to one of them are not reflected in the
other. For exampleif | enter my nameinto one object, or document, it does
not appear in yours, the two are unique entities.

What Type of Person Are You?!

Classes are also called types. This use of the word type is similar to how
people use it to categorize each other. For example a person confronting
someone they are upset with might say, “1 didn’t know you were that type
of person.” They are referring to the actions, feelings or thoughts of
someone, just as calling amember variable atypeis acategorization of the
methods, actions, and data of that piece of software. Assuming that the
argument is between a wife and her cheating husband the following
example provides a simple representation of “that type of person” in
software.

cl ass Cheater {
string Name, SpouseNane, M stressNaneg;
voi d Perfornmunfaithful Act() {
/'l Qutside the scope of this article
}
}

This snippet of code defines a new class, or type, named Cheat er
containing three st ri ng member variables and one method. Instances
of this class could be created to represent all the cheating husbands of the
world, all created from the same template, but each unique.

voi d Creat eCheati ngHusbands() {
Cheater bob = new Cheater();
bob. Name = "Bob Smith";
Cheater john = new Cheater();
john. Name = "John Doe";

}

Inheritance

Consider a scenario where you need to write a textbook describing each
star in the solar system for an advanced astronomy course. The descriptions
must be extremely precise, covering information that might even change
during the lifetime of the book due to new discoveriesin modern science.
The first thing you would most likely do is identify the characteristics
[continued on next page]

Final Word

Many software developers have a real loathing for any form of
documentation. ACCU members, generally being awell-read bunch, may
have less of an aversion, but one thing is clear —if you dislike writing
documents, then you' Il really hate having to make minor updatesto severa
hundred of them by hand. By separating out the content (model) from the
presentation (view), and creating reusable templates to generate one from
the other, maintenance of an archive of documents is greatly simplified.
XML and XSLT can be used to implement such an MV C treatment of
documents.

Aswith most things in the world of computers, there is more than one
way to string a cat (or should that beto cat . t oSt ri ng() ?) | amnot
advocating that all documents should be written in this way, but for cases
where you have lots of similar documents that do, or may, need to be
rendered in more than one format, this technique should save alot of time

CVu/ACCU/Features

in the long-run at the expense of alittle work up-front. Now, where have
heard that before?
Matthew Strawbridge

References

[1] XML. ht t p: / / waww. W3. or g/ XM/

[2] Elliotte Rusty Harold, W. Scott Means. XML in a Nutshell, O’ Relly,
2002

[3] XML Schema. ht t p: / / www. w3. or g/ XM./ Schena/

[4] Eric van der Vlist. XML Schema, O’ Reilly, 2002

[5] XSLT. htt p: / / www. W3. or g/ St yl e/ XSL/

[6] Doug Tidwell. XSLT, O'Reilly, 2001

[7] Xalan. htt p: / / xm . apache. or g/ xal an/

[8] Saxon. ht t p: / / saxon. sour cef or ge. net

[9] Ant. ht t p: / / j akar t a. apache. or g/ ant /i ndex. ht m

33

shared by all stars. Next you might categorize the different types of stars
based on some common characteristics, for example by size and
temperature grade. Now that the generic characteristics and groups of
similar stars have been identified you might begin writing.

Thefirst chapters of your book would most likely cover the common
characteristics of all stars, which you identified in the initial phases of
analysis. These chapters would contain very general information such
as the chemical elements that stars are composed of, however it would
not contain the amounts because they are different for each star. Next
you would pick acategory of star, such aswhite dwarfs, describing only
what makes that group of stars unique. You would be careful not to
provide any redundant information simply by referring back to previous
sections. Once you had covered each category you would cover each
specific star, providing information about what makes it unique among
its group such as its name, coordinates and precise chemical
composition.

As new discoveries are made some of the information in the textbook
may become invalid. For example an astronomer may discover a new
element present in all stars. Updating your textbook to reflect this
information would be relatively simple because the topic of composition
was only covered once and then referred back to, so the text only needsto
be updated in one place. Another side effect of this approach isthat itis
much quicker to describe each star in relation to a set of common
characteristics instead of describing each in isolation.

Source code is essentially a description of the data and behavioural
composition of an application. When aprogram iswritten using alanguage
that allows softwareto be expressed by modelling real world entities, such
as C#, developers follow the same basic process we did in writing the
textbook. In order to illustrate this let’s apply the same steps to the
development of an address book application used to manage contact
information.

Thefirst step isto identify the common characteristics of al contacts
managed by the application. We perform our analysis by examining a
few examples of contacts the application will need to manage. One
example is our Aunt Marilyn, who we find has a name, phone number
address, birthday and email address. Another example we examineisour
favourite pizzarestaurant, and wefind that it has a name, phone number,
address and website. Comparing these two examples we find that they
both have a name, phone number and address. Now that we have
identified the characteristics common to all contacts we can write this
description in C#.

public class Contact {
public string Nanme, PhoneNunber,

}

The next step that we took in writing our textbook was to identify groups
of similar items so we do that next. By performing our analysis of the
characteristics shared by all contacts we have actually identified these
groups, people and businesses. Before writing our description of thesetwo
groupswe must keep in mind that we don’t want to provide any redundant
information, we only provide what makes them unique.

Addr ess;

public class Person : Contact {
public string Enmail Address, BirthDay;
}

public class Business :
public string WbSite;
}

Y ou may notice that the name of the Cont act class follows the name of
each new class separated by acolon. In C#thisnotationisused to indicate
that the reader should refer to another section of the source code for more
information. In this case we are saying that the description of Per son is
the sum of the description provided and the description of Cont act . In
our textbook we would have appended a superscript numeral to aword and
then indicated at the bottom of the page that the reader isto refer back to
aparticular section to provide this same indication.

Contact {

The sun is composed' of 91.2% Hydrogen, 8.7% Helium

1. Refer back to Chapter 12 Composition for more information.

34

Now that we haveidentified the common characteristics of all contactsand
the groups, let's review exactly what we have. First we found that all
contacts have aname, phone number and address. Oncewe had identified
thesetraitswe described them intheCont act class. The next product of
our analysiswastheidentification of two groups of contacts, namely people
and businesses. We found that all people have an email address and
birthday in addition to what was aready described intheCont act class,
and described thisinthePer son class. Businesseswerefoundto all have
awebsitein addition to what was already described intheCont act class,
so we described thisin theBusi ness class. Whew! Now that we have
the hard part done its time to describe each unique entry in our address
book.

In software written in C#, classes are used to describe the groups of
items we are working with and objects are used to represent the members
of those groups. So in this particular case we now create instances of the
Per son class for each person in our address book and instances of the
Busi ness classfor each business.

Person aunt Marilyn = new Person();
aunt Marilyn. Name = "Marilyn Bergin";
aunt Mari | yn. Emai | Address =
"maril yn@onewhere. cont;

Busi ness pi zzaPl aza = new Busi ness();
pi zzaPl aza. Nane = "Pi zza Pl aza";
pi zzaPl aza. WebSite = "ww. pi zzapl aza. cont';

The execution of the code in the last snippet deserves abit of explanation
so let’s run through it line by line to see what's happening. On the first
line a new instance of the Per son class is created and stored in a
variable named aunt Mari | yn. The next line stores the string
Marilyn Ber gi n in the Name member variable of the
aunt Mari | yn object. When the computer reads this line of code it
looks at the Per son class for adescription of amember variable named
Nare . The computer doesn’t find it there but the classindicates that the
computer should also look at the Cont act class for more information,
where it does find a member variable named Name. Next the string
mari | yn@omewher e. comis stored in a member variable named
Emai | Addr ess. Again the computer looks back to thePer son class
for adescription of amember variable and thistimeit findsit. The same
process is followed for the lines that deal with the instance of the
Busi ness class. The computer looks in the Busi ness class for
information and if it doesn’t find it refers to the Cont act class as
indicated.

Inheritance is the ability to describe a section of code in relation to
another section of code. Aswe saw in thePer son and Busi ness
classes, C# provides the inheritance notation, the colon followed by the
name of the generic class, to indicate that everything from that class should
be pulled into anew class that also adds afew items of itsown. So when
working with an instance of thePer son classweknow it not only contains
the member variables defined in its own class definition but also those
defined in the Cont act class'sdefinition aswell. Thisisreferred to as
one classinheriting from ancther class. InthisscenariotheCont act class
isreferred to asthebase classor superclassand the Per son classiscalled
the subclass or derived class.

Inheritance is an extremely powerful feature that provides anumber of
benefits when used properly. The two main aspects of inheritance to
consider arethat it cuts down on the sheer amount of source code and that
many classes can inherit from the same class. Cutting down on the amount
of source code helps usto realize the one of the big promises of OOP, code
reuse. When we reuse code we cut down on devel opment time because we
don’t need to write as much, and maintenance is also cut down, which has
been shown to be more expensive than development in many cases. The
second point to note is that many classes can share the same base class,
and as we will see in the following sections this is another extremely
powerful aspect of inheritance.

Thereisafair amount of terminology used when discussing inheritance
and software that supports this feature so before we continue it may be
helpful to provide some definitions. As we have seen aclassthat is
inherited from is referred to as abase class or asuperclass A class that
inherits from another is called aderived class or asubclass. Alsoin both
of these scenarios the word type might be used interchangeably with the

CVu/ACCU/Features

word class such as derived type instead of derived class When a class
inherits from another classthe act of doing so isreferred to as subclassing.
Inheriting from another and providing additional members or other
customizations is called specialization. Y ou don’t need to commit all of
these to memory, just know they are hereif you see some confusing jargon
later.

Leveraging Inheritance

Now that we have explored the basic concept of inheritance and how it is
supported by C# we can move on to some other features that are
implemented through the use of inheritance.

Polymorphism

Polymorphism is the ability of a variab le to reference an instance of the
variable' s delcared type or a subclassof it. For example, avariable of type
Cont act could be used to store an instance of either the Per son or
Busi ness classes.
Contact contact = new Person();
When an instance of a subclassis referenced using a variable of its base
class s type, only the members declared in the base type are accessible. In
the preceding example if we had tried to reference the Enai | Addr ess
member variable we would have received an error when compiling the code.
The reasons for this are purely mechanical; only instances of Cont act or
one its subclasses may be stored in the variable because we are only
guaranteed that the members defined in the Cont act class are supported.
This makes sense becausePer son inheritsal membersdefined in the
Cont act classsoit exposes the same methods, properties, variables, etc.
One catch to thisis that only the members defined by the variable’ s type
may be used no matter what type of object isactually stored inthe variable.
Simply put, if we store an instance of the Per son classin aCont act
variablewe can only access members declared inthe Cont act class. You
might be thinking that the compiler knowswe are storing aPer son object
in the variable because the code is on the same line. Thisisavalid point
in this situation but consider if we used polymorphism when calling a
method.

public void O ose(Contact contact) { ... }
public void Min() {
Cl ose(new Person());

}

In the body of theCl ose method we couldn’t know what type had actually
been passed in, just that it supports all of the members defined in the
Cont act class. Thisis compounded by the fact that code might be
introduced at alater time that calls this method, passing an instance of a
class that didn’t exist when the code containing the Cl ose method was
written.

Specialization

Inheritance allows usto pull one class' simplementation into another, which
as we've seen can be extremely useful. There are many times however
when the inherited implementation doesn’t quite meet our needs, luckily
C# allows us to effectively replace inherited members with our own
implementations. Not all members may be replaced, C# requires class
authors to declare that a member may be replaced using thevi rt ual

keyword. Subclasses may replace vi r t ual members by providing one
with the same signature but replacing vi r t ual with theoverri de

keyword.

public class Contact {
public virtual void Save(Connection conn) {
/1 Save menber variabl e val ues
}
}

public class Person : Contact {
public override void Save(Connection conn) {
base. Save();
/| Save extended menber variabl e val ues
}
}

| CVu/ACCU/Features

In this code snippet we added anew vi r t ual method named Save to
theCont act classthat savesits member variables. Classesthat inherit
this method must replace it with their own, which saves any new
members they introduce in addition to the inherited members. In order
to simplify thistask, C# allows subclasses to explicitly refer to members
of their superclass using the base keyword, even when it’'s been
overridden. Thebase keyword allows subclasses to not just replace a
member but to reuse it, in effect customizing the existing member for its
specific purpose.

Combining Polymorphism and Specialization

Polymorphism and specialization can be combined in powerful ways to
develop extremely dynamic software. Here we will make use of the new
Save method introduced in the previous example in an attempt to
showcase some of the power available to C# programmers.

public void Persist(Contact contact) ({
Connection conn = Get Connection();
Cont act . Save(conn);
Cl oseConnecti on(conn);

}

public static void Miin() {
Person aunt Marilyn = new Person();
aunt Mari |l yn. Enai | Address =
"maril yn@onewhere. cont';

Busi ness pizzaPl aza =
pi zzaPl aza. WbSite =

new Busi ness();
"www. pi zzapl aza. cont';

Persi st (aunt Mari |l yn);
Per si st (pi zzaPl aza) ;

}

In the example above we defined a method named Per si st that saves
any instance of the Cont act class or one of its subclasses. When the
instance of the Per son classis passed to the Per si st method the Save
method implemented in the Per son classis called, causing all of its
variablesto be saved. When theinstance of the Busi ness classispassed
however, only the variables declared in the Cont act class are saved
because the Busi ness class did not customize the Save method to
include the variables it introduced. Aswe can see thePer si st method
doesn’t care what the actual type stored in the variable is, only that it
supports the Save method.

Interfaces

The term interface refers to the mechanisms provided to interact with
a class, such as the member variables, methods and properties it
EXPOSES.

An interface is declared in much the same way as aclassis declared,
except that it does not provide any implementation, the parts between the
opening{ andclosing}. A classcan declarethat it implementsaparticular
interface and then provide implementations of all theinterface’s members.
Variables may declare that they hold instances of aparticular interface just
as avariable may declare that it contains an instance of a particular class.
Interfaces cannot be instantiated, but classes that implement the interface
may be stored in one of these variables.

In the section on polymorphism the Cont act class defined a method
named Save that saved the values stored in the object’s variables to a
database. Instead of this method being declared in the Cont act class
it could have been declared in an interface instead. This might be the
case if you were using athird party persistence framework for example.
The interface provided by the third party framework would be
implemented by objects that need to be persisted, and the framework
would do therest. InthisscenariotheCont act classwould mostlikely
implement the interface and provide default implementations for each
interface member. Let’'s assume the interface from the persistence
framework is defined as follows.

public interface | Persistable {
public void Save(Connection conn);
public void Read(Connection conn);

}
35

Assuming thisis the interface required by the persistence framework, we
would need to make a few changes to our classes if they are to take
advantage of this new persistence framework. First we would change the
Cont act classto implement the interface.

public class Contact | Persistable {

public void Save(Connection conn) {
/1 Save to the database...

}

public void Read(Connection conn) {
/!l Read fromthe database...
}
}

There are a few points to note about this example. First, the notation
used to declare that a class implements an interface is exactly the same
as for declaring inheritance. If a class both inherits from a class and
implements an interface then the interface name follows the base class
name separated by a comma. For example if the Cont act class
inherited from a class named W dget then it would be modified as
shown below.

public class Contact

}

Itislegal for asingle classto implement multiple interfaces, in which
case each additional interface would be listed in the same comma
delimited fashion. Interface members implemented by a class are
implicitly virtual. Now that we have implemented thisinterface in our
Cont act class, let's look at the changes we need to make to the
Per son class.

W dget, |Persistable {

public class Person : Contact {
public override void Save(Connection conn) ({
base. Save(conn);
/1l Save menbers defined in Person

}

public override void Read(Connection conn) {
base. Read(conn);
/'l Read nenbers defined in Person;

}
}

Notice that we did not explicitly declare that the Per son classimplements
thel Per si st abl e interface. The reason for thisis that interface
implementation is transitive, meaning that because the Per son class
inheritsfrom theCont act classitimplicitly implementsthe interface, so
declaring it again would be redundant. In the methods that override the
inherited implementations of the interface members we again make use of
the base class's implementation, being careful to not reproduce any code
we can reuse.

Now that we have examined how an interfaceisimplemented, let’ stake
alook at how these changes might be used in the persistence framework.
The following code snippet might exist in a class that facilitates the
persistence of objects using the framework.

public class PersistenceManager {
public void Persist(lPersistable subject) {
Connecti on conn = Get Connection();
Subj ect . Save(conn);
Rel easeConnecti on(conn);
}
}

This illustrates that the important point that interfaces, like inheritance,

allow for polymorphism. The Per si st enceManager class doesn't
care how theSave method isimplemented by the instance passed into the

36

method, or even what type it actually is. All that mattersis that the
parameter implements the proper interface.

Abstract Classes

Abstract classesare amix between using inheritance to reuse code and
leveraging polymorphism with interfaces. An abstract class may
contain both concrete members and interface style members that don’t
declare any implementation. The concrete members are inherited by
derived classes just as normal methods are and can use the
virtual /overri de keywords in the same way as well. The
interface style members require that subclasses provide an
implementation for them, just asimplementing an interface requirethe
implementersto do. Essentially that’s all thereistoit, so let’sgo over
aquick example.

The example we reviewed in the section on interfaces could have also
been implemented using abstract classes. |mplementing the persistence
framework using inheritance allows more power to be embedded into the
Cont act classitself. In many casesframeworksthat use abstract classes
instead of interfaces take this approach and sometimes are able to minimize
the amount of work on the part of the user of the framework. In this new
example we will be inheriting from an abstract class defined as shown
below.

public abstract class DatabaseObject {
public void Save(Connection conn) { ... }
public void Read(Connection conn) { ... }
public abstract bool IsDirty();
public abstract void ClearDirty();

}

The declaration of this class includes a keyword that we haven't
encountered before, abst r act . The abst r act keyword must appear
in the declaration of a class that has any abstract members. This same
keyword appearsin the two interface style member declarations | sDi rty
and Cl ear Di rty. Justlikewith interfaces, no implementation is
provided, requiring subclasses to provide it. Theabst ract keyword
must be used in these declarations because this is not an interface, so it
must be clearly stated if a member is abstract.

In this new framework the Save and Read methods are actually
implemented for us, al that we as the users of the framework need to do
is implement a method that indicates if the object is dirty, meaning that
data has been modified since it was last saved to the database. The
framework might periodically check to seeif thel sDi r t y method returns
true and if so call the Save method, followed by a call to the
Cl ear Di r t y method to indicate that the values have been saved.
Tracking when changes were made to the object is left up to the object
itself, however they are now automatically saved to the database by simply
returning t r ue from a method call. In closing, the following example
shows how theCont act classmight look if it used thisinheritance based
framework.

public class Contact Dat abaseObj ect {

publi ¢ bool hasChanged;

public override bool
return hasChanged;

}

public override void ClearDirty() {
hasChanged = fal se;

}

IsDirty() {

See You Next Time

In thisissue we discussed some of the fundamental features of classes.
In the next issue we will cover a few more class-related features, as
well as the type system supported by C#. If you read the first article
and are wondering what happened to the Address Book application, we
will eventually get to incorporate everything we've covered. See you
next timel

Mike Bergin

CVu/ACCU/Features |

Reviews

Bookcase

Collated by Christopher Hill
<accubooks@r ogsol . co. uk>

A Note from Francis

The book reviews this time seem to exhibit one
of those odd statistical quirks; there seemsto be
acompletely disproportionate number of reviews
that can best be classified under the headings
‘Methodologies . Perhapsit isasign that we are
moving away from concerns with learning to
program towards being concerned with how
those skills can be appropriately applied in the
software development process. What do you
think?

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members — if you ever have a problem with this,
please let me know — | can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list

Computer Manuals (0121 706 6000)

www. conput er - manual s. co. uk
Holborn Books Ltd (020 7831 0022)

www. hol bor nbooks. co. uk
Blackwell’s Bookshop, Oxford (01865
792792)

bl ackwel | s. extra@l| ackwel | . co. uk
M odern Book Company (020 7402 9176)
books@rbc. sonnet . co. uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.

The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. | consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). | consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

C&C++

C++

C++ from Scratch by Jesse Liberty
(0 7897 2079 5), Que, 418
pages+CD @ £27-99 (1.07)
reviewed by Paul F. Johnson
e | usually like Jesse' s books, but not
in this case. | would not recommend this book to
anyone asit isjust badly written.

According to the user leve, the book isaimed
at beginners. The book’s style for teaching C++ is
to program first, explain later, which usualy is
quite agood idea, but only when what you are
doing isexplained properly.

From an early stage, things become annoying,
asthe book seems mixed up. It starts by saying
that the code should work on any standard

Y& scratch

CVu/ACCU/Reviews

compliant compiler. So why will it not work on
gec 3.3? The book looks like it was written by
two people. One person appearsto be using a
compiler that rgjects i ost r eam h and doesnot
use hamespaces, the other using acompiler that
accepts old, broken code. Thisisworse than
usdessfor abeginner who needsto typein the
code exactly aswritten and expectsit work there
and then, without having to worry about why the
code does not compile.

Other non-compatible featuresincluding a
header which is not described for amost 40 pages
after itisfirst used; using old C headersinstead of
C++ headers—there are quite a few instances of
usngti nme. hinplaceof cti ne, aswdl as
using the C style method of generating arandom
number (seed rand() withti ne(NULL))
instead of the more useful C++ method.

The description of object-orientated
programming israther weak. Even for abeginner.
Whilethe use of the STL isniceto see, the

descriptions of the object methods and how they
work ispoor. Thisisacommon thread. For
instance, thereisvery little on error trapping
(essential for the program being developed
throughout the book). Theindex isworse than
useless; it does not cover any of the STL methods
or in some cases, important sections of the book.

UML is supposed to be covered in the book. If
it was, | did not recogniseit.

Definitely one to leave on the shelf.

B Learning to program in C by N.

3 Kantaris (0-85934-203-4) Bernard

Babani Books, 126pp

ﬂ/@\ reviewed by Paul F. Johnson

e Y Thisisoneof those handy to have little
books. Whileit is of limited use to those who are
learning the language (it is too short and the
materid is not adequately described), it isvery
good to have around for those moments when
your brain decidesto go on holiday and you just
cannot remember how to use st r ncpy!

Itisof limited use for thoselearning asitis
way too short to cram what learners require, plus
it is not exactly up to speed with respectsto the
standard (every code example starts with just
mai n()).

That said, the questions are just taxing enough
to make you scratch your head and the short
descriptions of the functions from the main
headers are enough to prod you in the correct
direction and at seven pounds, it is better than
most books at four times the price!

Thetwo strongest chaptersin the book cover
file operations and string handling with the string
handling being far better than the file operations.
Therest do thejob, but just in no great depth.

[™ 1 &7 An Introduction to GCC by Brian
Gough (0-9541617-9-3), Network
Theory Limited., 116 @ £12-95 (1.54)
-4 reviewed by Francis Glasshorow

@ © & '8 There are numerous books purporting to
introduce the reader to C or C++. Some of these
are actualy introducing a pecific compiler,
indeed some havelittle if anything to do with

learning to program and a grest dedl to do with a
specific IDE. The reason that | mention thisis
because this book focuses on a set of compiler
toolsthat are generally referred to as GCC.
Unfortunately, despite the intentions of the author
itstitle till manages a small amount of mis-
direction. It is about a subset of GCC (GNU
Compiler Collection) and only dealswith using
GCC for C and C++ source code.

Please note the use of the word * Introduction’
inthetitle; it isfar from being acomprehensive
manual even for the restricted C and C++ parts of
GCC. For comprehensive coverage of GCC you
will need an up-to-date version of Using GCC by
Richard Stallman (published by GNU Press).

Now having warned you about the limited
range of the book let melook at whet it actudly
achieves. The book attemptsto address the broad
needs of newcomersto GCC incorporating the
entire range of programming experience. In
honesty, | think thisis over ambitious and | would
not suggest this book to the newcomer to
programming, they have too much else to master
and too much to learn about computer
terminology to feel comfortable with atext at this
leve. For the rest, this book seems an excellent
introduction. | have to say seems because | have
had too many years dealing with the technology
to be certain that whet is clear to me will be
equally clear to others.

If you can already program in either C or C++
and want to adopt GCC for compiling and linking
your source code you have two magjor choices,
you can use acommeand line environment or you
can use some form of IDE. Even when using an
IDE you may need to know details of the
command lineinvocationsif you need to tweak
one or more scripts used by your IDE. Y ou will
aso find that some details such asthose
concerning optimisation flags are useful even
when using an IDE. While this book does not go
into thelevel of detail that you will findin Using
GCC, it does give more than enough details to get
you on theright path.

Aswell asthe basicsrequired to use GCC asa
command line compiler/linker for C and C++ the
book includes afew very brief chapters on such
things as platform specific options and how a
compiler works. Whilethe former can be useful |
find the latter has a smell of stretching limited
content to achieve areasonable page count. Or
perhaps the author genuinely thinks thisbook is
appropriate to the raw novice. But if that were the
case thelanguage would haveto be lesstechnical
and the text would need to go into greater detail.

Thefina criticism | have of thisbook isthat
the writing styleis ugly. | come from the school
of writing that advocates the use of Smple
English and advises against such things asthe
extensive use of the passive voice and the third
person. Bewarned that if you have asimilar view
you will beirritated by the author’ swriting style.

Despite my critical comments above | think
this book fills amuch-needed nichein the
marketplace. Those who are less than expert users
of GCC for C and C++ will find that having this
book on your reference shelf is a cost effective

37

dternative to having Using GCC to hand.
However do not expect too much, itisonly an
introduction and serious userswill probably need
more detail.

Beginning Linux Programming by
Neil Matthew & Richard Stones (0-
7645-4497-7) WROX, 848pages @
£26.99

reviewed by Paul F. Johnson

If you want to learn how to program for the Linux
platform, you will not go far wrong with this
book. It coversjust about everything you will
need including SQL, Gnome, GTK+, Qt, KDE,
the developerstool chain and how to write shell
ripts.

The codeis clear and the discussion and
explanations are excellent. What makes the book
even better isthat aspects are not kept in isolation
—the material used in the SQL chapter isused
further on in the book with the Gnome/GTK +
programming materia. This helps bring
everything together.

It is assumed that you know how to use gecc
and the basics of C programming. Thisisnot a
big problem.

The only questionable part of the book isthe
inclusion of a chapter on writing code for device
drivers, i.e. interacting directly with the kernel.
Not that this aweak chapter, but having such a
chapter in a beginners book is perhaps not that
good an idea. Despite that, the codeisfine and
the methodology behind the chapter isclear.

Thisis an excellent book for anyone wanting
to get involved with the phenomenon that is
Linux. Highly Recommended

Java & C#

Java 2 Weekend Crash Course by
Sanchez & Canton (0 7645 4768 2),
IDG Books, 427 pages+CD @ £15-
99 (1.25)

reviewed by Richard Lee

Thetitle comes from the way the book is
organized; 30 chapters which should take haf an
hour each, loosely grouped into 6 sections. If you
are following the course guide, this starts Friday
evening and finished Sunday afternoon. These
contain arun-of-the-mill how to program course
with the text condensed down to fit the given time
frame.

The book does achieveitsaim of teaching the
basics of Java programming in aweekend and
there are a couple of nice touches but that is about
the best that can be said.

Y ou do not get to write your first Java
program until chapter 3, the ubiquitous Hello
World example, and you have to wait until
chapter 6 before encountering anything more to
type. Therest istaken up with theory more at
homein an A-level course.

When the programming does start it earnest
it follows aformulaic approach that could have
come straight from a book on programming in
C. It ischapter 11, athird of the way into the
book, before object-oriented programming is
introduced. Recursion and abstract data
structures are briefly mentioned but in this
condensed form, abeginner is unlikely to
understand much and an experienced
programmer likely to be insulted by the noddy
descriptions.

38

JAVA 2

WEEKEND CRASH COURSE

=1H
o=

With so much of the book taken up on
introducing the basic e ements of the language
and other chapters wasted, thereislittle room left
for the actual Java programs and the examples.
AWT, themost basic form of creatingaGUI in
Java, is squeezed into two chapters with just one
example. Graphic coding getsasingle chapter.

More important than what isin iswhat has
been left out. Thereis nothing on applet
programming, networking or SWING. The book
failsto develop asingle worthwhile application.

Anyone who aready knows a different
programming language will find the way the
languageisintroduced tiresome. | dso cannot see
how someone who has not programmed beforeis
going to learn from this book. Not recommended.

Java and XML by Paul Whithead et

m SRt al (0 7645 3683 4), Wiley, 309

pages+CD @ £20-99 (1.29)
reviewed by Silvia de Beer

The book uses a specid visua
layout. All sectionsare laid out on two opposite
pages. The lower haf of the pagesis used for the
screenshots. However, thetopic of thisbook is
not very well suited for screenshots: mainly
Notepad editors and Command Prompt windows.
The screenshots show the example code, and the
output of the example Java programs. The
examples are showing the use of the various APIs
and the concepts explained in the upper half of
the pages.

Up until page 65, | considered throwing this
book into the bin, if | did not haveto writea
review: avery poor book. It explains the Java
language in avery poor way. | consider this
introduction awaste of time because if you do not
know Java, you would not be ableto learn to
program in Javafromit. The book even triesto
introduce afew OO concepts, it triesto explain
what aclassis, but on the other hand, it does not
even mention the concept of an interface. The
introductions on Javaand XML contain too many
statements that are very debatable or incorrect.
After page 65, which explains XML, the book is
ahit more useful, but not complete enough. It
coversalittle bit of XML, DTD, the SAX API,
DOM, JDOM, JAXP and even less of Schemas.
The appendixes, references on Javaand XML,
from page 276 onwards are usdless, asthey are
very incomplete. The book failsbecauseitis
incomplete.

It dmost seems like the authors are
themsalves beginners and have not redlly
programmed in Java. They talk about copying the
various. j ar filesinto the Java sdk installation
path, to avoid setting a classpath. The book also
advisesto usetheset command inthefile
aut oexec. bat to set aclasspath. | wonder
which operating system they are using! The only
value of the book isthe CD, which contains the
Java SDK and the Xerces parser. Of little value of
course, because thisis al open source, but handy
if you want to avoid downloading them yourself.

£7] Java Programming for the Absolute
Jﬁyﬂmg Beginner by Joseph P Russell (0
«*_ | 7615 3522 5), Prima Tech, 502
tk | pages+CD @ £21-99 (1.36)

reviewed by Greg Billington

When this book saysit is aimed at the absolute
beginner it means beginner to programming
rather than a programmer with no experience of

Java. That makesit even worse. Making the topic
interesting by gradudly building up examples
that are gamesisagood concept but the book
does not execute the concept very well.

In practice the book launchesinto Java and
programming in too complex afashion for the
tota beginner, there are lots of abbreviations
(often not explained) and it discusses terms and
conceptsthat are not explained until amuch later
and do not need to be introduced this early. It
seems odd to be using termslike how many bitsa
data type has without explaining theterm,
particularly considering the audience of this book.
References to hex and octal are not explained and
asyou go into chapter 3 it covers methods of the
random and math class before covering how to
use“i f " and even what classes are. Theflow and
structure of thisbook does not fedl right; covering
try/cat ch and the basics of exception handling
on page 39 of a500 page book seemsatad early
for thetotal novice.

The genera jokey examplese.g. snippets of
Metdlicalyrics and how to add comments around
them, afortune teller routine demonstrating
random numbers that prints text such as*Y ou will
talk to someone who has bad breath” doesn’t give
this book much of a professiond sheen. It may
well attract young kids who want to write (or
hack) games on their PC but | cannot seeit being
interesting to anyone else.

On the positive side, it visudly looks nice:
good font, nicely shaded and laid out tables,
screenshots etc and theincluded CD ROM has
the Java SDK and the source code for the games.

Overdl not recommended.

—=—| Mastering Jakarta Struts by James
,,k,'!'."’:tsi:,'}’i Goodwill (0-471-21302-0), Wiley,
| 335 @ £27-95 (1.43)

‘ " | reviewed by Silvia de Beer
Thisisaguide to making your first
steps using the Jakarta Struts framework. Itisa
typicd example that the average shelf life of
computing booksis not very high, asthe
technology of new frameworks like Struts evolve
too quickly. The Struts project was crested in
May 2000, the book published in 2002, and | am
reading the book in April 2004. Looking onthe
Strutswebdite | notice that alot of things are not
described at @l in the book: the
Val i dat or For mthe Ti | es extension,
difference between MVC Modd 1 and Modd 2.

The book contains some curious cut and paste
errors, e.g. Part | in the contents hasthetitle
“IXTA Overview”, it seems like the publisher has
used one of its other books as atemplate.

The book contains three parts; the first part
forms an overview of Tomcat, JSPs and Struts.
The second part, titled Core Struts, works
through a basic example of how to use Struts.
The third part of the book is not very useful: it
coversthestrut s-confi g. xm file, and
four tag libraries (the bean tag library, the html
tag library, the logic tag library and the
template library). They are not treated in a
useful way; they repeat the attributes of similar
tags, often related to equivalent HTTP headers
or HTML tag attributes.

People with relatively little experiencein
writing JSPs and using Tomcat, and who want to
read an introduction to Jekarta Struts will still
benefit from reading this book. The book is
pleasantly written, and guidesyou by the hand

v

CVu/ACCU/Reviews

with small understandable and practical
examples.

Itisapity that everything iskept so smple,
and more difficult questions are avoided. For
example, aPluginisloading apropertiesfilewith
the code:

File file = new Fil e(“PATH TO

PROPERTI ES FI LE");

Thisisan excellent opportunity missed to treat
the general problem of how to load a properties
filein aweb server’s context.

The Tomcat deployment examples are aso too
smplistic; the book does not even mention how
to deploy aweb sarviceusing a. war file, or
how to use ant or any other tool to compile your
Javafiles.

Games Programming

3D Games: Animation and
Advanced Real-time Rendering by
Alan Watt, Fabio Policarpo (0 201

= 78706 7), Addison-Wesley*, 550
pages+CD @ £39-99 (1.60)
reviewed by Daire Stockdale

This book isthe second volume of apair of books
Alan Watt and Fabio Policarpo on the subject of
3D games. This volume covers topics such as
modern hardware accelerated real time lighting,
character animation and some collision detection
and resolution. It also discussesin depth the
‘Fly3D’ engine, a proprietary engine developed
by Brazilian software company Paralelo.

My biggest gripewith thisbook isthat it is
tied to the Fly3D game engine. | felt throughout
the book that | was reading amanual for a
particular game engine, as opposed to agenera
discussion of the subject. In fairness to the book,
it does mention on the back cover that “the
treatment....is built around a specific games
system, Fly 3D SDK 2.0”. The book comes with
aCD which containsthe SDK in question, and |
believeit isfree for non commercia use.
However | have to be suspicious of abook that
promotes acommercia product without
advertising itsdlf as such.

Asthe book usesthe Fly3D engine asits
frame of reference, | found this limited the scope
of discussion on many of thetopics. Instead of
explaining the pros and cons of different
approaches used by modern games enginesto
solve problemsin thisfield, asisthe case with
Eberly’s“3D Game Engine Design” book, we are
presented only with the method used by the
Fly3D engine. Thisaso led to atendency to
present methods as being definitive, when in fact
the designer of agame engine system might be
better served by different approaches. An
example isthe engine' s use of the Binary Space
Partitioning system to accelerate various engine
systems. Perhapsin thefirst volume this system
and its merits are discussed and compared with
other methods of spatial partitioning; however in
thisbook its use formsthe basis of several
chapters of discussion, all with relation to the
Fly3D engine, without mention of dternatives.

Where the book was not discussing the Fly3D
engine, and instead focused on specific topics
such aslighting equations, it became much
stronger and much moreinteresting and
enjoyablefor meto read. Techniquesthat are only
just beginning to lesk into commercially available
games, such as BRDF lighting and per-pixe

| CVu/ACCU/Reviews

lighting are covered clearly and well, and were
very informative. These are the best chapters of
the book, where it becomes atechnical and
enlightening read about often-difficult subjects. |
suspect that these chapters were authored by one
person, and the chapters concentrating on the
Fly3D engine and pseudo code by another.

In summary, if you areinterested in learning
about how 3D engineswork, and are happy to use
the Fly3D engine asalearning tool, or perhapsiif
you are considering using the Fly3D engine
commercialy, then this book will be useful to
you. Good as the more generic and technical
chaptersare, | am not surethey justify apurchase
of thisbook. Perhaps the authors would consider
revising the two volumes of this series, and
release one that contains only the (excellent)
generic discussions, and another volume that
focuses on the Fly3D engine?

S Microsoft Visual Basic Game
VisSUHL Programming with DirectX by
“““““““““““““““ Jonathan Harbour (1 931841 25 X),

= Premier Press, 1100 pages+CD @

— £43-99 (1.36)
rewewed by Paul F. Johnson
Thisisone very large book, which iswell written
by an author who knows his stuff about games
programming. Now, I'm not afan of Visua Basic
(I'm not afan of its object model or how it
works), but DirectX | do like; it is one fantastic
library — 1 honestly wish there was an open source
verson.

The book clearly explains DirectX and how to
useit with VB in very logica sections. Normally,
sectioning thingsis not agood idea, but with
something as extensive as DirectX and how you
have to write agame, it had to be that way.

Unfortunately, the book is now 2 years old and
assuch, only covers DirectX version 8. Whileit's
perfectly usable, the advantages of DirectX 9
over version 8 do make games development alot
easer. That is not afault of the book though,
more a problem with the pace of software
development.

One of the higgest plussesisthat the book also
comes with some complete games towards the
end and the development processiswell defined
in the book. It isgood to be able to see how the
gameswork and develop; it certainly helpsthe
learner when they don’t have some little code
snippet which doesn't really help explain very
much and in isolation, doesn’'t help with the
understanding.

The book aso covers object programming,
network gaming, advanced techniques—in fact,
just about everything you could want to know to
develop your own games under Visual Basic.

The CD that comeswith the book contains
plenty of demos aswell asthe DirectX 8 SDK.

A growing number of universitiesin the UK
are now offering Computer and Video Games
courses with a push towards XBox programming.
If you intend to go to one of these establishments,
then quite possibly, thisis one book you should
think about packing.

Beginning C++ Game Programming by Michael
Dawson (1-59200-205-6) Thomson, 335pages
@ £18-99

reviewed by Paul F. Johnson

By thetimethisreview arrivesinto C Vu,
colleges and universitiesin the UK will only be

about amonth and a half away from the start of a
new academic year and with thet, thereisanew
cohort of students going into theincreasingly
popular Computer and Video Games courses.

Typicaly, thefirst year of these requiresthe
students to learn C++ and unfortunately, the
quality of the books often recommended are very
poor (such as Teach Yoursdf C++in 28 days) -
the reason for the recommendations are normally
down to avery short amount of time before the
next stage of the course.

Up to now, there were few decent books that
taught C++ (and the STL) and how to use these
within agame. Thisbook fillsthevoid. Itisa
very good book that covers the required material.
It does require you to have to abit more
knowledge than a beginner, but not be an expert.
Asthe book isa 2004 vintage, it isalso standard
compliant (okay, it explicitly hasr et urn 0 at
the end of mai n(') whichisno longer required,
but that isminor).

The book coversthe major aspects of C++
(such asinheritance and encapsulation) in avery
easy to understand and accessible way. The
examplesfor the games are clear, concise, well
documented, and very carefully explained. It uses
nothing other the STL to demonstrate how to
implement the code, which means that anyone
with anew-ish compiler can join in the learning.

Why doesit not get the highly recommended
reting?

The chapter on pointers redlly lets the book
down. While the explanations and diagrams make
it easier to understand than many books, it is still
made more complex thanisreally required. There
isalso no form of exception handling when new
isused —afundamental flaw with no real excuse
for why isit not treated. There are too many times
that | have seen code from second year students
where memory handling goes unchecked. Itisa
pity thiswas omitted.

If your offspring is off in September, pack a
copy of this book and they will not be sorry.
Recommended

Methodology

o 1 A Practical Guide to Enterprise
ancaireciune | Architecture by James McGovern et
ﬂ al. (0 13 141275 2), Prentice Hall, 306
- | @£31-99 (1.25)
=mm reviewed by Richard Stones
Thisbook sets out to be about enterprise
architecture and has been written by six authors,
some of whom arewell known in the architecture
field. Unfortunately, it lacks the necessary
organisation and structure to tie their
contributions together in away that givesthe
reader any real insight into the practice of
enterprise architecture.

| expected the book to adopt some
overarching approach to enterprise architecture,
to start with an explanation of this approach and
then to set each of thetopicsin that context.
However, after abrief exposition of aframework
inthe preface, it dives straight into Chapter 1 on
systems architecture, which jumps between
levels, having sections on detailed technica
subjects such as TCP/IP and higher-level themes
such architectura types. Thisis characteristic of
the whole book — some chapters are truly about
architecture, while others are much more about
detailed application development. Most chapters

39

are about some agpect of architecture; software
architecture, service-oriented architecture, data
architecture, and so on, but nowhereistheidea of
enterprise architecture developed. Thereisabrief
section on the Zachman Framework in the
chapter on methodologies, but it isdiscussed in
the context of Extreme Programming, the
Capability Maturity Model, Model-Driven
Architecture and the Rationa Unified Process,
not with other candidate enterprise architecture
frameworks.

Tome, thisisabook that has been written by
six different people from different perspectives
with little attempt to provide any real framework.
In the conclusion of the chapter on software
architecture the author of that chapter states
“Enterprise architectureisin many waysa
product of the combined software architectures of
the systemsin the organization.” If that isthe
case, you haveto ask what the need isfor the
other eleven chaptersin the book. Perhapshisco-
authors did not tell him.

The book also lacks consistent copy-editing,
with stupid errors, like “parishioners’ for
“practitioners’ and the plura of “criterion”
spelled “criterions’ and “criterid’ in the same
paragraph.

If thereisathemein the book, it isthe idea of
Agility and Agile Architecture, referred to in the
preface and in some chapters but not others. This
subject has potential for an interesting book but,
unfortunately, this book is not it.

. Agile Documentation by Andreas
I3 Ruping (0-470-85617-3), John

tation

Wiley & Sons Lid, 226 @ £22-50
R (1.56)

reviewed by Anthony Williams
Thetitle of thisbook is“Agile Documentation”,
but almost everything it saysis applicable to
documentation for any project, whatever
methodology is used. Indeed, much of whet is
said is common sense if you think about it — but
how often does anyone really think about it?

Reading this book forces the issue, and
hopefully encourages one to think about the
purpose, readership and content of documentation
abit morein the future. However, some of the
content is particularly important when trying to
use an Agile development method, sinceit
contributes to reducing the effort that is wasted on
unused or unnecessary (or even unusable)
documentation, whilst ensuring that the
documentation that is produced is both necessary
and sufficient for the project’ s needs.

The subtitleis“A pattern guide for producing
lightweight documents for software projects’,
which is quite apt. Essentialy, the book consists
of aset of patterns, divided into 5 groups, esch of
which describes a particular problem associated
with documentation, and some discussion of the
solutions. The key points are summarised in what
the author calls“thumbnails’ —acouple of
sentences which appear in bold typein the pattern
description, and which are then repesated in the
“thumbnails’ section at the back of the book.
These enable you to browse through the book,
reading each pattern heading and the
corresponding thumbnail to get an overview of
the pattern and determine whether it is gpplicable
for your current situation, or jog your memory.

The patterns are not just presented on their
own, they are backed up by experience reports

pe—

40

from anumber of projects that the author has
been involved with. These are used both within
the pattern descriptions, and in a separate section
at the end of each chapter.

They arenot all positive, and are used to
highlight the dangers of not following the patterns
from the book, aswell asthe benefits of doing so.
Overdl, they give the advice a place of reference,
and are the source of numerous examples.

Onedight issue | had with the book wasthe
number of typos, which was particularly
unexpected given the subject matter. However,
thisdid not detract too significantly from my
overall impression: Highly Recommended

Agile Project Management by Jim
| Highsmith (0-321-21977-5),

“ | Addison-Wesley, 276 @ £26-99

1 (1.30)

= O reviewed by Alan Lenton

Agile Proje o
Mans agene nl

After reading the first couple of chapters| was
starting to get alittle leery of thisbook, but then
suddenly it changed completely, to become one of
the best I ve read on the subject of project
management. The problem was that the book tries
to mix advocacy for agile development with hard-
headed, wdll written, how-to-do-it material.

The advocacy stuff isin the first few chapters,
and laysit on with atrowel, but once you get
through that section of the book, there follows an
excellent exposition of agile project management
strategies and techniques.

However, thisbook isn't just for agile
practitioners, it also has vauable insights for
those who are managing non-agile projects. The
book’ s particular strengths are in its discussions
of leadership, and the decision making process. |
don’t think I’ ve ever seen a decent discussion on
decision making before.

The book does ded with the management of
large teams, but not in enough detail for my
liking, which isunfortunate, because that seems
to bewhere| hear the most criticisms of agile
development Strategies.

All inal, auseful book, both for project
managers and for programmers who have project
managersthey need to train!

Definitely recommended.

* | Agile Management for Software
Engineering by David J Anderson
(0-13-142460-2), Prentice Hall, 312
@ £35-99 (1.25)
reviewed by Jon Steven White
Agile Management for Software Engineeringis
targeted at managers, team leaders and executives
withintheIT industry. It sets out to explain how
to achievelower codt, faster ddlivery, improved
quality, and focused alignment within abusiness.
Thefirgt part of the book coversall aspects of
Agile Management including production metrics,
project management, project planning, resource
planning, product management and financial
metrics. The author does an excellent jobin
describing how and why traditional cost
accounting systemsfall short in software
development, and how this can beimproved
through the application of the Theory of
Congtraints, a concept originating from the world
of manufacturing. Each topic is described very
clearly, providing solid background information
and real-world discussions to back-up convincing
conclusions.

AGILE
MANAGEMENT
FOR SOFTWARE
ENGINEERING

4

Thelatter part of the book provides a survey
and comparison of anumber of software
development methods. This part of the book is
particularly useful to anybody who needsto
manage a changeto Agile development, and to
choose the most suitable Agile methods for their
organisation. Again, the author provides solid
information with clear and useful diagrams.

Agile Management for Software Engineering
isthe best book | have read on Agile software
engineering. Writing with clearly extensive
knowledge and experience in this area, the author
convinces the reader very quickly of the
advantages of Agile development. Agile methods
have been around long enough now to prove that
they do actually work. If you areinterested in
managing a change to Agile development, curious
astowhat it can offer, or just want to question the
way your organisation currently works, then’d
highly recommend this book.

Building J2EE Applications with the
.| Rational Unified Process by Peter

| Eeles et al. (0-201-79166-8), Addison
1 Wesley, 265 @ £30-99 (1.29)
reviewed by Fazl Rahman
| became sceptical early on reading overflowing
praises in the foreword and preface, but my magjor
gripe must be the chapter titlesbeing
unnecessarily repeated in full at every reference.
Halfway into the book it chafed, though others
may disagree. (Typesetting/binding is good
though.) Another gripe: | found myself scratching
my head alot a such things “ Design subsystems’
and “Design packages’ being used in the same
breeth, and needed the appendices often to look
up their digtinction.

Cutting to the chase: Chapter 2 givesaconcise
and useful introduction to 2EE. The weffle starts
to creep in a Chapter 3introducing RUP, then |
found it progressively harder to pay attention
until chapter 6 on Requirementswhere | liked the
materia on reviewing and getting user sign-off on
requirements ‘artifacts' [sic], also something I've
rarely seen mentioned in use-case modelling
treatments. (The authors provide a nice checklist
of items such areview should cover on p 84.)

The section on User Experience Modelling (in
Chapter 7) isagem —an indgghtful exploration of
the GUI within aUse Case based UML mode!,
going beyond just labelling GUI classes with the
<boundary class> UML stereotype.

Overall though, after the glowing enthusiasm
in the forewords etc (by more than one person) |
felt disappointed. Frankly | had to force myself to
revisit thisbook. If | wasworking on a 2EE
project using RUP, I'd probably be happy
spending under £25 and (force mysdlf to) read it

Bl 1LOING J2EE
A

| Enterprise Integration Patterns by

il Gregor Hohpe & Bobby Woolf (0 321
20068 3), Addison-Wesley, 685 @

2l £34-99 (1.29)

reviewed by Richard Stones
Enterprise Application Integration isbig business
these days. Many companies are finding that their
businesses demand more “joined up thinking”
and amore agile approach to changing business
environment. Previously unconnected systems
have to be connected and new interfaces
developed. Completely new applications, for
example salling and claiming on insurance

ENTERPRIS]

| CVu/ACCU/Reviews

policies over the Internet, are being demanded of
legacy mainframe, batch-mode I'T systems.
Software vendors are keen to market solutionsto
theseintegration problems. EAI toolsthat are able
to interconnect many types of applicationsand
systems, that can integrate web services and form
part of aservice oriented architecture are fast
becoming the centre of an integrated business.

Enterprise Integration Patternsis an attempt to
formally describe EAI functionality,
concentrating dmost wholly, and
unapol ogeticaly, on messaging as the basisfor
integration.

The book appears on the surface to be
jumping on a*“ pattern bandwagon”. There are
many books that claim patterns can beused in a
wide variety of different fields of endeavour, and
in my experience, few redly deliver. However,
Enterprise Integration Patterns makes good use of
the pattern paradigm to describe how messaging
can be used asthe basis of an integration
platform.

Some of the 60 or so patterns described in the
book are fairly smple. For example, the
publish/subscribe channd will be familiar with
anyone that has used an EAI or messaging
middleware. Here though, the patterns are used to
give common names and notations for festures
that have different nomenclature in products from
different software vendors. A cross-reference of
the patternsto commercia product featuresis
sadly absent. The pattern catalogueis available
onlineat
www, Ent er pri sel nt egrati onPatt erns. com

Anyone faced with the task of integrating
gpplicationsin their business using amessaging
model or EAI tool will benefit from this book. It
succinctly describes many EAI features as
patterns, pointing out how and where these
features can be used. There are also some worked
examplesimplemented with severa technologies
such asIMS and Web Services, and mainstream
EAI products from vendorsincluding TIBCO and
Microsoft. Having said this, the book doesaim to
stay vendor neutral, and in thisislargely
successful. If you are doing EAI, recommended.

B Software Architect Bootcamp 2ed
by Thomas J. Mowbray and
et 1 Raphael Malveau (0 13 141227 2),
_j Prentice Hall*, 350 @ £39-99 (1.25)
reviewed by Emma Willis
This book has been written as a guidebook for
anyone thinking of venturing into the world of
software architecture from either management or
devel opment backgrounds. Asyou would expect
from any good book, it has recently been updated
to address changesin the technologies and
processes that it examines; thisincludes arefocus
on enterprise technology frameworkse.g. .Net
and Java, and a brief introduction to emerging
technol ogies such as Web Services and other
XML technologies.

The running theme throughout the book isthat
of the Army *bootcamp’ . Each chapter hasa
name and an introduction that lamely triestotie
the chapter’ s content to the Army theme. | wasn't
that impressed!

Asajunior developer, | felt that there were
areas of the book addressing my desiretorisein
the development ranks — providing me with
direction, inspiration and lessonsto learnin
software architecture that could make me stand

SOFTWARE ARCHITECT

CVu/ACCU/Reviews

out from the‘mass’ of developers. Additionaly, |
found some areas of the book to be targeted at
those with many more years of experience—
perhaps those that had dready started their steps
into Software Architecture but who need
direction, or perhaps need help in addressing
problems that they have experiences along the
way.

The book includes an introduction to
enterprise technologies such as OO-
Programming, delving into .Net, Javaand
particularly CORBA; then explains where these
technologies and tools could usefully be
deployed. Thereisaso anintroduction to design
patterns, to software engineering practices, to
people management, documentation and
communication management and, perhaps the
crux of the book —to software architecture lesson-
learning and decision-making.

This book is packed full of diagrams and
textual examples. Each exercise at the end of the
chapter contains an anecdote from the authors.
Towards the back you will find an appendix of
UML, software engineering and software
architecture titbits for future reference.

| loved thisbook. | shall keep it with meand
aimwithin 5 yearsto bein the greet placesit
suggests| can be.

Software Development for Small
Teams: A RUP-Centric Approach by

v Gary Pollice et al (0-321-19950-2),

— | Addison Wesley, 272 @ £30-99 (1.29)
BT | reviewed by Giles Moran

This book follows the progress of avoluntary
software project from start to end. The team
performed all of the work in their spare time and
were geographically dispersed adding to the need
for aprocess. Theteam was aready familiar with
the RUP or Rationa Unified Process and had
access to some of the Rational tools at their
everyday places of work.

The book focuses on dl aspects of the projects
from theinitia congtruction of theteam al the
way through to the final post-mortem. The book
follows the RUP phaseswith each phaselasting a
number of chapters.

Theinitia chaptersintroduce the team and
give an overview of the project and the process.
The project gets started by chapter 4 where the
team discusses various aspects of the project such
as milestones and communication methods. The
standard RUP phases then follow: inception,
elaboration, construction and transition, each asa
chapter. These chaptersare agood ‘ by example
introduction to RUP. Implementation details
follow the chapters on eaboration and
congtruction. The book ends with a useful project
post-mortem (which should be compulsory in dl
projects IMHO), and a useful appendix.

TheRUPisusualy criticized for being too
large and heavyweight for use by smdl teams and
this book goes some way to addressing this point.
The problem isthat the team membersaready
know about RUP, and | ill think that any team
starting out is still going to find RUP daunting.

I liked this book; it is highly readable and
entertaining. | learned alot about RUP and found
mysalf in agreement with the authors about alot
of the points raised. The constant RUP references
did annoy, asit wouldn't have taken much to
generalise the book for alarger audience. For
instance, when discussing version control,

DEVELOPMEN
LL TeAMS

ClearCaseis used even though the authors agree
that it'sfar too heavyweight for the project. A
small discussion on other source control systems
such as CV Swould have been useful. | know that
the subtitle of the book is“A RUP-Centric
Approach”, but it wouldn't have taken much to
make this amore genera “Iterative-Centric
Approach”.

The problem with recommending this book is
its scope. Small teams embarking on RUP would
gain something by reading it, so for this particular
subset of the readership I’ d recommend it.

| wanted to read thisbook as | work in asmall
team and have wanted to get some ideas on how
to improve the devel opment process. I’ ve gained
some useful ideas from this book and will
encourage other members of my team to read it.

Software Fortresses : Modeling

: Enterprise Architectures by Roger
ey Sessions (0-321-16608-6), Addison-
‘ Wesley*, 277 @ £26-99 (1.30)

* | reviewed by Giovanni Asproni
Anintroduction to anew methodology for
modelling enterprise software architectures: the
Software Fortress Modd. Asthe name suggests,
the primary god of this method isthe
development of systemsthat are both secure and
reliable —arguably the two most important
characteristics an enterprise system should have.

The book isaimed at anybody working in a
large corporate organization that has astake on its
IT architecture, including devel opers, architects,
technical managers, and the end users.

The Software Fortress Model hastwo main
building blocks. The first the Software Fortress—
a“conglomerate of software systems serving a
common purpose” that “work together in atight
trust relationship to provide consistent and
meaningful functionality to ahostile outside
world”. The second the Software Fortress
Architecture — an “ enterprise architecture
congisting of a series of self-contained, mutually
suspicious, margindly cooperating software
fortressesinteracting through carefully crafted
and meticulously managed treaty relationships.”

The methodology also includes a graphical
notation, derived from UML, and an adaptation
of the Class Responsibility Cards cdled Fortress
Ally Responsihility cards (FAR).

The book iswell written and informative: itis
readable, contains severa interesting ideas, and
does not require a strong technical background to
be understood.

The book islet down by only two things.

Firg, it lacks abibliography section. Inmy
opinion, thisisamajor problem. New ideas are
seldom developed in avacuum — the author
himsalf admits that many of the ideasin the book
are not redly new —and knowing what
influenced their development can be useful for
understanding them better.

Second, some opinions are misrepresented as
facts. For example, the comparison of the costs of
choosing .NET versus J2EE in paragraph 155 is
based more on gut fedings than on evidence.

That said, even with its weaknesses, | think
that thisbook isavaluable reed for anyone
interested in enterprise software architectures,
aso for people working in smal organizations —
even if the author claimsthat the Software
FortressModd is“overkill” for them.

Recommended.

41

*| The Rational Unified Process Made
... | Easy by Per Kroll & Philippe
.| Kruchten (0-321-16609-4), Addison-
Wesley, 416 @ £30-99 (1.29)

= reviewed by Giles Moran
The book starts with aquick overview of the
RUP (the Rational Unified Process) and some of
the Rationad tools. It may be best to skip this
chapter asit ismostly marketing material for
Rationd products. Chapter Two describesthe
philosophy of the RUP by stating the basic
principles. They seem fairly sensible and cover
mogt of theitemslistsin the Agile Manifesto. The
RUP is then compared with a number of other
software processes to explain how RUP can and
isused. A number of example projectsarethe
introduced ranging from a one man one week
project to alarge distributed project run over two

continents. The one-man project isthen expanded
in the next chapter to very clearly illustrate al of
the pointsraised so far.

Part Two of the book examinesthelifecycle
of aRUP project in more detail. Thefour phases
of aRUP project (inception, elaboration,
congtruction and transition) area covered by
separate chapters again using the example
projectsto aid comprehension.

Part Three is concerned with how to adopt the
RUP within an organisation. This startswith a
chapter on how to initially configure the RUP. As
this chapter deals mainly with RUP software and
tools, it was not that useful, as| do not have
access to them. The next chapter (Chapter
Eleven) ismore useful and offers practica advice
on how to actually adopt the process. All of the
advice seems very sensible, adopt alittle bit first,

and perform a pilot project to evaluate what parts
of RUP are required, dl sensible stuff. Chapter
Twelve deals with how to adopt an iterative
project and is followed by achapter of RUP anti-
patterns.

Thefina part of the book offersaview on
how RUP affects project managers, anaysts,
developersand testers; each roleisthe subject of
achapter. A good glossary (required for al the
TLAS) and references then compl ete the book.

“The Rational Unified Process Made Easy”
is subtitled as a practitioners guide and in
essence that is exactly what it is. It offersa
clear and concise introduction to the RUP and
the toolset, augmented with good advice and
examples. Thisbook is suited to a
developer/analyst or manager who will be
using the RUP in the near future.

Due to lack of space not all book reviews could be printed in this issue. Reviews of the following books can be found on the website (www. accu. or g) and will

be printed in the next issue if space permits.

Fast Track UML 2.0 by Kendall Scott (1-59059-320-0), APress, 173 pages $24.99 reviewed by Derek Graham

The Object-Oriented Development Process by Tom Rowlett (0 13 030621 5), Prentice Hall, 421 @ £43-99 (1.25) reviewed by James Roberts

UML Xtra-Light by Milan Kratochvil & Barry McGibbon (0 521 89242 2), CUP, 106 @ £15-99 (1.31) reviewed by James Roberts

Database Topics

Mastering Data Warehouse Design by Claudia Imhoff et al. (0-471-32421-3), Wiley, 438 @ £31-50 (1.43) reviewed by Richard Stones

Practical RDF by Shelley Powers (0-596-00263-7), 0’Reilly, 329 @ £28-50 (1.40) reviewed by lvan Uemlianin

The Definitive Guide to MySQL 2ed by Michael Kofler (1-59059-144-5), Apress, 802 @ £35-50 (1.41) reviewed by Christopher Hill

Computer Theory

Basic Category Theory for Computer Scientists by Benjamin C. Pierce (0-262-66071-7), MIT, 100 @ £14-99 (1.53) reviewed by Francis Glasshorow

User Interface

User Interfaces in G#: Windows Forms and Custom Controls by Matthew MacDonald (1-59059-045-7), Apress, 586 @ £35-50 (1.41) reviewed by

Andrew Murphy

Interaction Design for Problem Solving by Barbara Mirel (1-55860-831-1), Morgan Kaufmann, 397 @ £29-99 (1.50) reviewed by Francis Glasshorow

User Interface Design by Jenny Le Peuple & Robert Scane (1 903337 194), Crucial, 128 @ £12-00 (1.41) reviewed by Francis Glasshorow

Visual Programming by David J. Leigh (1 903337 11 9), Crucial, 142 @ £12-00 (1.41) reviewed by Francis Glasshorow

The Web

Web Design Tools & Techniques by Peter Kentie (0 201 71712 3), Peachpit Press, 436 @ £29-99 (1.33) reviewed by Christopher Hill

More Eric Meyer on GSS by Eric A. Meyer (1-7357-1425-8), New Riders*, 270 @ £34-99 (1.29) reviewed by Francis Glassborow

Web CGaching by Duane Wessels (1 56592 536 X), O’Reilly, 300 @ £28-50 (1.40) reviewed by Christopher Hill

Leisure

Dancing Barefoot by Wil Wheaton (0-596-00674-8), O’Reilly, 115 @ £9-95 (1.50) reviewed by Francis Glasshorow

Copyrights and Trade marks

Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

42

CVu/ACCU/Reviews

