
Reports & Opinions
Reports

Editorial 4
From the Chair, Standards Report, Membership Report 5

Dialogue
Letter to the Editor 5
Francis’ Scribbles 6
Student Code Critique (competition) entries for #28 and code for #29 8

Features
Professionalism in Programming #27 by Pete Goodliffe 13
Creating Standard GUI Applications by Mark Summerfield and Jasmin Blanchette 18
Using a Live Linux Distribution by Silas S Brown 19
An Introduction to Programming with GTK+ and Glade by Roger Leigh 20
An Introduction to Objective-C by DA Thomas 27
C++ Templates - A Simple Example by Rajanikanth Jammalamadaka 28
XML as a Model-View-Controller System for Documents by Matthew Strawbridge 30
Introduction to C# - Part 2 by Mike Bergin 33

Reviews
Bookcase 37

Copy Dates
C Vu 16.5: September 7th
C Vu 16.6: November 7th

Contents

Contact Information:
Editorial: Paul Johnson

77 Station Road, Haydock,
St Helens,
Merseyside, WA11 0JL
cvu@accu.org

Advertising: Chris Lowe
ads@accu.org

Treasurer: Stewart Brodie
29 Campkin Road,
Cambridge, CB4 2NL
treasurer@accu.org

ACCU Chair: Ewan Milne
0117 942 7746
chair@accu.org

Secretary: Alan Bellingham
01763 248259
secretary@accu.org

Membership David Hodge
Secretary: 01424 219 807

membership@accu.org

Cover Art: Alan Lenton
Repro: Parchment (Oxford) Ltd
Print: Parchment (Oxford) Ltd
Distribution: Able Types (Oxford) Ltd

Membership fees and how to join:

Basic (C Vu only): £25
Full (C Vu and Overload): £35
Corporate: £120
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 issues of each journal produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email

membership@accu.org for an
application form.

Any questions - just email
membership@accu.org

4 CVu/ACCU/Reports & Opinions

Reports & Opinions
Editorial
Another end to another academic year and the
usual cohort of students have passed through the
doors of the country’s universities with their
pieces of paper signifying the sum of their past
three or four years of study. For some, it’s their
first step into the wide world of employment, for
others – who can say. Sounds nice doesn’t it?

The problem really is that there is a world of
difference between the world of academia and
the world of business and unfortunately for the
students, they don’t seem to realise this. Being
up and in work for 9am is not normal, neither are
long vacations or the excuse of having roadworks
in the centre of Manchester enough to cut the ice.

For business there is a problem not only with
this transition, but also when interviewing.

At the April conference, I was talking with a
very nice chap about this problem. He cited one
example (the waiter in the restaurant problem)
which required a threading model. Now that in
itself is not a big hassle, the difficulty comes in
which threading model is used – the posix
implementation or the one used by Microsoft?
Typically, universities use the Microsoft.NET
packages, therefore use the MS implementation
and are not generally taught the posix model.
Without knowing the posix model and without the
employer specifying which model to use, the
prospective employee really only has at best a
50/50 chance of using the correct threading model.

Is this the fault of the employer or the
university? I would suggest it’s six of one, half a
dozen of the other. Yes, it is the responsibility of
the university to teach both threading models
(and to use both), but there is then the problem
of having to have more than one compiler per
machine. Not a huge problem, but given most
machines work on a standard ghost image, this
does mean additional problems when installing.
There is also the time factor – a typical 3 year
course really only lasts 18 months which is
simply not enough time to include a second
threading model without the detriment of another
aspect. For the employer, it’s both not talking to
institutions about requirements and also possibly
not specifying which thread model to use; a Unix
(or variant) company will have almost no use for
someone using the MS model!

The Importance of One
Eh?

By the time this edition hits the doormat, the
free implementation of the .NET framework,
Mono, will be at version 1.0 and released to the
waiting masses.

Mono gives all supported platforms access to
the C# language and everything that .NET offers.
How is this possible?

Well, unlike Sun, Microsoft decided to make
the API for .NET open and have a published
standard for the language. This has meant that
anyone who wishes to sit down and implement the
API will have access to this rather good language.
I must admit that I didn’t like C# originally (being
more a cross over language than a distinct language

– or so I was led to believe), but having used it both
for fun and to review books with, I am very
impressed with Mono and the C# language.

There are versions for MacOSX, Linux, Unix,
BSD, Windows and quite a few others in
development at http://www.go-mono.com

More Changes....
There is yet another new series starting . This
time it’s Objective C.

Please, don’t think that just because there are
lots of articles already in C Vu, that we’re not
after anything for a while, that’s not the case. If
you have something you think is up to being in
C Vu, please send it in. Currently, I’m looking
for a good introduction to C++ as well as
material on Java and over on the Overload side
of things, I know Alan is screaming for material!

A Diversion...
There has recently been quite an interesting
discussion on the accu-general mailing list
regarding the temperature at which water boils
at for a given pressure. This is right up my street
having been a physical chemist in a previous
regeneration.

Water, as we all know, boils at 100°C (1
atmosphere pressure) – perfect for a cup of tea.
If you were to go up a mountain though, the
temperature at which the water boils drops,
sometimes as low as 75.5°C (roughly 8000m
above sea level) – absolutely useless for making
a cup of Earl Grey or Darjeeling.

There is a dependency therefore between the
height (and therefore pressure) and the
temperature water boils at. This has caused about
a week’s worth of debate. Anyway, I’ll provide
the answer for someone to provide the solution
as a program. The shortest gets a prize out of the
editor’s lucky bag.

How to work it out though?
The answer is quite simple.
At ground mark, atmospheric pressure (in

mm mercury) is 29.921 and as you move up from
ground level, the pressure will decrease. This
decrease can be calculated using the formula:

Pressure (in. Hg) =
29.921 * (1-6.8753*0.000001
* altitude, ft.)^5.2559

(these are from really old notes given during my
degree, which is why I’m using inches of
mercury instead of standard atmospheric units
and feet instead of metres).

We know (from what we’ve seen) that as you
move up into the atmosphere, there is a decrease
in the boiling point of water. Again, it’s quite
simple to work this out:
Boiling point = 49.161

* ln (in. Hg) + 44.932
(this is all perfect spreadsheet fodder)

Again, this is in °F rather than °C, so:
C = 5/9 * (temp in °F – 32)
1m = 3.282 ft

What the actual numbers represent have been lost
in the mists of time (they had a nasty accident
with some Old Peculier a few days after my
finals!)

What you should be able to do now is
transform this into a quick and simple program
(you choose the language). Happy hacking!

A Cautionary Tale
I’ve had quite an interesting week this week.

Besides the usual rush to have the magazine
ready for putting to bed (for which I’m sure we
should all be charging our respective glasses to
the sterling and hard work of our Production
Editor who doesn’t seem to get anywhere near as
much credit as she deserves), I had an unusual
phone call from somewhere that I had applied for
a job at a while ago.

While that may not seem odd to quite a few
people, it was odd to me as normally in the
education sector, if you don’t get the job, that’s
it – you don’t hear anything back. This was
unusual as it was to give me feedback on exactly
why I didn’t get the post.

Now, despite knowing everything required
and being possibly the best candidate for the
position, the reason for not getting the post was
that the employer had done a web search on
groups.google to see what could be seen.

On usenet, I have quite a high profile (and not
just on the programmers groups) and unfortunately
have been involved in a very small number of flame
wars – one of which happened last year on the
uk.comp.os.linux group. Now, as this is
actually a matter of some ongoing legal action
against the chap who started it all (and also a long
running Police investigation into this character’s
nefarious activities), I can’t comment on the nature
of the flame, but because of it it the company
decided to dig further... and further... and further.

In one sense, it actually helped my application
as it showed the nature of how I work with a
disperse group and the methods I employ to solve
problems. On the other hand, the number of open
source groups I contribute to made the company
consider me possibly not the best candidate for
proprietary work.

Let this be a lesson then: while usenet is fun
and a very useful forum for learning on, it can
act as a double edged sword.

Now, Applying That Here...
But how does this apply to the us, the ACCU? Well,
we do have a number of publicly open groups
where not only members of the ACCU reside, but
also prospective employers and those who just need
help. It is therefore of paramount importance that a
professional attitude is given and threads on the list
kept on topic. All too often a thread begins with
something sane, but by about 10 replies down the
line, the original topic has changed, but the email
subject title hasn’t – very confusing and if you get
the same number of emails as I do, then the
probability of missing something useful increases.

It also demonstrates an important difference
that should be recognised between a personal and
professional persona.

For instance, it would be unprofessional for
me to post from my ACCU account and be
expressing a detrimental opinion against any
particular vendor of any particular product as it

5CVu/ACCU/Reports & Opinions

could be considered as being that of the ACCU;
something which may definitely not be the case.
Now, the case is different if I post from my
personal email address. Many who subscribe to
the accu-general list will know my opinions
of London, it definitely isn’t endorsed by the
ACCU or anything like that, but for some, the
difference between me as the editor and me as,
well, me is not always clear. Which is another
problem with people when scanning usenet!

Enough of that ramble, many will be puzzled
as to why I brought it up. The answer is simple.

One fund raising idea the committee has been
considering is “selling” ACCU email addresses
(in the same way as is done with the ACM), so it
would be possible to have the email address
paulf.johnson@accu.org – sounds nice,
but having such an email address would put a
distinct number of problems on us which would
need a disclaimer to be added. However, how
many bother reading disclaimers?

We have a standard one at work
“Any views or opinions are solely those of the
author and do not necessarily represent those of
the University of Salford unless specifically
stated. This email and any files transmitted are
confidential and intended solely for the use of the
individual or entity to which they are addressed.”

Would that be enough if we were to make
available ACCU email addresses? I personally
don’t think it would be.

This idea is still being discussed, but I’m sure
your opinion would be greatly appreciated. If you
have comments, please send them to the committee.

An ACCU email address and its inherent
problems are not the only aspect where this
distinction between ACCU-endorsed and not
endorsed material raises its head. The other place
is obviously in the book reviews.

A claim levelled by some book companies is
that as we publish the reviews, they therefore
must be the views of the ACCU. Again, this is
not the case; all reviews are a personal opinion
of the reviewer. This is definitely a problem with
respect to the website. While we have a limited
readership of the printed magazine, the book
reviews are publicly available for all to see
without any form of disclaimer as to the personal
nature of the reviews. You can now appreciate
the problem of a disclaimer...

Paul F. Johnson

View From the Chair
Ewan Milne <chair@accu.org>
Just a brief report from me this issue. This does
not reflect a lack of activity by the committee:
far from it, we are currently involved in a review
of our system for book reviews, arranging for the
long-awaited website revamp, and getting
underway with the development of next year’s
conference. But all these are ongoing tasks still
to reach fruition, and so more details on each
soon.

You may have noticed that the last issues of
C Vu and Overload (16.3 and 61 respectively)
coincidentally marked the arrival of two new
editors.

Paul Johnson was elected C Vu editor at this
year’s AGM, and John Merrells was elected
Publications Officer: John’s first action in his new
post was to appoint Alan Griffiths as his successor
in the Overload editor’s chair. I’d like to welcome
both new editors to their jobs, undoubtedly both
key roles for the association. The life of editor of
an ACCU journal can be stressful, but luckily
there is something we can all do to alleviate this
– write and submit articles! Both Paul and Alan
will be grateful for your submissions. If you have
never previously written and are concerned about
producing a piece of high enough quality,
remember that there is an excellent editorial
support system in place to carry articles from
draft to publication. All our regular contributors
will tell you that it is a most fulfilling exercise.

Standards Report
Lois Goldthwaite <standards@accu.org>

The future of C++ is already taking shape. The
international C++ standard committee, WG21, is
stepping up the workload as they move toward a
revised standard, still several years in the future.
A visible sign of this is that the committee are
adding two more “mailings” of documents per
year to the four existing ones. (They are still
called mailings even though the days of shipping
paper copies around the world are long gone.)
The additional mailings are scheduled for July
and January, midway between the committee’s
face-to-face meetings in April and October every
year. This gives committee members longer to
study the issues and solicit comments from the
public.

Nearly all committee papers are publicly
available on the WG21 website at
http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/. An exception
to this policy is documents relating to the
C++/CLI effort in an ECMA technical group –
those are password-protected. However, the
regular policy does apply to the current working
draft of the C++ standard itself. This draft
incorporates not only Technical Corrigendum1
(the version available at bookstores in the Wiley
edition) but also any defect reports resolved after
TC1 was voted out. The committee has no plans
to issue a second TC.

Speaking of C++/CLI, it appears that the
schedule for this document is slipping. This is
partly because it is closely tied to a revision of
the ECMA Common Language Infrastructure
standard (more commonly known as .Net), and
the people working on that document have
decided it will not be ready in time to meet
ECMA’s fall deadline for a vote this year.
Correctness and consensus take time to mature,
even in a very small group of experts working
under a very lightweight process.

The international C committee, WG14, have
reconfirmed the C standard without intention to
revise it, although they do plan to issue a second
Technical Corrigendum at some point. They have
decided that TC2 will be issued in the form of an
integrated document, as the C++ TC1 was. (The
Wiley edition of the C standard does feature its
TC1 integrated into the 1999 standard, but ISO
originally published the revisions as a small
separate document. BSI have long had a policy
of integrating such changes and issuing a
complete version.)

Membership Report
David Hodge <membership@accu.org>

The final membership total for this year was 1099,
26 down on the same time last year. It is renewal
time, so please be aware that there is a subscription
increase, see the June C Vu for details. Please
make sure that you renew in time as under the new
system we no longer distribute back issues. You
should be renewing by the 31st August.

If you renew after 30th September you will not
receive the October issue. You can however get
access to the journals on the website.

Letter to the Editor
Not exactly a huge mail bag this edition, but this interesting one came in from
Francis Glassborow.

A New Publishing Opportunity
I recently spent time with Parchments, ACCU’s printers, discussing how
their technology is changing and what those changes enabled.

One of the dramatic changes is that they can no produce single copies
of books in much the same way that you might previously have asked them
to produce a single copy of a poster. The feature that I found interesting
was their estimated cost for a 100 page ‘perfect bound’ book with a full
colour laminated cover. This was substantially under £4 for any production
run between 1 (yes a single copy) and 150. After that the price goes down
because a cheaper option cuts in for reproducing the pages.

This has set me thinking. Probably many of you have a book that you
could write, probably not a best seller and probably not one that a major
publisher would contemplate, but nonetheless a good book.

There are a number of processes in going from an author’s grey matter
to a delivered book and quite a few authors make a mistake by under-rating

the added value of a good editor, good design and layout, careful copy-
editing etc. Then there are issues like ISBNs and the requirement to provide
(in the UK) copyright copies to the British Library.

Now I am well familiar with most of those issues. On the other hand I
really do hate administration. I wonder if any of you would be interested
in exploring creating a partnership or small company to specialise in
producing very high quality (validated technical content, properly copy-
edited and professional standard of layout and production) short run books.
I have thought about many of the issues but won’t take up ACCU’s space
by going into them here. If the idea interests you please contact me (+44
(0)1865 246490 or francis@robinton.demon.co.uk)

And if you have an idea for a short (80 to 200 page) book you would
like to write and have published let me know about that as well.

Francis Glassborow

It certainly looks an interesting idea.
As always, should you have any comments or other items of interest, please

don’t keep them to yourself – send them in. I’m always happy to receive your
views.

Paul F. Johnson

6 CVu/ACCU/Dialogue

Dialogue
Francis’ Scribbles
by Francis Glassborow aka ‘The Video Guy’

Time for Change

When I picked up the current issue of C Vu, I was surprised to say the least
by the item on the inside back cover. Over its seventeen years of existence
ACCU has very rarely changed its membership rates. When ACCU was
first founded as CUG(UK) the cost was £10 for six issues of the newsletter.
A few years latter when we had stabilised to an annual membership fee and
a guaranteed number of issues of C Vu per year the cost went up to £12.
Several years latter when we re-organised to two levels of membership and
added a Corporate membership the costs went to £15, £25 and £80. Since
then careful housekeeping and the acquisition of substantial advertising
revenue has kept the costs at those levels despite going to full colour covers,
professional production and so on.

Advertising revenue is fine but it does require someone with
considerable expertise to bring in and hang on to advertisers. This is true
for all publications. Getting advertising is hard work.

A second quiet change has been happening. The growth of ACCU over
the last ten years has been almost entirely in non-UK membership. The cost
of postage has steadily increased. Originally the contribution made to general
administration costs by non-UK membership fees was low but positive. By
that I mean that if we worked out the cost of the printing and distribution of
C Vu and Overload to non-UK members it was only a little less than they
were paying in membership. None of us had any concern about that because
we believed in the principle that a truly international organisation should not
have differential fees depending on geographical location.

With the steady increase in production and distribution costs for our
periodicals, overseas membership has moved from marginally in the black
to substantially in the red. Couple that with a very welcome increase in
non-UK membership (over 40 countries the last time I looked) and the loss
of advertisers and we can all see that a substantial readjustment of
membership fees became necessary.

Now there are two things you can do to help keep ACCU membership
fees stable for another decade. First you can help increase the number of
members. That allows the administration overheads to be spread over more
people. The second thing is to think carefully about how to bring in more
advertisers. In days gone by my rule of thumb was that selling all six cover
pages should pay for the professional production editing of our periodicals.
Other advertising should be such that a page of advertising pays the costs
of two pages of editorial content. That would mean that an issue of C Vu
with 32 full pages of editorial content would be fully paid for if all the three
cover pages were sold and an extra 16 pages of advertising were included.
To actually achieve that you would need to pay a full time advertising
manager so it will not happen. Nonetheless every little bit helps.

So what has this to do with the title of this item? Well it was seeing that
change in membership fees that started a train of thought. Things are not
immutable. We need to take stock from time to time and make necessary
and purposeful changes. What we should not do is change for change’s
sake. We should always strive to understand why things are the way they
are, and understand what we are trying to achieve.

I am reminded of the very first essay in Programming Pearls (Jon Bentley,
0-201-65788-0) which should be required reading for everyone who is asked
questions of the form ‘How do I do...’ Overtly the essay is about sorting but
that would be a very shallow view. The point that Jon Bentley was making
is that we should be wary of answering such questions with anything other
than ‘Why do you want to do that?’ Until we have the answer to that question,
even the most erudite direct answer is unlikely to actually help.

Now go back to what I have written above and see how, I hope, I have
applied that lesson to the question of membership fees. There is a lot more
that I have not written, but the essence is that reactions to changes to the
membership fees must be based on an understanding of what they are for
and why ACCU needs more income.

If all that our Committee did was to up the fees they would be doing a
poor job but you know as well as I do that they are one of the most

hardworking committees of any purely voluntary organisation. Quite apart
from keeping ACCU running on a day-to-day basis they are also reviewing
many aspects of ACCU. In many cases these are things that have just grown
out of an accumulation of small decisions that made sense at the time.

The nature of ACCU has changed slowly but surely. In the early days
the Committee was almost entirely composed of enthusiasts and there was
a fair sprinkling of amateurs (those for whom programming was no part of
their paid work). These days the ACCU Committee is composed almost
entirely of professional developers with a sprinkling of language experts.

Each year a number of people resign from membership because they
have moved on from programming. Some of those have genuinely moved
out of IT and no longer have any interest in software development.
However for a good number this is not the case, they have simply moved
up the hierarchy to jobs that do not involve expertise in use of one or more
computer languages.

Now the point I want to put to you is whether ACCU should expand so
that those longer-term members whose careers have developed still have
a place in ACCU.

I feel the answer should be yes but I am far from certain that I know
how we could achieve that. Of course there is a way in which such issues
are entirely academic for me but that does not prevent me from raising the
question and pondering about an answer.

Book Review Classification
One of the things that has grown by accretion is our book review system.
I think it is past time that we gave it a good shaking and decided the degree
to which it should change. To do this we must focus on why we review
books and why we add a classification to reviews on the website.

A book review carried out by a single reviewer is always a personal
statement by that reviewer. As a reviewer I can choose to recommend a
book or tell you that I think you should leave it firmly on the retailer’s shelf.
It is very important that publishers of reviews are open to publishing second
reviews that are in radical disagreement with the first. The publisher must
also willingly withdraw any statement that is factually incorrect.

Now as the number of reviews grew and we started publishing them on
the web we started adding a recommendation. This was intended to help
people who lacked time to read all the reviews by steering them towards
ones they might find worth consideration. Unfortunately, as time has gone
by these recommendations have become increasingly perceived as either
an ACCU one or that of the reviewer (which sometimes they were). I find
that very dangerous. And it is time for change.

However my view is that in that change we need to make it much clearer
that the any recommendation is that of a specific reviewer and not and
ACCU one. The reviews on our website are not and never have been ACCU
reviews. If we wanted to do that we would need a review panel and a
consensus developed before we published a recommendation. For books
that are already published we would never have the resources even if we
had the will.

For now I want you to think about the issues around this one very public
area of ACCU’s work. Should ACCU as a body ever endorse a book? If
so, how should we do it? In coming to an answer we must first understand
what we are doing. We must also understand what we can reasonably
deliver.

I have some very specific ideas about this which I will present in a later
column.

Another Portable IDE
While searching for a multi-platform IDE for my next book I came across
JGrasp. This is an IDE explicitly developed for teaching purposes. The
developers are a group at Auburn University. While the implementation is
in Java and the original work was done for assist with teaching Java, it is
multi-lingual as well as multi-platform.

It supports a considerable range of C++ compilers and has some very nice
features. At the moment there are a number of flaws on the C++ side. For
example, it does not currently have a simple way to give both a simple library
path and enable use of third party libraries. It is fairly simple to modify the
scripts to solve that problem, and in the next release that will have been done.

7CVu/ACCU/Dialogue

In the meantime, if you have a moment have a look at it from
http://www.jgrasp.org/ and let me know your thoughts about it.

And while I am thinking about it, can someone explain why G++ has
that horrible way of modifying file names on the command line (adding
‘lib’ to the start of a library name to determine the file name.)

Other Periodicals
Over the last few years there has been a terrible decimation of periodicals
for software developers over the last few years. The highly specialised ones
such as those for the embedded software developer have managed to hang
on in their niches. Dr Dobbs’ Journal has survived the general carnage but
the breadth of its coverage means that for most readers only a few items
are of potential interest in any single issue.

CUJ (The C/C++ Users Journal) traces its origins back to being the
newsletter of the C User Group (a US based group that was founded a little
before ACCU – originally called CUG(UK) though it had nothing to do with
the US group). While CUG(UK) developed into the ACCU we have today,
CUG became no more than the tail on the CUJ body. Our periodicals serve
ACCU members whilst what is left of CUG is a small added value for CUJ
subscribers. I have not seen a copy of CUJ for some time but understand
that various changes have happened over the last couple of years which have
culminated in Chuck Allison departing as editor (and I note that Bill Plauger
is no longer listed in its editorial staff). If anyone can provide details, or
better still write a review of CUJ as it is in 2004 I would be grateful.

Now those who went to Chuck’s Keynote at this year’s conference will
know that he is heading up a new electronic publication specifically for
C++. That has now gone live and you can see what is happening by visiting
http://www.artima.com/cppsource/

Now from the newest to the oldest (at least I think it is). Software
Practice and Experience is currently in its 34th year of publication. Like
DDJ, it covers a very broad range, unlike DDJ it is a genuinely peer
reviewed ‘academic’ publication. Unfortunately it is extremely expensive.
Through the early 90s it tended, in my opinion, to be too academic in the
prose style of its contributions. This resulted in thousands of words of turgid
prose whose aim seemed to be to hide great information behind text that
did everything but assist in communication. Either this has greatly
improved over the last few years or I have become better able to handle
the academic prose style.

A New Sort Algorithm

The last of the four papers in the current issue of SP&E (Vol. 34, No 8)
concerns a new sort function for the C Library. This is a generally excellent
paper on a sort algorithm with a performance of O(n log n), I was irritated
by the author’s lack of understanding of what the C Standard actually
requires of its qsort() function. The author seems to make the common,
but erroneous, assumption that qsort() implements some variation of
Hoare’s Quicksort. It does not. I have little doubt that many
implementations of the C Library do in fact use Quicksort but nowhere
does the Standard require that to be the case. Actually the author seems to
assert that qsort() will normally be the Bentley and McIlroy
modification of Quicksort.

As I read through the paper my irritation grew. As the opening sentence
of the section titled ‘Conclusions’ begins ‘So far, all sort library functions have
been based on Quicksort, …’. Such assertions have no place in an academic
paper.

Why does this matter? Well apart from perpetrating an error it also might
lead people to believe that a Standard C Library could not use the author’s
(Jing-Chao Chen) Proportion Extended Sort. However a library
implementor can use any sort that meets the very limited criteria provided
by the C Standard. C++ is rather more demanding in its requirements for
std::sort(), however even those have been outdated by the
development of a hybrid sort in the late 1990s.

I have no doubt that Proportion Extended Sort is a worthy addition to
the catalogue of available sorting algorithms and that generally an
implementor would be advised to select it in preference to any of the
variants of Quicksort that are frequently used to implement qsort() .
Knowing that it exists enables ordinary programmers to point to it when
asking for a better library implementation. If you are interested you can
get the code from: http://www.dhu.edu.cn/dhuwangye/
kxyj/psort.htm

However I should warn you that the code is not exactly the kind of
portable code that I would expect from a fully competent C or C++
programmer.

Commentary on Problem 15
Here is the code again:

#include<iostream>
#include<cstdio>
using namespace std;
main() {
int n;
int waste;
char name[51];
cout << "Enter any integer number...\n";
cin >> n;
cout << "Enter your name...\n";
cin >> waste; // 'gets' does not read the

// name if this line is omitted.
gets(name);

}
Experienced C++ programmers will immediately spot the problem; the
programmer has hacked out a solution to it. The code mixes different forms
of access to the standard input stream (aka, console input). After getting
the value for n there will be, at a minimum (unless the programmer uses
that horrible ‘Ctrl Z’ for Windows or ‘Ctrl D’ for Unix (and variants) which
is, in my opinion, one of the few blots on Accelerated C++) a newline
character left in the input buffer. Using any of gets(), fgets() or
getline() will read that character and stop.

The hack that the programmer has come up with is to try to read a
number. Now that read will succeed if the user carelessly types in a number
before entering their name on the same line. Or it might fail because the
next non-whitespace character read from stdin is not a digit or a
plus/minus sign. However whichever happens (as long as the number isn’t
on the same line as the integer entered for n) the newline character
terminating the previous input has been consumed.

Now either gets() or fgets() will correctly read the following
whitespace terminated entry. However all versions of the C++ getline
will fail unless the user actually did provide wastewith a numerical value.
The reason being that std::cin will now be in a fail state and so ignore
all input requests.

The positive aspect of this example is that the original programmer had the
sense to ask why his hack worked. However the warning is that learning to
program is much more than just getting code to compile and produce the result
you expect. It is essential that the programmer understands why the code works.

Problem 16
Comment on the following both as Java and as C++.

Have a look at the following tiny function. The problem is insidious; the same
code is legal in Java and does exactly what you want, while in C++ it
compiles without error.
string to_string(int n) {
if(n == 0) {

return "NULL";
}
else {

return "" + n;
}

}

Cryptic clues for numbers

Last time I gave you:
Sounds like a perfect result when a score dine together. (2 digits)

Perhaps it was too tough for most of you, as I have had no responses.
Perhaps the clue needs a bit more polishing. The answer is 28 which is the
second perfect number (a number which is the sum of all its proper divisors;
28 = 14 + 7 + 4 + 2 + 1). Aloud that sounds like ‘twenty ate’. However the
positioning of the ‘sounds like’ in the clue is wrong. Perhaps a better
version would have been:

Sounds like a score dining together was a perfect result.
Taking a basic idea for a clue and honing it takes both time and experience.
The latter I have but the former was lacking last time. My apologies.

Now, try this one:
Looking to two fat ladies for a solution? Too gross!

When you have the answer see if you can provide either a new clue or
improve my one. As an incentive I will send the author of the best clue (in
my judgement) a copy of The Elements of C++ Style.

Francis Glassborow

8 CVu/ACCU/Dialogue

Student Code Critique
Competition 29

Set and collated by David A. Caabeiro <scc@accu.org>
Prizes provided by Blackwells Bookshops & Addison-Wesley

Please note that participation in this competition is open to all members. The title
reflects the fact that the code used is normally provided by a student as part of
their course work.

This item is part of the Dialogue section of C Vu, which is intended to designate
it as an item where reader interaction is particularly important. Readers’
comments and criticisms of published entries are always welcome.

Before We Start
Thanks to the helping hand given by our editor and by a member of the
committee, I’ve been able to get my hands on the only two entries for the
current issue. It’s quite sad to receive collaboration from people who
contribute to ACCU in many other ways, and not from you. Being a 1000+
members association, if roughly 0.5% of the members participated, there
could be plenty of material to provide food for thought. Please let us change
this statistic for the better.

Remember that you can get the current problem set in the ACCU
website (http://www.accu.org/journals/). This is aimed at
people living overseas who get the magazine much later than members in
the UK and Europe.

Late submission to SCC 27
From Tony Houghton <h@realh.co.uk>

Let’s start by solving the immediate problem. If pf() encounters a prime
number it returns an “empty” array i.e. the first element is zero. This means
that the body of the while loop in main() is not executed and the ugly
flag is not altered; it retains its value from the previous number in the range,
which is often ugly, at least for low ranges. The solution is therefore to
reset the ugly flag to zero in each iteration of the enclosing for loop.
Immediately before or after the line idx = 0; is ideal.

However, the code is still not performing the correct test. It only proves
whether or not the last factor in the array is ugly, not that they all are. This may
work with the defined set of ugly factors and because of the order in which
pf() fills its arrays, but we should rewrite the test instead of relying on this.
It’s easiest to prove that a number is not ugly, so we’ll start by assuming it is
until we find a non-ugly factor, not forgetting the initial problem with primes.

But we have something else to take into account: 2, 3 and 5 are prime,
so pf() will return an “empty” array and the test will not realise they’re
also ugly. We could deal with this in pf() by copying quotient’s initial
value from the variable number rather than 0, but this leads to an
inconsistency when the pf() function is considered in its own right: prime
numbers have themselves listed as a factor, other numbers don’t.

As we’re also excluding the number 1 as a factor it makes sense to
continue to exclude the number itself and explicitly check for 2, 3 and 5 in
our test. Thus the main for loop becomes:

for(n = start; n < stop + 1; ++n) {
idx = 0;
flist = pf(n);
if(flist[0] == 0 && n > FIVE) ugly = 0;
else ugly = 1;
while(flist[idx]) {

if(flist[idx] != TWO &&
flist[idx] != THREE &&
flist[idx] != FIVE) {
ugly = 0;

}
++idx;
}
if(ugly == 1)

printf("%d\n", n);
free(flist);

}
Now to give the code a complete makeover, starting from the top and
working down:

The first issue we encounter is a number of preprocessor macros. Macros
should only be used for jobs that nothing else can do, but these can be

replaced with const int and/or enum. Furthermore, the purpose of
replacing “magic numbers” with named constants is so that if the values need
to be changed they only need to be changed in one place. If we want to
change this program to deal with a different set of ugly factors, the current
names of the constants will be very confusing; if we don’t ever want to
change it the names are redundant. I’ve rewritten these constants as:

const int MaxFactors = 20;
/* Max number of prime factors to find */

enum UglyFactors {
UglyFac1 = 2,
UglyFac2 = 3,
UglyFac3 = 5

};
(Sorry about the pun).

Next we have a prototype for pf(). The name is far too terse, let’s make
it more descriptive: prime_factors() . The function is only used in
the same source file, so it should be declared static . I’m not sure
whether the student has covered linkage types yet, but I think it’s a
relatively straightforward concept and a good habit to learn early.

It appears to be common practice to declare all function prototypes in
advance and define static functions towards the end of a file. However, I prefer
to avoid separate prototypes except in headers on the grounds that they are a
form of repetition. Therefore I’ve brought the body of the function forward
to this point. The comment that precedes it should highlight any points of
interest about its parameters and return value – in this case that it returns an
array that’s been allocated on the heap and that the array is zero-terminated.

Inside the function I’ve separated the variable declarations because
int* and int are actually two quite different types and it’s considered
bad form to make them share the declaration with commas. I also prefer to
give all variables their own distinct declarations unless two or more are
closely related and have no initialisers.

I also decided to use the variable name i instead of idx. There is an
argument for short variable names as well as long descriptive ones, and while
idx was a good name to start with, being concise but still meaningful to
almost any programmer, I always use i for the (primary) array index in loops
myself and sticking to that convention makes the code more readable to me.

I’ve changed the while loop condition to (divisor <= number); I
think it’s less clutter than the original. But we should also check that we haven’t
exceeded the array bounds. If we really want to know all the prime factors we
should extend the array when necessary or come up with a rough figure that’s
guaranteed to be an overestimate – e.g. the upper limit of the range given to
the program – and make the array this size in the first place. However, for this
purpose it’s adequate to return when the array is filled, remembering to leave
room for the terminating zero – which does not need to be inserted explicitly
because of the use of calloc instead of malloc. The complete condition is
now (divisor <= number && i < MaxFactors - 1).

I noticed that it’s possible for the same factor to be entered more than
once in the list if its square is also a factor e.g. 2 will appear twice if
number is 8 or 12. We can prevent this by checking whether the previous
entry is equal to the one we’re about to add – remembering that if i is 0
we mustn’t try to check element-1:

if(i == 0 || flist[i - 1] != divisor)
flist[i++] = divisor;

I also have a rule about braces around single statements such as a simple if
or forbody. Although these are optional I often include them, especially if:
1. the parent statement, e.g. an if conditional, is long and I’ve wrapped

it to fit my editor window – the indentation makes it difficult to
distinguish the conditional from the body otherwise

2. it’s an if or else clause and its sibling clause needs braces
3. there’s any possibility that the statement is a macro which could be

switched off e.g. an assertion or extra logging in debug builds. I mention
all this because I’ve applied rule (2) to the else statement here

Next I’ve done some refactoring. Breaking programs down into smaller
functions almost invariably makes them more readable, and providing a
function to test whether a given number is ugly is a logical step. The body
of this function is pretty much as above except that I replaced the while
loop with a for loop. Also, bearing in mind being able to change the values
of the UglyFacconstants, it’s unsafe to assume that there are no non-ugly
primes below UglyFac3, so we should test against each of them instead
of testing whether n > UglyFac3.

I’ve given main() a comment about its arguments, which is basically
an alternative to the “enter a range” comment which I thought was
misleading: it implied the range would be read from stdin rather than

9CVu/ACCU/Dialogue

arguments. Again I’ve separated the variable declarations. I’ve kept the
variable name n because it’s ideal for a loop variable describing a number
other than an index, but I’ve renamed start and stop to first and
last, which I think makes it clearer that the range is inclusive. The for
loop terminating condition is again changed to use <= instead of <

Just a couple of minor semantics remaining. As ugly is a boolean flag,
I prefer to write if(ugly) and if(!ugly) rather than if(ugly==1)
and if(ugly==0). And as we’re using EXIT_FAILURE we might as
well use EXIT_SUCCESS too. Here is my first complete rewrite (keep on
reading for my description of a slightly different approach to the problem):

/* Find "ugly numbers": their prime factors
are all 2, 3 or 5 */

#include <stdio.h>
#include <stdlib.h>

const int MaxFactors = 20;
/* Max number of prime factors to find */

enum UglyFactors {
UglyFac1 = 2,
UglyFac2 = 3,
UglyFac3 = 5

};

/* Returns a zero-terminated array of number's
prime factors, allocated on the heap */

static int *prime_factors(int number) {
int *flist;
int quotient = 0;
int divisor = 2;
int i = 0;

flist = calloc(MaxFactors, sizeof(int));
while(divisor <= number

&& i < MaxFactors - 1) {
if(divisor == number) {
flist[i] = quotient;
break;

}
if(number % divisor == 0) {
if(i == 0 || flist[i - 1] != divisor)

flist[i++] = divisor;
quotient = number / divisor;
number = quotient;

}
else {
++divisor;

}
}
return flist;

}

/* Returns 1 if number is ugly, otherwise 0 */
static int is_ugly(int number) {

int i = 0;
int ugly;
int *flist = prime_factors(number);
if(flist[0] == 0 && number != UglyFac1

&& number != UglyFac2
&& number != UglyFac3) {
ugly = 0;

}
else {
ugly = 1;

}
for(i = 0; flist[i]; ++i) {
if(flist[i] != UglyFac1 &&

flist[i] != UglyFac2 &&
flist[i] != UglyFac3) {

ugly = 0;
}

}

free(flist);
return ugly;

}

/* Range is given in arguments */
int main(int argc, char **argv) {
int n;
int first, last;
if(argc !=3)

exit(EXIT_FAILURE);
first = atoi(argv[1]);
last = atoi(argv[2]);
for(n = first; n <= last; ++n) {

if(is_ugly(n))
printf(“%d\n”, n);

}
return EXIT_SUCCESS;

}

This solution works, but is not the most efficient. We don’t actually need
to list all the prime factors of ugly candidates, just check them until we find
a factor that proves the number isn’t ugly, again taking care not to pass
primes as false positives. Therefore the prime_factors function can
be deleted and is_ugly() replaced with the version below.

/* Returns 1 if a number is ugly, 0 if it
isn’t */

static int is_ugly(int number) {
int divisor = 2;
int ugly = 0;
for(divisor = 2; divisor <= number;

++divisor) {
if(number % divisor == 0) {
if(divisor % UglyFac1 != 0 &&

divisor % UglyFac2 != 0 &&
divisor % UglyFac3 != 0) {

ugly = 0;
break;

}
else {
ugly = 1;

}
}

}
return ugly;

}

Student Code Critique 28
Program 1
I’m newbie to C++ and I would like to know which would be the best (elegant
and correct) solution for the following small (string) read problem with gets.

#include <iostream>
using namespace std;
#include <cstdio>

main() {
int n;
int waste; // needs this to work (read)

// properly!!
char name[51];
cout << "Enter any integer number...\n";
cin >> n;
cout << "Enter your name...\n";
cin >> waste; // 'gets' does not read the

// name without this line!!
gets(name);

}

Mixing C and C++ functions doesn’t seem the best way to write this
program. Please provide alternatives, taking also into account its security
implications.

Program 2

If I enter 23 and 5 the answer should be 23 * 5 = 115 my answer is off by
five or whatever number 2 is. I was told I am not including the first two
numbers in the loop. I thought when I cin the numbers it is including them.
Does anyone have any suggestions on how I can fix this?

#include<iostream>
#include<iomanip>
#include<string>
using namespace std;

int main()
{

while (1){
int num1, num2, total = 0;
cout<<”Enter two numbers: “;
cin>>num1>>num2;
while (num1 != 1)
cout<<setw(5)<<num1<<setw(5)<<num2<<endl;

num1 /= 2;
num2 *= 2;
if (num1 % 2 != 0)
total += num2;

}

cout<<"the total is "<<total <<endl;
} //End While 1

return 0;
}

There are numerous errors in both the code and the student’s understanding.
Please address these comprehensively.

From Paul F. Johnson <editor@accu.org>

Program 1
If I ignore the obvious mistake of not having int before main(), there
are a couple of problems with the code.

Firstly is the use of gets – it’s a licence for things going wrong with
undefined behaviour the most obvious to occur as a char array is being
used to store the person’s name. A far better solution would be for the
name to be stored in a std::string variable which does not have a
boundary (well, not in the same way as a char array does!). Buffer
overflows account for more and bloodier problems with security than
enough.

There is also a problem with the entry of the number – as it stands, it is
possible for the user to enter just about anything they want as there are no
forms of bounds or type checking.

Finally, we have the “dummy” use of another variable which isn’t
required (and again, can lead to problems without checking for the correct
type). The stream can be cleared by use of cin.ignore.

By the simple application of cin.fail() and cin.getline(),
the code can be transformed into something which (a) works and (b) is
relatively secure.

A solution may be along the lines of
#include <iostream>
#include <string>
using namespace std;

int main() {
int n;
string name;
cout << "Please enter a number : ";
while(cin >> n, cin.fail()) {

cout << "I need a number!" << endl;
cin.clear();
cin.ignore(numeric_limits<

std::streamsize>::max(), '\n');
// non compliant compilers may complain
// here. If they do use cin.ignore();

}
cin.ignore(numeric_limit<

std::streamsize>::max(), '\n');

cout << "Please enter your name : ";
cin.getline(name, '\n');
cout << "Number : " << n << ", name : "

<< name << endl;
}

As newbie code goes, the original wasn’t that bad. It was well laid out
(which made debugging simpler) and contained many of the problems
faced by a newbie where the most obvious answer is not always the correct
one.

Program 2

First, the easy ones...
#include <string> is not required and somewhere, an open { is

missing. This second problem would have been obvious if the student had
bothered to try to compile the code!

I next come to the setw() calls – what are they there for? We are
dealing with integers in num1, num2 and total, therefore using setw
does seem to be a bit of a waste!

There doesn’t seem to be a check on the entries either. There is nothing
to stop the user entering # and @ for the numbers (or even CVu and
Overload for that matter!).

The next couple of faults are in the logic. To start, we have the line
num1 /= 2;

If the user enters 0, the result value in num1 will be 1 which will throw the
answer.

The line
if(num1 % 2 != 0)

really is bemusing! What is the point of it? Why does the program have to
check if num1 is divisible by 2 with a 0 remainder? [The student is trying to
implement a Russian peasant multiplication algorithm. The point is to discriminate
whether num1 is even or not. David]

Finally, total only seems to be having num2 added to it (and even
then, only as a result of a condition); num1 doesn’t seem to be used
anywhere other than as an entry. It is therefore completely possible for the
user to be enter as many numbers as they like without the correct answer
coming out ever.

Fixing the problem is simple – it requires being rewritten. Unfortunately,
the student hasn’t actually said what the question was, so it is a tad pointless
trying to second guess what the original problem set was.

From Mark Easterbrook <mark@easterbrook.org.uk>

Program 1
As suggested in the problem, mixing C and C++ I/O is not the best way to
write this program. As you are learning C++, it is best to replace the C-
type parts with C++. This requires two changes:

Change “char name[51]” to “string name” (this will require
an #include <string> to compile). It is nearly always better to use
one of the C++ collections rather than an array. In this case a C++ string
type will automagically expand to the size of the input name so you have
one less thing to worry about.

Use C++ istream instead of gets(): cin << name. The waste
variable and input is no longer required, nor is the #include <cstdio>.

It is worth pointing out a number of improvements that can be made to
the code. main always returns an int so this needs to be specified: int
main() .

using namespace std will import the whole std namespace. It is
often better to only import names you actually need, or to qualify every use.

Single character variable names are often frowned upon. Think how
difficult it would be to search for all uses of the variable n in a large
program!

At this point we have “fixed” the program and could let it rest, but it is
worth looking at why gets() is bad, even in C code. gets()will read
an unknown number of characters into a C string (char* or char[]) of
predetermined length, therefore it is possible to read more characters than
are allowed for. This is called “buffer overrun” and accounts for many of
the security holes in software. The result of such a buffer overrun could
be:
● It writes over memory allocated but not used by the program. No

amount of testing will show this up so the bug can remain hidden until
something else changes: a different compiler, a different platform, or a
simple code change somewhere else in the program.

● It writes over memory not allocated to the program. If you are lucky
your operating system will detect this and stop the program.

10 CVu/ACCU/Dialogue

11CVu/ACCU/Dialogue

● It overwrites memory used by the program. This causes the program to
malfunction, and possibly later crash. This will be very difficult to track
down.

● It overwrites memory used by the program in such a way that the
program does something completely different to that originally
intended. If you are unlucky you are connected to the internet and this
allows a stranger access to your computer!

As you cannot use gets(), what should you use instead?
There are a number of options:

Use fgets() to read up to a line of input. It takes as parameters a
pointer to the input buffer (like gets), a maximum number of characters
(which prevents buffer overrun), and a file descriptor (e.g. stdin). It will
stop reading either when the maximum number of characters are read, or
at a new line character.

Use scanf() with the %s format string specifying a maximum length.
For example, %50swill read a maximum of 50 characters (plus a terminator!).

Input characters one at a time using getchar() or getc().
You will need to read the documentation for each of these to see

which meets your needs best. Each has different rules as to when it stops
reading.

Program 2

Note: The program as presented will not compile because the inner loop
has a closing brace but no opening brace. This can be corrected by adding
the opening brace after the while expression. I have assumed this is just a
printing error. [Actually the student provided the code as is. David]

I will take a guess that the problem set is to perform multiplication using
binary arithmetic by adding in 2n x the second number for each bit set in
the first. E.g. 23*5 is 10111 x 510 = 80+0+20+10+5.

The algorithm you have chosen is to shift the first number right bit
by bit, testing the least significant (right-most) bit, while at the same
time left-shifting the second number to obtain the powers of 2. This is
almost correct, but the first value of num2 you are adding to the total
has already been shifted, whereas it can be seen from the example
above, the first addition should be the original entered value (5). This
is what is meant by “…not including the first two numbers…”. If you
move the add-to-total to the beginning of the loop, then the total will
be accumulated as 5+10+20…, which is what we want. We have now
fixed the start-up conditions, so let’s check the exit condition. We want
to include all the bits from num1, so we want to continue the loop while
there are still bits to process, in other words, while num1 is not all zero
bits. The current test (num1!=1) does not do this, it will stop with
the last bit still not processed. Let’s change the condition to (num!=0)
and give the program a test:

Enter two numbers: 23 5
23 5
11 10
5 20
2 40
1 80

the total is 115

We now have a working program, but the code does not quite capture
the intent: it is required to demonstrate how binary multiply can be
performed by shift and add operations, but there are no shifts! Although
we know that in C and C++ n/2 is equivalent to n>>1 and n*2 is
equivalent to n<<1, using the bit shift operators would illustrate the
intent more clearly. Similarly testing the least significant bit would be
better as a mask and test rather than the remainder of a divide. Finally,
the source code would benefit from some comments to explain what it
is for.

Thus we end up with:

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

// Perform binary multiply of two integers
// using shift and add. The total is built up
// by adding the matching power of two from

// the second number for each bit set in the
// first bit. Bits are tested in the first
// number by testing the LS bit and shifting
// right. The powers of two of the second
// number are generated by shifting left on
// each iteration.
// e.g. 23(10111)*5 = 80 + 0 + 20 + 10 + 5
// (summed in reverse order).

int main() {
while(1) {

int num1, num2, total=0;
cout << "Enter two numbers: ";
cin >> num1 >> num2;
while(num1 != 0) {
cout << setw(5) << num1

<< setw(5) << num2 << endl;
if((num1&0x01) != 0)
total += num2;

num1 >>= 1;
num2 <<= 1;

}
cout << "the total is " << total << endl;

}
return 0;

}

The Winner of SCC 28
The editor’s choice is:

Tony Houghton
Please email francis@robinton.demon.co.uk to arrange for your
prize.

Francis’ Commentary
For my comments on the first little program for SCC28 see my Francis’
Scribbles column elsewhere (working late and meeting deadlines resulted
in my sending David some code I had already used in my column.
Fortunately that does not matter too much.)

Here is my commentary on the second little program.

#include<iostream>
#include<iomanip>
#include<string>

using namespace std;

int main() {
while(1) {

int num1, num2, total = 0;
cout << "Enter two numbers: ";
cin >> num1 >> num2;
while (num1 != 1) {
cout << setw(5) << num1

<< setw(5) << num2 << endl;
num1 /= 2;
num2 *= 2;
if((num1 % 2) != 0) total += num2;

}
cout << "the total is " << total << endl;

} // End While 1
return 0;

}

First, in the above restatement of the program I have reformatted the code
to make its structure more visible. Now let me focus on that structure before
turning to the root of the problem.

Prepare For Exceptions

I strongly advocate that the default form of the definition of main()
should encapsulate its code in a try block. That seems to me to be a good
discipline for students as soon as they are conscious that errors may occur
at runtime that result in an exception. Indeed they should be encouraged
to validate such things as input and exceptions make it easy for them to
have a default action when validation fails. So I would start with:

int main() {
try {

// main code
}
catch(...) {

cerr << "An exception occurred.\n";
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
Now that is a fixed framework and it isn’t even tedious to type because
you just copy and paste it from a text file of standard bits of source
code.

Repetition of Process

The first problem with the student’s code is that it has no termination. He
puts it all in a forever loop without any internal exit. I have no problem
with forever loops (except that I use while(true)) as long as they have
an internal exit (that is unless you are writing a process which must
continue until the machine is switched off). In this case I would write
something such as:

while(true) {
// main process
cout << "Do you want another? (y/n)";
char yn;
cin >> yn;
if(yn == 'n' || yn == 'N') break;

}
Now we can argue about the details but the general idea should be
considered as an idiom of programming (not just C++).

Appropriate Variable Names

As an ex-maths teacher I quickly recognised the algorithm being implemented
by this program (goes under several names, try using Google to search for
‘Russian Peasant Multiplication’) but the variable names were not helpful.
Let me suggest some others and polish up the code whilst I am at it.

cout << "Enter the pair of numbers you want "
<< "to multiply together: ";

int multiplicand(getint());
int multiplier(getint());
int product(0);

Now the variable names give a hint as to what is being done. Validation
and handling bad input is all handled by the getint() function. Actually
I would use my read() set of templates but that is just a convenience.
However avoiding repetitious coding whilst always validating input should
be learnt from the very beginning.

Getting the Right Test

Now we get to the actual reason the program does not work. Look at that
inner while loop. Look at the test. Surely this is too early, or it is the
wrong test because it fails immediately if the multiplicand is one. In other
words multiplying one by anything will give a product of zero. There are
several solutions but I would prefer:

while(multiplicand)
or if you do not like that form:

while(multiplicand != 0)

Getting the Right Order of Statements

For the algorithm (which is effectively using binary for multiplication) we
add in the current value of the multiplier into the product if the current
value of the multiplicand is odd (i.e. would end in one in binary), then the
multiplicand is halved (shifted left) and the multiplier is doubled (shifted
right). The order of these operations is vital and is the second point of error
in the student’s code. Leaving aside the display of the interim results, which
I would have preferred to see include the interim value of the product in a
third column) the meat of the algorithm is coded as:

if(multiplicand % 2) product += multiplier;
multiplicand /= 2;
multiplier *= 2;

Putting It All Together

Here is my complete program (well I have left out the front matter of
headers and using directive):

int main() {
try {
while(true) {

cout << "Enter the pair of numbers you "
<< "want to multiply together: ";

int multiplicand(getint());
int multiplier(getint());
int product(0);
while(multiplicand) {
cout << setw(5) << multiplicand

<< setw(5) << multiplier
<< setw(10) << product
<< ‘\n’;

if(multiplicand % 2)
product += multiplier;

multiplicand /= 2;
multiplier *= 2;

}
cout << "The product is " << product

<< ".\n\n";
cout << "Do you want another? (y/n)";
char yn;
cin >> yn;
if(yn == 'n' || yn == 'N') break;

}
}
catch(...) {
cerr << "An exception occurred.\n";}
return EXIT_FAILURE;

}
return EXIT_SUCCESS;

}
Note that the depth of nesting for structures suggests that some refactoring
into functions might be desirable. I would probably make the outermost
loop a do-while one and use the return value from a function asking
about repeating the process in the while. Something like:

do {
// process

while(do_again());
I would also move out the display of the intermediate results to a function.
I would also probably replace the computation block with a function call,
but that is much more marginal because all the arguments have to be passed
by reference and I doubt that we get much more clarity in exchange for
using a function.

Now do feel free to comment on the coding style and anything else that
you want to criticise. Remember that this column is supposed to be a kind
of seminar and not a lecture.

Student Code Critique 29
(Submissions to scc@accu.org by September 10th)
Looks like an ordinary snippet, doesn’t it? Amazingly, it contains various
mistakes for such a few lines. Please provide a correct version.

#include <iostream>
using std::cout;
using std::endl;

#include <list>
using std::list;

int main() {
list<double>::iterator it;
list<double> lst;

*it = 34;
*++it = 45;
*++it = 87;
it = lst.begin();
for (;it < lst.end(); ++it){

cout << it << '\t' << *it << endl;
}
system("pause");

return 0;
}

12 CVu/ACCU/Dialogue

13CVu/ACCU/Features

Professionalism in
Programming #27

And Now For Something Completely
Different...

Pete Goodliffe <pete@cthree.org>
Is it that time already? This is the 27th column in the professionalism series.
It’s been running for 4½ years now, in which time it’s established itself as
a part of the furniture. You either take it for granted and have learnt to
carefully ignore it, or you diligently read and inwardly digest every word.
Well, now it’s time to break with tradition, and also to see how much
attention you’ve been paying all these years.

The series index beside this article provides an overview of the
secluded tributaries we’ve explored in the vast software development
waterways. In this article we’ll revisit some of this ground in a more
interactive manner. It’s your chance to see how ‘professional’
you really are.

Here’s the game plan: for a few of these past topics I have posed
some thought-provoking questions for you to mull over. Some are
purely factual, some are more personal, probing your personal
development practices and those of the team you work in. Consider
them and answer as fully and honestly as you can. Then turn to the
end of the article, where I provide my musings on each question. I
won’t be so bold as to claim this is a definitive answer set, but more
of a gentle exploration of each problem.

You’ll only get out of this exercise as much as you’re prepared
to put in. So grab a cup of coffee, find a comfy chair in a quiet
corner, and it’s eyes down for a full house…

Questions
First, here are the questions. Spend a while considering your answer
to each one before you move on to the following section.

Defensive Programming (C Vu 13.5, August 2001)
In this article we looked at the need for a ‘defensive’ approach
to programming, learnt to assume nothing, and investigated some
practical defensive coding techniques. We saw how to use
constraints effectively, as typified by C’s assert macro.
However:
1. Could there be such a thing as too much defensive

programming?
2. Should assertions conditionally compile away to nothing in

production builds? If not, which assertions should remain in
release builds?

3. Should the defensive checking of pre- and postconditions be put
inside each function, or beside each important function call?

4. Are constraints a perfect defensive tool? What are their
drawbacks?

5. Can you avoid defensive programming?
a) If you designed a better language, would defensive

programming still be necessary? How could you do this?
b) Does this show that C and C++ are flawed because they

have so many areas for problems to manifest?
6. What sort of code need you not worry about writing defensively?
7. When you document a function, do you state the pre- and

postconditions?
a) Are they always implicit in the description of what it does?
b) If there are no pre/postconditions do you explicitly

document this?
8. Many companies pay lip service to defensive programming.

Does your team recommend it? Take a look at the code base –
do they really? How widely are constraints codified in
assertions? How thorough is the error checking in each function?

9. Are you naturally paranoid enough? Do you look both ways

before crossing the road? Do you eat your
greens? Do you check for every potential
error in your code, no matter how
unlikely?

a) How easy is it to do this thoroughly?
Do you forget to think about errors?

b) Are there any ways to help yourself
write more thorough defensive
code?

Layout of Source Code (C Vu 12.2, April 2000)
This first ever professionalism column looked into the contentious topic
of source code layout, demonstrating that consistency is more important
than any one particular coding style. We concluded that holy wars over
topics like this are pointless and unprofessional. So:
1. Should you alter the layout of legacy code to conform to your latest

code style? Is this a valuable use of code reformatting tools?
2. One common layout convention is to split source lines at a set number

of columns. What are the pros and cons of this approach?

Features

Professionalism in Programming Index
This is a comprehensive catalogue of the professionalism series to date.

No C Vu Title/description Date
1 12.2 Layout of Source Code April 2000
2 12.3 Team Work June 2000
3 12.4 Being Specific August 2000

Writing software specifications
4 12.5 Code Reviews October 2000
5 12.6 Documenting Code December 2000
6 13.1 Good Design February 2001
7 13.2 Practising Safe Source April 2001

Source control systems
8 13.3 The Programmer’s Toolbox June 2001
9 13.4 Software Testing October 2001
10 13.5 Defensive Programming August 2001
11 13.6 Software Development: Fantasy, Fiction or Face December 2001

A cautionary parable for software developers
12 14.1 Recipe For a Program February 2002

Software development methodologies
13 14.2 How Long is a Piece of String? April 2002

Software time-scale estimation
14 14.3 There and Back Again June 2002

Personal development
15 14.4 The Outer Limits August 2002

Overview of programming disciplines
16 14.5 What’s in a Name? October 2002

Naming program elements appropriately
17 14.6 The Code that Jack Built December 2002

Code build systems
18 15.1 Engineering a Release February 2003

The real software development process
19 15.2 A Passing Comment April 2003

Writing effective code comments
20 15.3 Software Evolution or Software Revolution? June 2003

How software grows over time
21 15.4 Software Architecture August 2003
22 15.5 Finding Fault October 2003

Debugging your programs
23 15.6 To Err is Human December 2003

Managing error conditions
24 16.1 The Need For Speed (Part One) February 2004

Optimisation series
25 16.2 The Need For Speed (Part Two) April 2004
26 16.3 The Need For Speed (Part Three) June 2004
27 16.4 And Now For Something Completely Different... August 2004

14 CVu/ACCU/Features

3. How detailed should a reasonable coding standard be?
a) How serious are deviations from the style? How many limbs should

be amputated for not following it?
b) Can such a specification become too detailed and restrictive? What

would happen if it did?
4. Is good code presentation or good code design more important?

Why?
5. Do you write in a consistent style?

a) When you touch other people’s code, what layout style do you
adopt – theirs or your own?

b) How much of your coding style is dictated by your editor’s auto-
formatting? Is this an adequate reason for adopting a particular
style?

6. Tabs: are they a work of the devil, or the best thing since sliced bread?
Explain why.

a) Do you know if your editor inserts tabs automatically? Do you
know what your editor’s tab stop is?

b) Some hugely popular editors indent with a mixture of tabs and
spaces. Does this make the code any less maintainable?

c) How many spaces should a tab correspond to?
7. Grab a text editor and have a go at this bit of C++, it calculates the nth

prime number. It’s written in one particular coding style. Have a crack
at presenting it as you’d like to see it. Don’t try to change the
implementation at all.

/* Returns whether num is prime. */
bool
isPrime(int num) {

for (int x = 2; x < num; ++x) {
if (!(num % x)) return false;

}
return true;

}

/* This function calculates the 'n'th prime
number.*/

int
prime(int pos) {

if (pos) {
int x = prime(pos-1) + 1;
while (!isPrime(x)) {

++x;
}
return x;

} else {
return 1;

}
}

What’s in a Name? (C Vu 14.5, October 2002)
This article showed the impact of good naming on the quality of our source
code, and demonstrated practical naming techniques for many common
code constructs. What do you think about these issues:
1. Are these good variable names? Answer with either yes (explain why,

and in what context), no (explain why), or can’t tell (explain why).
a) int num_apples
b) char foo
c) bool num_apples
d) char *string
e) int loop_counter

2. When would these be appropriate function names? What return
types/parameters might you expect? What return types would make
them nonsensical?

a) doIt(...)
b) value(...)
c) sponge(...)
d) isApple(...)

3. Should a naming scheme favour the easy reading or easy writing of
code? How would you make either easy?

4. What do you do when naming conventions collide? Say you’re working
on camelCase C++ code, and need to do STL (using_underscore) library
work. What’s the best way to handle this situation?

5. If assert is a macro why is its name lower case? Why should we name
macros so they stand out?

6. Long calculations can be made more readable by putting intermediate
results in temporary variables. Suggest good naming heuristics for these
types of variable.

7. Do you have to port code between platforms? How has this affected
filenames, any other naming, and the overall code structure?

A Passing Comment (C Vu 15.2, April 2003)
The final article we’ll exhume looked at how to write code comments. We
learnt what makes a good comment, how to avoid pointless and intrusive
comments, and how to use comments to help us write source code. Given
this, then:
1. How might the need for and the content of comments differ in the

following types of code:
a) Low level assembly language (machine code)
b) Shell scripts
c) A single file test harness
d) A large C/C++ project

2. You can run tools to calculate what percentage of your source code lines
are comments. How useful are they? How accurate a measure is this of
comment quality?

3. When you document a C/C++ API with a code comment block, should
it go in the public header file that declares the function, or the source
file containing the implementation? What are the pros and cons of each
location?

4. Look carefully at the source files you’ve recently worked on. Inspect
your commenting. Is it honestly any good? (I bet as you read through
the code you’ll find yourself making a few changes!)

5. How do you ensure that your comments are genuinely valuable and not
just personal ramblings that only you can understand?

6. Do the people you work with all comment to the same standard, in about
the same way?

a) Who’s the best at writing comments? Why do you think that?
Who’s the worst? How much of a correlation does this bear to their
general quality of coding?

b) Do you think any imposed coding standards could raise the quality
of the comments written by your team?

7. Do you include history logging information in each source file? If yes:
a) Do you do maintain it manually? Why, if your revision control

system will insert this for you automatically? Is the history kept
particularly accurate?

b) Is this a really sensible practice? How often is this information
needed? Why is it better placed in the source file than in another,
separate mechanism?

8. Do you add your initials to or otherwise mark the comments you make
in other people’s code? Do you ever date comments? When and why
do you do this – is it a useful practice? Has it ever been useful to find
someone else’s initials and time stamping?

Discussion and Answers
Lazy readers will have jumped here already. Please do spend some time
considering your answer to each question first. It will be interesting to
compare your response with mine. Do you disagree with anything? Do you
agree? Let me know.

Defensive Programming
1. Could there be such a thing as too much defensive programming?

Yes – just as too many comments can degrade code readability, so too can
many defensive checks. Redundant checks can be avoided with careful
coding, for example with a good choice of types.

2. Should assertions conditionally compile away to nothing in
production builds? If not, which assertions should remain in release
builds?

People hold passionate beliefs on this subject. I don’t think the answer is
necessarily black and white; I can see the argument both ways. There are
always some very nit-picky assertions that really won’t need to be left in
production builds. But some assertion occurrences may still interest you
in the field. Now, if you do leave any constraint checks in, they mustchange
behaviour – the program shouldn’t abort on failure, just log the problem
and move on.

15CVu/ACCU/Features

Remember, real run-time error checks should never be removed; they
should never be coded in assertions anyway.

3. Should the defensive checking of pre- and postconditions be put
inside each function, or beside each important function call?

In the function, without a doubt. This way, you only need to write tests
once. The only reason you’d want to move them out is to gain
flexibility, to choose what happens when a constraint fails. This isn’t a
compelling gain for such an explosion in complexity and potential for
failure.

4. Are constraints a perfect defensive tool? What are their
drawbacks?

No, they are nowhere near perfect. Redundant constraints can be at best a
pest, and at worst a hindrance. For example, you could assert that a
function parameter i >= 0. But it’s much better to make i an unsigned
type that can’t contain ‘invalid values’ anyway.

Treat constraints that can be compiled out with a certain degree of
suspicion: we must carefully check for any side effects (assertions can
have subtle indirect consequences), and for timing issues in the debug
build that alters its behaviour from a release build. Ensure that
assertions are logical constraints and not genuine run-time checks that
mustn’t be compiled out. It is possible to put bugs in the bug-defence
code!

Carefully used, constraints are still far better than dancing barefoot over
the hot coals of chance.

5. Can you avoid defensive programming?

a) If you designed a better language, would defensive programming
still be necessary? How could you do this?

b) Does this show that C and C++ are flawed because they have so
many areas for problems to manifest?

Some language features certainly could be designed to avoid errors. For
example, C doesn’t check the index of any array lookup you perform.
As a result you can crash the program by accessing an invalid memory
address. The Java runtime, on the other hand, checks every array index
before lookup, so such an catastrophe will never arise. (Bad indexes
will still cause an error though, which is just a better defined class of
failure).

Despite the long list of ‘improvements’ you could make to the liberal
C specification (and I urge you to think of as many as you can) you’ll
never be able to create a language that doesn’t need defensive
programming. Functions will always need to validate parameters, and
classes will always need invariants to check their data is internally
consistent.

Although C and C++ do provide plenty of opportunity for things to go
wrong, they also provide a great deal of power and expression. Whether
that makes the languages ‘flawed’ depends on your viewpoint – this is a
topic ripe for holy war.

6. What sort of code need you not worry about writing defensively?

I’ve worked with people who refused to put any defensive code into an
old program because it was so bad that their defences would make no
difference. I managed to resist the urge to whack them with a large
mallet!

You might argue that a small, stand-alone, single file program or
perhaps a small test harness file doesn’t need this sort of careful
defensive code or any rigorous constraints – but even in these situations
not being careful is just being sloppy. We should be defensive all the
time.

7. When you document a function, do you state the pre- and
postconditions?

a) Are they always implicit in the description of what it does?

b) If there are no pre/postconditions do you explicitly document
this?

No matter how obvious you think a contract is from the function name
or its description, explicitly stating the constraints removes any
ambiguity – remember, it’s always better to remove areas of assumption.
Explicitly writing Preconditions: None will document a contract
explicitly.

8. Many companies pay lip service to defensive programming. Does
your team recommend it? Take a look at the codebase – do they really?
How widely are constraints codified in assertions? How thorough is
the error checking in each function?

Very few companies have a culture of excellent code with the right level
of defence. Code reviews are a good way to bring a team’s code up to a
reasonable standard; many eyes see many more potential errors.

9. Are you naturally paranoid enough? Do you look both ways before
crossing the road? Do you eat your greens? Do you check for every
potential error in your code, no matter how unlikely?

a) How easy is it to do this thoroughly? Do you forget to think about
errors?

b) Are there any ways to help yourself write more thorough
defensive code?

No one finds it naturally easy – thinking the worst of your carefully crafted
new code runs contrary to the programmer instinct. Instead, expect the
worst of any people who will be using your code. They’re nowhere near
as conscientious a programmer as you!

A very helpful technique is to write unit tests for each function/class.
Some experts strongly advise doing this before writing a function; this
makes a lot of sense. It helps you to think about all the error cases, rather
than blithely trusting that your code will work.

Layout of Source Code
1. Should you alter the layout of legacy code to conform to your latest
code style? Is this a valuable use of code reformatting tools?

It’s usually safest to leave legacy code however you find it, even if it’s
ugly and hard to work with. I’d only entertain reformatting if I was
absolutely sure that none of the original authors would ever need to
return.

By reformatting you lose the ability to easily compare a particular
revision of the source with a previous one – you’ll be thrown by many,
many, formatting changes which may hide the one difference you really
needed to see. You also risk introducing program errors in the
reformatting.

As far as code reformatting tools go, they’re nice curiosities, but I
don’t advocate the use of them. Some companies insist on running
source files through these tools before checking any code into their
repository. The advantage is that all source is homogenised, pasteurised,
and uniformly formatted. The major disadvantage is that no tool is
perfect; you’ll lose some helpful nuances of the author’s layout. Unless
all the programmers on your team are gibbons, don’t use a reformatting
tool.

2. One common layout convention is to split source lines at a set
number of columns. What are the pros and cons of this approach?

As with many such presentation concerns there is no absolute answer; it is
a matter of personal taste.

I like to split my code up so that it fits on an 80 column display. I’ve
always done that, so it’s a matter of habit as much as anything else. I don’t
disagree with people who like long lines, but I find long lines hard to work
with. I set my editor up to ‘wrap’ continuous lines rather than provide a
horizontal scrollbar (horizontal scrolling is clumsy). In this environment
long lines tend to ruin the effect of any indentation.

As I see it, the main advantage of fixed column widths is not printability,
as some would claim. It’s the ability to have several editor windows open
side-by-side on the same display.

In practice, C++ seems to produce very long lines. It’s more verbose
than C; you end up calling member functions on objects referenced by
another object through a templated container... There are other strategies
to manage the many, many, long lines this may lead to. You could store
intermediate references in temporary variables, for example.

3. How detailed should a reasonable coding standard be?

a) How serious are deviations from the style? How many limbs
should be amputated for not following it?

b) Can such a specification become too detailed and restrictive?
What would happen if it did?

Six limbs should be amputated for deviations from any coding standard.

16 CVu/ACCU/Features

I have seen many coding standards that are so prescriptive and
paralysing that the poor programmers have just plain ignored it. To be
useful, and to be accepted, a coding standard should provide a little room
for manoeuvre, perhaps with a best practiceapproach given as an example.

4. Is good code presentation or good code design more important?
Why?

This is really a very artificial question. Both are fundamental for good code,
and you should never be asked to sacrifice one for the other. If you ever
are, fear. However, which one you just chose may say a lot about you as a
programmer.

Bad formatting is certainly easier to fix than bad design, especially if
you use clever tools to homogenise your code’s formatting.

There is an interesting connection between presentation and design:
Bad presentation often shows that the code was produced by a bad
programmer, which probably means that it suffers from bad internal
design too. Or it may imply that the code has been maintained by a series
of different programmers, with a subsequent loss of the initial code
design.

5. Do you write in a consistent style?

a) When you touch other people’s code, what layout style do you
adopt – theirs or your own?

b) How much of your coding style is dictated by your editor’s auto-
formatting? Is this an adequate reason for adopting a particular
style?

If you can’t alter the way your editor positions the cursor for you then you
shouldn’t be using it (either you’re too inept, or your editor is).

If you can’t write code in a consistent style then you should have your
programmer’s licence revoked. If you can’t follow someone else’s
presentation style then you should be forced to maintain BASIC for the
rest of your career.
[FORTRAN 77 is far more restrictive on its code style and formatting. Depending
on the flavour of BASIC, style and format can be varied greatly – Ed]

6. Tabs: are they a work of the devil, or the best thing since sliced
bread? Explain why.

a) Do you know if your editor inserts tabs automatically? Do you
know what your editor’s tabstop is?

b) Some hugely popular editors indent with a mixture of tabs and
spaces. Does this make the code any less maintainable?

c) How many spaces should a tab correspond to?
Since this is such a religious issue, I’ll just say tabs: they suck and back
away quickly. Well, actually I’ll add afterwards that the only thing more
evil than indenting with tabs is indenting with tabs and spaces – nightmare!

If your editor is inserting tabs (and probably spaces) without you
noticing, try using another editor for a while, to appreciate how frustrating
it is. Try setting your tabstop to a different value and see what a mess it
makes of the code. Everyone uses the same editor, so it doesn’t matter is
not a professional attitude. They don’t.

You’ll hear people recommend their choice of tabstop length and
carefully justify their opinion. That’s all very well; in fact a respected
study claims that a three or four space tabstop provides optimum
readability. (I favour four spaces because I don’t like odd numbers!)
However, a tab should ‘correspond’ to no fixed number of spaces. A tab
is a tab, which is not a space or any multiple thereof. For code laid out
using tabs, it shouldn’t matter exactly how many spaces the tab is
displayed as – the code should read well regardless. Unfortunately, I have
rarely seen tab-indented code that works this way. All too often tabs and
spaces are mixed together to make code line up neatly. This works fine
with a tabstop set as the author intended. It makes an unholy mess with
any other setting.

7. Grab a text editor and have a go at this bit of C++, it calculates the
nth prime number. It’s written in one particular coding style. Have a
crack at presenting it as you’d like to see it. Don’t try to change the
implementation at all.

This is a representative bit of Real World code, so don’t dismiss this as a
stupid and tedious exercise. Note that I haven’t given any suggested answer
here. My reformatting is just as valid as yours, and indeed as the original
format.

If you’re reading these answers without chewing over the questions at
all, go on – have a go at this one. The magazine can wait whilst you type
in a few lines...

Now, take a look at what you’ve written.
● How different is your version? How many specific changes did you

make?
● For each change: is it a personal aesthetic preference, or can you justify

the change with some rationale? Question this rationale – is it truly
valid? How strongly would you be prepared to defend it?

● How comfortable were you with the original format? Did it bother you
to read? Could you work in that coding style if you encountered code
like it? Should you be able to become comfortable with it?

[I have to admit I found it very difficult to restrain myself from reformatting the
code as I processed this article! – Production Ed]

What’s in a Name?
1. Are these good variable names? Answer with either yes (explain
why, and in what context), no (explain why), or can’t tell (explain why).

a) int num_apples
b) char foo
c) bool num_apples
d) char *string
e) int loop_counter

The quality of a name depends on its context, and we can’t honestly tell
whether any of these are good or bad names. That’s why the question asks
for example contexts. There are some obvious contexts where the names
might be bad: num_apples wouldn’t be a particularly good name for a
grapefruit counter.

foo is never a good name. I’ve yet to see anyone counting foos.
loop_counter is also bad; even if a loop gets too big for a short counter
name you can still pick a more descriptive name, one that reflects the actual
use of loop counter rather than its role as a loop counter.

We can’t really tell whether bool num_apples is a good name, but
it looks like it’s not – a boolean cannot hold a number. Perhaps it’s
recording whether a separate count of apples is valid, but in this case it
ought to be called something like is_num_apples_valid.

2. When would these be appropriate function names? What return
types/parameters might you expect? What return types would make
them nonsensical?

a) doIt(...)
b) value(...)
c) sponge(...)
d) isApple(...)

What each of these might mean depends on where you find them. Again
we see how a name depends on its context, and that context can be provided
by the enclosing scope of the function. Context information can even be
given by function parameters or return variables.

3. Should a naming scheme favour the easy reading or easy writing of
code? How would you make either easy?

How many times do you write a piece of code? (Think about it). How many
times do you read it? That should give some indication as to the relative
importances.

4. What do you do when naming conventions collide? Say you’re
working on camelCase C++ code, and need to do STL
(using_underscore) library work. What’s the best way to handle this
situation?

I’ve worked on C++ codebases that used such a collision of naming
conventions to their advantage. The internal logic used camelCase, whereas
libraries and components that could be considered extensions of the
standard library followed STL naming conventions. It actually worked
quite well.

Unfortunately, it doesn’t always work that nicely. I’ve seen plenty of
inconsistent code where there was no rhyme or reason behind the changing
styles.

5. If assert is a macro why is its name lower case? Why should we
name macros so they stand out?

17CVu/ACCU/Features

assert isn’t capitalised because assert isn’t capitalised. In an ideal
world it would be, but standards being what they are we have to live with
this tatty macro name. Sigh.

Macros and #defined constant definitions are downright dangerous
– adopting the UPPER CASE name convention will prevent nasty
collisions with ordinary names. It’s as sensible as wearing glasses when a
lunatic is walking round with a big pointy stick.

Because macros can be so painful you should chose names that are very
unlikely to cause headaches. More importantly, avoid using the
preprocessor as much as humanly possible.

6. Long calculations can be made more readable by putting
intermediate results in temporary variables. Suggest good naming
heuristics for these types of variable.

Bad temporary names are tmp , tmp1, tmp2... or a, b, c... These,
unfortunately, are all common intermediate names.

Like any other item, temporary names should be meaningful. In fact, in
a complex calculation good names can really serve to document the internal
logic, showing what’s going on.

If you find a value that really has no nameable purpose, if it truly is an
arbitrary intermediate value that’s hard to name, then you’ll begin to
understand why tmp is so popular. Avoid calling anything tmp if possible
– try to break the calculation in some other way to help it make more sense.

7. Do you have to port code between platforms? How has this affected
filenames, any other naming, and the overall code structure?

Older filing systems limited the number of characters you could use in a
filename. This made file naming much messier. Unless you have to port
code to such an archaic system this kind of limitation can be safely ignored.

File-based polymorphism is a cunning way to exploit filenames to
achieve code substitutability at build-time. It’s often used to select
platform-specific implementations in portable code. You can set up header
file search paths, allowing one #include to pull in a different file
depending on the current build platform.

A Passing Comment
1. How might the need for and the content of comments differ in the
following types of code:

a) Low level assembly language (machine code)
b) Shell scripts
c) A single file test harness
d) A large C/C++ project

Assembly language is less expressive, providing fewer opportunities for
self-documenting code. You’d therefore expect more comments in
assembly code, and those comments to be at a much lower level than in
other languages. Although the golden comment rule is “comments describe
why not how”, generally assembly comments would explain how as well
as why.

There isn’t an enormous a difference between the remaining three. Shell
scripts can be quite hard to read back; they are a proto-Perl in this respect.
Careful commenting helps. You’re more likely to use literate programming
techniques on a large C/C++ codebase.

2. You can run tools to calculate what percentage of your source code
lines are comments. How useful are they? How accurate a measure is
this of comment quality?

This kind of metric will give an insight into the code, but you shouldn’t
get too concerned about it. It isn’t an accurate reflection of code quality.
Well documented code might not contain any comments. Enormous
revision histories or large corporate copyright messages can dominate small
files, affecting this metric.

3. When you document a C/C++ API with a code comment block,
should it go in the public header file that declares the function, or the
source file containing the implementation? What are the pros and cons
of each location?

This question was the cause of a big fight at one place I worked. Some
argued for descriptions to go in the .c file. Being close to the function
means that it’s harder to write an incorrect comment, and harder to write
code that doesn’t match the documentation. The comment is also more
likely to be changed in line with any code changes.

However, when placed in a header file, the description is visible
alongside the public interface; a logical location. Why should someone
have to look into the implementation to read any public API docs?

A literate programming documentation tool should be able to pull
comments out of either place, but sometimes it’s quicker not to use the tool
and just read comments in the source; a bonus of the literate code approach.
I favour placing the comments in header files.

Of course, in Java it’s all one file anyway, and you’d conventionally use
the Javadoc format.

4. Look carefully at the source files you’ve recently worked on. Inspect
your commenting. Is it honestly any good? (I bet as you read through
the code you’ll find yourself making a few changes!)

When you read and review your own code it’s very easy to skip the
comments, presuming they’re correct, or at least adequate. It is a good idea
to spend some time looking at them, to assess how well they’re written.
Perhaps you could ask a trusted colleague to give you their (constructive)
opinion on your commenting style.

5. How do you ensure that your comments are genuinely valuable and
not just personal ramblings that only you can understand?

Some considerations for this are: write whole sentences, avoid
abbreviations, keep comments neatly formatted, and in a common language
(both the native language and the selection of words used from the problem
domain). Avoid in-jokes, any throw-away statements, or anything that
you’re not entirely sure about.

Code reviews will highlight weaknesses in your comment strategy.

6. Do the people you work with all comment to the same standard, in
about the same way?

a) Who’s the best at writing comments? Why do you think that?
Who’s the worst? How much of a correlation does this bear to
their general quality of coding?

b) Do you think any imposed coding standards could raise the
quality of the comments written by your team?

Use code reviews to inspect your peers’ comment quality, and to move your
team towards a consistent quality of commenting.

7. Do you include history logging information in each source file? If yes:

a) Do you do maintain it manually? Why, if your revision control
system will insert this for you automatically? Is the history kept
particularly accurate?

b) Is this a really sensible practice? How often is this information
needed? Why is it better placed in the source file than in another,
separate mechanism?

It’s human nature not to keep a history accurate, even with the best intentions
in the world. It requires a lot of manual work that gets pushed out when time
is tight. You should use tools to help, and put the right information in the
right place (which I don’t believe is the source file at all).

8. Do you add your initials to or otherwise mark the comments you
make in other people’s code? Do you ever date comments? When and
why do you do this – is it a useful practice? Has it ever been useful to
find someone else’s initials and timestamping?

For some comments this is a useful practice. In other places, it’s just
inconvenient – extra comment noise that you have to read past to get to the
really interesting stuff.

It’s most useful with temporary FIXME or TODO comments, marking
work in progress. Released production code probably shouldn’t have these;
no finished code should need a reader to understand the author or date of
a particular change.

And Finally…
Just in case you got this far, here’s a parting shot – one final question for
a few bonus points. Answer this: How many programmers does it take to
change a light bulb?

I have five answers. If you’re good then I’ll tell you next time. Let me
know your answers.

Pete Goodliffe
[With apologies to the ghost of Monty Python for the second vague and
fleeting reference of this series. Do you remember the first one?]

18 CVu/ACCU/Features

Creating Standard GUI
Applications

Mark Summerfield and Jasmin Blanchette

In this second installment of our series on GUI programming with the Qt
C++ toolkit, we’re going to see how to create a standard GUI application,
with a menu, toolbar, status bar, and a central area. The application is a
simple image viewer that can display images in any of the formats that your
installed version of Qt supports.
The main() function, in main.cpp , is straightforward:

#include <qapplication.h>
#include "viewer.h"

int main(int argc, char *argv[]) {
QApplication app(argc, argv);
Viewer *viewer = new Viewer;
viewer->show();
viewer->connect(&app,

SIGNAL(lastWindowClosed()),
&app,
SLOT(quit()));

return app.exec();
}

We create a QApplication object and then the form which we
immediately show. The “signal–slot” connection ensures that when the
last top-level window (in this case the only window) is closed, the
application will terminate. Finally we start the event loop and wait for
user interactions.

Qt provides the QMainWindow class as the base class for main
windows, so we will subclass this and specialise it to our needs. Here’s the
definition which we’ve put in viewer.h:

#ifndef VIEWER_H
#define VIEWER_H

#include <qmainwindow.h>

class QAction;
class QLabel;

class Viewer : public QMainWindow {
Q_OBJECT

public:
Viewer(QWidget *parent = 0);

private slots:
void openFile();

private:
QAction *openFileAction;
QAction *quitAction;

QLabel *imageLabel;
QString fileName;

};

#endif

We need the Q_OBJECT macro because we
are using Qt’s “signals and slots” mechanism
in our subclass. We will connect the “open
file” action (File|Open) to the
openFile() slot. We’ll explain the rest as
we describe the implementation in
viewer.cpp , piece by piece, starting with
the includes.

#include <qaction.h>
#include <qfiledialog.h>

#include <qimage.h>
#include <qlabel.h>
#include <qmenubar.h>
#include <qpopupmenu.h>
#include <qstatusbar.h>
#include <qtoolbar.h>
#include "viewer.h"
#include "icon.xpm"
#include "openfile.xpm"

We include all the Qt classes we need, viewer.h , and also two XPM
files. The XPM file format is an image format that is also valid C++. XPM
images are easy to find on the Internet, and Linux distributions come with
lots of them.

The constructor for a main window application is usually concerned
with the creation of “actions”: these are are “activated’’ when the user clicks
their associated menu option or toolbar button, or types their keyboard
shortcut. Main windows usually have very simple layouts since they often
contain either a single widget or an MDI (multiple document interface)
workspace.

Viewer::Viewer(QWidget *parent)
: QMainWindow(parent),

fileName(".") {
imageLabel = new QLabel(this);
imageLabel->setAlignment(AlignCenter);
setCentralWidget(imageLabel);

openFileAction =
new QAction(QPixmap(openfile_xpm),

"&Open...",
CTRL+Key_O, this);

connect(openFileAction,
SIGNAL(activated()),
this,
SLOT(openFile()));

quitAction = new QAction("&Quit",
CTRL+Key_Q,
this);

connect(quitAction, SIGNAL(activated()),
this, SLOT(close()));

QPopupMenu *fileMenu = new QPopupMenu(this);
openFileAction->addTo(fileMenu);
quitAction->addTo(fileMenu);
menuBar()->insertItem("&File", fileMenu);

QToolBar *fileTools =
new QToolBar("File Tools", this);

openFileAction->addTo(fileTools);

19CVu/ACCU/Features

setCaption("Image Viewer");
setIcon(QPixmap(viewer_xpm));

statusBar()->message("Ready");
}

We begin by creating a label widget that will be used to display the image.
We then create two actions, the first “open file’’, has an icon
(openfile.xpm) and a shortcut of Ctrl+O. We connect the action to
our custom openFile() slot (implemented shortly). The “quit” action
is connected to the built-in close() slot. After the actions are created we
want to give them a visual representation in the user interface. We create
a new menu and add the “open file” action, and the “quit” action to it. We
also create a toolbar and add the “open file” action to it. Qt automatically
keeps menus and toolbars in sync.

Finally we set the application’s caption and icon, and display “Ready”
on the status bar. The first time we call menuBar()and statusBar(),
Qt creates them; this ensures they are only created if they’re actually used.

When the user invokes the “open file” action (by choosing
File|Open, by clicking the “open” toolbar button, or by pressing
Ctrl+O), the openFile() slot is called.

void Viewer::openFile() {
QStringList formats =

QImage::inputFormatList();
QString filters = "Images (*."

+ formats.join(" *.")
.lower() + ")";

QString newFileName =
QFileDialog::getOpenFileName(fileName,

filters, this);
if(!newFileName.isEmpty()) {
fileName = newFileName;
QPixmap pixmap(fileName);

imageLabel->setPixmap(pixmap);
statusBar()->message(QString("%1 %2x%3")

.arg(fileName)

.arg(pixmap.width())

.arg(pixmap.height()));
}

}

Qt can provide a list of the image formats it can read, and we use this to
create a file filter. For example, the filter might look like this, “Images
(*.bmp *.gif *.jpeg *.pbm *.pgm *.png *.ppm *.xbm *.xpm)”. We use one
of QFileDialog’s static convenience functions to get an image file
name, and unless the user clicks Cancel (in which case
getOpenFileName() returns an empty string), we load the image and
put some information in the status bar. If we didn’t need to access the image
after reading it we could have simply used:

imageLabel->setPixmap(QPixmap(fileName));

To build and run the application, save the files in a directory of their own
(e.g. viewer), change to that directory, and run the following commands:

qmake -project
qmake viewer.pro
make

The first command creates a project file, the second creates a makefile
based on the project file, and the third builds the application. If you use
Visual Studio, use nmake instead of make.

In the previous article we saw how to create a dialog and lay out widgets
inside it. Now we’ve seen how to create a main window application. In the
next installment we’ll combine this knowledge to create an application that
can interact with the user through a dialog, and later on we’ll see how to
create custom widgets with any look and behaviour we want.

Mark Summerfield and Jasmin Blanchette

Using a Live Linux
Distribution

Silas S. Brown

I think it was in C Vu that I first heard about Knoppix, www.knoppix.org–
a “live” Linux distribution that will run entirely from the CD, needing no
installation or configuration. It is very good for demonstrating Linux, or for
using a Linux desktop to sort something out on a computer that otherwise runs
Windows. It can also be used to install Linux quickly; you get a Debian system
that runs a mixture of testing and unstable packages, and you can do package
management as you see fit. (A while ago I met someone who wanted a free
entry-level CAD package, and it was quicker for me to install Linux and find
a suitable package from www.debian.org than it would have been to look
for an appropriate piece of Windows software.)

What is even more useful is a document called “Knoppix Remastering
HOWTO”, available at www.knoppix.net/docs/index.php/
KnoppixRemasteringHowto – this explains how to copy Knoppix into
a spare directory on your existing Linux hard drive, chroot into it and alter
it as you see fit, and then create a new CD image of the altered version. This
is useful for a number of reasons. Firstly, if you need to experiment with
recent, less stable packages but you don’t want to upgrade your existing
stable Linux environment, you can safely mix both distributions using this
method (although if you are doing chroot from a different distribution,
make sure to use something like su – so as to set the environment variables
correctly). Secondly, you can make customised bootable CDs whenever you
want to (I turned the process into a script to make this easier, although the
script is rather specific to my system so I’ll leave that as an exercise).

On slower computers it can take a few hours to generate the CD image,
but it is worth it. It means you are able to take your exact customised
environment to anyone else’s PC and run it there, so long as it is able to
boot the CD (or the special floppy disk that you can write). You may have
problems persuading certain laptops to do this, but most computers “out
there” will be OK with it. An alternative is to use VNC to access your
desktop remotely, but that needs a good Internet connection; customised

CDs do not. There are all kinds of uses for this. If you’re familiar with
Linux then it will save a lot of time in comparison with messing around
with everybody’s Windows setups.

I experimented using re-writeable CDs rather than ordinary CDRs.
Rewriteables are slower (both in writing and reading) and have reduced
capacity, and they will only work if you can get your PC to boot off the
CD recorder (they are not readable on ordinary CD-ROMs). However they
do save on resources when you’re testing, because they can be re-used.

If you are running on a machine with less than 256Mb of RAM then you
almost certainly want to make a swap file to make things run faster. Swap files
can be made on the hard disk on any FAT partition, and any existing Linux
swap partitions will be used automatically. You can also save a persistent home
directory on the hard disk. (When you’re mastering the Knoppix CD, it’s worth
knowing that you shouldn’t rely on anything being in the home directory on
startup. If you need something to be there by default then you should arrange
a boot-up script to put it there, but please make the script do a test first because
the user might be running a persistent home directory on the hard drive and
doesn’t want it to be restored to the default each time.)

There are many other versions of Knoppix that other people have re-
mastered. Gnoppix (www.gnoppix.org) is interesting because it is based
on the stable Debian distribution, rather than testing/unstable, although I find
that testing/unstable is fine in the context of bootable CDs because these
systems have comparatively short uptimes and are used as desktop machines,
not secure Internet servers. I tried Morphix (www.morphix.org) which
is supposed to be easier to customise, but it does have its problems (in the
current version at the time of writing, any extra packages you add are copied
to RAM when the CD loads, which could cause problems if you want a lot
of packages and RAM is limited) – it’s probably better to invest time in
remastering Knoppix yourself. Another interesting variant is Oralux
(www.oralux.org) which is designed for blind people and takes you into
an Emacs desktop with software speech synthesis (go on, try it – everyone
should have this experience). If you need something other than Debian, there
are also some live CDs based on Red Hat and on BSD, but I haven’t tried
these as yet. Use Google and DistroWatch if you want to find them.

Silas S Brown

20 CVu/ACCU/Features

An Introduction to
Programming with GTK+ and
Glade in ISO C and ISO C++
Roger Leigh <rleigh@debian.org>

What is GTK+?
GTK+ is a toolkit used for writing graphical applications. Originally
written for the X11 windowing system, it has now been ported to other
systems, such as Microsoft Windows and the Apple Macintosh, and so may
be used for cross-platform software development. GTK+ was written as a
part of the GNU Image Manipulation Program (GIMP), but has long been
a separate project, used by many other free software projects, one of the
most notable being the GNU Network Object Model Environment
(GNOME) Project.

GTK+ is written in C and, because of the ubiquity of the C language,
bindings have been written to allow the development of GTK+ applications
in many other languages. This short tutorial is intended as a simple
introduction to writing GTK+ applications in C and C++, using the current
2.0/2.2 version of libgtk . It also covers the use of the Glade user
interface designer for rapid application development (RAD).

It is assumed that the reader is familiar with C and C++ programming,
and it would be helpful to work through the “Getting Started” chapter of
the GTK+ tutorial before reading further. The GTK+, Glib, libglade,
Gtkmm and libglademm API references will be useful while working
through the examples.

I hope you find this tutorial informative.

Building the Example Code
Several working, commented examples accompany the tutorial. They are
also available from http://people.debian.org/~rleigh/
gtk/ogcalc/. To build them, type:

./configure
make

This will check for the required libraries and build the example code. Each
program may then be run from within its subdirectory.

I have been asked on various occasions to write a tutorial to explain
how the GNU autotools work. While this is not the aim of this tutorial, I
have converted the build to use the autotools as a simple example of their
use.

Legal Bit
This tutorial document, the source code and compiled binaries, and all
other files distributed in the source package are copyright © 2003 – 2004
Roger Leigh. These files and binary programs are free software; you can
redistribute them and/or modify them under the terms of the GNU General
Public Licence as published by the Free Software Foundation; either
version 2 of the Licence, or (at your option) any later version.

A copy of the GNU General Public Licence version 2 is provided in the
file COPYING in the source package this document was generated from.

GTK+ Basics
Objects

GTK+ is an object-oriented (OO) toolkit. I’m afraid that unless one is
aware of the basic OO concepts (classes, class methods, inheritance,
polymorphism), this tutorial (and GTK+ in general) will seem rather
confusing. On my first attempt at learning GTK+, I didn’t “get” it, but
after I learnt C++, the concepts GTK+ is built on just “clicked”, and I
understood it quite quickly.

The C language does not natively support classes, and so GTK+
provides its own object/type system, GObject. GObject provides objects,
inheritance, polymorphism, constructors, destructors and other facilities
such as reference counting and signal emission and handling. Essentially,
it provides C++ classes in C. The syntax differs a little from C++ though.
As an example, the following C++

myclass c;
c.add(2);

would be written like this using GObject:

myclass *c = myclass_new();
myclass_add(c, 2);

The difference is due to the lack of a this pointer in the C language (since
objects do not exist). This means that class methods require the object
pointer passing as their first argument. This happens automatically in C++,
but it needs doing “manually” in C.

Another difference is seen when dealing with polymorphic objects. All
GTK+ widgets (the controls, such as buttons, checkboxes, labels, etc.) are
derived from GtkWidget. That is to say, a GtkButton is a GtkWidget,
which is aGtkObject, which is a GObject. In C++, one can call member
functions from both the class and the classes it is derived from. With GTK+,
the object needs explicit casting to the required type. For example

GtkButton mybutton;
mybutton.set_label("Cancel");
mybutton.show();

would be written as

GtkButton *mybutton = gtk_button_new();
gtk_button_set_label(mybutton, "Cancel");
gtk_widget_show(GTK_WIDGET(mybutton))

In this example, set_label()is a method of GtkButton, whilst show()
is a method of GtkWidget, which requires an explicit cast. The
GTK_WIDGET() cast is actually a form of run-time type identification (RTTI).
This ensures that the objects are of the correct type when they are used.

Objects and C work well, but there are some issues, such as a lack of
type-safety of callbacks and limited compile-time type checking. Using
GObject, deriving new widgets is complex and error-prone. For these, and
other, reasons, C++ may be a better language to use. libsigc++ provides
type-safe signal handling, and all of the GTK+ (and GLib, Pango et. al.)
objects are available as standard C++ classes. Callbacks may also be class
methods, which makes for cleaner code, since the class can contain object
data without having to resort to passing in data as a function argument.
These potential problems will become clearer in the next sections.

A text label A menu bar

A drop-down selection (combo box) A tick box

A text entry field A push button

A font selection

Figure 1: A selection of GTK+ widgets

21CVu/ACCU/Features

Widgets
A user interface consists of different objects with which the user can
interact. These include buttons which can be pushed, text entry fields,
tick boxes, labels and more complex things such as menus, lists, multiple
selections, colour and font pickers. Some example widgets are shown in
Figure 1.

Not all widgets are interactive. For example, the user cannot usually
interact with a label, or a framebox. Some widgets, such as containers,
boxes and event boxes are not even visible to the user (there is more about
this in the next section).

Different types of widget have their own unique properties. For
example, a label widget contains the text it displays, and there are
functions to get and set the label text. A checkbox may be ticked or not,
and there are functions to get and set its state. An options menu has
functions to set the valid options, and get the option the user has chosen.

Containers
The top-level of every GTK+ interface is the window. A window is what
one might expect it to be: it has a title bar, borders (which may allow
resizing), and it contains the rest of the interface.

In GTK+, a GtkWindow is a GtkContainer. In English, this
means that the window is a widget that can contain another widget. More
precisely, a GtkContainer can contain exactly one widget. This is
usually quite confusing compared with the behaviour of other graphics
toolkits, which allow one to place the controls on some sort of “form”.

The fact that a GtkWidget can only contain one widget initially
seems quite useless. After all, user interfaces usually consist of more than
a single button. In GTK+, there are other kinds of GtkContainer. The
most commonly used are horizontal boxes, vertical boxes, and tables. The
structure of these containers is shown in Figure 2.

Figure 2 shows the containers as having equal size, but in a real
interface, the containers resize themselves to fit the widgets they contain.

In other cases, widgets may be expanded or shrunk to fit the space allotted
to them. There are several ways to control this behaviour, to give fine
control over the appearance of the interface.

In addition to the containers discussed above, there are more complex
containers available, such are horizontal and vertical panes, tabbed
notebooks, and viewports and scrolled windows. These are out of the
scope of this tutorial, however.

Newcomers to GTK+ may find the concept of containers quite strange.
Users of Microsoft Visual Basic or Visual C++ may be used to the free-form
placement of controls. The placement of controls at fixed positions on a form
has no advantages over automatic positioning and sizing. All decent modern
toolkits use automatic positioning. This fixes several issues with fixed layouts:
● The hours spent laying out forms, particularly when maintaining

existing code.
● Windows that are too big for the screen.
● Windows that are too small for the form they contain.
● Issues with spacing when accommodating translated text.
● Bad things happen when changing the font size from the default.

The nesting of containers results in a widget tree , which has many useful
properties, some of which will be used use later. One important advantage
is that they can dynamically resize and accommodate different lengths of
text, important for internationalisation, when translations in different
languages may vary widely in their size.

The Glade user interface designer can be very instructive when
exploring how containers and widget packing work. It allows easy
manipulation of the interface, and all of the standard GTK+ widgets are
available. Modifying an existing interface is trivial, even when doing
major reworking. Whole branches of the widget tree may be cut, copied
and pasted at will, and a widget’s properties may be manipulated using
the “Properties” dialogue. While studying the code examples, Glade may
be used to interactively build and manipulate the interface, to visually
follow how the code is working. More detail about Glade is provided in
a later section, where libglade is used to dynamically load a user
interface.

Signals
Most graphical toolkits are event-driven, and GTK+ is no exception.
Traditional console applications tend not to be event-driven; these
programs follow a fixed path of execution. A typical program might do
something along these lines:
● Prompt the user for some input
● Do some work
● Print the results
This type of program does not give the user any freedom to do things in
a different order. Each of the above steps might be a single function (each
of which might be split into helper functions, and so on).

GTK+ applications differ from this model. The programs must react
to events, such as the user clicking on a button, or pressing Enter in an
text entry field. These widgets emit signals in response to user actions.
For each signal of interest, a function defined by the programmer is called.
In these functions, the programmer can do whatever needed. For example,
in the ogcalc program, when the “Calculate” button is pressed, a
function is called to read the data from entry fields, do some calculations,
and then display the results.

Each event causes a signal to be emitted from the widget handling the
event. The signals are sent to signal handlers. A signal handler is a
function which is called when the signal is emitted. The signal handler
is connected to the signal. In C, these functions are known as callbacks.
The process is illustrated graphically in Figure 3.

A signal may have zero, one or many signal handlers connected
(registered) with it. If there is more than one signal handler, they are called
in the order they were connected in.

Without signals, the user interface would display on the screen, but
would not actually do anything. By associating signal handlers with

Horizontal box: GtkHBox

Vertical box: GtkVBox Table: GtkTable

Figure 2: GTK+ containers
Each container may contain other widgets in the shaded areas. Containers
may contain more containers, allowing them to nest. Complex interfaces

may be constructed by nesting the different types of container.

Figure 3: A typical signal handler.
When the button is pressed, a signal is emitted, causing the registered

callback function to be called.

22 CVu/ACCU/Features

signals one is interested in, events triggered by the user interacting
with the widgets will cause things to happen.

Libraries
GTK+ is comprised of several separate libraries:
atk Accessibility Toolkit, to enable use by disabled

people.
gdk GIMP Drawing Kit (XLib abstraction layer –

windowing system dependent part).
gdk-pixbuf Image loading and display.
glib Basic datatypes and common algorithms.
gmodule Dynamic module loader (libdl portability

wrapper).
gobject Object/type system.
gtk GIMP Tool Kit (windowing system independent

part).
pango Typeface layout and rendering.

When using libglade another library is required:
glade User Interface description loader/constructor.

Lastly, when using C++, some additional C++ libraries are also needed:
atkmm C++ ATK wrapper.
gdkmm C++ GDK wrapper.
gtkmm C++ GTK+ wrapper.
glademm C++ Glade wrapper.
pangomm C++ Pango wrapper.
sigc++ Advanced C++ signal/slot event handling (wraps GObject

signals).

This looks quite intimidating! However, there is no need to worry, since
compiling and linking programs is quite easy. Since the libraries are
released together as a set, there are few library interdependency issues.

Designing an Application
Planning Ahead

Before starting to code, it is necessary to plan ahead by thinking about what
the program will do, and how it should do it. When designing a graphical
interface, one should pay attention to how the user will interact with it, to
ensure that it is easy to understand, and efficient to use.

When designing a GTK+ application, it is useful to sketch the interface
on paper, before constructing it. Interface designers such as Glade are
helpful here, but a pen and paper are best for the initial design.

Introducing ogcalc
As part of the production (and quality control) processes in the brewing
industry, it is necessary to determine the alcohol content of each batch at
several stages during the brewing process. This is calculated using the
density (gravity) in g/cm3 and the refractive index. A correction factor is
used to align the calculated value with that determined by distillation,
which is the standard required by HM Customs & Excise. Because
alcoholic beverages are only slightly denser than water, the PG value is
(density-1) x 100. That is, 1.0052 would be entered as 52.

Original gravity is the density during fermentation. As alcohol is
produced during fermentation, the density falls. Traditionally, this would
be similar to the PG, but with modern high-gravity brewing (at a higher
concentration) it tends to be higher. It is just as important that the OG is
within the set limits of the specification for the product as the ABV.

The ogcalc program performs the following calculation:

O = (R x 2.597) – (P x 1.644) – 34.4165 + C

If O is less than 60, then

A = (O – P) x 0.130

otherwise

A = (O – P) x 0.134

The symbols have the following meanings:
A Percentage Alcohol By Volume
C Correction Factor
O Original Gravity
P Present Gravity
R Refractive Index

Designing the Interface
The program needs to ask the user for the values of C, P, and R. It must
then display the results, A and O. A simple sketch of the interface is shown
in Figure 4.

Creating the Interface
Due to the need to build up an interface from the bottom up, due to the
containers being nested, the interface is constructed starting with the
window, then the containers that fit in it. The widgets the user will use go
in last. This is illustrated in Figure 5.

Once a widget has been created, signal handlers may be connected to
its signals. After this is completed, the interface can be displayed, and the
main event loop may be entered. The event loop receives events from the
keyboard, mouse and other sources, and causes the widgets to emit signals.
To end the program, the event loop must first be left.

GTK+ and C
Introduction

Many GTK+ applications are written in C alone. This section demonstrates
the C/plain/ogcalc program discussed in the previous section. Figure
6 is a screenshot of the finished application.

This program consists of just three functions:
on_button_clicked_reset() – Reset the interface to its default

state
on_button_clicked_calculate – Get the values the user has

entered, do a calculation, then display the results.
main() – Initialise GTK+, construct the interface, connect the signal

handlers, then enter the GTK+ event loop.

Code Listing
The program code is listed on pages 23-26. The source code is extensively
commented, to explain what is going on.

To build the source, do the following:
cd C/plain
cc 'pkg-config —cflags gtk+-2.0' -c ogcalc.c
cc 'pkg-config —libs gtk+-2.0' -o ogcalc
ogcalc.o

Roger Leigh

[I would recommend entering the code, it would be a valuable exercise in
learning how a GTK application is built up. It may take a little while, but it
certainly helped me to understand what is going on. – Ed]

Figure 4: Sketching a user interface
The ogcalc main window is drawn simply, to illustrate its functionality. The top

row contains three numeric entry fields, followed by two result fields on the
middle row. The bottom row contains buttons to quit the program, reset the

interface and do the calculation.

Figure 6: C/plain/ogcalc in action

23CVu/ACCU/Features

// C/plain/ogcalc.c
#include <gtk/gtk.h>

GtkWidget *create_spin_entry(
const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **spinbutton_pointer,
GtkAdjustment *adjustment,
guint digits);

GtkWidget *create_result_label(
const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **result_label_pointer);

void on_button_clicked_reset(
GtkWidget *widget,
gpointer data);

void on_button_clicked_calculate(
GtkWidget *widget,
gpointer data);

/* This structure holds all of the widgets
needed to get all the values for the
calculation. */

struct calculation_widgets {
GtkWidget *pg_val; // PG entry widget
GtkWidget *ri_val; // RI entry widget
GtkWidget *cf_val; // CF entry widget
GtkWidget *og_result; // OG result label
GtkWidget *abv_result; // ABV% result label

};

int main(int argc, char *argv[]) {
/* These are pointers to widgets used in

constructing the interface, and later
used by signal handlers. */

GtkWidget *window;
GtkWidget *vbox1, *vbox2, *hbox1, *hbox2,

*button1, *button2;
GtkObject *adjustment, *hsep;
struct calculation_widgets cb_widgets;

gtk_init(&argc, &argv); // Initialise GTK+.

/* Create a new top-level window. */
window =

gtk_window_new(GTK_WINDOW_TOPLEVEL);

1. An empty window 2. Addition of a GtkVBox

3. Addition of a second GtkVBox; this has uniformly-sized 4. Addition of three GtkHBoxes
children(it is homogeneous), unlike the first

5. Addition of five more GtkHBoxes, used to ensure visually 6. Addition of all of the user-visible widgets
appealing widget placement

Figure 5: Widget packing
The steps taken during the creation of an interface are shown, demonstrating the use of nested containers to pack widgets.

24 CVu/ACCU/Features

/* Set the window title. */
gtk_window_set_title(GTK_WINDOW(window),

"OG & ABV Calculator");
/* Disable window resizing */
gtk_window_set_resizable(GTK_WINDOW(window),

FALSE);
/* Connect the window close button

("destroy" event) to gtk_main_quit(). */
g_signal_connect(G_OBJECT(window),

"destroy", gtk_main_quit,
NULL);

/* Create a GtkVBox to hold the other
widgets. This contains other widgets,
which are packed in to it vertically. */

vbox1 = gtk_vbox_new(FALSE, 0);
/* Add the VBox to the Window. A GtkWindow
/is a/ GtkContainer which /is a/
GtkWidget. GTK_CONTAINER casts the
GtkWidget to a GtkContainer, like a C++
dynamic_cast. */

gtk_container_add(GTK_CONTAINER(window),
vbox1);

/* Display the Vbox. At this point, the
Window has not yet been displayed, so the
window isn’t yet visible. */

gtk_widget_show(vbox1);

/* Create a second GtkVBox. Unlike the
previous VBox, the widgets it will
contain will be of uniform size and
separated by a 5 pixel gap. */

vbox2 = gtk_vbox_new(TRUE, 5);
/* Set a 10 pixel border */
gtk_container_set_border_width(

GTK_CONTAINER(vbox2), 10);
/* Add this VBox to our first VBox. */
gtk_box_pack_start(GTK_BOX(vbox1), vbox2,

FALSE, FALSE, 0);

gtk_widget_show(vbox2);

/* Create a GtkHBox. This is identical to a
GtkVBox except that the widgets pack
horizontally, instead of vertically. */

hbox1 = gtk_hbox_new(FALSE, 10);
/* Add to vbox2. The function’s other

arguments mean to expand into any extra
space alloted to it, to fill the extra
space and to add 0 pixels of padding
between it and its neighbour. */

gtk_box_pack_start(GTK_BOX(vbox2), hbox1,
TRUE, TRUE, 0);

gtk_widget_show (hbox1);

/* A GtkAdjustment is used to hold a numeric
value: the initial value, minimum and
maximum values, "step" and "page"
increments and the "page size". It’s
used by spin buttons, scrollbars, sliders
etc. */

adjustment = gtk_adjustment_new(0.0, 0.0,
10000.0, 0.01, 1.0, 0);

/* Call a helper function to create a
GtkSpinButton entry together with a label
and a tooltip. The spin button is stored
in the cb_widgets.pg_val pointer for
later use. */

hbox2 = create_spin_entry("PG:",
"Present Gravity (density)",
&cb_widgets.pg_val,
GTK_ADJUSTMENT(adjustment),
2);

/* Pack the returned GtkHBox into the
interface. */

gtk_box_pack_start(GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);

gtk_widget_show(hbox2);

/* Repeat the above for the next spin
button. */

adjustment = gtk_adjustment_new (0.0, 0.0,
10000.0, 0.01, 1.0, 0);

hbox2 = create_spin_entry("RI:",
"Refractive Index",
&cb_widgets.ri_val,
GTK_ADJUSTMENT(adjustment), 2);

gtk_box_pack_start(GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);

gtk_widget_show(hbox2);

/* Repeat again for the last spin button. */
adjustment = gtk_adjustment_new (0.0, -50.0,

50.0, 0.1, 1.0, 0);
hbox2 = create_spin_entry(“CF:”,

"Correction Factor",
&cb_widgets.cf_val,
GTK_ADJUSTMENT(adjustment),
1);

gtk_box_pack_start(GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);

gtk_widget_show(hbox2);

/* Now we move to the second "row" of the
interface, for displaying the results. */

/* Firstly, a new GtkHBox to pack the labels
into. */

hbox1 = gtk_hbox_new (TRUE, 10);
gtk_box_pack_start(GTK_BOX(vbox2), hbox1,

TRUE, TRUE, 0);
gtk_widget_show (hbox1);

/* Create the OG result label, then pack and
display. */

hbox2 = create_result_label("OG:",
"Original Gravity (density)",
&cb_widgets.og_result);

gtk_box_pack_start(GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);

gtk_widget_show(hbox2);

/* Repeat as above for the second result
value. */

hbox2 = create_result_label("ABV %:",
"Percent Alcohol By Volume",
&cb_widgets.abv_result);

gtk_box_pack_start(GTK_BOX(hbox1), hbox2,
TRUE, TRUE, 0);

gtk_widget_show(hbox2);

/* Create a horizontal separator
(GtkHSeparator) and add it to the VBox.*/

hsep = gtk_hseparator_new();
gtk_box_pack_start(GTK_BOX(vbox1), hsep,

FALSE, FALSE, 0);
gtk_widget_show(hsep);

/* Create a GtkHBox to hold the bottom row
of buttons. */

hbox1 = gtk_hbox_new(TRUE, 5);
gtk_container_set_border_width(

GTK_CONTAINER(hbox1), 10);
gtk_box_pack_start(GTK_BOX(vbox1), hbox1,

TRUE, TRUE, 0);
gtk_widget_show(hbox1);

25CVu/ACCU/Features

/* Create the "Quit" button. We use a
“stock” button—commonly-used buttons that
have a set title and icon. */

button1 =
gtk_button_new_from_stock(GTK_STOCK_QUIT);

/* We connect the "clicked" signal to the
gtk_main_quit() callback which will end
the program. */

g_signal_connect(G_OBJECT(button1),
"clicked", gtk_main_quit, NULL);

gtk_box_pack_start(GTK_BOX(hbox1), button1,
TRUE, TRUE, 0);

gtk_widget_show(button1);

/* This button resets the interface. */
button1 =

gtk_button_new_with_mnemonic("_Reset");
/* The "clicked" signal is connected to the

on_button_clicked_reset() callback above,
and our "cb_widgets" widget list is
passed as the second argument, cast to a
gpointer (void). */

g_signal_connect(G_OBJECT(button1),
"clicked",
G_CALLBACK(on_button_clicked_reset),
(gpointer)&cb_widgets);

/* g_signal_connect_swapped is used to
connect a signal from one widget to the
handler of another. The last argument is
the widget that will be passed as the
first argument of the callback. This
causes gtk_widget_grab_focus to switch
the focus to the PG entry. */

g_signal_connect_swapped(G_OBJECT(button1),
"clicked",
G_CALLBACK(gtk_widget_grab_focus),
(gpointer)GTK_WIDGET(cb_widgets.pg_val));

/* This lets the default action (Enter)
activate this widget even when the focus
is elsewhere. This doesn't set the
default, it just makes it possible to
set.*/

GTK_WIDGET_SET_FLAGS(button1,
GTK_CAN_DEFAULT);

gtk_box_pack_start(GTK_BOX(hbox1), button1,
TRUE, TRUE, 0);

gtk_widget_show(button1);

/* The final button is the Calculate button.*/
button2 =
gtk_button_new_with_mnemonic("_Calculate");

/* When the button is clicked, call the
on_button_clicked_calculate() function.
This is the same as for the Reset button.*/

g_signal_connect(G_OBJECT(button2),
"clicked",
G_CALLBACK(on_button_clicked_calculate),
(gpointer)&cb_widgets);

/* Switch the focus to the Reset button when
the button is clicked. */

g_signal_connect_swapped(G_OBJECT(button2),
"clicked",
G_CALLBACK(gtk_widget_grab_focus),
(gpointer)GTK_WIDGET(button1));

/* As before, the button can be the default.*/
GTK_WIDGET_SET_FLAGS(button2,

GTK_CAN_DEFAULT);
gtk_box_pack_start(GTK_BOX(hbox1),

button2, TRUE, TRUE, 0);
/* Make this button the default. Note the

thicker border in the interface—this
button is activated if you press enter in
the CF entry field. */

gtk_widget_grab_default(button2);
gtk_widget_show(button2);

/* Set up data entry focus movement. This
makes the interface work correctly with
the keyboard, so that you can touch-type
through the interface with no mouse usage
or tabbing between the fields. */

/* When Enter is pressed in the PG entry
box, focus is transferred to the RI
entry. */

g_signal_connect_swapped(
G_OBJECT(cb_widgets.pg_val), "activate",
G_CALLBACK(gtk_widget_grab_focus),
(gpointer)GTK_WIDGET(cb_widgets.ri_val));

/* RI -> CF. */
g_signal_connect_swapped(

G_OBJECT(cb_widgets.ri_val), "activate",
G_CALLBACK(gtk_widget_grab_focus),
(gpointer)GTK_WIDGET(cb_widgets.cf_val));

/* When Enter is pressed in the RI field, it
activates the Calculate button. */

g_signal_connect_swapped(
G_OBJECT(cb_widgets.cf_val), "activate",
G_CALLBACK(gtk_window_activate_default),
(gpointer)GTK_WIDGET(window));

/* The interface is complete, so finally we
show the top-level window. This is done
last or else the user might see the
interface drawing itself during the short
time it takes to construct. It’s nicer
this way. */

gtk_widget_show(window);

/* Enter the GTK Event Loop. This is where
all the events are caught and handled.
It is exited with gtk_main_quit(). */

gtk_main();

return 0;
}

/* A utility function for UI construction. It
constructs part of the widget tree, then
returns its root. */
GtkWidget *create_spin_entry(

const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **spinbutton_pointer,
GtkAdjustment *adjustment,
guint digits) {

GtkWidget *hbox, *eventbox, *spinbutton,
*label;

GtkTooltips *tooltip;

/* A GtkHBox to pack the entry child widgets
into. */

hbox = gtk_hbox_new(FALSE, 5);

/* An eventbox. This widget is just a
container for widgets (like labels) that
don’t have an associated X window, and so
can’t receive X events. This is just
used to we can add tooltips to each
label. */

eventbox = gtk_event_box_new();
gtk_widget_show(eventbox);
gtk_box_pack_start(GTK_BOX(hbox),

eventbox,FALSE, FALSE, 0);
/* Create a label. */
label = gtk_label_new(label_text);

/* Add the label to the eventbox */
gtk_container_add(GTK_CONTAINER(eventbox),

label);
gtk_widget_show(label);

/* Create a GtkSpinButton and associate it
with the adjustment. It adds/substracts
0.5 when the spin buttons are used, and
has digits accuracy. */

spinbutton = gtk_spin_button_new(
adjustment, 0.5, digits);

/* Only numbers can be entered. */
gtk_spin_button_set_numeric(

GTK_SPIN_BUTTON(spinbutton), TRUE);
gtk_box_pack_start(GTK_BOX(hbox),

spinbutton, TRUE, TRUE, 0);
gtk_widget_show(spinbutton);

/* Create a tooltip and add it to the
EventBox previously created. */

tooltip = gtk_tooltips_new();
gtk_tooltips_set_tip(tooltip, eventbox,

tooltip_text, NULL);

*spinbutton_pointer = spinbutton;
return hbox;

}

/* A utility function for UI construction. It
constructs part of the widget tree, then
returns its root. */

GtkWidget *create_result_label(
const gchar *label_text,
const gchar *tooltip_text,
GtkWidget **result_label_pointer) {

GtkWidget *hbox, *eventbox, *result_label,
*result_value;

GtkTooltips *tooltip;

/*A GtkHBox to pack entry child widgets into*/
hbox = gtk_hbox_new(FALSE, 5);

/* As before, a label in an event box with a
tooltip. */

eventbox = gtk_event_box_new();
gtk_widget_show(eventbox);
gtk_box_pack_start(GTK_BOX(hbox), eventbox,

FALSE, FALSE, 0);
result_label = gtk_label_new(label_text);
gtk_container_add(GTK_CONTAINER(eventbox),

result_label);
gtk_widget_show(result_label);

/* This is a label, used to display the OG
result. */

result_value = gtk_label_new (NULL);
/* Because it’s a result, it is set

“selectable”, to allow copy/paste of the
result, but it’s not modifiable. */

gtk_label_set_selectable(
GTK_LABEL(result_value), TRUE);

gtk_box_pack_start(GTK_BOX(hbox),
result_value, TRUE, TRUE, 0);

gtk_widget_show(result_value);

/* Add the tooltip to the event box. */
tooltip = gtk_tooltips_new();
gtk_tooltips_set_tip(tooltip, eventbox,

tooltip_text, NULL);

*result_label_pointer = result_value;
return hbox;

}

/* This is a callback function. It resets
the values of the entry widgets, and
clears the results. "data" is the
calculation_widgets structure, which needs
casting back to its correct type from a
gpointer (void) type. */

void on_button_clicked_reset(
GtkWidget *widget,
gpointer data) {

/* Widgets to manipulate. */
struct calculation_widgets *w;

w = (struct calculation_widgets *) data;

gtk_spin_button_set_value(
GTK_SPIN_BUTTON(w->pg_val), 0.0);

gtk_spin_button_set_value(
GTK_SPIN_BUTTON(w->ri_val), 0.0);

gtk_spin_button_set_value(
GTK_SPIN_BUTTON(w->cf_val), 0.0);

gtk_label_set_text(
GTK_LABEL(w->og_result), "");

gtk_label_set_text(
GTK_LABEL(w->abv_result), "");

}

/* This callback does the actual calculation.
Its arguments are the same as for
on_button_clicked_reset(). */

void on_button_clicked_calculate(
GtkWidget *widget,
gpointer data) {

gdouble pg, ri, cf, og, abv;
gchar *og_string, *abv_string;
struct calculation_widgets *w;

w = (struct calculation_widgets *) data;

/* Get the numerical values from the entry
widgets. */

pg = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(w->pg_val));

ri = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(w->ri_val));

cf = gtk_spin_button_get_value(
GTK_SPIN_BUTTON(w->cf_val));

og = (ri*2.597) - (pg*1.644) - 34.4165 + cf;

/* Do the sums. */
if (og < 60)
abv = (og - pg) * 0.130;

else
abv = (og - pg) * 0.134;

/* Display the results. Note the
 GMarkup tags to make it display
in Bold. */

og_string =
g_strdup_printf("%0.2f", og);

abv_string =
g_strdup_printf("%0.2f", abv);

gtk_label_set_markup(
GTK_LABEL(w->og_result),
og_string);

gtk_label_set_markup(
GTK_LABEL(w->abv_result),
abv_string);

g_free(og_string);
g_free(abv_string);

}

26 CVu/ACCU/Features

27CVu/ACCU/Features

An Introduction to Objective-C
Part 1
D.A. Thomas

This series of articles aims to introduce the Objective-C programming
language to readers of C Vu, who are users of C and C++. I will try to show
how the language manages to add object-oriented facilities to the low-level
features of C in a way that is radically different from that of C++.

Stroustrup, the designer of C++, has been at pains to emphasise that
C++ is not just C with an object-oriented extension but rather a new multi-
paradigm language that happens to support objects; indeed, recent
developments in the language have been more in the direction of generic
types (‘templates’) rather than object-orientation as traditionally conceived.
The Standard Template Library, which is now part of the Standard C++
Library, also shows some influence from the functional programming style.
In pursuit of this goal, the author and the later standardisers of the language
have had no compunction in ‘improving’ on C by for instance strengthening
the type system and changing the namespace rules, with the result that a
standards-conforming C source is not guaranteed to perform as the
programmer expected after being passed to a C++ compiler.

The designer of Objective-C Brad J. Cox, had other ideas. His goal was
to make available some of the facilities of the high-level Smalltalk-80
programming environment to users of C, so as to enhance productivity
without taking away the advantages of efficiency, versatility and portability
that such a low-level language can offer. The object-oriented part of
Objective-C is entirely orthogonal to its C-based component, so that a
standard C source is always a perfectly good Objective-C source. Cox’s
problem, then, was how to extend C in such a way so as to enable powerful
and easy object-oriented programming without impinging on the original
syntax and semantics of the language. The solution he found is to my mind
extraordinarily elegant, though it does involve syntactical conventions that
seem quite strange to someone without a Smalltalk background; as a result,
it only takes an hour or two’s study and practice for a C programmer to
learn enough to become proficient at Objective-C.

In his book, Object-Oriented Programming, an Evolutionary
Approach,Cox addressed what he calls ‘the software crisis’, namely the
tendency of large IT projects to be delivered late, to end up costing much
more than their allocated budget, not deliver the intended functionality, and
indeed, to fail entirely. Software development is contrasted unfavourably
with electronic engineering: software developers keep writing the code
over and over again with minor variations to suit the demands of each
individual system, while their hardware counterparts are able to create new
devices largely by slotting in and connecting components that they have
acquired from third parties and are thus much more productive. If
development could be largely reduced to putting together systems from
software ICs with minimal wiring in between, this would go a long way
to solving the software crisis, Cox argued. At the time, he knew of only
one development system which provided such components at the IC level,
and that was Smalltalk, but the use of Smalltalk was limited by the fact
that it required its own ‘box’ or run-time environment to work, and being
interpreted rather than compiled, its performance was unspectacular on the
computers of the day. Much could be gained if one could program in C and
yet make use of libraries that are available to the Smalltalk programmer.

Cox’s company, the Stepstone Corporation, brought out an Objective-C
compiler in 1983 with a Smalltalk-like library called ICPak(R).
ICPak101provided foundation classes, including Object, the root object, and
data-structure classes like Sets, Dictionaries, Arrays, Lists and Strings, while
ICPak201 had classes to build cross-platform graphical user interfaces; the
coroutine library TaskMaster was added later. Richard Stallman and others
developed open-source equivalents of the compiler, run-time system and
basic class library for the GNU project, starting in 1992. However, arguably
the most signigicant event in the history of the language was its adoption in
1988 by NeXT Computer Corporation as the development language of choice
for their UNIX-based NexTStep operating system running on their
proprietary workstations. They made some extensions to the language, such
as Categories and Protocols, and rather then use Stepstone’s ICPak libraries,
they developed their own, called Foundation and AppKit. NeXT’s
workstations, though they drew widespread admiration, did not sell well, and
so their development environment, now called OpenStep, was ported to other
architectures, as NeXT transformed itself into a software company. OpenStep
became popular with financial institutions, scientists, and, so I am assured,
US intelligence agencies because it could be used to produce powerful

applications with a graphical front end in a remarkably short time; one of
these applications was the first World-Wide Web browser, written by Sir Tim
Berners-Lee at CERN in 1992. Unfortunately, support for multi-platform
OpenStep came to an end after NeXT was acquired by Apple in 1996, but
the concept still lives in the Cocoa development frameworks on Apple’s Mac
OS. The open-source GNUstep project provides libraries and tools to do
OpenStep-style development on non-Mac OS platforms.

Objective-C’s fortunes have been very different from those of C and
C++, and, unlike them, it has never become a mainstream development
tool. It is beyond the scope of these articles to speculate as to why this
might have been so. (I do not believe Dr Cox minds too much, as his idea
of exploiting reusable software components has been abundantly
vindicated, from Visual Basic custom controls to Python libraries; he has
retained his enthusiasm for Smalltalk-style languages and is now a member
of the Ruby community.) The closest thing to a standard is Apple’s compiler
and frameworks, since the vast majority of Objective-C users work either
with these or with GNUstep. Subsequent articles will discuss Objective-C
as implemented by NeXT/Apple, and the code examples will illustrate the
use of the Foundation framework. I have not tested the code on GNUstep
but have reason to expect that it will work there with little or no
modification.

Availability of Objective-C Resources
Apple’s development tools, including their compiler1, can be

downloaded free of charge from their site. As far as I am aware, the original
Objective-C compiler and ICPak libraries produced by the Stepstone
Corporation are no longer commercially available. The open-source GNU
Compiler Collection (GCC) version 3.4 offers a compiler with facilities
very similar to Apple’s. The Portable Object Compiler (POC) is in reality
an Objective-C front-end to various C compilers and is available free from
its author, Mr David Stes. Metrowerks CodeWarrior development tools for
Mac OS will interoperate with Apple’s Interface Builder GUI construction
tool and include an Objective-C compiler that will produce code that links
with Apple’s frameworks. IBM’s Visual Age C/C++ Advanced Edition for
Mac OS X also has Objective-C support.

D A Thomas

Bibliography and References
Anguish, Scott, Erik Buck and Donald Yacktman, Cocoa Programming,

SAMS, 2002
Apple Computer Inc., The Objective-C Programming Language,

available online at http://developer.apple.com/
documentation/Cocoa/Conceptual/ObjectiveC/

Apple Developer Connection http://developer.apple.com/
Beam, Michael and James Duncan Davidson, Cocoa in a Nutshell,

O’Reilly, 2003
Budd, Timothy, Introduction to Object-Oriented Programming, 3rd

ed., Addison-Wesley, 2001
Cox, Brad J. and Andrew J. Novibilski, Object-Oriented Programming,

an Evolutionary Approach, 2nd ed., Addison-Wesley, 1991
Cox, Brad, Planning the Software Revolution,IEEE Software

Magazine, November 1990, available online at
http://www.virtualschool.edu/cox/pub/PSIR

Cox, Brad, TaskMaster available online at
http://www.virtualschool.edu/cox/pub/TaskMaster/

Davidson, James Duncan and Apple Computer Inc., Learning Cocoa
with Objective-C, 2nd ed., O’Reilly, 2002

Duncan, Andrew M., Objective-C Pocket Reference, O’Reilly, 2002
GNU Compiler Collection http://gcc.gnu.org
GNU Objective C Class Library http://www.cs.rochester.edu/

u/mccallum/libobjects
http://theory.uwinnipeg.ca/gnu/libobjects/
libobjects_toc.html

GNUstep http://www.gnustep.org/
Hillegass, Aaron, Cocoa Programming for Mac OS X, 2nd ed.,

Addison-Wesley, 2004
IBM Inc. http://www-306.ibm.com/software/awdtools/

vacpp/features/xlcpp-mac.html
[references concluded at foot of next page]

1 This compiler is a GCC derivative and also supports a dialect called Objective-C++,
which allows mixing of C++ and Objective-C source; this is meant to facilitate the porting
of legacy applications written in C++ to Cocoa.

[concluded from previous page]
IBM Inc. http://www-306.ibm.com/software/awdtools/

vacpp/features/xlcpp-mac.html
Mahoney, Michael and Simson Garfinkel, Building Cocoa Applications:

A Step-by-Step Guide, O’Reilly, 2003
Metrowerks Inc. http://www.metrowerks.com/MW/Develop/

Desktop/Macintosh/Professional/Mac9.htm

Objective-C FAQ http://www.faqs.org/faqs/computer-
lang/Objective-C/faq/

Pinson, Lewis J. and Richard S. Wiener, Objective-C: Object-Oriented
Programming Techniques , Addison-Wesley, 1991

Portable Object Compiler
http://users.pandora.be/stes/compiler.html

28 CVu/ACCU/Features

C++ Templates
- A Simple Example

Rajanikanth Jammalamadaka <rajani@ece.arizona.edu>

This article describes the C++ code for performing basic operations on
matrices using templates. That means we can create a matrix of any data
type using one line and call the respective functions.

The code listing opmatrix.h is the header file in which the matrix
class is described. Note that the number of rows and columns is hard coded
in the header file. So, in the current code, a matrix of two rows and two
columns has been created. These numbers can be changed for matrices of
bigger dimensions. Also for convenience’s sake, this code works only for
square matrices (matrices which have the same number of rows and
columns).

The header file defines the matrix as a two dimensional vector. A vector
is a container in C++ which is very similar to an array in the C language
but is more sophisticated (it manages its own memory and you can call a
number of functions to perform useful operations.) The functions
readm() and printm() are used to read in the elements of the matrix
and to print the matrix.

Note that the readm() and printm() functions use the this
pointer. The this pointer stores the address of the current object. For
example, if we declare an object of the matrix class of type int like this

matrix<int> a;

then the this pointer will contain the address of the object a, i.e. this
= &a

Therefore, saying a.readme() is equivalent to saying

for(int i = 0; i < ROWS; ++i)
for(int j = 0; j < COLS; ++j)

cin >> (&a)->s[i][j];

The overloaded operators +, -, * and ~ are declared as friend functions of
the matrix, so that they can access the elements of the matrix (which are
private) in order to perform the operations. The overloaded operator ~ is
the transpose operator.

The + operator operates on two matrices and adds the corresponding
elements of the two matrices and prints the result.

The - operator is similar to the + operates except that it subtracts the
elements of two matrices, instead of adding them.

The * operator needs some explanation. Matrix multiplication works
only if the number of columns of the first matrix is equal to the number of
rows of the second matrix. For example, if we have to multiply matrices a
and b, then the number of columns of matrix a must be equal to the number
of rows of matrix b. In our case this is not a problem because we are dealing
with square matrices (whose sizes are fixed once the variables ROWS and
COLUMNS are initialized), so the number of columns of first matrix will
always be equal to the number of rows of the second matrix.

In order to understand how the * operator works, let us consider a
simple example:

Now, both a and b are of dimensions 2 by 2.
Therefore, their product will be of dimension 2 by 2. The first element

of a*b is obtained by summing the product of the corresponding elements
of the first row of matrix a and first column of matrix b:

i.e.

(a*b)11 = 1*5 + 2*7 = 5 + 14 = 19.

(a*b)ij denotes the element at the intersection of ith row and jth column
of the product matrix a*b. Similarly, (a*b)12 is obtained by summing
the product of the corresponding elements of the first row of matrix a and
second column of matrix b. Similarly the other two elements can be
obtained.

The ~ operator transposes the elements of a matrix. By transpose, we
mean interchanging the rows and columns of a matrix. So, a matrix (A)ij

after the transpose operation becomes (A)ji.

For example the matrix

after transposing becomes

The above examples may seem to be trivial, but they were purposefully
made trivial in order to understand the concepts of basic matrix operations.
If the matrices were of large dimensions, it wouldn’t be a trivial task to
multiply them manually. In the results section, operations are performed
on two matrices each of dimension 4 by 4. It is here that operator
overloading proves to be most useful. For example, if we have to find the
transpose of a+b*c, all we need to do is ~(a+b*c) and store this in a
matrix and print the resultant matrix using the printm() function.

Also note that each operator accepts a constant reference to the matrix,
this is because we want each operator to perform its function without
modifying the original matrix which was given to it.

Rajanikanth Jammalamadaka

// opmatrix.h - C++ header file

#include <iostream>
#include <vector>

using std::cin;
using std::cout;
using std::vector;
using std::endl;

const int ROWS = 2;
const int COLS = 2;

template<class T>
class matrix {
// declare a vector of vectors of type T
vector< vector<T> > s ;

public:
// Initialize the size of s to ROWS by COLS
matrix() : s(ROWS, vector<T>(COLS)) {}
void readm();
void printm();
// declare the operators +,-,*,~ as friends
// and with return type matrix<T>
friend matrix<T> operator+<>(const matrix&,

const matrix&);
friend matrix<T> operator-<>(const matrix&,

const matrix&);
friend matrix<T> operator*<>(

const matrix<T>&, const matrix<T>&);
friend matrix<T> operator~<>(

const matrix<T>&);
};

a = b =

now, a*b =

1 2 5 6
3 4 7 8

19 22
43 50

[] []
[]

1 2
3 4[]
1 3
2 4[]

29CVu/ACCU/Features

template<class T>
void matrix<T>::readm() {

for(int i = 0; i < ROWS; i++)
for(int j = 0; j < COLS; j++)
cin >> this->s[i][j];

}

template<class T>
void matrix<T>::printm() {

for(int i = 0; i < ROWS; i++) {
for(int j = 0; j < COLS; j++)
cout << this->s[i][j] << "\t";

cout << endl;
}

}

template<class T>
matrix<T> operator+(const matrix<T>& a,

const matrix<T>& b) {
// declare a matrix temp of type T to store
// the result and return this matrix
matrix<T> temp;
for(int i = 0; i < ROWS; i++)
for(int j = 0; j < COLS; j++)
temp.s[i][j] = a.s[i][j] + b.s[i][j];

return temp;
}

template<class T>
matrix<T> operator-(const matrix<T>& a,

const matrix<T>& b) {
matrix<T> temp;
for(int i = 0; i < ROWS; i++)
for(int j = 0; j < COLS; j++)
temp.s[i][j] = a.s[i][j] - b.s[i][j];

return temp;
}

template<class T>
matrix<T> operator*(const matrix<T>& a,

const matrix<T>& b) {
matrix<T> temp;
for(int i = 0; i < ROWS; i++) {
for(int j = 0; j < COLS; j++) {
temp.s[i][j] = 0;
for(int k = 0; k < COLS; k++)

temp.s[i][j] += a.s[i][k] * b.s[k][j];
}

}
return temp;

}

template<class T>
matrix<T> operator~(const matrix<T>& trans) {

matrix<T> temp;
for(int i = 0; i < ROWS; i++)
for(int j = 0; j < COLS; j++)
temp.s[j][i] = trans.s[i][j];

return temp;
}

// matrix.cpp - C++ Source file
#include "opmatrix.hpp"

int main() {
matrix<int> a,b,c; // we can also declare
// matrices of type int, float, double etc.
cout << "Enter matrix a:" << endl;
a.readm();
cout << "a is:" << endl;
a.printm();
cout << "Enter matrix b:" << endl;
b.readm();

cout << "b is:" << endl;
b.printm();

c = a + b;
cout << endl << "Result of a+b:" << endl;
c.printm();
c = a - b;
cout << endl << "Result of a-b:" << endl;
c.printm();
c = a * b;
cout << endl << "Result of a*b:" << endl;
c.printm();
cout << '\n' << "Result of a+b*c is:" << '\n';
(a+b*c).printm();
c = ~(a+b*c);
cout << '\n' << "Result of transpose of "

<< "a+b*c is:" << '\n';
c.printm();
return 0;

}

// Output

> g++ matrix.cpp -o matrix
> matrix

Enter matrix a:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
a is:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Enter matrix b:
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32
b is:
17 18 19 20
21 22 23 24
25 26 27 28
29 30 31 32

Result of a+b:
18 20 22 24
26 28 30 32
34 36 38 40
42 44 46 48

Result of a-b:
-16 -16 -16 -16
-16 -16 -16 -16
-16 -16 -16 -16
-16 -16 -16 -16

Result of a*b:
250 260 270 280
618 644 670 696
986 1028 1070 1112
1354 1412 1470 1528

Result of a+b*c is:
61189 63786 66383 68980
74025 77166 80307 83448
86861 90546 94231 97916
99697 103926 108155 112384

Result of transpose of a+b*c is:
61189 74025 86861 99697
63786 77166 90546 103926
66383 80307 94231 108155
68980 83448 97916 112384

XML as a Model-View-
Controller System for

Documents
Matthew Strawbridge

Models and Views

The Model-View-Controller (MVC) paradigm is well known by
programmers as a way of separating the logical internals of a software
system (the model) from the code concerned with presenting information
to the user (the view). Any framework that co-ordinates the interaction
between models and views is termed a controller . This scheme has been
adopted by most modern development frameworks, since it helps software
to grow over time in a flexible way, and helps to encapsulate changes. You
can add new views to existing models without having to change the models
themselves, and business logic can be modified without you needing to
change the way it is presented to the user.

Many programmers would rightly condemn code that comprised a mish-
mash of logic and presentation, but they are content to produce and
consume documents that do precisely this. Memos, technical notes,
meeting minutes: these are the bread and butter of the professional Software
Engineer, and yet most documents are simply dumped into a word
processor and left to stagnate. In this article I will describe how an MVC
approach to the generation of documents can yield the same benefits that
are traditionally seen with this approach to software design, and will
introduce some XML [1][2] tools that can support this method. Finally, I
will look at some of the alternatives to XML that could achieve the same
separation of concerns.

The Problem
You may think that MVC is overkill for documents – after all, a memo
is simply text; there is only one view, and that’s the document you’re
looking at. However, what if you want to put a copy on your company
intranet? I daresay your word processor has a ‘save as HTML’ facility.
Good. What if you want to make all document references into hyperlinks;
or to change the copyright text in a number of documents you’ve already
saved as HTML; or to radically change the style of every memo. All less
good.

As an example, let’s take a simple document type with which we’re all
familiar: an ACCU book review. We already know about two views that
exist on these documents: the magazine text (lets assume it’s Rich Text
Format), and the online review on the ACCU website (in HTML).
Remember that, as well as having two different formats, the reviews can
also have different content, since some reviews have a short version
published in C Vu and an extended version on the Web site.

XML Solution
Model

The starting point for our XML solution is to develop a Document Type
Definition that describes the format of the raw information from which we
will generate our documents. Strictly speaking, we could bypass this step,
but then we would have no way of validating the input document – we
would just try to process whatever was given. Note also that XML Schema
[3][4] could have been used to provide a more detailed and robust way of
validating input documents.

<!ELEMENT bookreview (bookdetails, reviewdetails,
reviewbody)>

<!ELEMENT bookdetails EMPTY>

<!ATTLIST bookdetails title CDATA #REQUIRED
author CDATA #REQUIRED
isbn CDATA #REQUIRED
publisher CDATA #REQUIRED
pages CDATA #REQUIRED
priceinpounds CDATA #REQUIRED
priceindollars CDATA #REQUIRED>

<!ELEMENT reviewdetails EMPTY>

<!ATTLIST reviewdetails date CDATA #REQUIRED
reviewer CDATA #REQUIRED>

<!ELEMENT reviewbody (para+)>

<!ELEMENT para (#PCDATA)>

<!ATTLIST para filter (shortonly | longonly)
#IMPLIED>

This simple DTD just says which XML elements are allowed in a book
review, and which attributes each of them may contain. Here is an example
review adhering to this DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE BookReview SYSTEM "BookReview.dtd">
<bookreview>
<bookdetails title="How to Write a Book Review"

author="B. Worm"
isbn="0-123-45678-9"
publisher="A. B. Cee Ltd."
pages="123"
priceinpounds="12.50"
priceindollars="16.00"/>

<reviewdetails date="2003-11-19"
reviewer="Matthew Strawbridge"/>

<reviewbody>
<para>This is an excellent book that tells you
all about how to review books.</para>

<para filter="longonly">You should buy this
book because..., and finally because it’s
two inches thick so it must be good.</para>

<para filter="shortonly">Buy this book.</para>
</reviewbody>

</bookreview>

This example is a hypothetical review of the book How to Write a Book
Review by B. Worm, which was supposedly reviewed by me on the 19th
November 2003. Note that the final two paragraphs provide a long
description for the Web and a short description for the magazine
respectively.

Views
From this single source, we want to generate the following two documents.
Don’t worry if you’re not familiar with RTF or XHTML – the precise
content that gets generated in each case is not that important; the point is
that radically different target documents need to be generated from a single
source.

RTF for Print

{\rtf

{\b How to Write a Book Review}
\par By B. Worm
\par A. B. Cee Ltd. ISBN: 0-123-45678-9, 123pp, UKP
12.50 [$16.00 (1.28)]
\par

\par Reviewed by Matthew Strawbridge on 2003-11-19
\par This is an excellent book that tells you all
about how to review books.
\par Buy this book.}

XHTML for Web

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1/DTD/

transitional.dtd">
<html><head><title>
Book Review -
How to Write a Book Review</title></head><body>

30 CVu/ACCU/Features

31CVu/ACCU/Features

<p>How to Write a Book Review</p>
<p>By B. Worm</p>
<p>A. B. Cee Ltd.

ISBN: 0-123-45678-9,
123pp,
UKP 12.50
[$16.00 (1.28)]

</p><hr/>
<p>Reviewed by Matthew Strawbridge on

2003-11-19</p><hr/>
<p>This is an excellent book that tells you all

about how to review books.</p>
<p>You should buy this book because..., and

finally because it’s two inches thick so it
must be good.</p>

</body></html>

Controllers
The main benefit of using XML to capture the model is the ease with which
it can be parsed, and reshaped into different formats. This is done using
XSLT [5][6], the Extensible Stylesheet Language for Transformations. An
XSLT stylesheet is an XML document that uses pattern matching rules to
transform an XML base document into some other form. Here are the XSLT
stylesheets required for transforming our Bookreview base document into
the two output types.

XSLT for Converting Bookreview to RTF

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:output method="text"/>

<!— RTF should not have any unintentional blanks,
so strip them —>

<xsl:strip-space elements="*"/>

<!— Template that matches the outer bookreview
element and constructs an RTF document from
it —>

<xsl:template match="bookreview">
{\rtf<xsl:apply-templates/>}</xsl:template>

<xsl:template match="bookdetails">
<!— Make the title bold —>
{\b <xsl:value-of select="@title"/>}
\par By <xsl:value-of select="@author"/>
\par <xsl:value-of select="@publisher"/>

ISBN: <xsl:value-of select="@isbn"/>,
<xsl:value-of select="@pages"/>pp,
UKP <xsl:value-of select="@priceinpounds"/>
[$<xsl:value-of select="@priceindollars"/>
(<xsl:value-of select="@priceindollars

div @priceinpounds"/>)]
\par
</xsl:template>

<xsl:template match="reviewdetails">
\par Reviewed by <xsl:value-of select="@reviewer"/>

on <xsl:value-of select="@date"/>
</xsl:template>

<xsl:template match="para">
<!— Include paragraphs only if they either

have no filter, or if the filter is set
to ‘shortonly’ —>

<xsl:if test="not(@filter) or
@filter='shortonly'">

\par <xsl:value-of select="."/>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

XSLT for Converting Bookreview to XHTML

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:output method="xml"
doctype-public="-//W3C//DTD XHTML 1.0

Transitional//EN"
doctype-system="http://www.w3.org/TR/

xhtml1/DTD/xhtml1/DTD/transitional.dtd"
encoding="ISO-8859-1"
indent="no"/>

<!— Template that matches the outer bookreview
element and constructs an XHTML page from it—>

<xsl:template match="bookreview">
<html>
<head>
<title>
Book Review -
<xsl:value-of select="bookdetails/@title"/>
</title>

</head>

Figure 1: RTF output

<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

<xsl:template match="bookdetails">
<p><xsl:value-of select="@title"/></p>
<p>By <xsl:value-of select="@author"/></p>
<p>

<xsl:value-of select="@publisher"/>
ISBN: <xsl:value-of select="@isbn"/>,
<xsl:value-of select="@pages"/>pp,
UKP <xsl:value-of select="@priceinpounds"/>
[$<xsl:value-of select="@priceindollars"/>
(<xsl:value-of select="@priceindollars

div @priceinpounds"/>)
]

</p>
<hr/>

</xsl:template>

<xsl:template match="reviewdetails">
<p>Reviewed by <xsl:value-of select="@reviewer"/>

on <xsl:value-of select="@date"/></p>
<hr/>

</xsl:template>

<xsl:template match="para">
<!— Include paragraphs only if they either have

no filter, or if the filter is set to
'longonly' —>

<xsl:if test="not(@filter) or
@filter='longonly'">

<p>
<xsl:value-of select="."/>

</p>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Performing the Transformation

To actually apply these rules to the
base document, an XSLT processor
must be used. There are a number of
these available as open source
projects on the Web, the two most
well-known being Xalan [7] and
Saxon [8].

These templates really specify only
the minimum amount of information
that is needed to generate the final
documents – there is very little wasted
effort. Imagine deciding instead to
solve the program ‘programatically’,
and parse and transform the XML in a
C++ or Java program. Indeed, XSLT is
a lot more powerful than these simple
examples show.

Further Improvement
These files are only meant as a
demonstration of the method, and there
are many improvements that could be
made to create a better system for real-
world use:
● priceindollars should be

#IMPLIED (meaning optional),
rather than #REQUIRED. In fact,
the system should be changed to
cope with various types of
currency.

● It would be useful to add an enumerated summary, with options such
as ‘highly recommended’, ‘recommended’, ‘not recommended’ and
‘recommended with reservations’.

● Typically, you would want to batch process a number of reviews at
once (or even every existing review, in the case of applying an updated
template to the Web site). There should probably be an outer wrapper,
such as <reviewset> , which can contain one or more <review>
elements, and the XSLTs should handle generating either one long
document, or a separate document for each review, from this collection
of reviews. An alternative would be to set up a make file, perhaps using
Ant [9], which includes support for XSLT transformations.

● The dates need translating from YYYY-MM-DD to a format that is more
pleasant to read.

● In many cases it may be better to write a single XSLT that will convert
from your bespoke format into Docbook, for which there are already
some comprehensive stylesheets for conversion into many formats
including HTML and PDF.

As it is customary to say is such situations, these improvements are left as
an exercise for the reader.

Alternatives
Word Processor Styles

Most modern word processors support styles, whereby a set of properties
can be assigned to segments of text. These styles can then be updated, and
the updates will be automatically applied to all text having that style. While
this follows the ‘separation of concerns’ regarding content and presentation,
there are several key areas in which the XML method is to be preferred.
The main difference is that styles do not transform the contents of the
document, so our example using longonly and shortonly attributes
for paragraphs could not be implemented without the use of macros. It
would also be difficult to regenerate a batch of documents if the template
changes, especially if multiple Save As formats were needed.

Microsoft Word 2003
I have read about the XML support in Microsoft Office 2003, but

haven’t used it myself. I would be interested to know if anyone uses it in
a similar fashion to that described here – at the very least it promises to be
a more user-friendly way of populating the raw XML files than simply
using a text editor.

[concluded at foot of next page]

32 CVu/ACCU/Features

Figure 2: HTML output

33CVu/ACCU/Features

Final Word
Many software developers have a real loathing for any form of
documentation. ACCU members, generally being a well-read bunch, may
have less of an aversion, but one thing is clear – if you dislike writing
documents, then you’ll really hate having to make minor updates to several
hundred of them by hand. By separating out the content (model) from the
presentation (view), and creating reusable templates to generate one from
the other, maintenance of an archive of documents is greatly simplified.
XML and XSLT can be used to implement such an MVC treatment of
documents.

As with most things in the world of computers, there is more than one
way to string a cat (or should that be to cat.toString()?) I am not
advocating that all documents should be written in this way, but for cases
where you have lots of similar documents that do, or may, need to be
rendered in more than one format, this technique should save a lot of time

in the long-run at the expense of a little work up-front. Now, where have I
heard that before?

Matthew Strawbridge

References
[1] XML. http://www.w3.org/XML/
[2] Elliotte Rusty Harold, W. Scott Means. XML in a Nutshell , O’Reilly,
2002
[3] XML Schema. http://www.w3.org/XML/Schema/
[4] Eric van der Vlist. XML Schema, O’Reilly, 2002
[5] XSLT. http://www.w3.org/Style/XSL/
[6] Doug Tidwell. XSLT, O’Reilly, 2001
[7] Xalan. http://xml.apache.org/xalan/
[8] Saxon. http://saxon.sourceforge.net
[9] Ant. http://jakarta.apache.org/ant/index.html

Introduction to C# - Part 2
Mike Bergin <mijobee@xinjen.com>

Welcome Back

Welcome to the second in a series of articles introducing the C#
programming language. In the previous issue the basics of the language
such as variables, methods and classes were covered. In this issue classes
are covered in more detail highlighting an important feature called
inheritance. If you are just tuning in, and have some programming
experience, this article should still be digestible.

Classes, Objects and Types
A Touch of Class

One of the most common descriptions of classes that I have found is, “A
class is a template for creating objects frequently used to model real world
entities such as a bank account or automobile.” This is an excellent and
concise description of a class but for me it helped to relate the idea of an
“object template” to something I was already familiar with. Another place
templates are found is in word processing applications and as it turns out
this is a good analogy.

Document templates specify fonts for different sections, nice borders
and graphics as well as the overall layout. A resume template might
define sections for contact information, objective, work history and
education, including appropriate formatting for headings and body text.
When I need to whip up a new resume I open my word processing
application and create a new document from the resume template. Now
all that’s left to do is fill in the information that is unique to me and I
have a shiny new resume.

A class can also be created that specifies the different sections, borders,
graphics and layout for a resume.

public class Resume {
public string Name, PhoneNumber, Objective;
...
public void Print() {
...

}
...

}

This Resume class contains stringmember variables that store text
for the same sections that the document template provides. It also has a
Printmethod that might print the resume to the screen for review or to
a printer.

Now that we have our template we follow a process similar to creating
our resume with the word processor. First we need to create a new object
from the class just as we created a new document from the word processor’s
resume template.

Resume myResume = new Resume();

Now that we have our handy new object we need to fill in our information.

myResume.Name = "Mike Bergin";
myResume.PhoneNumber = "555-2234";
myResume.Objective = "Make tons of money!";

The resume now contains all of my relevant personal information so now
it’s time to print.

myResume.Print();

There are a few important points to note about this example. The first point
is that when we modify an object, or document, it does not modify the
template. The second point is if we create two objects, or two documents,
from the same template, changes to one of them are not reflected in the
other. For example if I enter my name into one object, or document, it does
not appear in yours, the two are unique entities.

What Type of Person Are You?!
Classes are also called types. This use of the word type is similar to how
people use it to categorize each other. For example a person confronting
someone they are upset with might say, “I didn’t know you were that type
of person.” They are referring to the actions, feelings or thoughts of
someone, just as calling a member variable a type is a categorization of the
methods, actions, and data of that piece of software. Assuming that the
argument is between a wife and her cheating husband the following
example provides a simple representation of “that type of person” in
software.

class Cheater {
string Name, SpouseName, MistressName;
void PerformUnfaithfulAct() {

// Outside the scope of this article
}

}

This snippet of code defines a new class, or type, named Cheater
containing three string member variables and one method. Instances
of this class could be created to represent all the cheating husbands of the
world, all created from the same template, but each unique.

void CreateCheatingHusbands() {
Cheater bob = new Cheater();
bob.Name = "Bob Smith";
Cheater john = new Cheater();
john.Name = "John Doe";

}

Inheritance
Consider a scenario where you need to write a textbook describing each
star in the solar system for an advanced astronomy course. The descriptions
must be extremely precise, covering information that might even change
during the lifetime of the book due to new discoveries in modern science.
The first thing you would most likely do is identify the characteristics

[continued on next page]

shared by all stars. Next you might categorize the different types of stars
based on some common characteristics, for example by size and
temperature grade. Now that the generic characteristics and groups of
similar stars have been identified you might begin writing.

The first chapters of your book would most likely cover the common
characteristics of all stars, which you identified in the initial phases of
analysis. These chapters would contain very general information such
as the chemical elements that stars are composed of, however it would
not contain the amounts because they are different for each star. Next
you would pick a category of star, such as white dwarfs, describing only
what makes that group of stars unique. You would be careful not to
provide any redundant information simply by referring back to previous
sections. Once you had covered each category you would cover each
specific star, providing information about what makes it unique among
its group such as its name, coordinates and precise chemical
composition.

As new discoveries are made some of the information in the textbook
may become invalid. For example an astronomer may discover a new
element present in all stars. Updating your textbook to reflect this
information would be relatively simple because the topic of composition
was only covered once and then referred back to, so the text only needs to
be updated in one place. Another side effect of this approach is that it is
much quicker to describe each star in relation to a set of common
characteristics instead of describing each in isolation.

Source code is essentially a description of the data and behavioural
composition of an application. When a program is written using a language
that allows software to be expressed by modelling real world entities, such
as C#, developers follow the same basic process we did in writing the
textbook. In order to illustrate this let’s apply the same steps to the
development of an address book application used to manage contact
information.

The first step is to identify the common characteristics of all contacts
managed by the application. We perform our analysis by examining a
few examples of contacts the application will need to manage. One
example is our Aunt Marilyn, who we find has a name, phone number
address, birthday and email address. Another example we examine is our
favourite pizza restaurant, and we find that it has a name, phone number,
address and website. Comparing these two examples we find that they
both have a name, phone number and address. Now that we have
identified the characteristics common to all contacts we can write this
description in C#.

public class Contact {
public string Name, PhoneNumber, Address;

}

The next step that we took in writing our textbook was to identify groups
of similar items so we do that next. By performing our analysis of the
characteristics shared by all contacts we have actually identified these
groups, people and businesses. Before writing our description of these two
groups we must keep in mind that we don’t want to provide any redundant
information, we only provide what makes them unique.

public class Person : Contact {
public string EmailAddress, BirthDay;

}

public class Business : Contact {
public string WebSite;

}

You may notice that the name of the Contact class follows the name of
each new class separated by a colon. In C# this notation is used to indicate
that the reader should refer to another section of the source code for more
information. In this case we are saying that the description of Person is
the sum of the description provided and the description of Contact. In
our textbook we would have appended a superscript numeral to a word and
then indicated at the bottom of the page that the reader is to refer back to
a particular section to provide this same indication.

The sun is composed1 of 91.2% Hydrogen, 8.7% Helium
…
1. Refer back to Chapter 12 Composition for more information.

Now that we have identified the common characteristics of all contacts and
the groups, let’s review exactly what we have. First we found that all
contacts have a name, phone number and address. Once we had identified
these traits we described them in the Contactclass. The next product of
our analysis was the identification of two groups of contacts, namely people
and businesses. We found that all people have an email address and
birthday in addition to what was already described in the Contact class,
and described this in the Person class. Businesses were found to all have
a website in addition to what was already described in the Contact class,
so we described this in the Business class. Whew! Now that we have
the hard part done its time to describe each unique entry in our address
book.

In software written in C#, classes are used to describe the groups of
items we are working with and objects are used to represent the members
of those groups. So in this particular case we now create instances of the
Person class for each person in our address book and instances of the
Business class for each business.

Person auntMarilyn = new Person();
auntMarilyn.Name = "Marilyn Bergin";
auntMarilyn.EmailAddress =

"marilyn@somewhere.com";
...
Business pizzaPlaza = new Business();
pizzaPlaza.Name = "Pizza Plaza";
pizzaPlaza.WebSite = "www.pizzaplaza.com";
...

The execution of the code in the last snippet deserves a bit of explanation
so let’s run through it line by line to see what’s happening. On the first
line a new instance of the Person class is created and stored in a
variable named auntMarilyn. The next line stores the string
Marilyn Bergin in the Name member variable of the
auntMarilyn object. When the computer reads this line of code it
looks at the Person class for a description of a member variable named
Name . The computer doesn’t find it there but the class indicates that the
computer should also look at the Contact class for more information,
where it does find a member variable named Name. Next the string
marilyn@somewhere.com is stored in a member variable named
EmailAddress . Again the computer looks back to the Person class
for a description of a member variable and this time it finds it. The same
process is followed for the lines that deal with the instance of the
Business class. The computer looks in the Business class for
information and if it doesn’t find it refers to the Contact class as
indicated.

Inheritance is the ability to describe a section of code in relation to
another section of code. As we saw in the Person and Business
classes, C# provides the inheritance notation, the colon followed by the
name of the generic class, to indicate that everything from that class should
be pulled into a new class that also adds a few items of its own. So when
working with an instance of the Person class we know it not only contains
the member variables defined in its own class definition but also those
defined in the Contact class’s definition as well. This is referred to as
one class inheriting from another class. In this scenario the Contact class
is referred to as the base class or superclass and the Person class is called
the subclass or derived class.

Inheritance is an extremely powerful feature that provides a number of
benefits when used properly. The two main aspects of inheritance to
consider are that it cuts down on the sheer amount of source code and that
many classes can inherit from the same class. Cutting down on the amount
of source code helps us to realize the one of the big promises of OOP, code
reuse. When we reuse code we cut down on development time because we
don’t need to write as much, and maintenance is also cut down, which has
been shown to be more expensive than development in many cases. The
second point to note is that many classes can share the same base class,
and as we will see in the following sections this is another extremely
powerful aspect of inheritance.

There is a fair amount of terminology used when discussing inheritance
and software that supports this feature so before we continue it may be
helpful to provide some definitions. As we have seen a class that is
inherited from is referred to as a base class or a superclass. A class that
inherits from another is called a derived class or a subclass . Also in both
of these scenarios the word type might be used interchangeably with the

34 CVu/ACCU/Features

35CVu/ACCU/Features

word class such as derived type instead of derived class. When a class
inherits from another class the act of doing so is referred to as subclassing.
Inheriting from another and providing additional members or other
customizations is called specialization. You don’t need to commit all of
these to memory, just know they are here if you see some confusing jargon
later.

Leveraging Inheritance
Now that we have explored the basic concept of inheritance and how it is
supported by C# we can move on to some other features that are
implemented through the use of inheritance.

Polymorphism
Polymorphism is the ability of a variab le to reference an instance of the
variable’s delcared type or a subclass of it. For example, a variable of type
Contact could be used to store an instance of either the Person or
Business classes.

Contact contact = new Person();

When an instance of a subclass is referenced using a variable of its base
class’s type, only the members declared in the base type are accessible. In
the preceding example if we had tried to reference the EmailAddress
member variable we would have received an error when compiling the code.
The reasons for this are purely mechanical; only instances of Contact or
one its subclasses may be stored in the variable because we are only
guaranteed that the members defined in the Contact class are supported.

This makes sense because Person inherits all members defined in the
Contact class so it exposes the same methods, properties, variables, etc.
One catch to this is that only the members defined by the variable’s type
may be used no matter what type of object is actually stored in the variable.
Simply put, if we store an instance of the Person class in a Contact
variable we can only access members declared in the Contact class. You
might be thinking that the compiler knows we are storing a Person object
in the variable because the code is on the same line. This is a valid point
in this situation but consider if we used polymorphism when calling a
method.

public void Close(Contact contact) { ... }
public void Main() {

Close(new Person());
}

In the body of the Closemethod we couldn’t know what type had actually
been passed in, just that it supports all of the members defined in the
Contact class. This is compounded by the fact that code might be
introduced at a later time that calls this method, passing an instance of a
class that didn’t exist when the code containing the Closemethod was
written.

Specialization
Inheritance allows us to pull one class’s implementation into another, which
as we’ve seen can be extremely useful. There are many times however
when the inherited implementation doesn’t quite meet our needs, luckily
C# allows us to effectively replace inherited members with our own
implementations. Not all members may be replaced, C# requires class
authors to declare that a member may be replaced using the virtual
keyword. Subclasses may replace virtualmembers by providing one
with the same signature but replacing virtual with the override
keyword.

public class Contact {
public virtual void Save(Connection conn) {
// Save member variable values

}
}

public class Person : Contact {
public override void Save(Connection conn) {
base.Save();
// Save extended member variable values

}
}

In this code snippet we added a new virtualmethod named Save to
the Contact class that saves its member variables. Classes that inherit
this method must replace it with their own, which saves any new
members they introduce in addition to the inherited members. In order
to simplify this task, C# allows subclasses to explicitly refer to members
of their superclass using the base keyword, even when it’s been
overridden. The base keyword allows subclasses to not just replace a
member but to reuse it, in effect customizing the existing member for its
specific purpose.

Combining Polymorphism and Specialization
Polymorphism and specialization can be combined in powerful ways to
develop extremely dynamic software. Here we will make use of the new
Save method introduced in the previous example in an attempt to
showcase some of the power available to C# programmers.

public void Persist(Contact contact) {
Connection conn = GetConnection();
Contact.Save(conn);
CloseConnection(conn);

}

public static void Main() {
Person auntMarilyn = new Person();
auntMarilyn.EmailAddress =

"marilyn@somewhere.com";
...
Business pizzaPlaza = new Business();
pizzaPlaza.WebSite = "www.pizzaplaza.com";
...
Persist(auntMarilyn);
Persist(pizzaPlaza);

}

In the example above we defined a method named Persist that saves
any instance of the Contact class or one of its subclasses. When the
instance of the Person class is passed to the Persistmethod the Save
method implemented in the Person class is called, causing all of its
variables to be saved. When the instance of the Business class is passed
however, only the variables declared in the Contact class are saved
because the Business class did not customize the Save method to
include the variables it introduced. As we can see the Persist method
doesn’t care what the actual type stored in the variable is, only that it
supports the Save method.

Interfaces
The term interface refers to the mechanisms provided to interact with
a class, such as the member variables, methods and properties it
exposes.

An interface is declared in much the same way as a class is declared,
except that it does not provide any implementation, the parts between the
opening { and closing }. A class can declare that it implements a particular
interface and then provide implementations of all the interface’s members.
Variables may declare that they hold instances of a particular interface just
as a variable may declare that it contains an instance of a particular class.
Interfaces cannot be instantiated, but classes that implement the interface
may be stored in one of these variables.

In the section on polymorphism the Contact class defined a method
named Save that saved the values stored in the object’s variables to a
database. Instead of this method being declared in the Contact class
it could have been declared in an interface instead. This might be the
case if you were using a third party persistence framework for example.
The interface provided by the third party framework would be
implemented by objects that need to be persisted, and the framework
would do the rest. In this scenario the Contact class would most likely
implement the interface and provide default implementations for each
interface member. Let’s assume the interface from the persistence
framework is defined as follows.

public interface IPersistable {
public void Save(Connection conn);
public void Read(Connection conn);

}

Assuming this is the interface required by the persistence framework, we
would need to make a few changes to our classes if they are to take
advantage of this new persistence framework. First we would change the
Contact class to implement the interface.

public class Contact : IPersistable {

...

public void Save(Connection conn) {
// Save to the database...

}

public void Read(Connection conn) {
// Read from the database...

}
}

There are a few points to note about this example. First, the notation
used to declare that a class implements an interface is exactly the same
as for declaring inheritance. If a class both inherits from a class and
implements an interface then the interface name follows the base class
name separated by a comma. For example if the Contact class
inherited from a class named Widget then it would be modified as
shown below.

public class Contact : Widget, IPersistable {
...

}

It is legal for a single class to implement multiple interfaces, in which
case each additional interface would be listed in the same comma
delimited fashion. Interface members implemented by a class are
implicitly virtual. Now that we have implemented this interface in our
Contact class, let’s look at the changes we need to make to the
Person class.

public class Person : Contact {
public override void Save(Connection conn) {

base.Save(conn);
// Save members defined in Person

}

public override void Read(Connection conn) {
base.Read(conn);
// Read members defined in Person;

}
}

Notice that we did not explicitly declare that the Person class implements
the IPersistable interface. The reason for this is that interface
implementation is transitive, meaning that because the Person class
inherits from the Contact class it implicitly implements the interface, so
declaring it again would be redundant. In the methods that override the
inherited implementations of the interface members we again make use of
the base class’s implementation, being careful to not reproduce any code
we can reuse.

Now that we have examined how an interface is implemented, let’s take
a look at how these changes might be used in the persistence framework.
The following code snippet might exist in a class that facilitates the
persistence of objects using the framework.

public class PersistenceManager {
public void Persist(IPersistable subject) {

Connection conn = GetConnection();
Subject.Save(conn);
ReleaseConnection(conn);

}
}

This illustrates that the important point that interfaces, like inheritance,
allow for polymorphism. The PersistenceManager class doesn’t
care how the Save method is implemented by the instance passed into the

method, or even what type it actually is. All that matters is that the
parameter implements the proper interface.

Abstract Classes
Abstract classes are a mix between using inheritance to reuse code and
leveraging polymorphism with interfaces. An abstract class may
contain both concrete members and interface style members that don’t
declare any implementation. The concrete members are inherited by
derived classes just as normal methods are and can use the
virtual/override keywords in the same way as well. The
interface style members require that subclasses provide an
implementation for them, just as implementing an interface require the
implementers to do. Essentially that’s all there is to it, so let’s go over
a quick example.

The example we reviewed in the section on interfaces could have also
been implemented using abstract classes. Implementing the persistence
framework using inheritance allows more power to be embedded into the
Contactclass itself. In many cases frameworks that use abstract classes
instead of interfaces take this approach and sometimes are able to minimize
the amount of work on the part of the user of the framework. In this new
example we will be inheriting from an abstract class defined as shown
below.

public abstract class DatabaseObject {
public void Save(Connection conn) { ... }
public void Read(Connection conn) { ... }
public abstract bool IsDirty();
public abstract void ClearDirty();

}

The declaration of this class includes a keyword that we haven’t
encountered before, abstract . The abstract keyword must appear
in the declaration of a class that has any abstract members. This same
keyword appears in the two interface style member declarations IsDirty
and ClearDirty. Just like with interfaces, no implementation is
provided, requiring subclasses to provide it. The abstract keyword
must be used in these declarations because this is not an interface, so it
must be clearly stated if a member is abstract.

In this new framework the Save and Read methods are actually
implemented for us, all that we as the users of the framework need to do
is implement a method that indicates if the object is dirty, meaning that
data has been modified since it was last saved to the database. The
framework might periodically check to see if the IsDirtymethod returns
true and if so call the Save method, followed by a call to the
ClearDirty method to indicate that the values have been saved.
Tracking when changes were made to the object is left up to the object
itself, however they are now automatically saved to the database by simply
returning true from a method call. In closing, the following example
shows how the Contact class might look if it used this inheritance based
framework.

public class Contact : DatabaseObject {

public bool hasChanged;

public override bool IsDirty() {
return hasChanged;

}

public override void ClearDirty() {
hasChanged = false;

}
}

See You Next Time
In this issue we discussed some of the fundamental features of classes.
In the next issue we will cover a few more class-related features, as
well as the type system supported by C#. If you read the first article
and are wondering what happened to the Address Book application, we
will eventually get to incorporate everything we’ve covered. See you
next time!

Mike Bergin

36 CVu/ACCU/Features

37CVu/ACCU/Reviews

Bookcase
Collated by Christopher Hill
<accubooks@progsol.co.uk>

A Note from Francis
The book reviews this time seem to exhibit one
of those odd statistical quirks; there seems to be
a completely disproportionate number of reviews
that can best be classified under the headings
‘Methodologies’. Perhaps it is a sign that we are
moving away from concerns with learning to
program towards being concerned with how
those skills can be appropriately applied in the
software development process. What do you
think?

Francis

The following bookshops actively support ACCU
(the first three offer a post free service to UK
members – if you ever have a problem with this,
please let me know – I can only act on problems
that you tell me about). We hope that you will give
preference to them. If a bookshop in your area is
willing to display ACCU publicity material or
otherwise support ACCU, please let me know so
they can be added to the list
Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865
792792)
blackwells.extra@blackwell.co.uk
Modern Book Company (020 7402 9176)
books@mbc.sonnet.co.uk

An asterisk against the publisher of a book in the
book details indicates that Computer Manuals
provided the book for review (not the publisher.)
N.B. an asterisk after a price indicates that may be
a small VAT element to add.
The mysterious number in parentheses that occurs
after the price of most books shows the dollar
pound conversion rate where known. I consider a
rate of 1.48 or better as appropriate (in a context
where the true rate hovers around 1.63). I consider
any rate below 1.32 as being sufficiently poor to
merit complaint to the publisher.

C & C++
C++ from Scratch by Jesse Liberty
(0 7897 2079 5), Que, 418
pages+CD @ £27-99 (1.07)
reviewed by Paul F. Johnson
I usually like Jesse’s books, but not

in this case. I would not recommend this book to
anyone as it is just badly written.

According to the user level, the book is aimed
at beginners. The book’s style for teaching C++ is
to program first, explain later, which usually is
quite a good idea, but only when what you are
doing is explained properly.

From an early stage, things become annoying,
as the book seems mixed up. It starts by saying
that the code should work on any standard

compliant compiler. So why will it not work on
gcc 3.3? The book looks like it was written by
two people. One person appears to be using a
compiler that rejects iostream.h and does not
use namespaces; the other using a compiler that
accepts old, broken code. This is worse than
useless for a beginner who needs to type in the
code exactly as written and expects it work there
and then, without having to worry about why the
code does not compile.

Other non-compatible features including a
header which is not described for almost 40 pages
after it is first used; using old C headers instead of
C++ headers – there are quite a few instances of
using time.h in place of ctime, as well as
using the C style method of generating a random
number (seed rand() with time(NULL))
instead of the more useful C++ method.

The description of object-orientated
programming is rather weak. Even for a beginner.

While the use of the STL is nice to see, the
descriptions of the object methods and how they
work is poor. This is a common thread. For
instance, there is very little on error trapping
(essential for the program being developed
throughout the book). The index is worse than
useless; it does not cover any of the STL methods
or in some cases, important sections of the book.

UML is supposed to be covered in the book. If
it was, I did not recognise it.

Definitely one to leave on the shelf.

Learning to program in C by N.
Kantaris (0-85934-203-4) Bernard
Babani Books, 126pp
reviewed by Paul F. Johnson
This is one of those handy to have little

books. While it is of limited use to those who are
learning the language (it is too short and the
material is not adequately described), it is very
good to have around for those moments when
your brain decides to go on holiday and you just
cannot remember how to use strncpy!

It is of limited use for those learning as it is
way too short to cram what learners require, plus
it is not exactly up to speed with respects to the
standard (every code example starts with just
main()).

That said, the questions are just taxing enough
to make you scratch your head and the short
descriptions of the functions from the main
headers are enough to prod you in the correct
direction and at seven pounds, it is better than
most books at four times the price!

The two strongest chapters in the book cover
file operations and string handling with the string
handling being far better than the file operations.
The rest do the job, but just in no great depth.

An Introduction to GCC by Brian
Gough (0-9541617-9-3), Network
Theory Limited., 116 @ £12-95 (1.54)
reviewed by Francis Glassborow
There are numerous books purporting to

introduce the reader to C or C++. Some of these
are actually introducing a specific compiler,
indeed some have little if anything to do with

learning to program and a great deal to do with a
specific IDE. The reason that I mention this is
because this book focuses on a set of compiler
tools that are generally referred to as GCC.
Unfortunately, despite the intentions of the author
its title still manages a small amount of mis-
direction. It is about a subset of GCC (GNU
Compiler Collection) and only deals with using
GCC for C and C++ source code.

Please note the use of the word ‘Introduction’
in the title; it is far from being a comprehensive
manual even for the restricted C and C++ parts of
GCC. For comprehensive coverage of GCC you
will need an up-to-date version of Using GCC by
Richard Stallman (published by GNU Press).

Now having warned you about the limited
range of the book let me look at what it actually
achieves. The book attempts to address the broad
needs of newcomers to GCC incorporating the
entire range of programming experience. In
honesty, I think this is over ambitious and I would
not suggest this book to the newcomer to
programming, they have too much else to master
and too much to learn about computer
terminology to feel comfortable with a text at this
level. For the rest, this book seems an excellent
introduction. I have to say seems because I have
had too many years dealing with the technology
to be certain that what is clear to me will be
equally clear to others.

If you can already program in either C or C++
and want to adopt GCC for compiling and linking
your source code you have two major choices;
you can use a command line environment or you
can use some form of IDE. Even when using an
IDE you may need to know details of the
command line invocations if you need to tweak
one or more scripts used by your IDE. You will
also find that some details such as those
concerning optimisation flags are useful even
when using an IDE. While this book does not go
into the level of detail that you will find in Using
GCC, it does give more than enough details to get
you on the right path.

As well as the basics required to use GCC as a
command line compiler/linker for C and C++ the
book includes a few very brief chapters on such
things as platform specific options and how a
compiler works. While the former can be useful I
find the latter has a smell of stretching limited
content to achieve a reasonable page count. Or
perhaps the author genuinely thinks this book is
appropriate to the raw novice. But if that were the
case the language would have to be less technical
and the text would need to go into greater detail.

The final criticism I have of this book is that
the writing style is ugly. I come from the school
of writing that advocates the use of simple
English and advises against such things as the
extensive use of the passive voice and the third
person. Be warned that if you have a similar view
you will be irritated by the author’s writing style.

Despite my critical comments above I think
this book fills a much-needed niche in the
marketplace. Those who are less than expert users
of GCC for C and C++ will find that having this
book on your reference shelf is a cost effective

Reviews

38 CVu/ACCU/Reviews

alternative to having Using GCC to hand.
However do not expect too much, it is only an
introduction and serious users will probably need
more detail.

Beginning Linux Programming by
Neil Matthew & Richard Stones (0-
7645-4497-7) WROX, 848pages @
£26.99
reviewed by Paul F. Johnson

If you want to learn how to program for the Linux
platform, you will not go far wrong with this
book. It covers just about everything you will
need including SQL, Gnome, GTK+, Qt, KDE,
the developers tool chain and how to write shell
scripts.

The code is clear and the discussion and
explanations are excellent. What makes the book
even better is that aspects are not kept in isolation
– the material used in the SQL chapter is used
further on in the book with the Gnome/GTK+
programming material. This helps bring
everything together.

It is assumed that you know how to use gcc
and the basics of C programming. This is not a
big problem.

The only questionable part of the book is the
inclusion of a chapter on writing code for device
drivers, i.e. interacting directly with the kernel.
Not that this a weak chapter, but having such a
chapter in a beginners book is perhaps not that
good an idea. Despite that, the code is fine and
the methodology behind the chapter is clear.

This is an excellent book for anyone wanting
to get involved with the phenomenon that is
Linux. Highly Recommended

Java & C#
Java 2 Weekend Crash Course by
Sanchez & Canton (0 7645 4768 2),
IDG Books, 427 pages+CD @ £15-
99 (1.25)
reviewed by Richard Lee

The title comes from the way the book is
organized; 30 chapters which should take half an
hour each, loosely grouped into 6 sections. If you
are following the course guide, this starts Friday
evening and finished Sunday afternoon. These
contain a run-of-the-mill how to program course
with the text condensed down to fit the given time
frame.

The book does achieve its aim of teaching the
basics of Java programming in a weekend and
there are a couple of nice touches but that is about
the best that can be said.

You do not get to write your first Java
program until chapter 3, the ubiquitous Hello
World example, and you have to wait until
chapter 6 before encountering anything more to
type. The rest is taken up with theory more at
home in an A-level course.

When the programming does start it earnest
it follows a formulaic approach that could have
come straight from a book on programming in
C. It is chapter 11, a third of the way into the
book, before object-oriented programming is
introduced. Recursion and abstract data
structures are briefly mentioned but in this
condensed form, a beginner is unlikely to
understand much and an experienced
programmer likely to be insulted by the noddy
descriptions.

With so much of the book taken up on
introducing the basic elements of the language
and other chapters wasted, there is little room left
for the actual Java programs and the examples.
AWT, the most basic form of creating a GUI in
Java, is squeezed into two chapters with just one
example. Graphic coding gets a single chapter.

More important than what is in is what has
been left out. There is nothing on applet
programming, networking or SWING. The book
fails to develop a single worthwhile application.

Anyone who already knows a different
programming language will find the way the
language is introduced tiresome. I also cannot see
how someone who has not programmed before is
going to learn from this book. Not recommended.

Java and XML by Paul Whithead et
al (0 7645 3683 4), Wiley, 309
pages+CD @ £20-99 (1.29)
reviewed by Silvia de Beer
The book uses a special visual

layout. All sections are laid out on two opposite
pages. The lower half of the pages is used for the
screenshots. However, the topic of this book is
not very well suited for screenshots: mainly
Notepad editors and Command Prompt windows.
The screenshots show the example code, and the
output of the example Java programs. The
examples are showing the use of the various APIs
and the concepts explained in the upper half of
the pages.

Up until page 65, I considered throwing this
book into the bin, if I did not have to write a
review: a very poor book. It explains the Java
language in a very poor way. I consider this
introduction a waste of time because if you do not
know Java, you would not be able to learn to
program in Java from it. The book even tries to
introduce a few OO concepts, it tries to explain
what a class is, but on the other hand, it does not
even mention the concept of an interface. The
introductions on Java and XML contain too many
statements that are very debatable or incorrect.
After page 65, which explains XML, the book is
a bit more useful, but not complete enough. It
covers a little bit of XML, DTD, the SAX API,
DOM, JDOM, JAXP and even less of Schemas.
The appendixes, references on Java and XML,
from page 276 onwards are useless, as they are
very incomplete. The book fails because it is
incomplete.

It almost seems like the authors are
themselves beginners and have not really
programmed in Java. They talk about copying the
various .jar files into the Java sdk installation
path, to avoid setting a classpath. The book also
advises to use the set command in the file
autoexec.bat to set a classpath. I wonder
which operating system they are using! The only
value of the book is the CD, which contains the
Java SDK and the Xerces parser. Of little value of
course, because this is all open source, but handy
if you want to avoid downloading them yourself.

Java Programming for the Absolute
Beginner by Joseph P Russell (0
7615 3522 5), Prima Tech, 502
pages+CD @ £21-99 (1.36)
reviewed by Greg Billington

When this book says it is aimed at the absolute
beginner it means beginner to programming
rather than a programmer with no experience of

Java. That makes it even worse. Making the topic
interesting by gradually building up examples
that are games is a good concept but the book
does not execute the concept very well.

In practice the book launches into Java and
programming in too complex a fashion for the
total beginner, there are lots of abbreviations
(often not explained) and it discusses terms and
concepts that are not explained until a much later
and do not need to be introduced this early. It
seems odd to be using terms like how many bits a
data type has without explaining the term,
particularly considering the audience of this book.
References to hex and octal are not explained and
as you go into chapter 3 it covers methods of the
random and math class before covering how to
use “if” and even what classes are. The flow and
structure of this book does not feel right; covering
try/catch and the basics of exception handling
on page 39 of a 500 page book seems a tad early
for the total novice.

The general jokey examples e.g. snippets of
Metallica lyrics and how to add comments around
them, a fortune teller routine demonstrating
random numbers that prints text such as “You will
talk to someone who has bad breath” doesn’t give
this book much of a professional sheen. It may
well attract young kids who want to write (or
hack) games on their PC but I cannot see it being
interesting to anyone else.

On the positive side, it visually looks nice:
good font, nicely shaded and laid out tables,
screenshots etc and the included CD ROM has
the Java SDK and the source code for the games.

Overall not recommended.

Mastering Jakarta Struts by James
Goodwill (0-471-21302-0), Wiley,
335 @ £27-95 (1.43)
reviewed by Silvia de Beer
This is a guide to making your first

steps using the Jakarta Struts framework. It is a
typical example that the average shelf life of
computing books is not very high, as the
technology of new frameworks like Struts evolve
too quickly. The Struts project was created in
May 2000, the book published in 2002, and I am
reading the book in April 2004. Looking on the
Struts website I notice that a lot of things are not
described at all in the book: the
ValidatorForm, the Tiles extension,
difference between MVC Model 1 and Model 2.

The book contains some curious cut and paste
errors, e.g. Part I in the contents has the title
“JXTA Overview”, it seems like the publisher has
used one of its other books as a template.

The book contains three parts; the first part
forms an overview of Tomcat, JSPs and Struts.
The second part, titled Core Struts, works
through a basic example of how to use Struts.
The third part of the book is not very useful: it
covers the struts-config.xml file, and
four tag libraries (the bean tag library, the html
tag library, the logic tag library and the
template library). They are not treated in a
useful way; they repeat the attributes of similar
tags, often related to equivalent HTTP headers
or HTML tag attributes.

People with relatively little experience in
writing JSPs and using Tomcat, and who want to
read an introduction to Jakarta Struts will still
benefit from reading this book. The book is
pleasantly written, and guides you by the hand

39CVu/ACCU/Reviews

with small understandable and practical
examples.

It is a pity that everything is kept so simple,
and more difficult questions are avoided. For
example, a Plugin is loading a properties file with
the code:

File file = new File(“PATH TO
PROPERTIES FILE”);

This is an excellent opportunity missed to treat
the general problem of how to load a properties
file in a web server’s context.

The Tomcat deployment examples are also too
simplistic; the book does not even mention how
to deploy a web service using a .war file, or
how to use ant or any other tool to compile your
Java files.

Games Programming
3D Games: Animation and
Advanced Real-time Rendering by
Alan Watt, Fabio Policarpo (0 201
78706 7), Addison-Wesley*, 550
pages+CD @ £39-99 (1.60)

reviewed by Dáire Stockdale
This book is the second volume of a pair of books
Alan Watt and Fabio Policarpo on the subject of
3D games. This volume covers topics such as
modern hardware accelerated real time lighting,
character animation and some collision detection
and resolution. It also discusses in depth the
‘Fly3D’ engine, a proprietary engine developed
by Brazilian software company Paralelo.

My biggest gripe with this book is that it is
tied to the Fly3D game engine. I felt throughout
the book that I was reading a manual for a
particular game engine, as opposed to a general
discussion of the subject. In fairness to the book,
it does mention on the back cover that “the
treatment…is built around a specific games
system, Fly 3D SDK 2.0”. The book comes with
a CD which contains the SDK in question, and I
believe it is free for non commercial use.
However I have to be suspicious of a book that
promotes a commercial product without
advertising itself as such.

As the book uses the Fly3D engine as its
frame of reference, I found this limited the scope
of discussion on many of the topics. Instead of
explaining the pros and cons of different
approaches used by modern games engines to
solve problems in this field, as is the case with
Eberly’s “3D Game Engine Design” book, we are
presented only with the method used by the
Fly3D engine. This also led to a tendency to
present methods as being definitive, when in fact
the designer of a game engine system might be
better served by different approaches. An
example is the engine’s use of the Binary Space
Partitioning system to accelerate various engine
systems. Perhaps in the first volume this system
and its merits are discussed and compared with
other methods of spatial partitioning; however in
this book its use forms the basis of several
chapters of discussion, all with relation to the
Fly3D engine, without mention of alternatives.

Where the book was not discussing the Fly3D
engine, and instead focused on specific topics
such as lighting equations, it became much
stronger and much more interesting and
enjoyable for me to read. Techniques that are only
just beginning to leak into commercially available
games; such as BRDF lighting and per-pixel

lighting are covered clearly and well, and were
very informative. These are the best chapters of
the book, where it becomes a technical and
enlightening read about often-difficult subjects. I
suspect that these chapters were authored by one
person, and the chapters concentrating on the
Fly3D engine and pseudo code by another.

In summary, if you are interested in learning
about how 3D engines work, and are happy to use
the Fly3D engine as a learning tool, or perhaps if
you are considering using the Fly3D engine
commercially, then this book will be useful to
you. Good as the more generic and technical
chapters are, I am not sure they justify a purchase
of this book. Perhaps the authors would consider
revising the two volumes of this series, and
release one that contains only the (excellent)
generic discussions, and another volume that
focuses on the Fly3D engine?

Microsoft Visual Basic Game
Programming with DirectX by
Jonathan Harbour (1 931841 25 X),
Premier Press, 1100 pages+CD @
£43-99 (1.36)

reviewed by Paul F. Johnson
This is one very large book, which is well written
by an author who knows his stuff about games
programming. Now, I’m not a fan of Visual Basic
(I’m not a fan of its object model or how it
works), but DirectX I do like; it is one fantastic
library – I honestly wish there was an open source
version.

The book clearly explains DirectX and how to
use it with VB in very logical sections. Normally,
sectioning things is not a good idea, but with
something as extensive as DirectX and how you
have to write a game, it had to be that way.

Unfortunately, the book is now 2 years old and
as such, only covers DirectX version 8. While it’s
perfectly usable, the advantages of DirectX 9
over version 8 do make games development a lot
easier. That is not a fault of the book though,
more a problem with the pace of software
development.

One of the biggest plusses is that the book also
comes with some complete games towards the
end and the development process is well defined
in the book. It is good to be able to see how the
games work and develop; it certainly helps the
learner when they don’t have some little code
snippet which doesn’t really help explain very
much and in isolation, doesn’t help with the
understanding.

The book also covers object programming,
network gaming, advanced techniques – in fact,
just about everything you could want to know to
develop your own games under Visual Basic.

The CD that comes with the book contains
plenty of demos as well as the DirectX 8 SDK.

A growing number of universities in the UK
are now offering Computer and Video Games
courses with a push towards XBox programming.
If you intend to go to one of these establishments,
then quite possibly, this is one book you should
think about packing.

Beginning C++ Game Programming by Michael
Dawson (1-59200-205-6) Thomson, 335pages
@ £18-99
reviewed by Paul F. Johnson
By the time this review arrives into C Vu,
colleges and universities in the UK will only be

about a month and a half away from the start of a
new academic year and with that, there is a new
cohort of students going into the increasingly
popular Computer and Video Games courses.

Typically, the first year of these requires the
students to learn C++ and unfortunately, the
quality of the books often recommended are very
poor (such as Teach Yourself C++ in 28 days) -
the reason for the recommendations are normally
down to a very short amount of time before the
next stage of the course.

Up to now, there were few decent books that
taught C++ (and the STL) and how to use these
within a game. This book fills the void. It is a
very good book that covers the required material.
It does require you to have to a bit more
knowledge than a beginner, but not be an expert.
As the book is a 2004 vintage, it is also standard
compliant (okay, it explicitly has return 0 at
the end of main() which is no longer required,
but that is minor).

The book covers the major aspects of C++
(such as inheritance and encapsulation) in a very
easy to understand and accessible way. The
examples for the games are clear, concise, well
documented, and very carefully explained. It uses
nothing other the STL to demonstrate how to
implement the code, which means that anyone
with a new-ish compiler can join in the learning.

Why does it not get the highly recommended
rating?

The chapter on pointers really lets the book
down. While the explanations and diagrams make
it easier to understand than many books, it is still
made more complex than is really required. There
is also no form of exception handling when new
is used – a fundamental flaw with no real excuse
for why is it not treated. There are too many times
that I have seen code from second year students
where memory handling goes unchecked. It is a
pity this was omitted.

If your offspring is off in September, pack a
copy of this book and they will not be sorry.
Recommended

Methodology
A Practical Guide to Enterprise
Architecture by James McGovern et
al. (0 13 141275 2), Prentice Hall, 306
@ £31-99 (1.25)
reviewed by Richard Stones

This book sets out to be about enterprise
architecture and has been written by six authors,
some of whom are well known in the architecture
field. Unfortunately, it lacks the necessary
organisation and structure to tie their
contributions together in a way that gives the
reader any real insight into the practice of
enterprise architecture.

I expected the book to adopt some
overarching approach to enterprise architecture,
to start with an explanation of this approach and
then to set each of the topics in that context.
However, after a brief exposition of a framework
in the preface, it dives straight into Chapter 1 on
systems architecture, which jumps between
levels, having sections on detailed technical
subjects such as TCP/IP and higher-level themes
such architectural types. This is characteristic of
the whole book – some chapters are truly about
architecture, while others are much more about
detailed application development. Most chapters

40 CVu/ACCU/Reviews

are about some aspect of architecture: software
architecture, service-oriented architecture, data
architecture, and so on, but nowhere is the idea of
enterprise architecture developed. There is a brief
section on the Zachman Framework in the
chapter on methodologies, but it is discussed in
the context of Extreme Programming, the
Capability Maturity Model, Model-Driven
Architecture and the Rational Unified Process,
not with other candidate enterprise architecture
frameworks.

To me, this is a book that has been written by
six different people from different perspectives
with little attempt to provide any real framework.
In the conclusion of the chapter on software
architecture the author of that chapter states
“Enterprise architecture is in many ways a
product of the combined software architectures of
the systems in the organization.” If that is the
case, you have to ask what the need is for the
other eleven chapters in the book. Perhaps his co-
authors did not tell him.

The book also lacks consistent copy-editing,
with stupid errors, like “parishioners” for
“practitioners” and the plural of “criterion”
spelled “criterions” and “criteria” in the same
paragraph.

If there is a theme in the book, it is the idea of
Agility and Agile Architecture, referred to in the
preface and in some chapters but not others. This
subject has potential for an interesting book but,
unfortunately, this book is not it.

Agile Documentation by Andreas
Ruping (0-470-85617-3), John
Wiley & Sons Ltd, 226 @ £22-50
(1.56)
reviewed by Anthony Williams

The title of this book is “Agile Documentation”,
but almost everything it says is applicable to
documentation for any project, whatever
methodology is used. Indeed, much of what is
said is common sense if you think about it – but
how often does anyone really think about it?

Reading this book forces the issue, and
hopefully encourages one to think about the
purpose, readership and content of documentation
a bit more in the future. However, some of the
content is particularly important when trying to
use an Agile development method, since it
contributes to reducing the effort that is wasted on
unused or unnecessary (or even unusable)
documentation, whilst ensuring that the
documentation that is produced is both necessary
and sufficient for the project’s needs.

The subtitle is “A pattern guide for producing
lightweight documents for software projects”,
which is quite apt. Essentially, the book consists
of a set of patterns, divided into 5 groups, each of
which describes a particular problem associated
with documentation, and some discussion of the
solutions. The key points are summarised in what
the author calls “thumbnails” – a couple of
sentences which appear in bold type in the pattern
description, and which are then repeated in the
“thumbnails” section at the back of the book.
These enable you to browse through the book,
reading each pattern heading and the
corresponding thumbnail to get an overview of
the pattern and determine whether it is applicable
for your current situation, or jog your memory.

The patterns are not just presented on their
own, they are backed up by experience reports

from a number of projects that the author has
been involved with. These are used both within
the pattern descriptions, and in a separate section
at the end of each chapter.

They are not all positive, and are used to
highlight the dangers of not following the patterns
from the book, as well as the benefits of doing so.
Overall, they give the advice a place of reference,
and are the source of numerous examples.

One slight issue I had with the book was the
number of typos, which was particularly
unexpected given the subject matter. However,
this did not detract too significantly from my
overall impression: Highly Recommended

Agile Project Management by Jim
Highsmith (0-321-21977-5),
Addison-Wesley, 276 @ £26-99
(1.30)
reviewed by Alan Lenton

After reading the first couple of chapters I was
starting to get a little leery of this book, but then
suddenly it changed completely, to become one of
the best I’ve read on the subject of project
management. The problem was that the book tries
to mix advocacy for agile development with hard-
headed, well written, how-to-do-it material.

The advocacy stuff is in the first few chapters,
and lays it on with a trowel, but once you get
through that section of the book, there follows an
excellent exposition of agile project management
strategies and techniques.

However, this book isn’t just for agile
practitioners, it also has valuable insights for
those who are managing non-agile projects. The
book’s particular strengths are in its discussions
of leadership, and the decision making process. I
don’t think I’ve ever seen a decent discussion on
decision making before.

The book does deal with the management of
large teams, but not in enough detail for my
liking, which is unfortunate, because that seems
to be where I hear the most criticisms of agile
development strategies.

All in all, a useful book, both for project
managers and for programmers who have project
managers they need to train!

Definitely recommended.

Agile Management for Software
Engineering by David J Anderson
(0-13-142460-2), Prentice Hall, 312
@ £35-99 (1.25)
reviewed by Jon Steven White

Agile Management for Software Engineering is
targeted at managers, team leaders and executives
within the IT industry. It sets out to explain how
to achieve lower cost, faster delivery, improved
quality, and focused alignment within a business.

The first part of the book covers all aspects of
Agile Management including production metrics,
project management, project planning, resource
planning, product management and financial
metrics. The author does an excellent job in
describing how and why traditional cost
accounting systems fall short in software
development, and how this can be improved
through the application of the Theory of
Constraints, a concept originating from the world
of manufacturing. Each topic is described very
clearly, providing solid background information
and real-world discussions to back-up convincing
conclusions.

The latter part of the book provides a survey
and comparison of a number of software
development methods. This part of the book is
particularly useful to anybody who needs to
manage a change to Agile development, and to
choose the most suitable Agile methods for their
organisation. Again, the author provides solid
information with clear and useful diagrams.

Agile Management for Software Engineering
is the best book I have read on Agile software
engineering. Writing with clearly extensive
knowledge and experience in this area, the author
convinces the reader very quickly of the
advantages of Agile development. Agile methods
have been around long enough now to prove that
they do actually work. If you are interested in
managing a change to Agile development, curious
as to what it can offer, or just want to question the
way your organisation currently works, then I’d
highly recommend this book.

Building J2EE Applications with the
Rational Unified Process by Peter
Eeles et al. (0-201-79166-8), Addison
Wesley, 265 @ £30-99 (1.29)
reviewed by Fazl Rahman

I became sceptical early on reading overflowing
praises in the foreword and preface, but my major
gripe must be the chapter titles being
unnecessarily repeated in full at every reference.
Halfway into the book it chafed, though others
may disagree. (Typesetting/binding is good
though.) Another gripe: I found myself scratching
my head a lot at such things “Design subsystems”
and “Design packages” being used in the same
breath, and needed the appendices often to look
up their distinction.

Cutting to the chase: Chapter 2 gives a concise
and useful introduction to J2EE. The waffle starts
to creep in at Chapter 3 introducing RUP, then I
found it progressively harder to pay attention
until chapter 6 on Requirements where I liked the
material on reviewing and getting user sign-off on
requirements ‘artifacts’ [sic], also something I’ve
rarely seen mentioned in use-case modelling
treatments. (The authors provide a nice checklist
of items such a review should cover on p 84.)

The section on User Experience Modelling (in
Chapter 7) is a gem – an insightful exploration of
the GUI within a Use Case based UML model,
going beyond just labelling GUI classes with the
<boundary class> UML stereotype.

Overall though, after the glowing enthusiasm
in the forewords etc (by more than one person) I
felt disappointed. Frankly I had to force myself to
revisit this book. If I was working on a J2EE
project using RUP, I’d probably be happy
spending under £25 and (force myself to) read it
again.

Enterprise Integration Patterns by
Gregor Hohpe & Bobby Woolf (0 321
20068 3), Addison-Wesley, 685 @
£34-99 (1.29)
reviewed by Richard Stones

Enterprise Application Integration is big business
these days. Many companies are finding that their
businesses demand more “joined up thinking”
and a more agile approach to changing business
environment. Previously unconnected systems
have to be connected and new interfaces
developed. Completely new applications, for
example selling and claiming on insurance

41CVu/ACCU/Reviews

policies over the Internet, are being demanded of
legacy mainframe, batch-mode IT systems.
Software vendors are keen to market solutions to
these integration problems. EAI tools that are able
to interconnect many types of applications and
systems, that can integrate web services and form
part of a service oriented architecture are fast
becoming the centre of an integrated business.

Enterprise Integration Patterns is an attempt to
formally describe EAI functionality,
concentrating almost wholly, and
unapologetically, on messaging as the basis for
integration.

The book appears on the surface to be
jumping on a “pattern bandwagon”. There are
many books that claim patterns can be used in a
wide variety of different fields of endeavour, and
in my experience, few really deliver. However,
Enterprise Integration Patterns makes good use of
the pattern paradigm to describe how messaging
can be used as the basis of an integration
platform.

Some of the 60 or so patterns described in the
book are fairly simple. For example, the
publish/subscribe channel will be familiar with
anyone that has used an EAI or messaging
middleware. Here though, the patterns are used to
give common names and notations for features
that have different nomenclature in products from
different software vendors. A cross-reference of
the patterns to commercial product features is
sadly absent. The pattern catalogue is available
online at
www.EnterpriseIntegrationPatterns.com

Anyone faced with the task of integrating
applications in their business using a messaging
model or EAI tool will benefit from this book. It
succinctly describes many EAI features as
patterns, pointing out how and where these
features can be used. There are also some worked
examples implemented with several technologies
such as JMS and Web Services, and mainstream
EAI products from vendors including TIBCO and
Microsoft. Having said this, the book does aim to
stay vendor neutral, and in this is largely
successful. If you are doing EAI, recommended.

Software Architect Bootcamp 2ed
by Thomas J. Mowbray and
Raphael Malveau (0 13 141227 2),
Prentice Hall*, 350 @ £39-99 (1.25)
reviewed by Emma Willis

This book has been written as a guidebook for
anyone thinking of venturing into the world of
software architecture from either management or
development backgrounds. As you would expect
from any good book, it has recently been updated
to address changes in the technologies and
processes that it examines; this includes a refocus
on enterprise technology frameworks e.g. .Net
and Java, and a brief introduction to emerging
technologies such as Web Services and other
XML technologies.

The running theme throughout the book is that
of the Army ‘bootcamp’. Each chapter has a
name and an introduction that lamely tries to tie
the chapter’s content to the Army theme. I wasn’t
that impressed!

As a junior developer, I felt that there were
areas of the book addressing my desire to rise in
the development ranks – providing me with
direction, inspiration and lessons to learn in
software architecture that could make me stand

out from the ‘mass’ of developers. Additionally, I
found some areas of the book to be targeted at
those with many more years of experience –
perhaps those that had already started their steps
into Software Architecture but who need
direction, or perhaps need help in addressing
problems that they have experiences along the
way.

The book includes an introduction to
enterprise technologies such as OO-
Programming, delving into .Net, Java and
particularly CORBA; then explains where these
technologies and tools could usefully be
deployed. There is also an introduction to design
patterns, to software engineering practices, to
people management, documentation and
communication management and, perhaps the
crux of the book – to software architecture lesson-
learning and decision-making.

This book is packed full of diagrams and
textual examples. Each exercise at the end of the
chapter contains an anecdote from the authors.
Towards the back you will find an appendix of
UML, software engineering and software
architecture titbits for future reference.

I loved this book. I shall keep it with me and
aim within 5 years to be in the great places it
suggests I can be.

Software Development for Small
Teams: A RUP-Centric Approach by
Gary Pollice et al (0-321-19950-2),
Addison Wesley, 272 @ £30-99 (1.29)
reviewed by Giles Moran

This book follows the progress of a voluntary
software project from start to end. The team
performed all of the work in their spare time and
were geographically dispersed adding to the need
for a process. The team was already familiar with
the RUP or Rational Unified Process and had
access to some of the Rational tools at their
everyday places of work.

The book focuses on all aspects of the projects
from the initial construction of the team all the
way through to the final post-mortem. The book
follows the RUP phases with each phase lasting a
number of chapters.

The initial chapters introduce the team and
give an overview of the project and the process.
The project gets started by chapter 4 where the
team discusses various aspects of the project such
as milestones and communication methods. The
standard RUP phases then follow: inception,
elaboration, construction and transition, each as a
chapter. These chapters are a good ‘by example’
introduction to RUP. Implementation details
follow the chapters on elaboration and
construction. The book ends with a useful project
post-mortem (which should be compulsory in all
projects IMHO), and a useful appendix.

The RUP is usually criticized for being too
large and heavyweight for use by small teams and
this book goes some way to addressing this point.
The problem is that the team members already
know about RUP, and I still think that any team
starting out is still going to find RUP daunting.

I liked this book; it is highly readable and
entertaining. I learned a lot about RUP and found
myself in agreement with the authors about a lot
of the points raised. The constant RUP references
did annoy, as it wouldn’t have taken much to
generalise the book for a larger audience. For
instance, when discussing version control,

ClearCase is used even though the authors agree
that it’s far too heavyweight for the project. A
small discussion on other source control systems
such as CVS would have been useful. I know that
the subtitle of the book is “A RUP-Centric
Approach”, but it wouldn’t have taken much to
make this a more general “Iterative-Centric
Approach”.

The problem with recommending this book is
its scope. Small teams embarking on RUP would
gain something by reading it, so for this particular
subset of the readership I’d recommend it.

I wanted to read this book as I work in a small
team and have wanted to get some ideas on how
to improve the development process. I’ve gained
some useful ideas from this book and will
encourage other members of my team to read it.

Software Fortresses : Modeling
Enterprise Architectures by Roger
Sessions (0-321-16608-6), Addison-
Wesley*, 277 @ £26-99 (1.30)
reviewed by Giovanni Asproni

An introduction to a new methodology for
modelling enterprise software architectures: the
Software Fortress Model. As the name suggests,
the primary goal of this method is the
development of systems that are both secure and
reliable – arguably the two most important
characteristics an enterprise system should have.

The book is aimed at anybody working in a
large corporate organization that has a stake on its
IT architecture, including developers, architects,
technical managers, and the end users.

The Software Fortress Model has two main
building blocks. The first the Software Fortress –
a “conglomerate of software systems serving a
common purpose” that “work together in a tight
trust relationship to provide consistent and
meaningful functionality to a hostile outside
world”. The second the Software Fortress
Architecture – an “enterprise architecture
consisting of a series of self-contained, mutually
suspicious, marginally cooperating software
fortresses interacting through carefully crafted
and meticulously managed treaty relationships.”

The methodology also includes a graphical
notation, derived from UML, and an adaptation
of the Class Responsibility Cards called Fortress
Ally Responsibility cards (FAR).

The book is well written and informative: it is
readable, contains several interesting ideas, and
does not require a strong technical background to
be understood.

The book is let down by only two things.
First, it lacks a bibliography section. In my

opinion, this is a major problem. New ideas are
seldom developed in a vacuum – the author
himself admits that many of the ideas in the book
are not really new – and knowing what
influenced their development can be useful for
understanding them better.

Second, some opinions are misrepresented as
facts. For example, the comparison of the costs of
choosing .NET versus J2EE in paragraph 15.5 is
based more on gut feelings than on evidence.

That said, even with its weaknesses, I think
that this book is a valuable read for anyone
interested in enterprise software architectures,
also for people working in small organizations –
even if the author claims that the Software
Fortress Model is “overkill” for them.

Recommended.

42 CVu/ACCU/Reviews

Due to lack of space not all book reviews could be printed in this issue. Reviews of the following books can be found on the website (www.accu.org) and will
be printed in the next issue if space permits.

Fast Track UML 2.0 by Kendall Scott (1-59059-320-0), APress, 173 pages $24.99 reviewed by Derek Graham

The Object-Oriented Development Process by Tom Rowlett (0 13 030621 5), Prentice Hall, 421 @ £43-99 (1.25) reviewed by James Roberts

UML Xtra-Light by Milan Kratochvil & Barry McGibbon (0 521 89242 2), CUP, 106 @ £15-99 (1.31) reviewed by James Roberts

Database Topics
Mastering Data Warehouse Design by Claudia Imhoff et al. (0-471-32421-3), Wiley, 438 @ £31-50 (1.43) reviewed by Richard Stones

Practical RDF by Shelley Powers (0-596-00263-7), O’Reilly, 329 @ £28-50 (1.40) reviewed by Ivan Uemlianin

The Definitive Guide to MySQL 2ed by Michael Kofler (1-59059-144-5), Apress, 802 @ £35-50 (1.41) reviewed by Christopher Hill

Computer Theory
Basic Category Theory for Computer Scientists by Benjamin C. Pierce (0-262-66071-7), MIT, 100 @ £14-99 (1.53) reviewed by Francis Glassborow

User Interface
User Interfaces in C#: Windows Forms and Custom Controls by Matthew MacDonald (1-59059-045-7), Apress, 586 @ £35-50 (1.41) reviewed by
Andrew Murphy

Interaction Design for Problem Solving by Barbara Mirel (1-55860-831-1), Morgan Kaufmann, 397 @ £29-99 (1.50) reviewed by Francis Glassborow

User Interface Design by Jenny Le Peuple & Robert Scane (1 903337 194), Crucial, 128 @ £12-00 (1.41) reviewed by Francis Glassborow

Visual Programming by David J. Leigh (1 903337 11 9), Crucial, 142 @ £12-00 (1.41) reviewed by Francis Glassborow

The Web
Web Design Tools & Techniques by Peter Kentie (0 201 71712 3), Peachpit Press, 436 @ £29-99 (1.33) reviewed by Christopher Hill

More Eric Meyer on CSS by Eric A. Meyer (1-7357-1425-8), New Riders*, 270 @ £34-99 (1.29) reviewed by Francis Glassborow

Web Caching by Duane Wessels (1 56592 536 X), O’Reilly, 300 @ £28-50 (1.40) reviewed by Christopher Hill

Leisure
Dancing Barefoot by Wil Wheaton (0-596-00674-8), O’Reilly, 115 @ £9-95 (1.50) reviewed by Francis Glassborow

The Rational Unified Process Made
Easy by Per Kroll & Philippe
Kruchten (0-321-16609-4), Addison-
Wesley, 416 @ £30-99 (1.29)
reviewed by Giles Moran

The book starts with a quick overview of the
RUP (the Rational Unified Process) and some of
the Rational tools. It may be best to skip this
chapter as it is mostly marketing material for
Rational products. Chapter Two describes the
philosophy of the RUP by stating the basic
principles. They seem fairly sensible and cover
most of the items lists in the Agile Manifesto. The
RUP is then compared with a number of other
software processes to explain how RUP can and
is used. A number of example projects are the
introduced ranging from a one man one week
project to a large distributed project run over two

continents. The one-man project is then expanded
in the next chapter to very clearly illustrate all of
the points raised so far.

Part Two of the book examines the life cycle
of a RUP project in more detail. The four phases
of a RUP project (inception, elaboration,
construction and transition) area covered by
separate chapters again using the example
projects to aid comprehension.

Part Three is concerned with how to adopt the
RUP within an organisation. This starts with a
chapter on how to initially configure the RUP. As
this chapter deals mainly with RUP software and
tools, it was not that useful, as I do not have
access to them. The next chapter (Chapter
Eleven) is more useful and offers practical advice
on how to actually adopt the process. All of the
advice seems very sensible, adopt a little bit first,

and perform a pilot project to evaluate what parts
of RUP are required, all sensible stuff. Chapter
Twelve deals with how to adopt an iterative
project and is followed by a chapter of RUP anti-
patterns.

The final part of the book offers a view on
how RUP affects project managers, analysts,
developers and testers; each role is the subject of
a chapter. A good glossary (required for all the
TLAs) and references then complete the book.

“The Rational Unified Process Made Easy”
is subtitled as a practitioners guide and in
essence that is exactly what it is. It offers a
clear and concise introduction to the RUP and
the toolset, augmented with good advice and
examples. This book is suited to a
developer/analyst or manager who will be
using the RUP in the near future.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor disparage any trade
mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is, by default, assumed
to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers, no material can be
copied from C Vu without written permission of the copyright holder.

