

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

February 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Mean Properties
Russel Winder walks us through an example of
properties an arithmetic mean function should have.

8 The Importance of Back-of-Envelope
Estimates
Sergey Ignatchenko reminds us why back of the
envelope calculations matter.

13 Multiprocessors and Clusters in Python
Silas S. Brown shows us various ways to do
multiprocessing in Python.

16 doctest - the Lightest C++ Unit Testing
Framework
Viktor Kirilov introduces doctest, a C++ unit testing
framework.

20Correct Integer Operations with Minimal
Runtime Penalties
Robert Ramey introduces a library to enforce
correct numerical calculations.

28Afterwood
Chris Oldwood reminisces on various approaches to
finding a good candidate for a job.

OVERLOAD 137

February 2017

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication
in Overload 138 should be
submitted by 1st March 2017 and
those for Overload 139 by
1st May 2017.

EDITORIALFRANCES BUONTEMPO
They also provide quicker ways to calculate transformations in computer
graphics, compared to matrices. Surprising things happen when you
question things that seem certain, obvious or no-brainers.

Revisiting Hofstadter reminded me of Euclid’s fifth axiom. I remember it
as given a ‘straight line’ and a point not on the line, there is only one way
to draw a line through that point which doesn’t cross the line, though this
appears to be Playfair’s axiom [Playfair]. The fifth axiom, or parallel
postulate, is more usually stated as

If a straight line crossing two straight lines makes the interior angles on
the same side less than two right angles, the two straight lines, if
extended indefinitely, meet on that side on which are the angles less
than the two right angles. [Cut-the-knot]

For the MU puzzle, MI was given as an axiom; you assume it is ‘true’ or
take it as given and see what follows. We can do likewise with Euclid’s
axioms, and derive theorems of Euclidean geometry, such as the internal
angles of a triangle sum to 180°. The thing about axioms or principles is
they are more like guidelines. The inner child shouts ‘But why?’ then
finds out what happens if you disobey the claimed ‘rules’. By dropping
Euclid’s parallel postulate, you develop or discover so-called Non-
Euclidean geometries. For a hyperbolic geometry, parallel lines get
further apart, whereas for an elliptical geometry they get closer together.
The fifth postulate got picked on because it seemed untidy compared to
the others, which in essence defined a straight line, circles and right
angles. Many people tried to prove the fifth postulate, using just the first
four and all failed. In the process, counterintuitive, yet consistent
geometries were discovered. Poincare accepted these counterintuitive
ideas, paving the way for Einstein [Barbosa]. It is worth noting that
special relativity’s use of non-Euclidean geometry is not equivalent to
saying it is ‘true’ or correct, just that the more counterintuitive
mathematical setting made the scientific theory simpler. This echoes the
quaternions; a different representation with fewer or different constraints
can give more powerful or simpler ways to approach puzzles.

Many scientific theories are referred to as ‘Laws’, for example Kepler’s
laws of planetary motion. This suggests they are unbreakable and in some
sense fixed. Newton took on board Kepler’s ideas, and talks of Kepler’s
guesses, deductions and discoveries; he did not describe these as laws.
Any ideas, be that scientific or otherwise, tended to be described as
‘philosophy’ at the time. It seems Voltaire first introduced the term ‘Law’
of Kepler’s philosophy, where he describes the area rule as a ‘Law
inviolably observed by all the Planets’ [Wilson]. Using the word law
suggests either a divine decree, or a rule following from the essence or
nature of the planets and indeed space. They are fundamental principles,
which fit observation. Most people would just take the term on board
nowadays, without giving it too much thought. We tend to regard
scientific models as something which fits observations, but expect them
to change and evolve over time. Our thinking about science, and indeed
thinking itself, changes over time. Similarly, our approach to coding has
changed over time. Some things are driven by trends or new language
features. Other things are more fundamental; the move to structured code
changed how we wrote and reasoned about code. Introduction of object
oriented programming has an effect. Attempting to write in a functional
language influences how you solve a problem. I wonder what we might
discover if we looked at coding standards through the last decades?
Would we see trends and changes? Perhaps they should actually be

referred to as conventions, or guidelines. Some laws are more like models,
and others an attempt to enforce a norm. They can still be questioned or
modified over time. They may be governed by some guiding principles,
like fit our current observations, communicate clearly, or be nice. Laws
and conventions give ways to assess and reason about things, but should
never be set in stone.

In general, our syntax and abstractions allow us to frame problems in
different ways, which in turn can make analysis easier or, if we are not
careful, more difficult. We see this when we try to add features to code,
or even test it. Sometimes an abstraction introduced in just the right place
allows us to hook something different in, be that a test or a new feature.
Sometimes this was a deliberate choice from a developer, or we just got
lucky. Kevlin Henney [Henney] wrote about what he coined ‘The
Uncertainty Principle’ for Overload a few years ago. In particular, he said,
‘in software development, a lack of certainty about something can be part
of the solution rather than part of the problem.’ Rather than having a long
meeting and countless arguments when a choice is presented, he
advocates structuring your code so it doesn’t matter which is chosen.
Hiding the choice between an algorithm or lookup table behind an
interface helps to ‘mark out the boundaries in a software system and
loosen the coupling’. Using uncertainty as a positive force is a great
guideline.

Uncertainty can be unnerving, but if you embrace it and remember all the
times it has driven new discoveries this should give
you hope. We don’t know everything, and there is
always room for improvement. Let’s see what chaos,
new discoveries and surprising, unpredicted results the
New Year brings.

References
[Barbosa] Pedro M. Rosario Barbosa The Relation between Formal

Science and Natural Science: Underdetermination of Science
Project http://pmrb.net/uos/?q=4_3_2

[Cut-the-knot] http://www.cut-the-knot.org/triangle/pythpar/Fifth.shtml

[Henney] ‘The Uncertainty Principle’, Overload 115, June 2013
https://accu.org/index.php/journals/1854

[Hofstadter] Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal
Golden Braid, New York: Basic Books, 1979.

[Playfair] Playfair, J. Elements of Geometry: Containing the First Six
Books of Euclid, with a Supplement on the Circle and the Geometry
of Solids to which are added Elements of Plane and Spherical
Trigonometry. New York: W. E. Dean, 1861. (according to
http://mathworld.wolfram.com/PlayfairsAxiom.html)

[Wikipedia] https://en.wikipedia.org/wiki/MU_puzzle

[Wilson] Wilson, Curtis ‘Kepler’s Laws, So-Called’, HAD News
(Historical astronomy division of the American Astronomical
Society, May 1994. https://had.aas.org/sites/had.aas.org/files/
HADN31.pdf

[XyProblem] http://mywiki.wooledge.org/XyProblem
February 2017 | Overload | 3

http://pmrb.net/uos/?q=4_3_2
http://www.cut-the-knot.org/triangle/pythpar/Fifth.shtml
https://accu.org/index.php/journals/1854
http://mathworld.wolfram.com/PlayfairsAxiom.html
https://en.wikipedia.org/wiki/MU_puzzle
http://mywiki.wooledge.org/XyProblem
https://had.aas.org/sites/had.aas.org/files/HADN31.pdf
https://had.aas.org/sites/had.aas.org/files/HADN31.pdf

FEATURE RUSSEL WINDER
Mean Properties
Property based testing is all the rage. Russel
Winder walks us through an example of properties
an arithmetic mean function should have.
n the article Testing Propositions [Winder16], I used the example of
factorial to introduce proposition-based testing. One of the criticisms
from an unnamed reviewer was that it was not clear what constituted a

proposition; the test code looked very much like the implementation code,
confusing the message. The reviewer had clearly missed the point, which
most likely must indicate a problem with the presentation and/or the
example chosen in the article. This short article is to try and present an
example to address that reviewer’s valid, and important, point.

A really (really) small problem
Let us consider the calculation of the mean of a set of data.
Mathematically we would write:

where represents the mean of the dataset
comprising all the values xi. The mathematical
statement leads us inexorably to an algorithm for
computing the mean of a given data set: using
Python1 we implement a function mean as shown in
Listing 1. Of course many people might have just
written the code as shown in Listing 2 and whilst
correct, this code is likely to be much slower than
using NumPy.2

The question now is obviously: how can we test these
implementations?

Do we have to?
The insightful reader will already have spotted that
there is probably not a testing obligation for us with
the mean function as implemented in Listing 1. The
code uses assignment (which should work because the Python compiler
and virtual machine3 implementers have tested that it works correctly)
and a reference to numpy.mean which should work because the NumPy
implementers should have tested that that function works correctly.

But what about Listing 2? Is there a testing obligation given that the sum
function, the len function and the / (division) operator are all Python
features and the Python language people should have tests for all of them?
Is this function not correct simply by observation, and that it reflects so
easily the mathematical definition? No. We must test this function.4

Yes, we will test things
So what tests can we do in the property-based rather than example-based
philosophy? Well we have two implementations of the same functionality
so maybe we can test that they both produce the same answer. The
property being tested here is that all correct implementations give the
same answer. Using [Hypothesis] and [PyTest], I came up with the test
code shown in Listing 3.

I

1. And the NumPy package, obviously.
2. Of course, we have no real data on this hypothesis without undertaking

some sensible benchmarking activity. Which we will not be doing in this
article since it is far too much effort.

3. In case you weren’t aware, Python is a virtual machine based language;
source code is compiled to bytecodes which are executed at run time.

4. Whether this is the correct answer to the question is left as an exercise
for the reader.

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic. Now an independent consultant,
analyst, author, expert witness and trainer. Also doing startups.
Interested in all things parallel and concurrent. And build. Actively
involved with Groovy, GPars, GroovyFX, SCons, and Gant. Also
Gradle, Ceylon, Kotlin, D and bit of Rust. And lots of Python
especially Python-CSP.

Listing 3

from math import isclose

from hypothesis import given
from hypothesis.strategies import lists, floats

import python_numpy
import python_pure

lower_bound = -1e5
upper_bound = 1e5

effectively_zero = 1e-3

@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: abs(x) > effectively_zero)))
def test_the_two_implementations_give_the_same_result(data):
 assert isclose(python_numpy.mean(data), python_pure.mean(data))

Listing 1

python_numpy.py
import numpy
mean = numpy.mean

Listing 2

python_pure.py
def mean(data):
 return sum(data) / len(data)
4 | Overload | February 2017

FEATURERUSSEL WINDER
There is clearly a lot going on in this code. There is a
single test function, but we use the Hypothesis
given decorator and lists and floats strategies
to automatically generate (more or less randomly)
lists of floating point values that the test is run on.
Most of the work is in conditioning the float values
that we allow in the test: the float values are
constrained to the ranges [-1e5, -1e-3] and [1e-3,
1e5], via the combination of min_value and
max_value constraints in the floats strategy
combined with the filter strategy that applies a
predicate to remove values in the range [-1e-3, 1e-3].
Values close to zero are not allowed since hardware
floating point values close to zero generally cause
serious problems with any and all expression
evaluation and hence testing.5 Similarly, admitting
very large floating point values allows Hypothesis to
easily discover values that hardware floating point
expression evaluation cannot cope with – again
resulting in problems of testing nothing to do with the
actual properties under test.6 So, for the purposes of
testing, we stick with floating point values of about
eight significant digits to try and ensure we do not get
rounding errors in the hardware evaluation that
falsify our properties due to the behaviour of floating
point hardware rather than a failing of the property.

The test itself eschews asserting equality of two
hardware floating point values, as this is clearly not a
thing any right thinking programmer would ever
dream would work.7 Instead the math.isclose
predicate is used to determine if the values are close
enough to each other to be deemed equal.

Anyone ‘on the ball’ will already have realised that there was going to be
an error executing this test, even with the carefully constructed test. When
pytest is run on the test code we get:

 dataset = []
 def mean(dataset):
 > return sum(dataset) / len(dataset)
 E ZeroDivisionError: division by zero

One up to Hypothesis for finding that the empty dataset breaks our
implementation.

If we took a ‘Just fix the tests so they are green’ approach8 we might just
change the tests to that as seen in Listing 4. The empty dataset case is
separated out and the @given decorator is extended to required that only
lists with at least one item are generated.

But is this the right behaviour?
The question we have to ask is whether this behaviour of the
implementation of Listing 2 with empty lists is the right behaviour. Indeed
this should have been the question asked instead of just patching the test
in the first place.9

We note that numpy.mean returns NaN for empty data rather than
throwing an exception. In the original submission of this article, I
amended the pure_python.mean to return NaN, just to be consistent

with python_numpy.mean. The reviewers, though, were fairly
unanimous that NumPy was doing the wrong thing, that mean of an empty
dataset should be undefined, i.e. raise an exception. This viewpoint is
encouraged when looking at the statistics module in the Python
standard library (from Python 3.4 onwards). Its mean function definitely
raises an exception on no data. So, let’s treat the numpy.mean behaviour
as an aberration: let’s change the implementation of our pure Python
mean function to that shown in Listing 5 and make the appropriate change
to the test for empty data, as shown in Listing 6.

But what are the properties?
None of this has though really opened up the question of properties of the
computation: we have only example-based tests for the empty dataset, and
a comparison test to test the equivalence of different implementations. So
what are the properties of the mean calculation that we can test in the form
of property-based tests for each implementation separately?

A search of Google10 should always turn up the property that:

i.e. the sum of the differences of individual items from the mean should
be zero. Given a dataset and a putative mean calculation function, we can
test that this property is not falsifiable. Further delving into the notion of
‘properties of the mean’ may well also turn up the following properties:

5. Allow values close to zero in the sample set and Hypothesis will always
find a case that falsifies any property.

6. This property of hardware floating point numbers and Hypothesis (or
any random test value generator with a good search algorithm) is well
understood and is unavoidable, hence having to take great care
conditioning the floating point values selected.

7. Any programmer claiming competence that uses equality between
floating point values clearly requires re-education on this point.

8. Anyone taking this approach in real life is definitely doing it wrong, even
though we all know this is what actually happens all too often. Clearly
we should fight against this approach at all times.

9. Except then I wouldn’t have had a chance to chide people taking the
‘just fix the tests so they are green’ approach.

10. Yes, Google searching can actually turn up useful facts, as well as
satire, spoof, and fictional stuff. And pictures of cats, obviously.

Listing 4

from math import isclose

from numpy import isnan

from hypothesis import given
from hypothesis.strategies import lists, floats

from pytest import raises

import python_numpy
import python_pure

lower_bound = -1e5
upper_bound = 1e5

effectively_zero = 1e-3

def test_numpy_mean_return_nan_on_no_data():
 assert isnan(python_numpy.mean([]))

def test_our_mean_raises_exception_on_no_data():
 with raises(ZeroDivisionError):
 python_pure.mean([])

@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: abs(x) > effectively_zero),
 min_size=1))
def test_the_two_implementations_give_the_same_result(data):
 assert isclose(python_numpy.mean(data), python_pure.mean(data))

Listing 5

python_pure_corrected.py

def mean(data):
 if len(data) == 0:
 raise ValueError('Cannot take mean of no data.')
 return sum(data) / len(data)
February 2017 | Overload | 5

http://hypothesis.works/
http://pytest.org/
https://accu.org/var/uploads/journals/Overload134.pdf
https://accu.org/var/uploads/journals/Overload134.pdf
https://accu.org/index.php/journals/2272

FEATURERUSSEL WINDER
Listing 7

from math import fabs, isclose
import operator
import statistics

from numpy import isnan
from hypothesis import given, settings
from hypothesis.strategies import lists, floats
from pytest import mark, raises
import python_numpy
import python_pure_corrected

implementations = (python_numpy.mean, python_pure_corrected.mean, statistics.mean)
operators = (operator.add, operator.sub, operator.mul, lambda a, b: a / b)

lower_bound = -1e5
upper_bound = 1e5
effectively_zero = 1e-3

def test_numpy_mean_return_nan_on_no_data():
 assert isnan(python_numpy.mean([]))
def test_our_mean_raises_exception_on_no_data():
 with raises(ValueError) as error:
 python_pure_corrected.mean([])
 assert error.value == 'Cannot take mean of no data.'
def test_statistics_mean_raises_exception_on_no_data():
 with raises(statistics.StatisticsError):
 statistics.mean([])

@mark.parametrize('implementation', implementations)
@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound)
 .filter(lambda x: fabs(x) > effectively_zero),
 min_size=1, max_size=100))
def test_sum_of_data_minus_mean_is_zero(implementation, data):
 x_bar = implementation(data)
 assert sum(x - x_bar for x in data) < effectively_zero

@mark.parametrize('implementation', implementations)
@mark.parametrize('op', operators)
@given(lists(
 floats(min_value=lower_bound, max_value=upper_bound).
 filter(lambda x: fabs(x) > effectively_zero).
 map(lambda x: round(x, 3)),
 min_size=1),
 floats(min_value=2.0, max_value=upper_bound),
)
def test_mean_of_changed_data_obeys_property(implementation, op, data, offset):
 x_bar = implementation(data)
 x_bar_offset = implementation([op(x, offset) for x in data])
 assert isclose(x_bar_offset, op(x_bar, offset))

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com � bdsoftcontact@gmail.com � +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day �Best Practices� course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom �� ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!
February 2017 | Overload | 7

http://ithare.com
[Loganberry04]

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://blog.codinghorror.com/how-good-an-estimator-are-you/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
https://www.amazon.com/exec/obidos/ASIN/0735605351/codihorr-20
https://www.amazon.com/exec/obidos/ASIN/0735605351/codihorr-20
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/
http://ithare.com/gradual-oltp-db-development-from-zero-to-10-billion-transactions-per-year-and-beyond/

FEATURESILAS S. BROWN
Multiprocessing and
Clusters in Python
Multiprocessing is possible in Python.
Silas S. Brown shows us various ways.
t’s surprisingly easy to use more than one CPU core in Python. You
can’t do it with straightforward threads, since the C implementation of
Python has a Global Interpreter Lock (GIL) which means there can

only ever be one thread performing active calculations at any one time, so
threads in Python are generally useful only for waiting on I/O, handling
GUIs and servers and such, not actually processing in parallel when you
have multiple CPU cores. (The Java implementation has no GIL and
really can run on multiple cores in parallel, but I’m assuming you have an
existing Python project and want to stick with the C implementation.) But
there are now ways of multiprocessing in standard C Python, and they’re
not too difficult, even to add in to legacy Python code.

Python 3.2 introduced the concurrent.futures module as standard
[Python], and there’s a backport for Python 2.7 which can usually be
installed on Unix or GNU/Linux via sudo pip install futures (in
Debian or Ubuntu you might need sudo apt-get install python-
pip first; on a Mac try sudo easy_install pip). One nice thing
about this module is it’s quite straightforward to roll your own ‘dummy
version’ for when parallelism is not available: see Listing 1.

This gives you an object cal led executor which supports
submit(function, arguments) returning an object that will, when
asked for its result() later, give you either the result of the calculation
or the exception raised by it, as appropriate. (Java programmers should
recognise these semantics.) The executor object also has a
map(function, iterables) which works like the built-in map().
If you’re on a multi-core machine and the real concurrent.futures
is available in its Python installation, then some of the work will be done
asynchronously on other CPU cores in between the calls to submit()
and result(), so you can parallelise programs simply by looking for
situations where independent calculations can be started ahead of when
their results are needed, or even just by parallelising a few calls to map()
as long as your map functions are not so trivial that the overhead of
parallelising them would outweigh any benefit. But if your script is run on
an older machine with no concurrent.futures available, it will fall
back to the ‘dummy’ code which simply runs the function sequentially

when its result is called for. (And if that result turns out not to be required
after all and is not asked for, then the function won’t run. So if parallelism
is not available then at least you can benefit from lazy evaluation. But this
applies only if your algorithm involves speculative computations i.e. ones
you start before knowing if you’ll really need them.)

I like the idea of ‘if it’s there, use it; if not, do without’: it means users of
my scripts don’t have to make sure concurrent.futures is available
in their Python installation. If they don’t have whatever it takes to install
it, they’ll simply get the sequential version of my script rather than an
ImportError (ImportErrors in your scripts can be bad PR). Note
I ’m no t spe c i f i ca l l y c a t ch ing ImportError a ro un d the
concurrent.futures import, because it’s also possible for this
import to succeed but still fail to make ProcessPoolExecutor
available. This can be seen by reading __init__.py in the source code
of concurrent.futures: if ProcessPoolExecutor cannot be
loaded, then the module will just give you ThreadPoolExecutor. But
there’s no point using ThreadPoolExecutor for multiprocessing,
because ThreadPoolExecutor is subject to the GIL, so we want to
verify that ProcessPoolExecutor is available before going ahead.

The interface to the ‘dummy’ object is actually quite a far cry from that of
the real thing. With the real concurrent.futures, you can’t pass lambda or
locally-defined functions to submit() or map(), but the dummy object
lets you get away with doing this. Also, the real concurrent.futures
has extra functionality, such as add_done_callback and polling for
completion status, and does not run a function twice if you call its
result() twice. All of this can be worked around by writing a more
complex dummy object, but if all you’re going to do anyway is call
submit() and result() then there’s not a lot of point making the
fallback that complicated: if a few lines of script are supposed to be a
‘poor man’s’ fallback for a large library, then we don’t want to make the
substitute so big and complicated that we almost might as well bundle the
library itself into our script. Just make sure to test your code at least once
with the real concurrent.futures to make sure you haven’t
accidentally tried to give it a lambda function or something (the dummy
object won’t pick up on this error). You can of course insert print
statements into the code to tell you which branch it’s using, to make sure
you’re testing the right one; you may even want to leave something in
there for the production version (i.e. ‘this script should run faster if you
install futures’).

Oversized data
From this point on, I’ll assume the real concurrent.futures is
present on the system and you are doing real multiprocessing.

You don’t have to worry about causing too many context switches if too
many tasks are launched at once, since ProcessPoolExecutor

I

Listing 1

try:
 import concurrent.futures
 executor = \
 concurrent.futures.ProcessPoolExecutor()
except:
 class DummyExecutor:
 def submit(self, fn, *args, **kwargs):
 class Future:
 def result(self,*_):
 return fn(*args,**kwargs)
 return Future()
 def map(self, func, *iterables, **kwargs):
 for n in map(func,*iterables): yield n
 executor = DummyExecutor()

Silas S. Brown is a partially-sighted Computer Science post-doc
in Cambridge who currently works in part-time assistant tuition. He
has been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
February 2017 | Overload | 13

FEATURE SILAS S. BROWN
defaults to queuing up tasks when all CPU cores are already occupied
with them. But you might sometimes be worried about what kind of data
you are passing in to each task, since serialisation overheads could be a
serious slow-down if it has to be large.

If you’re on Unix, Python’s underlying ‘multiprocessing’ module will
start the new processes with fork(), which means they each get a copy
of the parent process’s memory (with copy-on-write semantics if
supported by the kernel, so that no copying occurs until a memory-page
is actually changed). That means your functions can read module-level
global variables that have been set up at runtime before the parallel work
started (just don’t try to change these during the parallel work, unless you
want to cope with such changes affecting some future calculations but not
others depending on which CPU or process ID happens to run what).
fork() does, however, mean you’d better be careful if you’re also using
threads in the same program, such as for a GUI; there are ways of working
around this, but I’d suggest concentrating on making a command-line tool
and let somebody else wrap it in a GUI in a different process if they must.

But you can’t rely on having fork() if your script might be run on
Windows, nor if you might eventually use multiple machines in a cluster
using mpi4py.futures (more on this below), SCOOP [SCOOP], or a
similar tool that gives you the same API as concurrent.futures. In
these cases, it’s likely that your script will be separately imported on each
core, so it had better not run unless __name__ == "__main__". You
can set up a few module-level variables when that happens; the
subprocesses should still have the same sys.argv and os.environ if
that’s any help. However, you probably won’t want to repeat a long
precalculation when doing this.

Since most multiprocessing environments, even across multiple machines
in a cluster, assume a shared filesystem, one fairly portable way of sharing
such large precalculated data is to do it via the filesystem, as in Listing 2.
To avoid the obvious race condition, this must be done before initialising
the parallelism.

Listing 2 can detect the case where fork() has been used and the data
does not need to be read back from the filesystem, although without
further low-level inspection it won’t be able to detect when it can avoid
writing it to the filesystem at all (but that might not be an issue if you want
to write it anyway). There are other ways of passing data to non-
fork()ed subprocesses without using the filesystem, but they involve
going at a lower level than concurrent.futures (you can’t get away with
simply passing the data into a special ‘initialiser’ function to be run on
each core, since the concurrent.futures API by itself offers no
guarantee that all cores in use will be reached with it).

MPI
Message Passing Interface (MPI) is a standard traditionally used on high-
performance computing (HPC) clusters, and you can access it from
Python using a number of libraries for interacting with one of the
underlying C implementations of MPI (typically MPICH or OpenMPI).
Now that we have concurrent.futures, it’s a good idea to look for
libraries supporting that API so we won’t have to write anything MPI-
specific (if it’s there, we can use it; if not, we can use something else).
mpi4py [MPI] plans to add an mpi4py.futures module in its version
2.1, but, at the time this article was written, version 2.1 was not yet a stable
release (and standard pip commands were fetching version 2.0), so if you
want to experiment with mpi4py.futures, you’ll have to download the
in-development version of mpi4py.

On a typical GNU/Linux box, you can do this as follows: become root
(sudo su), make the mpicc command available (on RedHat-based
systems that requires typing something like module add mpi/mpich-
x86_64 after installing MPICH, or equivalent after installing OpenMPI;
Debian/Ubuntu systems make it available by default when one of these
packages is installed), make sure the python-dev or python-devel package
is installed (apt-get install python-dev or yum install python-devel), and
then try:

 pip install https://bitbucket.org/mpi4py/mpi4py/
 get/master.tar.gz

At this point Listing 1 can be changed (after adding extra indentation to
each line) by putting Listing 3 before the beginning. Here, we check if we
are being run under MPI, and, if so, we use it; otherwise we drop back to
the previous Listing 1 behaviour (use concurrent.futures if
available, otherwise our ‘dummy’ object). A subtlety is that
mpi4py.futures will work only if it is run in a command like this:

 mpiexec -n 4 python -m mpi4py.futures script.py
 args...

and that in an MPI environment too (i.e. the above module add
command will need to have been run in the same shell, if appropriate).
Some versions of mpiexec also have options for forwarding standard
input and environment variables to processes, but not all do, so you’ll
probably have to arrange for the script to run without these. Also, any
script that uses sys.stdout.isatty() to determine whether or not
output is being redirected will need to be updated for running under MPI,
because MPI always redirects the output from the program’s point of view
even when it’s still being sent to the terminal.

If you want MPI to use other machines in a cluster, then how to do this
depends on your MPI version: it may involve extra setup steps before
starting your program, as is the case with mpd in older versions of
MPICH2 such as version 1.2. But in MPICH2 version 1.5 (the current
mpich2 package in Debian Jessie), and in MPICH 3.1 (Jessie’s current
mpich package), the default process manager is hydra and you simply
create a text file listing the host names (or IP addresses) of the cluster
machines, ensure they can all ssh into each other without password and
share the filesystem, and pass this text file to mpiexec using the -f
parameter or the HYDRA_HOST_FILE environment variable. (In
OpenMPI you use the --hostfile parameter.) Modern MPI
implementations are also able to checkpoint and restart processes in the
event of failure of one or more machines in the cluster; refer to each
implementation’s documentation for how to set this up.

If our script is run outside of MPI, then our detecting and handling of ‘no
MPI’ is a little subtle because mpi4py.futures (if installed) will still
successfully import , and i t wil l even let you instantiate an
MPIPoolExecutor(), but then will likely crash after you submit a job,
and catching that crash from your Python script is very awkward (normal
try/except won’t cut it). So we need to look at the command line to
check we’re being run in the right way for MPI first. But we can’t just
inspect sys.argv, because that will have been rewritten before control
is passed to our script, so we have to get the original command line from
the ps command. The ps parameters in Listing 3 were tested on both
GNU/Linux and Mac OS X, and if any system does not support them then
we should just fall back to the safety of not using MPI.

Listing 2

from cPickle import Pickler, Unpickler
if __name__ == "__main__":
 data = our_precalculation()
 Pickler(open('precalc','wb'),-1).dump(data)
else:
 try: data
 except NameError:
 data = Unpickler(open('precalc','rb')).load()

In OpenMPI, Listing 2 won’t work because

 __name__ == "__main__"
in all processes. The OpenMPI equivalent is

 os.environ['OMPI_COMM_WORLD_RANK'] == '0'
Additionally, in OpenMPI all processes will start running even before the
MPIPoolExecutor is instantiated, so you can’t rely on delaying that
until after the results of long initial calculations have been written to a file:
the subprocesses will either have to poll the file for being ready, or else
load it on-demand when they get the first task and cache it from there.

Addendum for OpenMPI
14 | Overload | February 2017

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
http://scoop.readthedocs.io/
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
http://mpi4py.scipy.org/

http://baptiste-wicht.com/posts/2016/09/blazing-fast-unit-test-compilation-with-doctest-11.html
http://baptiste-wicht.com/posts/2016/09/blazing-fast-unit-test-compilation-with-doctest-11.html
https://github.com/google/googletest
https://github.com/unittest-cpp/unittest-cpp
https://en.wikipedia.org/wiki/List_of_unit_testing_
frameworks#C.2B.2B
http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/index.html
http://www.boost.org/doc/libs/1_60_0/libs/test/doc/html/index.html
https://github.com/philsquared/Catch
https://github.com/cpputest/cpputest
https://github.com/onqtam/doctest/blob/master/doc/markdown/faq.md#how-is-doctest-different-from-catch
https://github.com/onqtam/doctest/blob/master/doc/markdown/faq.md#how-is-doctest-different-from-catch
https://github.com/onqtam/doctest/blob/master/doc/markdown/features.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/features.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/roadmap.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/roadmap.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/benchmarks.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/benchmarks.md
https://github.com/onqtam/doctest/blob/master/doc/markdown/assertions.md#fast-asserts
https://github.com/onqtam/doctest/blob/master/doc/markdown/assertions.md#fast-asserts
https://accu.org/index.php/journals/2271
https://accu.org/index.php/journals/2250
https://accu.org/index.php/journals/2281

http://safeint.codeplex.com

www.blincubator.com
http://www.boost.org/community/review_schedule.html
http://www.boost.org/community/review_schedule.html
http://blincubator.com/bi_library/safe-numerics/?gform_post_id=426
http://blincubator.com/bi_library/safe-numerics/?gform_post_id=426
http://safeint.codeplex.com
http://safeint.codeplex.com

www.blincubator.com
www.boost.org
https://akrzemi1.wordpress.com
https://www.cs.cmu.edu/~ckaestne/pdf/csse14-01.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1962.html
http://www.cert.org/secure-coding/publications/books/securecoding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/securecoding-c-c-second-edition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://www.cs.utah.edu/~regehr/papers/overflow12.pdf
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://dl.acm.org/citation.cfm?id=2337223&picked=prox
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4293.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4293.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-secondedition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/stdproposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/stdproposals
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2009_004_001_15074.pdf
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.sei.cmu.edu
http://www.sei.cmu.edu
https://msdn.microsoft.com/en-us/library/ms972705.aspx
https://www.cert.org
https://safeint.codeplex.com
https://www.cert.org
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Ariane_501_Inquiry_Board_report
https://en.wikisource.org/wiki/Main_Page
https://accu.org/index.php/journals/324
https://accu.org/index.php
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html?_r=0
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html
https://buildsecurityin.us-cert.gov
https://buildsecurityin.us-cert.gov
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.securecoding.cert.org/confluence/display/seccode/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow?showComments=false
https://www.cert.org
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/INT30-C.+Ensure+that+unsigned+integer+operations+do+not+wrap
https://www.cert.org
https://www.cert.org
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
http://www.cert.org/secure-coding/publications/books/secure-coding-c-c-second-edition.cfm?
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/std-proposals

	Overload137.pdf
	The Uncertainty Guidelines
	Mean Properties
	The Importance of Back-of- Envelope Estimates
	Multiprocessing and Clusters in Python
	doctest – the Lightest C++ Unit Testing Framework
	And the winners are...
	Correct Integer Operations with Minimal Runtime Penalties
	Afterwood

