

February 2014 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Static Polymorphic Named
Parameters in C++
Martin Moene demonstrates method chaining to
make code readable.

7 Integrating the Catch Test Framework
into Visual Studio
Malcolm Noyes uses Catch directly inside
Microsoft’s IDE.

11 Anatomy of a Java Decompiler
Lee Benfield and Mike Strobel transform object
code back in to Java source code.

16 Optimizing Big Number Arithmetic
Without SSE
Sergey Ignatchenko and Dmytro Ivanchykhin try to
do arithmetic with big numbers quickly.

19 Capturing lvalue References in
C++11 Lambdas
Pete Barber considers capturing references by
reference and value.

OVERLOAD 119

February 2014

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Matthew Jones
m@badcrumble.net

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Simon Sebright
simonsebright@hotmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 120 should be submitted
by 1st March 2014 and those for
Overload 121 by 1st May 2014.

EDITORIAL FRANCES BUONTEMPO
Random (non)sense
It’s not pretty and it’s not clever. Frances
Buontempo considers if the cut-up method
can be used to generate editorials.
It is traditional to review the last twelve months
around this time of year. Having now avoided writing
a proper editorial for over twelve months, I wondered
if my collection of musings was worth reviewing. The
thing to do was clearly try to automate the process.
Having been far too busy to write an automatic

editorial generator, but inspired by Charles Stross’s recent blog [Stross]
wherein he used Markov chains to generate text based on the King James
Bible and H. P. Lovecraft leading to a strange and oddly pleasing fusion
of the two styles, I found some python code to generate text
[MarkovChains] and ran it over my previous excuses for editorials. A
Markov chain generates a new state from the current state without looking
back at history and is therefore frequently described as memoryless. Each
state, for example in text processing, a word, can move to one or more
other states with a pre-specified probability. The probabilities in text
processing will be formed from analysis of a ‘seed’ document. Though
this would not create a review as such, it should generate text in the spirit
of the inputs. Unfortunately, this code tended to keep whole sentences or
at least phrases, though it did generate some interesting ‘thoughts’, if one
can call machine-written words thoughts.

‘If the code is compiled, there is no documentation, or no version
control.’

‘I suspect I will not be changed between runs’

‘get off having to write an automatic editorial generator’

‘I enjoy reading sci-fi, though I do wonder why these stories still tend
to insist on the idea of carrying out instructions.’

‘I keep writing’

Deeply disappointed with the rehash of whole sentences, like a bad
montage of television programmes at the end of the year, I then ran
Stross’s perl on the same input. After a couple of package installations,
and filtering out all the errors, we get a variety of unhelpful or ridiculous
musings, my favourites being

‘Many then fall in love with their brains engaged.’

‘Electronic wizards can be given the instructions for a four year
stint.’

‘C++ is provable or falsifiable.’

‘The creation of the calculus gave ways to form the language,
though paused for Turing.’

And near poetry

‘If it works, it easier than an answer.
We have sometimes taken as
‘You have decayed away.

Imagine that one day.

A variety of ways of editing inputs for computers,
so many technical books do you.’

Randomly generated machine outputs have a long and varied history. For
example, Monte-Carlo simulations are frequently used to solve difficult
numerical problems. This approach requires an upfront, often iterative,
model wherein the next number is generated using the previous number
with some degree of random perturbation, or each output generated by
choosing a random input. Genetic programming, GP, attempts to
automatically generate code, or even design machines such as circuit
boards, by randomly piecing together shapes according to rules, be that
expression trees or chips and connectors [GP]. GP needs no upfront
model, but does require a pre-defined fitness function to select the better
solutions to a given problem. It starts with a generation of randomly
created solutions and cuts them up, referred to as crossover, sometimes
randomly mutating parts, to reform other candidate solutions from the
pieces, supposedly thereby mimicking evolution.

Unfortunately, it is difficult to decide a model for generating an editorial
in advance, or give a precise fitness function for acceptable editorial
attempts. This does not preclude the possibility of using randomness to
create text, poems, or indeed other forms of art. Having (nearly) stuck to
my book buying ban this year, I persuaded my sister to buy me Assimilate:
A Critical History of Industrial Music [Assimilate] (not recommended for
the faint-hearted). It delves into the artistic background and precedents for
various noisy ‘metal machine music’ [MMM] bands. The original Lou
Reed album is often described as, ‘Electric guitars feeding back to create
a complex multi-layered sound collage’ [BBC], though the phrase has
become almost legendary appearing in songs and titles by Die Krupps,
Sabaton and others. Assimilate suggests many approaches to creating
industrial music trace back to William S Burrough’s ‘Cut-up’ method:
“The cutup is a mechanical method of juxtaposition in which Burroughs
literally cuts up passages of prose by himself and other writers and then
pastes them back together at random” [Cut-up]. This in turn can be traced
back to the Dada movement.

Frequently, legacy code bases appear to have been formed using a similar
cut (and paste) approach. Snippets of functions proliferate through the
entire code base peppered with a variety of mutations on the way. Other
functions fail to follow the artistic coding style, if there is one, for example
breaking brace placement or white space conventions, suggesting a
manual attempt to slam randomly selected code samples taken from
elsewhere into the mix to solve a problem (possibly accidentally creating
another). People usually leave typos intact when doing this, making it easy
to trace the provenance of the code. If only they'd copy over any unit tests
when taking such an approach. I believe it is traditional to ask when

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer for over 12 years professionally, and learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2014

EDITORIALFRANCES BUONTEMPO
confronted by such modernist techniques and ‘installations’, “But is it
art?”1

The final result can appear like a discordant, jarring mess speckled with
repeated leitmotifs. This mirrors the disorienting effect of some of the more
extreme, experimental industrial noise artist’s outpourings. Where the
music is a bid to either block out the world or to escape the claimed ‘viral
impact’ of convention by shaking people out of their norms, the code is
usually just an endeavour to implement some new features, though it may
have a similar slightly nauseating impact on its audience.

Applying the cut-up coding methodology is impossible without an input
stream of code to copy and paste. Nowadays people tend to use the internet
as the source of all source, so in the spirit of Dadaist impishness, it can be
lots of fun to unplug network cables at random. Since the Dada movement
has been described as “flout[ing] conventional aesthetic and cultural values
by producing works marked by nonsense, travesty, and incongruity” [Dada],
there would be delicious irony in apply Dadaist techniques in order to
enforce aesthetic and cultural values in a code base, thereby keeping the
flame [KoF] and stopping “nonsense, travesty and incongruity”. I suggest
a New Year’s resolution to attempt to write some code from time to time
with your network cable unplugged.

If one already has a code base, that can be used directly as an input for
genetic programming. Or, in lieu of a fully formed GP application, other
types of randomness can still be applied fruitfully. Indeed, a partial step
towards genetic programming becoming common-place is the recent
interest in mutation testing. This takes and mutates existing source code,
then running it against a suite of tests, which are functioning like the fitness
function in GP. The mutations may swap binary logical or arithmetic
operators, such as && with || or + with -, delete statements, or swap
variables in the same scope. Various other mutations are possible. The only
difference to GP is the lack of cross-over and the original code is human
generated, rather than randomly generated by a machine. For example, in
the Java based PITest,

Faults (or mutations) are automatically seeded into your code, then
your tests are run. If your tests fail then the mutation is killed, if your
tests pass then the mutation lived. The quality of your tests can be
gauged from the percentage of mutations killed. [PITest]

This is therefore a way of testing the tests. Any living mutations can
suggest further tests that need adding, or requirements that need clarifying,
or if you are very lucky code that can be deleted. This supposes you have
some tests. Applications do exist to write tests for you, for example
Microsoft’s Pex and Moles [Pex] though I suggest you do write some of
your own tests first, preferably before writing any code let alone before
using Pex. I assure you the potential edge cases you may have missed if
you do not are legion. Being presented with millions of tests which fail
from a few thousand lines of code is overwhelming. Nonetheless either

randomly mutating code or randomly generating tests can be very
informative.

It is difficult to draw concrete conclusions from these thoughts, so I ran
Stross’s Perl2 code [op cit] over the above. It produced two revelations:

Deeply disappointed with repeated leitmotifs

The claimed ‘viral impact’ of convention by shaking people out of
mutations’

It seems my automatic editorial generator is a long way off. However,
parallels between the ways in which some code bases develop, various art
movements in the last hundred years and differing aesthetic viewpoints is
interesting. The creative process is fascinating, whether applied to music,
art or computer programming. Randomly shaking things up can give
results. The results may not always be pleasing, but can be thought
provoking and might just work. Whether everyone is in agreement about
the final result is another matter. Some will scream in
horror, “Make it stop!” while others may be delighted
with the outcome. We are, after all, frequently told
“Beauty is in the eye of the beholder.”

References
[Assimilate] Assimilate: A Critical History of Industrial Music S.

Alexander Reed, Oxford University Press 2013

[BBC] http://www.bbc.co.uk/music/reviews/wzwx

[Cut-up] http://www.languageisavirus.com/articles/
articles.php?subaction=showcomments&id=1099111044&archive=
&start_from=&ucat=#.UsK8z7QobYs

[Dada] http://www.thefreedictionary.com/dadaist

[GP] http://www.genetic-programming.com/

[KoF] http://c2.com/cgi/wiki?ArchitectAsKeeperOfTheFlame

[MarkovChains] http://www.decontextualize.com/teaching/rwet/n-
grams-and-markov-chains/

[MMM] http://en.wikipedia.org/wiki/Metal_Machine_Music

[PITest] http://pitest.org/

[Pex] http://research.microsoft.com/en-us/projects/Pex/

[Stross] http://www.antipope.org/charlie/blog-static/2013/12/
lovebiblepl.html

1. Attributed to Rudyard Kipling as either “It’s pretty, but is it art?” or “It’s
clever, but is it art?” Frequently it’s neither pretty nor clever. 2. Possibly spelled PERL or rm -f /usr/bin/perl
February 2014 | Overload | 3

http://www.bbc.co.uk/music/reviews/wzwx
http://www.languageisavirus.com/articles/articles.php?subaction=showcomments&id=1099111044&archive=&start_from=&ucat=#.UsK8z7QobYs
http://www.languageisavirus.com/articles/articles.php?subaction=showcomments&id=1099111044&archive=&start_from=&ucat=#.UsK8z7QobYs
http://www.thefreedictionary.com/dadaist
http://www.genetic-programming.com/
http://c2.com/cgi/wiki?ArchitectAsKeeperOfTheFlame
http://www.decontextualize.com/teaching/rwet/n-grams-and-markov-chains/
http://www.decontextualize.com/teaching/rwet/n-grams-and-markov-chains/
http://en.wikipedia.org/wiki/Metal_Machine_Music
http://pitest.org/
http://research.microsoft.com/en-us/projects/Pex/
http://www.antipope.org/charlie/blog-static/2013/12/lovebiblepl.html
http://www.antipope.org/charlie/blog-static/2013/12/lovebiblepl.html

FEATURE MARTIN MOENE
Static Polymorphic Named
Parameters in C++
Adding parameters to an object can be messy.
Martin Moene demonstrates how method chaining
can make code more readable.
or a new kind of measurement in our application for scanning probe
microscopy [Wikipedia-a], I need to construct a curve that consists of
several kinds of segments. The curve can for example describe the

movement of the tip perpendicular to the surface of the material
investigated and what data shall be acquired.

Behaviour of segment types varies. One segment may describe how the
surface is approached, another how to move away from the surface and
yet another describes a dwell time. Such a curve is part of force-distance
spectroscopy [Wikipedia-b]. Figure 1 below shows what the researchers
would like to do.

To a large extent the structure of a curve is fixed and this structure can be
created at compile-time. Some variation is required at run-time, which can
be arranged for via parameters. The simplified code in Listing 1 illustrates
this.

The curve built describes that: Nsweep times, scanner Z retracts the tip
from the material surface for 123 nm (unless skipped), then approaches the
surface until the measured value of chan1 reaches the threshold value of
2.7 V, and finishes with retracting 123 nm again (t1 and t2 are omitted).
Note that the threshold condition depends on other information than the
scan distance. It can have any unit that makes sense in the experiment.

In the real implementation, there are many more parameters. To keep it
simple, several things such as data acquisition are omitted here. Another
simplification is to use struct without access specifiers for all classes in the
code.

Compiling and running the simplified program gives:

prompt>g++ -Wall -Wextra -Weffc++ -std=c++11 \
-o curve.exe curve.cpp && curve
curve.sweep(): RZL AZ<= RZL

The output RZL AZ<= RZL indicates the type of segment, scanner and
condition used for each segment: R for Retract, A for Approach, Z for
ZAxisScanner, <= for LessEqualCondition and L for LengthCondition.

Fluent interface
The construct sketched above evolved from the following (simplified)
C++98 code (Visual C++ 6).

return CurveDefinition().
 sweep(sweepCount).
 add(CurveSegmentPtr(new SweepCurveSegment
 (scanner, condFalse, ...))).
 add(CurveSegmentPtr(new SweepCurveSegment
 (scanner, condition, ...))).
 add(CurveSegmentPtr(new SweepCurveSegment
 (scanner, condFalse, ...)));

Although the sketched curve may be adequate for many kinds of
experiments, it is a simplification of a more general approach. Experience
with an initial version of the code led the researchers to express several
additional wishes. For example to be able to conditionally include a
segment, to only perform it once, or to perform a collection of segments
multiple times.

F

Figure 1

Listing 1

#include "curve.hpp"

int main()
{
 // run-time configurable:
 const int Nsweep = 1;
 const bool skipR1 = false;
 auto scanner = create_scanner ("Z");
 const auto distance =
 create_condition("123 nm");
 const auto threshold =
 create_condition("chan1", "<=", "2.7 V");

 Curve curve;

 curve.times(Nsweep)
 .scans(scanner)
 .add (Retract ().stop_on(distance))
 .unless(skipR1)
 .add (Approach().stop_on(threshold))
 .add (Retract ().stop_on(distance))
 ;
 std::cout << "curve.sweep(): "; curve.sweep();
}

Martin Moene has a background in electronics engineering and has
been programming professionally since 1983, mostly in C++. Much
programming revolves around instrument control and image
processing and he enjoys seeing elegance in code. Martin Moene can
be contacted at m.j.moene@eld.physics.LeidenUniv.nl.
4 | Overload | February 2014

FEATUREMARTIN MOENE

the reason to compose the curve
in this way is to benefit from a

clear and flexible notation
As you see, the new code expands on the use of method chaining
[Wikipedia-d], a key element of a fluent interface [Wikipedia-e]. Method
chaining is also known as the named parameter idiom. In addition to
method chaining, other variations are imaginable, such as function-like
modifiers. For example to include a segment in the first sweep only with
once(segment) or to perform a collection of segments (a sub-curve
or section) a number of times via times(N, section).

The new code also moves the allocation of segments out of the fluent
interface. This makes the code much more readable. It also leads to the
main subject of this article: static polymorphic named parameters.

Thus, the reason to compose the curve in this way is to benefit from a clear
and flexible notation. As an internal domain-specific language [Fowler08]
it also helps researchers to recognise the curve they sketched in the code.

Static polymorphism
Now, let’s examine how a curve is constructed. Curve’s method add()
creates dynamic segment objects from the non-dynamic temporary
‘exemplars’. To create a dynamic copy of the segment of the original type,
add() is templated.

 template< typename T >
 Curve & Curve::add(T const & segment)
 {
 segments.emplace_back(
 std::make_unique<T>(segment));
 return *this;
 }

Note: std::make_unique<T>() is a C++14 feature [make_unique].

Look ing a t above code , i t becomes c lea r t ha t a ca l l l ike
Approach().stop_on(...) must itself return an object of type
Approach to add the right type of segment to the curve.

Here is the crux of this article. Do all types such as Approach require their
own method stop_on() to return the appropriate type? Fortunately that’s
not the case, thanks to the curiously recurring template pattern or CRTP.
See [Wikipedia-e: Subclasses] and [Wikipedia-f] respectively. (See
Listing 2.)

With this construct Approach can inherit stop_on() that returns the
desired Approach & instead of SegmentParameter &. The
crtp_cast combined with a macro enables us to write return self
to return the current object with the right type where we would otherwise
write return *this [Bendersky11]. The shortest of four crtp_cast
const-volatile variations is:

 template<class D, class B>
 D & crtp_cast(B & p)
 { return static_cast<D &>(p); }

For an interesting discussion about encapsulation and the CRTP, see Better
Encapsulation for the Curiously Recurring Template Pattern by Alexander
Nasonov [Nasonov05].

Build to use
In the end we’ve built a curve that contains a collection of smart-pointered
segments that originate in interface Segment. At the same time the curve
is a segment itself, so that it can act as a sub-curve or section of another
curve. See the following derivation chains.

 Curve → SegmentParameter<Curve>
 → SegmentCommon → Segment
 Approach → SegmentParameter<Approach>
 → SegmentCommon → Segment
 ...

Thus, whereas construction of the curve builds on automatic ‘exemplar’
objects and static polymorphism via the CRTP compile-time technique,
using the curve occurs via classical dynamic polymorphism with
Segment as the interface.

Letting go of the garbage
One l i t t l e t h ing wor r i e s me : t he code fo r t he s eque nce
curve.add(...).unless(...) is both elegant and inelegant at the
same time. It is simple, but then it lets you create a segment to only throw
it away immediately via unless().

 Curve & unless(bool skip)
 {
 if (skip)
 segments.pop_back();
 return *this;
 }

Listing 2

template <typename Derived>
struct SegmentParameter : SegmentCommon
{
#define self crtp_cast<Derived>(*this)

 Derived & stop_on(ConditionPtr cond)
 {
 condition(cond);
 return self;
 }

#undef self
};

struct Approach : SegmentParameter<Approach>
{
 // inherited:
 // Approach & stop_on(ConditionPtr s);
};
February 2014 | Overload | 5

FEATURE MARTIN MOENE

One can argue that recycling is
good and more garbage means
more recycling
One can argue that recycling is good and more garbage means more
recycling, but that isn't entirely in line with Bjarne Stroustrup’s idea
[Kalev13]:

So, I say that C++ is my favorite GC language because it generates
so little garbage.

As a reviewer pointed out, one may circumvent the awkward situation by
prefixing the condition, or by including it in a conditional add function like
so:

 curve.enable_if_not(skipR1)
 .add(Retract ().stop_on(distance));
 curve.add_if_set(performR1,
 Retract ().stop_on(distance));

However, to ease reading of consecutive lines, I’d prefer to keep the left
part of the lines similar, as illustrated here.

 curve.add_if(Retract ().stop_on(distance),
 performR1)
 .add (Approach().stop_on(threshold)
);

We’re leaving the realms of fluid interfaces and named parameters though.

Summary
In this article a fluent interface is applied to a simplified setting for
scanning probe spectroscopy. The resulting code shows a close
relationship to the graphic representation provided by the researchers. The
main point of the article is to show how one can obtain the static inheritance
required for named parameters in this setting via the curiously recurring
template pattern. 

Acknowledgements
I’d like to thank the Overload team for reviewing the article and Jonathan
Wakely for clarifying several aspects of smartpointers. Their remarks and
suggestions were key in improving the article.

Notes and references
Code for this article and code for a larger example with modifiers once
and times is available on [GitHub].

[Arena12] Use CRTP for polymorphic chaining. Marco Arena. 29 April
2012. http://marcoarena.wordpress.com/2012/04/29/use-crtp-for-
polymorphic-chaining/ (Presents a slightly different application of
the CRTP.)

[Bendersky11] The Curiously Recurring Template Pattern in C++. Eli
Bendersky. 17 May 2011. http://eli.thegreenplace.net/2011/05/17/
the-curiously-recurring-template-pattern-in-c/ (Mentions
crtp_cast in a comment.)

[Fowler05] Fluent Interface. Martin Fowler. 20 December 2005.
http://www.martinfowler.com/bliki/FluentInterface.html

[Fowler08] Domain-Specific Language. Martin Fowler. 15 May 2008.
http://martinfowler.com/bliki/DomainSpecificLanguage.html

[GitHub] Code for Static polymorphic named parameters in C++. Martin
Moene. 31 December 2013. https://github.com/martinmoene/martin-
moene.blogspot.com/tree/master/Static polymorphic named
parameters in C++

[K-ballo13] Episode Eight: The Curious Case of the Recurring Template
Pattern. Tales of C++ K-ballo. 2 December 2013.
http://talesofcpp.fusionfenix.com/post-12/episode-eight-the-
curious-case-of-the-recurring-template-pattern

[Kalev13] An Interview with Bjarne Stroustrup. Danny Kalev and Bjarne
Stroustrup. May 15, 2013. http://www.informit.com/articles/
article.aspx?p=2080042

[make_unique] make_unique. CppReference. http://en.cppreference.com/
w/cpp/memory/unique_ptr/make_unique Here, function
make_unique<>() is equivalent to std::unique_ptr<T>
(new T(std::forward<Args>(args)...)). See also Herb
Sutter’s GotW #89 Solution: Smart Pointers (http://herbsutter.com/
2013/05/29/gotw-89-solution-smart-pointers/) and GotW #102:
Exception-Safe Function Calls (http://herbsutter.com/gotw/_102/).

[Nasonov05] Better encapsulation for the curiously recurring template
pattern. Alexander Nasonov. Overload, 70:11-13, December 2005
(http://accu.org/index.php/journals/296).

[Wikipedia-a] Scanning Probe Microscopy. Wikipedia.
http://en.wikipedia.org/wiki/Scanning_probe_microscopy Accessed
21 December 2013.

[Wikipedia-b] Force-Distance spectroscopy . Wikipedia.
http://en.wikipedia.org/wiki/Atomic_force_microscopy#Force
_spectroscopy Accessed 19 December 2013. See also [Wikipedia-c].

[Wikipedia-c] Scanning tunneling spectroscopy. Wikipedia.
http://en.wikipedia.org/wiki/Scanning_tunneling_spectroscopy
Accessed 19 December 2013.

[Wikipedia-d] Method chaining or named parameter idiom. Wikipedia.
http://en.wikipedia.org/wiki/Method_chaining Accessed 16
December 2013. See also [Wikipedia-e].

[Wikipedia-e] Fluent interface. Wikipedia. http://en.wikipedia.org/wiki/
Fluent_interface Accessed 21 December 2013. See also [Fowler05]

[Wikipedia-f] Curiously recurring template pattern (CRTP). Wikipedia.
http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
Accessed 17 December 2013. See also [K-ballo13], [Bendersky11],
[Arena12].
6 | Overload | February 2014

http://marcoarena.wordpress.com/2012/04/29/use-crtp-for-polymorphic-chaining/
http://marcoarena.wordpress.com/2012/04/29/use-crtp-for-polymorphic-chaining/
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c/
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c/
http://www.martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/DomainSpecificLanguage.html
https://github.com/martinmoene/martin-moene.blogspot.com/tree/master/Static%20polymorphic%20named%20parameters%20in%20C%2B%2B
https://github.com/martinmoene/martin-moene.blogspot.com/tree/master/Static%20polymorphic%20named%20parameters%20in%20C%2B%2B
http://talesofcpp.fusionfenix.com/post-12/episode-eight-the-curious-case-of-the-recurring-template-pattern
http://www.informit.com/articles/article.aspx?p=2080042
http://www.informit.com/articles/article.aspx?p=2080042
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://herbsutter.com/2013/05/29/gotw-89-solution-smart-pointers/
http://herbsutter.com/2013/05/29/gotw-89-solution-smart-pointers/
http://herbsutter.com/gotw/_102/
http://accu.org/index.php/journals/296
http://en.wikipedia.org/wiki/Scanning_probe_microscopy
http://en.wikipedia.org/wiki/Atomic_force_microscopy#Force_spectroscopy
http://en.wikipedia.org/wiki/Atomic_force_microscopy#Force_spectroscopy
http://en.wikipedia.org/wiki/Scanning_tunneling_spectroscopy
http://en.wikipedia.org/wiki/Method_chaining
http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Fluent_interface
http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

FEATUREMALCOLM NOYES
Integrating the Catch Test
Framework into Visual Studio
Visual Studio’s Test Explorer allows native C++ tests to
be run under a managed wrapper. Malcolm Noyes
takes it a step further using Catch to drive the tests.
ecently I adapted Phil Nash’s Catch C++ (and Objective C) testing
framework [Nash] to integrate with Visual Studio (VS). I’ve made a
fork of Catch available on Github [Catch], together with some

documentation that explains how to use it in that environment [VS]. I
thought perhaps that for ACCU it would be more interesting if I wrote up
some details about why it does what it does.

For those who are unfamiliar with C++ testing in Visual Studio...

The five minute guide to testing in Visual Studio
First, I should define some terms that I’ll be using. A ‘Managed’ C++ test
is one that runs native C++ code (the code we want tested) under a managed
C++ wrapper (that creates the test environment). Until VS2012 this was
the only kind of C++ unit test that you could write that integrated with the
Visual Studio IDE. With VS2012, Microsoft added ‘Native’ C++ tests.
These are tests that use a native C++ wrapper to create tests but that can
still be run from the Visual Studio IDE.

Figure 1 shows an example of a ‘Managed’ test in VS2012. The IDE has
the Test Explorer to the left showing that the test has failed. Clicking the
highlight at the top of the stack trace (bottom left) opens the code and
positions the cursor at the failing line (I’ve manually highlighted the line
to make this clearer...).

This is what I wanted to replicate with Catch...so for those who are
unfamiliar with Catch....

The five minute guide to Catch
Catch is a C++ testing framework that is simple to get running (header
only, no dependencies) and in the case of failure (or optionally for success)
can also provide both the original expression and the values that caused
failure. The current version is designed to run from the command line.

To make the command line work, Catch needs a main() function; my
personal convention is to create a main.cpp with this content:

 // main.cpp
 #define CATCH_CONFIG_MAIN
 #include "catch.hpp"

Then I create a file for my tests (this file can be shared with Visual Studio)
and write a test (see Listing 1).

The ‘test case’ is defined with free form text for the name, then creates an
instance of the object that we want tested. When the tests are run, Catch
will loop through the TEST_CASE for as many SECTIONs as are defined,
so in this example the TEST_CASE gets run twice. This creates a new,
initialised testObject each time the TEST_CASE is run; for this reason
many Catch tests require no setup() or teardown() methods.

The first SECTION will clearly fail, but Catch carries on and runs the
TEST_CASE again to run the second SECTION, which works. The output
from a test run with default arguments is like Listing 2.

For the failure, the program outputs both the original expression and the
values that caused the failure. The final line confirms that the assertion in
each SECTION was executed, with 1 failure. Catch can also be run to show
the output from successful REQUIREments, along with many other
options.

R

Figure 1

Listing 1

// example_tests.cpp
#include "catch.hpp"

struct SomethingWeWantToTest {
 SomethingWeWantToTest() : m_value(1) {}
 int m_value;
};

TEST_CASE("Simple example") {
 SomethingWeWantToTest testObject;

 SECTION("First section, fails") {
 REQUIRE(testObject.m_value == 0);
 }
 SECTION("Second section, works") {
 REQUIRE(testObject.m_value == 1);
 }
}

Malcolm Noyes has worked as a software developer/author for
several years; just how many can be deduced from the information
that he started programming C++ using a Zortech compiler. He wrote
several string classes before discovering the STL and several thread
classes before multi-threading got standardised. He has never written
a Unit Test framework but probably would have done if Phil Nash
hadn’t got there first!
February 2014 | Overload | 7

FEATURE MALCOLM NOYES

I had written some macros that
enabled me to share source code
between Catch and MSTest but this
didn’t integrate very well with the IDE
Goals using Catch in Visual Studio
My initial goal was purely selfish; I currently work in an environment
where VS is used to implement tests using Microsoft’s test framework. The
environment has a couple of serious usability problems [MSTest] and this
makes testing a somewhat painful experience.

My involvement started from Visual Studio 2010 and later moved on to
VS2012. From a fairly early stage I had written some macros that enabled
me to share source code between Catch and MSTest but this didn’t
integrate very well with the IDE, then I discovered by accident that
VS2012 had some ‘Native’ C++ unit test support and I realised that it
should be possible to hook into this directly from Catch. This started a train
of thought that made me wonder if I could do the same thing for Managed
tests too.

Initially I wanted:

1. To be able to write a test with Catch macros and share source code
between command line Catch and VS.

2. If an assertion failed in the IDE, the test should stop and the IDE
should allow me to jump to the location of the problem, just like it
does in MSTest.

This last requirement is slightly different from running regular Catch from
the command line; normally we expect that Catch will do its best to run
as many of the tests as possible, then report all of the problems at the end
of the run. In the IDE, I wanted it to stop and that meant that I had to tinker
with some of Catch’s internals...

First implementation
So I spent a couple of days doing an experiment and ended up with
something that seemed to meet these goals. To make it work, I had to do
three things:

1. Redefine the TEST_CASE macro.
2. Rewrite the reporter so that it reported at the end of the test.
3. Hook up the assertion to the relevant MSTest mechanism.

The result looks like Figure 2 (VS2010).

Changes to the TEST_CASE macro
The TEST_CASE m a c r o m a p s t o a n u nd e r l y i n g
INTERNAL_CATCH_TESTCASE macro that needed a completely new
definition, along with the equivalent macros for testing class methods that
are very similar.

My first version of these macros implemented an instance of a test class
(either a ‘Managed’ test class or a ‘Native’ test class), provided a semi-
unique name for a function that would get invoked and then called it (more
about the ‘semi’-uniqueness later...). As in regular Catch, the definition of
the invoked TEST_CASE function follows the macro and is written by the
user. The Catch ‘test name’ is passed as a property attribute to the test class
so that it can be displayed in the IDE. In the first version, the Catch
‘description’ field was discarded.

 // TEST_CASE maps to INTERNAL_CATCH_TESTCASE
 // First param is test name
 // Second param is 'description',
 // often used for tags
 TEST_CASE("./failing/exceptions/double",
 "[.][failing]")
 {
 //...
 }

Since Catch is header only, I also had to adapt the code to allow for
functions that would be #included multiple times; Regular Catch

Listing 2

test.exe is a Catch v1.0 b23 host application.
Run with -? for options

Simple example
 First section, fails

c:/Projects/examples/example_tests.cpp:8
...

c:/Projects/examples/example_tests.cpp:12: FAILED:
 REQUIRE(testObject.m_value == 0)
with expansion:
 1 == 0

===
1 test case - failed (2 assertions - 1 failed)

Figure 2
8 | Overload | February 2014

FEATUREMALCOLM NOYES

if there is a duplicate name,
VS silently ignores one of them

and only runs one of the tests
‘knows’ which module contains main() so only includes certain headers
in that module. Using an MSTest project in Visual Studio doesn’t require
a main() function, so catch.hpp needs to pull in everything in each
module. Consequently, some functions needed to get inlined and a couple
of static members needed to get replaced by templates so that the compiler/
linker had to work out how to keep just one instance from all modules.

Changes to the reporter
The first reporter looked very similar to the Catch ‘console’ reporter. The
main change was to collect together all the information that needed to be
reported when the test completed so that it could be sent to the output
windows in VS....

...except that Phil had optimised a couple of functions that returned strings
using a static std::string. It turns out that Managed C++ doesn’t like
this much (‘This function must be called in the default domain’ in atexit,
presumably as a result of trying to release the memory from the
std::string). So (for now) those functions had to return a new string
each time. Ho hum...

Assertions
Catch has a number of macros that check for failures (REQUIRE, CHECK,
REQUIRE_FALSE , e t c) bu t u n de r l y i ng a l l o f t h i s i s a n
INTERNAL_CATCH_ACCEPT_EXPR macro that helpfully throws an
exception if the test needs to abort. All I had to do to make this work was
call the MSTest assertion with the relevant details of the failure instead of
throwing. That would give me the context that I wanted so that the IDE
could point me to the problem by clicking the link.

Some feature creep
Catch already has an extensive internal self test suite that is slightly
complicated because, being a test framework, needs to check failures as
well as tests that pass. I had decided that the best way to check that my
code worked would be to build a project that used all of the internal test
su i te and one o f the f i r s t modules I encountered was the
VariadicMacrosTests file.

I had already started to prepare a blog post about what I had done and as
part of that I created a new VS test project from scratch, using the VS
wizard. However I noticed that the wizard generated a project that used
Unicode by default. I wanted to be able to use multi-byte strings (MBCS)
as well. ‘Simple’, you may think and indeed it was until I encountered the
variadic macros in Catch. The problem with this is that some of the strings
needed to be passed as wide strings (e.g. to test class attributes) and some
didn’t (e.g. to be used internally by Catch). When it isn’t known how many
parameters have been passed to the macro, it can become tricky to know
how to convert a possibly non-existent value! Much of the complexity in
my implementation of the TEST_CASE macros is there to deal with this
problem.

I also discovered that Native C++ tests didn’t want to play nicely with
anonymous namespaces. I tried several possible ways to fool the compiler
into allowing a unique class name to be used but in the end I had to accept

that each test needed to go into a namespace uniquely named for each file.
If I didn’t do this, there was a risk that the semi-unique name generated
by the TEST_CASE macro would cause a name clash between modules.

Sadly if there is a duplicate name, VS silently ignores one of them and only
runs one of the tests, so I had to manually check for a name clash and
generate an error if it happened. The workaround for both these problems
is pretty simple; since neither Catch or VS cares what namespace the tests
are in, TEST_CASEs in a module should go into a namespace named after
that module, e.g.:

 // module1.cpp
 namespace module1 {
 TEST_CASE("blah") {
 //...
 }
 }

Remarkably, most other things just worked.... but I had some trouble with
Catch’s ability to register and translate unknown exceptions...

More feature creep
Although I suspected that the feature wasn’t used much, I was sure that it
should be possible to implement some code that would allow me to
translate unknown exceptions. I realised that to make it work I would have
to fix up Catch’s static registration. The existing macros worked like this;
first define a translation:

 CATCH_TRANSLATE_EXCEPTION(double& ex)
 {
 return Catch::toString(ex);
 }

then when a test throws an unexpected exception, it should be sent to the
output, e.g.:

 TEST_CASE("Unexpected exceptions can be
 translated", "[.][failing]")
 {
 if(Catch::isTrue(true))
 throw double(3.14);
 }

will send this to the output:

 ...
 c:\projects\catch\projects\selftest\exception
 tests.cpp(130): FAILED:
 due to unexpected exception with message:
 3.14

In common with many other test frameworks, Catch has a global
registration object that it uses to register tests, and it also uses this to
register reporters and exception translators, so initially I just implemented
the exception translators to use a static templated object.

Once I’d done that I could run each individual test from the self test suite
in the IDE and manually check that the output matched the output from
Catch.
February 2014 | Overload | 9

FEATURE MALCOLM NOYES
A fortunate co-incidence
I had been thinking about one of the other tests in the test suite that I hadn’t
managed to implement. The code collected all the registered tests, worked
out whether they were expected to ‘pass’ or ‘fail’ and then ran them all in
two batches, one for passes and one for failures. Around this time, Phil had
written a Python script that verified the expected output from running all
tests, so he removed this code. I had a feeling this code might be useful,
and so it prompted me to think about how I could perhaps use a similar
technique to run all the tests automatically in VS. My idea was to run all
the tests in a ‘batch’, then use a similar Python script to generate
compatible output from the VS output, instead of having to manually check
every time.

However, in that version I didn’t register any tests; my initial
implementation of TEST_CASE just created a test class and ran the method
inline, so didn’t need it. After a little tinkering with a few angle brackets,
I discovered that I could indeed implement the whole of Catch’s
registration mechanism in VS. Then I started to wonder what else I could
do with it...

A new goal!
I started with a new macro that didn’t register a catch test case but instead
asked the Catch registration object to run all the tests. That worked but I
knew that Phil was able to use Catch’s ‘tag’ filtering to selectively run
different groups of tests and I wanted to be able to do the same thing. I
also realised that if I could somehow call this ‘batch test’ using the VS
command line tools then I would be able to easily integrate tests written
for Catch into other Continuous Integration environments, such as
TeamCity, TFS or Jenkins.

During my first encounter with Native C++ tests I had discovered that
VS2012 Native tests could not use MSTest.exe to run them from the
command line. Instead it seemed that MSTest.exe had been deprecated in
favour of vstest.console.exe that had the necessary plumbing to understand
binaries built for native tests and run them. A brief look at the command
line parameters for both tools suggested the options for passing filters into
tests was going to be limited to a single textual parameter (‘Category’ for
MSTest and, somewhat bizarrely, ‘Owner’ for Native vstest.console.exe).

I did explore the possibility of feeding parameters into the tests as a
database but that seemed overly convoluted and it wasn’t clear if it would
work in Native C++ tests (I don’t think it does...) so I ended up with a macro
whereby I could specify an identifier that would be recognised by the VS
tools and that I could ‘map’ to Catch ‘tags’ to provide filtering using the
existing Catch code, the snappily named CATCH_MAP_CATEGORY_TO_
TAG:

 CATCH_MAP_CATEGORY_TO_TAG(all, "~[vs]");

This runs all the registered tests except those tagged ‘[vs]’, which
corresponds to the default run of Catch on the command line. This macro
also changes the default behaviour of Catch so that instead of stopping
immediately (as we need for the IDE) it runs as many tests as possible.
Sadly, this change in behaviour also exposed some shortcomings in my
implementation of the reporter and capture mechanisms; in some
circumstances expected output would be lost. This required a bit more
rework of Catch’s internals, in particular I found that I needed to push the
current test state onto the stack so that the reporter could use that
information when a failing test was unwound.

Then I developed some new Python scripts that parsed and verified the
Catch output and compared that against the output from MSTest.exe/
vstest.console.exe (output from these tools can be directed to a .trx file).

Aside from some minor presentation differences, this worked well and was
good enough to validate that the VS code is doing the right thing, at least
for ‘all’ tests.

The final section
There were still two things that I couldn’t validate though; the Catch self
test validation script runs a set of tests that shows output from successful
tests, and another that aborts after 4 failures. All these things can be easily
changed using different parameters from the Catch command line. Could
I replicate this somehow? What I wanted was to be able to define test
parameters before I used CATCH_MAP_CATEGORY_TO_TAG. Such
changes should apply to the current batch test run only; subsequent test
runs should revert to defaults. A few additional macros and some
additional configuration classes allowed me to do this too:

 CATCH_CONFIG_SHOW_SUCCESS(true)
 CATCH_CONFIG_WARN_MISSING_ASSERTIONS(true)
 CATCH_MAP_CATEGORY_TO_TAG(allSucceeding, "~[vs]");

This produced all the correct output, but in the wrong order. The order that
the tests are run depends on their order of registration with the global
registrar, which of course depends on the order the compiler/linker decides
to implement static objects. Phil normally uses OSX to develop Catch, and
this does things in a different order from VS. The solution is to sort the
output by test name in the validation scripts before it can be compared.

The same problem afflicts the test that aborts after 4 failures, but the effect
is slightly different. The code for OSX was presumably written using
XCode/Clang and the tests that code decides to execute before it gets to 4
failures was different to VS and I got a completely different set of failures!
So finally I had to add two more macros; one that ‘registers’ a test to be
run in a specific order and one that runs the ordered list of tests (Listing 3).

Wrap up
I now have a very flexible test environment that I can use to share Catch
source code between Visual Studio and command line Catch. If I want to
avoid the torture of the Test Explorer, I can run Catch from the command
line by simply adding a main.cpp that specifies CATCH_CONFIG_MAIN.
For those times when I need to resort to the debugger, I can easily run
individual tests in the IDE. As a bonus, I can also specify a ‘batch run’ that
uses the built in VS command line tools, which means that integration with
TeamCity (or other CI environments) should be easy. I think my goals have
been met; if you are suffering from similar frustrations, please give the fork
a try and let me know what works, and what doesn’t.

Finally, I’ve been discussing with Phil the possibility that the code for my
fork could be merged back into the mainline; my understanding is that he
is keen to do this, although as far as I know he hasn’t had time to take a
good look at what I’ve done to his code yet! So I hope that this will happen,
or perhaps will have happened by the time you read this... 

References
[Catch] My fork of Catch: https://github.com/colonelsammy/Catch

[Nash] Phil Nash’s Catch framework: https://github.com/philsquared/
Catch

[VS] Documentation for VS integration: https://github.com/
colonelsammy/Catch/blob/master/docs/vs/vs-index.md

[MSTest] http://www.graoil.co.uk/blog/2013/10/28/replacing-mstest-
with-phil-nashs-catch-framework-for-managed-tests/
10 | Overload | February 2014

Listing 3

CATCH_INTERNAL_CONFIG_ADD_TEST("Some simple comparisons between doubles")
CATCH_INTERNAL_CONFIG_ADD_TEST("Approximate comparisons with different epsilons")
CATCH_INTERNAL_CONFIG_ADD_TEST("Approximate comparisons with floats")
...
INTERNAL_CATCH_MAP_CATEGORY_TO_LIST(allSucceedingAborting);

https://github.com/philsquared/Catch
https://github.com/philsquared/Catch
https://github.com/colonelsammy/Catch/blob/master/docs/vs/vs-index.md
https://github.com/colonelsammy/Catch/blob/master/docs/vs/vs-index.md
http://www.graoil.co.uk/blog/2013/10/28/replacing-mstest-with-phil-nashs-catch-framework-for-managed-tests/
http://www.graoil.co.uk/blog/2013/10/28/replacing-mstest-with-phil-nashs-catch-framework-for-managed-tests/
https://github.com/colonelsammy/Catch

FEATURELEE BENFIELD & MIKE STROBEL
Anatomy of a Java Decompiler
Java byte code can be reverted
back into source code. Lee Benfield
and Mike Strobel show how.
 decompiler, simply put, attempts to reverse the transformation of
source code to object code. But there are many interesting
complexities – Java source code is structured; bytecode certainly

isn’t. Moreover, the transformation isn’t one-to-one: two different Java
programs may yield identical bytecode. We need to apply heuristics in
order to get a reasonable approximation of the original source.

(A tiny) bytecode refresher
In order to understand how a decompiler works, it’s necessary to
understand the basics of byte code. If you’re already familiar with byte
code, feel free to skip ahead to the next section.

The JVM is a stack-based machine (as opposed to a register-based
machine), meaning instructions operate on an evaluation stack. Operands
may be popped off the stack, various operations performed, and the results
pushed back onto the stack for further evaluation. Consider the following
method:

 public static int plus(int a, int b) {
 int c = a + b;
 return c;
 }

Note: All byte code shown in this article is output from javap, e.g.,
javap -c -p MyClass. (Comments added for clarity.)

A method’s local variables (including arguments to the method) are stored
in what the JVM refers to as the local variable array. We’ll refer to a value
(or reference) stored in location #x in the local variable array as ‘slot #x’
for brevity (see JVM Specification §2.6.2 [JVMa]).

For instance methods, the value in slot #0 is always the this pointer.
Then come the method arguments, from left to right, followed by any local
variables declared within the method. In the example above, the method
is static, so there is no this pointer; slot #0 holds parameter x, and slot
#1 holds parameter y. The local variable sum resides in slot #2.

It’s interesting to note that each method has a max stack size and max local
variable storage, both of which are determined at compile time.

One thing that’s immediately obvious from here, which you might not
initially expect, is that the compiler made no attempt to optimise the code.
In fact, javac almost never emits optimised bytecode. This has multiple
benefits, including the ability to set breakpoints at all executable source
lines: if we were to eliminate the redundant load/store operations, we’d
lose that capability. Thus, most of the heavy lifting is performed at runtime
by a just-in-time (JIT) compiler.

Decompiling
So, how can you take unstructured, stack-based byte code and translate it
back into structured Java code? One of the first steps is usually to get rid
of the operand stack, which we do by mapping stack values to variables
and inserting the appropriate load and store operations.

A ‘stack variable’ is only assigned once, and consumed once. You might
note that this will lead to a lot of redundant variables – more on this later!
The decompiler may also reduce the byte code into an even simpler
instruction set, but we won’t consider that here.

We'll use the notation s0 (etc.) to represent stack variables, and v0 to
represent true local variables referenced in the original byte code (and
stored in slots).

We get from bytecode to variables by assigning identifiers to every value
pushed or popped, e.g., iadd pops two operands to add and pushes the
result.

We then apply a technique called copy propagation to eliminate some of
the redundant variables. Copy propagation is a form of inlining in which
references to variables are simply replaced with the assigned value,
provided the transformation is valid.

A

Listing 1

public static int plus(int, int);
 Code:
 stack=2, locals=3, arguments=2
 0: iload_0
 // load 'a' from slot 0, push onto stack
 1: iload_1
 // load 'b' from slot 1, push onto stack
 2: iadd
 // pop 2 integers, add them together,
 // and push the result
 3: istore_2
 // pop the result, store as 'c' in slot 2
 4: iload_2
 // load 'c' from slot 2, push onto stack
 5: ireturn
 // return the integer at the top of the stack

Bytecode Stack Variables Copy Propagation

0 iload_0 s0 = v0

1 iload_1 s1 = v1

2 iadd s2 = s0 + s1

3 istore_2 v2 = s2 v2 = v0 + v1

4 iload_2 s3 = v2

5 ireturn return s3 return v2

Lee Benfield started out life on a Dragon 32 and hasn’t looked back.
He currently works on high-frequency trading systems, is interested in
reverse engineering, and collects 8 bit computers to offset his Java
memory footprint. Lee can be contacted at lee@benf.org

Mike Strobel studied Computer Science at Georgia Tech and works
with a high-frequency trading group in Manhattan. He uses runtime
code generation to alleviate the memory and throughput issues
inherent in dynamic systems. Contact him at mike.strobel@gmail.com
February 2014 | Overload | 11

FEATURE LEE BENFIELD & MIKE STROBEL
What do we mean by ‘valid’? Well, there are some important restrictions.
Consider the following:

 0: s0 = v1
 1: v1 = s4
 2: v2 = s0 <-- s0 cannot be replaced with v1

Here, if we were to replace s0 with v1, the behaviour would change, as
the value of v1 changes after s0 is assigned, but before it is consumed.

To avoid these complications, we only use copy propagation to inline
variables that are assigned exactly once.

One way to enforce this might be to track all stores to non-stack variables,
i.e., we know that v1 is assigned v10 at #0, and also v11 at #2. Since there
is more than one assignment to v1, we cannot perform copy propagation.

Our original example, however, has no such complications, and we end
up with a nice, concise result:

 v2 = v0 + v1
 return v2

Stack analysis
In the previous example, we could guarantee which value was on top of
the stack at any given point, and so we could name s0, s1, and so on.

So far, dealing with variables has been pretty straightforward because
we’ve only explored methods with a single code path. In a real world
application, most methods aren’t going to be so accommodating. Each time
you add a loop or condition to a method, you increase the number of
possible paths a caller might take. Consider this modified version of our
earlier example:

 public static int plus(boolean t, int a, int b) {
 int c = t ? a : b;
 return c;
 }

Now we have control flow to complicate things; if we try to perform the
same assignments as before, we run into a problem.

We need to be a little smarter about how we assign our stack identifiers.
It’s no longer sufficient to consider each instruction on its own; we need
to keep track of how the stack looks at any given location, because there
are multiple paths we might take to get there.

When we examine #9, we see that istore_3 pops a single value, but that
value has two sources: it might have originated at either #5 or #8. The
value at the top of the stack at #9 might be either s1 or s2, depending on
whether we came from #5 or #8, respectively. Therefore, we need to
consider these to be the same variable – we merge them, and all references
to s1 or s2 become references to the unambiguous variable s{1,2}. After
this ‘relabelling’, we can safely perform copy propagation.

Notice the conditional branch at #1: if the value of s0 is zero, we jump to
the else block; otherwise, we continue along the current path. It’s
interesting to note that the test condition is negated when compared to the
original source. We’ve now covered enough to dive into...

Bytecode Stack Variables

0 iload_0 s0 = v0

1 ifeq 8 if (s0 == 0) goto #8

4 iload_1 s1 = v1

5 goto 9 goto #9

8 iload_2 s2 = v2

9 istore_3 v3 = {s1,s2}

10 iload_3 s4 = v3

11 ireturn return s4

After Relabelling After Copy Propagation

0 s0 = v0

1 if (s0 == 0) goto #8 if (v0 == 0) goto #8

4 s{1,2} = v1 s{1,2} = v1

5 goto #9 goto #9

8 s{1,2} = :v2 s{1,2} = v2

9 v3 = s{1,2} v3 = s{1,2}

10 s4 = v3

11 return s4 return v3

If variables are reduced to slot references in the byte code, how then do
we restore the original variable names? It’s possible we can’t. To improve
the debugging experience, the byte code for each method may include a
special section called the local variable table. For each variable in the
original source, there exists an entry that specifies the name, the slot
number, and the bytecode range for which the name applies. This table
(and other useful metadata) can be included in the javap disassembly by
including the -l option. For our plus() method above, the table javap
emits looks like this:

Here, we see that v2 refers to an integer variable originally named c at
bytecode offsets #4–5.

For classes that have been compiled without local variable tables (or which
had them stripped out by an obfuscator), we have to generate our own
names. There are many strategies for doing this; a clever implementation
might look at how a variable is used for hints on an appropriate name.

Start Length Slot Name Signature

0 6 0 a I

0 6 1 b I

4 2 2 c I

Restoring variable names

When dealing with stack values, the JVM uses a more simplistic type
system than Java source. Specifically, boolean, char, and short
values are manipulated using the same instructions as int values. Thus,
the comparison v0 != 0 could be interpreted as:

 v0 != false ? v1 : v2

or:

 v0 != 0 ? v1 : v2

or even:

 v0 != false ? v1 == true : v2 == true

and so on!

In this case, however, we are fortunate to know the exact type of v0, as
it is contained within the method descriptor:

 descriptor: (ZII)I
 flags: ACC_PUBLIC, ACC_STATIC

This tells us the method signature is of the form:

 public static int plus(boolean, int, int)

We can also infer that v3 should be an int (as opposed to a boolean)
because it is used as the return value, and the descriptor tells us the return
type. We are then left with:

 v3 = v0 ? v1 : v2
 return v3

As an aside, if v0 were a local variable (and not a formal parameter) then
we might not know it represents a boolean value and not an int.
Remember that local variable table we mentioned earlier, which tells us
the original variable names? It also includes information about the variable
types, so if your compiler is configured to emit debug information, we can
look to that table for type hints. There is another table called
LocalVariableTypeTable [JVMb] that contains similar information;
the key difference is that a LocalVariableTypeTable may include
deta i l ed in fo rmat ion abou t gener i c types , whereas a
LocalVariableTable cannot. It’s worth noting that these tables are
unverified metadata, so they are not necessarily trustworthy. A
particularly devious obfuscator might choose to fill these tables with lies,
and the resulting bytecode would still be valid! Use them at your own
discretion.

But what are the types?
12 | Overload | February 2014

FEATURELEE BENFIELD & MIKE STROBEL
Conditional expressions
At this point, we can determine that our code could be modelled with a
ternary operator (?:): we have a conditional, with each branch having a
single assignment to the same stack variable s{1,2}, after which the two
paths converge. Once we’ve identified this pattern, we can roll the ternary
up straight away.

Note that, as part of the transformation, we negated the condition at #9. It
turns out that javac is fairly predictable in how it negates conditions, so we
can more closely match the original source if we flip those conditions back.

Short-Circuit Operators ('&&' and '||')
 public static boolean fn(boolean a,
 boolean b, boolean c){
 return a || b && c;
 }

How could anything be simpler? The bytecode is, unfortunately, a bit of
a pain...

The ireturn instruction at #17 could return either s3 or s4, depending
on what path is taken. We alias them as described above, and then we
perform copy propagation to eliminate s0, s1, and s2.

We are left with three consecutive conditionals at #1, #5 and #7. As we
mentioned earlier, conditional branches either jump or fall through to the
next instruction.

The bytecode above contains sequences of conditional branches that
follow specific and very useful patterns:

If we consider neighbouring pairs of conditionals above, #1...#5 do not
conform to either of these patterns, but #5...#9 is a conditional disjunction
(||), so we apply the appropriate transformation:

 1: if (v0 != 0) goto #12
 5: if (v1 == 0 || v2 == 0) goto #16
 12: s{3,4} = 1
 13: goto #17
 16: s{3,4} = 0
 17: return s{3,4}

Note that every transform we apply might create opportunities to perform
additional transforms. In this case, applying the || transform restructured
our conditions, and now #1...#5 conform to the && pattern! Thus, we can
further simplify the method by combining these lines into a single
conditional branch:

 1: if (v0 == 0 && (v1 == 0 || v2 == 0)) goto #16
 12: s{3,4} = 1
 13: goto #17
 16: s{3,4} = 0
 17: return s{3,4}

Does this look familiar? It should: this bytecode now conforms to the
ternary (?:) operator pattern we covered earlier. We can reduce #1...#16
to a single expression, then use copy propagation to inline s{3,4} into
the return statement at #17:

 return (v0 == 0 && (v1 == 0 || v2 == 0)) ? 0 : 1;

Using the method descriptor and local variable type tables described
earlier, we can infer all the types necessary to reduce this expression to:

 return (v0 == false && (
 v1 == false || v2 == false))
 ? false : true;

Well, this is certainly more concise than our original decompilation, but
it’s still pretty jarring. Let’s see what we can do about that. We can start
by collapsing comparisons like x == true and x == false to x and
!x, respectively. We can also eliminate the ternary operator by reducing
x ? false : true as the simple expression !x.

 return !(!v0 && (!v1 || !v2));

Better, but it’s still a bit of a handful. If you remember your high school
discrete maths, you can see that De Morgan’s theorem can be applied here:

 !(a || b) --> (!a) && (!b)
 !(a && b) --> (!a) || (!b)

And thus:

 return ! (!v0 && (!v1 || !v2))

becomes:

 return (v0 || !(!v1 || !v2))

and eventually:

 return (v0 || (v1 && v2))

Hurrah!

Dealing with method calls
We’ve already seen what it looks like for a method to be called: arguments
‘arrive’ in the locals array. To call a method, arguments must be pushed
onto the stack, following a this pointer in the case of instance methods).
Calling a method in bytecode is as you’d expect:

 push arg_0
 push arg_1
 invokevirtual METHODREF

We’ve specified invokevirtual above, which is the instruction used
to invoke most instance methods. The JVM actually has a handful of
instructions used for method calls, each with different semantics:

1. invokeinterface invokes interface methods.
2. invokevirtual invokes instance methods using virtual

semantics, i.e., the call is dispatched to the proper override based on
the runtime type of the target.

After Copy Prop. Collapse Ternary

0

1 if (v0 == 0) goto #8

4 s{1,2} = v1

5 goto 9

8 s{1,2} = v2

9 v3 = s{1,2} v3 = v0 != 0 ? v1 : v2

10

11 return v3 return v3

Bytecode Stack Variables After Copy Propagation

0 iload_0 s0 = v0

1 ifne #12 if (s0 != 0) goto
#12

if (v0 != 0) goto
#12

4 iload_1 s1 = v1

5 ifeq #16 if (s1 == 0) goto
#16

if (v1 == 0) goto
#16

8 iload_2 s2 = v2

9 ifeq #16 if (s2 == 0) goto
#16

if (v2 == 0) goto
#16

12 iconst_1 s3 = 1 s{3,4} = 1

13 goto #17 goto 17 goto 17

16 iconst_0 s4 = 0 s{3,4} = 0

17 ireturn return s{3,4} return s{3,4}

Conditional Conjunction (&&) Conditional Disjunction (||)

T1:
 if (c1) goto L1
 if (c2) goto L2
L1:
 ...
Becomes:
 if (!c1 && c2) goto L2
L2:
 ...

T1:
 if (c1) goto L2
 if (c2) goto L2
L1:
 ...
Becomes:
 if (c1 || c2) goto L2
L1:
 ...
February 2014 | Overload | 13

FEATURE LEE BENFIELD & MIKE STROBEL
3. invokespecial invokes a specific instance method (without
virtual semantics); it is most commonly used for invoking
constructors, but is also used for calls like super.method().

4. invokestatic invokes static methods.
5. invokedynamic is the least common (in Java), and it uses a

‘bootstrap’ method to invoke a custom call site binder. It was
created to improve support for dynamic languages, and has been
used in Java 8 to implement lambdas.

The important detail for a decompiler writer is that the class’s constant
pool [JVMc] contains details for any method called, including the number
and type of its arguments, as well as its return type. Recording this
information in the caller class allows the runtime to verify that the intended
method exists at runtime, and that it conforms to the expected signature.
If the target method is in third party code, and its signature changes, then
any code that attempts to call the old version will throw an error (as
opposed to producing undefined behaviour).

Going back to our example above, the presence of the invokevirtual
opcode tells us that the target method is an instance method, and therefore
requires a this pointer as an implicit first argument. The METHODREF in
the constant pool tells us that the method has one formal parameter, so we
know we need to pop an argument off of the stack in addition to the target
instance pointer. We can then rewrite the code as:

 arg_0.METHODREF(arg_1)

Of course, bytecode isn’t always so friendly; there’s no requirement that
stack arguments be pushed neatly onto the stack, one after the other. If, for
example, one of the arguments was a ternary expression, then there would
be intermediate load, store, and branch instructions that will need to be
transformed independently. Obfuscators might rewrite methods into a
particularly convoluted sequence of instructions. A good decompiler will
need to be flexible enough to handle many interesting edge cases that are
beyond the scope of this article.

There has to be more to it than this...
So far, we’ve limited ourselves to analysing a single sequence of code,
beginning with a list of simple instructions and applying transformations
that produce more familiar, higher-level constructs. If you are thinking that
this seems a little too simplistic, then you are correct. Java is a highly
structured language with concepts like scopes and blocks, as well as more
complicated control flow mechanisms. In order to deal with constructs like
if/else blocks and loops, we need to perform a more rigorous analysis
of the code, paying special attention to the various paths that might be
taken. This is called control flow analysis.

We begin by breaking down our code into contiguous blocks that are
guaranteed to execute from beginning to end. These are called basic
blocks, and we construct them by splitting up our instruction list along
places where we might jump to another block, as well as any instructions
which might be jump targets themselves.

We then build up a control flow graph (CFG) by creating edges between
the blocks to represent all possible branches. Note that these edges may
not be explicit branches; blocks containing instructions that might throw
exceptions will be connected to their respective exception handlers. We
won’t go into detail about constructing CFGs, but some high level
knowledge is required to understand how we use these graphs to detect
code constructs like loops.

Figure 1 shows some examples of control flow graphs.

The aspects of control flow graphs that we are most interested in are
domination relationships:

 A node D is said to dominate another node N if all paths to N pass
through D. All nodes dominate themselves; if D and N are different
nodes, then D is said to strictly dominate N.

 If D strictly dominates N and does not strictly dominate any other
node that strictly dominates N, then D can be said to immediately
dominate N.

 The dominator tree is a tree of nodes in which each node’s children
are the nodes it immediately dominates.

 The dominance frontier of D is the set of all nodes N such that D
dominates an immediate predecessor of N but does not strictly
dominate N. In other worse, it is the set of nodes where D’s
dominance ends.

Basic loops and control flow
Consider the following Java method:

 public static void fn(int n) {
 for (int i = 0; i < n; ++i) {
 System.out.println(i);
 }
 }

and its disassembly:

 0: iconst_0
 1: istore_1
 2: iload_1
 3: iload_0
 4: if_icmpge 20
 7: getstatic #2 // System.out:PrintStream
10: iload_1
11: invokevirtual #3 // PrintStream.println:(I)V
14: iinc 1, 1
17: goto 2
20: return

Let’s apply what we discussed above to convert this into a more readable
form, first by introducing stack variables, then performing copy
propagation.

Bytecode Stack Variables
After Copy

Propagation

 0 iconst_0 s0 = 0

 1 istore_1 v1 = s0 v1 = 0

 2 iload_1 s2 = v1

 3 iload_0 s3 = v0

 4 if_icmpge 20 if (s2 >= s3)
goto 20

if (v1 >= v0)
goto 20

 7 getstatic #2 s4 = System.out

10 iload_1 s5 = v1

11 invokevirtual
#3

s4.println(s5) System.out.prin
tln(v1)

14 iinc 1, 1 v1 = v1 + 1 v1 = v1 + 1

17 goto 2 goto 2 goto 4

20 return return return

Figure 1
14 | Overload | February 2014

FEATURELEE BENFIELD & MIKE STROBEL
Notice how the conditional branch at #4 and the goto at #17 create a
logical loop. We can see this more easily by looking at a control flow graph
(Figure 2).

From the graph, it’s obvious that we have a neat cycle, with an edge from
the goto back to a conditional branch. In this case, the conditional branch
is referred to as a loop header, which can be defined as a dominator with
a loop-forming backward edge. A loop header dominates all nodes within
the loop’s body.

We can determine whether a condition is a loop header by looking for a
loop-forming back edge, but how do we do that? A simple solution is to
test whether the condition node is in its own dominance frontier. Once we
know we have a loop header, we have to figure out which nodes to pull
into the loop body; we can do that by finding all nodes dominated by the
header. In pseudocode, our algorithm would look something like Listing 2.

Once we’ve figured out the loop body, we can transform our code into a
loop. Keep in mind that our loop header may be a conditional jump out of
the loop, in which case we need to negate the condition.

 v1 = 0
 while (v1 < v0) {
 System.out.println(v1)
 v1 = v1 + 1
 }
 return

And voilà, we have a simple pre-condition loop! Most loops, including
while, for and for-each, compile down to the same basic pattern,
which we detect as a simple while loop. There’s no way to know for sure
what kind of loop the programmer originally wrote, but for and for-

each follow pretty specific patterns that we can look for. We won’t go
into the details, but if you look at the while loop above, you can see how
the original for loop’s initializer (v1 = 0) precedes the loop, and its
iterator (v1 = v1 + 1) has been inserted at the end of the loop body.
We’ll leave it as an exercise to think about when and how one might
transform while loops into for or for-each. It’s also interesting to
think about how we might have to adjust our logic to detect post-
conditional (do/while) loops.

We can apply a similar technique to decompile if/else statements. The
bytecode pattern is pretty straightforward:

 begin:
 iftrue(!condition) goto #else
 // 'if' block begins here
 ...
 goto #end
 else:
 // 'else' block begins here
 ...
 end:
 // end of 'if/else'

Here, we use iftrue as a pseudo-instruction to represent any conditional
branch: test a condition, and if it passes, then branch; otherwise, continue.
We know that the if block starts at the instruction following the condition,
and the else block starts at the condition’s jump target. Finding the
contents of those blocks is as simple as finding the nodes dominated by
those starting nodes, which we can do using the same algorithm we
described above.

We’ve now covered basic control flow mechanisms, and while there are
others (e.g., exception handlers and subroutines), those are beyond the
scope of this introductory article.

Wrap-up
Writing a decompiler is no simple task, and the experience easily translates
into a book’s worth of material – perhaps even a series of books!
Obviously, we could not cover everything in a single article, and you
probably wouldn’t want to read it if we’d tried. We hope that by touching
on the most common constructs – logical operators, conditionals, and basic
control flow – we have given you an interesting glimpse into the world of
decompiler development.

Now go write your own! :) 

References

This article originally appeared as a Blog post in the Java Advent
Calendar, and is released under the Creative Commons 3.0 Attribution
license.
(In general, just read the JVM spec end to end!)

[JVMa] JVM Specification §2.6.2 – http://docs.oracle.com/javase/specs/
jvms/se7/html/jvms-2.html#jvms-2.6.2

[JVMb] JVM Specification §4.7.14 – http://docs.oracle.com/javase/
specs/jvms/se7/html/jvms-4.html#jvms-4.7.14

[JVMc] JVM Specification §4.4 – http://docs.oracle.com/javase/specs/
jvms/se7/html/jvms-4.html#jvms-4.4

Figure 2

Listing 2

findDominatedNodes(header)
 q := new Queue()
 r := new Set()

 q.enqueue(header)

 while (not q.empty())
 n := q.dequeue()

 if (header.dominates(n))
 r.add(n)

 for (s in n.successors())
 q.enqueue(n)

 return r
February 2014 | Overload | 15

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.6.2
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.6.2
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.7.14
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.7.14
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.4
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.4

FEATURE SERGEY IGNATCHENKO & DMYTRO IVANCHYKHIN
Optimizing Big Number
Arithmetic Without SSE
Addition and multiplication can be slow for
big numbers. Sergey Ignatchenko and
Dmytro Ivanchykhin try to speed things up.

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Bunny, and do not necessarily coincide with the opinions of the translator
or the Overload editor. Please also keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
providing an exact translation. In addition, both the translators and Overload
expressly disclaim all responsibility from any action or inaction resulting from
reading this article.

here is one thing which has puzzled me for a while, and it is the
performance of programs written in C when it comes to big numbers.
It may or may not help with the decades-long ‘C vs Fortran’

performance debate, but let’s concentrate on one single and reasonably
well-defined thing – big number arithmetic in C and see if it can be
improved.

In fact, there are very few things which gain from being rewritten in
assembler (compared to C), but big number arithmetic is one of them, with
relatively little progress in this direction over the years. Let’s take a look
at OpenSSL (a library which is among the most concerned about big
number performance: 99% of SSL connections use RSA these days, and
RSA_performance == Big_Number_Performance, and RSA is
notoriously sslloooowww). Run:

 openssl speed rsa

(if you’re on Windows, you may need to install OpenSSL first) and see
what it shows. In most cases, at the end of the benchmark report it will show
something like

compiler: gcc -fPIC -DOPENSSL_PIC -DZLIB
-DOPENSSL_THREADS -D_REENTRANT -DDSO_DLFCN
-DHAVE_DLFCN_H -DKRB5_MIT -DL_ENDIAN -DTERMIO -Wall
-O2 -g -pipe -Wall -Wp,-D_FORTIFY_SOURCE=2
-fexceptions -fstack-protector --param=ssp-buffer-
size=4 -m32 -march=i686 -mtune=atom -fasynchronous-
unwind-tables -Wa,--noexecstack
-DOPENSSL_BN_ASM_PART_WORDS -DOPENSSL_IA32_SSE2
-DOPENSSL_BN_ASM_MONT -DSHA1_ASM -DSHA256_ASM
-DSHA512_ASM -DMD5_ASM -DRMD160_ASM -DAES_ASM
-DWHIRLPOOL_ASM

Note those -DOPENSSL_BN_ASM in the output – it means that OpenSSL
prefers to use assembler for big number calculations. It was the case back
in 1998, and it is still the case now (last time I checked, the difference
between C and asm implementations was 2x, but it was long ago, so things

may have easily changed since). But why should this be the case? Why
with all the optimizations compilers are doing now, should such a common
and trivial thing still need to be written in asm (which has its own
drawbacks – from the need to write it manually for each and every
platform, to sub-optimality of generic asm when it comes to pipeline
optimizations – and hand-rewriting asm for each new CPU -march/-mtune
is not realistic)? If it can perform in asm but cannot perform in C, it means
that all hardware support is present, but the performance is lost somewhere
in between C developer and generated binary code; in short – the compiler
cannot produce good code. This article will try to perform some analysis
of this phenomenon.

The problem
For the purposes of this article, let’s restrict our analysis to the two most
basic operations in big-number arithmetic: addition and multiplication.
Also in this article we won’t go into SSE/SSE2, concentrating on much
simpler things which still can provide substantial performance gains. The
reason why I decided to stay away from SSE/SSE2/... is because while the
whole area of vectorization has been extensively studied recently, it seems
that people have forgotten about the good old plain instruction set, which
is still capable of delivering good performance; combined with the fact that
SSE has its own issues which make it not so optimal in certain scenarios,
and another suggestion that the most optimal implementation would
probably parallelise execution between the SSE engine and the good old
plain instruction set.

Mind the gap
When I’m speaking about addition: sure, C/C++ has operator +. However,
to add, say, two 128-bit numbers, we need to do more than just repeating
twice an addition of two uint64_t’s in the C/C++ sense, we also need
to obtain carry (65th bit of result) which may easily occur when adding
lower 64-bit parts of our operands.

 uint128_t c = (uint128_t)a + (uint128_t)b;

can be rewritten as

 pair<bool,uint64_t> cLo =
 add65(lower64(a) + lower64(b));
 uint64_t cHi = higher64(a)+higher64(b)+cLo.first;

(assuming that lower64() returns low 64 bits, higher64() returns
high 64 bits, and add65() returns a pair representing <carry
flag,64_bits_of_sum>)

It is this carry flag which is causing all the trouble with additions. In x64
assembler, this whole thing can be written as something like

 add reg_holding_lower64_of_a,
 reg_holding_lower64_of_b
 adc reg_holding_higher64_of_a,
 reg_holding_higher64_of_b

– and that’s it. However, as in C there is no such thing as a ‘carry flag’,
developers are doing all kinds of stuff to simulate it, usually with pretty
bad results for performance.

T

‘No Bugs’ Bunny Translated from Lapine by Sergey Ignatchenko
using the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He is currently holding the position of Security
Researcher. Sergey can be contacted at sergey@ignatchenko.com

Dmytro Ivanchykhin has 10+ years of development experience, and
has a strong mathematical background (in the past, he taught maths at
NDSU in the United States). Dmytro can be contacted at
d_ivanchykhin@yahoo.com
16 | Overload | February 2014

FEATURESERGEY IGNATCHENKO & DMYTRO IVANCHYKHIN

there is a substantial gap between
the capabilities of the hardware and

the capabilities of the C
With multiplication it is also not that easy, and for a similar reason. In
mathematics, when multiplying 64 bits by 64 bits, the result is 128-bit long.
In assembler (at least in x64, and also probably in ARM) the result is also
128-bit long. However, in C, the result of 64bit-by-64-bit multiplication
is 64-bit long, which, when working with big number arithmetic, leads to
four-fold (!) increase in number of multiplications. Ouch.

It should be noted that at least on x64 there is an instruction which
multiplies 64 bits by 64 bits and returns lower 64 bits of the result, and this
instruction is somewhat faster than full-scale 64-bit-by-64-bit-returning-
128-bit multiplication. Still, as we’ll see, it is not enough to compensate
for the four-fold increase in number of multiplications described above.

Overall, it looks that there is a substantial gap between the capabilities of
the hardware and the capabilities of the C. The whole thing seems to be
one incarnation of the Over-Generic Use of Abstractions [NoBugs11]
which, as it often happens, leads to a waste of resources.1 However, the
question is not exactly “Who is to blame?” [Herzen45], but “What Is to
Be Done?” [Chernyshevsky63].

So far, so bad
So, what can be done in this regard? I’ve tried to perform some very basic
experiments (based on things which were rather well-known some time
ago, but apparently forgotten now) trying to implement uint256_t
keeping in mind considerations outlined above, and to compare its
performance with the performance of boost::uint256_t under recent
versions of both MSVC and GCC (see the ‘Benchmark’ section for
details). The results I’ve managed to obtain show between 1.8x and 6.3x
improvements over boost::uint256_t (both for addition and for
multiplication), which, as I feel, indicate a step in the right direction.

Addition
To simplify the description, I’ll use uint128_t as an example; however,
the same approach can be easily generalized to any other types (including
uint256_t which I’ve used for benchmarks).

One thing which I’ve tried to do to deal with addition-with-carry, was:

struct myuint128_t { uint64_t lo; uint64_t hi; };
inline my_uint128_t add128(my_uint128_t a,
 my_uint128_t b) {
 my_uint128_t ret;
 ret.cLo = a.lo + b.lo;
 ret.cHi = a.hi + b.hi + (ret.cLo<b.lo);
 return ret;
}

This is mathematically equivalent to the 128-bit addition, and it (with
subtle differences depending on compiler, etc.) indeed compiles into
something like:

 mov rax, a.lo

 add rax, b.lo //got cLo in rax
 cmp rax, b.lo //setting carry flag to
 //“ret.cLo < b.lo” mov rbx, a.hi
 sbb rdx,rdx //!
 neg rdx //!
 add rbx, rdx
 add rbx, b.hi

Compilers could do significantly better if they would remove two lines
marked with (!), and replace the add in the next line with adc (lines
marked with '!' move carry to rdx, which is then added to addition of rbx,
rdx – adc will do the same thing and faster). Actually, compilers can go
further and optimize away cmp rax, b.lo too (on the grounds that carry
flag has already been set in the previous line). After these optimizations,
the code would look as follows:

 mov rax, a.lo
 add rax, b.lo //got cLo in rax
 mov rbx, a.hi
 adc rbx, b.hi

This looks as a perfect asm for our 128-bit addition, doesn’t it? And from
this point, compiler can optimize it from a pipelining optimization point
of view to its heart’s content.

It is interesting to note that despite all the unnecessary stuff, our C still
performs reasonably well compared to boost::.

boost:: uses an alternative approach, splitting uint128_t into four
uint32_t’s and performing four additions; as my tests show, it seems to
be slower (and I also feel that optimizing my code should be easier for
compiler writers – as outlined above, only two rather relatively minor
optimizations are necessary to speed multi-word addition to the ‘ideal’
level).

A word of caution: while this “a.hi + b.hi + (cLo<b.lo)” technique seems
to be handled reasonably optimally by most modern compilers, when
trying to compile my code which uses uint64_t for 32-bit platforms,
with both GCC and MSVC, they tend to generate very ugly code (with
conditional jumps, pipeline stalls etc.); while I didn’t see such behaviour
in any other scenario – I cannot be 100% sure that it is the only case when
the compiler goes crazy. When compiling for 32-bit platforms, one may
use similar technique, but using natively supported uint32_t’s instead
of simulated uint64_t’s.

Multiplication
With multiplication, things tend to get significantly more complicated. To
write 64-by-64 multiplication in bare C (and without uint128_t which
is not natively supported by most of the compilers), one would need to
write something like Listing 1.

However, in most cases we can access 64-bit-by-64-bit-returning-128-bit
multiplication instruction (which, as I’ve seen, is available on most CPUs
in modern use). In particular, on MSVC there is an ‘intrinsic’ _umul128,

1. Here an abstraction, which I see as being over-generic, is an
abstraction of C operators, which often return the result of the same
size as the size of its arguments
February 2014 | Overload | 17

FEATURE SERGEY IGNATCHENKO & DMYTRO IVANCHYKHIN
which does exactly what we need. Then, our multiplication of
uint64_t’s can be rewritten as:

 inline my_uint128_t mul64x64to128(uint64_t a,
 uint64_t b) {
 my_uint128_t ret;
 ret.lo = _umul128(a, b, &(ret.hi));
 return ret;
 }

In fact, a pure-C/C++ (without intrinsics) implementation uses 6 ‘type A’
(64-bit-by-64-bit-returning-64-bit) multiplications, and an intrinsic-based
one uses 3 multiplications, two being ‘type A’ and one being ‘type B’ (64-
bit-by-64-bit-returning-128-bit). However, the difference in speed
between the two is less than 2x, and I tend to attribute it to ‘type A’
multiplications being faster than ‘type B’ ones, at least on x64 CPUs I’ve
tested my programs on. Still, intrinsic-based version looks significantly
faster (than both my own pure-C implementation, and than boost:: pure-
C implementation).

Under GCC, there is no such intrinsic, but it can be simulated using the
following 5-line GCC inline asm:

 void multiply(uint64_t& rhi, uint64_t& rlo,
 uint64_t a, uint64_t b)
 {
 __asm__(
 " mulq %[b]\n"
 :"=d"(rhi),"=a"(rlo)
 :"1"(a),[b]"rm"(b));
 }

This one (from [Crypto++]) works, too:

 #define MultiplyWordsLoHi(p0, p1, a, b) asm \
 ("mulq %3" : "=a"(p0), "=d"(p1) : "a"(a), \
 "r"(b) : "cc");

Benchmarks
Benchmark results (benchmarking was performed for 256-bit integers, but
the same approach can be generalized to big integers of any size; also,
where applicable, boost version 1.55.0 has been used):

It should be noted that absolute ‘op/clock’ numbers should not be used for
comparison between different computers (let alone comparison between
different architectures/compilers).

Conclusion
We’ve taken a look at problems with big number arithmetic in C, and
described some optimizations which may speed things up significantly,
providing somewhere around 2x to 6x gains over the current boost::
implementation.

Also note that while all examples were provided for x64 asm, very similar
problems (and very similar solutions) seem to apply also to x86 and to
ARM (both these platforms have both “add with carry” and
“multiply_with_double_width_result” asm-level operations, and these
two operations are the only things necessary to deal with the big number
arithmetic reasonably efficiently). 

References
[Chernyshevsky63] Nikolai Chernyshevsky, What Is to Be Done?, 1863

[Crypto++] http://www.cryptopp.com/docs/ref/
integer_8cpp_source.html

[Herzen45] Alexander Herzen, Who is to Blame?, 1845–1846

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs11] Sergey Ignatchenko. ‘Over-generic use of abstractions as a
major cause of wasting resources’. Overload, August 2011

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev Animation Graphics, Prague.

Visual Studio 2013 GCC 4.8.1

Addition (boost::uint256_t) 0.0202 op/clock 0.0202 op/clock

Addition (uint256_t according
to present article)

0.0366 op/clock 0.1282 op/clock

Advantage over
boost::uint256_t

1.83x 6.34x

Multiplication
(boost::uint256_t)

0.0160 op/clock 0.0197op/clock

Multiplication (uint256_t
according to present article)

0.0285 op/clock 0.0549 op/clock

Advantage over
boost::uint256_t

1.78x 2.79x

Listing 1

inline my_uint128_t mul64x64to128(uint64_t a,
 uint64_t b) {
 my_uint128_t ret;
 uint64_t t0 = ((uint64_t)(uint32_t)a) *
 ((uint64_t)(uint32_t)b);
 uint64_t t1 = (a>>32)*((uint64_t)(uint32_t)b) +
 (t0>>32);
 uint64_t t2 = (b>>32)*((uint64_t)(uint32_t)a) +
 ((uint32_t)t1);
 ret.lo = (((uint64_t)((uint32_t)t2))<<32) +
 ((uint32_t)t0);
 ret.hi = (a>>32) * (b>>32);
 ret.hi += (t2>>32) + (t1>>32);
 return ret;
}

18 | Overload | February 2014

http://www.cryptopp.com/docs/ref/integer_8cpp_source.html
http://www.cryptopp.com/docs/ref/integer_8cpp_source.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html

FEATUREPETE BARBER
Capturing lvalue References
in C++11 Lambdas
How confusing does it get when references refer to references
and references are captured by value? Pete Barber shows us that
it all falls out in the C++ consistency wash.
ecently the question ‘what is the type of an lvalue reference when
captured by reference in a C++11 lambda?’ was raised at work. It
turns out that it’s a reference to whatever the original reference was

too. This is just like taking a reference to an existing reference, e.g.

 int foo = 7;
 int& rfoo = foo;
 int& rfoo1 = rfoo;
 int& rfoo2 = rfoo1;

All references refer to foo rather than rfoo2->rfoo1->rfoo->foo
which means running the code in Listing 1, gives the following results:

 foo:7, rfoo:7, rfoo1:7, rfoo2:7
 foo:8, rfoo:8, rfoo1:8, rfoo2:8
 &foo:00D3FB0C, &rfoo:00D3FB0C,
 &rfoo1:00D3FB0C, &rfoo2:00D3FB0C

I.e. all the references are aliases for the original foo hence the same value
is displayed including when the original is modified and that the address
of each variable is the same, that of foo.

There is nothing surprising here. It’s just basic C++ but it’s a long time
since I’ve thought about it which is why with lambdas, l-value, r-value and
universal references I sometimes do a double take on what was once
obvious.

The same happens with lambda capture but it’s a slightly more interesting
story. Take the example in Listing 2, which gives:

 foo:99, rfoo:99, rfoo1:99
 &foo:00D3FB0C, &rfoo:00D3FB0C, &rfoo1:00D3FB0C
 foo:99
 rfoo:99
 rfoo1:100
 &foo:00D3FAE0, &rfoo:00D3FAE4, &rfoo1:00D3FB0C

To begin with it behaves as per the first example in that foo, rfoo and
rfoo1 all give the same value. This is because rfoo and rfoo1 are

effectively aliases for foo as shown when displaying their addresses;
they’re all the same.

However, when these same variables are captured it’s a different story: The
capture of foo is of no surprise as this is by-value so displays the captured
value of 99 despite the original foo being changed to 100 prior to the
lambda being invoked. Its address is that of a new variable; a member of
the lambda.

It starts to get interesting with the capture of rfoo. When the lambda is
invoked this too displays 99, the original captured value. Also, its address
is not that of the original foo. It seems that the reference itself has not been
captured but rather what it refers too, in this case an int with the value of
99. It appears to have been magically dereferenced as part of the capture.

This is the correct behaviour and when thought about becomes somewhat
obvious. It’s just like assigning a variable from a reference, e.g.

R

Listing 1

std::cout << "foo:" << foo << ", rfoo:" << rfoo
 << ", rfoo1:" << rfoo1 << ", rfoo2:"
 << rfoo2
 << '\n';
++foo;

std::cout << "foo:" << foo << ", rfoo:" << rfoo
 << ", rfoo1:" << rfoo1 << ", rfoo2:"
 << rfoo2
 << '\n';

std::cout << "&foo:" << &foo << ", &rfoo:"
 << &rfoo << ", &rfoo1:" << &rfoo1
 << ", &rfoo2:" << &rfoo2
 << '\n';

Listing 2

int foo = 99;
int& rfoo = foo;
int& rfoo1 = foo;

std::cout << "foo:" << foo << ", rfoo:" << rfoo
 << ", rfoo1:" << rfoo1
 << '\n';

std::cout << "&foo:" << &foo << ", &rfoo:"
 << &rfoo << ", &rfoo1:" << &rfoo1
 << '\n';

auto l = [foo, rfoo, &rfoo1]()
{
 std::cout << "foo:" << foo << '\n';
 std::cout << "rfoo:" << rfoo << '\n';
 std::cout << "rfoo1:" << rfoo1 << '\n';

 std::cout << "&foo:" << &foo << ", &rfoo:"
 << &rfoo << ", &rfoo1:" << &rfoo1
 << '\n';
};

foo = 100;

l();

Pete Barber has been programming in C++ before templates and
exceptions, C# from early on and BASIC before then. After working on
backup and archiving products on Windows and UNIX, he’s now writing
mobile games along side Candy Crush Saga.He still programs for fun
and occasionally writes about it at petebarber.blogspot.com. He can be
contacted at pete.barber@gmail.com
February 2014 | Overload | 19

FEATURE PETE BARBER
 int foo = 7;
 int& rfoo = foo;
 int bar = rfoo;

bar doesn’t become an int& and rfoo is magically dereferenced except
in this scenario there is nothing magical at all, it’s as expected. If int were
replaced with auto, e.g.

 auto bar = rfoo;

then it would be expected that bar is an int as auto strips of CV and
reference qualifiers.

Finally, there is rfoo1. This too is odd as it is attempting to take a
reference to a reference. As seen in the first example this is perfectly fine.
The end effect is that there can’t be a reference to reference and so on and
all are aliases of the original variable.

This is pretty much what’s happening here. It’s irrelevant that the target
of the capture is a reference. In the end the capture by reference is capture
by reference of the underlying variable, i.e. what rfoo1 refers too, in this
case foo not rfoo1 itself. This is demonstrated twofold by rfoo1 within
the lambda displaying the updated value of foo and also that the address
of rfoo1 within the lambda is that of foo outside it.

This is as per the standard section 5.1.2 Lambda expression sub-note 14:

An entity is captured by copy if it is implicitly captured and the
capture-default is = or if it is explicitly captured with a capture that
does not include an &. For each entity captured by copy, an
unnamed nonstatic data member is declared in the closure type.
The declaration order of these members is unspecified.

The type of such a data member is the type of the
corresponding captured entity if the entity is not a reference
to an object, or the referenced type otherwise. [Note: If the
captured entity is a reference to a function, the corresponding data
member is also a reference to a function.]

The sentence in bold states that for a reference captured by value then the
type of the captured value is the type referred to, i.e. the reference aspect
has been removed the crucial part being ‘or the referenced type
otherwise’.1

Finally, Listing 3 is a vivid example showing that a reference captured by
value involves a dereference.

The class bar provides a crude copy-constructor that sets the stored value
to 9999. The following output is similar to that in the previous example in
that the addresses of bar and rbar in the lambda differ from that of bar
showing they’re copies whilst rbar1 is the same. Secondly, the value of
mValue stored within Bar is shown as 9999 for the first two captured
variables meaning they were copy-constructed.

 &bar:00D3FB0C, &rbar:00D3FB0C, &rbar1:00D3FB0C
 bar:9999
 rbar:9999
 rbar1:2
 &bar:00D3FAE0, &rbar:00D3FAE4, &rbar1:00D3FB0C

Making the copy-construct private (by commenting out the seemingly
unnecessary public:) prevents compilation. (See Listing 4.)

At first the whole capturing of references by reference seems somewhat
mind bending and a unique issue. However, when briefly analysed it
quickly becomes clear that there is nothing extraordinary happening at all.
In fact it is pleasing to see that far from being complicated it is just another
example of where references to references have to be considered and that
their treatment in this context is the same as in others. The same is true for
the capture of references by value. Consistency is good. 

1. I haven't experimented with references to functions

Listing 3

class Bar
{
private:
 int mValue;

public:
 Bar(const Bar&) : mValue(9999)
 {
 }

public:
 Bar(const int value) : mValue(value) {}
 int GetValue() const { return mValue; }
 void SetValue(const int value) {
 mValue = value; }
};

Bar bar(1);
Bar& rbar = bar;
Bar& rbar1 = bar;

std::cout << "&bar:" << &bar << ", &rbar:"
 << &rbar<< ", &rbar1:" << &rbar1 << '\n';

auto l2 = [bar, rbar, &rbar1]()
{
 std::cout << "bar:" << bar.GetValue() << '\n';
 std::cout << "rbar:" << rbar.GetValue() << '\n';
 std::cout << "rbar1:" << rbar1.GetValue()
 << '\n';

 std::cout << "&bar:" << &bar << ", &rbar:"
 << &rbar<< ", &rbar1:" << &rbar1
 << '\n';
};

bar.SetValue(2);

l2();

Listing 4

1>------ Build started: Project: References, Configuration: Debug Win32 ------
1> main.cpp
1> c:\users\pete\desktop\references\references\main.cpp(85): error C2248: 'Bar::Bar' : cannot
access private member declared in class 'Bar'
1> c:\users\pete\desktop\references\references\main.cpp(59) : see declaration of 'Bar::Bar'
1> c:\users\pete\desktop\references\references\main.cpp(54) : see declaration of 'Bar'
1> c:\users\pete\desktop\references\references\main.cpp(59) : see declaration of 'Bar::Bar'
1> c:\users\pete\desktop\references\references\main.cpp(54) : see declaration of 'Bar'
20 | Overload | February 2014

	Overload119.pdf
	Random (non)sense
	Static Polymorphic Named Parameters in C++
	Integrating the Catch Test Framework into Visual Studio
	Anatomy of a Java Decompiler
	Optimizing Big Number Arithmetic Without SSE
	Capturing lvalue References in C++11 Lambdas

