
APR 2006 | {cvu} | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu

Volume 18 Issue 3
June 2006

Editor
Paul Johnson
77 Station Road, Haydock,
St.Helens, Merseyside,
WA11 0JL
cvu@accu.org

Contributors
Silas Brown, Mark
Easterbrook, Francis
Glassborow, Lois Goldthwaite,
Pete Goodliffe, Alan Lenton,
Paul Johnson, Orjan Westin,
Anthony Williams, Russel
Winder

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
membership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe and Alison Peck

Once More from the Breech
ell, Mrs Miggins, at last we can return to sanity – the
hustings are over, the bunting is down, the mad
hysteria is at an end. After the chaos of the ACCU

conference, we can return to normal”
– Edmund Blackadder, butler to the Prince Regent.

By the time you’ve had this edition, the annual conference will
be but a memory. For some, it will be a curry soaked, beer smelling one, but a memory none-
the-less. This conference was special, though. For the first time, it was a total sell out. In all of
my time of being a member of the ACCU, I cannot recall such an unmitigated success. My
only regret was not being there – judging by the comments and reports back, it was possibly
the best it has ever been. Plans are already afoot for the 2007 conference and with a bit of luck,
Oxford council will have a brain wave and make travel into the centre of the town much easier
by rewinding the clock a couple of years so that you don’t need to get back to the car every
night to avoid parking fines.
I have a question for you – and it’s quite a serious one. How many of you out there look after
code written many moons ago when the C++ standard was nothing more than a rumour, a
standard C compiler was something you laughed about down the pub and C# was just a note
on a piano keyboard?
The reason I ask this is that I’ve been handed a pile of very old C. The code itself will compile
using gcc 4.1 and actually runs quite well. However, it’s come time to alter the code and much
to my annoyance, I’ve found that looking at the archive the source is held in is enough to break
the software. The question is, what should I do with it? I can’t leave the code in its current state
as it’s no longer fit for purpose; however, I don’t have time to rewrite the code in anything more
than a quick hack style. If I’m really careful, I might be able to bolt something onto the side
of the existing program that is correctly coded...
This is the dilemma. If I start to bolt code on, not only do I have to try and find the safest place
for it to instantiate from, but I run the added risk of breaking something somewhere else – all
because the original coder thought comments and documentation was for losers and besides,
the author was immortal and would never lose interest in a 6502 cross compiler...
Of course, there is one more alternative, but it involves the movement of large quantities of
foaming nut brown liquid. I wonder if mixing this alternative with bolting on the code will work.
Must try it sometime....

“W

PAUL JOHNSON,
EDITOR

2 | {cvu} | APR 2006

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, be default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from CVu without written
permission from the copyright holder.

COPY DATES
C Vu 18.4: 1st July 2006
C Vu 18.5: 1st September 2006

IN OVERLOAD
Overload 73 is stuffed full of relevant, high quality articles including Rachel
Davies on Pair Programming and Thomas Guest on the use (or misuse)
of TODO. Overload is available to all full ACCU members

DIALOGUE
25 Francis’ Scribbles

Francis sets another
puzzle.

27 Standards Report
Lois brings us up-to-date
with the latest from the
world of standard setting.

28 Student Code Critique
Entries for the last
competition and this
month’s question.

REGULARS
35 Book reviews

The latest roundup from
the ACCU bookcase

44 ACCU Members Zone
Reports and membership
news

FEATURES
3 Hello Groovy

Russel Winder and “Hello World” introduce Groovy.

8 Mental Gymnastics
Pete Goodliffe stretches our grey cells.

9 Value for Money
Alan Lenton queries the cost-effectiveness of some
projects.

10 Trees, Roots and Leaves #2
Orjan Westin keeps track of the ‘adopted’ children.

13 Blasting from the Past
Paul Johnson takes a nostalgic look back over the years.

15 Building on a Legacy
Anthony Williams provides some tips for inherited code.

16 Subversion of the C Language
Mark Easterbrook explains that what you see is not C.

20 QEMU as a Means of Software Distribution
Silas Brown introduces a cross-platform solution.

21 ACCU Conference 2006: Retrospective
Pete Goodliffe introduces a roundup of the ACCU
Conference.

RUSSEL WINDER
Having done the Professor of Computing Science and
Head of Department thing, I tried the CTO thing. Just as
things were going well the accountants closed the
company. I am now doing the author, trainer, consultant
thing – all reasonable jobs considered.

Hello Groovy
Russel and “Hello World” introduce the Groovy language.

The plethora
ello World (HW) seems to have first represented itself on page 6 of
The C Programming Language by Kernighan and Ritchie (1978). It
appeared as:

#include <stdio.h>
main ()
{
 printf ("hello, world\n") ;
}

A short representation, but then short does not mean bad. In fact, these
days, for a given functionality, short is definitely considered good, and
long bad.
HW has since represented itself in many languages for many contexts. A
quick perusal of the website http:/ /www2.latech.edu/~acm/
HelloWorld.shtml shows HW in 193+1 (193 listed and 1, Groovy,
submitted) different languages – at the time of writing anyway, HW may
have represented itself further in the interim. Although HW is hugely
infectious, it is not a virus.
Interestingly, HW appears to have a sense of humour. It has represented
itself in C for X, Gnome, KDE even Windows, presumably to prove that
console output is simple and GUI output hard. For example, helloX.c (see
http://www.paulgriffiths.net/program/c/hello.html) is a representation of
HW in C for the X Windowing System. This representation is 135 lines
of code, 25 of which are comment lines. The coding doesn’t seem
excessive but it is far to long to show here – size-ist maybe but there we
are, space is at a premium.
So HW has a habit of representing itself in unusual and often bizarre ways
to make a point about a programming language. HW is clearly a teacher.
Though not certificated as the possession of a qualification might be
considered pretentious – especially amongst some people who contribute
to the accu-general mailing list. Being un-certificated doesn’t make HW
a bad teacher, but it will make it difficult to find a position in a school.
Universities though are less strict about teachers having qualifications and
so HW may still be able to find a position there, possibly in textbooks.
Unfortunately, despite the various anti-discrimination laws, publishers are
now definitely discriminating against HW, generally on the grounds of
boredom and “oh no, not that flaming program again”. This has not
daunted HW, HW is resourceful. Not only does it look for new outlets,
this article for example, it is always on the lookout for new programming
languages to represent itself in. For this article, HW has represented itself
in a number of short ways to show how groovy the Groovy programming
language is.

Groovying on
When Sun introduced Java to the world in the mid 1990s, they also
introduced the Java Virtual Machine (JVM). Sun is reputed to have stated
that the only programming language for the JVM was Java. However, it
seems that this may be a myth. Myth or not, many people thought the idea
short-sighted and overly introverted and started developing other
languages targeted at execution on the JVM.
People ported Python (Jython) and Ruby (JRuby) to work as dynamic
programming languages (aka scripting languages) for the JVM. However,
whilst these languages have a following, they have not caught on in any
big way. It may well be that the lack of catching on is because Python and
Ruby are based on different types to those supported by the JVM, leading
to the need for type/representation conversion. However, the idea of a

dynamic programming language for the JVM has caught on. Big Time.
We have BeanShell, PNuts and, of course, Groovy, to name the most well-
known three. HW has almost certainly been represented in all of these
languages even if not listed on the HW site so that probably means 193+3
rather than the figure quoted earlier.
The success of “scripting languages”, aka dynamic languages, working
symbiotically with Java has recently caused Sun to publicly state its
enthusiasm for mixed language working on JVM-based systems. This
shows Sun are not averse to doing and thinking the right thing even if they
didn’t originate the idea.
So where does HW stand on all this? Actually, it is totally agnostic, it cares
not a jot about language wars, it will represent itself in any language. Java
is one example that is apposite for this article:

public class HelloWorld
{
 public static void main (
 final String [] args)
 {
 System.out.println ("hello, world") ;
 }
}

Of course this is horrendously verbose and complicated, especially if this
is the first program you see when learning a programming language. It is
hard to argue against this point when you observe HW representing itself
in Python:
 print 'hello, world'

and Ruby:
 puts 'hello, world'

Compare these to HW’s first representation in Groovy:
 println ('hello, world')

and we see that Groovy is as good as Python and Ruby and a lot better
than Java, even on Java’s own turf.

The many Groovy ways of HW
As mentioned earlier, HW, being a program with a wry sense of humour,
has come up with a series of representations of itself designed to show
various features of the Groovy programming language. These are not
serious representations – we have already seen the serious version above
– they are simply presented to show that Groovy is, well, groovy.

The state of variables

Groovy has variables and so the obvious first variant representation of HW
in Groovy is to use a variable to hold the string value to be printed and
then to print the value of the variable:

H

Flow
chart 1
APR 2006 | {cvu} | 3

String theString = 'hello, world'
println (theString)

This representation of HW uses static (compile-time) typing.
Groovy being a dynamic language does not need compile time type
checking, HW can therefore use a variable of type determined at run
time:

def theString = 'hello, world'
println (theString)

The type of a dynamically typed variable can change during execution
since it is the type of the last assigned value that determines the type of
the variable. Some people find this hard to deal with and stick to static
typing always. However this is not dynamic and not Groovy. Having said
this, even in a really Groovy program not all variables are dynamically
typed, it is often right and proper to have statically typed variables.
Nonetheless, using def and dynamic typing is the usual way of working
with explicitly initialized variables since it avoids repetition of
information - the literal being assigned has a type so why specify the type
again? Coupling def with the use of final to enforce single assignment,
leads to a declarative style of programming which is considered Very
Groovy.
Languages like Python and Ruby do not require specific declaration of
variables, they just have declaration by usage. HW, being a good teacher,
answers the question “What happens in Groovy?” by trying the
experiment and representing itself:

theString = 'hello, world'
println (theString)

The program still works. Why? Each Groovy script has a binding object
associated with it, so in this representation of HW theString refers to
a variable in the binding – if there is no variable of that name already in
the binding then one is created. Usually the binding is used for passing
information from operating system to script, or embedding system to
embedded system, but it can be used as a global shared memory. OK,
global shared memory is generally considered bad (quite rightly except in
certain very specific circumstances) so using the binding in this way is
definitely not groovy even if it is Groovy. HW raises the issue simply to
show there is an issue.
The above variables were scalars, HW now represents itself to show that
we can have arrays of things:

String [] theStrings = ['hello' , 'world']
println (theStrings [0] + ',
 ' + theStrings [1])

The literal on the right hand side of the initialisation is not actually an
array, it is a list (java.util.List – well java.util.ArrayList
actually but, as in Java, we use the interface and not the class). However,
because of the static type of the variable is specified as array there is an
automatic coercion from java.util.List to array.
What happens if we have a variable of dynamic type? In this situation, to
ensure the assigned value is of array type, we have to manually coerce as
HW shows in this representation:

def theStrings = ['hello' , 'world']
 as String []
println (theStrings [0] + ',
 ' + theStrings [1])

The syntax of coercion is clearly very un-Java like. For various reasons
which need not concern us here, Java-style casting is not allowed in
Groovy.

You are probably asking the question: “Why use arrays if we can use lists
directly?”
“Exactly.” HW responds and represents itself thus:

def theStrings = ['hello' , 'world']
println (theStrings [0] + ',
 ' + theStrings [1])

Indexing into a list is supported by Groovy ? lists are sequences like arrays
so indexing makes a great deal of sense. Using lists rather than arrays is
generally considered more Groovy but the ability to have arrays is required
for using some Java APIs.

Repeating the groove

Given that Groovy has lists, it must provide facilities for iteration enabling
us to parametrise over the length of the list. Here is HW representing itself
using the basic for loop in Groovy:

def theStrings = ['hello' , ', ' , 'world']
for (i in 0..< theStrings.size()) {
 print (theStrings[i]) }
println ()

The expression 0..< theString.size() is the sequence of integers
starting with 0 and ending with 1 less than the upper limit. Classic idiom
for iterating over zero-origin sequences. Of course, this sort of indexed
looping is, quite rightly, frowned upon these days as being too low level
for the task of iterating through all the element of a collection. Instead, for
doing such an iteration, we should use a foreach construct:

def theStrings = ['hello' , ', ' , 'world ']
for (item in theStrings) { print (item) }
println ()

Actually these two loop constructs are no different in language terms, they
are both foreach loops. The first is actually for each i in the range (0,
theStrings.size ()). So there is only the one type of for loop in Groovy
– Gr o ov y d o e s n o t s up p or t t h e for (int i; i <
theStrings.size() ; ++ i) variety of loop that Java does.
Well, not yet anyway, it may soon. This is all, obviously, a bit different
to the way Java does things, but this is just more Groovy – dynamic rather
than static, operations on data structures as a whole rather than detailed
knowledge of the underlying structure, declarative rather than imperative.
Of course, we can use the Java-style foreach loop with its static typing
approach:

def theStrings = ['hello' , ', ' , 'world']
for (String item:theStrings) {
 print (item) }
println ()

but it is considered boring and tedious by Groovy programmers. Actually
boring and tedious is generally the view Groovy programmers have about
Java. Groovy programmer do know and use Java, much Groovy
programming is about using classes and objects from the Java Platform

Listing 2

boring and tedious is generally the view
Groovy programmers have about Java
4 | {cvu} | APR 2006

after all, but they only program in Java when necessary – mostly in the
same way that C++ programmers use assembler.

Closing in on closures

Actually most Groovy programmers would probably think all the above
was tedious and boring since it doesn’t involve the programming construct
that really separates Groovy and Java: closures.
Closures are Totally Groovy – despite the idea actually being old and
available in many programming languages. The biggest win for closures
is that they allow a much more declarative expression of algorithms. HW
has to admit that the following is a representation of itself but really
doesn’t show why closures are just so cool:

def theStrings = ['hello' , ', ' , 'world']
theStrings.each { print (it) }
println ()

Here HW uses the method each applied to a list and being passed a closure
to be executed for each item of the list. It is a special variable name in a
closure being the implicit closure parameter.
“Aha”, you say, “there is no method each on lists in Java.”
“Indeed,” replies HW, “but Groovy can add methods to standard Java
classes using its groovy meta-object protocol.”
In this particular instance, Groovy has added the each method to Java
list types exactly so that this technique of iterating over lists and applying
closures can be used.
You could think of the above representation of HW thus:

def theStrings = ['hello' , ', ' , 'world']
theStrings.each ({ print (it) })
println ()

but people invariably remove the optional parentheses to avoid having
extra syntactic clutter. Actually it is a wee bit more complicated than this
but HW has not been willing to come up with the seriously over-contrived
representation required. There are limits, even to ridiculousness.
Returning to it , if we want to explicitly name the closure parameter then
we can, as HW shows here:

def theStrings = ['hello' , ' , ' , 'world']
theStrings.each { item -> print (item) }
println ()

This is probably the more usual way of
working with closures.
Of course, this algorithm, however it is
expressed, involves a lot of output
statements. Many feel (and the argument is
a good one) that minimizing the number of
output statements is generally a good thing.
So concatenating the strings before outputting is probably a good thing.
Groovy extends the Java list types with a join method so we can achieve
concatenation without knowing how many items in the list:

def theStrings = ['hello' , ', ' , 'world']
println (theStrings.join (' '))

In Groovy, closures are first class entities so we can have variables of
closure type and pass closures around as parameters. Here HW presents
a fairly gratuitous representation of itself highlighting initialisation of an
object that has a closure member and then execution of that closure via
the class data member:

class ClosureWrapper
{
 @Property Closure action
 def execute () { action () }
}
new ClosureWrapper (
 action : { println 'hello, world' }.execute()

The initialization is interesting here. The class declares a data member and
a method. The data member is declared to be a property – the member will
be a private member and accessors will be automatically generated to fulfil
the requirements that the class be a ‘bean’. No constructor is declared. On
initialising the new ClosureWrapper object we provide a constructor
parameter. From a Java mindset this is clearly an error that the compiler
will detect. Distinctly not Groovy. Groovy is quite happy with this code
since it allows a map to be used to initialise all properties of a new instance.
In this case the parameter is a single value map: the colon separates the
two components of the map value, action is the key and the closure is the
value associated with that key. The key must be the name of a property of
the class of course! This technique for initialization of properties using a
map leads to some seriously useful idioms.

OSification

Many people believe that scripting languages must be able to script the
execution of operating system jobs – à la bash, ksh, etc. Although
Groovy is a general purpose dynamic language (like Python and Ruby),
it can be used for scripting and so must be able to do the job. Here HW
represents itself in a way designed to show what is possible:

print (['echo' ,
 'hello, world'].execute().text)

Applying the execute method to a list of strings creates a process object
(java.lang.Process) on which Groovy has defined the getText
method – two more instances of Groovy adding methods to standard Java
classes. This means we can write code as though it is accessing a variable
when in fact it is calling an accessor: using text as a property accesses the
member variable if it exists or if it doesn’t then the method getText is
called if it exists. Metaclasses and beans at work in an extremely
constructive way. Very Groovy.

Swinging groovily

All the above are console based but what about GUI based
representations? Groovy supports builders, and a builder for constructing
Swing/AWT interfaces is part of the standard distribution.

Builders use all the facilities of a dynamic
language with a meta-object protocol to
simplify building hierarchical systems.
Add to this the map initialization of
properties construction technique and
Swing programming becomes easy:

def frame =
 new groovy.swing.SwingBuilder().frame (
 title:'Hello',
 defaultCloseOperation :
 javax.swing.JFrame.EXIT_ON_CLOSE)
{
 label (" hello , world ")
}
frame.pack()
frame.visible = true

Note that we use frame.visible = true where in Java you would
have to say frame.setVisible (true). As noted earlier, Groovy

we can write code as though it
is accessing a variable when in

fact it is calling an accessor
APR 2006 | {cvu} | 5

allows properties to be accessed as though they were data members rather
than having to use accessor calls.
 The “wow factor” here is partly how the use of closures and hash
parameter properties initialisation shorten the code but is mainly the fact
that SwingBuilder does not actually have any methods such as
frame, label, etc. The metaclass associated with the SwingBuilder
object knows how to turn what appear to be method calls into the
construction of Swing/AWT components. It does this by reflection and
understanding the naming conventions rather than by explicitly mapping
method call names to component type names. Very flexible. Most Groovy.
Anyone having any experience with Swing/AWT must surely agree with
HW that this way of constructing Swing/AWT GUIs is just ‘cool’ and
‘groovy’.

1, 2, 3, Testing
Interestingly HW is actually a bit of an advocate of unit testing though it
isn’t too sure about test-driven development but that may be because HW
can be represented in so many ways without having to develop. This is
one of the wonders of HW.
So we are agreed that all the representations of HW need to be tested to
ensure semantic correctness. Clearly we must separate the console-based
representations from the GUI-based representations. For the console-
based representations we can construct a program that tests all of the
programs in a given directory (see Listing 1).
Wow, this is getting seriously serious.
This program constructs a program (comprising a class definition and
a return statement) as a string, then evaluates the string (using a
GroovyShell) which compiles the program and loads it into the
running JVM. The result of this compilation and load is a reference to the
class object which is then used (by a GroovyShell) to execute the
program as a JUnit test. The GroovyShell is just so Groovy.
Actually this is very true, the GroovyShell is arguably the single most
important class in the Groovy system since it is responsible for executing
any and all Groovy programs.
Reactions to all this range from “Wow, just how cool is that.” to “OK, isn’t
that just obviously the right thing to do.” depending on whether you are
new to dynamic programming languages or an old hand.
 As you have probably guessed already, triple single quotes or triple double
quotes start a multi-line string, i.e. one that can include end-of-lines as
data. The example here is used to present the literal that is the fixed text
part of the generated program.

class helloWorld_Test
{
 static void main (args)
 {
 def testClass = ' ' '
 class TestHelloWorld
 extends GroovyTestCase
 {
 private final expected =
 ' hello , world '
 private final shell =
 new GroovyShell ()
 private final saveSystemOut = System.out
 private final buffer =
 new ByteArrayOutputStream ()
 private final outputFromScript =
 new PrintStream (buffer)
 void setUp () { buffer.reset () ;
 System.setOut (outputFromScript) }
 void tearDown () {
 System.setOut (saveSystemOut) }
 void evaluateFile (String filename) {
 shell.evaluate (new File (
 filename)) }
 String getOutput () {
 return buffer.toString().trim() }
 ' ' '
 new File ('.').eachFile {
 s -> def script = s.name.trim()
 if (script =~
 /^ helloWorld_ [a ? z].*\.groovy$ /)
 {
 def methodName =
 ' test ' + script.substring
 (script.indexOf (' _ ') ,
 script.lastIndexOf (' . '))
 testClass +=
 " void $ - methodName " () {
 evaluateFile (' $ - script }') ;
 assertEquals (output , expected)
 "\ n "
 }
 }
 testClass += ' " ;
 return TestHelloWorld '
 def shell = new GroovyShell ()
 shell.runTest (shell.evaluate (
 testClass))
 }
}

class build
{
 private final ant = new AntBuilder ()
 def init ()
 {
 ant.taskdef (name : ' groovy ' ,
 classname :
 ' org.codehaus.groovy.ant.Groovy '
)
 }
 def test ()
 {
 init ()
 ant.groovy (
 src : ' helloWorld_Test.groovy ')
 }
 def clean ()
 {
 ant.delete (quiet : ' true ')
 {
 ant.fileset (dir : ' . ' ,
 includes : ' *~,*. class ' ,
 defaultexcludes : ' no ')
 }
 }
 static main (args)
 {
 def builder = new build ()
 if (args . length == 0) {
 builder.test () }
 else { args.each {
 target -> builder.invokeMethod (
 target, null)
 } }
 }
}

Li
st

in
g

1
Listing 2
6 | {cvu} | APR 2006

The genera ted c lass TestHelloWorld i s a subc lass o f
GroovyTestClass so that it is treated as a (JUnit-based) test
class. The variables (expected, shell, saveSystemOut,
buffer , outputFromScript) and methods (setUp ,
tearDown, getOutput) implement the infrastructure for capturing
the standard output of executing a script via a GroovyShell so that the test
program can capture the output from executing the various representations
of HW - which is achieved using the evaluateFile method. All the
test methods are written in the closure used in the iteration over all the
names of the files in the directory.
 As noted earlier, Groovy allows extension of standard Java classes. Here
we see use of the eachFile method that has been added to
java.io.File to support using a closure as part of a closure style
iteration.
In the closure itself, we are using regular expressions (things that look like
regular expressions initiated with a / and terminated with a /) and the
match operator (=~) to make decisions about writing the necessary test
methods for any given representation of HW in the current directory. The
name convention being assumed and applied is that an HW representation
will be in a file starting 'helloWorld_', finishing '.groovy' and
comprising only lower case letters.
You might have noticed the use of $ {methodName} in a string. These
are substitution markers and the string is not a standard Java string as the
examples have been so far but is a GString , i.e. a string in which
substitution markers are substituted.
Having said all this, it remains that the single most important thing about
this example is the idiom of iteration using a closure.

Building groovily
In the section called ‘Swinging groovily’, HW represented itself as a
Swing application using builder technology. Builders are so Groovy that
HW thought it appropriate to show how Ant (the standard Java system
build tool) can be scripted in Groovy avoiding all the need to have any
XML files at all. What a lovely lack of angle brackets.
Here is the Groovy script that handles all the building for the Groovy
representation of HW used in this article:
Build targets are represented as methods which then use builder
technology (including property initialisation with maps and nesting using
closures) to script calls to the tasks in the Ant library.

Anyone at all familiar with using Ant will very quickly see how this is
working and appreciate the benefits of using a scripting language rather
than XML to define the build.
It is possibly interesting to note the if statement in the main method of
the class. The if branch implements the test target being the default target
and the else branch, which is a closure being applied in order to all the
targets listed on the command line, shows how the metaclass system of
Groovy can be used directly to call methods using the string representation
of the method name. This is the Groovy metaclass system being used
directly. Very dynamic. Very Groovy.
Interestingly, the success of builders in Groovy has caused Ruby to really
take builders on board.

Getting in the Groove
Languages like C gave way to C++ because people could express things
more easily. Java supplanted C++ for many because of ease of expression
and portability. Python and Ruby allow much more dynamism, as does
Groovy. No one language is better than another per se. Having said that,
Java people trying Groovy rarely look back at Java as better.
If this article has piqued your interest, and HW hopes it has, the Groovy
website home page is http://groovy.codehaus.org . Remember
though the Groovy documentation is not particularly good yet even though
the language itself is excellent. Python and Ruby have had 10 years or
more work on their documentation, Groovy is still being built - 2006-07
should see the first formal release of the system itself. Work then starts
on making the documentation of good quality. Also work will begin in
earnest on the TCK ready to progress JSR-241 which will lead to Groovy
becoming an integral part of the standard Sun Java distribution.
A final note: HW has not been able get a look in on Groovy documentation
as yet due to the Wallace/Grommit/cheese fixation of the original Groovy
authors. See the Groovy website for more on this problem.
The other final note: HW apologies for becoming a mop-head but meta-
object protocols just rock its world.

References
1. Kernighan, B. and Ritchie, D. (1978), The C Programming

Language, Prentice-Hall. Page 8.
APR 2006 | {cvu} | 7

Article writing competition 2006
Every year the ACCU awards a number of prizes for articles published in our magazines. This is a simple way to recognise the high quality of
articles we receive, and to thank people for taking the effort to write for us. Both C Vu and Overload rely on the articles contributed from ACCU
members.
At this year’s conference, the ACCU committee reviewed all articles published in the last volume of C Vu and Overload, selected the front runners,
and voted for the best in each category. The results were announced at the AGM:

Best C Vu article
Code Monkeys (Professionalism in Programming)
by Pete Goodliffe, in C Vu 17.1/17.2
Best overload article
The Curate’s Wobbly Desk
by Phil Bass, in Overload 70
Best article by a new writer
Sheep Farming For Software Development Managers
by Pippa Hennessy, in Overload 66

Kudos and untold fame to go these winners! But thanks to all
writers who contributed in 2005/6. And remember: write an
article; next year it could be you!

Professionalism in Programming #38

Mental Gymnastics
Pete Goodliffe stretches our little grey cells.

find that my kids teach me more about the world – about how we learn,
think, and act – than I could ever have expected. And it’s interesting to
see how some programmers still act like a three-year-old when it comes

to it.
This issue I want to depart from the norm, and engage the inner child. Who
knows, perhaps it’ll do you some good! My daughter Alice has become

engrossed with puzzle books of late, and to share the joy with you, here
are a number of programming puzzles to stretch your little grey cells.
When you have a solution to these problems, mail it to me. The first (or
most amusing) will have their names printed in the next C Vu.

I

8 | {cvu} | APR 2006

Spot the difference
There are a number of differences between these two code snippets. Can you find them all?

#include <iostream>
#include <algorithm>

template<typename Iterator>
void bubble_sort(Iterator first, Iterator last)
{
 for (Iterator i = first; i != last; ++i)
 for (Iterator j = first; j < i; ++j)
 if (*i < *j)
 std::iter_swap(i, j);
}

#include <stdio.h>

void swap(int *x, int *y)
{
 int tmp = *x;
 *x = *y;
 *y = tmp;
}

void bubble_sort(int array[], size_t size)
{
 for (int i = 0; i < size-1; ++i)
 for (int j = 0; j < i; ++j)
 if (array[i] < array[j])
 swap(&array[i], &array[j]);
}

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@cthree.orgPete’s book, Code Craft, is out in August 2006.

Value for Money
Alan Lenton queries how cost-effective some projects are.

was looking at a story about the UK’s Project Semaphore the other day
and thinking about value for money.
Let me explain. The project is a pilot scheme for the British

Government’s much vaunted eBorders project, which, it is claimed, will
enable us to spot baddies trying to get into the country to blow us all up.
It won’t, of course, catch disaffected locals, like the ones who bombed the
London transport system!
The pilot project has just finished, and the politicians were boasting about
how successful it was - six million passengers screened and 140 arrests.
The report was fairly straightforward, talking about how the main
eBorders program would now go forward and tenders were out for the
contract. The main thrust of the article was about whether in the light of
all the other major IT projects going on, there would be enough skilled
developers.
Much as I like the financial implications for developers like myself, that
wasn’t what caught my attention. It was the 140 baddies caught that I
wondered about. Sadly, I couldn’t find out any information about what
they were arrested for, but I guess it would be reasonable to assume that
had any of them been known terrorists the politicians would have been
trumpeting the success of the scheme across the national newspapers. So
my betting was that quite a number of the arrests were for relatively minor
infringements of the immigration rules.
I was intrigued enough to search for material from when the scheme was
started to discover that it was budgeted at £15 million. I couldn’t find
anything about cost overruns - something made me immediately
suspicious! However, we can give them the benefit of the doubt and
assume it did only cost £15 million.
So, £15 million for 140 arrests. I make that just under £110,000 per arrest.

That’s an awful lot of money to pay to track and arrest someone. In fact
it’s the sort of Return on Investment (RoI) that would result in mass
sackings in most big corporations. And remember that’s only the cost of
apprehending the person, not prosecuting or anything like that.
Significantly enough, figures don’t exist for conviction rates, or what sort
of sentences were given, or whether those involved were just refused
entry, because their papers weren’t in order.
And lest our US readers are feeling smug about the UK wasting money,
let me mention that a few days after reading about Project Semaphore, I
came across a piece about the US government’s US-VISIT program in
security guru Bruce Schneier’s newsletter.
According to Schneier, since January 2004, US-VISIT has processed more
than 44 million visitors. It has spotted and apprehended nearly 1,000
people with either criminal or immigration violations. The budget for that
phase of US-VISIT was US$15 billion - we’ll assume, as with Semaphore,
that it didn’t overrun on costs – again a very dubious assumption, but we
will be generous.
That makes the cost of catching each baddie a cool US$15 million. Wow!
Maybe we Brits are, in fact, doing really well. It’s interesting to know what
the government is doing with your tax pounds, dollars,or other currency,
isn’t it?
Oh, and by the way have you noticed that politicians never apply value
for money criteria to their pet projects, only to ones they want to close
down?

I

ALAN LENTON
Alan Lenton is a long-standing ACCU contributor. He can be reached at
alan@ibgames.com

Mental Gymnastics (continued)
Follow the leader
Which industry luminary’s code will achieve eternal fame and glory, and
whose code will meet a sticky fate at the hands of a merciless debugger?

Odd one out
Which piece of code is the odd one out, and why?
APR 2006 | {cvu} | 9

ÖRJAN WESTIN
Since 1993, Örjan has worked as a developer and consultant (apart from a
return to Mid Sweden University in 1995 where he created and taught a
course in "GUI design and Windows Programming"), mainly using C++. He
is currently working for Unilog Ltd as a Senior Consultant and can be
contacted at orjan.westin@unilog.co.uk

Trees, roots and leaves #2
Örjan Westin keeps track of the ‘adopted’ children.

his is the second article of three in which I create a generic, re-usable
tree. In the first part, I defined the requirements and made a start at
the implementation, putting the value and parent members in place.

In this part, we’ll see how the management of children brings its own,
special headaches, and finish with something that is quite complete and
usable.

If it weren’t for those pesky kids
With the requirement that I should be able to take a subtree out and treat
it as a separate tree, I must use dynamic containment, as a list of pointers,
rather than direct aggregation to hold the children. I choose to use an
ordinary std::vector to keep track of the pointers, and I’ll give access
to many of its functions through simple forwarding functions (Listing 1).

However, this is the first obvious problem with my new container. Because
I have a vector of pointers, I have to de-reference what I get from the call
to front(). So what do you get if you de-reference the iterator above?
Right. A pointer to a tree_node. That it is a tree_node and not the
template type isn’t a problem – as I said earlier this is a feature, not an
implementation detail – but I would ordinarily expect to get a reference
out rather than a pointer. For the time being, I will ignore this, as it does
not fundamentally affect how the class works, but just makes for uglier
code when using it. It’s an issue I will return to in the last part, though.
While we all know you should never break encapsulation casually, this
class illustrates why. Were I to reveal the storage mechanism of the
children, it would allow the uncontrolled adding and deletion of children,

something that could, no, make that would, lead to memory leaks and
access violations. We must keep track of those relationships.

Liaisons dangereuse
A node serving as branch or root needs to be able to take in new children
and get rid of old. Since we’re talking about a parent-child relationship, I
decided to call these adopt and disown, to get a bit of drama. At first look,
they are simple: the first adds a child to an internal list of children while
the second removes it. But it is a bit more complicated than that –
relationships between parents and children are dangerous and volatile
things, as anyone with a teenager at home will tell you.
By necessity, there is a two-way relationship between parent and child –
they both know of each other. A node can be made a parent by telling it
to adopt another node. This not only adds the new child to the list of
children the parent holds, but also tells the child about this new relationship
by calling a private function, reparent, on the child. (Listing 2).
I do little more than the barest minimum of safety checking here, just
enough to make sure I don’t put a NULL pointer in. This is bad enough to
warrant an exception. Of course, in the documentation I could just say that
the pointer should be valid and bring out the “undefined behaviour”
warning flag if it isn’t, but since I need to check whether I already have it
anyway (as a pointer that occurs twice in the list would be deleted twice
on destruction), I might as well give a hint. Should someone try to adopt
the same child twice, that’s fine with me. At the end of the call, the child
is adopted, so conceptually, the function has succeeded.
But what happens if the child already has another parent, if we are in fact
moving it from one parent to another? Contrary to literary tradition, it must
inform its old parent that it’s leaving. This is done internally by the child
through a call to elope(), which in turn calls the private function

T

Flow
chart 1

template <typename T >
class tree_node
{
public:
 typedef tree_node<T> node_type;
 typedef tree_node<T>& reference;
 typedef const tree_node<T>& const_reference;
 typedef tree_node<T>* pointer;
 typedef std::vector<pointer> child_holder;
 typedef child_holder::iterator iterator;
 typedef const T& const_value_reference;
 ...
 iterator begin()
 {
 return children_.begin();
 }
 reference front()
 {
 return *children_.front();
 }
 ...
private:
 child_holder children_;
 ...

 iterator adopt(pointer child)
 {
 if (NULL == child)
 throw std::invalid_argument(
 "Cannot adopt NULL pointers");
 iterator i = find_child(child);
 if (i == children_.end())
 {
 children_.push_back(child);
 i = --children_.end();
 }
 child->reparent(this);
 return i;
 }
private:
 iterator find_child(const pointer child)
 {
 return std::find(children_.begin(),
 children_.end(), child);
 }
 void reparent(pointer parent)
 {
 if (parent == parent_)
 return;
 elope();
 parent_ = parent;
 }

Li
st

in
g

1
Listing 2
10 | {cvu} | APR 2006

eloping(). This lets the old parent remove the child from its list of
dependants and get on with its life, without having to worry about the
mysterious disappearance of its offspring. Here, I’m using a return value
to provide a handle to the object. If elope() is called through an iterator,
I most definitely want to have its pointer, since I will have lost it forever
if I don’t. (Listing 3)
The scenario opposite from adoption, when I take a child from its parent,
works the same way behind the scenes. You call the public function
disown on the parent, telling it which child to give up on. This, in turn,
causes the child to shout, “You can’t disown me, I’m eloping!” like the
ungrateful brat it is.
Admittedly, this seems a bit unnecessary. Couldn’t you just inform the
child it’s been abandoned and remove it from the list? Yes, you could, but
this has the advantage that there is only one place where this abandoning
of children takes place, in eloping. And it looks more dramatic when I
write about it. Note that disown doesn’t erase the child, only its
relationship with the parent, which is why I return a pointer to the newly
independent child.

Clearance
However, we do need that function – abandon – or something like it. Why?
Well, a parent can do worse things to its children than disown them. It can
also get rid of them completely. The destructor of a node must inform its
parent, if any, that it is no longer a valid child by calling elope(). This
is right and proper, but inefficient and unnecessary if it is the parent that
is destroying it.
Since I figure I should provide functions to erase children anyway, I wrote
Listing 4.
This works fine, as far as it goes. But what about when the client wants to
erase a range, or even all children? What about the destructor, which needs

to do just that? While I could call the above function manually for each
one, this would be error-prone and inefficient. A better idea is to use
separate function to do the actual deletion, giving the clean-up code in
Listing 5.
There are some points worthy of notice in this code. Again, I only have
one place in which the action happens – the erase_silent function –
just like in the eloping and disowning discussed earlier. This is a sound
design principle, both to avoid code duplication, and therefore
maintenance problems, and to increase clarity and brevity. Remember that
sword – there should only be one purpose, whether it’s a class, function
or variable. Conversely, any purpose should only be expressed once, and
all other instances – of functions, classes and variables – should be
expressed in terms of that one.
I am also careful not to delete things until I have managed to take them
out of my list of children. Had I done it the other way around, I might erase
children that are not mine, without letting the other parent know this had
happened (since the parent pointer is reset before deletion) before failing
to get them out of my own list of children. The other parent would then
have pointers to children that didn’t exit, causing all sorts of unpleasant
surprises.
This way, std::vector::erase will protest before I do anything I
might regret. Admittedly, this means I’m relying on the erase function
to raise a fuss, and since the standard says that erasing an iterator that is
not valid causes undefined behaviour, I can’t be sure what happens. I feel
it’s sufficient to emulate this, though, and if nothing else it will be
consistent with how your implementation of the standard library does
things.
In the range version of the erase function, I take a copy of the range first.
This might fail if the range is invalid, as it falls under undefined behaviour,
but even if it is valid it might not be mine. If it isn’t, the call to
children_.erase should protest, and I won’t have deleted anything.

Listing 2

 pointer elope()
 {
 if (NULL != parent_)
 {
 parent_->eloping(this);
 parent_ = NULL;
 }
 return this;
 }
 pointer disown(iterator child)
 {
 if ((child != children_.end()) &&
 (this == (*child)->parent()))
 return (*child)->elope();
 throw std::invalid_argument("Cannot find
 child to disown");
 }
private:
 ...
 void eloping(pointer child)
 {
 iterator ch = find_child(child);
 if (ch != children_.end())
 children_.erase(ch);
 }

 iterator erase(iterator it)
{
 pointer p = *it;
 iterator i = children_.erase(it);
 p->parent_ = NULL; // abandon
 delete p; // delete
 return i;
}

 ~tree_node()
 {
 delete value_;
 clear();
 }
 iterator erase(iterator it)
 {
 pointer p = *it;
 iterator next = children_.erase(it);
 p->erase_silent();
 return next;
 }
 iterator erase(iterator first, iterator last)
 {
 child_holder backup(first, last);
 iterator next = children_.erase(
 first, last);
 std::for_each(backup.begin(), backup.end(),
 std::mem_fun(&node_type::erase_silent));
 return next;
 }
 void clear()
 {
 erase(begin(), end());
 }
 ...
private:
 bool erase_silent()
 {
 parent_ = NULL;
 delete this;
 return true;
 }

Li
st

in
g

3
Li

st
in

g
4

Listing 5
APR 2006 | {cvu} | 11

If it works, I still have a record of the objects I need to delete, even though
they’ve been erased from the list of children.
Making the function erase_silent appear as a functor, or function
object, by putting it in the std::mem_fun adapter also saves me the
chore of writing a loop, since I can simply use the one provided in the
algorithm library. Many programmers I know only use the containers from
the STL, and consider things like algorithms and function adapters to be
strange and esoteric, but really it is quite simple. The std::mem_fun
just makes a member function look like a functor. Unfortunately, any
function passed to the standard function adapters has to return a value.
They shouldn’t have to, but few compilers and libraries accept this
construct yet, which is why erase_silent always returns true.

Copy right
That’s the erasing part done, but I also promised a function to copy the
contents of a tree_node. For this, I’ll use a similar approach, and add
an adoption function that creates a new child from a value instead of taking
an existing one. This is a bit more complicated, so I will need some helper
functions, both private and static (see Listing 6).
First of all, in order to maximise exception safety I use the “create a
temporary and swap” idiom. If the creation of the temporary works, I can
swap safely. The same goes for the value, which is a simple pointer copy
operation and guaranteed not to throw. Of course, I can’t use the vector’s
swap function, since the parent needs to be set, but the idiom is the same.
The adopt function is safe, since it’s only doing pointer assignment and a
push_back on a vector which is guaranteed to have the capacity.
Unlike the erasing, I can't easily use std::mem_fun on a member
function to get a functor. The reason for this is that I need to bind one of
the parameters – the destination – since std::for_each only works on
unary (single-parameter) functors. For std::bind1st to work, it needs
the functor to have some type definitions you get for free from
std::binary_function, which also explains why it quite
pointlessly returns a boolean – it is required to have a return type.
The functor AdoptCopy takes pointers to what would be the left and right
sides of an assignment operator, i.e. the destination and source,
respectively. Its purpose is simply to call a static function that creates a
copy of the source and ask the destination to adopt this copy. In both the
copy_children and create_copy functions, it is used in the
std::for_each algorithm, with the destination bound to it.
Note that this is a recursive setup. AdoptCopy calls create_copy
which calls AdoptCopy... There have been many arguments about the
benefits and/or horrors of recursion over the years, and I have to say that
I am usually not fond of using it. In this case, however, I think it’s the best
solution, as it makes a much more elegant solution than a non-recursive
one. Trust me, I tried.
On a final note, the snippet in listing 6 also features the only try-catch
block in the code. That’s because this is the only potential memory leak I
can control directly. Should the copying of children fail – because of lack
of memory, or an exception thrown in the value constructor – I abandon
the whole thing, delete the node I was assigning children to and rethrow
the exception, making sure I do not leave any unadopted children lying
around.
To finish the tree_node, I’ll add some call-through functions for the
list of children – like back, end, empty and size – and put in
const versions of existing functions. With that, this class is complete. It
is as exception-safe as std::vector and the value type allows, it’s
without memory leaks, it works, and it’s useful. Wonderful. But before I
dislocate my shoulder trying to pat myself on the back, I must remember
that it’s not quite finished.
In the next, and final instalment, we’ll take a look at what is required of a
container, and do what we can to fulfil those requirements.

 void adopt(const_value_reference child)
 {
 adopt(create_value_node(&child));
 }

 void copy_contents(const_reference node)
 {
 node_type temp();
 temp.copy_children(node);
 if (node.has_value())
 temp.assign_value(node.value());
 // Make room
 clear();
 if (temp.size() > children_.capacity())
 children_.reserve(temp.size());
 while (temp.size())
 adopt(*temp.begin());
 value_ = temp.value_;
 temp.value_ = NULL;
 }
 ...

private:
 void copy_children(const_reference node)
 {
 clear();
 std::for_each(node.begin(), node.end(),
 std::bind1st(AdoptCopy (), this));
 }
 static pointer create_value_node(
 const_value_pointer child)
 {
 if (NULL != child)
 return new node_type(*child);
 return new node_type();
 }

 static pointer create_copy(
 const_pointer pnode)
 {
 pointer p = NULL;
 try
 {
 p = create_value_node(pnode->value_);
 std::for_each(pnode->begin(),
 pnode->end(),
 std::bind1st(AdoptCopy(), p));
 }
 catch (...)
 {
 delete p;
 throw;
 }
 return p;
 }

 struct AdoptCopy :
 public std::binary_function<pointer,
 const_pointer, bool>
 {
 bool operator()(pointer lhs,
 const_pointer rhs) const
 {
 lhs->adopt(create_copy(rhs));
 return true;
 }
 };

Listing 6
12 | {cvu} | APR 2006

Blasting from the Past
Paul Johnson asks when everything started to get so complex.

ay back in issue 17.1, I started to
look back – with quite a lot of
fondness – at a far simpler

time. A time when you could fire up
a computer in a couple of seconds
and through the built in BASIC
interpreter, could construct some
pretty neat bits of code. Slow? yes.
Uninspiring? possibly. Fun? definitely!
In 17.2, I followed this up with an article
which proposed the argument that perhaps
things haven’t changed as much as I had
thought. Sure, it was now a case of
hunt the library and refer to online
manuals, but the basic mechanism for
sound is just the same – the only
difference now is that instead of the software working on (say) a BBC B,
it would work on a range of hardware architectures – the only caveat being
that they ran the same operating system. It is even possible to compile code
against an older library and have the results be the same.
.NET and Java just makes things even easier in so far that as long as the
system has a compliant runtime environment, code doesn’t even need to
be recompiled.
I’m sure we’re all aware of this, being coders and programmers all.
It’s time to throw a spanner in the works – a spanner in the form of the
processor. For those who still have RISC OS machines, they will be all
too aware of this problem (especially those who worked for Acorn before
its demise). The ARM processor (originally) though it was 32 bit processor,
it was actually a 26 bit addressed chip with the remaining bits being used
as registers.
This was never really a problem, until the number of these 26/32 chips
began to run out. The likes of the ARM9 and XScale processors (and
newer StrongARM SA1110 chips) are 32 bit only. This caused quite a lot
of problems for RISC OS software, especially where a company who had
produced software had vanished for whatever reason. Code would die on
the newer processors. Not a problem if you had the source and a 32 bit
compiler, but a pain in the backside if you didn’t.
For those on PCs, this same problem is now coming to the surface with
the advent of 64 bit processors and the relatively small difference in price.
Not all code written for 32 bit machines can be just compiled for 64 bit
architecture.
Take a simple example of the data model of the processor (table 1). Not
only is there a difference (as you’d expect) between the 32 bit and 64
processors, but even with the different types of 64 processor, there is a
difference in the non-pointer data types. When the width of one or more
of the C data types changes from the different models, applications may
be affected. The effects are in two main catagories, as shown in Table 1:

Size of data objects. Compilers align data types on a natural
boundary (32 bit data types are aligned to 32 bit boundaries).
Upshot: the size of data objects (such as a structure or union) will
be different on the architecture.
Size of fundamental data types. You can no longer use the common
assumptions about the relationships between the fundamental data
types.
sizeof (int) = sizeof(long) = sizeof(pointer)
for the 32 bit data model, but not for the others.

Of course, the compiler will do the aligning itself (padding). A practical
demonstration of this can be seen here in table 2:

I’m not going to go into this in detail, but those nice chaps at IBM have a
fair bit of documentation available at http://
www-128.ibm.com/developerworks/
linux/library/l-port64.html. For
Win32 users, I’d advise you to
have a look as the next version
(Vista) is supposed to be 64
bit only, though we’ll have to
wait and see if that is the
case!
If you’re wondering what
ILP et al stands for, I = int,
L = long, P = pointer.
Why am I on about with this and more over, what has it got to do with
blasting from the past?
You will have all of realised by now that I love my old 8 bit days – and
going by the hit counters on the likes of worldofspectrum.org (and other
8 bit emulation sites), so do quite a lot of other people. Emulation is all
well and good, but for the life of me, I don’t want to get out my 6502 and
Z80A manuals to program in machine code again. I’m way too used now
to my gcc tool chain plus with the likes of Oric and Spectrum, there wasn’t
a built in assembler, so everything was the raw hex and one mistake...
Thankfully, those days are well gone now and there are two pieces of
software I use to compile my Spectrum and Oric code

W ILP32 LP64 LLP64 ILP64

char 8 8 8 8

short 16 16 16 16

int 32 32 32 64

long 32 64 64 64

long long 64 64 64 64

pointer 32 64 64 64

structure member size on 32 bit size on 64 bit

struct test {

int i1; 32 bits 32 bits, 32 bits filler

double d; 64 bits 64 bits

int i2; 32 bits 32 bits, 32 bits filler

long l; 32 bits 64 bits

}; sizeof(struct) =
20 bytes

sizeof(struct) =
32 bytes

Table 1
Table 2 Table 2

PAUL JOHNSON
Paul Johnson works at the University of Salford
where he sometimes teaches, but mostly fixes
computers and attempts to keep members of
staff happy. Contact Paul at paul@all-the-
johnsons.co.uk
APR 2006 | {cvu} | 13

with – z88dk and OSDK. Actually, that should read “used to compile …
with” as neither of them will build on a 64 bit system with a modern
compiler (such as gcc 4.1)
Closer examination of z88dk shows it’s really not a big thing to fix the
code to make it neutral, but OSDK – that’s a different matter. The original
code was written (from what I can make out) in the original K&R C
Now, if you’ve been programming since Stroustrup was knee high to a
grasshopper, then K&R will hold no fear for you. However, if, like me,
you’ve only been programming for about 8 to 10 years, K&R, though
understandable (after all, it is still C when all is said and done) is baffling
and what’s worse, is a pain to follow.
For example, below is completely acceptable C then and now

char foo(a, b, c);
int a, long b, char c
{
/* */
}

It’s not hard to understand either. However, when you have declarations
at the start of the source file (and the source file is not a trivial one) of the
style

DECL char foo(int a, int b, char c);

and all you then have at the function:

char foo(a, b, c)
char c
{
/* */
}

you will find some who will just
switch off.

Now, assuming that the
code has been re-
written to be more
C 99 (o r C 89)

compliant, there then
comes the problem of making

the code to be processor neutral
after it’s compiled. That’s not so

hard. The hard part though is
e nsu r i n g t ha t t he co de
generated by the compiler

hasn’t been broken by the port
and it still runs on your favourite emulator as native code!
In theory it should run – and for a large degree of the time, it does, but for
some reason, graphics and sound tends to fail. Text, the (emulated) save
and load and even switching (on the Oric) to HIRES seem fine, but try to
get it to use the ZAP or SHOOT sound effects and it's good night
sweetheart time.
It appears that there is another bogey in the system which wasn’t apparent.
Predefined types used within the source (remember, everything is 8 bit on
the target machine) and some very bizarre #defines which just break
on the newer 64 bit systems. At this point, you start to worry not so much

about the sanity of the author, more your own sanity; why on earth are you
fixing someone else’s code to compile code on a target machine long since
gone! Could this time be not better spent on sorting out
that odd knocking noise at the front of the car, making
another coffee or just plain answering the phone/
walking the dog?
What a silly question!
I mean, what is your 2.8GHz 64 bit PC with
more memory in it that the original
creator of the target machine could be
dreamed of and a sound system which
in would embarrass even the most up-
to-date cinema of 1985, for if you can’t run
your old 8 bit software on it? Talk sense
man!
The problem now though is that because of
a macro, which calls another macro which relies on some predefined 8 bit
integer type which in turn is part of a structure assumed to be a particular
size which isn’t because of padding now apparent on 64 bit systems, sound
and video is effectively shot on the generated code.
There is a simple fix – tell the compiler to compile as if it was a 32 bit
compiler (in other words, use -m32 on gcc). Only problem there is that
this now means that if you’re using Intel C++ (or another non gcc derived
commercial compiler on a native 64 bit system), you need to change the
flag – or worse, that ability to re-target is not there.
It would be simpler all round to spend a week fixing the problem so that
future users don’t have the problems currently being encountered.
The key to sorting the problem though isn’t in the code so much. The
problem is actually in what isn’t there!
As with so many packages, documentation in both the source and extra to
the source is virtually nil. By spending a good couple of hours (depending
on how large the code base is) in documenting what does what, connects
to what, depends on what and other such trivial things, the fixing of the
code should be a great deal simpler.
The moral of this piece is to document. And make sure the documentation
is good. It saves time in the long run and better still, means loonies like
me can enjoy writing code for our pet 8 bit machines on our whizz bang
state of the art boxes.
Of course, the fixing of z88dk and OSDK are not earth shattering,
however, larger pieces of industrial code are and the following pieces
demonstrate greatly differing strategies on how people deal with
maintaining legacy
code.

The moral of this piece is to
document. And make sure the

documentation is good

.NET and Java just makes things even easier
in so far that as long as the system has a
compliant runtime environment, code
doesn’t even need to be recompiled

14 | {cvu} | APR 2006

APR 2006 | {cvu} | 15

Building on a Legacy
Anthony Williams provides some tips for inherited code.

he term “Legacy Code” has been imbued with meaning by the
software development community, and evokes images of masses of
tangled, hard-to-change code, with bad variable names, 1000 line

functions, misleading comments, and unfathomable dependencies.
Taken literally, it means code “handed down by an ancestor or
predecessor” [1], which doesn’t sound so scary, and it needn’t be, provided
suitable care is taken. I’ve found the following techniques to be useful
when I’ve had legacy code to work with, and I hope they can be useful for
you too.

What, no documentation?
Many developers bemoan the lack of documentation when presented with
some legacy code to maintain, but this often belies their real concerns –
they find the code hard to understand, and hard to change, without
introducing bugs.
Michael Feathers asserts [2] that the best way to maintain legacy code is
to get it under test, so you don’t have to worry about breaking it as you
make changes, and I’m inclined to agree. If you haven’t got a copy of
Michael’s book, I really recommend you buy one.
Bearing in mind the problems of maintaining hard-to-understand
code, it’s well worth taking the time to refactor, to make it clearer.
I’ve written about what I consider makes for maintainable code
before [3], and you should bear this in mind when making
changes. However, it is important not to get carried away and try
and rewrite everything – that way lies stress, as you’re not making
any progress in the mean time.

Baby steps
The key to making any changes to legacy code, whether in order to add
features or to get it under test, is to make a series of small changes, rather
than one big one, and then verify that everything works after each small
change. Obviously, the best way to verify that nothing has broken is with
a set of automated tests, which is Catch-22 if you need to make the changes
in order to add the tests – in this case, you have to rely on making the
smallest changes you can in order to add the tests, and manual testing to
verify the behaviour.

Stay focused
When faced with a big ball of mud, it’s tempting to dive in and refactor
like crazy, tidying up the code all over the place. This is not a good idea,
since you’re not adding new functionality whilst you’re doing this, and
you are modifying this code for a reason – you’ve got a bug to fix, or a
new feature to add.
Instead, the way to deal with the mess is to focus on the area that needs to
be changed. If you’re fixing a bug, hunt it down ruthlessly, then add tests
to that specific area, so that (a) you’ll know when the bug is fixed, since
you’ve got a test case that traps it, and (b) you’ll know that you haven’t
broken any of the desired behaviour in that area. Once the tests are in place,
tidy up this corner of the code-base – split that 1000 line function, by
extracting small, self-contained functions with good names, and clear
responsibilities; rename a few variables; group related data into structures
and classes.
If you’re adding a new feature, work in a similar way – find the parts of
the code that need to change in order to add the new feature, add tests to
the existing code, write tests for the new feature, and add the new code.
Again, once the tests are in place, tidy up the affected areas of the code-

base. Sometimes it is best to do this before adding the new code, in order
to make it just that little bit easier to add the new feature, and sometimes
it is a good idea to do it afterwards, to eliminate some duplication, and
make it easier to change next time.

Pay back technical debt
Unmaintainable code-bases, with a lack of tests, are often said to have
accrued a lot of “Technical debt”. The consequence of accruing the
technical debt, and not keeping the code clean and well-tested is that you
have to pay “interest”, in that adding new features and fixing bugs takes
longer.
By adding tests, and refactoring to improve the design, as you fix bugs
and add new features, you are paying back some of this debt. The code
should be cleaner after your modification than before, with less
duplication, and more tests. Working this way, the areas of code that
change frequently will become well-covered with tests, and will gradually
become better designed over time. Adding new features will therefore get
easier as time goes on, rather than harder.

The areas of code you haven’t had reason to change will remain just as
untidy as before, but if you don’t need to change them, this isn’t a problem.
Also, if you’re fixing all the critical bugs you know of, and you still don’t
need to change a bit of code, then either it’s never run, or it works as
intended, however unclear it may be.

Delete, delete, delete
No code has fewer bugs than no code. If some of the code is not used, delete
it. Some people have a fear of deleting unused code, in case they need it
sometime, but this fear is unnecessary – if you’re using a version control
system, then the code will be there if you need it. Tag the last version
before you delete it, to make it easy to find again, if you wish, but do delete
it from the current version of the code. Unused code just makes it harder
to understand what the rest of the code does.
Whilst unused classes and functions cause clutter, the worst offender in
the unused code stakes is an unused branch of a function that is used. Every
time you have to read the function to try and understand it, this code gets
in the way. Once you’ve worked out that it cannot be called, delete it and
save yourself from having to work it out every time you look at the
function.
Code coverage tools will help with this analysis, but they require that every
code path actually used is exercised, which requires extensive testing,
whether with automated or manual tests. Sometimes static analysers will

T

ANTHONY WILLIAMS
Anthony is the Managing Director of Just
Software Solutions Ltd. He is a strong believer
in the benefits of Test Driven Development,
Refactoring. He can be contacted at
anthony@justsoftwaresolutions.co.uk

Flow
chart 1

faced with a big ball of mud, it’s tempting
to dive in and refactor like crazy, tidying

up the code all over the place

Living with Legacy Code #1

Listing 2

Subversion of the C language
Mark Easterbrook explains that what you see is not C.

here are many problems with maintaining legacy code, and a good
understanding of the language is essential because it is the only factor
that is likely to be well documented, and therefore the only real

“known” in the system. In this first article I will look at areas where even
this island of sanity in a sea of complication is not the safe haven it should
be. There are some programmers who, for reasons best known to
themselves, prefer to modify the language itself before they start coding.
Here are just a examples.

Forever and a day
Many embedded systems (and some not so embedded systems) contains
code along the lines of:
 FOREVER {
 /* stuff */
 }

The intention is fairly clear, so you hope that when you find the definition
of FOREVER it is one of:
 #define FOREVER for(;;)

or
 #define FOREVER while(1)

and you wonder why they didn’t just write one of these two well-known
idioms straight in to the code in the first place.
In practice, those coders who think FOREVER is neat don’t extend
neatness to the definition, and thus you have to work hard to be sure that
the loop does actually loop forever:
 #define FOREVER while(TRUE)

Which of course depends on the local value of TRUE (more about values
of TRUE later on).

 #define FOREVER while(!FALSE)
 #define FOREVER while(!0)

These probably work, but they are just slightly obscure enough to make
you doubt the coder’s ability and you have to double check everything to
be sure.
Now to something evil, especially if you don’t read it carefully:

 #define FOREVER for(;;);
 #define FOREVER while(1);

Normally this would not make it past the first testing stage because all the
tasks just get stuck in a tight loop and nothing much happens. But in an
environment where definitions are copied into every source file,
sometimes with a slight modification such as a trailing semi-colon, and
the compiler has a “feature” where it optimised away empty loops
completely, the error can remain undetected for a long time. The “loop”
only executed once and then the tasked exited. The process monitor would
then notice the “failed” task and so re-start it ready for the next message.

T

MARK EASTERBROOK
Mark is a software developer specialising in technical domains. In
his day job he works with embedded systems, high performance/
reliability/availability systems, operating systems, and legacy code.
The rest of his time is split between motorcycles, genealogy, linux,
and food and drink, but never at the same time. Mark can be
contacted at mark@easterbrook.co.uk
16 | {cvu} | APR 2006

be able to identify unused code, and sometimes you can tell just by
looking, e.g.
 n=3;
 if(n==2){ ... }

Sometimes it’s worth using a cross-reference tool, or even plain grep, to
find whether a function is called from anywhere. If it’s not called, delete it.

Version control
I said deleting code is safe because it’ll still be in your version control
history; this rather presumes that you’re using a version control system.
If you’re not, start now – download CVS or Subversion, and set up a
repository for your source code.
Assuming you do have a version control system, make sure you use it to
full effect – check in code frequently, and label important versions, such
as before a refactoring, or when you make a release. Every time you make
a small change to your code, and everything still works, check it in. After
each baby step, check the code in; check your code in many times a day,

sometimes after only a few minutes. When you’re making changes to
legacy code, you’ll be glad of the safety net, knowing that you’ve got
working code to fall back to, from just a short time ago.

Conclusion
Legacy code needn’t be scary, but it does require careful handling. Stay
focused, take things slowly, and work step by step, with frequent check
points. Add tests as you go, and pay back a little technical debt every time
you work on an area.
We should all bear in mind the problems of legacy code when we’re
developing, and do our best to avoid them before they’re an issue. We
should strive to leave a legacy we can be proud of.

Notes and references
1. OED, meaning 5b for Legacy, n.
2. Working Effectively with Legacy Code, Michael Feathers, published

by Prentice Hall PTR, 2005.
3. Writing Maintainable Code, Anthony Williams, C Vu 16.2, April

2004.

Building on a Legacy (continued)

Stay focused, take things slowly,
and work step by step, with frequent
check points

The only symptom was regular “task failed – restarting” entries in the log,
as as there were no other failures nobody could be bother to investigate.

If you are allowed to, the best way of dealing with this nonsense it to
remove the #define(s) and then fix the compile errors by putting in the
correct idioms. If this is not permitted, you will need to remove the
FOREVER one by one whenever the code changes for another reason and
hope the process police don’t catch you.

Open to extension, open to change
There are those for whom C doesn’t have enough keywords, and it is so
easy to add a few more, for example:
 until (condition) {
 /*stuff*/
 }

and if you are lucky this will be:
 #define until(x) while(!(x))

and if you are unlucky:
 #define until(x) while(!x)

Whatever you do, don’t fix this by changing the latter to the former,
because somewhere someone will be relying on the broken behaviour:
 until (match_found && !user_cancel) {
 /*stuff*/
 }

The Wrong Trousers (apologies to W&G)
There are others for whom the problem is not enough keywords, but the
wrong keywords – because it is the wrong language:

#define BEGIN {
#define END }
#define FOR(b,e,s) for(i=b;i>e+1;i=i+s)
#define THEN

which allows the C-challenged coder to write:

FOR(1,9,2) THEN
BEGIN
 /*stuff*/
END

I once came across this in a coding standards document as a suggestion to
avoid bugs caused by incorrect use of the for statement. The author of
the document was promoted to CIO, but not fast enough to avoid other
collateral damage on the way to the top.
This madness is probably from a closet BASIC programmer, but I have
also come across the lower-case version indicating a closet algol
programmer.

It’s illogical Captain (with apologies to S-T)
The purveyors of the above nasties can easily be shown the error of their
ways (the application of sharp implements often helps), because it can be
argued that they are changing the code language, but everything else is
game, right?

 #define FALSE 1
 #define TRUE 2

Amazingly, the mindset that created this can maintain the delusion by not
using (or knowing about) the TRUE and FALSE that the rest of the world
uses:

all_done = (((x_records == 0) &&
 (y_records == 0)
 && (cleanup_needed == FALSE))
 ?(TRUE)
 :(FALSE));
if (all_done == TRUE)
 can_exit = TRUE;
else
 can_exit = FALSE;

If you come from a world where TRUE and FALSE are the way the creators
intended them to be, you are on your way to introducing hard-to-see bugs
with a little bit of code clean up.

if (all_done) {
 return;
}

Of course, having off-by-one errors in the definition of boolean is not the
only fruit:
 #define FALSE 0
 #define TRUE -1

then making it portable for different word sizes (their excuse, not mine):
 #define FALSE 0
 #define TRUE ~FALSE

and one that got spotted during testing (oh how we laughed when we
tracked this one down, not!):
 #define FALSE 0
 #define TRUE -FALSE

and finally a rare but unfortunately not extinct species:
 #define FALSE 1
 #define TRUE 0

Various definitions of nothing
The other common target for alternative definition is that old favourite,
NULL:
 #define NULL '\0'

or
 #define NULL (void*)0

The first I can only assume came from someone who read the first entry
in the ASCII table and didn’t know that the difference between NUL and

someone who read the first entry in
the ASCII table and didn’t know that
the difference between NUL and
NULL is significant

somewhere someone will be
relying on the broken behaviour
APR 2006 | {cvu} | 17

NULL is significant. The second is possibly the result of being stung by
passing NULL to variable length argument lists on a machine where
sizeof(int)!=sizeof(void*). However, neither introduces
bugs into the code most of the time. This means they are impossible to
“fix” if someone plays the “if it ain’t broke don’t fix it” card. The NULL
keyword and its look-alikes turn out to be extremely resilient to abuse,
allowing all sorts of interesting combinations that shouldn’t work, but do:

char* mstring = NUL;

if ((dynamic_pointer=malloc(CHUNK_SIZE))==NUL)
 exit(1);

char etc_path_str[]={'/','e','t','c','/',NULL};

if (newname[0] == NULL)
 strcpy(newname, DEFAULT_NAME);

Swap, swop, and SWAP again
We all know the difficulty of writing a swap macro in C, but only a few
know a good solution (hint: it does involve the pre-processor). The
problem is that usually you need to define a temporary, and that is really
difficult to do so you have to cheat a little. This leads to some creativity.
There are temporary-less solutions:

#define SWAP(a,b) (a) ^=(b); (b) ^=(a);
 (a) ^=(b);

(by the way, I don’t know if this works or not, because I didn’t wait to
find out – when I found this I just deleted the line and addressed each
compile error manually).

partly generic solutions:
#define SWAP(a,b) {long t; t=a; a=b; b=a;}
#define SWAPP(a,b) {void* t; t=a; a=b; b=a;}

and non-portable solutions:
#define SWAP(a,b) do {typeof(a) t; \
 (t)=(a); (a)=(b); (b)=(a); \
 } while (0)

The author of the last one would argue that he has read all the books on
safe macros and “knows” his solution is right, after all, he has dealt with

the two big gotchas.
As an experienced legacy code maintenance programmer you know
you’ve found your bug when you get to:
/*swap left and right values and move to next
entry*/
SWAP(*left++, *right++);

Was it the comment that tipped you off? The author obviously wasn’t sure
what he was doing so added the comment the make sure the code couldn’t
be mis-interpreted! Or perhaps it was the SWAP shouting at you.
Unfortunately in my experience, the broken
 #define SWAP ...

flavours are outnumbered by about 2 to 1 by the much sneakier
 #define swap ...

family, which doesn’t shout at all.

But, it’s already been fixed…
If you are working on code that is not too old, you might be lucky to find
some of the above coding techniques in the form the original programmer
coded, but more than likely, someone has tried to fix them at some point.
In one case the developers decided to make all the compiler warnings go
away. This is a dangerous activity unless approached with the right
attitude. Typically, getting rid of all those pesky warnings about re-defines
results in:

#ifdef FALSE /* avoid compiler warning */
#undef FALSE
#endif
#define FALSE 1

Another flavour:

#ifdef FALSE
#undef FALSE
#define FALSE 1
#endif

A third flavour, to give you real confidence about programmer knowledge
and ability:

#ifdef FALSE /*if we included the standard header
*/
#undef FALSE
#define FALSE 0 /* use the standard definition */
#else
#define FALSE 1 /* else use in-house definition */
#endif

Sometimes these errors are picked up at code review time, and the source
code revision system recorded the change:

before: #define FALSE 1
after: #define FALSE (1)
SCCS: Code review change - Coding standards say
all #defines must use parentheses around all
variables and all expressions.

You might note that this seems a particularly enlightened development
team:

1. They use code reviews.
2. They use a source code control system
3. They have coding standards containing useful advice
4. They add comments at code check-in time.
5. The comments are meaningful.

With all this going for them, you might be tolerant of a slightly dodgy
#define!

The NULL keyword and its look-
alikes turn out to be extremely

resilient to abuse, allowing all sorts
of interesting combinations that

shouldn’t work, but do

the developers decided to make all
the compiler warnings go away
18 | {cvu} | APR 2006

Your def or mine?
You have probably noticed that many of the above, as well as generating
compiler warnings, are sensitive to include order, so:

#include "/home/dave/project/includes/global-
stuff.h"
#undef FALSE /*need to remove our defs to stop
compiler warnings*/
#undef TRUE
#include <stdlib.h>
#ifdef FALSE
#undef FALSE
#endif
#ifdef TRUE
#undef TRUE
#endif
#define FALSE 1 /*need to put our defs back*/
#define TRUE 2

Dave is no longer with the company, but they cannot delete his account
because to do so breaks the build. Also, nobody is allowed to change
globalstuff.h and they won’t tell me why (I think I know, and I think
they don’t!). I’ll excuse them the misunderstanding about the pre-
processor vs. the compiler error message.

Once a constant, not always a constant
The following code always used to work, but the last few releases have
had problems with channels that won't start properly:

for (channel=0; channel<MAX_CHAN; channel++)
 init_channel(channel);

There is not much to go wrong with a compile time constant is there, and
none of the channel initialisation code has changed in any way at all, so
why do a random number of channels get initialised? How can a constant
not be a constant? - this is how:
#define MAX_CHAN GetMaxChan()

You see, the great thing about #define constants is that when they
change, you don’t need to go through the code changing all instances, just
change the single definition and recompile. If it changes into a value read
from a configuration file instead of a constant, you don’t need to go
through the code changing all instances, just change the single definition
and recompile. It’s still a constant, just one that cannot be used before it
is read from the file.
Fixing this should be easy, just make sure that the configuration file is read
as the very first initialisation step. However, I forgot to mention that file
was not local, if this is the slave card it obtains the configuration from the
master card, and communication to the master is, you guessed it, over
channel 0.

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write
about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print wasn’t enough, every year we award prizes for the best published article in
C Vu, in Overload, and by a newcomer.

(slightly tongue-in-cheek) guidelines:
1. Never “fix” the #define by changing it. It must either

remained unchanged or be deleted completely. Obviously
removing it means changing everywhere it was used. (but
see 2)

2. Never “fix” the #define by removing it if this won’t work.
#define FALSE 1 falls into this category.

3. If someone thinks it is a good idea to modify the language,
they probably don’t understand the spirit of the language
and certainly don’t understand the letter of the language
(accidental pun), so don’t trust any of the code they write.

4. #define BEGIN { and similar travesties is like a big
flashing neon sign saying “get off this project ASAP” –
probably time to get the CV up-to-date.

5. Never ever change the order of #includes – the code is
almost certainly relying on the correct order of
#(re)define.

6. Don’t believe anything you read, especially if it is written
IN CAPITAL LETTERS.

7. Code reviews are useless if they consist of the blind
leading the blind – there must be at least one good
programmer present!

8. Don’t allow Coding Standard Lawyers in to code reviews –
they will use all the time to correct the code and leave no
time to spot the errors.

Are we done yet?
APR 2006 | {cvu} | 19

20 | {cvu} | APR 2006

QEMU as a means of software distribution
Silas Brown introduces a cross-platform solution.

f you are writing software for others to use then it would help if it runs
on their computers (unless it can be done entirely on a network server,
which is not always feasible).

If you use a Unix-like environment for development, you will have many
command-line tools and other software that can easily be used and/or
customised in your own program, saving you time, but when it comes to
distributing it, you’ll find it’s difficult because the user does not have the
same environment. And thus you’ll either have to re-implement the
functionality of the tools yourself, or find equivalent tools that have
suitable redistribution licenses (perhaps by porting them yourself); both
of these approaches can take a lot of time and the result is not always as
good as the original, particularly if you are using esoteric functionality.

You could require the user to load a suitable environment, but this can be
a hassle, even with such products as Cygwin and live Linux CDs available.
Even if the user has time for it, he or she might not have administrative
access to the machine, or the machine might be an awkward laptop that
cannot boot live CDs, or something.
In many cases it suffices to restrict your choice of tools as far as possible
to what is available in the language interpreter or portable libraries. But
when you need to go much further, an option which has recently emerged
is to distribute a virtual machine under QEMU.
QEMU is a free cross-platform x86 emulator which can run any operating
system you like without needing administrator privileges or installation.
Ready-made disk images are available, some of which are relatively small
and can be customised relatively easily (and you can do this customisation
while using any operating system under which QEMU runs; you don’t
have to run the user’s operating system yourself). For example, try going
to www.damnsmalllinux.org, choosing a download mirror and looking for
the dsl-<version>-embedded.zip file (to run this in Linux you
will need libSDL on your system; Windows should be able to run it as-is,
and it is also possible to run on Mac OS but you need to download the
Mac version of QEMU separately).
The file qemu/harddisk appears as /mnt/hdb and can be accessed
from outside the emulated machine by using the Unix mount -o loop
command. You can use this to move large files (such as software
installation files) onto the emulated machine (remember to unmount
before running). Alternatively you might be able to access the network
from the emulated machine, but this doesn’t always work. Once the
required files are there, it’s best to do any actual installation from within
the emulated machine, to prevent configure scripts from linking to an
outside library. Remember to install to /mnt/hdb not /usr/local as
the latter is not preserved. If you need more space on that virtual disk

(which is fairly small to begin with), you can shut down the emulator and
use standard Unix commands to do the job, for example for 500M:

cd qemu
dd if=/dev/zero of=hd2 bs=1048576 count=500
/sbin/mke2fs hd2
mkdir a ; mount harddisk a -o loop
mkdir b ; mount hd2 b -o loop
cp -pr a/* b/
umount a ; umount b
mv hd2 harddisk

The virtual disk also contains a file backup.tar.gz which has
the home directory, but since it will be loaded into RAM it cannot
be very large. It is useful for storing configuration options and
startup scripts.
It is possible to start the emulator from a saved state so that it does
not have to emulate a machine startup. This is less useful if you
want the user’s actions to change the virtual hard disk (unless you
are clever about mounting). But if it is to be a “read-only” system
then you can get it into the state you want, press Control-Alt-2 (if
QEMU recognises Control-Alt on your system) and type savevm

filename, then close the emulator and edit the DSL script so that -
loadvm filename is specified on the qemu command-line.
In many cases it is useful to read input from and write output to the user
machine’s filesystem rather than to a virtual hard disk. If it’s possible to
run a separate server of any kind, then this can be reached from the
emulated machine at IP address 10.0.2.2 even if networking is not
otherwise available (Samba sharing can also be set up if you have the
server). However, this approach means more end-user setup and it is
different across platforms. A small Python script can make an adequate
cross-platform server (py2exe can eliminate the need for Windows users
to install Python, and other platforms likely already have it), but be careful
to allow connections only from localhost, and be especially careful on a
multi-user machine. For batch jobs it might be better to use QEMU’s
-nographic option and to have the scripts within the emulated machine
interface with the serial port, which will appear as QEMU’s stdio to the
outside Python program.

QEMU does run more slowly than other approaches, but as long as the
user has sufficient hardware this is normally more than outweighed by its
not requiring any installation or setup or even rebooting. Users with old
hardware are more likely to be willing to set up an appropriate
environment anyway (although this is not always the case!)
Incidentally, the lead author of QEMU, Fabrice Bellard, is also
responsible for QEmacs (an editor which although not being as
customisable as Emacs still has some customisability and has the
advantage of being able to edit files much larger than the physical RAM
without being slow) and TCC (a small, fast C compiler) among other
things.

I

Silas’s Corner

SILAS BROWN
Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of Computer Science at Cambridge University, where
he enjoys the diverse international community and its cultural activities.
Silas can be contacted at ssb22@cam.ac.uk

if you are writing software for
others to use, then it would help if

it runs on their computers

QEMU is a free cross-platform x86
emulator which can run any operating
system you like without needing
administrator privileges or installation

ACCU Conference 2006: Retrospective
Pete Goodliffe introduces a round-up of the ACCU conference.

nother year, another conference. For many people the ACCU
developers’ conference has become an unmissable part of their
calendar: a must-attend event full of high-quality presentations and
the chance to meet like-minded individuals who love to code well

and want to constantly improve. For many accu-general mailing list
lurkers, it’s a chance to meet up with the people we only know by email
address. Usually, the shock isn’t too bad!
This year’s event followed in the grand tradition of its forebears: it was
exceptional. It provided high quality industry-renowned speakers
(including Herb Sutter, Scott Meyers, and Guido van Rossum) and talks
covering many aspects of software development. There was a strong focus
on C++ and Python, distributed computing, and dynamic languages,
nestling amongst many, many other topics. The presentations were
excellent, and I don’t think anyone can say they didn’t come away with
new techniques, perspectives, and insights into software development
under their belt.
But the conference is about much more than that: it’s a wonderful
opportunity to bump (sometimes literally) into other programmers (and
often into the industry luminaries themselves) over a coffee, a beer in the
bar, or at whichever restaurant we’ve taken over that night. I still feel sorry
for the Pizza Express staff who coped admirably; Chutneys (the local curry
house) are used to us by now!
Highlights for me included the lively debate between Herb Sutter and
some C++ standards committee members about the naming and design of
Microsoft’s C++/CLI (including Lois’ classic quote: stop talking whilst
I’m interrupting you) [1], the quality of prop used in Alan Kelly’s session,
and the number of people who wished they were on stage during the
“Grumpy Old Programmers” panel [2].
To impart more of a flavour of the
sessions, a number of attendees have
written up their experiences. Fasten
your seatbelt.

Mark Easterbrook
Mark (mark@easterbrook.org.uk) made these remarks about a couple of
interesting sessions.

Only the Code tells the truth (Peter Sommerlad)

Although there was only a small audience – the cartoon room was about
half full – this presentation generated considerable discussion over the
next few days. The core of the presentation was a list of things we do that
lead to less understandable code such as comments, type safety, design
before you code and never change a running system. The first of these,
comments, generated the question: “Is the total value of all the comments
in all of the code out there, greater or less than zero?”. (If I remember
correctly, vocalised by Russel Winder). Enough participants considered
the answer to be “less than zero” resulting the phrase “Comments are
Evil”. This was more of a workshop and left the presenter and audience
with lots of ideas to take away and work on.

Understanding Security With Patterns (Peter Sommerlad)

Like Peter’s earlier presentation this was interactive involving group
discussions that moved away from the Patterns and concentrating on
Understanding Security.

The groups picked a subject area and evaluated it with respect to Threats,
Vulnerabilities and Risks. The two most significant issues that resulted
were the difference in the value of a data asset depending for read only
and read-write access, and the significant change in value when
composition happens, either upwards such as combining a credit card
record with the customer record that includes the address, or downwards
when abstraction also occurs.

Steve Love
Steve (steve@essennell.co.uk) comments: the conference is a highlight of
my year. It gives me a chance to mix and meet with a community of
programmers who have at least one thing in common: the desire to be
better at what they do. Of course, this isn’t the only reason to attend! The
ACCU has an unmatched technical programme presented by a wide
selection of speakers, from jobbing programmers to language designers,
and it’s a real treat to be able to learn from the brightest in the business.
Every day of the conference was a full one for me, but the following three
presentations all stood out for one reason or another.

Effective Version Control (Pete Goodliffe)

Pete Goodliffe was his usual ebullient self in this talk about making the
best use of version control systems in software development. Humour in
the slides and Pete’s ever-present enthusiasm brought light and sparkle to
what many consider to be a very dry topic indeed. Those of you who’ve
ever seen Pete give a presentation on anything will know that there is
always much more than a delivery of the slides, and this was no exception
(slight hangovers notwithstanding). There was even bingo to ensure
everyone paid attention!

Without delving too deeply into the
details of the system administration
associated with version control systems,
or focuss ing too sharp ly on the
excellence or shortcomings of specific
products, Pete conveyed a general sense

of what’s required of a good version control system by using examples of
what developers need from it.
Basic principles started the show: the differences between models of how
edits and check-ins are handled gave Pete a good excuse to make some
comparisons between version control systems, and the importance of
repository/project planning was tackled well. Simple diagrams gave a
clarity to this which even talking around it probably couldn’t achieve.
Advanced techniques followed, with clear examples of managing
different lines of development through branching and merging, and
moving on to managing third party libraries and product releases.
Throughout, Pete’s wide-ranging experience was always ready with
anecdotes and practical tips. Of all the pieces of advice given, the one that
struck chords with me was to pick the simplest version control system you
need, not the most advanced one you can afford.
In his allotted 90 minutes, Pete gave good coverage to this huge topic, and
that is not to say it was skimmed in any way. Obviously all details cannot
be covered in a presentation like this, but the important stuff that matters
to developers’ everyday lives was handled with Pete’s easy confidence.

A

CONFERENCE ATTENDEES
The people who attend ACCU conferences are a well-adjusted set
of individuals with excellent judgement and top-notch programming
skills. They can be contacted at accu-general@accu.org

Flow
chart 1pick the simplest version control

system you need, not the most
advanced one you can afford
APR 2006 | {cvu} | 21

A Design Rationale for C++/CLI (Herb Sutter)

Herb Sutter gamely volunteered to be grilled by the audience and a panel
of experts over the design of C++/CLI. If you’ve read Lois Goldthwaite’s
‘Standards Report’ in the previous two issues of CVu, you’ll be aware that
there is some tension between Microsoft’s and ECMA’s wish for a fast-
track ISO standard for C++/CLI, and the BSI C++ Panel. Quite a few
members of the BSI C++ Panel regularly attend the ACCU Conference,
and so this session promised to be, well, entertaining, anyway. Now you
might be thinking that concerns over fast-tracked ISO acceptance (or
concerns over the very name C++/CLI – more later) might not be quite
the same thing as a Design Rationale. You would, of course, be right. But
the discussion became one of why the BSI C++ Panel hold such strong
objections to both the fast-tracking, and the name, and at least in part why
Microsoft, and Herb in particular, feel these objections are ungrounded.

In fact, Herb Sutter, having obviously guessed that the discussion would
head in that direction, came with a presentation of only 3 slides. The final
slide invited questions, and a small impromptu panel was formed of Kevlin
Henney, Francis Glassborow, Roger Orr, and Lois Goldthwaite. The
ensuing discussion effectively revolved around the difference between a
language binding – which is what the C++/CLI is considered to be by
Microsoft and the ECMA standard - and a new language altogether.
The discussion was lively, often alternating between Lois, effectively
leading the panel, writing examples on a whiteboard, and Herb clarifying
points of interest from the FAQ section of the Design Rationale for C++/
CLI paper (avai lable a t h t tp : / /www.gotw.ca /publ ica t ions /
C++CLIRationale.pdf for those interested). In particular, the audience was
reminded by Herb of Microsoft’s commitment to C++ as a first-class
language in .Net, and by Lois that Microsoft’s commitment to an open
standard is to be applauded and not underestimated.
There was certainly a political, rather than technical, debate, but the design
choices made by any language or language binding are extremely
important because they affect the everyday lives of the people on the
ground-floor – the programmers themselves. And the design choices are
about much more than just syntactic arrangements of code.

Concurrency Requirements (Hubert Mathews)

Hubert Matthews gave the final keynote presentation of the conference.
Delivered with his customary authority and good humour, this was a talk
about changing the way we think about concurrent systems. What set this
apart from, say, Herb Sutter’s keynote on writing concurrent programs,
which was about changing the way we think about writing concurrent
code, Hubert’s keynote focussed on concurrency in the requirements - the
Real World being represented.
The key point was that this concurrency has no real technological solution.
One example given was that of borrowing a book from a library, which
indicates two aspects of the problem. The first aspect is a race-condition,
because between asking whether a book is available and going to the shelf
to obtain it, the book may have been taken. The second aspect is one of
system integrity. The solution to the book not being available is not to go
and put the book on the shelf, but to update the ‘system’ to reflect the real
state of affairs.
It was a very thought provoking talk, and one point that stood out for me
was Hubert’s presentation of the ubiquitous traffic light problem. On a
crossroads, if all the sets of lights go green at the same time, chaos will
ensue. Generally when we model this in software, these are the terms in
which we think. Hubert suggests a more goal oriented approach to the
problem. The goal is to prevent scratched paintwork – an entirely real-
world one – not to prevent all the lights going green.

Anonymous attendee
A writer who wishes to remain anonymous made a set of interesting notes
on some of the sessions he attended:

The Future of Python (Guido van Rossum)

Guido van Rossum, the creator of Python, opened the conference with a
talk about Python 3000 (AKA Python 3.0, AKA Python 3k). This will be
the next major release of Python, a release that is allowed to break
backwards compatibility with Python 2.x. This is not as bad as it sounds,
as Guido takes backwards compatibility very seriously and a major part
of the Python 3000 work will be helping to smooth the transition.
Guido covered many specific changes, which are documented in PEPs
3099 and 3100. Briefly, the feel of the language is not going to change.
The main objective is to clean up some clutter and inconsistencies that
have crept in along the way.
Migration from Python 2.x to Python 3000 is considered very important.
2.x versions will continue to coexist with Python 3.x versions up to
something like version 2.9. Python 2.x versions already warn about
features that are scheduled for deprecation, and this functionality will be
expanded. Tools will be available for inspecting code and helping identify
areas where changes will be required. PyChecker was mentioned several
times in this regard.
All in all, it was a good talk and encouraging to hear that so much effort
is going into smoothing the migration from Python 2.x.

Five Considerations in Practice - Kevlin Henney

This talk follows on from a keynote talk from 2005 titled simply Five
Considerations. This year Kevlin expanded on the ideas and presented
practical examples. Given the many heads in the room nodding regularly
in agreement, the subject matter was familiar to many people's experience
even if they hadn't codified it so well as Kevlin did.
The five considerations, an inevitable product of philosophy and beer, are:
Economy, Visibility, Spacing, Symmetry and Emergence. Each is a large
subject, but I'll somewhat arbitrarily pick out some concepts that appealed
to me particularly.

Listing 2

Ewan Milne (ewan.milne@btopenworld.com)
As I (finally!) relaxed at home on Saturday after the conference,
I felt tired, but very happy with how the whole event had turned
out. I won’t pretend that I haven’t put in a great deal of work
over the past few months, and so feel a justifiable sense of
pride in the success of the event. But conference organising is
a collaborative process: the efforts of Julie Archer in particular
are invaluable, not to mention the conference committee,
sponsors and speakers. Finally it is the delegates who provide
so much of the atmosphere which makes our conference such
a favourite event of so many top speakers.

While I may still be a little too close to the whole event to pick
out favourite sessions, a few of my favourite moments were:
the discussion on C++/CLI with Herb Sutter and panel taking
off after a shaky start which showed its late addition to the
programme, Allan Kelly’s incorporation of a sound asleep Pete
Goodliffe into his session, the continuing ability of the
conference audience to keep speakers of all levels on their
toes, and the highly appropriate final collapse into chaos of the
Family Fortunes end-note - Jez and I rehearsed it just like that,
you know.

And where else but Oxford in springtime can a leading C++
author get off the coach from Heathrow and approach the
nearest passer-by for directions, to be met with the response “I
know you - you’re Scott Meyers! Come with me, I’m heading
round to the Randolph myself...”

From the Conference Chair

the design choices made by any
language or language binding are
extremely important
22 | {cvu} | APR 2006

Visibility: Much of what developers and technical managers deal with is
non-concrete. So unlike a building project, for example, it can be very
difficult to encapsulate artefacts in some form that is mentally digestible.
This affects many aspect of the development process, including project
completion estimation and reasoning about project components.
Visibility is concerned with helping developers and technical
management to see aspects of the software and development process that
are non-concrete. Agile methods can help with this. So can concretising
implicit concepts by making them explicit. For example, if you find you
always pass day, month and year values around together, then consider
creating a Date object that concretises this implicit concept.
Economy: One aspect of this is keeping code simple, and therefore more
readable and maintainable. This point was illustrated by the following
actual real world code example:
if(enabled)
 enabled = false;
else
 enabled = true;

if(!(a == p || b == q))
 return true;
else
 return false;

if(loaded() != false)
 if(valid() != false)
 return true;
 else
 return false;
else
 return false;

Which really just does this:
 enabled = !enabled;
 return a != p && b != q;
 return loaded() && valid();

A new expression was also coined: decremental development is the art of
reducing code volume without decreasing functionality.
Symmetry: This covers many ideas. Two examples are:

Making behaviour consistent across multiple objects or domains.
e.g. Eclipse allows you to right click on a unit test and run that test,
or right click on a suite and run all the tests in the suite, or right click
of a whole project and run all the tests in the project. The
functionality is reflected symmetrically across all levels.
Putting resource deallocations at the end of the code block where
the allocation occur, rather than relying on knowledge of external
flow and putting the deallocations in other related functions.

PyPy - A Progress Report - Michael Hudson

A very interesting presentation about an area of study that is quite
complex.
PyPy is an effort to re-implement the Python compiler, bytecode
interpreter and command shell in the Python language. This is expected
to result in many benefits, including:

Coroutines.
Elimination of the global interpreter lock.
A just in time (JIT) compiler for Python.
Support for new platforms such as the JVM and the .NET
framework.

The last of these means that PyPy may one day be an alternative to Jython
and IronPython. However, PyPy is applicable to any platform whereas

Jython and IronPython are tied to the JVM and .NET frameworks
respectively.
The presentation covered an architectural overview of the project and a
status update. The architectural overview was far to complex to replicate
here, see the PyPy website if you want to know more.
Regarding the status update, there is quite a lot to report:

The infrastructure is becoming quite mature.
The Python bytecode interpreter, compiler and command shell are
all now fully implemented in RPython. (The PyPy tools only build
a subset of Python called Restricted Python or RPython. This
greatly simplifies the tools.)
There are three back ends that allow builds to C, JavaScript or
LLVM. Of these, the C back end is very interesting because it
allows RPython code to be built directly into a native binary.
Consequently, there is a completely new C implementation of
Python which is generated by the compiler tools from the RPython
source. This implementation performs slightly slower than the
original Cpython.
An immediate practical consequence is that one can write any
application in RPython and build it to a native binary that runs of the
order of 100+ times faster than running directly on the Python
interpreter.
Longer term the project is now beginning to look into a JIT compiler
for Python.

Working with C++ as if Unit Testing Mattered - Michael Feathers

Michael Feathers is the author of Working Effectively with Legacy Code.
This presentation also dealt with legacy code,
focussing on adding unit tests to legacy C++
code. Since legacy code affects many of us
this talk held much promise.
Unit testing legacy code has all the obvious
advantages and can also be very useful in

figuring out just what the code actually does.
The main body of the talk covered techniques for breaking dependencies
to enable unit tests to be added to code. Low risk is watchword as there
are no regression tests in place to ensure that the dependency breaking
process doesn't break any functionality at the same time.
Interspersed with this information were some additional handy hints. One
that springs to mind is getting the compiler to help with refactoring tasks
by deliberately introducing specially structured errors into the code, then
following up on the subsequent build errors and warnings.
In summary, this was a session full of useful, practical advice. If it was
any indication of what you can expect from Working Effectively with
Legacy Code, this book will be great for anyone working on legacy code.

C++0x, Concur and the Concurrency Revolution (Herb Sutter)

The starting point for this talk was the observation that making faster
processors is becoming difficult. Instead, we’re moving towards vastly
more parallelism with multicore processors and multiprocessor machines.
This fundamentally changes scalability strategies and is forcing us to write
concurrent applications.
Herb discussed the sort of technologies and language features that will be
required before we can hope to write concurrent applications simply and
reliably. The current technologies, threads, mutexes and semaphores are
far too low level and difficult to use (not surprising since they’re about 40
years old). In particular, thread safety is not composable. This means that
two known threadsafe pieces of code cannot be guaranteed to be
threadsafe if used together in some fashion.
We looked at several ideas that are evolving in compilers and operating
systems, focussing particularly on some work that Herb’s team has
recently been doing. The efforts described attempt to move ideas and tricks
that are currently being implemented manually into the OS and language

threadsafe pieces of code
cannot be guaranteed to be
threadsafe if used together
APR 2006 | {cvu} | 23

levels. This can be likened to the OO revolution where, for example, OO
concepts like vtables which were being manually implemented in C were
moved into the compiler in C++.
In particular, two things to look out for are transactional memory and
C++0x’s memory model which will take concurrency into account.

The Keyhole Problem (Scott Meyers)

Scott Meyers has identified a common bad practice amongst developers
which he has called the keyhole problem. He is hoping the name will catch
on and consequently reduce the incidence of the bad practice.
The keyhole problem is responsible for many of the irritations we
experience daily while using computers. It occurs when developers make
arbitrary design decisions that result in a unnecessary restrictions being
imposed on their users.
An example is web pages that pop up windows which are too small and
cannot be resized. Another is combo boxes whose drop down list is too
small. Not all instances of the keyhole problem are GUI related, but there
certainly seems to be an epidemic in the GUI space. Interestingly quite a
lot of the examples were familiar to the audience, including Visual C++’s
infamous C4786 compiler warning.
The talk was based fairly directly on a 2002 paper by Scott, which you
can find at http://www.aristeia.com/TKP/draftPaper.pdf.

Producing Better Bugs – Roger Orr

This was a semi-satirical look at software development as a bug writing
process. We looked at a variety of bugs types and the stages of
development where they tend to be produced. Always, the focus was on
the elusive “good bug” which makes it all the way through the
development process into production. All in all, instructional and a good
laugh.

Allan Kelly
Alan (allan.kelly@actix.com) made these comments on his blog:
Most of the last week was at the ACCU conference in Oxford. Although
ACCU has its roots in the C and C++ community the whole organization
has been trying to move away from this for some time. This year I really
felt we’re succeeding.
Yes I went to some C++ talks, yes a lot of people talked C++ but a lot of
other subjects were covered too. People are just as happy to talk about
Agile development, products, dynamic languages and about anything else
to do with software development. Overall I’m left with a lot of new
information and ideas, plus things to think about and understand – I’ve
got to update my mental maps.
For example, Peter Sommerlad did a session called “Only the code tells
the truth” in which he set out challenge our assumptions about what is
“good programming practice”. A few slides then a goldfish bowl
discussion that really opened up some dark corners and said “Is accepted
wisdom right?” One of Peter's questions was “Do comments help code
maintainability” – this got a lively reception. I must admit I’m tending
towards the view that comments in the code don’t.
The conference was full of interesting people presenting or just attending.
During the last hour or so I got talking to Gunter Obiltschnig of Applied
Informatics in Austria. They have one of those libraries (C++, portable
components) that sounds really useful, just I don’t have any need for it
right now. One-day maybe.

Paul Grenyer
Paul (paul@paulgrenyer.co.uk) added these thoughts on some memorable
sessions:

The keyhole problem (Scott Meyers)

The presentation that stood out the most for me was Scott Meyers’ The
Keyhole Problem. Although this non-technical talk would have been

better presented as a key note, it made me realise that there are different
ways to present things and not everything needs to be technical.
The presentation mostly consisted of examples of poorly designed GUIs
and websites where the best use of the available space was not made or
scrolls bar were missing and therefore prevented content from being read.
For example drop down boxes that hold the months of the year, but only
have room for 11 items and licence agreements with no scroll bars
preventing the licence from being read. There were a large number of
these, but Scott presented each one in a humorous way and suggested what
he would do better, sometimes including how to change the markup.
One of the later examples showed how an engineers “the user will never
want to do that” assumption almost cost someone their life due to a buffer
overrun on a log sawing machine.
This, however, was the only serious moment in an otherwise very
entertaining session. Kevlin Henney is well known for dealing with
hecklers well, Scott is certainly comparable and it would be interesting to
see them head to head. I missed Scott’s more technical presentations, so
from a purely entertainment point of view I would highly recommend
attending one of his sessions.

Threading 101 (Tim Penhey)

Tim Penhey has a big personality and, with several of the rest of us, is
normally in the thick of things at any ACCU event he attends. I spoke to
Tim following his Threading 101 presentation and was interested to find
out this was one of the first times he had presented. Threading 101 was
very well thought out, pitched at a level everyone could understand and
Tim transferred his big personality extremely well.
Most people in the room, including myself, had a reasonable amount of
threading experience and, I suspect, were there to pick up any of the basics
they’d missed up to this point. I for one finally understand what a
semaphore is for and how one works. This was something the university
professors failed to get through to me, but that’s another long story.
Tim evidently knew his stuff inside out from the questions he was fielding
successfully. I especially enjoyed his “this slide is intentionally left blank”
slide at about the point in the presentation where brain overload is reached
and wished I’d have thought of it for my presentation. It was too late of
course by then. I was also glad to take him up on his suggestion of standing
up and turning round at this point.
My only regret is that I suspect we’ll loose Tim to the Python track next
year. It will certainly be their gain and our loss.

Gail Ollis
Gail (gail.ollis@roke.co.uk) was amused by the message displayed by the
screen at the bus stop just outside the Randolph on Tuesday morning:
Error: Unmatched { and } (what exquisite timing!), and
concludes our round-up with a short quiz to see how well conference
attendees were paying attention...

Q: Is SCRUM:

(a) An agile methodology?
(b) What forms around the food & drink during breaks?
(c) What happens when a bus arrives at an Oxford bus stop?

A All three

Q: Are comments in code:

(a) The devil’s work?
(b) A Good Thing?
(c) A necessary evil?

A Don’t know. The people who attended Peter Sommerlad’s ‘Only The
Code Tells the Truth’ are still arguing about it.
24 | {cvu} | APR 2006

ACCU Conference 2006: Retrospective (continued)

Q: Is Von Neumann architecture:

(a) Dead?
(b) Poorly?
(c) Alive and well?

A Herb Sutter’s diagnosis suggests we should start writing the
obituary!

Q: Is Python:

(a) Indented?
(b) Invented?
(c) Indispensible?

A According to his much misread T-shirt, it’s Programming as Guido
indented it.

Q: Is SOA:

(a) Hope?
(b) Hip?
(c) Hype?

A According to Nico Josuttis, (c) - fuelled by the fact that it uses the
right vocabulary to press management’s buttons.

Q: How many web application frameworks does Python need?

(a) One?
(b) More than one?
(c) Lots?

A A look at the schedule suggests it’s (c)!

Q: Is good software:

(a) Simple?

(b) Simplistic?
(c) Complex?

A Read what Giovanni Asproni had to say. He crystallised this
BRILLIANTLY. From a {cvu} point of view, it’s worth noting that
he cited writing as a good means of learning for the writer as you
have to marshall your thoughts. Ironically, this presentation clashed
with the panel discussion on ‘writing for ACCU’ so no-one got to
hear both. (If anyone can offer a summary of that panel, I’d be
pleased to see it published).

Q: What fosters better communication:

(a) Email?
(b) Telling people to communicate?
(c) Having a supply of sweeties on your desk?

A In Tuesday’s tutorial, Nico & Jutta may well have increased UK
sales of gummy bear sweets! Apparently people are more likely to
drop by & talk to you if there are sweeties on your desk!

That’s all, folks
Once again, all conference attendees owe a debt of gratitude to the
conference organisers and committee, who clearly worked very hard to
make an excellent event. Plans are already under way for next year’s event,
and if you’ve never been to an ACCU conference, hopefully this article
will have given you a taste of what you’re missing. See you in 2007!

Endnotes
1. Unfortunately, we’ll have to wait for another conference to see Herb

and Lois arm-wrestle!
2. Apparently the ACCU conference is well-known amongst speakers

for the quality of its hecklers. Sorry, that should read: the quality of
the delegates!
Francis’ Scribbles
Francis Glassborow sets another cryptic puzzle.

Education
nyone who took the trouble to check the website for my book, ‘You
Can Do It!’ would know that I have never taught in Further
Education (roughly College level in the US). I think that taking time

to do a little basic research is important before speculating about a writer
being influenced by the popular media.
I do not think that readers should agree with me but I do think they should
take a little more time thinking about their responses than seems to have
been the case for the writer in the last issue decrying my previous column.
Doubly so if they choose to remain anonymous.
In my opinion, anyone who believes that all is well with mathematics
teaching is being complacent. One of the consequences of the level of
maths teaching that is currently considered adequate is revealed if you
look at what is happening in the Physics curriculum. If you do not
understand what I am getting at, it is time that you did a little research.
Please note that I am not having a go at teachers, but at a system that is
preventing good teachers from preparing the next generation for the
technical world they will live in.
There is a fundamental problem with pervasive assessment coupled with
a requirement for objective justification for such; we finish by only

assessing those things that can be assessed in a provably objective way.
However, many attributes do not submit to objective assessment. That
does not make them undesirable. How do you measure kindness?
Thoughtfulness? Consideration? Tact? and so on.

You can program in C++
Yes of course you can, but that is the title of my latest book which will be
on general sale this side of the Atlantic by the time you get this issue of
C Vu. It will be released in the US shortly after you get this issue. It is
already being translated into French and Slovakian. In case you are
interested, I received more royalties for the French version of ‘You Can
Do It!’ last year than I did for the English version.
This book is written for the reader who can already program in some
language and wants to learn the basics of C++. I try to identify the places

A

FRANCIS GLASSBOROW
Francis is a freelance computer consultant and long-term
member of BSI language panels for C, C++, Java and C#.
He is the author of ‘You can do it!’, an introduction to
programming for novices. Contact Francis at
francis@ronbinton.demon.co.uk
APR 2006 | {cvu} | 25

where the reader maybe surprised because of the differences between C++
and the previous programming experience.
For example, those coming from a functional programming background
are likely to be surprised by the degree to which C++ code relies on
assignment. That will just be a surprise but one they will generally
overcome. More subtle is that their instinct will be to use recursion for
iteration. That will work in C++ but C++ compilers are not generally
optimised for recursion. Rather more important is that C++ programmers
will not understand source code that uses recursion for iteration.
That is a special case of a more general problem; programmers who do
not write idiomatic code make their source code much harder to maintain
because the code will be harder to follow.

Symbian C++
I am interested in any readers who have experience in programming in
C++ for the Symbian OS. I have an ulterior motive because Symbian have
asked me to write an introductory programming book using their OS and
C++.
At the moment it is giving me some concern because it seems to me that
Symbian C++ has a strong local idiomatic style all the way down to special
naming conventions (which seem to conflict with those used by
Microsoft). They also seem to be relying on a very old C++ style and I
wonder just how inherent that style is. Some of it is the result of the original
being developed for use in a very constrained environment. However, my
feeling is that some of it is a result of those writing the guidelines not
understanding how C++ was going to change between 1995 and 2005.
I would be grateful for readers comments and possibly guidance. In
particular I would very much like to contact anyone who is using Carbide
C++.

Book reviews
I have just finished sorting out books that have been waiting more than 18
months for a reviewer. As I packed them away ready to be donated to
Oxfam, I was struck by the number of apparently good books that were
among them.
Please check the books that are currently available for review because I
would not want to be ‘remaindering’ another batch of good books on
November 1st.

Problem 26
#include <iostream>
int main() {
 int i(0);
 std::cout << "Please type in a number "
 "between 0 and 255: ";
 std::cin >> i;
 std::cout << i * i;
}

Please identify all the possible problems with the above program (both
compile time and execution time).

Problem 25 commentary
Here is my problem (assumes at least Oracle 9i):

 INSERT INTO my_table VALUES (
 (SELECT my_sequence.NEXTVAL FROM DUAL), ...);

The intent is to insert a non-repeating auto-generated value into a primary
key field of a table. The problem is that this method is simply naïve.

Yesterday was 1st May and my email box has remained empty so I guess
that the SQL experts in ACCU considered the above problem was too
simple for their attention. As no one else responded, I think they were
mistaken. Here is William’s commentary which he supplied with the
problem (Thanks William. How about contributions from other readers.)
It is a problem for the following reasons:

1. It does not require that the sequence by used every time something
is entered into the table

2. It does not assure that one will not enter a previously used value
(although, presumably, a duplicate key error would be raised by
virtue of the primary key)

3. It does not assure that the primary key value cannot, at some later
time, be changed inducing any number of errors (not the least of
which is the possibility that the newly updated key would be some
future value of the sequence) .

Resolution is also not clear. Normally, this problem will be resolved with
the creation of an insert trigger:

 CREATE TRIGGER bi_my_table
 BEFORE INSERT
 ON my_table
 FOR EACH ROW
 BEGIN
 SELECT my_sequence.NEXTVAL
 INTO :new.my_primary_key
 FROM DUAL;
 END;
 /

While this problem addresses and properly resolves (1) and (2), it fails to
address (3) which must be handled by an update trigger:

CREATE TRIGGER bu_my_table
BEFORE UPDATE
ON my_table
FOR EACH ROW
BEGIN
 :new.my_primary_key := :old.my_primary_key;
END;
/

Cryptic clues for numbers

Last issue's clue
‘All for one’, no, ‘Musketeers for musketeers’. You will need some powerful
luck to get this one.

This time I had only two responses. Unfortunately the first one had
misunderstood my clue and the second produced an alternative clue that
had me baffled for almost a day even though I knew what the answer was.
Clues must be such that when the solver has the answer they can see it is
correct.
In the above clue the first sentence is supposed to suggest 343 (3
musketeers + the sound of ‘for’). The second sentence is intended to
provide confirmation – the cube (a power) of 7 (a lucky number) is 343.

This issue's clue

Jeans? Maybe. ISO Labour Day? Definitely in Japan. (3 digits)
26 | {cvu} | APR 2006

APR 2006 | {cvu} | 27

Standards Report
Lois Goldthwaite reports on the international standards

committee meeting held in Berlin during April.

he mood was all business at the April meeting of
the international C++ standard committee
(WG21) in Berlin. All of the subcommittees

buckled down to the serious work of refining the
specification of new features to be included in C++0x.
The current working draft can be found at http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2009.pdf.
With the large UK delegation, we were able to have a representative in
each subgroup.
Among the new features intended to make C++ programming more
pleasant, and now included in the current draft, are a new use for the auto
keyword, to allow the compiler to deduce the type of a variable from its
initialiser:

int foo();
auto x1 = foo(); // x1 : int
const auto& x2 = foo(); // x2 : const int&

float& bar();
auto y1 = bar(); // y1 : float
const auto& y2 = bar(); // y2 : const float&

This should greatly simplify some variable declarations for uses of the
standard library:

std::map<std::string, std::string> mymap;
auto it = m.begin();
 // it: std::map<std::string,
 // std::string>::iterator

Code using auto with its current meaning – “this variable has automatic
storage duration, meaning it lives on the stack” – would still compile as
now, but such usage is extremely rare in real-life code, because auto is
nearly always completely redundant.
Another change would eliminate the compiler error which now results
from a forgotten space character in a nested template parameter:
std::list<std::vector<int>> mylist
 // look ma, no space!

This is more in the category of eliminating a nuisance than enhancing the
power of C++, but many programmers regard the required space as an
aggravating wart in the syntax.
Another new feature would allow a constructor for a class object to invoke
a sibling constructor, as is possible in Java. The aim is to prevent code
duplication and possible errors of inconsistency. The original proposal to
add this feature came from Francis Glassborow of the UK delegation.
Two other UK papers, these from Paul Bristow, were adopted into the
library section of the draft standard, to facilitate handling of floating
point numbers:

The new digits10 member of
numeric_limits<FloatingPointType> >
shows the number of decimal digits guaranteed to be correct, after
rounding.
A second proposal adds a new manipulator to iostreams called
defaultfloat, which would cancel previously-specified fixed-
or scientific-format manipulators.

With the exception of mathematical special functions, all of the features
of the first Technical Report on Library Extensions were adopted
wholesale into the working paper, and will be moved into namespace std.
A second Library Extensions Technical Report, targeting application
programmers rather than library authors, is in preparation. One of its
features would provide standard interfaces to file systems and directories,
for greater code portability.
More revolutionary changes to C++, such as the addition of ‘concepts’
constraining template parameters, and a full-fledged lambda function
capability (the UK’s Valentin Samko is one of the authors sponsoring
this), are in the pipeline but not yet fully specified in formal standardese
language.
While in Berlin, the UK delegation had an opportunity to discuss with
other participants our concerns about the Ecma C++/CLI document now
undergoing a fast-track ballot within ISO (and discussed at length in
previous standards columns here). There was general agreement that these
concerns are well-founded.

T

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

the UK delegation had an opportunity to
discuss with other participants our concerns

about the Ecma C++/CLI document

If you would like to exercise some
influence on the evolution of C++,
please write to:

standards@accu.org

for information on joining the UK
panel.

Student Code Critique Competition
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members. The title reflects the fact that the code used is
normally provided by a student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended
to designate it as an item where reader interaction is particularly
important. Readers’ comments and criticisms of published entries
are always welcome, as are possible samples.

Before we start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/).This is aimed to people living overseas
who get the magazine much later than members in the UK and Europe.

Student Code Critique 39 entries
The student wrote: “I wanted to learn how to use STL in my own code.I’ve
got a data structure that currently has ‘start()’ and ‘size()’ methods
returning the start address and the size of some internal data structure.So
I decided to try and write it an iterator so I can use the standard algorithms.
“I’m getting a bit stuck – so I’ve simplified it down as much as I dare but
the test code still fails to compile if I uncomment either of the lines marked
‘ERR:’.Please help me get my iterator class working.
“The real class is much bigger than ‘tester’ and doesn’t use ‘int’ but does
have the start and size methods.

#include <algorithm>

template< typename T >
class iterator
{

public:
 // construction
 iterator(T* p) : mPtr(p) {}
 iterator& operator=(const iterator& rhs)
 { mPtr = rhs.mPtr; return *this; }

 // Comparison
 bool operator!=(const iterator& rhs)
 { return mPtr != rhs.mPtr; } const

 // iterator operations
 T& operator*() { return *mPtr; }
 iterator operator++() { return ++mPtr; }
 iterator operator++(int) { return mPtr++; }

private:
 T* mPtr;
};

class tester
{
public:
 tester()
 { for (int i = 0; i < size();)
 data[i++] = i; }

 int * start() { return data; }
 int size() { return thesize; }
 iterator<int> begin()
 { return iterator<int>(data); }
 iterator<int> end()
 { return iterator<int>(data + thesize); }

private:
 static const int thesize = 10;
 int data[thesize];
};

#include <iostream>

void print(const int & i)
{
 std::cout << i << std::endl;
}
void incr(int & i)
{
 i++;
}

int main()
{
 tester t;
// ERR: std::for_each(t.begin, t.end, incr);

 iterator<int> begin = t.start();
 iterator<int> end = t.start() + t.size();

 begin++;

 std::for_each(begin, end, print);
// ERR: std::for_each(begin, end, incr);
}

From Balog Pál
pasa@lib.hu

A fast scan of the iterator class reveals plenty of suspicious things:
No default ctor
A non-explicit converting ctor
operator= present without copy ctor and dtor
operator != present without operator ==
operator* present without operator->
strange signature on preincrement
odd implementation of postincrement

But none of those should cause a compilation error in main, so let’s nail
that down first.

ROGER ORR
Roger Orr has been programming for 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf. He joined ACCU in 1999 and the BSI
C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

P

28 | {cvu} | APR 2006

Uncommenting the last line we indeed get error: the compiler can’t
convert const int to int& stopping in for_each, line _Op(*_F).
Strange. To corner the problem let’s use incr(*begin) instead of
for_each. Yeah, same error. While print(*begin) compiles fine.
Our operator* looks fine, is it the one actually used by the compiler?
I put a breakpoint on print(*begin) and single-step from there.
Yeah, there we’re in our operator*. That returns T&. But wait, what’s
that hanging const 2 lines above?
Very funny, Scotty. Now beam down my clothes.
Well, the const in operator != got misplaced by one line, and the
compiler correctly reads operator* to return const T&. Thus the
issued error makes sense after all...
Moving the const one line up incr(*begin) compiles fine, and so
does the original for_each.
Now let’s see the first. It doesn’t compile, saying:
“error C2664: 'for_each' : cannot convert parameter
1 from 'class iterator<int> (void)' to 'class
iterator<int> (__thiscall *)(void)' None of the
functions with this name in scope match the target
type”
Yeah, sure. So many words, so little clue. Bring up deja vu too, if we ever
used templated code....
The actual problem is a simple typo: we forgot the () after begin and
end. So the compiler uses the function itself instead of the result of calling
the function. And we can feel lucky that we get a compilation error
sometime somewhere downstream, in other cases the code could just
compile and do some nonsense. I got burnt by such missing () several
times, especially with predicate functions used in if(). Interesting, that
in some cases there is a warning but not for others:

if(vec.empty) ... // warning C4551: function
 // call missing argument list
if(0 == vec.size) . // no warning!

So we have to look out even if we get some compiler feedback, a function
name without () can convert to a pointer to function and that pointer can
fit into the expression fooling the compiler that can’t read our minds. Back
to the point, we insert the missing parens and the code example finally
compiles. Time to get back to that iterator class.
I never wrote an iterator before but if I needed one my first visit is to the
standard and look up the requirements. That’s section 24.1. By the content
I guess the mark was a forward iterator, so we look at table 74.
Lines 1 and 2 requires the iterator be default constructible, so we’ll need
such a ctor.
Lines 3, 4 and 7 requires to be copy-constructible and assignable. Our state
has just one non-owning pointer, so the auto-generated stuff will be
alright. We better remove the hand-written operator= to avoid redundancy
and confusion.
Lines 5 and 6 ask for operators == and !=, so we’ll need that ==.
Line 8: operator* looks right. (Really-really!)
Line 9: operator->: we need to add one.
Line 10: preincrement shall return T&
Line 11: postincrement: an implementation is present that is different to
ours in shape. Does it have the same semantics? I think yes, but have to
think hard.
Line 12: *r++ returns T& looks OK.
Reading the standard further we discover iterator_traits will rely
on some typedefs inside the iterator class, and that we have some
framework ready to help us define our own iterators. There’s a class
std::iterator<> supposed to be used as a base class that will
p ro v i d e t h ose typedef s . Then we can l ea ve
iterator_traits<our_iterator> alone. The name also suggest

we better pick up another one for our special iterator. Here I’ll use
arr_iterator, the author who knows the actual purpose shall pick a
better name.
The only open issue of the front list is the ctor taking a raw pointer and
its being implicit. The usage in tester suggests that construction from
pointer is intended, but explicit is probably OK. The general guideline is
to make all converting ctors explicit unless there’s a clear documented
purpose doing otherwise.
Having all that I came up with this version:

template< typename T >
class arr_iterator : public
std::iterator<std::forward_iterator_tag, T>
{
public:
 typedef arr_iterator tSelf;
// my usual typedef

// construction
 arr_iterator() : mPtr(0) {}
 explicit arr_iterator(T* p) : mPtr(p) {}
// Comparison
 bool operator==(const tSelf& rhs) const
 { return mPtr == rhs.mPtr; }
 bool operator!=(const tSelf& rhs) const
 { return !(*this == rhs); }
// iterator operations
// could use reference_type and pointer_type as
// return
 T& operator*() const { return *mPtr; }
 T* operator->() const { return mPtr; }
 tSelf & operator++() { ++mPtr; return *this;
 }
 tSelf operator++(int) { tSelf tmp(*this);
 ++(*this); return tmp; }
private:
 T* mPtr;
};

It almost compiles with the provided test framework: inside main the
copy-construction of variables begin and end does not fit with explicit, it
shall be converted to direct-initialisation; or if such use is actually intended
explicit shall go.

From Michael Brunton-Spall
mib@mibgames.co.uk

At first glace most of these issues seem to be syntactical issues, which I’ll
deal with first. The first compile fails because of the std::for_each.
I look and realise that your first issue is that things like std::for_each
normally require an iterator, not a pointer to a function that returns an
iterator. I see you looking at me blankly so I’ll show you what I mean.
You wrote this std::for_each(t.begin, t.end, print);
you actually meant to write the following:

std::for_each(t.begin(), t.end(), print);

That’s quite a common mistake. I can only assume here that you weren’t
trying to do anything funny or special, and that is what you really meant.
I also notice that your call to incr in the for each is also missing the
parenthesis. So I add those and uncomment the first line marked ERR. Now
I try to recompile your program and I get a different error, it looks like this :
/usr/lib/gcc/i486-linux-gnu/4.0.3/../../../../
include/c++/4.0.3/bits/stl_algo.h: In function
'_Function std::for_each(_InputIterator,
_InputIterator, _Function) [with _InputIterator
= iterator<int>, _Function = void (*)(int&)]'
num39.cpp:81: instantiated from here
APR 2006 | {cvu} | 29

/usr/lib/gcc/i486-linux-gnu/4.0.3/../../../../
include/c++/4.0.3/bits/stl_algo.h:158: error:
invalid initialization of reference of type
'int&' from expression of type 'const int'

Now this looks complicated, but it’s actually telling you exactly what the
problem is. Your print function takes a const int&, and incr takes
an int&. It looks like the reference being returned by the iterator is a
const value, which works fine for print, but won’t work for incr. When
I realised that the iterator had an issue, I looked at the iterator
operator*, which you define as // iterator operations:

T& operator*()
{
 return *mPtr;
}

This looks fine, however looking in that area of code, I noticed the hanging
const at the end of the previous function. Ah ha, this looks like you
meant to say that operator!= is a const function but weren’t sure
where to put the const. The cost for a const function goes after the
declaration but before the definition. Which is to say before the bit in the
parenthesis {}. The compiler, confused by your hanging const is
attaching it to the next block, which is the return value for iterator changing
it to const T& from T&. Removing the const and putting it in the
correct place seems to fix your code, and does what I believe to be the
correct thing.
My final main looks like this:

int main()
{
 tester t;
 std::for_each(t.begin(), t.end(), incr);
 iterator<int> begin = t.start();
 iterator<int> end = t.start() + t.size();
 begin++;
 std::for_each(t.begin(), t.end(), print);
 std::for_each(begin, end, incr);
}

and the only change further up is to change the iterator operator!=
definition like this...

bool operator!=(const iterator& rhs) const {
 return mPtr != rhs.mPtr;
}
// iterator operations
T& operator*()
{
 return *mPtr;
}

Now on a stylistic point of view, in The C++ Standard Library by Nicolai
Josuttis, the recommendation is that you should write an iterator by
inheriting from the std::iterator template, passing in the iterator
type tag and type as necessary.
The reason for doing this is that to create an STL compliant iterator, you
need to provide a number of standard type definitions. Instead of doing
these by hand, inheriting from std::iterator will provide these for
you based on the template parameters.

From Nevin Liber
nevin@eviloverlord.com

Why create an iterator class at all? You already have a perfectly good
iterator: int*. Pointers are iterators, and can be used in the STL

algorithms (some implementations of std::vector use pointers as the
iterator type, for example.) Unless you need to either restrict or extend
the functionality, just use a pointer.
It is a lot of work to create an iterator that matches the STL requirements.
It is not for the faint of heart.
Heck, most of tester can be replaced with a std::vector<int>
or, better yet (if you have access to it), a boost::array<int, 10>
(or a std::tr1::array<int, 10>, which is essentially the same
thing).
There is a bug in tester::tester(): data[i++] == i has
undefined behaviour, since you don’t know when the increment of i will
happen.
Taking all this into account, using std::vector:

#include <vector>
class vtester
{
 typedef std::vector<int> container_type;
 container_type data;
public:
 typedef container_type::iterator iterator;
 typedef container_type::pointer pointer;
 typedef container_type::size_type size_type;
 typedef container_type::value_type value_type;
 vtester() { for (value_type i = 0; 10 != i;
 ++i) data.push_back(i); }
 pointer start() { return &data[0]; }
 size_type size() const {return data.size();}
 iterator begin() { return data.begin(); }
 iterator end() { return data.end(); }
};

To use a boost::array instead, all that needs to change is the
container_type and the constructor:

#include <boost/array.hpp>
class atester
{
 typedef boost::array<int, 10> container_type;
 // rest as above, changing vtester to atester

Now, on to the issues in main():
std::for_each(t.begin, t.end, incr);

There are two problems with this The first is that begin and end are
member functions of tester, and need to be called with parentheses.

std::for_each(t.begin(), t.end(), incr);

The other issue is because a temporary (caused by dereferencing the
iterator deep in std::for_each) cannot be bound to a non-const
reference, yet incr expects a non-const reference. If you substitute
print for incr, it works fine. No easy fix; an ugly one is with a
const_cast, as in:
void incr(const int& i) {
 ++const_cast<int&>(i); }

but I wouldn’t recommend it.

iterator<int> begin = t.start();
iterator<int> end = t.start() + t.size();

t.start() returns an int*. If we use your class, int* is implicitly
convertible to an iterator<int> (via the constructor), in general that
conversion does not exist for iterators. A possible fix:
30 | {cvu} | APR 2006

int* begin = t.start();
int* end = t.start() + t.size();
begin++;

Generally, preincrement is preferred to postincrement, as it is never slower
and usually faster (since it doesn’t have to produce a temporary).
++begin;

Looking back at your iterator class, iterator operator++() should
be really be declared as

iterator& operator++() {++mPtr; return *this;}

as those are the expected semantics.
If you really want to make your iterator class compliant with the STL, it
would end up looking something like:

template<typename T>
class iterator : public
std::iterator<std::input_iterator_tag, T, int,
 T*, T&>
{
public:
 typedef std::input_iterator_tag
iterator_category;
 typedef T value_type;
 typedef int difference_type;
 typedef T* pointer;
 typedef T& reference;
 iterator(T* p) : mPtr(p) {}
 bool operator==(const iterator& rhs) const {
 return mPtr == rhs.mPtr; }
 bool operator!=(const iterator& rhs) const {
 return !operator==(rhs); }
 iterator& operator++() { ++mPtr; return
 *this; }
 iterator operator++(int) { iterator
 tmp(*this); operator++(); return tmp; }
 T& operator*() const { return *mPtr; }
private:
 T* mPtr;
};

From Seyed H. HAERI (Hossein)
shhaeri@math.sharif.edu

Scanning the graphical layout, I would say, yeap, good horizontal
indenting. I wonder if the lack of vertical indenting is due to shortage in
(C Vu) space…
Considering the error lines the programmer has reported, I’d say that one
of them was trivial to me right at the first glance, and for the other, I would
like to share my experience toward demystifying it with the others. As
soon as I do this, I will come to the guidelines I may want to offer the
student.
The first ERR line is:
std::for_each(t.begin, t.end, incr);

The trivial mistake I spoke about is here. A common mistake I always hint
my students on: begin and end are both member functions, and not data
members. This means that they should be called upon use. Like this:
std::for_each(t.begin(), t.end(), incr);

The second ERR line was not this easy to me to decipher. I couldn’t spot
that with merely reading the code. However, at the very beginning even,
the following line seemed quite odd to me:
bool operator!=(const iterator& rhs)
{ return mPtr != rhs.mPtr; } const

I first thought this should be an error. However, when I typed the program
to make sure, I didn’t get any error messages on compilation. So, I started
digging up the Standard to see if I’m making a mistake, and – oddly enough
– it is that the Standard says this is also a correct way of const-qualifying
member functions. No surprise that I couldn’t find any such thing. [Roger:
correct – it isn’t there]
Then, I started to uncomment the second ERR line. I ended up with this
error message (GGC 3.3.1):

In function ‘_Function
std::for_each(_InputIter, _InputIter,
_Function) [with _InputIter= iterator<int>,
_Function = void (*)(int&)]’: instantiated
from here could not convert
‘(&__first)->iterator<T>::operator*() [with T
= int]()' to `int&’

This was really odd to me because as you can see
T& operator*() { return *mPtr; }

defines its return type to T& which, given that we’ve instantiated
iterator<> with int, means int&. I then noted that the only
difference between print and incr is that the former takes a reference
const. So, to make sure that the problem is on the return type instead of
the member function itself, I tried:
int& ir = *begin;

Odder even, I got this:
69: error: could not convert ‘(&begin)-
>iterator<T>::operator*() [with T = int]()’ to
‘int&’
In function ‘_Function
std::for_each(_InputIter, _InputIter,
_Function) [with _InputIter = iterator<int>,
_Function = void (*)(int&)]’:
64: instantiated from here could not convert
‘(&__first)->iterator<T>::operator*() [with T
= int]()’ to ‘int&’

I wondered then that: “if this stupid compiler is right, and int& is not the
type of what operator* returns, then what that type is?” To understand
that, I tried forcing the compiler to call the operator* with the syntax
I want. Here it is:

typedef int& (iterator<int>::*Op) ();
Op op = &iterator<int>::operator*;
int& ir = begin.op();

And, got:
70: error: cannot convert ‘const
int&(iterator<int>::*)()’ to
‘int&(iterator<int>::*)()’ in initialization

Therefore, I realised that the compiler was assuming the return type of the
only operator* was const int& as opposed to int&. Trying to find
out why, I first guessed that this may be inheritance of iterator<>.
APR 2006 | {cvu} | 31

iterator<> however doesn’t inherit from anything. So, I then
commented the only operator* I could see. I ended up seeing that the
compiler couldn’t find any other instance. Afterwards, I wondered what
if I disambiguate things? And, it actually worked! I tried adding the
following operator overloading (which is the only rational operator*
one may choose for returning a const):
const T& operator*() const { return *mPtr; }

And, the error message I received then was:
70: error: no matches converting function
‘operator*’ to type ‘int&(class
iterator<int>::*)()’
22: error: candidates are: const T&
iterator<T>::operator*() [with T = int]
23: error: const T&
iterator<T>::operator*() const [with T = int]

I soon realised that the only thing which differs across the two overloads
is that the latter is qualified with const. Neglecting that, one would
observe that both the versions return const T&’s. So, I started double-
checking the return type of the first overload. It was right here that I
understood that the only thing which was causing me this bother was that
nasty const after the definition of operator !=! C++ does not care
about the white spaces, OK? So, what would it do with that const? Yes,
it would patch that to its next statement which is T& operator*().
What this would mean is that it would consider the return type of
operator* to be const T&, and not T&. Yuck! This is the whole
senseless bother!
Back to the critique, and scanning top-down, I first see that the student
has placed the assignment operator in the constructors. Maybe this has
been mistakenly considering this the copy assignment constructor, and
trying to implement The Rule of Three. However, I can’t see any copy
constructors, and this means violation of the above rule. And, by the way,
the first constructor seems to be better to make explicit. (Note that this
depends on the application, and can’t be decreed on with our current
information.) So, one negative mark in appropriate commenting.
Then I see that for iterator<> , the s tudent has offered
operator !=, but hasn’t done that for it counterpart – operator==.
Not good enough. The same holds for operator* vs operator->. If
the programmer has admittedly deleted the above (missed) member
functions to shorten the demonstration, then the student is perhaps smart
enough (in C++) to realise that the implementation of std::for_each
may have used either of the prefix or postfix versions of operator++.
I will have a little surprise if this programmer who doesn’t spot the mistake
in the first ERR line, would know enough about STL to decide on the latter
upon their knowledge that std::for_each needs InputIterators, and
InputIterators are needed to provide both versions.
Next, I come to tester. For the case of the for loop in the constructor,
stylistically, I would like to recommend him to write i != size()
instead of what has been written. This will enable the student to avoid a
common trap whilst looping using iterators. Changing the incrementing
of the loop to prefix, not only will save a temporary, but also will cause
the loop to read more clearly.
As I reach to start(), I can’t understand why the member function has
been written. I don’t find any acceptable reason, yet I find several reasons
why this is a bad decision. Firstly, all the STL containers have begin(),
but none has start(). So, caring consistency only, I would suggest to
remove that. This is not the only reason I suggest it. The way to use
start()is no different from how one could have been using begin().
So, secondly, there is no point in retaining that. Thirdly, he/she is
providing iterator<> in resemblance to the Standard. One reason why
the Standard provides iterators is to keep the user away from the internal
type really used for the storage of the containers. Yet, start() is
returning something of the internal “unguarded” type.

Finally, I would recommend changing the two remained postfix
operator++’s to prefix because there semantically is no difference in
either case.

From Simon Sebright
simon.sebright@ubs.com

I sat down to continue reading my C Vu and read some of the answers to
the previous competition. I feel, like Balog Pal that the format is difficult.
My personal take is that there is no point going into the infinite details of
“correcting” the student’s code if the design is like mud. I suppose the
question is what approach will most benefit the student, and that depends
on the student, and their relationship with the teacher. So, this critique will
firstly address the student’s specific question, then go on to take a step
back and work out what is actually required here.
So, why won’t this compile:
std::for_each(begin, end, incr);

when this does:
std::for_each(begin, end, print);

So what is the difference? The difference is that the functions incr()
and print() have different signatures, with incr() taking a non-
const reference, print() a const reference. According to my
current source of documentation (MSDN Jan 06), std::for_each()
expects as its third argument a function/functor, and “This function does
not modify any elements in the sequence”, i.e. it takes its parameter as a
const reference.
What does this mean? It means that we can’t use for_each() to change
the elements in the container. incr() was trying to modify the contents,
namely by incrementing each integer in the array. Why this is not possible
might seem rather odd. I think it is to do with the fact that changing the
contents of a container may invalidate certain properties of it. For
example, if it is a sorted container, then the resultant sorting cannot be
guaranteed. Such are the issues when dealing in very generic terms.
Personally, I feel it should be possible to use an algorithm to modify a
container’s contents. In fact, another part of my documentation says “The
algorithm for_each is very flexible, allowing the modification of each
element within a range in different, user-specified ways”. Rather
confusing!
Let’s leave that one for now by saying that there probably is a boost
algorithm, or we could write our own to make changes to elements.
So, on to the more important part, I think. What should the student have
done to get his class to work with stl? Firstly, stl is a large library, so what
does s/he mean? It looks as though, very diligently, they noticed that the
class was acting like a container. They also know that containers are used
in conjunction with iterators, so that they can be exposed to common
algorithms. Great!
But, our student seems to have dived in and just decided to write an
iterator. Without thinking how it will be used in proper detail.
I’m currently reading Test-Driven Development, so thought I could write
the rest in that style, that being to first define a small test, see it fail and
add some code to get it to pass. Refactor if appropriate, and if the test
passes, do it all again. But I won’t use an actual test harness, rather rely
on the code being compilable and watching the console output.
Right, the student wants to be able to use algorithms with the container
class. Specifically for_each(). As Kent would say, that’s a big leap.
Let’s start with the simplest step on the way. for_each() is going to
need two inputs from the container, so here is one possibility:

Main:
Tester t;
t.begin();
t.end();
32 | {cvu} | APR 2006

Tester (public):
 void begin();
 void end();

So, we have compiling code. A good start, better than our student, except
that it doesn’t do anything yet. The next test case has got me a little
stumped. We cannot pass void to for_each(), so we have to make a
decision about what to return pretty quickly. Here, we will follow the other
containers’ examples. That is that the container contains a nested type,
iterator. So, the test code becomes:
Main:
 Tester::iterator start = t.begin();
 Tester::iterator end = t.end();

To get that to build, we have to provide an iterator type in Tester. We
can either typedef this, or create a new type. We’ll go with the latter
for now, as we can add only what is strictly necessary to it as we go, and
refactor later.
Tester (public):
 class iterator {};
 iterator begin() { return iterator(); }
 iterator end() { return iterator(); }

Now, we have to take a bit more of a leap, and put in the for_each()
call in main:
 std::for_each(begin, end, func);

This now requires a func:
Global:
 void func(const int & i) {}

I got rid of the compiler errors by adding to the nested iterator type, so
that Tester::iterator becomes:
class iterator
{
public:
 int operator*() { return 1; }
 bool operator != (const iterator& other)
 const { return false; }
 iterator operator++ () { return *this; }
};

This compiles, but obviously does nothing yet. Let’s make func()
output something so that we can see what is going on, now that we are
going to proceed in the absence of a test harness.
 void func(const int& i) {
 std::cout << i << std::endl; }

Running this now reveals nothing, as the algorithm terminates
immediately due to the implementation of operator !=();
OK, what next? Well, my operator*() returns an int, the type
referenced in the container, so we’ll have to add a bit more to the
implementations, to intify it. Tester contains an array of ints, so
we’ll make the iterator iterate over such an array, which is what the student
did in the iterator class. Here is the minimum we need (for my stl
implementation):

class iterator
{
public:
 iterator(int* p) : m_p(p) {}
 int operator*() { return *m_p; }
 bool operator != (const iterator& other)
 const { return m_p != other.m_p; }
 iterator& operator++ () { ++m_p;
 return *this; }
private:
 int* m_p;
};

The Tester functions now become:
 iterator begin() { return iterator(data); }
 iterator end() {
 return iterator(data + size);
 }

Running this in a console window, we see the printout of the initialised
array of integers.
Hooray! We have finished. Or have we? Our student’s iterator class is
more rich that mine. First, it’s a template class. Why? So it can iterator
over an array of any type. I have made mine a nested type of Tester,
so there is no point in it exposing more than Tester needs. If Tester
becomes a templated type, then so should its iterator. That is for another
day.
Second, the student has got more functions in their iterator. They seem to
be sensible, and I am sure that trying my example on other algorithms
would produce a need for some of them.
But, if you look at the iterator, its member functions do nothing other than
delegate to the m_p pointer member. So, we can replace
Tester::iterator with:

Tester:
 typedef int* iterator;

The code compiles and gives the same output.
Now, how about that increment function? Well, we could use something
like std::transform():
 int incr(const int& i) { return i + 1; }

and we can add to main():
 std::transform(start, end, start, incr);
 std::for_each(start, end, func);

It is slightly contrived that we use the same range for the source and
destination, but when using a library, you have to roll with what it
provides. Running this gives us a second output of incremented integers.
The finished code is:

#include <algorithm>
#include <iostream>

class Tester
{

public:
 typedef int* iterator;
 iterator begin() { return iterator(data); }
 iterator end() { return iterator(
 data + size); }
 Tester()
 {
 for (int i = 0; i < size; ++i)
 data[i] = i + 1;
 }

private:
 static const int size = 10;
 int data[size];
};

void func(const int& i) {
 std::cout << i << std::endl; }
int incr(const int& i) { return i + 1; }
APR 2006 | {cvu} | 33

int _tmain(int argc, _TCHAR* argv[])
{
 Tester t;
 Tester::iterator start = t.begin();
 Tester::iterator end = t.end();
 std::for_each(start, end, func);
 std::transform(start, end, start, incr);
 std::for_each(start, end, func);
 return 0;
}

Commentary
At the ACCU conference panel about “writing for ACCU publications”
several of those attending asked to see the student code critique earlier than
the current schedule to give more time to compose a reply. I’m not sure
making it too early is good thing but (starting with this issue) I posted the
critique question onto accu-general to give an extra month of thinking
time.
Can I also encourage anyone finding suitable candidate code to send it to
me for possible inclusion!
The entries cover a variety of approaches to the student’s problems. These
are at two levels – syntax problems, such as the trailing const and the
undefined behaviour of the for loop in the tester constructor; and the
harder problem of writing an STL-like iterator.
The code first took my attention because of the trailing const, which
modifies the return type of the next method as the white-space is not
significant to the compiler. This sort of problem is hard to see, especially
for new users of C++, and the compiler errors rarely help.
My preference for the STL-specific part is to recommend that the student
gets more practice at using the STL before they try to extend it. Nevin’s
answer hints at this: “Why create an iterator class at all?” It seems to be
a common mistake to assume that learning the STL involves writing lots
of template classes. Using the existing classes and functions provides the
best initial learning, and when, later on, they reach the point of writing
their own iterators they will have a clearer idea of how to do this (and more
experience of decoding the somewhat scary error messages typically
generated by the compilers).
At this point Matt Austern’s book Generic Programming and the STL
might be useful; or more specifically pointing the student at boost’s
iterator façade and adaptor classes (which are also in the first C++
technical report).

The Winner of SCC 39
The editor’s choice is:

Balog Pal, with a commendation to Simon Seabright.
Please email francis@robinton.demon.co.uk to arrange for your prize.

Student Code Critique 40
(Submissions to scc@accu.org by 10th July)

The student wrote:
“I’m having problems printing out a tree data structure – the code
doesn’t crash and I don’t get any compiler warnings but the tree
doesn’t seem to get shown properly. It’s based on some (working)
Java code. This test program shown below only prints the head
node and not the children. I’ve tried both C and C++ but the program
behaves the same for both.”

Please try to help the student understand why
their code is broken as much as where it is
broken.

#include <malloc.h>
#include <stdio.h>

struct binaryNode
{
 int value;
 struct binaryNode *left;
 struct binaryNode *right;
};

struct binaryNode createNode(int value)
{
 struct binaryNode *newNode;

 newNode = (struct binaryNode*)malloc(sizeof(
 struct binaryNode));

 newNode->value = value;
 newNode->left = 0;
 newNode->right = 0;

 return *newNode;
}

struct binaryNode addChildNode(
 struct binaryNode parent, int value)
{
 struct binaryNode tempNode;
 tempNode = createNode(value);

 if (value < parent.value)
 parent.left = &tempNode;
 else
 parent.right = &tempNode;

 return tempNode;
}

void printNodes(struct binaryNode head,
 int indent)
{
 int i;
 if (head.left != 0)
 printNodes(*head.left, indent + 1);
 for (i = 0; i < indent; i++)
 printf(" ");
 printf("%i\n", head.value);
 if (head.right != 0)
 printNodes(*head.right, indent + 1);
}

int main()
{
 struct binaryNode head;
 struct binaryNode node1;
 struct binaryNode node2;

 head = createNode(3);
 node1 = addChildNode(head, 1);
 node2 = addChildNode(node1, 2);

 printNodes(head, 0); // Only prints 'head'

 return 0;
}

Prizes provided by Blackwells Bookshops & Addison-Wesley
34 | {cvu} | APR 2006

Games Programming
Beginner’s Guide to DarkBasic Game
Programming
by Jonathan S. Harbour, ISBN 1-
59200-009-6, 711pp + CD , Prima
Tech

reviewed by Mark Green

The premise behind
DarkBASIC is to give, in a
BASIC like language, the power that is needed
to access DirectX (easily) and so make games.
It is obviously tied to the Microsoft Windows
world and in my opinion the amateur/hobbyist
games market. The book has three main
sections: “The Basics of Computer
Programming”, “Game Fundamentals:
Graphics, Sound, Input Devices, and File
Access” and “Advanced Topics: 3D Graphics
and Multiplayer Programming”.
As the title of the book suggests it is a
“Beginners Guide”, it does try to handhold the
reader as the print is large and there are lots of
pictures. Even so, the first part of the book is a
strange mix it introduces all the basic procedural
programming topics, in examples. But it does
not make the user think and extend the work, just
follow along the exact path given, it does not
promote true understanding of how to link these
ideas together into a game (or any program).
Part two could be subtitled the functions called
in DarkBASIC which are used to access the
different parts of DirectX, (not very snappy
subtitle but part two is not very snappy either at
300 pages or so). It is a fair reference and it does
show the power and extent of DarkBASIC, but
it does not tie all the bits together into anything
but little noddy gamelets. It does not cover any
real game design, story progression, production
process (design, coding, testing). True this is
only one book but it does not really hint at all the
other parts that go into the creation of a game.
The final part quickly looks at the advanced
topics of 3D and multiple payers but only in an
introductory way.

My verdict, it is as the title states a
BEGINNER’s guide to DarkBASIC, only those
people who have little or no (or very rusty)
procedural programming experience will find
this book useful. True it will give them a leg up
into DarkBASIC programming, but they still
have lots to learn about programming and even
more about developing games and the games
industry. Overall an average to weak rating.

About Face 2.0; The Essentials of
Interaction Design
by Alan Cooper and Robert
Reimann, ISBN 0-7645-2641-
3, 540pp, Wiley

reviewed by Christopher Hill

I think back to a programming
conference in Cambridge in the
mid 1990s. I had planned to attend one session
by Alan Cooper and spend the rest of the day
doing more programming things. I spent the rest
of the day in Alan’s sessions. It was all a
revelation! He was describing problems that
people have when using software in everyday
terms, while explaining the underlying problem.
It is like putting a handle on the side of a door
that you need to push. It is not the end of the
world. When you first come to that side of the
door you pull the handle (you don’t push handles
– well I don’t). The door does not give, so you
push. Next time you know to push the door. But
sometimes the handle on the wrong side still
catches you out.
OK you can complete your trip with just a little
delay, but by jolting the door, your journey has
been disturbed. People are at their most effective

when they enter a state of ‘flow’ – everything
just works, you know where you are going and
what you are going to do. Then you hit a menu
option that you have to think about or does not
do what you expected. You lose flow and you
become less effective.
About Face highlights the issues that ‘jolt’ when
using computers. You write in a notebook and
place it back on the shelf. When was the last time
it asked you if you want to keep your jottings?
Yet when I finish writing this review, the
software will ask if I want to save the changes?
This is putting a programmer’s problem
(reconciling copies on hard disk and in memory)
into the users’ domain – where it does not
belong!
If you have the first edition, I would encourage
you to also get the second edition of this book.
User Interface Design is a moving target, and
more issues are addressed. The second edition
has more psychology of interaction and covers
acquiring requirements (ideas like talking to
people in their place of work, maybe while they
are doing the job).
The second edition is a major re-write, very
informative and challenging. It ought to be read
by any one who makes any claim to design user
interfaces. Highly recommended.

Physics for Game Programmers
by Grant Palmer, Apress, ISBN: 1-
59059-472-X, 472pp

Reviewed by Carl Bateman

This book tries to cover
everything: from basic
kinematics through ballistics to
sport simulation, aerodynamics
and lasers (even integration and differentiation
are covered) and all in 472 pages.
Clearly the author knows his stuff and has a
pleasant conversational style that is quite
engaging. Unfortunately he covers a lot of
material, very quickly, perhaps too quickly. If
the reader can’t follow the explanation she’s lost

Bookcase
The latest roundup of book reviews.

n the recent past, I’ve had to take the somewhat unfortunate position to drop book reviews
in order to keep to the page count and balance the number of articles to the number of
reviews. In this instalment, I should have made a large chunk out of the back-list I have

sitting on my hard drive. Thanks for being so patient.

Remember, if you submit a book review you are contributing to the greater knowledge of
the membership. Books are expensive and the last thing anyone wants it to spend upwards
of 30 pounds on a book which is an utter turkey!

That said, if you decide to review a book, the worst that will happen is you lose a fiver – and
if the book has the “Not Recommended” rating, your next book is free. What can be fairer
than that.

As always, the ACCU must thank the Computer Bookshop, Blackwells and a range of other
publishers for providing us with the review books.

I

Bookshops
The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let us know). We hope that you will give preference
to them. If a bookshop in your area is willing to display ACCU publicity material or otherwise
support ACCU, please let us know so they can be added to the list

Computer Manuals (0121 706 6000) www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022) www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792) blackwells.extra@blackwell.co.uk
APR 2006 | {cvu} | 35

and will need to refer elsewhere to understand
the topic being covered.
There are demo applications throughout the
book, these are self contained but very primitive.
While they usually illustrate the principle in
question they fail to engage the user for more
than a few minutes. It may have been better to
build a project or two, integrating the various
principles covered.
There are brief digressions, a biography of
Newton for example, which add little. Given the
intensity and sharp learning curve of the book
these pages would have been better spent
focusing on the topic at hand.
Despite proclaiming itself to be “Physics for
Game Programmers”, the principle language
used here is Java (C and C# versions are
available via download). The majority of
modern games are written in C++ making this a
strange choice. Java is used for mobile games,
but the state of that particular art leaves little
room for painstakingly accurate physical
effects.
The book exhorts the benefits of using physics
to improve the fidelity of games and thus their
marketability, and does so to the point where one
would be forgiven for thinking that all games
would benefit mightily from the introduction of
accurately modelled physics. However, this
view fails to take into account games that have
no need of physics (e.g. chess) or games that
distort or ignore physical laws (e.g. Mario).
Certainly, there are many games where accurate
physics are desirable, flight sims, racing games
and the like, but frequently accurate physics are
not needed or wanted because it adds
unnecessary complexity or, ironically, because
the effects they create don’t look realistic.
Unfortunately, none of these potential issues is
mentioned, but then there is scarcely room to do
so.
This is not a bad book, it is simply over-
ambitious. It would certainly have value for
someone with a basic familiarity of the topics
covered and who wished to refresh their
memory, but seems too terse to be a first learning
guide.

Java
Building scalable and high-
performance Java web applications
using J2EE technology
by Greg Barish, Addison-Wesley,
ISBN: 0-201-72956-3, 392pp

reviewed by Michel Greve

According to the author, the
book is written for “any
engineer or architect who is
proficient with Java and wants to build Java-
based Web applications for performance and
scalability, but does not yet understand how
J2EE can be used toward the goal or how all of
its underlying technologies work.”

The book has the following goals:
To define and identify the challenges;
To provide you with a J2EE roadmap;
To describe concisely key J2EE
technologies;
To fill in the gaps of Web application
design that the J2EE spec. leaves out;
To demonstrate the benefits of various
specific J2EE design decisions.

The book is well laid out, though the chapters are
a bit long: about 30 pages. In the beginning I had
some trouble reading it, though I think the
problem was the font. The book has a lot of short
listings and though I didn’t read all the listings
and still understood what the author meant. The
listings are explaining at a low level what the
author has written e.g. the author talks about
beans and the listings show you how the bean
looks like in Java.
The author not only explains how to build
scalable and high-performance web
applications, he also explains how a web
application works internally. He explains
HTTP, beans, request processing, messaging,
database design and architectures of web
applications. The bottlenecks in a web
application are explained and possible solutions
are given (it depends on the problem, which
solution will work with a given trade-off). The
index of the book is good.
The things I don’t like about the book are the
font and the rather large chapters. The good
points are the explanations of how a web
application works and the optimizations with
their trade-off. Unfortunately, if you’re only
interested in learning how to optimize a web
application this isn’t the book for you. This is
more a book for somebody who wants to know
how a J2EE web application works and how to
optimize it. For that kind of reader I would give
it a recommended.

Java in distributed systems
by Marko Boger, ISBN: 0-471-
49838-6, 393pp, John Wiley &
Sons

reviewed by Michel Greve

This book is about distributed
systems in Java. The book
doesn’t include a CD, but it
refers to the different websites where the
necessary software can be downloaded. The
book is aimed at developers who want to deepen
their knowledge of Java in distributed systems.
The book has a nice layout and reads well. The
text is clear and the listings are short and
contains all the exception handling, but have no
comments. I like my listings in a monospace
font. Unfortunately that is not the case in the
book.
There are a number of subjects that reappear
everywhere in the book: concurrency,
distribution, persistence, communication and
method calls.

The book is divided in two parts:
Java in distributed system
A distributed Java

The first part is an overview of a number of
solutions in distributed systems. The subjects
are not only the well known solutions like:
Corba, RMI, Jini etc, but also about the Voyager
framework, Pjama and TupleSpaces.
The second part of the book is a possible solution
to the problems the author mentions in the book.
The author directed a research project on the
Hamburg University. The university developed
a framework called Dejay. This framework is
explained in this second part.
In the last chapter the author gives three
examples that use the Dejay framework;
distribution, concurrency and persistence.
These examples and explanations are short and
to the point.
At last we have a good index.
The things I dislike about the book are de
monospaced fonts for the code and that the book
is a bit dated.
The good things about the book are the overview
of the problems and solutions in distributed
systems and the very good (high level)
explanation of the rather technical and difficult
topics. Personally I am amazed what was
possible five years ago. Although you may not
want to use the frameworks used in this book,
you will get a feeling of what is possible
nowadays.
Because this book is a little bit dated (1999
written, 2001 the English translation), I give this
book a RECOMMENDED.

Java Puzzlers: Traps, pitfalls, and
corner cases
by Joshua Bloch and Neal Gafter,
ISBN 0-321-33678-X

reviewed by Derek Jones

If, like me, you enjoy figuring
out the behaviour of code
snippets that involve programming language
corner cases then you will enjoy this book. The
95 puzzles are simply expressed and the
solutions written in an easy to comprehend way
without being overly simplistic. You don’t need
to be a Java expert to enjoy this book and you
will probably learn something from many of the
puzzles.
The authors have tried to frame coding
guidelines on the back of the surprising
behaviour of the some of the puzzles.
Unfortunately little thought has been given to
these guidelines, which mostly say something
along the lines of “avoid this usage”. Fortunately
the guidelines does not form a substantial
amount of the material and can be ignored
without distracting from the main contents.
For some puzzles the authors have reused the
same problem in a slightly different way, or
resorted to relying on (lack of) knowledge of the
behaviour of not-so-common library functions.
36 | {cvu} | APR 2006

There are enough interesting puzzles that these
cases don’t detract from the enjoyment.
Coming from a C/C++ background, I was
surprised by how often the edge case behaviour
differed in Java. It is a pity that the authors did
not include any discussion on how other
languages deal with the corner cases.
The material also includes quiet a few black and
white visual illusions scattered among the
puzzles. Some people might find these add to the
charm, I found them annoying (although I found
the appendix notes on the various illusions very
interesting).
Taking the Amazon discounted price gives a cost
of around 20p per puzzle. Well worth the price.

Java and JMX programming
by Heather Kreger et al, ISBN 0-
672-32408-3, Addison Wesley

reviewed by James Roberts

This book provides a great deal
of interesting description of the
support for JMX with Java. It
covers a great deal of ground
from the motivations of using JMX through to
details of how to produce manageable
applications using Java. The writing style is
clear throughout (although I found the
bibliographic references a bit over the top, no
harm done was done in including them) and is
logically organised, introducing the generalities
first before covering implementation details.
There were a few things that I did not like.
Firstly, there was rather too much quoted code.
10 pages of largely uncommented code is over
the top from my point of view. As the book’s
web-site includes the source code, this seems
completely unnecessary. I would have much
rather had some more focussed code examples
to read, and then used the downloaded code to
fill in the gaps for a complete implementation.
The book is somewhat implementation-neutral.
I felt that there is a gap in the presentation, as it
would have helped my understanding if the book
covered an example of an implementation of a
JMX solution. The examples on the web-site
describe the implementation based on the
TMX4J product, which is unfortunately not free
– this will limit the number of people that could
follow the examples.
Overall I felt that it was a reasonable
introduction to the subject, and also will be a
useful reference book – but could have been
improved.

User Inferface
Interaction Design for Problem
Solving
by Barbara Mirel, ISBN 1-55860-
831-1, Morgan Kaufmann

reviewed by Francis Glassborow

This book is aimed at the
member of your software

development team who is responsible for the
Human-Computer Interface. Many applications
are seriously damaged by the lack of expertise
in this area. The importance of well-designed
HCIs extends across the entire range of
computer applications. It is all very well having
highly qualified people working on safety
critical, high integrity or mission critical
software but a poor HCI design can undo all their
careful work. For example, a medical program
that correctly calculates the drug dosage
required in the treatment of a patient is a menace
if the result of poor interface design is that the
nurse misreads the screen and give the patient
the wrong dose.
The reason that I raise this issue is because I have
seen far too many applications where the quality
of the programming has been made irrelevant by
the poor quality of the interaction between the
user and the software.
In this book Barbara Mirel tackles all aspects of
the way software interacts with the user. If your
team already has someone responsible for the
HCI of your products, encourage them to read
this book and discuss the resulting issues with
you. In the context of a team it might also be
helpful to make this book a team study effort so
that you all better understand those extra
constraints on the total product that are
necessary to convert excellent software into
excellent usable software.
You will get some idea of the detail with which
the author tackles her task when you realise that
the final section of the book (a single chapter)
deals with the politics of getting the earlier
chapters accepted and implemented in a work
environment.
In the earlier chapters the reader will learn about
appropriate mechanisms for data capture,
suitable ways to display data (the author is an
expert on information visualisation techniques)
and how to help the user to use an application
correctly. Years of experience with computers
often lead software developers into a state where
they have an implicit understanding of overly
complex displays. Just as we should be careful
to test software on typical hardware rather than
some bleeding edge computer we are using for
development (you should be so lucky) we
should also be careful to test our software on the
typical user. However one problem here is that
the typical user is often unable to articulate what
it is about the HCI that is proving unhelpful.
Worse, when such comments are made the tester
often explains how the software is intended to be
used, thereby making the test subject more
knowledgeable than the typical user. I wonder if
we should be using double blind testing of
interfaces.
Despite the quality of the presentation provided
by the publisher, this book will not be a quick
study. Nonetheless I believe that either this book
or one like it should be on the reading list of most
aspiring software developers. This book has a
strong theoretical basis but focuses very much

on the practical needs of the
commercial practitioner.

User Interface Design
by Jenny Le Peuple & Robert Scane,
ISBN 1 903337 194, Crucial

Visual Programming
by David J. Leigh, ISBN 1 903337 11 9,
Crucial

reviewed by Francis Glassborow

I am choosing to review these
two books together because my
main focus concerns
presentation and editorial issues that are, in my
opinion, serious flaws in both volumes. They
highlight the very real risk that modern printing
technology is in danger of supporting the under
prepared and poor presentation that already
mars a great deal of web-based publishing.
My printer could turn out these ‘perfect bound’
books with full colour laminated covers with
black and white contents for under £4.00 for a
print run of a single book (I know, because I
asked them). Just because it can be done does not
mean that it should be done. There is a great deal
more to producing a marketable book than
simply being able to print and bind it.
No competent production editor would allow
such poorly laid out material to leave their
machine. Actually, even the average amateur
might shudder at pages that seem to be devoid
of the concept of a bottom margin. Given a
modern DTP package and someone with even a
basic understanding of presentation and we
would have something better than that which
might be found in your typical parish magazine.
An editor is part of the production chain for a
book. One of the jobs of an editor is to help and
persuade inexperienced authors (and even
experienced ones) to present their technical
knowledge in a readable form. It is my opinion
that this has not been done for these books. In
both cases the text has a feel of a first draft. The
content is fair, and good enough to justify
publication but the authors have not been
persuaded to put in the hours needed to turn good
ideas into well-executed books.
I suspect that the new generation of equipment
that allows printers to produce entire books as a
single integrated process is going to increase the
prevalence of books like these. That is sad
because the new technology has the potential for
producing something so much better. Laying out
the text for a hundred and fifty page book is not
much more arduous than laying out a couple of
issues of C Vu and Overload. Modern computers
and communications coupled with modern
printing and binding equipment should allow
many more people to earn an income working
from home on many of the stages of book
preparation and publication. All that should be
achievable without any loss of quality.
Well done, the first of these books would have
been a fair alternative to Interaction Design for
Complex Problem Solving as an introduction to
APR 2006 | {cvu} | 37

this important subject. However, as is, the fact
that the latter book is two and a half times the
price is more than compensated for by both the
quality of the content and the quality of the
presentation. On a scale of one to ten I would
give Interaction Design for Complex Problem
Solving a very good eight, and User Interface
Design would get a poor two.
In case you are interested, User Interface Design
addresses issues of appropriate design of UIs
(User Interfaces) without giving much
consideration to the many practical problems
that result in accidental misuse of software or
irritations caused to users. As an introduction it
would be acceptable if the writing and
presentational issues were addressed. Visual
Programming uses Visual Basic to introduce the
reader to the style of programming that focuses
largely on selection of standard elements from a
visual palette.

Cross Platform GUI Programming with
wxWidgets
by Smart, Hock and Csomor,
Prentice Hall, ISBN 0-13-
147381-6, 662pp

reviewed by Paul F. Johnson

Recently, I turned 35 and as a
present, I bought a book that I’d
only seen in draft form a while back. You may
have realised by now that I am not a great fan of
any GUI, but the ability to write the code once
and let the library do the grunt work is one I
completely agree with.
The problem is that there are not that many cross
platform GUI libraries out there. Qt is good, but
bulky and the licence is not that pleasant – until
Qt 4 hit the streets, it was quite clunky. GTK just
isn’t nice under Windows and
System.Windows.Forms isn’t mature enough.
wxWidgets is different. It is very close (in terms
of the event and message system as well as
windowing) to MFC and yet is available for a
very large number of operating systems.
Up until now, wxWidgets had a problem in that
the documentation was not that amazing. Sure,
there are a couple of websites with some
examples, but nothing much else. This book
changes all of that with a detailed explanation of
what everything does (complete with plenty of
code examples).
It is set out in a very logical style – it starts with
the equivalent of “Hello World” and works right
the way through the library – and boy! – it is one
extensive library!
If you’re an MFC programmer who wants to
reach a wider audience or someone who wants
everyone to see their wares, but doesn’t want to
go the .NET route and doesn’t have the time to
go into Qt, then wxWidgets is for you. It is quick
to learn, easy to understand the object model and
most of all, costs nothing to use.
I can’t recommend this book highly enough.
Highly Recommended.

Methodologies
Agile Development in the Large
by Jutta Eckstein, ISBN 0-932633-57-
9, 216pp, Dorset House

reviewed by Alan Griffiths

Over the last few years, an
increasing number of software
development methods have
claimed to be “Agile”. Probably
the best known of these is Kent Beck’s “Extreme
Programming” [XP] which is like all such
methods: focussed on ensuring that all
participants in a project (including the
“customer”) get good feedback quickly and are
able to respond to it. This is clearly easier when
all participants know each other, and a lot of
such methods prescribe putting everyone into
the same room. Such approaches do not scale
and most methods state that the maximum team
size for which they are proven is in the range of
10-20 project members.
There are larger projects, and when projects get
larger, the approach to communication and
feedback needs to change. To give an example:
with several hundred participants finding room
for a “daily stand-up meeting” (as prescribed by
SCRUM, XP, etc.) is problematic, and the time
needed for everyone to give a 30 seconds
summary of their activities prohibitive.
Consequently, some authors (such as Alistair
Cockburn in “Agile Software Development”)
have speculated that as the size of the project
grows then it will start looking more like
“traditional” processes whose descriptions
focus more on their intermediate work products
(e.g. design documents) than on the feedback
they support. (IMO it is this focus on solution/
work product and not problem/providing
feedback that leads to misinterpretation of these
methods.)
All this raises the question: what does happen
when the Agile priorities are applied to large
projects? I, and no doubt others, would like to
know! Jutta Eckstein is someone that has been
there, done that and has now written a book. So
I was delighted when she asked me to review the
book and sent me a signed copy.
This book attempts to cover a lot of ground. It
includes a summary of the Agile movement and
justifications for many of the practices common
to Agile (and other) methods. It discusses the
differences the organisation will see from
“linear” development processes and how to
“sell” the approach to different parts of the
organisation. In addition, as the title suggests, it
covers the problems presented by “large”, offers
some possible solutions, and gives a report on
one large project.
One of the problems of covering a lot of ground
is that some of it is not covered very well. For
example, while there is much that is valid said
about testing, on the different types of testing
and who should write each, there is the

following statement (about automated testing):
“A common and reasonable fear is that testing
will slow development down. While this is
definitely true at the very start of a project,
having tests available will accelerate the
development later on, when the system requires
some changes.”
My experience is that having automated tests in
place during development always increases the
speed of delivering working software. It is only
later that there may be a cost to maintaining both
production code and tests (this can be significant
if the tests are poorly designed). If this topic were
to be covered in more detail, then I would know
how to reconcile the above with my experience:
does “the very start of the project” refers to a
period when there is no working software?
This is typical of much of the earlier part of the
book, much that I agree with interspersed with
occasional statements that make me want to
interrupt the author and ask for clarification,
rationale and/or evidence. To be fair, some of
this evidence is probably not available – much of
the material derives from one large project and
extrapolation based on experience of a range of
organisations on other projects of varying sizes.
As with many books the value of this one
depends upon your starting point and objectives.
If you run large projects and are wondering what
Agile methods could offer you then this is a great
introduction and provides both examples of the
differences it might make and pointers to the
literature. You could steal the ideas that best suit
your situation.
If you are not new to the Agile movement then
it is not clear how important some of the material
on existing Agile practices is. While I do
understand the desire to make the book self-
contained, and appreciate that having this
material to hand could be useful to the reader, I
doubt that anyone contemplating applying Agile
methods to large projects would be ignorant of
this background. In view of this, placing it as the
first section of the book gives it undue
prominence. (On the other hand, I keep meeting
people that think XP is the only Agile process,
so maybe this is for them.)
If you are looking for the definitive survey of
applying Agile methods to large projects, then it
does not exist (yet) and this is not it. It does,
however, provide a valuable data point towards
such a survey. Every project is different, and
every organisation too – we need more examples
to map out the territory or even to be sure which
are the fixed landmarks. In this book you will
find pointers to some of the problems to look for,
and some solutions then this will be of help.
Finally, if you are looking for proof that “Agile”
can be done for large projects: this is for you.

CMMI Distilled 2ed
by Dennis M. Ahem et al, ISBN 0-
321-18613-3, 310pp, Addison-
Wesley

reviewed by Greg Billington
38 | {cvu} | APR 2006

This book should be useful to anyone new to
process improvement or those with a CMM
background wanting to find out more about
CMMI. The subject of CMMI is large and
complex but the book conveys it in an easy and
understandable format while adding more depth
and detail as the chapters progress. This makes
it good for the novice but also offers enough
information and words of wisdom for more
experienced readers. The book is split into four
main sections that are sensibly organised and
can be read sequentially or accessed directly.
The first section gives a short background to
process improvement, and shows the roadmap
of process evolution from the various standards.
The second section explains the history of the
CMMI, how it was created and the two models
– staged and continuous. The book gives a clear
explanation of the two, highlighting pros and
cons which is helpful to someone who comes
with the knowledge of the older staged CMM
and helps put it into context. The process areas
are explained in a concise but clear fashion with
good supporting flow diagrams that help the
reader understand how these processes fit in the
real world.
The third section is shorter than the others and
explains reasons for picking the various models.
This may be a short section but it conveys a lot
of wisdom.
The fourth and final section is a brief look to the
future.
The last third of the book contains appendices
showing staged and continuous representation
summaries – useful for reference only purposes.
This book certainly does distil a lot of
information, and it does it well by focusing on
some key essentials, providing comment and
advice from the authors in a structured and
readable format.

The OPEN Process Framework
 by Donald Firesmith & Brian
Henderson-Sellers, ISBN 0 201
67510 2, 330pp, Addison-Wesley

reviewed by Matt Pape

This book provides an
introduction to the OPEN
Process Framework (OPF),
which is a framework for defining software
development processes. It differs from the
Rational Unified Process (RUP) and Extreme
Programming (XP) by being less prescriptive in
the activities to be performed and their
sequencing. This allows for greater tailoring of
the process but consequently increased effort for
the engineer charged with defining the process.
The book begins by providing a fairly standard
definition and justifications for software
processes that can be found in many books on
software development.
It quickly becomes apparent that the authors are
deeply involved in the development of the OPF
and this comes across by their strong sales pitch
for the OPF within the introduction.

The majority of the book describes the process
components (e.g. development activities, roles
and products) and this is generally well covered
although there is some duplication with the
appendices that provide definitions for the
components.
The Appendices comprise half the book and
much of this information can be found online
and felt like padding in an introductory book.
The final chapter, on usage guidelines, is
frustratingly short (at just 10 out of the 300
pages) and provides insufficient explanation or
examples for defining a process based on the
OPF.
Overall, the book provides a good introduction
to the OPF (mostly in 30 pages in the second
chapter) and should be of interest if you are
involved in the task of process definition.
However the book disappoints by failing to
provide sufficient implementation guidelines or
clear direction of how to proceed if you wish to
adopt the OPF.

Real World Software Configuration
Management
by Sean Kenefick, ISBN 0-59059-
065-1, 439pp, Apress

reviewed by Derek Graham

The role of SCM is often
shrouded in a fog created by
tool vendors in an effort to make their software
solutions essential. This book aims to demystify
the role that SCM should play in software
development. The start of the book talks about
why you need configuration management.
There is not a lot of theory but illustrates points
with lifelike examples.
Part 2 deals with source control. Chapter 4 gives
an overview of source control tools. This may
not be very useful to a new graduate just given
the SCM job with no control over which tool
they use and no use at all to anyone who has been
involved with software for any length of time.
Chapters 5 and 6 deal with the use of CVS and
MS SourceSafe respectively. Again this might
be of some use to a new recruit but I would prefer
they learn under supervision as part of a team
than from one chapter in a book.
The best part of the book is part 3 which
describes the setting up of an SCM environment
from scratch and creating scripts to perform a
build. The author starts with a bullet list of steps
for a build and refines it through pseudo code to
an eventual build script. This includes a section
on make and Ant.
The front cover says that it “covers both
Windows .NET and Linux” but aside from
mentioning rpm packages (in about a dozen
pages in the very last chapter) there is little about
Linux. The chapter on Windows .NET discusses
using the MS IDE and Perl or VBScript but I
would have liked to see tools like NAnt and
NUnit mentioned.

The scripts are available from the author but I
have not tried using them and cannot comment
on them.
Overall a well laid-out and readable book but I
feel that the two chapters devoted to using CVS
and SourceSafe were unnecessary.

IDE
Official Eclipse 3.0 FAQs
by John Arthorne, Chris Laffra,
ISBN 0-321-26838-5, 385pp,
Addison-Wesley

reviewed by Silas Brown

If you need to customise or
extend the Eclipse platform but
you are not entirely sure what
you are doing then this book is likely to be
helpful. The 361 questions and answers seem
well thought-out to give you some pointers no
matter what you are trying to do, and it is
particularly useful when you are not well
practised at navigating around Eclipse, its
documentation and all the Eclipse-related
information out there.
The book is well indexed and navigable and
many questions are cross-referenced. It also
comes with a CD-ROM that contains the
complete text of the book in HTML, packaged
up in a form suitable for installing onto Eclipse
as a plugin. This adds itself to the Eclipse help
system, hence giving you the choice of accessing
it that way if you prefer. This kind of dual-format
publishing should perhaps be done more often;
it gives you the choice of reading online or paper
depending on the circumstances. As you might
expect, the CD-ROM also has the source code to
the examples, and a nice touch is the inclusion
of a mirror of the eclipse.org downloads and
supporting documentation as well.
There is also a reference to the book’s website,
which is heavily dependent on scripting and I
found it does not work at all on my browser just
because I have set it up with different fonts and
colours because I am partially sighted.
Therefore, I cannot comment on the content of
the website, but that is beyond the scope of this
review.
Apart from the website, I would recommend this
book to those that need it – developers who need
to extend or customize Eclipse and are not
entirely sure what they are doing. Others
(including ordinary users of Eclipse) might
benefit a little from this book but it probably
would not justify a purchase in their case.

Process & Patterns
The Object-Oriented
Development Process
by Tom Rowlett, ISBN 0 13 030621 5,
Prentice Hall

reviewed by James Roberts
APR 2006 | {cvu} | 39

This book is a guide to using a particular
development process for an object-oriented
environment. The author seems to have
developed it himself, and named it (modestly)
‘The Object-Oriented Development Process’.
The process itself is very much the usual kind of
thing (use case, state diagrams, class diagrams
etc), explained unusually clearly and logically.
It also includes non-Object-Oriented techniques
(truth tables for example), which, as the author
points out, are just as applicable to Object
Oriented projects.
The book’s strengths are the clarity of the
writing, and the way that the author manages to
maintain a logical thread of the process from
initial requirements through to testing and
maintenance (the very mention of which is
rather a novelty). I particularly enjoyed the early
sections of the book, where the suggested
process for generating the analysis model is
documented
I am not sure whether I would like to take the
process defined in this book ‘lock, stock and
barrel’ onto a project. However, I would not
hesitate to use this book to help explain to
colleagues what we are trying to achieve with
existing processes.
One feature of this book is a detailed example of
a development project (‘video store’
implementation), which the author repeatedly
returns to for illustration. This would probably
be an irritation for someone skimming the book.
However, it does illustrate how the process
holds together, and so is probably worth the
space taken up as an aid to more detailed study.
My only complaint about the book is the title –
a reader might be confused into buying this book
thinking that it was a review of OO development
processes, which this book is not.
Recommended.

Holub on Pattems
by AIIen Holub, ISBN 1-59059-388-X,
412pp, Apress

reviewed by Alan Lenton

This interesting, if rather
pretentiously titled, book sets out
to overcome that vexing gap
between the abstract concept of a pattern and
how exactly you use it in real life code. The
language used for the code is Java, but a
competent programmer should be able to cope
with the code, even if not a Java expert.
The book uses two full-length programs to
achieve its ends. The first is a vastly over-
engineered program of Conway’s Game of Life,
and the second is a production grade embedded
SQL implementation. Between them the
programs implement all the Gang of Four (GoF)
patterns.
I found this book useful. It is a while since I last
looked at the GoF book, and this raised enough
issues to make me want to go back and take a
fresh look from a different angle. I learned two
important things from reading the book.

The first was the usefulness of patterns in
communicating between programmers. Using
patterns can be a very succinct and accurate way
of communicating your intent and requirements.
The second was that an object in a program can
have different roles within several different
patterns. I guess I had known this, but not really
thought about it before, and certainly not
articulated it.
I also picked up a lot of useful tips and
techniques from reading through the code
presented in the book, and the introduction on
objects contained some interesting ideas that I
had not really considered in any depth before.
I have only one caveat. The Life program is on
the verge of being so complex as to defeat its
own purpose. It would probably have been better
to have had three different programs rather than
trying to stuff so many patterns into one
program. There is a suggestion at the end of the
section that the program is an example of the
problems that can arise with hard pattern
oriented design. Nice try, but no cigar, Mr
Holub!
A useful adjunct to the GoF book.

Refactoring to Patterns
by Joshua Kerievsky, ISBN 0-321-
21335-1, 367pp, Addison-Wesley

reviewed by Anthony Williams

Refactoring To Patterns
brings together the Patterns
movement, and the practice of
Refactoring commonplace in the Agile
community. Whereas the original Gang of Four
book told us what patterns were, what sort of
problems they solved, and how the code might
be structured, Refactoring To Patterns illustrates
how, why and when to introduce patterns into an
existing codebase.
The opening chapters cover the background,
introducing both refactoring and design
patterns, and the context in which the book was
written. This gives the reader a clear overview
of what is involved in Refactoring to Patterns,
and paves the way for the refactoring catalogue
that makes up the bulk of the book.
The catalogue is divided into chapters based on
the type of change required – is this a refactoring
to simplify code, generalize code, or increase
encapsulation and protection? Each chapter has
an introduction that gives an overview of the
refactorings contained within that chapter,
followed by the refactorings themselves. These
introductions clearly illustrate the principles and
choices that would lead one to follow the
refactorings that follow.
Each refactoring starts with a brief one-sentence
summary, and before and after structure
diagrams with reference to the structure
diagrams for the relevant pattern in the Design
Patterns book. The sections that follow then
cover the Motivation for using this refactoring,
step-by-step Mechanics, and a worked Example,
relating back to the steps given for the

Mechanics. Finally, some of the refactorings
finish with Variations on the same theme. The
examples are all pulled from a small sample of
projects, which are introduced at the beginning
of the catalogue section, and help illuminate the
instructions given in the Mechanics section. The
mechanics themselves are generally clear, and
broken down into small steps – sometimes
smaller steps than I might take in practice, but I
think this is probably wise, as large steps can
easily confuse. Finally, the Motivation sections
do a good job of explaining why one would
choose to do a particular refactoring, and any
pitfalls to doing so – the “Benefits and
Liabilities” tables provide a useful summary.
This book is well written, easy to read, and
genuinely useful. It has helped me put some of
the refactorings I do into a larger context, and
given me insight into how I can integrate
patterns with existing code, rather than
designing them in up front. As John Brant and
Don Roberts highlight in their Afterword, this is
a book to study, the real benefit comes not from
knowing the mechanics, but by understanding
the motivation, and the process, so that one may
apply the same thinking to other scenarios not
covered by this book. If you are serious about
software development, buy this book, inwardly
digest it, and keep it by your side. Highly
Recommended.

Patterns for Parallel Programming
by Timothy G. Mattson, Beverly A.
Sanders and Berna L. Massingill,
Addison-Wesley, ISBN 0-321-22811-1

reviewed by Anthony Williams

This book gives a broad
overview of techniques for
writing parallel programs. It is
not an API reference, though it does have
examples that use OpenMP, MPI and Java, and
contains a brief overview of each in appendices.
Instead, it covers the issues you have to think
about whilst writing parallel programs, starting
with identifying the exploitable concurrency in
the application, and moving through techniques
for structuring algorithms and data, and various
synchronization techniques.
The authors do a thorough job of explaining the
jargon surrounding parallel programming, such
as what a NUMA machine is, what SPMD
means, and what makes a program
embarrassingly parallel. They also go into some
of the more quantitative aspects, like calculating
the efficiency of the parallel design, and the
serial overhead.
Most of the content is structured in the form of
Patterns (hence the title), which I found to be an
unusual way of presenting the information.
However, the writing is clear, and easily
understood. The examples are well though out,
and clearly demonstrate the points being made.
The three APIs used for the examples cover the
major types of parallel programming
environments – explicit threading (Java),
message passing (MPI), and implicit threading
40 | {cvu} | APR 2006

from high-level constructs (OpenMP). Other
threading environments generally fall into one
of these categories, so it is usually
straightforward to see how descriptions can be
extended to other environments for parallel
programming.
The authors are clearly coming from a high-
performance computing background, with
massively parallel computers, but
HyperThreading and dual-core CPUs are
becoming common on desktops, and many of
the same issues apply when writing code to
exploit the capabilities of these machines.
Highly Recommended. Everyone writing
parallel or multi-threaded programs should read
this book.

Python
Python Pocket Reference 3rd edition
by Mark Lutz, O'Reilly, ISBN:
0596009402, 148pp

reviewed by Ivan Uemlianin

Recommended
This is a nice little book, very easy
to navigate using the just-explicit-
enough contents and index, and written nicely
enough to browse. I recommend it as an aide
memoire type desktop or pocket reference.
The book runs bottom-up through the language,
starting with command-line options, through
built-in data types and statements, through some
commonly used standard library modules (e.g.,
os, re, sys) and up to sections on Tkinter and the
database API and a final section on ‘Python
idioms and hints’.
As even the most basic topic gets a paragraph,
and is easy to find, this would be a good
keyboard-side prop for someone newish to
Python (or with intermittent memory), and these
basics are covered in enough depth to make it
worth looking (e.g., print redirection, else
clauses in for statements, etc.).
PPR obviously does not cover the standard
library comprehensively, and here the book’s
small size works in its favour: no-one is going to
think this is comprehensive, and if you can’t find
what you want here your first response will be to
look at the online documentation. For this reason
I’m tempted to recommend PPR over Python in
a Nutshell, which is not comprehensive either
but is big enough to make you think it should be.
In fact PPR covers things silently left out of PN
(for example, os.samefile()).
The concluding ‘idioms and hints’ section has a
breezy ‘and finally, ...’ feel but contains tips on
idiomatic usage that are useful and slightly out-
of-the-way.
This book exceeded my admittedly low
expectations. I’m always glad I’ve dipped into
it, but I use the online docs for real help.
Is it worth £7? If you need quick reminders, or
if you’re a dipper: yes.

General Programming
Basic Category Theory for Computer
Scientists
by Benjamin C. Pierce, ISBN 0-262-
66071-7, MIT

reviewed by Francis Glassborow

This book was published a dozen
years ago. The reason that I have
a copy is that some highly technical discussion
of the C++ type system referred repeatedly to
Category Theory. Despite my advancing years,
I spend a good deal of time trying to bring my
knowledge and understanding to the level where
I can understand issues relating to language
design and implementation. (One of the
advantages I have over those who are fully
employed in software development is that I have
much more time spend on personal
development.)
Category Theory is a relatively young branch of
pure mathematics derived form algebraic
topology. Now it is unlikely that the reader of
this review has such a background so be warned
that this is tough mathematics for the newcomer;
it is tough for me even though my main tutor for
my Oxford degree was an algebraic topologist
and my own specialism was mathematical logic.
This is the kind of book that you study a few
pages at a time and that older brains such as mine
find hard to turn the acquired knowledge into
working knowledge.
Chapter 1 introduces the reader to the basics of
Category Theory. There is no reasonable way
for me to summarise that. Perhaps the best
advise I can give is to suggest you type
‘Category Theory’ into Google and start looking
at some of the early hits from the almost four
million you will get.
In chapter 2 we move on to functors,
transformations and adjoints. When you have
finished studying (just a reading is insufficient
preparation) you will be ready to read chapter 3
which looks at various ways that CT can be used
in the computer science domain.
Chapter 4 is entirely concerned with further
reading. It is badly dated and the reader would
probably be better served today by an intelligent
use of Google or some other search engine.
Whilst I would recommend this book to
someone with an appropriate background and an
interest in theoretical aspects of computer
languages, it is not a book for the working
programmer or software developer. This is a
book for those that are either very interested in
or who need to study the foundations of
computer language design.

Working Effectively With
Legacy Code
by Michael C. Feathers,
Prentice Hall PTR, ISBN 0-13-
117705-2

reviewed by Anthony Williams

Michael puts a new spin on the term “legacy
code”, identifying it as code without automated
tests. For those of us used to the more traditional
meaning of the term, referring to old codebases
full of cruft and quick fixes on top of hasty
modifications on top of quick fixes, this is a
somewhat unusual attitude – we like to think that
our new code is clean and not “legacy code”,
even if it doesn’t have automated tests.
However, it doesn’t take long for the former to
turn into the latter – leave it 6 months whilst you
work on another project, so you’ve forgotten the
details, then rush through a bug fix because it
needs to be in production tomorrow, and you’re
well on the way.
A lot of the book is spent covering different
techniques for getting nasty convoluted code
under test. These techniques often focus on
breaking dependencies, so you can instantiate an
object in a test harness, or call a function without
it sending an email or talking to the database. In
many cases, these are sensible recommendations
for improvements to the codebase, but in some
cases, Michael recommends techniques you
wouldn’t expect to see in production code, such
as defining preprocessor macros with the same
name as functions to avoid calling them, or
writing dummy implementations of API
functions. This is not to say that the book
recommends such techniques wholesale –
Michael is keen to point out that these
techniques should only be used to get the code
under test, so that it can be refactored safely.
Chapters are helpfully named, with titles like
“This class is too big, and I don’t want it to get
any bigger”, and the book gives good advice on
how to deal with the nastiest codebases. The key
recommendation underlying it all is “get the
code under test, so you can refactor safely”, and
this is borne in mind with those techniques that
require changing the production code in order to
get it under test – these techniques provide step
by step instructions to help you make the
required changes without breaking anything.
The content of this book is excellent, and the
writing clear, so it is unfortunate that it is marred
by numerous minor errors, such as spelling
mistakes, or using the wrong identifier when
referring to a code example. However, this
minor niggle is not enough to stop me
recommending it – every software developer
should have a copy.
Highly Recommended. This book is a must-
have for anyone who has to maintain code –
which is pretty much every software developer
on the planet.

Software Engineering for
Internet Applications
by Andersson, Greenspun and Grumet,
Wiley, 0-262-51191-6, 390pp

reviewed by Paul F. Johnson

If you’re a student at MIT,
please completely ignore this
review. For everyone else,
please read on.
APR 2006 | {cvu} | 41

The blurb on a book should give you an
indication of what the book is about. Okay, in
some circumstances (such as anything by
Schildt and a few others), it is as misleading your
average politician, however they are mostly
accurate and at least give an indication of the
book’s content. The blurb on this book looks
fantastic – it says that by the end of the book you
will be able to build an internet application to
rival Amazon.
Sounds promising and the first chapter doesn’t
disappoint. The first chapter is probably the best
out of the lot. Why? It doesn’t actually contain
very much in the way of usable information.
From then on in, the book just goes down hill –
rapidly. It is a book which is based on course
notes, delivered to MIT students. The problem
is though, that is all they are. There are sections
which go into detail over what you need to be
doing with your “lab partner”. Fine if you’re an
MIT student, pretty much useless if you’re not.
Because of this ‘course book’ style, very little of
it makes sense as the linking arguments are just
not there. There is no explaination of how the
internet application works with the backend,
very little on the front end and the database
accessing is limited to postgreSQL, Microsoft’s
SQL system and another relational database
system.
By the end of chapter 4 you’re thinking why did
you every pick up this book and midway through
chapter 5, that pile of dishes suddenly looks like
a good idea.
Not recommended (unless you’re an MIT
student)

The Unified Modelling Language User

Guide – 2nd Ed.
by Grady Booch et al , Addison-
Wesley, ISBN 0-321-26797-4

reviewed by Stephen Foreman

I want to start by saying that I
like this book. The technical
accuracy and content of this
book cannot be questioned, however the writing
style of the book is not the best. I found the heavy
and often over the top style of this book very
similar to the GOF’s Design Patterns book.
Another thing that troubled me about this book
is the fact it is called a ‘User Guide’ but has so
few examples of how to use the UML. This book
is one of three that have been written by the
Amigos in this series and the prefix of this book
points out that the User Guide is not either of
these other books, but in my opinion they have
tried too hard to separate the subjects of the
books and in doing so have missed out some
valuable content.
My final negative is that the editing in some
places is sloppy.
The typeset of the book is good and the chapters
all follow a similar structure that becomes
familiar. The chapters themselves are ordered
logically with the book being split into basic and

advanced parts. Each page of this book is packed
with cross references to different chapters,
which makes navigating around the book easy.
I would recommend this book and would say
that anyone who uses UML needs access to it.

Enterprise Development with Visual
Studio .NET, UML and MSF
by John Erik Hansen and Carsten
Thomsen, Apress, 1590590422,
955pp

reviewed by Ivan Uemlianin

This book (ED) is organised
into six parts. The bulk of the
book is part 2 on UML and part 3 on the Visual
Studio .NET Enterprise family of development
applications, including Enterprise Template
Projects, Visual SourceSafe, Visio, Application
Center Test, and Visual Studio Analyzer. Later
parts look at worked examples, a comparison of
Microsoft and IBM enterprise development
frameworks, and the Microsoft Solutions
Framework.
ED is apparently thorough and is clearly written.
It carefully guides the reader through the MSF
analysis and design process, and the use of the
applications (which are included on a CD, not).
Exercises give the reader plenty of opportunity
to test their grasp of the text (if the reader has
Enterprise Developer). Gathering requirements,
writing documentation and maintaining the code
are all given a prominent place in the process. If
this were my textbook for a course on using MS
design tools I would feel very safe.
As you can probably tell from the title, ED lives
entirely within the Microsoft world – making
reference, for example, to “unsafe code, such as
pointers” (p. 217) – and consequently will only
be of use to people who are happy to stay within
that world. This is a slight shame with regard to
the part on UML, which is quite good. If this
book is in a local library and you’re struggling
with UML it might be worth a look.
Another suggestion given by the title is that the
book is about enterprise development. It is about
enterprise development to the extent that it is
about using VS.NET Enterprise Developer (and
Enterprise Architect). It’s pitched at a very
elementary level – the simple language, gentle
pacing and generous use of screenshots add to
this impression. This book does not tackle
weighty issues. I am left with an image of the
human developer (or “architect”) who is an
appendage of the development framework.
If you have just bought MS VS.NET ED/A for
yourself, you can afford this book as a user’s
guide. If you are teaching or studying a course
based on VSED, this will be an undemanding
and comforting textbook. If you are or have a
new junior member on your VSED-based
development team, you might want something a
bit more snappy.

Miscellaneous
New thinking for the New Millennium
by Edward de Bono, ISBN 0-670-
88846-X.

reviewed by Ian Bruntlett.

de Bono considers that traditional
thinking, only deployed when a
problem is noticed, leads to
complacency. This ignores
constructive thinking, creative thinking, design
thinking in which we seek to improve an existing
situation, even if we are not aware of any faults.
de Bono states that, during expansion phases (as
in the settling of the American West or during
the expansion of the British Empire), action was
more important than concepts. After the
expansion phase was over, design thinking is
better – rearranging things to get more value out
of what is already available. In this kind of
thinking, concepts play a key role. Where an eye
on the past keeps us out of trouble, making a
habit out of design thinking will open up new
opportunities.
de Bono is scandalised by the poor thinking
encouraged by the education system and the
media. He states we ought to have a strong sense
of value in order to design change based on a
sense of “what can be”. And our vocabulary
should be expanded to describe creativity better.
Parts of this book is full of unstructured thoughts
– so, in parts, this book could be titled
“Ruminations on thinking”.
Verdict: Read this book if you want to chew the
cud about thinking. If you haven’t read “Lateral
Thinking” or “Six thinking Hats” then you
might want to read them as well.

Dancing Barefoot
by Wil Wheaton, ISBN 0-596-00674-
8, O'Reilly

reviewed by Francis Glassborow

This is another of those odd
books that O’Reilly publish from
time to time. It is a collection of
five short autobiographical
stories from the keyboard of Wil Wheaton. I
have to confess to my puzzlement that O’Reilly
should be the publisher. The stories are well
written and enjoyable but no more so than many
of the anecdotes that get shared after hours at
many conferences, meetings etc. that I have
attended. I am sure that such excellent
raconteurs as Andy Koenig could fill ten times
as many pages with material of equal quality and
authenticity.
Yes, I do believe that books such as this one have
their place and that we should make publishing
of them easier. There are many people with
writing talent who never get published (and
there are many with far less talent whose works
clutter the shelves of book retailers).
If you want a light read (that may trigger deeper
responses in you) for a journey or for a winter
42 | {cvu} | APR 2006

evening by the fire this book would be a good
candidate. The teacher in me also would use the
stories as subjects for discussion among
teenagers.

Fearless Change
by Mary Lynn Manns, Ph.D. & Linda
Rising, Ph.D., ISBN 0-201-74157-1,
273pp, Addison-Wesley

reviewed by Francis Glassborow

We live in a world where the
context of our work and the tools
we have for doing it change ever
more rapidly. In the distant past, a change that
had serious impact on individuals would have
been rare. Things like the printing press had life
changing impact on those who were alive.
However, the norm was that you would still be
doing the same job in the same way at the end
of your life, as you were when you started.
This is no longer the case. Sometime during the
last century, the rate of innovation became so
high that individuals should expect that
whatever job they do at the start of their working
lives would either disappear or change very
radically before the end of their working lives.
It has proved very difficult for individuals to
adjust to this new pattern to work, however it has
proved even harder for companies to respond.
Most companies have a good deal invested in the
status quo; they will resist change.
Most companies will have a few individuals
with vision and understanding of the
implications of new technology. Unfortunately,
most companies will do their utmost to avoid
taking notice of such employees.
The purpose of this book is to introduce readers
to various aspects of pursuing change. The
authors are attempting to help the innovators
work effectively. Somehow, companies need to
find the balance between the stagnation of zero
change and the chaos of constant change.
The authors have borrowed the idea of patterns
from software development and applied it to
working for healthy change to organisations of
which you are a part. Such organisations are not
just companies, but include clubs, associations,
families and churches.
This book describes 48 patterns for achieving
change. Like almost all pattern catalogues the
result may seem obvious, but that is only after
you have read them.
I think that, whoever you are, this is a book that
is worth reading.

MASTERS OF DOOM – How two guys
created an empire and transformed
pop culture
by David Kushner, Piatkus Books,
ISBN 0749924896, 335pp

reviewed by Ian Bruntlett.

This book chronicles the working
lives of two key industry figures,
John Carmack (monkish core
engine developer) and John

Romero (rock-star-like games designer).
Romero had a tough childhood and frequently
escaped from reality through computer games
(arcade games – Asteroids or text based
adventure games – Colossal Cave) and
roleplaying games (TSR’s AD&D). He started
playing on the arcades. He then started
programming a mainframe running Hewlett
Packard BASIC, then moved to an Apple II ,
programmed in assembly language. He was a
brash, confident and highly successful
developer, getting titles published while still at
school. Eventually he arrived at a company
called Softdisk.
John Carmack was brought up by academic
parents and he enjoyed the usual hacker stuff –
sci-fi, fantasy, D&D and computer games. He,
too, came from a broken family. Like John
Romero, he wrote games as a freelance,
eventually ending up working for Softdisk.
After various difficulties, the two Johns ended
up working at Softdisk, writing PC games at a
rate of one every two months. John Carmack
was the ultimate coder and John Romero the
ultimate games designer. Although the two
Johns were competent, they knew their
limitations and demanded a manager and an
artist so they could concentrate on what they did
best – producing state of the art games with
excellent playability.
Some of the struggles to get the (then sluggish)
PCs have fast graphics are explained throughout
the book. However, I would have liked to see
more detail about this, with references for
readers who wanted to go further and
experiment with the Doom source code that can
be downloaded from id software’s website.
This book also chronicles a series of ground-
breaking PC projects – ranging all the way from
the primitive stuff all the way to Quake Arena.
It is a fascinating book, full of gems of
information.
At Softdisk, Carmack pioneered scrolling.
When Romero saw this he persuaded the others
that this was too big for Softdisk – so they started
moonlighting. A shareware entrepreneur, Scott
Miller, approached Romero very indirectly with
a view to publishing their games at his startup
company, Apogee. They used their ground-
breaking graphics engine to develop a game
called Commander Keen, listening to rock
music, playing arcade games and taking the
occasional break to play D&D. All this activity
took its toll on family life.
So id software was born. With shareware money
paying the bills, Carmack was free to develop
the technology required to implement a decent
first person arcade game on a PC, Hovertank.
Successive releases got better as Carmack
refined the engine and everybody else became
better at exploiting it. Eventually they flew from
the nest (Shreveport) and moved to Madison.
Romero worked but he also researched (playing
other company’s games) so he kept Carmack fed
with new ideas – in this case, texture mapping.

Combined with ray-casting, this resulted in
Wolfentstein 3D.
They tried selling out to Sierra On Line but the
deal fell through. So they remained independent.
As time progressed, the engine was fine-tuned
and more levels and games were being
generated by third parties, leading the way to the
development of a new game – Doom. Doom was
“yet another levels game” which, not for the last
time, resulted in creative differences of opinion
within id software. The increasingly realistic
and explicit material began to attract unwelcome
political interest.
Ultimately the creative differences between the
two Johns led to a parking of ways – Romero
leaving for pastures new. Others followed suit.
Romero’s departure allowed him to pursue his
dream of starting a design focussed company,
Ion Storm – in stark contrast to id’s technology
based approach.
Politics intervened again with the Columbine
shootings.
This book took 6 years and hundreds of
interviews. This is a high quality work and it
shows.
Highly recommended.

Tomorrow's People : How 21st Century
technology is changing the way we
think and feel
by Professor Susan Greenfield,
Penguin, ISBN 0-141-00888-1

reviewed by Ian Bruntlett

Professor Susan Greenfield
(Director of the Royal
Institution, neuroscientist) is one
smart cookie. In this book she
makes predictions on the future of today’s
population.
She covers changes to lifestyle, robots, work,
reproduction, education, science, terrorism and
human nature. The thing I find scariest is how
pervasive IT is going to become in the future.
Highly Recommended
APR 2006 | {cvu} | 43

REVIEWS

accuACCU Information
Membership news and committee reports

View From the Chair
Jez Higgins
chair@accu.org

Where to begin? This is, I’m
happy and proud to say, my first
View From The Chair. As
described last C Vu, Ewan has
stood down as Chair, and the AGM was very
kind in electing me to replace him. At the AGM,
I gave a rather nervous and stumbling little
speech about why I was there and why I wanted
to be Chair. I’m still rather nervous writing this,
but at least I have the luxury of a bit of time and
editing.
Put simply, the ACCU has made me a better
programmer. I’ve learned, and continue to learn,
a huge amount from the journals, on accu-
general, and at the conference. I’ve learned a
great deal from the many people I’ve met
through the ACCU, both in person and on line.
Because I’m a better programmer, I’ve had more
fun. I like fun! So thanks! I thank you, my family
thanks you.
By taking on the job of Chair, I hope to carry on
having fun and to ensure the ACCU helps all its
members become better programmers and have
more fun. I’d like to try and extend the reach of
the ACCU too - we can’t be the only
“programmers who care”. There must be more of
us out there, and they deserve to be having more
fun too.
I’d like to thank Ewan for his hard work as Chair
over the past three years. He is, I’m delighted to
say, staying on as Conference Chair, a job which
this year’s conference again demonstrated he’s
terrific at. I got a tiny glimpse, this time, of the
work involved in organising the conference.
Ewan, my family thanks you.

Membership Report
David Hodge
membership@accu.org

In 2005 we had 109 new
members.
In 2006 (4.5 months) we have so
far had 102 new members.
My next job is to create the spec for the web
changes to do the membership mainly online
(any comments on list below are welcome).
Summary of automatic website operations:

Join as a new member (Members from
certain countries require manual
validation)
Renew membership
Change address details
Automatic generation of journal label file
for new members (daily)
Automatic reminders 4 weeks and 2
weeks before expiry date
Automatic removal from member group
on expiry
Automatic generation of journal numbers
for production person
Automatic generation of journal label file
for journal distribution
Automatic email to all members on an ad
hoc basis (manually initiated)
Automatic generation of statistics on
manual request

Summary of duties of new membership
secretary:

Create labels from daily new member file
and post latest journals
Create and enclose welcome letter (This
could maybe done by Able Types at a
cost, if they held the spare copies)
Manually validate at the request of the
website new members from certain
countries (we have had a few fraudulent
tries from Nigeria in the past year)

Answer any queries coming to
membership@accu.org

Website Report
Allan Kelly
allan@allankelly.net

The conference allowed me (and
Tony and Tim) to talk to a lot of
people about the website and
talk ourselves to better
understand what we do next.
Our priorities for the next few months are:

1 Move the mailing lists to the new server
2 Move the journals to the new server
3 Create a new membership system

There is some debate about what happens when
we get the journals on the new server. Do we
keep the current policy of members-only access?
Perhaps with the odd ‘teaser’ piece to entice in
new members.
Or, should we open up our archives to the public:
we’ll have more content, perhaps generating
advertising revenue and bringing in more
members. Going further, we could publish the
latest journals online - this would keep the site
fresh and pull in more advertising but would we
still have members?
Since the conference there has been a lot of talk
on the committee list about creating local groups
- inspired by Reg Charney. One of the things
we’ve started thinking about is creating an online
calendar to track all these events.
Hopefully by the time I write the next report
we’ll have some new stuff to talk about.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-BoldMT
 /ArialMT
 /BlueHighway-Bold
 /CourierNewPS-BoldMT
 /CourierNewPSMT
 /Helvetica
 /Impact
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Wingdings-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

