

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

JUL 2018 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Into Gold
oftware developers perform a kind of magic.
There is quite a lot that goes into the act of
creating working software. We pull in

information and experience from a multitude
of sources, filter out the bits that aren’t useful
to the problem in hand, mix up the bits that are
(or at least, might be), and a program pops out at
the end of the process. Right?
Well, almost. We certainly use a variety of sources
of information, filter that through experience and
(occasionally) experimentation, in order to write code.
Those information sources vary greatly, and include
things like formal education and training, reading blogs,
magazines, books, taking part in different communities –
online, and in the flesh – and even just chatting to people
in the coffee shop or the pub. I suppose I have some bias,
but I still find magazines like this one to be a good
source because it often exposes me to new ideas in a
succinct way, which I can find more elaborate detail
on elsewhere.
Previous experience of writing software – good and
bad – is also a source of information, and the idea of
filtering raw data through a sieve of experience is an
analogy that appeals to me. Learning from our mistakes
is only one side of this, because hopefully there are
positive things we remember from previous jobs, projects or teams that can inform us
on the job in hand today.
But it’s when you get a team of diverse people together in one place that the sparks of
alchemy really start to fly. No two people have the same experience, or have read the
same articles and books, or if they have, they will likely have not formed the same
connections and opinions. Even disagreement can be the cause of innovation.
Programming is a social activity, whatever image of the lone hacker people have in
their minds when they hear the term ‘computer programmer’.

S
Volume 30 Issue 3
July 2018

Editor
Steve Love
cvu@accu.org

Contributors
Balog Pal, Silas S. Brown,
Francis Glassborow, Pete
Goodliffe, Chris Oldwood,
Roger Orr, Arun Saha

ACCU Chair
Bob Schmidt
chair@accu.org

ACCU Secretary
Patrick Martin
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JUL 2018

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use
of such terms is not intended to support nor disparage any trade mark claim. On request we will withdraw all
references to a specific trade mark and its owner.
By default, the copyright of all material published by ACCU is the exclusive property of the author. By submitting
material to ACCU for publication, an author is, by default, assumed to have granted ACCU the right to publish
and republish that material in any medium as they see fit. An author of an article or column (not a letter or a
review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all
other rights.
Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy
source code for use on their own computers, no material can be copied from C Vu without written permission
from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
17 Code Critique Competition

Code Critique 112 and
the answers to 111.

22 Program Challenge Report
3 and Challenge 4
Francis Glassborow
comments on his
last challenge and
presents a new one.

REGULARS
24 Members

Information from the
Chair on ACCU’s
activities.

FEATURES
3 Write Less Code!

Pete Goodliffe helps us avoid unnecessary
lines of code.

6 ACCU18 Trip Report
Balog Pal reports his experiences from the 2018
ACCU Conference.

8 Don’t Assume Any Non-zero exit() Will Fail!
Silas S. Brown shares his finding on process exit codes.

9 Everyday Coding Habits for Safety and Simplicity
Arun Saha has some simple advice for forming good
habits in C++.

12 The Half-Domain/Half-Primitive Proxy
Chris Oldwood presents a pattern for abstracting
client-side proxies for testing.

SUBMISSION DATES
C Vu 30.4: 1st August 2018
C Vu 30.5: 1st October 2018

Overload 146:1st September 2018
Overload 147:1st November 2018

Becoming a Better Programmer # 111
JUL 2018 | | 3{cvu}

Write Less Code!
Pete Goodliffe helps us avoid unnecessary lines of code.

A well-used minimum suffices for everything.
~ Jules Verne, Around the World in Eighty Days

t’s sad, but it’s true: in our modern world there’s just too much code.
I can cope with the fact that my car engine is controlled by a computer.
There’s obviously software cooking the food in my microwave. And

it wouldn’t surprise me if my genetically modified cucumbers had an
embedded microcontroller in them. That’s all fine; it’s not what I’m
obsessing about. I’m worried about all of the unnecessary code out there.
There’s simply too much unnecessary code kicking around. Like weeds,
these evil lines of code clog up our precious bytes of storage, obfuscate our
revision control histories, stubbornly get in the way of our development,
and use up precious code space, choking the good code around them.
Why is there so much unnecessary code?
Some people like the sound of their own voice. You’ve met them; you just
can’t shut them up. They’re the kind of people you don’t want to get stuck
with at parties. Yada yada yada. Other people like their own code too
much. They like it so much they write reams of it:
 { yada->yada.yada(); }

Or perhaps they’re the programmers with misguided managers who judge
progress by how many thousands of lines of code have been written a day.
Writing lots of code does not mean that you’ve written lots of software.
Indeed, some code can actually negatively affect the amount of software
you have – it gets in the way, causes faults, and reduces the quality of the
user experience. The programming equivalent of antimatter.

Less code can mean more software.

Some of my best software improvement work has been by removing code.
I fondly remember one time when I lopped thousands of lines of code out
of a sprawling system, and replaced it with a mere 10 lines of code. What
a wonderfully smug feeling of satisfaction. I suggest you try it some time.

Why should we care?
So why is this phenomenon bad, rather than merely annoying?
There are many reasons why unnecessary code is the root of all evil. Here
are a few bullet points:
 Writing a fresh line of code is the birth of a little life form. It will

need to be lovingly nurtured into a useful and profitable member of
software society before you can release a product using it.
Over the life of your software system, that line of code needs
maintenance. Each line of code costs a little. The more code you
write, the higher the cost. The longer a line of code lives, the higher
its cost. Clearly, unnecessary code needs to meet a timely demise
before it bankrupts us.

 More code means there is more to read and more to understand – it
makes our programs harder to comprehend. Unnecessary code can
mask the purpose of a function, or hide small but important
differences in otherwise similar code.

 The more code there is, the more work is required to make
modifications – the program is harder to modify.

 Code harbours bugs. The more code you have, the more places there
are for bugs to hide.

 Duplicated code is particularly pernicious; you can fix a bug in one
copy of the code and, unbeknown to you, still have another 32
identical little bugs kicking around elsewhere.

Unnecessary code is nefarious. It comes in many guises: unused
components, dead code, pointless comments, unnecessary verbosity, and
so on. Let’s look at some of these in detail.

Flappy logic
A simple and common class of pointless code is the unnecessary use of
conditional statements and tautological logic constructs. Flappy logic is
the sign of a flappy mind. Or, at least, of a poor understanding of logic
constructs. For example:
 if (expression)

 return true;

 else

 return false;

can more simply, and directly, be written:
 return expression;

This is not only more compact, it is easier to read, and therefore easier to
understand. It looks more like an English sentence, which greatly aids
human readers. And do you know what? The compiler doesn’t mind one bit.
Similarly, the verbose expression:
 if (something == true)

 {

 // ...
 }

would read much better as:
 if (something)

Now, these examples are clearly simplistic. In the wild we see much more
elaborate constructs created; never underestimate the ability of a
programmer to complicate the simple. Real-world code is riddled with
things like Listing 1, which reduces neatly to the one-liner:
 return gorilla_is_hungry() && bananas_are_ripe();

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe

bool should_we_pick_bananas()

{

 if (gorilla_is_hungry())

 {

 if (bananas_are_ripe())

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return false;

 }

}

Listing 1

if (size == 0)

{

 // ... 20 lines of malarkey ...
 for (int n = 0; n < size; ++n)

 {

 // this code will never run
 }

 // ... 20 more lines of shenanigans ...
}

Listing 3

Cut through the waffle and say things clearly, but succinctly. Don’t feel
ashamed to know how your language works. It’s not dirty, and you won’t
grow hairy palms. Knowing, and exploiting, the order in which
expressions are evaluated saves a lot of unnecessary logic in conditional
expressions. For example:
 if (a

 || (!a && b))

 {

 // what a complicated expression!
 }

can simply be written:
 if (a || b)

 {

 // isn't that better? didn't hurt, did it?
 }

Express code clearly and succinctly. Avoid unnecessarily long-
winded statements.

Duplication
Unnecessary code duplication is evil. We mostly see this crime perpetrated
through the application of cut-and-paste programming: when a lazy
programmer chooses not to factor repeated code sections into a common
function, but physically copies it from one place to another in their editor.
Sloppy. The sin is compounded when the code is pasted with minor
changes.
When you duplicate code, you hide the repeated structure, and you copy
all of the existing bugs. Even if you repair one instance of the code, there
will be a queue of identical bugs ready to bite you another day. Refactor
duplicated code sections into a single function. If there are similar code
sections with slight differences, capture the differences in one function
with a configuration parameter.

Do not copy code sections. Factor them into a common
function. Use parameters to express any differences.

This is commonly known as the DRY principle: Don’t Repeat Yourself! We
aim for ‘DRY’ code, without unnecessary redundancy. However, be aware
that factoring similar code into a shared function introduces tight coupling
between those sections of code. They both now rely on a shared interface;
if you change that interface, both sections of code must be adjusted. In
many situations this is perfectly appropriate; however, it’s not always a
desirable outcome, and can cause more problems in the long run than the
duplication – so DRY your code responsibly!
Not all code duplication is malicious or the fault of lazy programmers.
Duplication can happen by accident too, by someone reinventing a wheel
that they didn’t know existed. Or it can happen by constructing a new
function when a perfectly acceptable third-party library already exists.
This is bad because the existent library is far more likely to be correct and
debugged already. Using common libraries saves you effort, and shields
you from a world of potential faults.
There are also microcode-level duplication patterns. For example:
 if (foo) do something();

 if (foo) do_something_else()

 if (foo) do_more();

could all be neatly wrapped in a single if statement. Multiple loops can
usually be reduced to a single loop. For example, the code in Listing 2
probably boils down to:
 for (int a = 0; a < MAX; ++a)

 {

 // do something
 // do something else
 }

 // make hot buttered toast

if the making of hot buttered toast doesn’t depend on either loop. Not only
is this simpler to read and understand, it’s likely to perform better, too,
because only one loop needs to be run. Also consider redundant duplicated
conditionals:
 if (foo)

 {

 if (foo && some_other_reason)

 {

 // the 2nd check for foo was redundant
 }

 }

You probably wouldn’t write that on purpose, but after a bit of maintenance
work a lot of code ends up with sloppy structure like that.

If you spot duplication, remove it.

I was recently trying to debug a device driver that was structured with two
main processing loops. Upon inspection, these loops were almost entirely
identical, with some minor differences for the type of data they were
processing. This fact was not immediately obvious because each loop was
300 lines (of very dense C code) long! It was tortuous and hard to follow.
Each loop had seen a different set of bugfixes, and consequently the code
was flaky and unpredictable. A little effort to factor the two loops into a
single version halved the problem space immediately; I could then
concentrate on one place to find and fix faults.

Dead code
If you don’t maintain it, your code can rot. And it can also die. Dead code
is code that is never run, that can never be reached. That has no life. Tell
your code to get a life, or get lost.
Listings 3 and 4 both contain dead code sections that aren’t immediately
obvious if you quickly glance over them.
Other manifestations of dead code include:
 Functions that are never called
 Variables that are written but never read
 Parameters passed to an internal method that are never used
 Enums, structs, classes, or interfaces that are never used

Comments
Sadly, the world is riddled with awful code comments. You can’t turn
around in an editor without tripping over a few of them. It doesn’t help
that many corporate coding standards are a pile of rot, mandating the
inclusion of millions of brain-dead comments.

for (int a = 0; a < MAX; ++a)

{

 // do something
}

// make hot buttered toast
for (int a = 0; a < MAX; ++a)

{

 // do something else
}

Listing 2
4 | | JUL 2018{cvu}

Good code does not need reams of comments to prop it up, or to explain
how it works. Careful choice of variable, function, and class names, and
good structure should make your code entirely clear. Duplicating all of that
information in a set of comments is unnecessary redundancy. And like any
other form of duplication, it is also dangerous; it’s far too easy to change
one without changing the other.
Stupid, redundant comments range from the classic example of byte
wastage:
 ++i; // increment i
to more subtle examples, where an algorithm is described just above it in
the code:
 // loop over all items, and add them up
 int total = 0;

 for (int n = 0; n < MAX; n++)

 {

 total += items[n];

 }

Very few algorithms when expressed in code are complex enough to justify
that level of exposition. (But some are – learn the difference!) If an
algorithm does need commentary, it may be better supplied by factoring
the logic into a new, well-named function.

Make sure that every comment adds value to the code. The
code itself says what and how. A comment should explain why
– but only if it’s not already clear.

It’s also common to enter a crufty codebase and see ‘old’ code that has been
surgically removed by commenting it out. Don’t do this; it’s the sign of
someone who wasn’t brave enough to perform the surgical extraction
completely, or who didn’t really understand what they were doing and thought
that they might have to graft the code back in later. Remove code completely.
You can always get it back afterwards from your source control system.

Do not remove code by commenting it out. It confuses the
reader and gets in the way.

Don’t write comments describing what the code used to do; it doesn’t
matter anymore. Don’t put comments at the end of code blocks or scopes;
the code structure makes that clear. And don’t write gratuitous ASCII art.

Verbosity
A lot of code is needlessly chatty. At the simplest end of the verbosity
spectrum (which ranges from infra-redundant to ultra-voluble) is code like
this:
 bool is_valid(const char *str)

 {

 if (str)

 return strcmp(str, "VALID") == 0;

 else

 return false;

 }

It is quite wordy, and so it’s relatively hard to see what the intent is. It can
easily be rewritten:
 bool is_valid(const char *str)

 {

 return str && strcmp(str, "VALID") == 0;

 }

Don’t be afraid of the ternary operator if your language provides one; it
really helps to reduce code clutter. Replace this kind of monstrosity:
 public String getPath(URL url) {

 if (url == null) {

 return null;

 }

 else {

 return url.getPath();

 }

 }

with:
 public String getPath(URL url) {

 return url == null ? null : url.getPath();

 }

C-style declarations (where all variables are declared at the top of a block,
and used much, much later on) are now officially passé (unless you’re still
forced to use officially defunct compiler technology). The world has
moved on, and so should your code. Avoid writing this:
 int a;

 // ... 20 lines of C code ...
 a = foo();

 // what type was an "a" again?
Move variable declarations and definitions together, to reduce the effort
required to understand the code, and reduce potential errors from
uninitialised variables. In fact, sometimes these variables are pointless
anyway. For example:
 bool a;

 int b;

 a = fn1();

 b = fn2();

 if (a)

 foo(10, b);

 else

 foo(5, b);

can easily become the less verbose (and, arguably clearer):
 foo(fn1() ? 10 : 5, fn2());

Bad design
Of course, unnecessary code is not just the product of low-level code
mistakes or bad maintenance. It can be caused by higher-level design flaws.
Bad design may introduce many unnecessary communication paths
between components – lots of extra data marshalling code for no apparent
reason. The further data flows, the more likely it is to get corrupted en route.
Over time, code components become redundant, or can mutate from their
original use to something quite different, leaving large sections of unused
code. When this happens, don’t be afraid to clear away all of the deadwood.
Replace the old component with a simpler one that does all that is required.
Your design should consider whether off-the-shelf libraries already exist
that solve your programming problems. Using these libraries will remove
the need to write a whole load of unnecessary code. As a bonus, popular
libraries will likely be robust, extensible, and well used.

Whitespace
Don’t panic! I’m not going to attack whitespace (that is, spaces, tabs, and
newlines). Whitespace is a good thing – do not be afraid to use it. Like a
well-placed pause when reciting a poem, sensible use of whitespace helps
to frame our code.

void loop(char *str)

{

 size_t length = strlen(str);

 if (length == 0) return;

 for (size_t n = 0; n < length; n++)

 {

 if (str[n] == '\0')

 {

 // this code will never run
 }

 }

 if (length) return;

 // neither will this code
}

Li
st

in
g

4

JUL 2018 | | 5{cvu}

Write Less Code! (continued)

Use of whitespace is not usually misleading or unnecessary. But you can
have too much of a good thing, and 20 newlines between functions
probably is too much.
Consider, too, the use of parentheses to group logic constructs. Sometimes
brackets help to clarify the logic even when they are not necessary to defeat
operator precedence. Sometimes they are unnecessary and get in the way.

So what do we do?
To be fair, often such a buildup of code cruft isn’t intentional. Few people
set out to write deliberately laborious, duplicated, pointless code. (But
there are some lazy programmers who continually take the low road rather
than invest extra time to write great code.) Most frequently, we end up with
these code problems as the legacy of code that has been maintained,
extended, worked with, and debugged by many people over a large period
of time.
So what do we do about it? We must take responsibility. Don’t write
unnecessary code, and when you work on ‘legacy’ code, watch out for the
warning signs. It’s time to get militant. Reclaim our whitespace. Reduce
the clutter. Spring clean. Redress the balance.
Pigs live in their own filth. Programmers needn’t. Clean up after yourself.
As you work on a piece of code, remove all of the unnecessary code that
you encounter.
This is an example of how to follow Robert Martin’s advice and honour
‘the Boy Scout Rule’ in the coding world: Always leave the campground
cleaner than you found it. [1]

Every day, leave your code a little better than it was. Remove
redundancy and duplication as you find it.

But take heed of this simple rule: make ‘tidying up’ changes separately
from other functional changes. This will ensure that it’s clear in your

source control system what’s happened. Gratuitous structural changes
mixed in with functional modifications are hard to follow. And if there is
a bug then it’s harder to work out whether it was due to your new
functionality, or because of the structural improvement.

Conclusion
Software functionality does not correlate with the number of lines of code,
or to the number of components in a system. More lines of code do not
necessarily mean more software.
So if you don’t need it, don’t write it. Write less code, and find something
more fun to do instead.

Questions
 Do you naturally write succinct logical expressions? Are your

succinct expressions so terse as to be incomprehensible?
 Does the C-language-family’s ternary operator (e.g., condition

? true_value : false_value) make expressions more or less
readable? Why?

 We should avoid cut-and-paste coding. How different does a section
of code have to be before it is justifiable to not factor into a common
function?

 How can you spot and remove dead code?
 Some coding standards mandate that every function is documented

with specially formatted code comments. Is this useful? Or is it an
unnecessary burden, introducing a load of worthless extra
comments?

Reference
[1] Robert C. Martin (2008) Clean Code: A Handbook of Agile Software

Craftsmanship, Upper Saddle River, NJ: Prentice Hall.
ACCU18 Trip Report
Balog Pal reports his experiences from the

2018 ACCU Conference.

had to skip last year, so was really eager to be there again and meet all
the fine folks. This time I brought my young padawan and we decided
to use a shared room (great deal as it’s practically half price) in the

hotel instead of finding a bed outside.
We arrived on Tuesday evening and I hoped to find an extra-schedule
presentation as in previous years. And there was a local group meeting too
really, just it ended by the time of our arrival. Too bad. So fast check-in
and off to the bar to see who is already there. And indeed the area around
the counter was filled with our people. I waved hi to John Lakos before
asking for some ale, then started to process internal confusion alerts. some
parts of the picture didn’t match with my memory from 2 years ago. I even
had to ask someone if that is John or not. And yeah, he was too, JL 2.0 (or
maybe ½.0 would fit better). What is a great thing, last time I was actively
worried for him.
Eventually I met most everyone already on site, but most people were
pretty tired and time-lagged so it was off to sleep even before 2:00. There
will be enough opportunity to catch up later.
I read the schedule around registration time and it, as usually showed an
average over 3 ‘interested’ flags per slot. Though the keynotes did not
look very impressive, based on title and speaker at least, so I was prepared

to just one good of the four, leaving enough room for a pleasant surprise.
And after the opening we headed into the first keynote, that I found
without any substance. On the bright side it was not against expectations.
After that I headed for Anthony’s talk. (For sake of brevity I will not list
my also-considereds as I could paste most of the schedule…) We learned
about more ‘advanced’ tools in multithreading that are supposed to help
in extreme scalability situations. Along with demonstrating problems that
we encounter with the more basic tools. Especially without knowing
details on how the hardware actually works. We also learned that hazard
pointers and RCU proceeds well in the standardization.
After break I went for some nostalgia trip with Jez and Chris. In retrospect
would probably better off with a different choice. Not even sure why,
these days even nostalgia is not as it used to be? Then the last slot went to

I

BALOG PAL
Pal is an old fart who has been dealing with computers
since the ZX81. His main focus is software quality and
bug prevention. In the last decade he has been
extending more to cover process and peopleware issues
too. He can be contacted at pasa@lib.hu
6 | | JUL 2018{cvu}

Nico, a choice that just can’t go wrong. And he showed a lot of new
template-related material since C++11, traps with auto and
decltype(auto), constexpr and much more. Followed by 12 great
lightning talks filled with humor and energy.
As an extra event after that I crashed the SG14 teleconfed meeting where
Herb Sutter presented his new ideas about lightweight exception
handling. One that would allow code generation similar to using return
codes without messing up the source code. Both the material and the
meeting itself was really interesting. The idea would open up exception
handling on gaming and other high-performance platforms where it is
now usually on the forbidden list. Everyone in the room and on remote
agreed it is a thing worth pursuing. Beyond that, on details I observed that
the votes went almost exactly crossed: the number of likes in the room
matched the dislikes on remote and vice versa. Go figure. But it’s okay,
the pesky details can be figured out later to a better consensus.
It felt a long and exhausting day at that point but it seems the bar has really
good regenerative environment,
especially as almost everyone
showed up. And the party went on
to almost the sunrise as is supposed
to happen.
Thursday started with keynote on
Kotlin. A thing I knew like nothing
about (except a few mentions as
successor of java). And by the
presentation I liked it a LOT really,
both the language and its dev
environment. The only down point being it is promised to be ready ‘by
winter’ without a firm specification of a continent and a year OTOH
different sources strongly suggest that Winter is actually coming, so I
have my hopes up and will try this thing in the near future.
Next I decided (looking at the program not sure how) to see how not to
lead a team of software professionals. And it turned out as a really lucky
choice. While it went at half or even third pace compared to others, the
content was really touching, and felt a really honest recollection of one’s
mistakes and faults with a lot to learn from. On top of that I finally got the
inspiration on how to make my next talk on ACCU that eluded me for
good four years.
After the break I was really tempted to see John’s where the presentation
was slimmed similar to the presenter to mere 260 slides – but I decided to
go live with Dietmar for a double handful of good reasons. And learned
some really interesting tech. That it’s even possible to get right on with
simulated concepts before the real ones get implemented. It finished a
little early so I could catch the tail of Hubert Matthews on reads and writes
considered harmful. Turned out I completely misjudged the scope by the
title and probably should have looked at this one from the start.
The last slot is a no-brainer choice with the pub quiz. (And who thinks it’s
fair to run Kevlin in this slot too.) No matter if it is with Jon at the helm
while Olve can’t make it to continue the series of yey-s. The format is a
little different, instead of guessing what the code will produce we have to
make up the shortest program that compiles and uses all the provided
tokens. What could be better than a quiz with freebie drinks (kudos to
Bloomberg folks) than to win it too. And it is not hard using my top talent
of picking the proper team. That is not a hard guess either: the one with
Richard Smith on. :) It turned out an interesting format in practice, though
somewhat spoiled by abuse of templates where gcc maximizes
opportunity in the ‘ill-formed, no diagnostic required’ realm, just make
sure to have dependent expressions. Where Richard comes extremely
handy. :) for the record the second team came up really close too.
After we had the lightnings squeezed in the small room as the big place
was prepared for the dinner party. This year it was moved up from Friday
which was a great thing. Another round of fun, and while the previous day
Jon Kalb and Phil Nash lobbied for East const (the more agile people even
could grab a bracelet beyond learning this cool name for the old
phenomenon), now the conservatives pointed out how uncool it is to call

the old-way ‘West const’. When it is correctly ‘const West’. Quite
obviously – after the fact.
While the dinner commenced I went pubbing with Ralph, Anna and some
more folks, and afterwards resumed the session in the bar till a good
morning.
Friday started with Lisa’s keynote about ‘shape of the program’. Which
turned out really enchanting for me. Possibly a big part was for her voice:
it sounds extremely like Laurie Anderson and even matches the
intonation. (I asked later, not deliberately, it just happens by chance). I
only missed the music in the background, but I almost heard it internally.
And the topology attached to the code was interesting too, providing a
different section compared to what we encounter in our editors. Two out
of three suspect keynotes with thumbs up, great outcome. After the note I
was trying to query people on the mentioned Laurie Anderson similarity
with not much luck: those I tried were not familiar. (Maybe we would
need some talks on evolution of music?).

But that led to another lucky
accident, my last victim was Michel
Groo t j ans and I no t i ced h i s
extremely artistic sketches of the
keynote (rea l ly , look up h is
Facebook page!), and I missed the
pick of the next session as it started
in the room I appeared to be at the
bell. So I learned about graphs from
Dom Davis and an interesting new
query facility based on those.

Really insightful, I’m glad for this switch as I did not originally consider
this to attend.
Also this day brought serious reinforcements: Francis Glassborow,
Jonathan Wakeley and Mike Wong.
In the lunch break there was an ACCU meeting up in the lounge (this year
it was dead space, no arcades, no booze and no people, hope it will return
in the future). It was the preparation for the next-day’s AGM, and a
successful one too as we found a willing candidate for secretary quite out
of the blue.
Then I attended Jon Kalb’s summary of the past, present ad future of C++,
that goes parallel to Uncle Bob’s talk on ‘future of programming’
(obviously 95% being about the past 70 years…:). followed by the event
I had been waiting for for so long: a grilling of the committee. Which was
pretty tuned back on actual grilling and more filled with all kinds of fun.
Another round of great lightning talks was followed by the Microbrewery
event (more kudos to Bloomberg) with food, booze and super-short chess
tournaments. No kidding, 2 and a half minutes on clock that is barely
enough to just move a piece let alone think what to do. Alan won the event
and deserves all the praise despite losing the extra play-off against the
local champion. We also had demo of music played by running programs
on a rPi based thing. That unfortunately turned boring after the first five
minutes. Most people tried to talk with each other but it was really hard
with the loud noise so I rather left for some night walk in Bristol and back
to the bar as usual. And the event was fine and alive, unlike at similar time
in the previous years with the ACCU dinner on Friday when it felt like the
end of the world.
On the last day I started with another obvious choice: Marshall and Jon
paired up like Penn and Teller and introduced us to the trials and
tribulations of those who try to implement the standard library. (And with
handicaps too: turned out they proposed plenty of things to make their life
easier, and those were even adopted into the standard or are on the way –
but to keep the codebase compatible with many different compilers most
of those improvements are on the not-to-use list. DOH. And we learned
some interesting tricks too.
After that came the only slot I was not really moved by either talk or by
title. Decided to go with the Total War, but it was mostly a letdown. In the
break we had the AGM, pretty effective, due to the preparation on the
previous day.

Herb Sutter presented his new ideas
about lightweight exception handling

… that would allow code generation
similar to using return codes without

messing up the source code
JUL 2018 | | 7{cvu}

Don’t Assume Any Non-Zero exit() Will Fail!
Silas S. Brown shares his finding on process exit codes.

 recently came across a little ‘gotcha’ on a BSD system which also
affects GNU/Linux systems. I was using make to run a series of
commands including a Python script, and I assumed that make would

stop if the Python script exitted with non-zero status. In the Python script
I had done os.system() to run a shell command, and, if the result is
non-zero, then sys.exit() with that result to fail the Python script as
well:
 err = os.system("...")

 if err: sys.exit(err) # DON'T DO THIS!

Except make carried on regardless. It didn't stop at the failure.
It turned out that os.system() was returning 256. And in the bash
shell on both BSD and Linux, the command:
 python -c 'import sys; sys.exit(256)' || echo fail

prints nothing.
The POSIX standard wait() and waitpid() calls provide only the
lowest 8 bits of the exit status in WEXITSTATUS, so an exit status of 256
would be read as 0. The newer waitid() call returns 32 bits of exit
status, but obviously not all system tools use it. (The underlying C
standard defines only EXIT_SUCCESS and EXIT_FAILURE as 0 and 1;
it says nothing about how platforms treat other values.)
But why was os.system returning 256 in the first place? As can be seen
from:
 >>> import os

 >>> os.system("exit 3")

 768

the return value of os.system() is not (on Unix/Linux) the
straightforward exit code of the program it called. So we turn to the
Python docs:

On Unix, the return value [of os.system()] is the exit status of the
process encoded in the format specified for wait()

which links to a page saying:
exit status indication: a 16-bit number, whose low byte is the signal
number that killed the process, and whose high byte is the exit status
(if the signal number is zero); the high bit of the low byte is set if a core
file was produced.

Incidentally the man page of the underlying C system() function on
BSD also says, “The system() function returns the exit status of the shell as
returned by waitpid(2)” which says you’re supposed to call
WEXITSTATUS to get the exit status from it if WIFEXITED is true.
So to be more portable, you have to do something like:
 if (err & 0xFF) == 0: err >>= 8

 sys.exit(err)

or check what platform you’re on and act accordingly.
On Windows, os.system() straightforwardly returns the exit code of
the command interpreter. But not all Windows command shells actually
pass on the exit code of the program they ran. cmd.exe does, but the
older command.com on Win9x systems didn’t, and more worryingly
third-party ‘power shells’ and such are not guaranteed to (the Python docs
say check their documentation). So the only way you can guarantee to find
out the real exit code is to run the program directly with os.spawn*, or
use the (new in Python 2.4) subprocess module, instead of using a
system shell.

I

ACCU18 Trip Report (continued)

SILAS S. BROWN
Silas is a partially-sighted Computer Science post-doc in Cambridge
who currently works in part-time assistant tuition. He has been an
ACCU member since 1994 and can be contacted at ssb22@cam.ac.uk
For the last slot another (for me) obvious choice going with Mike Wong.
He was fighting off some cold, but even with that radiates enough stamina
to put a small space station into orbit. He told us about the progress in the
many study groups he is involved in. And the framework created to finally
harness the power in GPUs we have around that are quite underused. I
really look forward to having this SYCL stuff put to use.
And the conference is heading into conclusion with Seb Rose’s keynote
that I originally picked as the only one promising. And it was a great one
too. Seb was out for hiking in the beautiful woods and mountains of
South-France. And found some rally fitting parallel with our everyday
practice of software development. From estimating to clashing our well-
conceived plans with reality. Then embracing all the change the latter
forces on us. This is really a talk everyone should see, packing much
beauty, laughs along with wisdom.
At the end Seb gave the audience some exercise: grab a piece of paper and
write down something one learned here at the conference and plans to put
it into practical use as they return to work. And exchange the paper with
someone around who will query for the progress a few weeks ahead.
(Yeah, that wisdom from agile schools about making things actually
happen by declaring them in public. Unlike all the promises we just make
to ourselves and way too easy to drop out…)
I did not fill the paper as though I did learn plenty of interesting things,
none of them fit as immediate change in my work. But I did think up some
promises: one, to write and submit a trip report. That, if you read this,

actually happened. Second, I want to hang on to the inspiration and
prepare a talk for the next ACCU conf. (For what I also promised myself
earlier, that I shall have the prez complete at submission time, not just a
title, summary and hope to make it up in the last 3–4 months time…) And
as a third thing I had an idea for a C++ proposal to be submitted to WG21
with some gathered feedback (Richard Smith said ‘it looks useful’ and ‘I
see no immediate problems’ so it should have a chance). Let’s hope this
public announcement can create enough starting momentum for them to
not sink under boring problems of everyday struggles.
In the closing words Russel asked for some praise for Francis Glassborow
who created this whole thing now called ACCU and he got a loud Hurrah.
And also hinted that he has a preliminary promise for the venue same time
next year, a good seed for ACCU2019.
As a summary, it was a great conference and I look forward to the next
one already. In the meantime I started to watch the talks I missed – we
have some great progress here, I recall in 2013 there was just one camera,
then two and now almost all talks are recorded. Also it took 2–3 months
for them to appear on YT, now the first ones came up just few days later
and the rest is coming at steady pace. The one thing I miss are the photo
galleries. If you have one, please send a link to our website so it is shared.
Also waiting to read other people’s trip reports. If you were there, write
up your experience! And see ya all on the next instances.
8 | | JUL 2018{cvu}

ARUN SAHA
Arun works in software-defined data centers. He is
passionate about building robust software infrastructure,
engineering high-quality software, and improving
productivity. Arun holds a B.S. and Ph.D. in Computer
Science and can be reached at arunksaha@gmail.com.

Everyday Coding Habits for
Safety and Simplicity

Arun Saha has some simple advice for
forming good habits in C++.

habit is a choice that we deliberately make at some point, and then
stop thinking about, but continue doing, often every day [1].
A lot of times, minor differences in code can lead to significantly

better code. In this article, let us go together through a few such cases
which we encounter in our everyday coding life. None of these is
revolutionary (in fact, you may have seen them before); rather this is a
collection of suggestions how small changes – a few characters in most
cases – can make big differences. [The examples in this article are in C++;
a lot of them apply in C as well.]

Always initialize automatic variables
Do not define uninitialized variables. For example, don’t do this:
 int result;

This defines the variable but it is not initialized to any known value. (It
will have an indeterminate value.) I have seen a lot of bugs arise for this
reason alone. Often such bugs stay hidden for a long time and express
themselves one fine morning. For example, this may happen when the
compiler or the compiler version is changed.
Instead, initialize it to some known value:
 int result = 0;

The exact value to be initialized is not important; choose something that
is appropriate to the context.
Note that this is different from accessing (reading) uninitialized variables
(w h i c h c a n be d e t e c t e d b y t h e c o m p i l e r w a r n i n g o p t i o n
-Wuninitialized). Here, the recommendation is to never leave a
defined variable uninitialized, even if it is not being accessed.
As you might have realized, this applies only to automatic (or local)
variables of the primitive types like char, int, double with all possible
signedness and width, float, and bool. If T is a type with sane default
constructor (such as std::string), then
 T result;

is not a problem.
One of the reasons for this behavior is that the primitive types do not have
constructors. Despite that, a compiler may choose to emit an instruction
for ‘zero’ initialization. However, with C++ and C compilers – together
with their users – being very performance sensitive, such (initialization)
instructions are not usually emitted since they are not required by the
standard.
[Would it make sense for compilers to provide a knob such as -fzero-
initialize-primitives?]

Prefer defining variables only when needed
Don’t define a variable too early only to assign it later. For example, don’t
do this:
 int result = 0;

 // many
 // intermediate
 // lines
 result = ComputeSomething(input);

Rather, define and initialize it together at the point it is used.

 int result = ComputeSomething(input);

If the variable is not expected to be modified thereafter, then mark it
constant as:
 int const result = ComputeSomething(input);

In fact, try organizing the flow of logic and code such that it is a series of
const variables. It not only prevents inadvertent modification of the
variable, it also makes it easy for a reader to follow the flow; it will be one
less thing to track in her working memory. It is considered that the number
of objects that a human can hold in working memory is 7 ± 2 [2]. I try to
be safe and be on the lower side!

Prefer input arguments to be immutable
The safety argument applies to function arguments too. Prefer making the
function arguments const as much as possible. If the method is just
reading the data without modifying, then the data must be const. So,
instead of
 void PrintInorderTraversal(TreeNode * root);

prefer
 // Declaration in .h
 void PrintInorderTraversal(

 TreeNode const * root);

I recommend going one step further by marking the input variable const.
This can be done in the implementation file without putting it in the
header file. This const prevents the local variable pointing to the data
from accidentally getting modified and starting to point to different data.
 // Definition in .cc
 void PrintInorderTraversal(

 TreeNode const * const root);

The recommendation applies equally well for pass-by-reference
arguments. There, instead of
 bool IsValidIpAddress(std::string& input);

prefer
 bool IsValidIpAddress(std::string const& input);

Accessor member functions must be const
In C++, member functions can be const when they are not modifying the
object. Prefer making the member functions const whenever possible.
For example, if a method, such as Print(), is not modifying the object,
then instead of
 struct Foo {

 <stuff>

 void Print();

 <more stuff>

 };

A

JUL 2018 | | 9{cvu}

prefer writing it as
 struct Foo {

 <stuff>

 void Print() const; // Note: 'const'
 <more stuff>

 };

As you know, if a member variable is marked mutable, then even a
const qualified method can modify it. A mutable variable is appropriate
only in some specific circumstances (e.g. a mutex, a hit counter); don’t
overuse it.

Prefer default member initialization
Member variables of primitive types are initialized in the constructor.
Usually, the constructor is in a different file and there is potential for the
initialization to be missed. This tends to happen less during initial creation
but more during later enhancements and maintenance. To prevent that, do
not defer the initialization until the constructor; instead, prefer to initialize
them inline in the class body.
Consider the following snippet.
 // .h file
 struct Foo {

 explicit Foo(int64_t);

 <stuff>

 int64_t fooId_; // Initialization deferred to
 // ctor Potential to be missed
 }

 // .cc file
 Foo::Foo(int64_t fooId) : fooId_{fooId} {}

For safety, I recommend writing it as the following using the default
member initialization feature [3].
 struct Foo {

 <stuff>

 int64_t fooId_{0}; // Known initialization if
 // missed in .cc constructor
 }

 Foo::Foo(int64_t fooId) : fooId_{fooId} {}

Except for a few types like bit-fields and non-length-specified arrays, this
can be used for most of the data types. Note that, if a member variable has
a default member initializer and also appears in the member initialization
list in a constructor, the default member initializer is ignored.
You may have noticed that the concept here is similar to an item above
except that the variable type is different: automatic variable vs. member
variable. In both cases, the motivation is to ensure that a variable is always
initialized to a known value. Instances of such missing initializations may
be detected by g++ with the warning option -Weffc++ [4].

Prefer immutable member variables if you can
For class members which are initialized at construction and never change
during the lifetime of the object, prefer marking them const. Consider the
following example where the object carries the time instant when it was
constructed.
 using TimePoint = std::chrono::time_point

 <std::chrono::system_clock>;

 inline TimePoint

 GetTimePointNow() {

 return std::chrono::system_clock::now();

 }

Instead of the following
 // .h file
 struct Foo {

 <stuff>

 int64_t fooId_{0};

 TimePoint creationInstant_;

 }

 // .cc file
 Foo::Foo(int64_t fooId) :

 fooId_{fooId},

 creationInstant_{GetTimePointNow()} {}

prefer doing
 // .h file
 struct Foo {

 <stuff>

 int64_t const fooId_{0};

 TimePoint const creationInstant_; // Note const
 }

The motivation is similar to marking automatic variables const; safety
from accidental modification and reduced burden of information tracking.

Prefer APIs to provide the result as a return value
Don’t design an API to update a reference or a pointer to the result, let it
return the result. For example, instead of doing
 int result = 0;

 ComputeResult(n, result); // pass by reference
or
 int result = 0;

 ComputeResult(n, &result); // pass by pointer
prefer doing
 int const result = ComputeSomething(n);

This style allows the returned value to be saved in a const variable and
to be used in the subsequent computation. This certainly applies to objects
that are trivially copyable, such as the primitive types. For objects that are
not trivially copyable, it can still be applicable thanks to:

1. Return Value Optimization (RVO)
2. Copy Elision
3. Move semantics

Note however that the rules of the above are quite involved and, in certain
situations, they may not kick in. So, if you want to play safe and avoid it
for non-trivially copyable types, that’s understandable.

Prefer for-loops over while-loops
Instead of writing as a while loop, prefer writing loops as for loops
whenever possible. This is not just a bias towards one keyword over
another; this enables easier comprehension of loop invariants. For
example, instead of the following
 int i = 0;

 while (i < n) {

 <possibly multiple lines of loop body>

 i++;

 }

prefer writing it as
 for (int i = 0; i < n: ++i) {

 <loop body>

 }

In addition, this style has another advantage: the loop variable (here, i) is
not ‘leaked’ to the outer scope unnecessarily.
The recommendation goes for linked list traversal too. Here, instead of
 ListNode const * curr = head;

 while (curr) {

 <possibly multiple lines of loop body>

 curr = curr->next;

 }

prefer writing it as
 for (ListNode const * curr = head; curr;

 curr = curr->next) {

 <loop body>

 }
10 | | JUL 2018{cvu}

As if the above is not enough, the above applies to traversing from both
ends. So, instead of
 void Reverse(T * arr, int64_t const n) {

 int64_t left = 0;

 int64_t right = n - 1;

 while (left < right) {

 swap(arr[left], arr[right]);

 left++;

 right--;

 }

 }

prefer writing it as
 void Reverse(T * arr, int64_t const n) {

 for (int64_t left = 0, right = n - 1;

 left < right; ++left, --right) {

 swap(arr[left], arr[right]);

 }

 }

Note that although it is a by product, saving the number of lines is not the
objective.

Prefer combining boolean conditions into a well-
named variable
If the program logic requires evaluating multiple conditions, then instead
of clamping them together in the conditional of an if statement, for
example, instead of
 if (someCondition(input) &&

 anotherCondition(input) &&

 !yetAnotherCondition(input)) {

 <body>

prefer
 bool const input_valid = someCondition(input) &&

 anotherCondition(input) &&

 !yetAnotherCondition(input);

 if (input_valid) {

 <body>

This has two benefits: the evaluated condition gets a human-readable
name and it becomes easier to view what the condition evaluated to (i.e.
true or false) using a log message or a debugger.

Prefer separate asserts for separate conditions
If you use asserts in your source code to validate assumptions, then do not
combine multiple conditions into a single assert statement.
 void Copy(char * dst, char const * src,

 size_t const length) {

 assert(dst && src); // 2 conditions combined
 <continued>

If you do so and the assertion fails, then the generated message would
mention that the combined condition has failed (along with some meta
information like filename and line number). The person who has to debug
the problem (it could be you at a future time) would not be clear exactly
why the assertion failed. Instead, break the single assertion into multiple
simpler assertions.
 void Copy(char * dst, char const * src,

 size_t const length) {

 assert(dst);

 assert(src);

 <continued>

Now, if the assertion fails, it would be obvious what exactly has failed!

Summary
The table at the bottom of the page provides an at-a-glance view of the
above recommendations.
Software engineering is an eternal fight with complexity. The
recommendations here are based on my experience as a software
engineer. Over time, I have found them useful in constructing durable
code. Unless your situation precludes, I recommend trying them out.
Once they become a habit [1], you would cease thinking about them and
focus on other important aspects of your code.

References
[1] http://charlesduhigg.com/how-habits-work/
[2] https://en.wikipedia.org/wiki/

The_Magical_Number_Seven,_Plus_or_Minus_Two
[3] https://en.cppreference.com/w/cpp/language/data_members
[4] https://stackoverflow.com/questions/2099692/easy-way-find-

uninitialized-member-variables

Avoid doing Prefer doing

1 int result; int result = 0;

2 int result = 0;

int result = ComputeSomething(input);

int const result =

ComputeSomething(input);

3 void PrintInorderTraversal(TreeNode * root);

bool IsValidIpAddress(std::string& input);

void PrintInorderTraversal(TreeNode const * const root);

bool IsValidIpAddress(std::string const& input);

4 void Foo::Print(); void Foo::Print() const;

5 int64_t fooId_; int64_t fooId_{0};

6 TimePoint creationInstant_; TimePoint creationInstant_;

7 ComputeResult(n, &result); int const result = ComputeSomething(n);

8 int i = 0;

while (i < n) {

 <loop body>

 i++;

}

for (int i = 0; i < n: ++i) {

 <loop body>

}

9 if (someCondition(input) &&

 anotherCondition(input) &&

 !yetAnotherCondition(input)) {

bool const input_valid =

 someCondition(input) && anotherCondition(input) &&

 !yetAnotherCondition(input);

if (input_valid) {

10 assert(dst && src); assert(dst);

assert(src);

The opinions expressed in this article are solely the author’s and not the
author’s employers’.
JUL 2018 | | 11{cvu}

http://charlesduhigg.com/how-habits-work/
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.cppreference.com/w/cpp/language/data_members
https://stackoverflow.com/questions/2099692/easy-way-find-uninitialized-member-variables
https://stackoverflow.com/questions/2099692/easy-way-find-uninitialized-member-variables

The Half-Domain/Half-Primitive Proxy
Chris Oldwood presents a pattern for

abstracting client-side proxies for testing.

 recently spent a few years working in the retail sector building web
APIs. Some of these projects were greenfield but I also worked on a
number of existing (brownfield) services too. As you might expect

working on variations of a theme you start to see patterns developing in
the way the services are designed and implemented.
There are apparently only so many ways you can skin a cat and once you
have chosen your programming language and web service framework
many things naturally fall into place as you have bought into their
paradigms. Plenty has been written about these frameworks and how to
use them but that’s not the pattern of focus here, this article looks at the
other end of the wire – the client proxy – an area with less attention to
detail.

Service proxy use cases
When building a web API the ultimate deliverable is the service itself,
more commonly these days a REST API using JSON as the wire-level
content format. If you’re building an API in the enterprise you may have
to support XML too but that seems to be heavily declining as JSON has
been the lingua franca of Internet APIs for some time. The service might
be deployed on premise or in the cloud and could be self-hosted, i.e. you
own the hosting process, or run as part of a shared web service such as IIS.
Hence any client that wants to talk to your service needs to be fluent in
HTTP and JSON too. There are plenty of libraries available for handling
these low-level details; the client use cases we are interested in though sit
just a little higher up the call stack.

Acceptance testing

The most likely client in the beginning will be the set of acceptance tests
used to describe and verify the service’s various behaviours. In something
reasonably small and well defined like a web service the balance of the
testing pyramid [1] may be skewed in favour of more customer tests and
less programmer tests as they provide the perfect opportunity for outside-
in [2] development. Yes, unit tests are still highly useful for those
behaviours which are much harder to invoke from the outside without
exposing back-door endpoints, such as error recovery, but the lion’s share
can be invoked by an external client.
Therefore our primary need for a proxy is to facilitate the writing of
acceptance tests for our service. Our test cases need to be able to invoke
our API in a variety of ways to ensure we cover both the happy paths but
also the less happy ones too by ensuring both malicious and accidentally
malformed inputs are correctly handled and the caller is provided with as
much information as possible to correct the error of their ways. For
example we might write a test like the on in Listing 1 to check that a REST
resource is correctly secured.

Deployment/monitoring/smoke testing

While acceptance tests take care of all the fine details about how the
service works, you probably want something a little

simpler to just ‘kick the tyres’ during (or just after) a deployment. You
could re-purpose the acceptance tests, minus any that use private APIs to
perturb the clock or other internal details, but they are often overkill when
all you really want to do is exercise some core customer journeys. For
example one journey might be to find the most recent order for a known
test customer (as we’ve just exercised the journey to place an order for
them and already know it succeeded): see Listing 2.
Deployment isn’t the only time when you might want to exercise your
API in this way though; you’ll want to keep doing it all through the day
as part of your monitoring strategy. The use of ‘canaries’ is a common
technique for firing requests into your system at repeated intervals to
allow you to record how it’s behaving. If you can capture some
performance data at the same time [3] you have an easy way to track the
change in performance over time from the client’s perspective (if you can
invoke it from another data centre) and correlate that with the load at those
moments in time.
Even during development or bug fixing it’s still useful to be able to run
the smoke tests quickly over your local build, especially if the acceptance
tests take some shortcuts, such as hosting the API in-process. For
example, whenever changing something other than functional code that
will affect the set of deployed artefacts, like adding or removing
assemblies or updating 3rd party package, it’s useful to do a full build and
deploy locally and then run the smoke tests before committing. This is to

I

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise-grade technology in
plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted
via gort@cix.co.uk or @chrisoldwood

[TestFixture]

public class orders_are_secured

{

 [Test]

 public void

request_returns_unauthorised_when_token_missing()

 {

 const string customerId = "123456789";

 var request =

 new FetchOrdersRequest(customerId);

 request.RemoveHeader("Authorization");

 var proxy = new ShopProxy();

 var response = proxy.Send(request);

 Assert.That(response.StatusCode,

 Is.EqualTo(401));

 }

}

Listing 1

public static void ViewLatestOrder(

 CustomerId customerId, ...)

{

 var shop = new ShopProxy();

 var token =

 shop.AcquireCustomerToken(customerId,

 credentials);

 var orders = shop.FetchLatestOrders(customerId,

 token);

 . . .

}

Listing 2
12 | | JUL 2018{cvu}

ensure nothing has been left out, like a configuration setting or binary that
will cause the service to choke on start-up and unnecessarily disrupt the
delivery pipeline.

Support

In my recent ‘Toolbox’ column Libraries, Console Apps and GUIs [4] I
described how I’ve found that home-grown tools often have a habit of
being useful to a wider audience, such as a support team. Hence when you
have a simple tool that can exercise a few basic journeys you already have
all the code you need to provide fine-grained access to your service
through, say, a command line interface.
For something like a REST API which has been built on open protocols
and for which the Internet provides a bewildering array of tools it might
seem a little wasteful putting a custom tool together. In the early life of an
HTTP service a tool like CURL or a Chrome extension such as Postman
can provide everything you need to poke the endpoints and see the
responses. However once you start needing to make calls out to more than
once service to accomplish a bigger task, such as requesting an access
token from an authentication service, the friction starts to accumulate.
At this point that shell script which fuses together CURL for the HTTP
aspects, along with, say, JQ for the JSON parsing starts to become a little
unwieldy, especially if you’re on the Windows platform where these tools
aren’t installed by default. A Windows heavy enterprise will probably use
an NTLM based proxy too for accessing the outside world which can
create another world of pain if you’re trying to use open source tooling
[5]. Hence putting together a little .Net based tool (or PowerShell script
which uses .Net under the covers) can hide this unnecessary noise from
the (support) user. Fortunately CURL is one of those tools which can
punch its way through an NTLM proxy (with the relevant command line
switches), although you still need to watch out for certificate problems if
the organisation uses its own. (Self-signed certificates are a common
technique in the enterprise at the moment for monitoring traffic to the
outside world.)
With the various API endpoints exposed through a little command line
tool it makes it really easy to automate simple support and administration
tasks. Instead of stitching together low-level tools like CURL and JQ you
can work at a higher level of abstraction which makes the already
daunting tasks of comprehending a shell script just that little bit easier. For
example I might need to check the loyalty points balance for an arbitrary
customer that would first require a special, short-lived ‘administration
token’ to be obtained using my separate administrative credentials:
 > PointsAdmin view-balance --customer 123456

 --administrator %MY_ADMIN_LOGIN% --password

 %MY_ADMIN_PASSWORD%

 42.5

This approach can also be used as an alternative to monkeying around
with the database. While there may be times when a one-off database
tweak might be necessary it’s preferable to factor support and
administration functions directly into the API (secured of course) so that
the chances of corrupting any data are minimised by accidentally
violating some invariant which is enforced in the service code rather than
the database (a necessity with the newer document-oriented databases).

Client SDK

One natural by-product of creating an independent proxy for your service
is that you have something which other service consumers might find
useful, assuming of course they are using the same language or runtime.
In the enterprise arena where the desire is to minimise the number of
unique languages and runtimes in play it’s highly likely that one more
consumers may find your wares of interest. (With the CLR and JVM the
programming language does not have to be the same but in my experience
enterprises still limit the number of languages even on these runtimes
despite the built-in interoperability benefits.)
That said it’s easy for shared libraries like this to become a burden on the
team, especially when the consumers assume they form a supported part

of the product. If that is a responsibility the team wishes to take on, then
so be it, but unless this is agreed upon the proxy should be considered
nothing more than a ‘leg up’ to help a consumer bootstrap their use of the
service. They should have the choice of whether to fork your source and
customise it, or build their own. Removing this supporting role often goes
against the commonly established enterprise goal of maximising
efficiency, but it is necessary to ensure the higher purpose of decoupling
the service and consumer deliveries where possible.
On the face of it providing a proxy may not seem like much of a burden
but the interfaces and data types are only one part of what it takes to write
a solid, reliable client. Once you start factoring in logging [6],
instrumentation, and monitoring [7] the need to provide hooks to allow
your code to interoperate with whatever product choices the caller has
chosen for these concerns adds to the complexity. If you plan to use your
own technical and domain types [8] too, e.g. Optional, Date, CustomerId,
etc. then these need to be easily accessible so the consumer doesn’t need
to ship half your service libraries as well as their own just to use it.

Typical evolution – multiple choices
In my experience these various use cases, when they do eventually appear,
will end up as a discrete set of different libraries or tools. Consequently
by the time the pattern begins to surface the design has long passed the
point where a simple refactoring can bring together the various strands
into a single coherent component. What follows below is one common
path I’ve observed.

Acceptance tests

The proxy used in the acceptance tests will no doubt evolve in a very
rough-and-ready fashion. Being ‘merely’ test code there will be little
thought put into how the tests need to talk to the service under inspection
and so the code will probably suffer from a form of Primitive Obsession
[9] where the native HTTP client library will feature heavily. Eventually
common utility methods will be introduced but no serious refactoring will
take place and the need to verify both happy and error paths will lead to a
smorgasbord of overloads with some throwing and others returning
values. Being used solely for testing (at this point) there’s a good chance
that the test framework assertion methods will be interwoven with the
proxy code (rather than there being a clear boundary between ‘sending the
request’ and ‘validating the response’); for example, see Listing 3.
In the early days of an API where you’re not even sure what conventions
it will adopt, such as what URL structure to use, query parameters vs
body, headers, etc. the API needs to evolve quickly. If the initial focus is
on the happy path then the size of the proxy interface may be quite small
and easily maintainable but as the error paths begin to play a role and

public string OpenTestAccount(string customer)

{

 var request =

 new OpenAccountRequest{ Customer = customer };

 var response =

 ShopProxy.Send<OpenAccountResponse>(request);

 Assert.That(response.StatusCode,

 Is.EqualTo(200));

 Assert.That(response.AccountId, Is.Not.Empty);

 return response.AccountId;

}

[Test]

public void closing_an_account_returns_ok()

{

 var accountId = OpenTestAccount(". . .");

 var request = new CloseAccountRequest{

 AccountId = accountId };

 var response = ShopProxy.Send(request);

 Assert.That(response.StatusCode,

 Is.EqualTo(200));

}

Listing 3
JUL 2018 | | 13{cvu}

more control is needed around the URL, headers and body content, the
more work is needed to keep everything in sync and make sure that every
test really does exercise the behaviour it thinks it does. If the API changes
quite radically, e.g. a change in the ‘resource’ structure, then a lot of ad
hoc test code might need fixing up – treating test code as a first class
citizen is important for supporting rapid change.

Deployment/monitoring/smoke tests

As alluded to earlier if the service is based on open protocols, like HTTP,
then it’s certainly possible to cobble together whatever you need from
established open source tools, like CURL. Deployment tools like Ansible
and dynamic languages like Python have plenty of modules for both high-
level tasks, like configuring a machine, and lower-level tasks, such as
testing port connectivity and making basic transport requests. Therefore
it’s quite possible that unless the development and deployment teams are
aligned (if they’re not one and the same) they will each use what they
know best and create their own method for testing the service’s
availability. This isn’t a problem per se unless the development team
wants to iterate quickly over their API and it causes friction down the
delivery pipeline due to unexpectedly breaking the deployment and
monitoring processes.
This is one of the reasons why operations’ concerns must be factored into
any user stories and the definition of ‘done’ should include monitoring
and alerting updates as well the more obvious developer oriented tasks.

Support

A similar argument can probably be made for any support requirements –
they will use whatever off-the-shelf tools they can find or are already used
to. Similarly if they have a choice between directly accessing the database
and trying to go through the API, the path of least resistance leads to the
former choice unless their needs are also explicitly factored into the
service design and tooling.

Client SDK

The reason for choosing open protocols is that it affords any consumers
the ability to choose what technologies they prefer for accessing the
service. Therefore on the principle of ‘use before reuse’ [10] there is
unlikely to be a direct need to provide a formal client proxy unless the
team happens to be responsible for maintaining a number of related
services and therefore there is something to be gained from having a
component that can be shared.
What is highly unlikely to occur (unless it’s a conscious decision) is that
the proxy developed for the acceptance tests can be easily factored out
into a separate component that is then reusable in both scenarios. It is
more likely the other way around, i.e. reusing the client SDK for some
aspects of the acceptance tests (happy paths), if the refactoring costs are
considered worth it.

Pattern vocabulary
Although the pattern uses the term ‘proxy’ it should be pointed out that
this use is not entirely in keeping with the classic Proxy pattern described
in the seminal book on Design Patterns by ‘The Gang of Four’ [11]. One
of the key traits of the pattern described in that book is that the proxy
exposes the same interface as the underlying object. In essence a proxy in
their eyes is entirely transparent and acts purely as a surrogate for the real
deal. In this article the underlying transport class provided by the
language runtime fulfils that role, which for .Net would be HttpClient for
the HTTP protocol.
One of the most important aspects of the Design Patterns movement was
the attempt to introduce a common vocabulary to make it easier to talk
about similar design concepts. Hence it feels a little awkward not to stick
to the letter of the law, so to speak, and use it for something which is more
loosely related. For me proxies have been placeholders for remote objects
and services ever since I wrote my first RPC code on a Sun 3/60
workstation at university and therefore I feel the surrogate aspect of this

design is in keeping with their pattern, even if the exposure of a different
interface is not. Hopefully no one will be confused by my choice of term
because I’ve painted outside the lines in a few places.
That does not mean though that we are entirely excluded from using the
other patterns in that seminal work for describing our ‘creation’. On the
contrary this pattern is essentially just the composition of two of their
other classics – Adapter and Façade.

Pattern structure
Figure 1 shows the general shape of the pattern:

Back-end façade

Working slightly unusually from the network end back up to the caller we
begin with the underlying transport class that provides the true proxy for
the service we want to access which is often provided by the language
runtime. Being a general purpose class this needs to expose everything
that anyone would ever likely want to do to access a service using the type
of network transport in question. For something like HTTP this could
include everything ranging from simple JSON REST APIs up to
streaming content of different media types using different encodings.
Our requirements however are often far more meagre and what we
initially need is to reduce that all-encompassing interface down into
something simpler and more focused. For example if we’re talking to a
microservice using HTTP and JSON we can simplify a lot of the interface
and make many more assumptions about the responses. In design pattern
terms this simplification is known as a façade.

Front-end adapter

With the transport layer interface largely simplified, albeit still with some
elements of complexity to allow ourselves enough control over the more
unusual requests we’ll be sending, such as during testing, we now need to
hide that grunge for the client that isn’t interested in any of that but wants
something richer and more intuitive.
Hence the front-facing half of the proxy is more akin to an Adapter from
the original Gang of Four book. In this instance its role is to present an
interface to the caller that deals in rich types, which is typically why we’re
using a statically typed language, and convert them into the more text
oriented world of the façade. Likewise the return path transforms the
responses from text to types and also maps any failures into a more
suitable error mechanism.
There is an element of further simplification going on here too, so it is also
façade-like in nature, but its primary purpose is to provide a different
interface rather than a simpler version of the same one.

Pattern interfaces
Now that we have a grasp on the various forces that are driving the design
and a feel for the overall pattern shape we can look at the interfaces of the
two halves in more detail. This time we’ll look at them in the more
conventional order starting with the consumer’s perspective and then
moving behind the curtain.

The domain interface

For normal production use it is desirable to move away from a typical
‘stringly typed’ interface and instead traffic in rich domain types like
dates, product identifiers and enumerations. At this level, if you’re using

Domain

Interface

ADAPTER

Primitive

Interface

FAÇADE

Native

Proxy

Consumer

Tests

Tools

3rd Party

Figure 1
14 | | JUL 2018{cvu}

a statically typed language, then the type system can work for you, both
to help catch silly mistakes but also provide you with hints through tools
like IntelliSense.
To invoke a simple query on the service shouldn’t require you to know
how to format the URL, or what goes in the header, or how dates and
times need to be passed in JSON (which has no native date or time type).
The domain level interface abstracts all of this away and hides enough of
the transport details to make remote calls appear less remote (avoiding
overly chatty interfaces).
 var shop = new ShopProxy(hostname);

 var lastMonth = DateTime.Now.AddDays(-30);

 var orders = shop.FindOrders(lastMonth,

 Status.Delivered);

The network is unreliable though and so error handling probably takes the
form of exceptions as recovery from low-level transient request failures
will likely take the form of continuous retries somewhere further up the
stack. A basic exception hierarchy can support the most common
catastrophic error scenarios, such as timeouts, disconnections, service
failures (e.g. 500 and 503), client errors (e.g. 400), etc. Buried in these
exceptions might be more fine-grained diagnostic context but the
exception type itself should be enough to indicate if it’s a (fast) retry
scenario, there is something more fundamentally broken at the client end
and a (slow) retry or triaging is required, or the request is just broken and
we need to ‘return to sender’.
While exceptions might be a suitable technique for handling transport
level failures there are a number of HTTP error codes which fall into the
less exceptional end of the spectrum, such as 404 which means a resource
couldn’t be found. While this might be down to a bug in your client
(you’ve requested the wrong thing due to a URL formatting error) if there
is a chance, either through concurrency or due to later deletion, that it
might not exist then an Optional<T> would probably be a better return
type (for example, see Listing 4).
Likewise if updating a resource can fail due to concurrency conflicts then
it’s better to represent that in the interface so the caller stands a better
chance of realising they need to do more work than simply keep sending
the same request again and again. (They may choose to turn it into a
‘conflict’ exception type but that’s their judgement call.)
A key rationale for the split in the design is that the domain-level proxy
sits on top of the primitive-level proxy and therefore has the opportunity
to compensate for idiosyncrasies in the representation chosen by the
service so the caller gets a more cohesive interface. A common example
is where a web API chooses to represent domain errors by returning a 200
status code and a body instead of using the preferred 4XX status codes. In
my recent article on monitoring [5] I gave another example of where a 400
status code was used instead of a 404 when a resource was missing. In
both these cases the normal REST semantics have been ‘abused’ and
therefore we need to transform an apparent success or failure into the
other realm – it’s the job of the domain-level proxy to hide these kinds of

edges. (If the service provider ever releases a new version of the interface
that corrects these defects the domain interface should remain
unaffected.) See Listing 5.
As we’ll see in a moment though the consumer always has the possibility
of dropping down a level if the richer interface doesn’t provide the kind
of semantics they’re looking for.

The primitive interface

While the outer layer focuses heavily on the happy path and tries to make
things easier for the consumer by leveraging the type system, the inner
layer provides a more raw experience whilst still shielding the caller from
all the gory details of the underlying transport mechanism. The aim is still
to provide a coherent API whilst at the same time giving them more
control over the various elements of the request and response when
required.
Hence whereas the domain-level proxy will traffic in rich domain types
the primitive-level proxy will likely deal in basic structures and string
based values. The client will also have the option to control the headers
and URL if required, whilst using any additional building blocks provided
for those aspects they chose to adopt the default behaviour for. Another
classic Gang of Four pattern, Builder, can be used to provide full control
while helper methods can be added to get the ball rolling, see Listing 6
(for example).
When writing acceptance tests you usually want to create various
malformed requests to test your validation code, these require as much of
the request to be production-like as possible with only one aspect mutated
in each scenario. Hence to avoid false positives the test should leverage as
much of the real production code as possible to format the request whilst
still being able to tweak the one aspect under test. For example we might
write a test like the one in Listing 7 to check we only allow dates to be sent
in ISO 8601 format.
The approach to parsing the response and error handling will also
typically be more manual. Rather than throw exceptions the primitive-
level proxy will largely return composite values that contain both the
successful result and the error on failure. The caller then inspects the
return value and queries the relevant part of the structure and acts
accordingly. In the case of a successful request the body will contain the
content, if any, whereas in the failure scenario any combination of the
result code, headers and body could be used to formulate a richer error
value. A complex result type for a JSON based REST API might look
something like Listing 8.
Although we could have used an Optional<T> type for the success and
error contents and foregone the Succeeded property I’ve chosen instead to
make those an implementation detail here (not shown) and force the caller
to query the Succeeded property to decide which content object should
then be inspected – Content or Error.

public Optional<Balance> FetchBalance(AccountId

accountId)

{

 var request =

 new FetchBalanceRequest(accountId);

 var response =

 proxy.Send<BalanceResponse>(request);

 if (response.Succeeded)

 return Optional<Balance>.Some(

 response.Content.Balance);

 else if (response.StatusCode == 404)

 return Optional<Balance>.None;

 else

 throw new BalanceFetchError(. . .);

}

Li
st

in
g

4

public Optional<AccountId>

LookupAccount(CardNumber cardNumber)

{

 var request =

 new LookupAccountRequest(cardNumber);

 var response =

 primitiveProxy.Send<LookupResponse>(request);

 if (response.Failed)

 ThrowError(response);

 if ((response.StatusCode == 200)

 && (!response.Content.Error.IsEmpty()))

 {

 throw new

 AccountLookupError(response.Content.Error);

 }

 return response.Content.AccountId.ToOptional();

}

Listing 5
JUL 2018 | | 15{cvu}

Network-level problems, such as failing to resolve the target hostname,
could be dealt with either way. On the one hand sticking entirely to
exceptions or return values makes for a more consistent interface however
in reality these low-level failures may be outside the remit of what you’re
trying to allow recovery of, just like an out-of-memory issue. (In the
enterprise arena where I’ve applied this approach the only recovery from
network issues is essentially to ‘wait it out’. Host configuration errors can
usually be spotted at deployment time by proactively probing during
service start-up.)

Summary
Like any design pattern this is a solution to a problem in a particular
context. If your context is building a service for which you intend to write
some client code in a number of different guises, such as acceptance tests
or other tooling, where you will likely need a mixture of high-level and
lower-level interaction, then splitting your proxy in half may make sense.
Naturally you should be wary of over-engineering your design, however
at the same time keep an eye out to see if you can reduce some complexity

on the client-side by removing a little duplication before it becomes
irreversible.

References
[1] Test Pyramid, Martin Fowler,

https://martinfowler.com/bliki/TestPyramid.html
[2] TDD – From the Inside Out or the Outside In?, Georgina Mcfadyen,

https://8thlight.com/blog/georgina-mcfadyen/2016/06/27/inside-
out-tdd-vs-outside-in.html

[3] ‘Simple Instrumentation’, Chris Oldwood, Overload 116,
https://accu.org/index.php/journals/1843

[4] ‘In The Toolbox: Libraries, Console Apps & GUIs’, Chris Oldwood,
C Vu 30–2, http://www.chrisoldwood.com/articles/in-the-toolbox-
libraries-console-apps-and-guis.html

[5] ‘The Curse of NTLM Based HTTP Proxies’, Chris Oldwood,
http://chrisoldwood.blogspot.com/2016/05/the-curse-of-ntlm-based-
http-proxies.html

[6] ‘Causality – Relating Distributed Diagnostic Contexts’, Chris
Oldwood, Overload 114, https://accu.org/index.php/journals/1870

[7] Monitoring: Turning Noise into Signal, Chris Oldwood,
Overload 144, https://accu.org/index.php/journals/2488

[8] ‘Primitive Domain Types – Too Much Like Hard Work?’, Chris
Oldwood, http://chrisoldwood.blogspot.com/2012/11/primitive-
domain-types-too-much-like.html

[9] ‘PrimitiveObsession’, C2 Wiki,
http://wiki.c2.com/?PrimitiveObsession

[10] ‘Simplicity Before Generality, Use Before Reuse’, Kevlin Henney,
https://medium.com/@kevlinhenney/simplicity-before-generality-
use-before-reuse-722a8f967eb9

[11] Design Patterns: Elements of Reusable Object-Oriented Software,
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
https://en.wikipedia.org/wiki/Design_Patterns

public class FetchOrdersRequest

{

 public Headers Headers { get; }

 public Content Content { get; }

 public class Content

 {

 public string AccountId { get; set; }

 public string FromDate { get; set; }

 public string ToDate { get; set; }

 }

}

public static FetchOrdersRequest

 BuildFetchOrdersRequest(this

 ShopProxy proxy, AccountId accountId,

 Date from, Date to)

{

 return new FetchOrdersRequest

 {

 Headers = proxy.DefaultHeaders,

 Content = new Content

 {

 AccountId = accountId.ToString(),

 FromDate = from.ToIso8601(),

 ToDate = to.ToIso8601(),

 },

 };

}

Li
st

in
g

6

[Test]

public void

non_iso_8601_format_from_date_generates_an_error()

{

 // . . .
 var request = new FindOrdersRequest(accountId,

 fromDate, toDate);

 request.Content.FromDate = "01/01/2001";

 var response =

 proxy.Send<FindOrdersResponse>(request);

 Assert.That(response.StatusCode,

 Is.EqualTo(400));

 Assert.That(response.Error.Content,

 Does.Contain("ISO-8601"));

}

Li
st

in
g

7

public class HttpResult<ContentType, ErrorType>

{

 public bool Succeeded { get; }

 public int StatusCode { get; }

 // On success.
 public ContentType Content { get; }

 // On failure.
 public ErrorType Error { get; }

 // For diagnostics.
 public Headers Headers { get; }

 public string Body { get; }

}

Listing 8
16 | | JUL 2018{cvu}

https://martinfowler.com/bliki/TestPyramid.html
https://8thlight.com/blog/georgina-mcfadyen/2016/06/27/inside-out-tdd-vs-outside-in.html
https://8thlight.com/blog/georgina-mcfadyen/2016/06/27/inside-out-tdd-vs-outside-in.html
https://accu.org/index.php/journals/1843
http://chrisoldwood.blogspot.com/2016/05/the-curse-of-ntlm-based-http-proxies.html
http://chrisoldwood.blogspot.com/2016/05/the-curse-of-ntlm-based-http-proxies.html
https://accu.org/index.php/journals/1870
https://accu.org/index.php/journals/2488
http://chrisoldwood.blogspot.com/2012/11/primitive-domain-types-too-much-like.html
http://chrisoldwood.blogspot.com/2012/11/primitive-domain-types-too-much-like.html
http://wiki.c2.com/?PrimitiveObsession
https://medium.com/@kevlinhenney/simplicity-before-generality-use-before-reuse-722a8f967eb9
https://medium.com/@kevlinhenney/simplicity-before-generality-use-before-reuse-722a8f967eb9
https://en.wikipedia.org/wiki/Design_Patterns
http://www.chrisoldwood.com/articles/in-the-toolbox-libraries-console-apps-and-guis.html
http://www.chrisoldwood.com/articles/in-the-toolbox-libraries-console-apps-and-guis.html

#include <algorithm>

#include <functional>

#include <iostream>

#include <iterator>

#include <vector>

class postcondition

{

public:

 postcondition(std::function<bool()> check)

 : check_(check) {}

 ~postcondition()

 {

 if (!check_())

 std::cerr << "Postcondition failed!\n";

 }

private:

 std::function<bool()> check_;

};

template<typename T>

std::vector<T> get_values(int n,

 std::function<T(T)> generator)

{

 std::vector<T> v;

 auto is_increasing = [&v]() {

 return is_sorted(v.begin(), v.end()); };

 postcondition _(is_increasing);

 T j = 0;

 for (int i = 0; i != n; ++i)

 {

 j = generator(j);

 v.push_back(j);

 }

 return v;

}

Li
st

in
g

1

Code Critique Competition 112
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.
Note: If you would rather not have your critique visible online, please inform
me. (Email addresses are not publicly visible.)

Last issue’s code
I’m playing around with simple increasing sequences of small numbers
and seeing what various different generators produce. I had problems
that sometimes the result was wrong – for example if I produce a number
that overflows the integer size I’m using – and so I added a postcondition
check that the output sequence is increasing. However, I’ve found the
check doesn’t always ‘fire’ – it works with gcc with or without optimisation
but fails with MSVC unless I turn on optimisation. I’ve produced a really
simple example that still shows the same problem, can you help me see
what’s wrong?

Expected output, showing the postcondition firing:

 1,2,3,4,5,6,7,8,9,10,

 1,3,6,10,15,21,28,36,45,55,

 1,1,2,3,5,8,13,21,34,55,

 1,5,14,30,55,91,140,204,285,385,

 Postcondition failed!

 1,5,14,30,55,91,-116,-52,29,-127,

Can you help (and perhaps identify one or two other issues en route)?
(Unfortunately, the first few lines from fibonacci() didn’t appear in
the printed copy of CVu. We apologise for the confusion this caused.)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

using out = std::ostream_iterator<int>;

template <typename T>

void sequence()

{

 auto const & result = get_values<T>(10,

 [](T i) { return i + 1; });

 std::copy(result.begin(), result.end(),

 out(std::cout, ","));

 std::cout << std::endl;

}

template <typename T>

void triangular()

{

 T i{};

 auto const & result = get_values<T>(10,

 [&i](T j) { return j + ++i; });

 std::copy(result.begin(), result.end(),

 out (std::cout, ","));

 std::cout << std::endl;

}

template <typename T>

void fibonacci()

{

 T i{1};

 auto const & result = get_values<T>(10,

 [&i](T k) { std::swap(i, k); return i + k; });

 std::copy(result.begin(), result.end(),

 out (std::cout, ","));

 std::cout << std::endl;

}

template <typename T>

void sum_squares()

{

 T i{1};

 auto const & result = get_values<T>(10,

 [&i](T j) { return j + i * i++; });

 std::copy(result.begin(), result.end(),

 out (std::cout, ","));

 std::cout << std::endl;

}

int main()

{

 sequence<int>();

 triangular<int>();

 fibonacci<int>();

 sum_squares<int>();

 sum_squares<char>(); // overflow expected
}

Listing 1 (cont’d)
JUL 2018 | | 17{cvu}

Critiques

Balog Pal <pasa@lib.hu>

“I produce a number that overflows the integer size I’m using – and so I
added a postcondition check that the output sequence is increasing.”
Hmm. Signed integer overflow is undefined behavior. If we have that in
the program, postcondition checks will not help – or reliably detect
problems. Let’s see the code if it is indeed the source of the problems.
First, just a fast read from the top making notes of other problems.
The postcondition class has a converting ctor, we probably want an
explicit here. It takes function by value, probably following some
outdated wisdom on passing predicates by value. I learned the hard way
that std::function is a fat beast and pass it around as const ref.
Though for this case we make a copy of what is passed, so the preferred
way is probably indeed taking it by value, but then move in instead of
creating yet another copy.
Formally we’re violating the rule of 3, but the intended use form will not
lead to problems. The industrial version would probably inherit from
nocopy and possibly require noexcept for the check function too. I
guess the idea about using the check in dtor is to cover all exit paths
automatically instead of explicit points. That’s fine, but we need to be
extra careful about object dependencies, avoid accessing objects in the
check function that were already destructed.
check_(check) is a form I avoid and use the same name for member
variable and parameter, experience shows that this is less error prone in
general, unless the compiler has reliable warning on mistakes made when
writing check_(check_).
get_values again takes function by value. What’s worse, it takes
function for no good reason I can imagine. It’s a template, should just
have another parameter for type of passed generator and take the source
without repackaging it. It uses the postcondition with a lambda, the
dependency chain looks fine at glance. We’re calling the generator with
the previous aggregate and just storing it in a vector. The check also looks
okay, with all the std:: noise around (what I would not have in my code)
it is odd to see the naked is_sorted, but it should work via ADL.
Then we have the sample sequence functions. With obvious blatant copy-
paste for the printout part. That at least should be extracted into a function,
but my preferred way would separate responsibilities and just return the
vector with the sequence and have an outer framework that used these and
arrange the printing or whatever other work.
In the implementation I prefer the initial value look i = 0; and i = 1;
instead of the {1} and especially the {} form. I also note that naming of
the local and lambda param would fare well in IOCCC, so we’ll look
ahead to deciphering what is really going on. It also shows that the
interface is weak on design: it would be so much easier if we got both the
sequence number and the aggregate as argument.
auto const & result = get_values is okay, we get life-extension
on the result coming from the function. But these days I prefer just auto
const as copy-elision is reliable for construction, and for the & case, the
compiler is actually allowed to make a copy if it feels like it. Making the
difference moot.
Let’s check the generator lambdas. For sequences, there’s little chance of
getting it wrong. In triangular we increment i, that is correctly
captured by ref (and explicitly too).
fibonacci deviates from all traditions that would use 2 values and roll
them. Instead it struggles with just one. It looks to work through evil
trickery, at least for types covered by std::swap. Which should be
switched to the using std::swap; followed by unqualified call to
pick up possible user-defined overloads, not just specialisations.
sum_squares has i * i++. Wow. We were looking for UB, but not
this one. :) I’m skipping this discussion; if anyone is interested, please
read the gigabytes we typed over the last 30 years about i + i++ and
similar expressions. This one is not covered even by the recent refining of
the order of evaluation for C++17 (P0145R3) and we have an explicit

example in the execution section. But even if ++ was reliably sequenced
at i++, the outcome would still be unspecified and we may generate the
wrong number depending on whether the increment happens before or
after reading the first i. The fixed form should create the value first and
do the increment afterward.
Finally, main leaves nothing to note. After we have fixed the previous
problems, the int versions should work fine. The char version is indeed
bound to overflow, let’s look where. The lambda in sum_squares
would be the obvious candidate, but it is actually okay: the expression has
char type inside that gets promoted to int, the + and * are calculated on
int without overflow and the return type, as we didn’t say otherwise is
int too.
So, UB dodged here; j = generator(j); must be the place where we
narrow the int down to char. The MSVC compiler actually flags it for
us, but not at that place: it is lost in the preceding lines of code. And this
line is not picked anywhere. Ah, and it is right too: at that spot we call
generator() that is a T(T) function and we store char as char. The
narrowing magic is done inside the dark corners of std::function
where it adapts our int(char) lambda. And with all the type-punning
around even the compiler can’t tell us the point.
Anyway, what we have is not an overflow in an expression but a
narrowing conversion. Which is not UB, ‘just’ providing an
implementation-defined value for the out-of-range case. And the values
we saw in the vector suggest we got negative values and CAN expect the
postcondition check to fire. I definitely missed something during the code
reading.
In MSVC, I can usually debug inside lambdas and other odd locations, but
no luck in this case. The breakpoint on the postcondition check just never
triggers, despite it being called. So I wrote some dump code inside
check. And found that in debug mode the vector v is empty. Thus
passing the sorted check with flying colors....
DOH. My working theory is that we are hit by NRVO/move semantics. In
get_values, we return a vector by value, and do that from a local
variable named v. At return point v is considered xvalue so returning it
via move is fair game. And in that case the content is moved out from v
to the temporary that gets actually returned. Then the destructors are
called and the check is executed on the ‘unspecified-though-valid’ state of
the eviscerated v. That happens to look empty, but could be anything
really. While in release build, the compiler probably uses NRVO,
avoiding the copy/move completely. v never exists as a local variable but
gets constructed at the caller’s location, so the check function sees its
content.
As experiment, I tried return std::move(v); in get_values, that
kills NRVO and with that MSVC release mode became consistent with
debug, and check was looking at empty vector in both.
Though it makes sense the way we saw, I made an extra check in the
standard. And indeed, 9.6.3p3 clearly states:

The copy-initialization of the result of the call is sequenced before the
destruction of temporaries at the end of the full-expression established
by the operand of the return statement, which, in turn, is sequenced
before the destruction of local variables (9.6) of the block enclosing the
return statement.

So we better commit an extra bullet to the check list on destructor-
dependencies with the case of move-from-return beyond the early
destruction cases.

James Holland <James.Holland@babcockinternational.com>

The problem with the student’s code is associated with the return
statement of get_values(). It seems to me that in debug mode, the
vector v is being affected in some way before the destructor of
postcondition is called. It is probable that Named Return Value
Optimisation (NRVO) is employed resulting in the contents of v being
moved to the calling function. This would leave v in a valid but unknown
state. I suspect, in this case, v has been left with zero length. Furthermore,
I suspect that the destructor of postcondition reads the modified
18 | | JUL 2018{cvu}

value of v and finds it empty. If this is the case, postcondition will
conclude that v is sorted and not produce a warning message. (An empty
string is considered sorted.)
To my mind, this is incorrect behaviour. If NRVO takes place by means
of moving (as opposed to copying) the contents of v, then the destructor
should inspect the location to where the contents of v has been moved.
The destructor will then conclude that the string is not sorted, as expected.
Alternatively, moving the contents of v should be prohibited if a reference
to it is made by a destructor.
When the optimiser is enabled, I assume different code is generated that
either calls the destructor of postcondition before any manipulation
of v or does not move v. Either way, this would result in the destructor of
postcondition seeing v with its original contents and conclude that
the vector is not ordered and produce a warning message.
It is strange (and somewhat worrying) that the program behaviour is
dependent on whether the optimiser is enabled. The conclusion is that
Visual Studio is producing incorrect code when the optimiser is disabled,
i.e. in debug mode.
Probably the simplest way to ensure that the destructor of postcondition
is invoked before the value of v is returned from get_values() is to
add a pair of braces as shown below.
 template<typename T>

 std::vector<T> get_values(int n,

 std::function<T(T)> generator)

 {

 std::vector<T> v;

 auto is_increasing = [&v]()

 {return is_sorted(v.begin(), v.end());};

 { // Enclose postcondition in a new scope.
 postcondition _(is_increasing);

 T j = 0;

 for (int i = 0; i != n; ++i)

 {

 j = generator(j);

 v.push_back(j);

 }

 } // Enclose postcondition in a new scope.
 return v;

 }

The destructor of postcondition will be called when the newly added
closing brace is encountered. This is just before the return statement as
required. The amendment produces expected results both in debug mode
and release mode.
There is one other important matter to consider, that of undefined
behaviour. The function sum_squares() contains a lambda with the
code return j + i * i++;. This is problematic because it is not known
when, during the evaluation of the expression, the variable i will be
incremented. The result of the expression depends on when i is
incremented. To produce a defined result, the return statement should
be split into three separate statements as shown below.
 const auto k = i;

 ++i;

 return j + k * k;

Finally, within the templated functions that generate the sequences, the
student has defined the variable result as auto const &. This is
perfectly valid syntax but it does give the impression that result is a
reference to another variable that has been declared in the source code.
This is not the case. What the compiler does, in effect, is to create a
temporary variable and initialises it with the value returned from
get_values(). The compiler then uses the value of the temporary
variable to initialise the reference variable result. This is permitted
because result is const. Had result been defined as non-const, the
compiler would have issued an error message because changing the value
of result (that refers to a temporary) does not make any sense as the
temporary variable will soon disappear. The outcome of this is that

initialising a const & variable has the same effect as initialising a const
variable. Given this, I suggest removing the & from the definitions.

Jason Spencer <contact+pih@jasonspencer.org>

The headline bug here is caused by a possible optimisation that the
compiler might perform and it may remove the values from v in
get_values before they are checked.
Note that there is actually a typo in the print and PDF versions of this
Critique – the fibonacci() function is missing the first three lines of
the function. It was correct in the mailing-list announcement, on which
this response is based.
To understand what is happening in get_values, we need to understand
how the compiler generates code to manipulate the stack when a function
is called. Typically space is reserved on the stack for the return value –
since we’re returning a vector let’s call the object in this space vret.
Space for the variables local to the function (including v) is then reserved
on the stack. The variables are located in this space in the order in which
they are declared within the function, and they’re constructed in this order
too. They are destructed in the opposite order to their construction.
When the return statement is executed, v is either copied (by copy
constructor), or (since C++11) moved into vret. It is also possible for the
copy/move to be elided, and for v to actually be in the space assigned for
vret – this is called Return Value Optimisation (RVO) – specifically
Named RVO (NRVO) because we’re not constructing the return value in
the return statement, we’re returning a variable. This copy elision can
occur whether there are side-effects of copying/moving or not.
Whether return by copy construction, move construction, or copy elision
occurs depends a lot on the compiler, the compiler version, the flags used
and the optimisation level, hence the complicated nature of the behaviour
the student found.
The student was expecting _ to be destroyed before v, and it will be. But
we now face three possible scenarios at the destruction of _:
 v was copied to vret at the return statement – in which case, v

is still valid and the test behaves as expected.
 v was moved to vret at the return statement – in which case, v is

now empty and the test always passes because a vector with less
than two values still causes is_increasing to return true.

 v is vret due to NRVO – in which case, the test behaves as
expected.

It is the second scenario that prevents the error from appearing when it is
expected.
The details of copy/move/RVO optimisations can be found at [1] and [2].
The other issues I’d comment on are:
 I’m not sure using postcondition to test is a good idea. The

destructor, and therefore the test, will also be executed if an
exception is thrown and not caught in get_values (thrown by a
generator perhaps). The student may want to test
std::current_exception in ~postcondition before
calling the test. And of course the test can’t throw anything, so
should probably be noexcept. Consider a templated function as a
test that doesn’t rely on RAII.

 Implicit casting of output to int:
Since out is an alias for std::ostream_iterator<int> and it
is used in the sequence<T>, triangular<T>, fibonacci<T>
and sum_square<T> templates, the output sequence values, which
should contain values of type T, are cast to int before being output.
So if sum_squares<float>; is included in main() the values
are truncated and printed as ints.

 The generator functions should do type checking on T, and
potentially disable themselves for types that don’t support the
operators used, or for types that would produce nonsensical results.
For example, fibonacci<std::string>() will work, but
fibonacci<std::complex<float>>() won’t. T has to
JUL 2018 | | 19{cvu}

support one or more of: operator++, operator+ and must have
a std::swap overload depending on the generator.
T::operator< is also required for the is_increasing test.
Consider an enable_if [3] with std::is_arithmetic [4] and
std::is_swappable [5] in the simplest case.

In terms of design I’d look more into the overflow checking and the
generators.
The issue of robustly checking overflow is a complicated one and often
involves tests alongside the operations, rather than testing the result, as
was the case here. Overflow detection isn’t that difficult to do in theory –
most CPUs have an overflow flag (OF) which is set when the last ALU
operation resulted in a value that overflowed the output register. You
might also want to check the carry flag (CF) [6]. The problem is that
there’s no straightforward way of detecting this in C++. We could write
inline assembler functions that perform the arithmetic operation and copy
the OF flag to a local variable and act based on the state of that, but this
would be architecture specific. It also limits optimisation – for example a
typical compiler would swap a multiplication by a constant 8 into a left
shift by 3, but this code wouldn’t.
Another approach [7] is to, for each operation type, check that the output
variable has enough capacity – this typically involves finding the position
of the most significant set bit. An unsigned integer multiplication of
variables A and B will never use more than MSB_A+MSB_B bits in the
output, where MSB_A is the position of the MSB in A. The unsigned
integer addi t ion of A and B wil l never use more bi ts than
MAX(MSB_A,MSB_B)+1. And so on.
Most compilers also have options to trap on overflow for arithmetic, but
it can be complicated to handle this at runtime, and is compiler specific.
There are some mathematical functions in C++ that do support overflow
de t ec t i on i n a po r t ab l e an d ro bu s t way . Fo r exa mp le
std::math_errhandling [8] can be used to detect some overflow
and other conditions for floating point types.
std::overflow_error, while sounding interesting is only thrown by
std::bitset conversion functions, and not general purpose arithmetic,
but there’s no reason not to use it in bespoke overflow testing code.
Another approach is to create a special type that wraps the arithmetic type,
overloads the arithmetic operators, and checks for overflow after every
operation. For example [9].
Yet another approach is to perform the operation on a larger (similarly
signed) data type and cast to the requested type at the end, checking for
truncation after the cast. This might not however catch all cases of
overflow at every intermediary operation (or in fact the overflow may be
required behaviour – an implicit modulo).
I’m not a fan of using is_increasing because although the program
spec says the sequences are increasing, it is possible for aliasing to occur
– for example, in a sum_squares<uint8_t> sequence, at the sixteenth
term 256 is added to the running total – this overflows, but the total
remains the same, and that term at least would pass the test (although
earlier terms might not). I’m sure there are many other such examples.
Regarding the generators – they’re not very versatile the way they are
written here. I’d consider implementing them either as iterators, or as
generator functors. In the current design the state of the sequence is store
in variable i, which is a nice design, but if it were stored in an object then
the object can be copied, reset, etc.. something like this:
 template <typename T>

 class arithmetic_progression_ {

 T n;

 T step;

 public:

 typedef T result_type;

 arithmetic_progression_ (const T n = 0,

 const T step = 1) : n(n), step(step) {}

 T operator()() {

 n += step;

 return n;

 }

 T get_last() { return n; }

 };

 template <typename T> class triangular_ {

 T n;

 T level;

 public:

 typedef T result_type;

 triangular_ (const T n = 0,

 const T level = 1) : n(n), level(level) {}

 T operator()() {

 n += level++;

 return n;

 }

 T get_last() { return n; }

 };

 template <typename T> class sum_squares_ {

 T n;

 T level;

 public:

 typedef T result_type;

 sum_squares_ (const T n = 0,

 const T level = 1) : n(n), level(level) {}

 T operator()() {

 n += level * level++;

 return n;

 }

 T get_last() { return n; }

 };

This is much more versatile because you can now generate as many values
as you like (25 in the example below):
 std::vector<int> v;

 std::generate_n (std::back_inserter(v), 25,

 triangular_<int>());

 std::copy (std::begin(v), std::end(v),

 std::ostream_iterator<int>(std::cout, ","));

 std::cout << '\n';

Or you can use an iterator wrapper (such as the Boost Generator Iterator
Adaptor [10]) to print the sequence directly to any output stream:
 arithmetic_progression_<int> a_p;

 std::copy_n (

 boost::make_generator_iterator(a_p), 15,

 std::ostream_iterator

 <decltype(a_p)::result_type>

 (std::cout, ","));

 std::cout << '\n';

Something to also consider is whether it wouldn’t be beneficial to
generate sequences at compile time. In the past this meant using templates
[11], but there are now more options with constexpr [12]:
 constexpr int factorial(int n)

 {

 return n <= 1 ? 1 : (n * factorial(n - 1));

 }

When it comes to generators inspiration can be taken from C# and Python.
Paolo Severini [13] has an extensive write-up comparing C# and C++
generators and their implementation. He also looks at co-routine
approaches.
References
[1] https://en.cppreference.com/w/cpp/language/copy_elision
[2] https://shaharmike.com/cpp/rvo/
[3] https://eli.thegreenplace.net/2014/sfinae-and-enable_if/
[4] http://en.cppreference.com/w/cpp/types/is_arithmetic
[5] http://en.cppreference.com/w/cpp/types/is_swappable
[6] http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt
[7] https://stackoverflow.com/questions/199333/how-to-detect-integer-

overflow
[8] http://en.cppreference.com/w/cpp/numeric/math/math_errhandling
20 | | JUL 2018{cvu}

https://en.cppreference.com/w/cpp/language/copy_elision
https://shaharmike.com/cpp/rvo/
https://eli.thegreenplace.net/2014/sfinae-and-enable_if/
http://en.cppreference.com/w/cpp/types/is_arithmetic
http://en.cppreference.com/w/cpp/types/is_swappable
http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt
https://stackoverflow.com/questions/199333/how-to-detect-integer-overflow
https://stackoverflow.com/questions/199333/how-to-detect-integer-overflow
http://en.cppreference.com/w/cpp/numeric/math/math_errhandling

Code Critique Competition (continued)

[9] https://accu.org/index.php/journals/324
[10] https://www.boost.org/doc/libs/1_62_0/libs/utility/

generator_iterator.htm
[11] https://www.jasonspencer.org/articles/series/
[12] https://en.cppreference.com/w/cpp/language/constexpr
[13] https://paoloseverini.wordpress.com/2014/06/09/generator-

functions-in-c/

Commentary
As all three entries explain, the cause of the differences in behaviour is an
interaction between destructors and generating the return value. The
‘feature’ was added to C++11 when move semantics were added to the
language and returning from a named local variable was allowed to move
the value. I do not know at what point in the process anyone realised that
this change could cause the difficulties that this critique demonstrates.
I think the critiques between them covered most of the points in the
critique.

The winner of CC 111
The critiques all detected the problem with the unpredictable behaviour,
but James additionally provided a solution to the troublesome behaviour
– using an extra scope to ensure the destruction occurs before the return.
As Pal stated, the problem with signed overflow is that this produces
undefined behaviour and attempting to detect this can be troublesome. This
is an active area of discussion on the C++ committee...
Using destruction to verify post-conditions can have problems, as Jason
points out, because of the danger of throwing an exception while
unwinding from an exception, which will simply terminate the program.
Both Pal and James pointed out the UB in sum_squares in the expression
j + i * i++ but James additionally provided some code for a correct
replacement.
All three critiques gave the code a good look, but on balance I consider
James’ critique was the most helpful to the person with the problematic
code so I have awarded him the prize for this issue.

Code Critique 112

(Submissions to scc@accu.org by Aug 1st)
Further to articles introducing D, I am attempting to use the event-driven
Vibe.d server library, which I understand to be like a native version of
Python’s Tornado and potentially a ‘killer app’ of D as I haven’t seen any
other mature event-driven server library in a compiled language.

I would like to build a back-end server that performs some processing
on the body of the HTTP request it receives. To begin with, I would like
it to simply echo the request body back to the client.

My code works but there are three problems: (1) when I issue a POST
request with lynx, 3 spaces are added to the start of the response text,
(2) I cannot test with nc because it just says 404 and doesn’t log
anything, and (3) I’m worried that reading and writing just one byte at a
time is inefficient, but I can’t see how else to do it: I raised a ‘more
documentation needed’ bug at https://github.com/vibe-d/vibe.d/issues/
2139 but at the time of writing nobody has replied (should I have used
a different forum?)

The code is in Listing 2.
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://accu.org/index.php/journal). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

import vibe.d;

void main() {

 auto settings = new HTTPServerSettings;

 settings.port = 8080;

 listenHTTP(settings, (req, res) {

 ubyte[1] s;

 while(!req.bodyReader.empty()) {

 req.bodyReader.read(s);

 res.bodyWriter.write(s);

 }

 });

 runApplication();

}

Listing 2
Program Challenge Report 3
and Challenge 4

Francis Glassborow comments on his last
challenge and presents a new one.

am a little disappointed by the (lack of) response to this challenge. I had
very carefully phrased the challenge so as not to make it an actual
‘quine’ (self-replicating program), I also avoided mentioning ‘quine’

because that makes it trivial, just search the net.
As in all my challenges, anything not expressly forbidden is permitted.
The simple answer which will certainly run on your machine is to write a
program that reads in its own source code file and then prints it out.
If you are writing a self-replicating program that will run anywhere
(including on my machine) you have an important consideration:

Can my machine execute a program compiled on your machine?

If we assume the answer is ‘no’ then it effectively means that the program
has to be delivered as source code. Once you understand the significance
of that the problem reverts to writing a program that will produce the
correct output on the machine on which it is compiled.

I
FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.
JUL 2018 | | 21{cvu}

https://github.com/vibe-d/vibe.d/issues/2139
https://github.com/vibe-d/vibe.d/issues/2139
http://accu.org/index.php/journal
https://accu.org/index.php/journals/324
https://www.boost.org/doc/libs/1_62_0/libs/utility/generator_iterator.htm
https://www.boost.org/doc/libs/1_62_0/libs/utility/generator_iterator.htm
https://paoloseverini.wordpress.com/2014/06/09/generator-functions-in-c/
https://paoloseverini.wordpress.com/2014/06/09/generator-functions-in-c/
https://en.cppreference.com/w/cpp/language/constexpr
https://www.jasonspencer.org/articles/series/

Now I suspect that many of you thought I was asking for a ‘quine’ in C++.
Without knowing the name it is very hard to cheat by looking the answer
up on the internet. Our ancestors were right in the belief that knowing
something’s true name gives you power over it.
Here is the only response I got.

Response from James Holland

I thought one way was to write a very simple C++ program that prints a
string that contains the source code of the program, something like the
following.
 #include <iostream>

 int main()

 {

 std::cout << "#include <iostream>\nint

 main()\n{\n std::cout << \"\";\n}\n";

 }

The trouble is the program is not quite complete because its output is as
shown below.
 include <iostream>

 int main()

 {

 std::cout << "";

 }

There is nothing in the quoted string so let’s fix that.
 #include <iostream>

 int main()

 {

 std::cout << "#include <iostream>\nint

 main()\n{\n std::cout << \"#include

 <iostream>\\nint main()\\n{\\n std::cout

 << \\\"\\\";\\n}\\n\";\n}\n";

 }

We are not there yet as this program produces the following.

 #include <iostream>

 int main()

 {

 std::cout << "#include <iostream>\nint

 main()\n{\n std::cout << \"\";\n}\n";

 }

Which produces the following.
 #include <iostream>

 int main()

 {

 std::cout << "";

 }

There is nothing in the quoted string so let’s fix that. But wait. We have
been here before. We can keep on adding to the string forever and still not
have a program that reproduces itself. This approach is not going to work.
This is where I cheated and tried to discover how other people have solved
this problem.
Apparently, one method is to divide the program into two parts. The first
part contains data that represents the second part of the program. The
second part contains code that firstly prints the data as it is presented in
the first part of the program and secondly uses the data (again) to print the
second part of the program in the form of its source code. (I am sure you
are still with me.) The result is a printout of the complete program’s
source code. Such a program (one that outputs its own source code) is
called a Quine, after Willard Van Orman Quine (1908–2000), or so I have
discovered. My attempt is in Listing 1.
It would be difficult to produce the data by hand and so I have written a
small program – see Listing 2 – to do the job for me. It takes as input the
program source code (minus the first part) and produces the equivalent in
decimal form. The program’s output is then pasted into the original source
code to form the complete Quine program.

const char data[]{

 35, 105, 110, 99, 108, 117, 100, 101, 32, 60,

 105, 111, 115, 116, 114, 101, 97, 109, 62, 13,

 10, 35, 105, 110, 99, 108, 117, 100, 101, 32,

 60, 115, 116, 114, 105, 110, 103, 62, 13, 10,

 13, 10, 105, 110, 116, 32, 109, 97, 105, 110,

 40, 41, 13, 10, 123, 13, 10, 32, 32, 115, 116,

 100, 58, 58, 99, 111, 117, 116, 32, 60, 60, 32,

 34, 99, 111, 110, 115, 116, 32, 99, 104, 97,

 114, 32, 100, 97, 116, 97, 91, 93, 123, 34, 59,

 13, 10, 32, 32, 115, 116, 100, 58, 58, 115,

 116, 114, 105, 110, 103, 32, 115, 101, 112,

 97, 114, 97, 116, 111, 114, 59, 13, 10, 32, 32,

 105, 110, 116, 32, 99, 111, 108, 117, 109, 110,

 95, 99, 111, 117, 110, 116, 32, 61, 32, 48, 59,

 13, 10, 32, 32, 102, 111, 114, 32, 40, 99, 111,

 110, 115, 116, 32, 105, 110, 116, 32, 99, 32,

 58, 32, 100, 97, 116, 97, 41, 13, 10, 32, 32,

 123, 13, 10, 32, 32, 32, 32, 115, 116, 100, 58,

 58, 99, 111, 117, 116, 32, 60, 60, 32, 115,

 101, 112, 97, 114, 97, 116, 111, 114, 32, 60,

 60, 32, 99, 59, 13, 10, 32, 32, 32, 32, 115,

 101, 112, 97, 114, 97, 116, 111, 114, 32, 61,

 32, 34, 44, 32, 34, 59, 13, 10, 32, 32, 32, 32,

 105, 102, 32, 40, 43, 43, 99, 111, 108, 117,

 109, 110, 95, 99, 111, 117, 110, 116, 32, 61,

 61, 32, 49, 54, 41, 13, 10, 32, 32, 32, 32,

 123, 13, 10, 32, 32, 32, 32, 32, 32, 99, 111,

 108, 117, 109, 110, 95, 99, 111, 117, 110, 116,

 32, 61, 32, 48, 59, 13, 10, 32, 32, 32, 32, 32,

 32, 115, 101, 112, 97, 114, 97, 116, 111, 114,

 32, 61, 32, 34, 44, 92, 110, 32, 32, 32, 32,

 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,

 32, 32, 34, 59, 13, 10, 32, 32, 32, 32, 125,

 13, 10, 32, 32, 125, 13, 10, 32, 32, 115, 116,

 100, 58, 58, 99, 111, 117, 116, 32, 60, 60, 32,

 34, 125, 59, 92, 110, 92, 110, 34, 59, 13, 10,

 32, 32, 102, 111, 114, 32, 40, 99, 111, 110,

 115, 116, 32, 97, 117, 116, 111, 32, 99, 32,

 58, 32, 100, 97, 116, 97, 41, 13, 10, 32, 32,

 123, 13, 10, 32, 32, 32, 32, 115, 116, 100, 58,

 58, 99, 111, 117, 116, 32, 60, 60, 32, 99, 59,

 13, 10, 32, 32, 125, 13, 10, 125, 13, 10};

#include <iostream>

#include <string>

int main()

{

 std::cout << "const char data[]{";

 std::string separator;

 int column_count = 0;

 for (const int c : data)

 {

 std::cout << separator << c;

 separator = ", ";

 if (++column_count == 16)

 {

 column_count = 0;

 separator = ",\n ";

 }

 }

 std::cout << "};\n\n";

 for (const auto c : data)

 {

 std::cout << c;

 }

}

Listing 1
22 | | JUL 2018{cvu}

Francis states there are two categories of solution; one that will run on my
computer and one that will run on his computer. I have no idea what
computer Francis uses. It should not really matter. All that is required is
for the computer to have a standard conformant C++11 compiler and for
the source code (Quine.cpp) to be compiled and run. The resultant
executable should print its own source code on any system. If the output
is directed to a file, the content of the file will be identical to the original
source code.

Francis replies
James is quite right up to a point. The problem is that his program assumes
that my machine is using ASCII and there is no such requirement in the
Standard (nor could there be). I do not have an Apple computer to hand
but I strongly suspect that it would fail to produce the required output
because it codes End of Line differently. However that is being a little
picky. More significantly there are still machines around that use
EBCDIC. I leave the reader to research that. It is a common flaw in those
writing portable code to assume that all computers use ASCII or Unicode
(where the base page is, if I recall correctly, ASCII).
I think that fully portable quine source code is actually quite difficult and
almost certainly requires some tool support to deal with variant text
coding.
Then there is the point that I think James missed so perhaps it was missed
by many readers: A conforming C program is almost certainly going to be
a C++ one as well. At least that is one of the objectives of WG21 (The ISO
C++ Standards Committee). That objective is very frustrating when
developing new core facilities for C++. As we know, C++ can easily add
new types via library implementations (think of support for complex
numbers) and C has to do that by adding to its basic type system. Where
both languages want the same type but both want (need) to do it their way
providing a compatible mechanism can be hard.
Now the simplest C quine I know is:
 #include <stdio.h>

 char*s="#include <stdio.h>%cchar*s=%c%s%c;%cint

 main(){printf(s,10,34,s,34,10,10);}%c";

 int main(){printf(s,10,34,s,34,10,10);}

It also depends on the program encoding newline as 10 and double quotes
as 34. It has the advantage of having only those two dependencies and so
is relatively easy to adapt to systems using other character encodings.
I wonder if anyone can refine the above program so that it becomes
independent of the character coding. Careful use of escape sequences
might achieve the desired result and so produce a program that will run on
any machine.

Challenge 4
I was wondering what to challenge the readers with next. While still
undecided I went to the April meeting of the Oxford branch of ACCU.
One of the other attendees (sorry I have forgotten who it was) offered this
one:
Write a program that outputs the numbers from 1 to 100 without using if,
for, switch or while.

I cannot think of a way to do this in C other than the trivial solution of
simply writing tedious outputs, but I certainly can manage it in C++.
However, I am going to add a small refinement, your program must take
two integer inputs: first and last. It must output the integers from the first
to the last. Note that I have not specified that the first is lower than the last.
For starters try the simple form where first = 1 and last =100. Some of you
may think ‘recursion’, but that requires a conditional to ensure
termination, or does it?
There is also a second form of solution that relies on the way that C++
initialises arrays.
Over to you. Please submit your solutions even if they are just partial
ones. Sometimes ideas that do not quite work can be refined when others
see where you are trying to go.

#include <fstream>

#include <iostream>

int main()

{

 std::ofstream out_file("Quine.dat");

 out_file << "const char data[]{";

 std::ifstream in_file("..//Quine.cpp");

 std::string separator;

 int column_count = 0;

 char c;

 while (in_file.get(c))

 {

 out_file << separator.c_str() <<

static_cast<int>(c);

 separator = ", ";

 if (++column_count == 16)

 {

 column_count = 0;

 separator = ",\n ";

 }

 }

 out_file << "};";

}

Listing 2
JUL 2018 | | 23{cvu}

24 | | JUL 2018

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org

ACCU has been very busy since my last report.

2018 AGM and election
ACCU’s Annual General Meeting was held on
Saturday, 14th April. The draft minutes of the
meeting are available to members online [1], so
I won’t go into too many details here. The most
important part of the AGM, from my
perspective, was the nomination and election of
Patrick Martin to the role of Secretary. (More
on Patrick below.) This, in addition to the re-
election of the rest of the executive committee
(Robert Pauer, Treasurer; Matt Jones,
Membership Secretary) means we can continue
to conduct all regular ACCU business for the
next term.
The following people were also elected or re-
elected to non-executive committee roles: Nigel
Lester, Local Groups; Ralph McArdell, At-
large; Roger Orr, Publications; and Emyr
Williams, Standards. Guy Davidson and Niall
Douglas were approved to continue as
Auditors.

ACCU 2018
ACCU held its annual conference at the
Marriott City Centre in Bristol in April. I’m
pleased to report that the conference was a
success. Attendance was higher than ever – 450
total attendees, with an average of 320 per day.
The attendees and speakers were also the most
diverse they have ever been.
Our conference chair, Russel Winder, and the
members of his conference committee are to be
commended on the fine job they did putting the
conference program together. Julie Archer and
her team from Archer Yates Associates (AYA)
continue to perform their organizational magic
in keeping the conference running smoothly.
Conference committee: Gail Ollis, Roger Orr,
Felix Petriconi, CB Bailey, Anastasia
Kazakova, Jon Kalb, Nina Dinka Ranns,
Francis Glassborow.
AYA team: Charlotte Tanswell, Laura Nason,
Helen Wormall, Marsha Goodwin.
My thanks (and hopefully, all of yours, too!) go
out to Russel, Julie, and their respective team
members for another great conference.
Next year’s conference is already in the
planning stages. I’ll have more information for
you on ACCU 2019 as the conference gets
closer.

Committee spotlight
We have two new volunteers!
Patrick Martin volunteered to run for, and was
elected, ACCU Secretary at the AGM. Patrick

is a software engineer, music fan and lapsed
science PhD, in roughly that order. Patrick has
worked for SunGard, Deloitte and Touche,
Bloomberg, Aquila Group Holdings, among
others. He has done a fair amount of ‘backend’
and ‘front-end’ work in various arenas and the
inevitable consequence is chalking up exposure
to a number of tools and methodologies. He also
has ambitions to write on technical matters that
interests him. [Start with CVu and Overload,
Patrick!]
Daniel James volunteered to look into the
process by which our magazines are converted
to ePub format, which haven’t been available
since the web editor position went vacant last
year. Daniel is a software designer and
programmer specializing in information
security. He has been a member of ACCU since
2000, and is a regular attendee of the
conference. Daniel also presented at ACCU
2018 [2].
Please join me in thanking Patrick and Daniel
for volunteering their time to ACCU.

GDPR
Nigel Lester has done an excellent job doing a
deep dive into the intricacies of the EU’s new
General Data Protection Regulation, and
developing ACCU’s response to keep us in
compliance. As a result we have a new page on
our website – Privacy Policy – located in the
ACCU Menu [3]. Still in draft form and going
through refinements as of this writing, ACCU’s
Privacy Policy enumerates the data we collect;
who we do and do not share it with; and your
rights and our responsibilities under the GDPR.
Thanks to Nigel and everyone who assisted him
in the drafting of our Privacy Policy.

ACCU World of Code
Several months ago Andy Balaam introduced
us [4] to his blog aggregator at Planet Code [5].
At the time he volunteered to help ACCU set up
a similar aggregator on our site. Webmaster Jim
Hague worked with Andy to get our ACCU
aggregation page up and running [6]. If you
would like your blog to be considered for
inclusion in the aggregation, please contact Jim
at webmaster@accu.org. Thanks to Andy and
Jim for getting additional content on our web
site.

Twitter
If you pull up our website (www.accu.org) or
our Twitter feed (www.twitter.com/accuorg)
you might have noticed a small increase in our
Social Media activity. I’ve been trying to post
something every week in order to keep our
front-page content fresh. If you have any ideas
for additional content – don’t tell me, volunteer
for the Social Media position on the committee!

Call for volunteers
We still need volunteers. Last issue I promised
to drop your name if you volunteered, and sure
enough, in this issue I’ve put Patrick’s and
Daniel’s names up in bright lights not-so-bright
print. You could be next!

Web Editor Book Reviews
Social Media Publicity
Study Groups

On a personal note, this marks the start of my
third year as Chair. I’d like to express my
thanks to everyone who voted in our election
this past March, and also thank you for once
again putting your trust in me. It is an honour
and a privilege to serve you.

References and notes
[1] Draft 2018 AGM Minutes:

https://accu.org/content/agm/AGM-2018-
Minutes(Draft).pdf

[2] ‘Cryptography for Programmers’, Daniel
James: https://www.youtube.com/
watch?v=3wiYUEyXC00

[3] ACCU Privacy Policy: https://accu.org/
index.php/privacy_policy

[4] Planet Code, CVu 29-5, November 2017:
https://accu.org/index.php/journals/2431

[5] Planet Code:
http://www.artificialworlds.net/
planetcode/

[6] ACCU World of Code:
https://blogs.accu.org/

https://accu.org/content/agm/AGM-2018-Minutes(Draft).pdf
https://www.youtube.com/watch?v=3wiYUEyXC00
https://www.youtube.com/watch?v=3wiYUEyXC00
https://accu.org/index.php/privacy_policy
https://accu.org/index.php/privacy_policy
https://accu.org/index.php/journals/2431
http://www.artificialworlds.net/planetcode/
https://blogs.accu.org/

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Into Gold
	Write Less Code!
	ACCU18 Trip Report
	Don’t Assume Any Non-Zero exit() Will Fail!
	Everyday Coding Habits for Safety and Simplicity
	The Half-Domain/Half-Primitive Proxy
	Code Critique Competition 112
	Program Challenge Report 3 and Challenge 4
	View from the Chair

