

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

MAY 2018 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

And another thing...
hose of you who attended ACCU’s 2018
conference in Bristol may have witnessed
me giving a lightning talk about interview

techniques. A 5 minute rant is obviously not
sufficient to cover all the misgivings I have
about how tech interviews are commonly
conducted (and I’ve used this space previously,
too!). One aspect I didn’t go into was the practice
of having several rounds of interview in order to
finally reduce the list of candidates down to the
‘best of the best of the best’.
Basic statistics suggests that, assuming there is one best
of the best, as a hiring company you’re unlikely to even
see their CV, never mind get to meet them face to face. In
addition, expecting candidates to undergo multiple
rounds of lengthy interviews, tournament (or boxing
match) style runs two major, related risks. Firstly that
your actual best candidate decides they aren’t
prepared to keep returning, or they get another
position with someone else. This leads to the second
risk: that you end up filtering not for technical
proficiency or team best-fit, but instead just end up
with the people with the highest tolerance for
interviews.
The interview contest itself seems also to have become a
test of arcane knowledge often unrelated to the job being hired for. Low-level
algorithm design can be fun, but very few working programmers use that knowledge
routinely. I know a few that do, but not for their day job – they do it for no pay, in
their spare time. In an analogy with the actual practice of programming, high-level
languages and rich libraries allow us to think at a higher level of abstraction. I would
like to see interviews that filter for people at a higher level too. In practical terms, I
would much rather be working with people who understand and care about automated
testing, continuous integration and delivery of robust, reliable software, than with
people who know nothing of these things but have a deep understanding of red-black
trees, and are able to implement them with pen and paper.

T
Volume 30 Issue 2
May 2018

Editor
Steve Love
cvu@accu.org

Contributors
Frances Buontempo, Francis
Glassborow, Pete Goodliffe,
Alan Griffiths, Chris Oldwood,
Roger Orr, Jason Spencer, A
Student, Kris van Rens, Emyr
Williams

ACCU Chair
Bob Schmidt
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAY 2018

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
13 Standards Report

Emyr Williams
reports on news
from the world of
Standards.

15 Code Critique
Competition 111
The results from the last
competition and details
of the latest.

22 Local ACCU Meetups
Frances Buontempo
reports from London
and Bristol.

23 ACCU Local Group
Jason Spencer
reports on a recent
visit to ACCU
Oxford.

REGULARS
24 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 30.3: 1st June 2018
C Vu 30.4: 1st August 2018

Overload 145:1st July 2018
Overload 146:1st September 2018

FEATURES
3 Libraries, Console Apps and GUIs

Chris Oldwood compares the use of different
application interfaces.

6 ACCU: The Early Years (Part 2)
Francis Glassborow continues his look at the history
of ACCU.

7 The New C++ Interview
Pete Goodliffe introduces a new way to test
programming skills.

8 ACCU Conference 2018: Trip Report
Kris van Rens shares his experiences from ACCU 2018.

9 On Quaker’s Dozen
A student examines the Quaker’s Dozen wager.

10 Writing a Wayland Server Using Mir
Alan Griffiths explains the basics of a new X11
replacement API.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

In the Toolbox # 16
Libraries, Console Apps and GUIs
Chris Oldwood compares the use of

different application interfaces.

enerally speaking, software tools come in all shapes and sizes from
one-line shell scripts [1] through to office ‘productivity’ suites and
beyond. If you’re someone who uses a computer to do a non-IT

related job, you’re more likely to sit at the far end of the spectrum
plugging away on a GUI-based line-of-business (LOB) application
interspersed with copious context switches to and from your email client,
word processor and spreadsheets.
On the other hand if your primary focus is within IT itself, perhaps as a
system administrator, tester or programmer, you’re more likely to use a
selection of tools that runs the full gamut. As I’ve illustrated in a past
episode of this column about the ‘simple’ task of finding some text [2],
the nature of the tool you use also takes on a different form depending on
the exact nature of the problem. Not only does the choice of tool depend
on what outcome you’re looking for but it also may be driving how much
you know about the problem domain itself. For example, a GUI based
XML document viewer might allow for more freedom of navigation
whilst also hiding superfluous details so that you get to see the overall
document shape, whereas a simple flat text editor or command window
often gives you all the detail until you figure out how to reduce it.
Jeffrey Snover [3], one of the principle architects of PowerShell, once said
the difference between GUIs and command line tools is about learning
versus automation. For a non-programming oriented audience, I’ve found
that to be a very useful distinction; however, for those people like myself
who have a penchant for programming and home-grown tools, I’d like to
extend his definition slightly further:
 Graphical applications allow exploration
 Command line tools support automation
 Libraries enable customisation

As we shall see later, the addition of libraries into the mix has a knock-on
effect on how we think about designing systems from the perspective of
supporting them later.

Graphical applications
Like many programmers, I found the graphics capabilities of computers
intriguing and it inspired me to learn more about them. The ease with
which you could draw a graph on an 8-bit home computer back in the 80s
rather than stare at a table of numbers was one of the reasons I got into this
game. As that moved on to animating sprites and eventually 3D models it
was no surprise that my first professional programming gig involved
working on graphics applications – a drawing package, desktop publisher
and associated graphics tools.
Although the dominant force for graphical applications, at least in the
early days, was probably down to the promise of WYSIWYG for media
creation, it also provides a way to represent more abstract concepts in a
visually pleasing way that affords the user a fresh perspective on the task
at hand. For example, although folding text editors and syntax
highlighting might add some extra pizazz to a mundane XML text
document and allow the basic structure to shine through a little, a more
dedicated tool that uses icons for the tree structure and separates out the
element’s attributes might make comprehension easier. Throw in a find
first / next feature that supports XPath expressions and you can explore
the document in a different way that may gel where a manual navigation
approach has meant you can’t see the wood for the trees.

Graphical diagnostic tools can also be less intimidating to a more casual
user and may even stand-in where the primary product fails. I’ve had a
GUI based integration test harness get shipped to beta testers because it
provided a means of working around temporary failings in the core
product. It’s also not the only time I’ve seen test harnesses take on a life
outside the development team [4]. Any tool which is written to support
development is almost certainly going to be useful to support the
production system too, although you way want to add some extra features
to try and minimise embarrassing mistakes [5].
Naturally we’re not just limited to classic thick client applications here
either. Services can expose an endpoint for control and monitoring,
perhaps through an HTTP endpoint on the side, and the meteoric rise of
the browser means that client-side HTML and JavaScript has its uses. If
the team has a particular preference for one brand of browser then plug-
ins are another way of leveraging someone else’s product to put a face on
your custom functionality.

Command line tools
GUIs may be great for interactive use but are generally a nightmare to
automate. When you’re trying to automate tasks, you really need tools
specifically designed for automation. Even though a UI like TortoiseGit/
SVN provides access to its feature via a command line process called
TortoiseProc, you just know that a message box popping up on an
unattended server is going to ruin your day. Then you’re into the arms
race of trying to download and run a tool which watches for (and
automatically presses the ‘OK’ button on) errant message boxes when
they appear.
Even OLE Automation which, as its name suggested, promised to allow
GUI based office tools like Word and Excel to be programmatically
driven didn’t quite work as reliably unattended as was perhaps hoped for.
In the finance world where Excel is the ad hoc pricing tool of choice,
many man-years of development time has been wasted trying to automate
spreadsheet calculations (server-side) on the expectation that that task
was easier (or cheaper) than getting a developer to code up the same logic
up in a ‘real’ programming language. These days the Excel ‘calculation
engine’ is more accessible but one wonders what the total cost of
ownership has been for some of those earlier Heath Robinson approaches
and whether it really paid off in the end.
The UNIX philosophy of small, simple command line tools, composed by
passing textual output from one to another, is still very much alive and
well today. Driving these tools effectively is often for the more seasoned
user as finding the right incantation of switches and syntax might only be
obtainable with a solid read of the manual (or Stack Overflow) and plenty
of examples. Although the industry is slowly converging on common
patterns of switch indicators and naming conventions, there are still far
too many cases where case-sensitivity and the ability (or not) to merge
multiple single character switches will trip you up. Go and PowerShell,
with their single dash and long name convention, are notable exceptions

G

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise-grade technology in
plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted
via gort@cix.co.uk or @chrisoldwood
MAY 2018 | | 3{cvu}

to the typical dual switch approach (i.e. short and long form). Of course
on Windows you’ve always had to play the game of ‘slash or dash’ as
you’re never quite sure if you’re dealing with a native Windows tool or a
UNIX port. The rise of PowerShell and the new Windows Subsystem for
Linux (WSL) will hopefully continue to educate Windows programmers
on the correct choice of command line switch character.
The new-fangled Continuous Integration / Delivery / Deployment
movement has definitely helped to promote a more automated software
development environment and therefore stitching together sequences of
tools either with pipelines or through scripting is a more-essentialskill
than ever. Even though there are a number of products out there that aim
to give you a drag’n’drop approach to creating and managing your build
pipeline, I still find a single build script that can run on both a developer’s
workstation and CI server side to be preferable to two different build
systems. In my experience, the developer one is only a pale imitation of
the real one and therefore awkward to reproduce and debug, and leads to
‘poisoning’ of the build machine as more and more junk gets installed.
Despite the plethora of desktop products which provide you with a GUI
for automating all manner of tools – GUI or command line based – which
are no doubt a boon for the less tech savvy, a shell still seems to be the
most popular choice for sequencing operations by the IT crowd. We
shouldn’t be surprised as scripting is programming after all, just with
much ‘heavier’ functions. Ultimately, unless something is only going to
be run on the machine you developed it on, you need to consider what
capabilities the target host has and that will likely be the de facto shells.
Factor in trying to get the licensing sorted for any 3rd-party product and
the path of least resistance wins almost every time.

Libraries
In the traditional taxonomy of software tools, which is what Jeffrey
Snover was no doubt aiming at, libraries do not feature as they were never
really usable out-of-the-box. Native code libraries packaged in their static
library form are intended to be consumed at build time, which means
someone needs to write a host application for them. On the other hand,
dynamically linked libraries could be consumed directly if you knew what
entry point to poke, what arguments to pass and how. On Windows, this
is possible to a degree with the RunDll32 utility but it’s rarely used in
practice as little things like calling conventions make this a dangerous
game to play. You could invoke a void function taking no arguments
fairly safely but anything else was tantamount to running around with
scissors.
The Component Object Model (COM), along with a few other
technologies like Visual Basic and the Active Scripting Engine, allowed
libraries to become scriptable ‘components’ by standardising the calling
convention and adding some metadata to make them a little more
discoverable; not quite --help territory but a little better. The
introduction of .Net and PowerShell took the idea a step further, although
one shouldn’t discount the various other Windows offerings such as
IronPython and F# as suitable scripting hosts; it’s just that they aren’t
installed by default.
It might seem as though the humble static library has been short-changed.
The problem is that to consume these you need to have a compiler and
native programming skills. But that is exactly what customisation is all
about – taking the core functionality for a tool, like Git, and sticking your
own console application or UI on top of it. Or, as we’ve already
mentioned above with the Tortoise family, you might do both. Git is a
prime example because its complexity makes it hard to grasp but the
success of the TortoiseGit tool is almost certainly down to bringing
familiarity to those used to the simpler concepts of TortoiseSvn.
For languages that provide interop with C, and let’s face it the most
common ones do, you have the option to provide plug-in shims that allow
the native functionality to be exposed through an adapter and consumed
by the plethora of modern, non-native (e.g. JVM) based development
tools like IDEs and CI services. Pure versions often arrive later but in
cases like the Git TFS bridge where the back-end libraries are proprietary,

it may be the only choice. It must surely be a testament to the Git client
architecture that adapters for so many different VCS products have been
produced that give a reasonably seamless experience.
Passing credentials into Git is an excellent example of where the strength
of a good library comes in. When dealing with private repositories, the
ability to securely drive Git in your build pipeline without exposing your
credentials in log files and environment variables was originally quite a
challenge as many of the supposedly mature, off-the-shelf choices
struggled with this requirement. Throw in the new-fangled ‘submodules’
feature and it started all over again as we needed to pass different
credentials along the submodule pipeline. For a while I seem to remember
switching between various Git plugins and command line tools in search
for the right combination that worked with our team’s ‘Enterprise’ set-up,
which threw in an NTLM-based proxy for extra friction.
Oranges are not the only fruit and these libraries (static and dynamic)
aren’t the only two kinds either – anyone working in the Perl, Ruby,
Python, Node.js, etc. space will quickly point out that they have had a
solution for consuming libraries easily for years, although they tend to
talk about ‘packages’ rather than libraries. As we know [6], these can be
fragile ecosystems at times if not treated with respect due to the ever
growing volume of dependencies that get pulled in as we struggle to avoid
reinventing the wheel.
For development purposes, where I might need a solution to a short lived
problem, the reward can far outweigh the risks, but having been on the
roller coaster journey of breakages and fixes in areas where you would
prefer to have more stable products, there is much solace to be gained
from simply copying a single, small binary around. In a production
support scenario, I’m even less enamoured by the idea of downloading
half the Internet just to run a tool. In a cloud hosted environment where
you typically restrict both inbound and outbound network access, this
would be a non-starter.
Going back to the UNIX philosophy, one wonders if the notion of ‘small’
is only considered by some to apply to the amount of functionality it
provides, not the size of the ecosystem required to create, distribute and
execute it.

Building systems as toolkits
One of the oldest concepts we should be cognisant of when building
software systems is that of modular design. Breaking a system down into
small building blocks that separate out concerns to try and manage
complexity is an on-going battle which programmers face every day. The
introduction of lower-levels of testing, e.g. at unit and component level,
have definitely had an effect in this area, but another driver you might
want to consider for your design is the need for custom tooling.
Systems with plenty of moving parts – databases, queues, services, etc. –
have many points of failure, or alternatively, points of diagnostic access.
Although it may be built entirely on open protocols and products, that
doesn’t mean the lowest common denominator tools are the best tools for
poking around, e.g. CURL for REST APIs. We build our system out of
these building blocks because we have some value to add to them, hence
our tooling should add value too. For example an HTTP based API that
also needs authentication for its requests soon becomes tiresome as every
invocation will require at least two requests – one for the token and one
for the actual operation. Wrapping this up in a script is an easy win but if
you’ve built a richer proxy for use elsewhere in your system then stick a
simple CLI on top and you have the makings of a deployment smoke test
and support tool.
What makes this type of tooling better is that you’re leveraging the same
well-tested production code in your support toolkit as what you use in the
actual system. This really starts to pay off when you need to perform
operations that would be considerably more dangerous if you were to hack
away at the underlying 3rd party products using their more generalised
tools. For example, a database is just an implementation detail of a system
and whilst you can poke around with a SQL tool you run the risk of
violating invariants of the system that would be enforced if you went
4 | | MAY 2018{cvu}

through your system’s code. An RDBMS can provide a certain degree of
protection from ‘tinkering’ if you use its referential integrity features to
the fullest, whereas document databases and file-systems expect the
application to do most of the heavy lifting to ensure the data remains
semantically valid.
To give a more concrete example, imagine having a service where you
handle versioning of persisted data by upgrading it at read time. Over
time, you end up with objects of different versions and therefore lots of
code and tests to handle the various incarnations. It can get trickier to
make changes as you start to consider all the variants, plus looking
directly in the data store during support gets harder as you have to factor
in all possible versions into your queries. If you could upgrade all the
objects to a new baseline version you could then remove a lot of
complexity, i.e. dead code and tests. The production code already exists
to do the job; you just need to be able to access it. Although you could add
a new private service endpoint you should be able to just host the
underlying logic in a simple process container (e.g. scripting host) that can
slowly walk the object store and call Load() followed by Save() for the
instances of object that need uplifting.
By building the logic into the production code rather than the support
tooling you naturally reduce the risk of a tool getting out of step with the
real code and then corrupting something accidentally later. (How many
people have tests for their tools?)

Learning a codebase
Aside from their primary purpose – to accomplish certain tasks more
easily – custom tools also provide a useful auxiliary function which is that
their lower-level focus can help with learning a new codebase. Learning
a complex system comprising of many moving parts can be a daunting
experience as you can struggle to find a place to start looking. Whilst the
natural place might be the UI as the user is ultimately the primary point of
focus, with a reporting engine, working backwards towards the inputs can
be hard work. The tools won’t really help you get an overview of a system
but they can be a good way to help understand how part of a system works
in isolation. (Obviously a suite of component level tests would provide an
even better source of discovery but rarely do you find many tests in
between the unit and end-to-end levels.)
In this scenario, I’ve found command line tools much better for this
purpose than GUI based equivalents. What makes tests and command line
tools preferable is that they both generally allow you to take a ‘straight
line’ through a piece of functionality. In essence, they gather the inputs,
invoke the behaviour, and do something with the outputs – exactly the
same kind of approach that makes reasoning about pure functions easier.
In contrast, GUIs are inherently event-based and therefore much of the
functionality used to prepare the inputs are scattered about in different
event handlers with state built up piecemeal before the final push. If the
code is not well factored – and we’re talking about a custom tool here so
attention to detail is less likely – then it can be harder to separate the GUI
glue from the production code. For example you may have to keep one
eye on the call stack or look at what namespace bits of code belong to to
know if you’re inside or outside the production code for the component of
interest.

Sticking to what we know
In my early days as a professional programmer, my preference would
have been to opt for a GUI based approach, which is probably
understandable as what I was working on were GUI-based products.
Many of the early ‘services’ I worked on also had a built-in UI to act as a
sort of ‘administration console’ as it was far easier than building in some
form of IPC and separate UI tooling back then. It wasn’t until a little while

later when I started working on more traditional heavily distributed
‘headless’ services that I started to truly appreciate the power of well
factored libraries, command line tools and automation. However, I still
built a couple of UI based test harnesses because manual testing was still
the dominate approach.
Despite a move into REST APIs for a period, which is clearly a server-
side role, I’ve still had to keep my eye in on the UI based tooling as
showcasing the API features both to the product owner and wider
shareholders is much easier with a more user friendly approach [7]. While
using classic REST tools and Swagger work up to a point, the moment the
‘user’ journeys involve any kind of authentication the implementation
details start to dominate the proceedings. A ‘demo UI’ can also act as an
exploratory testing tool for the API too so it has value outside of
showcasing new features.
What is becoming more apparent to me, however, is that it is all too easy
to stick to what you already know and create a tool which serves your
immediate needs without considering its audience and whether more than
one user interface might be desirable because the same the same tasks
straddle the lines of analysis, development, testing, deployment and
support. It’s highly understandable of course because it’s probably just a
yak you’re shaving and a means to a different end than the feature you’re
supposed to be delivering to your customer. Don’t forget though that non-
functional user stories have considerable value too and that maybe it’s just
a matter of prioritisation.

EXIT_SUCCESS
Gerry Weinberg [8] suggests that you don’t really understand a tool until
you know how to abuse it at least 3 different ways. I don’t know if trying
to automate Excel on a server counts as one of your three but it definitely
qualifies as abuse. One presumes he was talking about the more functional
aspects rather than the friction generated by having the wrong form of
interface. Either way, it’s important that we pay attention to what toolkit
we’ve built for our system as much as the end product we’re using it on.
And, if we get the design of the system right, the addition of custom tools
shouldn’t be much of a burden on delivery as the functionality we need to
expose will only be a few lines of code away. Our final consideration is
then how we’re looking to interact with it and whether automation may be
desirable, along with learning, exploration, or all those things, but in
different ways.

References
[1] ‘In The Toolbox – Wrapper Scripts’, Chris Oldwood, C Vu 25-3,

http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-
scripts.html

[2] ‘In The Toolbox – Finding Text’, Chris Oldwood, C Vu 27-6,
http://www.chrisoldwood.com/articles/in-the-toolbox-finding-
text.html

[3] Wikipedia, https://en.wikipedia.org/wiki/Jeffrey_Snover
[4] ‘From Test Harness to Support Tool’, Chris Oldwood, blog,

http://chrisoldwood.blogspot.co.uk/2012/11/from-test-harness-to-
support-tool.html

[5] ‘Afterwood – Honesty’, Chris Oldwood, Overload 139,
http://www.chrisoldwood.com/articles/afterwood-honesty.html

[6] ‘Afterwood – Knocked For Six’, Chris Oldwood, Overload 136,
http://www.chrisoldwood.com/articles/afterwood-honesty.html

[7] ‘Showcasing APIs – The Demo Site’, Chris Oldwood, blog,
http://chrisoldwood.blogspot.co.uk/2016/06/showcasing-apis-
demo-site.html

[8] An Introduction to General Systems Thinking, Gerald Weinberg,
1975 / 2001, ISBN 0932633498
MAY 2018 | | 5{cvu}

http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-scripts.html
http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-scripts.html
http://www.chrisoldwood.com/articles/in-the-toolbox-finding-text.html
http://www.chrisoldwood.com/articles/in-the-toolbox-finding-text.html
https://en.wikipedia.org/wiki/Jeffrey_Snover
http://chrisoldwood.blogspot.co.uk/2012/11/from-test-harness-to-support-tool.html
http://chrisoldwood.blogspot.co.uk/2012/11/from-test-harness-to-support-tool.html
http://www.chrisoldwood.com/articles/afterwood-honesty.html
http://www.chrisoldwood.com/articles/afterwood-honesty.html
http://chrisoldwood.blogspot.co.uk/2016/06/showcasing-apis-demo-site.html
http://chrisoldwood.blogspot.co.uk/2016/06/showcasing-apis-demo-site.html

6 | | MAY 2018{cvu}

ACCU: The Early Days (Part 2)
Francis Glassborow continues his look at the history of ACCU.

left off these reminiscences with me being Membership Secretary and
the new formed committee agreeing to publish C Vu four times a year.
A regular publication schedule is important because it helps get

material to publish. Deadlines focus the minds of potential contributors.
We had set the date for an AGM for late spring and the publication date
for the next issue of C Vu to be just prior to the AGM. When the day
arrived, I discovered that the next issue was only in draft and had not been
printed. I had no desire to face the membership with such an immediate
failure and threw enough of a fit to persuade the Chair (Martin Houston)
to take the print-out and get enough copies photo-copied to ensure that all
attendees at the meeting had a copy.
I was even more annoyed when the editor of C Vu said that the next issue
would be late because he was going to be in the US in the weeks prior to
the scheduled publication date.
New members were going to be finding someone to ask about why they
had not had the scheduled issue. Almost certainly that would be the
membership secretary, as they would think something had gone wrong
with their membership.
After some thought, I turned up to the next committee meeting with an
offer that they would be unable to refuse. I volunteered to produce C Vu
and guaranteed that there would be 6 issues a year and that each issue
would be a minimum of 32 A5 pages even if I had to write them myself.
In the event, the smallest issue I ever produced was 48 pages and as time
went by the font size went down so that I could publish everything that
was offered. I had a strict policy that if a member could be bothered to
write, I would find a way to publish. I think our youngest contributor was
about 14 and some of the articles were pretty naïve by modern standards
but it got people involved. I seem to remember publishing an issue with
80 pages and the average was around 64.
I only once declined to publish an article. That was from someone with a
weird idea of mapping the elements of C onto the human brain. I could not
make any sense of it and I doubt that the membership would have been
able to either. The author was not pleased and accused me of censorship.
I just ignored his rantings and eventually heard no more from him.
As I had retired (through stress related ill-health) from teaching, it did not
worry me if I sometimes made a fool of myself (like the editorial where I
meant to write ‘time in lieu’ but actually wrote ‘time in loo’ – spell
checkers have limitations) or exhibited ignorance. However, I did have a
couple of regular columnists who needed some protection. The Harpist,
now dead as a victim of some Middle Eastern conflict, could not write
under his own name because his work in the security services prohibited
it. Then there was George Wendle (no, that was not his name, and we
chose it after searching the nascent internet to ensure that there was no
such person (there still isn’t, as far as I can check). In George’s case, his

employer would have started claiming IP over his writing (yes, some
employers can be very unhelpful).
At that same auspicious committee meeting where I became editor of
C Vu, I discovered that any British citizen could attend the lowest level of
BSI Committees as long as the convenor was happy with their attendance.
Neil Martin was convenor of the C committee and so I started attending
those meetings. Soon after, there was the first London meeting of WG21
(the ISO work group for C++, the newcomer on the block). By this time
CUG(UK) was broadening out to include some C++, so I arranged to
attend that meeting for a couple of days. It was an interesting experience,
watching these experts debate language issues. On the second day, I noted
that Bjarne Stroustrup was sitting a couple of rows behind me. I had
recently read and reviewed the 2nd edition of The C++ Programming
Language. I thought it would be nice if we offered him honorary
membership of CUG(UK) and so went over to him at one of the breaks
and introduced myself and made the offer (as a deputy head had told me
many years before ‘if you do not ask you do not get, and the worst that can
happen is that you get a “no”’) He accepted the offer. Somewhere in the
brief ensuing conversation, I mentioned that I had just finished reviewing
the 2nd edition and had found it much more readable than the first. He
advised me that writing was a learning experience. He also pointed out
that the structure of The C++ Programming Language was based on
K&R who, I understand, were just down the corridor at AT&T Research.
Somewhere around this time, Will Watts, who was then editor of .EXE
Magazine (the ‘.’ Eventually got dropped from the title), contacted me and
invited me to try out as a columnist on C. The idea being that I would write
500 words on C and that a member of the European C++ User Group
(more about that another time) would write 500 words on C++. What I had
not realised at that time was that 500 words meant 500+/- 3. Any more or
less and I would have to edit my column to fit. I can tell you that having
to write to such strict word counts is a great learning experience and I owe
a great deal to Will for taking on an inexperienced writer and helping me
hone my writing skills. I continued that column until .EXE stopped
publication. I can remember Will letting me know that my current column
(which was 2000 words by then) would be the last and his relief when he
realised that it was my hundredth column.
Next time I will write about how CUG(UK) became ACCU and how
Overload came to be.

I

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

MAY 2018 | | 7{cvu}

The New C++ Interview
Pete Goodliffe introduces a new way to test programming skills.

I’ve been hiring C++ developers for many years now. There has been
much debate about the best (most humane, most fair, most inclusive,
most accurate...) way to perform these kinds of technical interview. But

I may have the solution.
You want to hire people who…
 know C++
 can solve tricky, interesting problems
 think laterally and logically
 have a sense of humour

So here, I present (with apologies to your sanity) my latest interview test
paradigm. Forget coding tests. Forget inane questions about the number

of beagles in Brooklyn. Forget asking for history of your interviewee’s
programming career.
You can find the perfect C++ coding candidate simply using the magic of
C++ Dingbats. It works like the old British quiz show ‘Catchphrase’. A
well-known C++ (or general programming) term is represented
pictorially. You need to work out what that term is from the picture. Often
you just need to say what you see, or work out the puzzle logically (or,
sometimes, cyrptically).

For example, this is a dangling pointer. Simple, and obvious,
eh? So now you see how it works.
How well can you get on with these interview posers? Are
you the perfect C++ interview candidate? Answers on the
next page. Don’t peek until you’ve tried to solve the puzzles!

I

Becoming a Better Programmer # 110

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe

The challenge

8 | | MAY 2018{cvu}

ACCU Conference 2018: Trip Report
Kris van Rens shares his experiences from ACCU 2018.

plendid! I’m going to the ACCU2018 conference in Bristol!
Ever since becoming a member of the ACCU in 2016, I have wanted
to go. Of course, the ACCU journals are great, but actually meeting

the ACCU team, regular writers, as well as hundreds of other like-minded
people, is just priceless. I was pleasantly surprised by the family-like open
atmosphere, and at the same time by the quality and technical depth of the
talks. Sure, I had been to other conferences before, but I’ve never
encountered something quite like this.
The general aim for my visit of course was professional development (or,
that’s what I promised my employer…). Sharpening my C++
programming skills and understanding. But the conference offered so
much more. Aside from all the great in-depth talks on C++, there were
loads of talks about other programming languages and programming in
general. But then still, there was a plethora of other topics covered. Just to
name a few: inclusivity/diversity in the technical field (see [1]),
organisational/technical team leadership (or not), human reasoning
processes and even a pub quiz. And then besides all the invaluable content
of the talks, the proficiency of some of the speakers was just mind-
blowing. Very inspirational.
Obviously the keynote talks were single-track talks, but being able to only
be present in one place at a time meant missing out on at least four other
interesting talks. I’m very thankful to the conference committee for
arranging the video recording of (many of) the talks. It will take me quite
some time still to soak up all of the content I marked as interesting – which
is a lot.
One of the highlights for me was getting a closer look into the kitchen of
C++ standardization. A number of committee members were around to
give talks, and were grilled on Friday (well, it wasn’t that bad). I was
pleasantly surprised at how many of the conference attendees had
standards proposals in progress or even accepted.
Another interesting (and recurring) topic was our failing education system
when it comes to the educating of good C++ programmers. There is
education in the general topic of computer science, but that’s not quite the
same. The result is an ecosystem in which many programmers have
become ‘dark matter programmers’ – generally incompetent and
oblivious to professional improvement. In my opinion, it is partly our jobs

as improvement-aware professionals to take care of this. So, whenever
you’ve visited a conference/read a book/learned something/etc., tell your
colleagues/friends about it! Share with them the links of videos/blog
posts/Overload articles, cook up a mini-course, whatever suits you, it will
make a difference.
The underlying issue partly seems to have its roots in kids of a young age
for which insufficient programming teachers are available. And that’s
exactly where initiatives like Code Club come in. Code Club [2] is the
charity organization that organises programming workshops for kids. I
joined in on the workshop on Thursday and it was great fun! I’m definitely
going to give this a follow-up, if only it were on my own kids (evil grin).
Hand-in-hand with the serious business going on at the conference were
the end-of-the-day lightning talks. Ten or so five-minute talks about
literally anything, interlaced with light-speed famous scientist quizzes led
by Pete Goodliffe. There were serious topics in there too, but most of them
were a good laugh.
Then there was the conference dinner, the theme of which was ‘magical’.
Great food, great atmosphere, great people, Russell ‘the grey sorcerer’
Winder, and a magician making a fool of us (and himself); what more do
you need?
All-in-all, I’d say the experience for me was life-changing. With some of
the misery going on in the world, it’s sometimes good to realise there are
so many people that actually can be utterly lovely to each other ;-)
I surely hope to be there again next year!

References
[1] https://github.com/include-cpp/include
[2] https://www.codeclub.org.uk

S

KRIS VAN RENS
Since meeting his dad’s 1983 ZX Spectrum, Kris has
been captivated by the wonderful world of programming.
In 1995 he learned to program ‘Pacman’ in x86
assembly, followed by learning C and then C++. He is
serious about code quality and works in the Netherlands.
Kris can be contacted at krisvanrens@gmail.com

The New C++ Interview (Answers)
1. Template metaprogramming
2. Pimpl Idiom
3. Base class
4. Assignment operator
5. auto_ptr
6. Trigraph
7. Multiple inheritance
8. Digraph
9. std::unordered_set
10. Boolean parameter
11. signed char
12. Liskov Substition Principle

13. long double
14. Hash map
15. Private member function
16. Inline function
17. Tail recursion
18. K&R
19. Anonymous namespace
20. SFINAE
21. C#
22. Floating point
23. Object oriented
24. Syntax

Image credits
Maxim Kulikov, Aleksandr Vector, lastspark, DTDesign // Linseed
Studio // Creative Stall, Garrett Knoll, Anchor Design // Garrett
Knoll, Deemak Daksina S // Kido Chang, Simon Child, WARPAINT
Media Inc. // Iconic // Made by Made // Atif Arshad, G // Lil Squid,
zidney // Oksana Latysheva, priyanka // iconsmind.com,
Fahmihorizon, Andrea Novoa, See Link, Llisole // Cezary Lopacinski

https://github.com/include-cpp/include
https://www.codeclub.org.uk

On Quaker’s Dozen
A student examines the Quaker’s Dozen wager.

he Baron’s latest wager set Sir R----- the task of rolling a higher
score with two dice than the Baron should with one twelve sided die,
giving him a prize of the difference between them should he have

done so. Sir R-----’s first roll of the dice would cost him two coins and
twelve cents and he could elect to roll them again as many times as he
desired for a further cost of one coin and twelve cents each time, after
which the Baron would roll his.
The simplest way to reckon the fairness of this wager is to re-frame its
terms; to wit, that Sir R----- should pay the Baron one coin to play and
thereafter one coin and twelve cents for each roll of his dice, including the
first. The consequence of this is that before each roll of the dice Sir R----
– could have expected to receive the same bounty, provided that he wrote
off any losses that he had made beforehand.
Put in these terms it is self evident that Sir R----- should set himself a
constant goal at which to stick, for if it were to maximise his expected
prize after the first roll, then it should also do so after every subsequent
roll. I explained as much to the Baron, but I suspect that I did not have his
undivided attention at the time.
Now, if we label Sir R-----’s roll with xr and the Baron’s with xb then we
can therefore formulate his expected winnings as

where E[X|C] is the expected value of X given that the condition C holds
true.
The probabilities that Sir R-----’s score were equal to any particular value
of k are easily figured to be

from which we can trivially deduce that the probabilities that it were
greater than or equal to any given value of k are

Once Sir R----- had chosen to stick with a roll of xr, he should have
expected a prize of

where Σ is the summation sign, which we can reorganise into

and so, by the very definition of conditional expectations, we have

We can make light work of figuring these expectations by noting that

and proceeding backwards from twelve to two

Sir R-----’s expected winnings were therefore as shown in Figure 1,
overleaf, and I should have consequently advised him to accept the
Baron’s wager, provided that he stuck with a score of six or greater upon
each roll!

T

w x k x x x k

x k w

w

k r r b r

r k

k

Pr() max(,) |

Pr()

(

E 0

1

1

12
100

PPr() Pr() max(,) |

Pr()

x k x k x x x k

w x k
r r r b r

k r

E 0 112
100

PPr() max(,) |

max(,) |

x k x x x k

w x x x k

r r b r

k r b r

E

E

0

0

28
25

28
25 Pr()x kr

k
x kr

2 3 4 5 6 7 8 9 10 11 12
1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36Pr()

k
x kr

2 3 4 5 6 7 8 9 10 11 12
1 35

36
33
36

30
36

26
36

21
36

15
36

10
36

6
36

3
36Pr() 11

36

E max(,)x x x xr b
x

x

r

r

0 1
12

1

1

E max(,)x x x x

x x

r b r
x

x

x

x

r r

r r

 0

1

1
12

1

1
1
12

1

1

1
12

1
122

1
2

1
24

1

1

x x

x x
r r

r r

E
E

max(,) |
max(,) Pr

Pr
x x x k

x x x x
r b r

x k
b r

x k

0

0
12

12

xx x

x x x x

x k

r

x k
r

r

12

1

24

() Pr

Pr

x x x x k k x k

x x x x

r r
x k

r
x

 =

 () Pr () Pr

() Pr

1 1

1

12

k 1

12

12

11

12 11 132
36 24

132
24

11 10 2
36

132
36

352
36

1
36

132
36

1
36

3

´ ´ =
´

=

´ ´ + =
552
36

3
36

622
36

6
36

24
352
72

10 9 3
36

352
36

622
36 24

622
144

10

9

´
=

´ ´ + =
´

=

99 8 4
36

622
36

910
36 24

910
240

8 7 5
36

910
36

1 198

910
36

10
36

´ ´ + =
´

=

´ ´ + =
, 00
36 24

1 190
360

7 6 6
36

1 190
36

1 442
36

7

1190
36

15
36

1 442
36

,

,

,

, ,

´
=

´ ´ + =
224

1 442
504

6 5 5
36

1 442
36

1 592
36 24

16

21
36

1 592
36

26
36

´
=

´ ´ + =
´

=

,

, , ,, 5592
624

5 4 4
36

1 592
36

1 672
36 24

1 672
720

4 3

5

4

1 672
36

30
36

´ ´ + =
´

=

´

, , ,,

´́ + =
´

=

´ ´ +

3
36

1 672
36

1 708
36 24

1 708
792

3 2 2
36

1 7083

1 708
36

33
36

, , ,

,

,

336
1 720
36 24

1 720
840

2 1 1
36

1 720
36

1 722
36

2

1 720
36

35
36

=
´

=

´ ´ + =

, ,

, ,

,

11 722
36

36
3624

1 722
864

, ,
´

=

k x x x x x x x kr
x k

r b r

 () Pr() [max(,) |]1 0
12

E

Acknowledgement
Courtesy of www.thusspakeak.com
MAY 2018 | | 9{cvu}

www.thusspakeak.com

On Quaker’s Dozen (continued)
w12 1
36

132
24

28
25

132 25 28 24 36
24 25

3 300 24 192
600

2
= =-

´
=

´ - ´ ´
´

=
-

-
, , 00 892

600
34

352
72

28
25

352 25 3 28 72 36
72

492
600

11 3
36

,
=-

= -
´

=
´ ´ - ´ ´

´
w

225 3
26 400 72 576

5 400
46 176
5 400

8

622
1

2 976
5 400

10

´
=

-
=- =-

=

, ,
,

,
,

,
,

w
444

28
25

622 25 6 28 144 36
144 25 6

93 300 145 152
21 66

36

-
´

=
´ ´ - ´ ´

´ ´
=

-, ,
, 000

51 852
21 600

2

910
240

28
25

910 25 1

8 652
21 600

9 10
36

= =-

-
´

=
´ ´

=

,
,

,
,

w 00 28 240 36
240 25 10

227 500 241 920
60 000

14 420
60 000

- ´ ´
´ ´

=
-

=-
, ,

,
,
,

w88 15
36

1 190
360

28
25

1 190 25 15 28 360 36
360 25 15

446 2
= -

´
=

´ ´ - ´ ´
´ ´

=
, , , 550 362 880

135 000
83 370
135 000

1 442
504

28
25

1 44
7 21

36

-
=

= -
´

=

,
,

,
,

, ,w 22 25 21 28 504 36
504 25 21

757 050 508 052
264 200

249 018´ ´ - ´ ´
´ ´

=
-

=
, ,

,
,

2264 200
1 592
624

28
25

1 592 25 26 28 624 36
624 256 26

36

,
, ,w = -

´
=

´ ´ - ´ ´
´ ´226

1 034 800 628 992
405 600

405 808
405 600

1 208
405 600

5

=
-

= =

=

, , ,
,

,
, ,

w 11 672
720

28
25

1 672 25 30 28 720 36
720 25 30

1 254 0
30
36

, , , ,
-

´
=

´ ´ - ´ ´
´ ´

=
000 725 760
540 000

528 240
540 000

1 708
792

28
25

1 7
4 33

36

-
=

-
´

==

,
,

,
,

, ,w 008 25 33 28 792 36
792 25 33

1 409 100 798 336
653 400

610´ ´ - ´ ´
´ ´

=
-

=
, , ,

,
,7764

653 400
1 720
840

28
25

1 720 25 35 28 840 36
8403 35

36

,
, ,w = -

´
=

´ ´ - ´ ´
´225 35

1 505 000 846 720
735 000

658 280
735 000

1 722
8642

´
=

-
=

-=

, , ,
,

,
,

,w 228
25

1 722 25 36 28 864 36
864 25 36

1 594 800 870 91
36
36´

=
´ ´ - ´ ´

´ ´
=

-, , , , 22
777 600

678 888
777 600,

,
,

=

Fig
ur

e 1
Writing a Wayland Server Using Mir
Alan Griffiths explains the basics of

a new X11 replacement API.

We need a new windowing system
he X-Windows system has been, and still is, immensely successful
in providing a way to interact with computers. It underlies many
desktop environments and graphical user interface toolkits and lets

them work together. But it comes from an era when computers were very
different from now, and there are real concerns that are hard to meet.
In 1980, computers were big things managed by experts and, maybe,
connected to another computer in the same organization. Today a phone
is a computer managed by a non-expert, and connected to the Internet.
Then, having floating point co-processor was a feature; now, having a
graphics co-processor is required.
In 1980, the cost of developing software was such that any benefit to be
gained by ‘listening in’ on what was happening on the same computer was
negligible. It wasn’t as though there were billions of computers being
used for online banking that would willingly install your program.
Adapting X11 to the new requirements of security and graphics
performance isn’t feasible. The open source world has settled on a
replacement: Wayland. Wayland is a set of protocols and extension
protocols that allow applications (clients) to talk to compositors (servers)
without many of the problems inherent in X11.
Most open source desktop environments have been based on the X.Org
server implementation and a range of different window managers and
compositors. All this needs adapting to work with Wayland.

For example, the Gnome project has been adapting it’s Mutter window
manager to support Wayland; KDE has been adapting Kwin; and so on.
I work on another project, Mir, which in addition to being a compositor
aims to provide the building blocks of generic window management and
independence from the underlying graphics stack.
In this article I’m going to show you how easy it is to write a Wayland
server using Mir.

Building the code
The code in this article needs Mir 0.31 or later. This exists in Ubuntu
18.04 and Fedora 28 both unreleased at the time of writing (but due for
release before you read this), or from the mir-team/release PPA (See
Sidebar).
It is also useful to install the weston package as the example makes use
of weston-terminal as a Wayland based terminal application and the
Qt toolkit’s Wayland support : qtwayland5.

T

ALAN GRIFFITHS
Alan Griffiths has delivered working software and development
processes to a range of organizations, written for a number of
magazines, spoken at several conferences, and made many friends.
He can be contacted at alan@octopull.co.uk
10 | | MAY 2018{cvu}

On Ubuntu use:
 $ sudo apt install libmiral-dev mir-graphics-
 drivers-desktop weston qtwayland5 g++ cmake
Or, if using Fedora, use:
 $ sudo dnf install mir-devel weston qtwayland5
 g++ cmake
The ‘Mir Abstraction Layer’ (MirAL) presents the server-side
functionality in a way that makes it easy to use MirAL. There was an
introduction to MirAL in C Vu 28.2.
To illustrate MirAL I’m going to show what is involved in writing a (very
simple) window manager. It runs on desktops, tablets and phones and
supports keyboard, mouse and touch input. It will support applications
using the GTK and Qt toolkits, SDL2 applications and (using Xwayland
X11 applications.
The full code for this example is available on github:
 $ git clone https://github.com/AlanGriffiths/
 egmde.git
 $ git checkout article-1
Naturally, the code is likely to evolve and inspire additional articles, so
you will find other branches, but this branch goes with this article.
Assuming that you’ve MirAL installed as described above you can now
build egmde as follows:
 $ mkdir egmde/build
 $ cd egmde/build
 $ cmake ..
 $ make
After this you can start a basic egmde based desktop. By default this will
use VT4, so first switch to VT4 (Ctrl-Alt-F4) to sign in and switch back
again. Then type:
 $./egmde-desktop
You should see a blank screen with a weston-terminal session. From this
you can run commands and, in particular, start graphical applications.
Perhaps qtcreator to examine the code?
There’s very little code needed to get this basic shell running:
 $ wc -l *.h *.cpp *.sh
 88 egwindowmanager.h
 34 egmde.cpp
 420 egwindowmanager.cpp
 47 egmde-desktop.sh
 589 total

The example code
A lot of the functionality (default placement of windows, menus etc.)
comes with the MirAL library. For this exercise we’ll implement one
class and write a main function that injects it into MirAL. The main
program looks like this:
 using namespace miral;
 int main(int argc, char const* argv[])
 {
 MirRunner runner{argc, argv};
 return runner.run_with(
 {
 set_window_management_policy<egmde
 ::WindowManagerPolicy>()
 });
 }
M o s t o f t h e l o g i c b e l on g i n g to e g m de i s i n t h e
egmde::WindowManagerPolicy class. This implements a
miral::WindowManagerPolicy interface that allows the window
management to be customized. It looks like Listing 1.
These are the functions that it is necessary to implement for a minimal
shell. I won’t reproduce them all here, but Listing 2 should give a flavor.

The way of the MirAL API
The MirAL API is designed so that it is easy to implement and run a Mir
server and compose any special features. One aspect of this is the
provision of building blocks that can be tailored by the developer and
‘hooked up’ in the main() function by adding them to the run_with()

class WindowManagerPolicy : public
CanonicalWindowManagerPolicy
{
public:
 using CanonicalWindowManagerPolicy
 ::CanonicalWindowManagerPolicy;
 bool handle_keyboard_event(
 MirKeyboardEvent const* event) override;
 bool handle_pointer_event(
 MirPointerEvent const* event) override;
 bool handle_touch_event(
 MirTouchEvent const* event) override;
 Rectangle confirm_placement_on_display(
 WindowInfo const& window_info,
 MirWindowState new_state,
 Rectangle const& new_placement) override;
 void handle_request_drag_and_drop(
 WindowInfo& window_info) override;
 void handle_request_move(
 WindowInfo& window_info,
 MirInputEvent const* input_event) override;
 void handle_request_resize(
 WindowInfo& window_info,
 MirInputEvent const* input_event,
 MirResizeEdge edge) override;
 private:
 ...
};

Listing 1

bool egmde::WindowManagerPolicy
 ::handle_keyboard_event(
 MirKeyboardEvent const* event)
{
 auto const action =
 mir_keyboard_event_action(event);
 auto const shift_state =
 mir_keyboard_event_modifiers(event) &
 shift_states;
 if (action == mir_keyboard_action_down &&
 shift_state == mir_input_event_modifier_alt)
 {
 switch (mir_keyboard_event_scan_code(event))
 {
 case KEY_F4:
 tools.ask_client_to_close(
 tools.active_window());
 return true;

 case KEY_TAB:
 tools.focus_next_application();
 return true;

 case KEY_GRAVE:
 tools.focus_next_within_application();
 return true;

 default:;
 }
 }
 return false;
}

Listing 2
MAY 2018 | | 11{cvu}

list. One of these is an ‘internal client’ – a ‘client’ that runs in the server
process but can use the client APIs to, for example, draw a surface.
The next iteration of egmde will add an internal client that paints a
configurable wallpaper. I won’t show how that is implemented here, but
I will show how it is added to main() program (see Listing 3).
The CommandLineOption utility does a number of things, adds a
configuration option to the command line, process the command line, and
calls it’s first argument. In this case we pass an instance of
egmde::Wallpaper implements the function call operator to accept the
wallpaper colour.
The StartupInternalClient utility takes an internal client object,
waits for the server to start and then connects the client to the server,
notifying the internal client object of both the client-side and server-side
connection so that the server ‘knows’ which client this is.
By supplying customizations to the run_with() as a list we make it
easy to ensure the server is initialized before they are used and give the
user flexibility in setting these objects up. For example, the wallpaper
instance can be created and used in a a shutdown hook using
add_stop_callback() before being used in the run_with() list.
This is achieved by declaring run_with() to take an initializer list:
 auto run_with(std::initializer_list
 <std::function<void(::mir::Server&)>> options)
 -> int;
Each of the supplied utilities ‘knows’ how to integrate itself into the
system using the mir::Server. User code should not need to do this
directly, so part of the MirAL ‘abstraction’ is to keep this as an opaque
type.
This approach has been proven effective by use in more advanced servers
such as Unity8.

The capabilities
Mir tries to be agnostic about the window management style. There are
example shells in the Mir project implementing several styles: ‘floating’
windows, ‘tiling’ windows and fullscreen ‘kiosk’ windows.
Although it was abandoned by Canonical, the Unity8 desktop shell
demonstrates the potential of a shell based on Mir.
Mir is also used for Canonical’s ‘Internet of Things’ kiosk and for the
Ubuntu Touch phone operating system.

The limitations
Support for Wayland isn’t complete in Mir (nor, to varying extents, other
compositors) and it isn’t complete in the toolkits used to write
applications. However, the commitment and momentum is there. It will
happen soon.

Conclusion
If you are interested in experimenting with writing a shell to support
Wayland clients then Mir might be an option.

References
egmde: https://github.com/AlanGriffiths/egmde/wiki
Mir: https://mir-server.io/
Unity8 demo: https://www.youtube.com/watch?v=LUxVdURZdRk
egmde demo: https://www.youtube.com/watch?v=e4_SEybCB0M
Unity8 use of MirAL API: https://github.com/ubports/qtmir/blob/master/

src/platforms/mirserver/qmirserver_p.cpp#L91
Ubuntu Touch: https://ubports.com/

int main(int argc, char const* argv[])
{
 MirRunner runner{argc, argv};
 egmde::Wallpaper wallpaper;
 runner.add_stop_callback([&]
 {wallpaper.stop(); });
 return runner.run_with(
 {
 CommandLineOption{
 std::ref(wallpaper),
 "wallpaper",
 "Colour of wallpaper RGB",
 "0x92006a"},
 StartupInternalClient{"wallpaper",
 std::ref(wallpaper)},
 set_window_management_policy
 <egmde::WindowManagerPolicy>()
 });
}

Lis
tin

g 3

On other versions of Ubuntu
If you want to use Mir on earlier supported versions of Ubuntu then
it is available from the Mir Release PPA. To add the PPA to your
system:
 $ sudo add-apt-repository ppa:mir-team/release
 $ sudo apt update
You can then follow the instructions in the main article. One word of
caution though: on Ubuntu 16.04 the toolkit support for Wayland is
somewhat dated and the experience is not great. On 17.10 things
mostly work.
To remove the PPA from your system:
 $ sudo ppa-purge mir-team/release
On other versions of Fedora
Fedora versions 26 and 27 have an earlier version (1.5) of MirAL,
that would require a few (simple) changes to the code to get the
egmde example code working. More importantly Mir’s support for
Wayland in this earlier version is lacking. It is probably best to build
your own (see next section).

Build your own Mir
There are instuctions for building Mir on the Mir website:
https://mir-server.io/doc/getting_involved_in_mir.html
To my knowledge these work on Ubuntu 16.04 or later, Fedora 28
or later and Debian sid. (If you try it on other distros please let me
know how it works out.)

Other ways to get Mir and use for development
12 | | MAY 2018{cvu}

https://github.com/AlanGriffiths/egmde/wiki
https://mir-server.io/
https://www.youtube.com/watch?v=LUxVdURZdRk
https://www.youtube.com/watch?v=e4_SEybCB0M
https://github.com/ubports/qtmir/blob/master/src/platforms/mirserver/qmirserver_p.cpp#L91
https://github.com/ubports/qtmir/blob/master/src/platforms/mirserver/qmirserver_p.cpp#L91
https://ubports.com/

Standards Report
Emyr Williams reports on news from the world of Standards.

he first ISO C++ committee meeting of 2018 was held in
Jacksonville, Florida where work continued apace to work on the
Technical Specifications, as well as the next version of C++ which

would be C++20. Once again making use of the various trip reports, and
with my eternal thanks to the people who've written one, I've been able to
cobble together what are the main things discussed. I would like to thank
Roger Orr for proofing and correcting where necessary.

C++ 17 - Compiler update
As my previous report stated, C++ 17 has now been officially published.
However, it's worthy to note that the latest versions of GCC and Clang
both have complete support for C++ 17, apart from a few bugs. And
Microsoft's C++ compiler MSVC has significant partial support, but they
are making good progress towards full support.

C++ 20 Language
Language support for empty objects. (P0840R0)
While we already have an empty base optimization, C++ 20 will have
additional features for the creation of empty objects. This is achieved
using the no_unique_address attribute. This tells the compiler that a
unique address in memory isn't required for a non-static data member.
This means that we can compose without overhead and without needing
to use inheritance, which can be troublesome as it 'leaks out'. It also means
that the data member can share its address with another object, as long as
it could have a zero size, and they're both distinct types.
 template <typename Key, typename Value,
 typename Hash, typename Pred,
 typename Allocator>
 class hash_map {
 [[no_unique_address]] Hash hasher;
 [[no_unique_address]] Pred pred;
 [[no_unqiue_address]] Allocator alloc;
 Bucket *buckets;
 }
In the example above, the hasher, pred and alloc objects could have
the same address as the Buckets object if their respective types are all
empty.

Down with typename (P0634R2)
This proposal removes the requirement to use the typename keyword as
a disambiguator in some contexts. The proposal is that typename is
made optional in a context that are known to only permit type names.

Allow structured bindings to accessible members. (P0969R0)
Structured Bindings was one of the last-minute additions to C++ 17, and
with use users have come across new issues and ideas to make it better.
Timur Doumler, who's a member of the BSi panel proposed a paper to
enhance structured bindings. The original wording only allowed binding
to public members, however Timur's paper proposed to allow binding to
any accessible data members. It will be in C++20, however it is treated
as a defect for C++17.

Relaxing the range-for loop customization point finding rules.
(P0962R0)
This resolves a set of corner cases for the range-based for. At present, you
cannot write a range-based for loop over data that comes through an input

stream without writing an adaptor class. While this may surprise a few of
us, the paper's author was concerned that the committee have painted
themselves in to a corner where such support cannot be added. The issue
is that seekdir::end is found, and this makes it impossible to find
begin() and end() with any degree of certainty.
The paper also provides a code sample that wouldn't work in C++ 17,
however it would work in C++ 20.
 #include <sstream>
 #include <iterator>
 struct X : std::stringstream
 {
 // do some stuff here
 };
 std::istream_iterator<char> begin(X& x)
 {
 return std::istream_iterator<char>(x);
 }
 std::istream_iterator<char> end(X& x)
 {
 return std::istream_iterator<char>();
 }
 int main()
 {
 X x;
 for(auto&& i : x)
 {
 // do stuff here
 }
 }

Parallelism TS v2 Complete, sent for national body balloting.
The new version of the Parallelism TS was completed, and a draft has
been sent for national body balloting, so I expect that will be discussed at
the next BSi Panel meeting in London.

Attributes for [[likely]] and [[unlikely]] (P0479R4)
One of the things compilers have been doing for quite some time now, is
branch-execution optimisations, but it has tended to be non-portable. One
of the new things coming in C++20 is the ability to mark which is the
likely branch to be executed, and it will give that information to the
optimiser. So for example:
 if(foo < bar) [[likely]] {
 // do something neat here…
 } else {
 do_other_thing();
 }
You can also tell the compiler what is not usually executed, so for
example:
 while(foo > bar) {
 [[unlikely]] create_widget();
 }

T

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
MAY 2018 | | 13{cvu}

This can be used for any scenario where branching occurs, such as a
switch statement, a nested if statement, or any of the loops.
There was discussion about the name, since the attribute can also be used
for statements executed when rare events occur that needs the faster path.
So that's worth bearing in mind.

Coroutines (P0912R0)
The proposal to merge coroutines was delayed, pending papers giving
feedback from the TS, especially the one from Google, however this will
be visited again in the next meeting in Rapperswil.

New work item proposals created
There was a move to direct the Convener, to request a New Work Item for
a Technical Specification on "C++ Extensions for Reflection" and create
a working draft with "Static Reflection" (paper p0194r6) as its initial
content.

Symmetry for <=> (P0905R0)
The idea behind the paper was to make operator spaceship symmetric, so
that when a <=> b is well formed, then b <=> a should also be well
formed and have the complementary semantics. This is helpful for
mixed-type comparisons where the operator was only defined in one
direction.

Library Evolution Working Group
Much work and effort was made to advance the case for using concepts
and modules in the standard library. The Standard Library Concepts
paper (p0898r0) was sent to the Library Working Group for a wording
review.

The group also worked on a plan to merge the Ranges Technical
Specification Version 1 in to C++ 20. So far there hasn't been a consensus
on where range-based algorithms should go just yet. There was previous
discussion in regard to placing them into a new namespace (std2) however
it looks more likely that they will be placed in std::ranges.

C++ 20 Library
A <version> header (P0754R1)
This would be a new header file with implementation-dependent version
information. The information that could be found in this file, may well be
different in each implementation and be specifically related to the vendor.
This will replace the <ciso646> header file, as it was being hijacked by
some vendors as a good place to put vendor-specific defines, which went
against the original purpose of the header.

Comparison of Unordered Containers. (P0809R0)
At present, the comparison of unordered containers causes undefined
behaviour unless Hash and Pred have exactly the same behaviour for both
containers. This means that two different hash functions may lead to
containers being different.

Major feature developments timeline
Herb Sutter created a timeline of what's coming when, although he was at
pains to point out that this was a plan, and not a promise, so it should be
treated as speculative and tentative. It is shown in the table below, which
uses the following terms:
 CD = Committee Draft
 IS = International Standard
 TS = Technical Specification

Feature Status Depends on Current target
(conservative estimate)

Current target
(optimistic estimate)

Concepts Concepts TS v1 published and merged in to IS C++20 C++20

Ranges (N4128) Ranges TS v1 published Concepts Core in C++20 and rest in C++23 C++20

Contracts (p0542r3) Proposal C++23 C++20

Modules (P0678r0) Modules TS v1 published C++23 C++20

Coroutines (N4723) Coroutines TSv1 published C++23 C++20

Executors (p0761r2) Proposal C++23 C++20

Networking (N4711) Networking TS v1 published Executors C++23 C++20

New future and async Concurrent TS v1 published Executors C++23 C++20

Reflection (p0194r5) TS Working Paper TS in C++23 timeframe and IS in
C++26

TS in C++20 timeframe and
IS in C++23
14 | | MAY 2018{cvu}

If you read something in C Vu that you
particularly enjoyed, you disagreed with
or that has just made you think, why not
put pen to paper (or finger to keyboard)
and tell us about it?

Code Critique Competition 111
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I’ve written a simple program to print the ten most common words in a
text file supplied as the first argument to the program. I’ve tried to make
it pretty fast by avoiding copying of strings. Please can you review the
code for any problems or improvements.

What would you comment on and why?
Listing 1 contains the code. (Note: if you want to try compiling this on a
pre-C++17 compiler you can replace string_view with string and
most of the issues with the code remain unchanged.)

Critiques
Paul Floyd <paulf@free.fr>
There’s been some discussion on the mailing list about accessing C++17
compilers. This is indeed fairly difficult.
[Ed: I apologise for the trouble I caused by using C++17 features in this
critique.]

For the most part I don’t use Windows for compiling so I haven’t tried any
compilers on that platform.
On macOS, the current XCode (9.2, with Apple clang 9.0.0) was able to
compile it using -std=c++1z.
On Linux, I build clang and GCC regularly, both the SVN head versions.
Early on I gave up trying to build libc++, so I couldn’t compile this code
with clang, though I admit I gave up quickly. GCC, given enough options,
does the trick. I was also able to build the code on Solaris, again with GCC
built from source.
For those of us that like to more than just a second opinion, I was also able
to build it on FreeBSD. It wouldn’t compile with clang 4.0.0 that is
packaged on FreeBSD 11.1 but it compiled OK with clang 7.0.0 built from
source.
Wrapping up on the language versions, when compiled with
std::string instead of std::string_view I see about a 10%
performance degradation. That means string_view is quite a nice
improvement – the code is essentially the same (no obscure optimisation
tricks) for a non-negligible speed gain.
Getting back to the code.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <string_view>
#include <unordered_map>
#include <vector>

int main(int argc, char **argv)
{
 std::unordered_map<std::string_view, size_t>
 words;
 std::ifstream ifs{argv[1]};
 std::string ss{
 std::istreambuf_iterator<char>(ifs),
 std::istreambuf_iterator<char>()};
 auto *start = ss.data();
 bool inword{};
 for (auto &ch : ss)
 {
 bool letter = ('a' <= ch && ch <= 'z' ||

'A' <= ch && ch <= 'Z');
 if (inword != letter)
 {

if (inword)
{

std::string_view word(
start, &ch - start);

++words[word];
}
else
{

start = &ch;
}
inword = !inword;

 }
 }

Lis
tin

g 1

 std::map<size_t, std::string_view> m;
 for (auto &entry : words)
 {
 auto it = m.lower_bound(entry.second);
 if (it != m.begin() || m.empty())

{
 m.insert(it,

{entry.second, entry.first});
if (m.size() > 10)
{
 m.erase(m.begin());
}

 }
 }
 for (auto &entry : m)
 {
 std::cout << entry.first << ": "

<< entry.second << '\n';
 }
}

Listing 1 (cont’d)
MAY 2018 | | 15{cvu}

clang complains about a lack of parenthesis in the and-or-and expression
for ascii letters. GCC complained that argc is unused. Nothing too
serious.
There is no check that more than one argument has been provided. The
dynamic analysis tools that I tried didn’t complain, but this should be fixed
for production code.
For my testing with a text file, I used a small file containing some random
French and then the text of Tom Sawyer.
I have a big beef with the following code:
 bool letter = ('a' <= ch && ch <= 'z' ||
 'A' <= ch && ch <= 'Z');
Is this an early word counting Brexit? This treats any non-English ascii
letters as separators, so “près” is considered as “pr” and “s”
std::isalpha would be better. I did try fiddling with LC_ALL and
std::locale, but didn’t manage to get it to work. Unfortunately there
is a price to pay for this (and a heavy price if internally all of the strings
need to be converted to a unicode representation). When I switched to
using isalpha, the Valgrind callgrind instruction count went up from
about 162 million to 181 million.
There are two possible approaches for splitting the lines into words.
 Look for the letters and assume that everything else is whitespace or

punctuation.
 Look for the whitespace and punctuation and whitespace, and

assume that everything else is a letter.
I prefer the second approach as there is a lot less punctuation and
whitespace than there are letters. It also makes it easier to include things
like apostrophes so that “fo’c’s’le” gets treated as one word and not 4.
I’m not sure if it is intentional, but the m reverse map from word counts to
words is a plain map. This means that for any words that have the same
word count, only the last one will be recorded.
Moving on to performance. I don’t think that it’s a good idea to just look
at some code and then make changes and hope that it will run faster. What
is the performance requirement? You need to know how big the problem
is. Is the text going to be 1kbyte, 1Mbyte 1Gbyte or more? And how big
is the expected vocabulary in the text? 1000, 100,000, 10,000,000 words?
Is the vocabulary fixed in advance? If it is fixed, then I would suggest using
a perfect hash and a lookup table. Does the text have a special distribution
(like with medical or legal vocabulary), or does it just a ‘plain text’
distribution?
My expectation is that the bottleneck will be the time taken to read the input
f i l e . Cal lg r ind conf i rms th is : 80% i f the t ime i s spen t in
ostreambuf_iterator::__pad_and_output. That probably
means that any code changes will be ‘premature optimisations’ and the
most fruitful avenue would be to use something like asynchronous I/O. I
would expect that the word count map ‘words’ will have an upper limit in
the region of 10 to 20 thousand elements.
I think that it is a waste of time to limit the reverse map of counts to the
top 10 words. Even if the input text is large, say 600,000 words (a
doorstopper like War and Peace), then the largest size of the reverse
dictionary will only be around 1100 elements. (The worst case for the
‘words’ map is that it contains entries with counts of 1, 2, 3, … . The sum
of these counts is that for an arithmetic progression, n/2(n+1)). This means
that the size of the reverse map is O(Sqrt[Word Count]), and consequently
will never be very large.
If performance really is crucial, then it will probably be faster to replace
m with a table e.g., a std::vector. The vector should be resized to 10,
and contain the running top 10 words in descending order. For the map, it
takes around 3 comparisons to determine whether to insert the word. With
a table you just have to compare with the last element. If it is less than or
equal, do nothing. If it is more, do a binary search and insert the new word.
I expect that insertions will be very rare.
It would be possible to replace the two maps with a single ‘bimap’.
However, I would advise against doing that if performance is important.

It may simplify the code, but my experience is that it doesn’t do the
performance any favours.

James Holland <James.Holland@babcockinternational.com>
I am afraid that I don’t know the finer points of std::string_view and
so I have replaced them with std::string. I hope others will be able to
provide help and advice on this topic.
The main problem with the student’s code is that should more than one
word occur the same number of times within the file, only the last one
encountered will be recognised. This is because the map the student is
using can only map the number of occurrences to a single word. When
inserting a word into the map, any existing word with the same number of
occurrences will be overwritten and, therefore, lost. Fortunately, this
situation is easily remedied. All that needs to be done is to replace the
std::map with an std::multimap. When this is done, all words will
be added to the std::multimap and so will be counted. It is interesting
to note that, with the amended program, of the words that occur equally
in tenth position, it is not possible to predict which will be printed if their
number, plus the ones that occur less frequently, exceed 10. This is because
th e o r de r i n wh i ch th e wo r ds a re s to r ed w i th in t he
std::unordered_map is not defined. This is the nature of an unordered
map! This behaviour may or may not matter for the student’s application.
A more sophisticated version of the code could display which words occur
equally often.
The student’s code makes use of quite a complicated expression to
determine whether a character is an upper or lower case letter. There is a
function available to determine this, namely isalpha(). This function
returns a non-zero value if the character is an alphabetic character and zero
otherwise. This function should be used in preference to the student’s code
as there is no guarantee that upper or lower case letters are contiguous.
The student has devised a clever way of separating the words within the
file. It would be difficult to find a more efficient method, I suggest. The
code is quite difficult to understand, however. I wonder if a simpler method
exists, perhaps taking advantage of an existing library. From my brief
investigations, it would appear that most libraries that extract words (or
tokens) from strings are defined in terms of what constitutes the delimiters
between words. In contrast, the student’s code defines what a word is. This
makes selecting a suitable algorithm a little difficult. Regex is very flexible
and so is a likely candidate. In this case, the separator is anything that is
not a series of alphabetic characters. This can be realised in only four lines
of code (as shown in the listing below), compared to the student’s 12
(depending on how they are counted). But what about efficiency? My
measurements suggest that for my test file the student’s code takes about
6 ms to execute whereas the code using regex takes about 30 ms. I did say
the student’s code would be hard to beat. I suspect regex was designed to
crack tougher nuts than this and is not particularly fast for simple cases.
Let’s now have a look at how the most frequent 10 words are obtained.
Again, the student has developed a bespoke algorithm to extract words
from the unordered map and insert them into an std::map. This is a
clever design that takes a little study to determine how it works. Some
experimentation would be required to assess its efficiency and whether it
could be improved. I offer a more direct approach that makes use of the
standard library. It may not be as fast as the student’s code but is simpler
to understand, I suggest. The idea is to copy the information in the
unordered map to an std::vector and then to perform a partial sort of
the vector to obtain the 10 most popular words which are then printed on
the screen. It is interesting to note that there are no explicit loops or if
statements in the code I offer.
 #include <algorithm>
 #include <fstream>
 #include <iostream>
 #include <map>
 #include <sstream>
 #include <unordered_map>
 #include <vector>
 #include <regex>
16 | | MAY 2018{cvu}

 int main(int argc, char **argv)
 {
 std::ifstream ifs(argv[1]);
 std::string
 ss{std::istreambuf_iterator<char>(ifs),
 std::istreambuf_iterator<char>()};
 std::unordered_map<std::string, size_t>
 words;
 std::regex separator("[^[:alpha:]]+");
 std::sregex_token_iterator word(ss.cbegin(),
 ss.cend(), separator, -1);
 std::sregex_token_iterator end;
 std::for_each(word, end,
 [&words](std::string w){++words[w];});
 std::vector<std::pair<std::string, size_t>>
 v(words.begin(), words.end());
 const int top = 10;
 std::partial_sort(v.begin(),
 v.begin() + top, v.end(),
 [](auto a, auto b){
 return a.second > b.second;
 });
 std::for_each(v.begin(), v.begin() + top,
 [](auto p){std::cout << p.second << ": "
 << p.first << '\n';});
 }
[Ed: this is problematic with fewer than 10 distinct words.]

In the case where efficiency is important, further work could be carried
out to find the most efficient method of performing the various functions
of the code. Ensuring strings do not reallocate memory while characters
are added to them would, I suspect, be something worth investigating. It
is important to time the execution of the code as trying to guess its
efficiency is unreliable.

Balog Pal <pasa@lib.hu>
This is new, starting from code without an attached “it’s broken, does
weird things” but instead supposedly working and looking for review. So
let’s play this as an actual work-place review, not using the compiler, just
our eyes and minds.
First I just look from afar: noticing that all we have is main and all the
code is sitting there. I guess that would break most usual style guides and
maybe incite shock to some reviewers. Not me. Plenty of the previous CC
entries had unnecessary fragmentation, nonsense functions, 1-shot
headers, where all the task could be perfectly handled in just main or 1–
2 functions tops. I postpone the verdict for later, but at glance this one is
okay to be like that: no repeated stuff that makes extraction mandatory and
the sub-parts do not really form abstraction. I mean they do, but not on the
level that is needed to improve readability. We have four parts that are
trivial to see. And even if they were not, a single line of comment would
do a better job than a function, that will add noise and extra need to pass
the state. So it is not suggested now. It still can be easily done later if a
reason emerges, like someone is willing to write a test case for some part.
The other thing I note at a glance that we have a nice alphabetic list of
standard includes but no using namespace std; or even some using
declarations. In large projects, the directive is frowned upon for good
reason. Especially if the project is old and has parts written before the
standard. For this one, I don’t see a single reason not to have it and get rid
of those ugly std:: prefixes.
Still at glance I gather understanding on how the problem is solved and
implemented: part 1 reads the file into memory, part 2 isolates the words
and builds a map of word/word-count, part 3 selects the top 10 entries with
the biggest count into another collection and the final part outputs that
collection. This looks like a sensible plan that is fit as a solution, so we
can move on to the details. Just have to note a stray line: the first in main()
belongs to part 2 and shall be moved down to next section.
Part 1, where we load the file content into memory. That raises my first
concern. The preamble just mentions ‘text file’. On a live review, I start

asking for the missing info on the intended input, execution environment
and consequences of being unable to provide an answer. As the file may
be large enough not to fit in the address space, let alone the available
memory. And if it fits, but just barely, it may use enough so our further
collections will not fit, or lead to poor performance. If we get the answer
“yeah, we are on 64-bit platform with 16G memory and the intended files
are few megs, 100M tops, if we run out of memory it’s operator error”, we
can continue. Otherwise I’ll require a different approach where parts 1 and
2 are put together and words are extracted reading small chunks. Using
string instead of string_view, but the rest may fly. Review aborted
and waiting a second round.
Approving the idea of having the file in memory still leaves us with the lines
implementing that. First we just used argv[1] before checking argc,
having UB if launched without argument. We did not check if the read was
successful, that is rude. And we did not deal with the possibly running out
of the memory. The latter throws exception that in the current state would
cause terminate(). That might be considered the expected behavior, but
in my book playing nice means catching the problem and clearly informing
the user. The easiest way is to just surround the code in a try block and
report either just generic failure or add what() from the exception too. For
the argc and file error cases, we can make an early exit or throw an
exception to be reported in the way just described. For the stream we can
even turn on .exceptions() instead of the check, though I would stay
with the check.
That leaves just one remaining note, why we use std::string here. I
see no good reason and suggest vector<char> instead along the
guidelines to have that as default. The following code needs no change for
that, just the type of ss.
And one extra question to the client, as I never use streams this way IRL,
i s wh y we use d istreambuf_iterator i n s t ead o f
istream_iterator, which would be intuitive, then make decisions
upon the answer.
Finally onward to part 2 (did we really use 400 words on the 2 lines of
source in part 1?). My style is to initialize bool with = false instead of
{}. While start does not need an initialization value, that holds meaning
only when inword is true. Guess it was motivated by urge to use auto.
That is my favorite keyword in C++, but here char * is what we want
really. letter should be const. And I will ask for the excuse for not
using isalpha() from the standard (that I assume unlikely to pass).
The state machine is sound except for the termination. We use address of
ch, so double check that we run the loop with &. Flipping inword is up
to style, for myself I’d use = true/false in the 2 blocks, but that form
also passes. At the map insertion I would not use a temporary, as the
initialization should fit fine inside the [], but if we do, I’d add move().
Despite it feeling redundant unless we use string_view – but it may
work better with different key type like string, and cannot hurt.
Thinking of the termination condition, we reveal a serious bug: if the file
finishes in a letter, then we drop the last word. Guess the client tested it
only with files having \n or whitespace at the end. To correct we either
need to check inword after the loop and process the last word duplicating
the inner code (avoidable by putting it in lambda) – or dodge the problem
by adding a non-letter character to ss before the loop (blindly or with a
check).
Before moving on, it is worth pondering why unordered_map is good
for us. And if it is, we still may need to tweak it by setting the bucket
number or something. string_view as the key type is also worth
questioning: if the expected files are like English text, it will have many
short words. For those, a string with small-string optimization that can
cover most cases may work better. The client did mention performance as
a goal. It’s not hard to make the key type into a typedef and put the line
with the map insert into a separate function, with variants for
std::string_view and std::string and possible others, then
measure.
Part 3 where we need to fish out the 10 winners. I wonder if there isn’t an
algorithm for that, need to check nth_element, partial_sort... at
MAY 2018 | | 17{cvu}

cppreference for the former I spot partial_sort_copy. What IMHO
describes exactly what we’re after. And it uses an Input Iterator for source
that fits our map. And can take predicate to compare the count. Having that
the client code can be written defensively against this, I would not bet on
success, as IMO a simple input with a/2 b/1 would output just a, and if we
see one cockroach.... it’s probably wiser to move to another neighborhood.
Especially if we have an offer at hand.
At part 4 I miss a const after auto (at least consistent with part 3 :),
otherwise fine for me if we change '\n' to endl, at least I’m confident
what the latter does without looking up. The original aim did not state the
order it wanted the output. For me it would be more intuitive to have it
start with the most frequent and go in descending order. It’s easy to iterate
the map by rbegin(). But if we use the algorithm suggested for part 3
the result will naturally look like that and the current form will be good.
I’m also fine with no return at end of main. Instead on conclusion I must
state that a live interview with actual talk with the client and getting
answers instead of guessing is way more fun, and less cumbersome. But
still an interesting exercise.

Jason Spencer <contact+pih@jasonspencer.org>
This is a nice program in terms of design and container usage. There are
just a few things I’d change for correct behaviour and one almost ‘free’
optimisation.
In terms of coding:
 #include <sstream>, #include <vector>, #include

<algorithm> are not required. I can’t see any stand-alone
algorithms called. There are calls to member function equivalents,
e.g. m.lower_bound, instead of std::lower_bound, but
they’re covered by the other headers.

 #include <iterator> should be added for
std::istreambuf_iterator.

 #include <string> should be added for std::string.
 argc must be checked for the correct number of arguments and

usage printed if no input file is specified.
 ifs must be checked for errors after it is created (and the file opened

and read) – the file may not exist, may not be readable etc..
 It’s a question of style, but I prefer explicitly stating the expected

value in the declaration of bool inword; rather than using the
default value.

 I’m not a fan of mixing auto *start = ss.data(); and the
&ch in the range-for loop – I know it’ll work, but technically a
range-for loop gets values by calling .begin() and .end()
member functions, if they both exist, or std::begin(..) and
std::end(..) otherwise. Yes, these all return type CharT *, so
you can do the subtraction to supply the value for the second
argument of the std::string_view ctor, but that’s co-
incidental. I’d consider using a for loop which isn’t a range-for
loop and initialise the start variable from std::begin(..) and go
from there.

 The auto & ch : ss should be const auto & ch : ss as
we’re not going to change the contents of ss. If this change is made
auto *start = ss.data(); should also become const auto
*start = ss.data();.

 Consider using std::isalpha instead of the comparisons and
boolean logic setting the letter variable. There’s minimal
performance benefit to the logic and it’s less expressive. If the logic
must stay then put brackets around the <= clauses, as well as the &&
grouping. Although the precedence is correct in the program the
brackets make the expectation explicit.

 Prefer for (const auto &entry : words) over for (auto
&entry : words). We’re not changing the value.

 Prefer for (const auto &entry : m) { over for (auto
&entry : m) {. We’re not changing the value.

 Consider not re-using the variable name entry as it can be a little
confusing.

In terms of correctness:
 If the file ends on a word (and no non-alpha characters follow up

until EOF) then that last word isn’t counted. The solution is to either
append a non-alpha character to ss after it is read, or put this code
right after the word search loop:

 if(inword) ++words[{ start,
 &ss[ss.size()] - start }];

Personally, I’d implement the non-range-for loop described earlier
in the ss.data() comment and incorporate an end-of-loop
correction into that somehow.

 The std::map section of the code doesn’t necessarily find the top
ten words. Since we’re using a std::map (and not a
std::multimap) then the key has to be unique – so if two words
have the same frequency only the first word is included in the map
as later insert calls do not overwrite it. Which word is the first word
is difficult to say as it’ll be the first one from the range-for
traversal of the words std::unordered_map – and
std::unordered_map does not maintain an order to the
elements. In fact it’ll be a function of insertion order, the data
structure used in std::unordered_map and the bucket count.
There is a solution to this through the use of std::multimap
instead – in fact it could almost be a drop-in replacement. However,
because of the way the map is trimmed with if (m.size() >
10) if we have nine ties for first place, and three for second place,
only one of the second place entries will be listed (the first one in
alphabetical order). Similarly, if there is a 3-way tie for 1st, 3-way
for 2nd, 3-way for 3rd and 3-way for 4th, only one of the 4th place
values will be printed.

 In the std::map section the test if (it != m.begin() ||
m.empty()) { is wrong – it should be if (it != m.begin()
|| (m.size()<10)) {, otherwise under some conditions words
with frequencies that don’t go straight to the top of the leader-board
will get lost.
To print the words of the top ten highest frequencies (printing all
ties) we could use a map of vectors:

 std::map<size_t,
 std::vector<std::string_view> > m;
 for (const auto &entry : words) {
 auto it = m.lower_bound(entry.second);
 if (it != m.begin() || (m.size()<10)) {
 if(it->first==entry.second) {
 it->second.push_back(entry.first);
 } else {
 m.insert(it, { entry.second,
 { {entry.first} } });
 if (m.size() > 10) {
 m.erase(m.begin());
 }
 }
 }
 }
 for (const auto &entry : m) {
 std::cout << entry.first << ":";
 for(const auto & w : entry.second)
 std::cout << ' ' << w;
 std::cout << '\n';
 }
In terms of behaviour:
 The word matching is case sensitive. The matching can be made

case-insensitive by converting all characters read to lower case
before they’re put into ss – with an iterator decorator. Alternatively,
in the instantiation of std::unordered_map the KeyEqual and
18 | | MAY 2018{cvu}

Hash type template arguments (the third and fourth template
arguments) could be replaced with types that ignore case.

 Word hyphenation is ignored. Should every word of “state-of-the-
art’ be counted separately?

 Apostrophes are also ignored. “won’t” and “won” should not both
increment the “won" count in my opinion. But if apostrophes are
considered part of a word then “people’s” and “people” wouldn’t
both increment people, and perhaps they should.

 We’re printing (or at least trying to) the top ten most frequent words.
Shouldn’t the ten be configurable at runtime?

In terms of performance:
The ‘free’ optimisation is to use istream::read to read into a buffer,
rather than use std::istreambuf_iterator instances to construct
ss. Specifically, the file size must be found first, and a string of that size
constructed, then the contents of the dummy string are overwritten with
the file contents:
 size_t getFileSize(std::ifstream & f) {
 auto prev_pos = f.tellg();
 f.seekg(0, std::ios::end);
 auto file_size = f.tellg();
 f.seekg(prev_pos);
 return file_size;
 }
 void usage(const char * execname) {
 std::cerr << execname << " input_file_name"
 << '\n';
 }
 int main(..) {
 const char * execname = argv[0];
 if(argc!=2) { usage(execname); return 1; }
 const char * infilename = argv[1];
 std::ifstream ifs{argv[1]};
 if(!ifs) {
 std::cerr << "Could not open file "
 << infilename << '\n'; return 2;
 }
 size_t filesize = getFileSize(ifs);
 std::string ss(filesize, ' ');
 ifs.read(ss.data(), filesize);
 auto * start = ss.data();
This is significantly faster than the previous approach to reading the file
as the runtime is probably reading in chunks from the file – the exact way
is implementation independent – it may be standard block reads or it could
be that the file is mmaped. But we’re telling the runtime that we’re reading
sequentially and in large chunks so the OS can read ahead and have the
next data ready for the program.
We’re also avoiding the string having to resize as data is read as we’ve
provided the size in the constructor. Further, some OSes, such as Linux,
don’t actually allocate memory pages until they are touched – by
initialising ss to filesize many space characters we’re sure the
memory is allocated and available.
Running this on a file which consists of ten copies of War and Peace (a
42MB file with 5.7 million words) the execution time is 74% of the original
implementation. It’s actually less than that, but once the file resides in the
OS’s filesystem cache the original program sees significant performance
benefits to repeated executions.
In terms of design:
While the loading of the whole file into memory is doable on today’s
computers I’d suggest reading in a chunk of text at a time, extracting the
words, storing only unique words (and only once), updating the tally, and
getting the next chunk. Drop ss altogether and extract words from the
chunks into std::string and store those d irect ly in the
std::unordered_map.
This is for two reasons – firstly, memory scalability (and a measurable
performance improvement due to a lower cache load), and secondly to

make the code more flexible by allowing incremental processing. The data
may be coming from a network stream, and we won’t know all the input
data at the start, but we may want to know the ten most common words so
far. Storing only one copy of every word means we’re looking at most
around 80000 words (a large English vocabulary size) held in memory, but
never more than if we were storing the entire file in memory. In some cases,
for example if we were looking for the ten most traded stocks in a ticker
stream, we can know the entire vocabulary ahead of time.
A back-of-the-laptop implementation (using std::string instead of
std::string_stream in the unique-word implementation, henceforth
locally known as the store-only-unique-words-and-read-in-blocks or
SOUWARIB version) had an execution time of between 70% of the
original program, or almost as low as 50%, depending on the file size.
With regards to performance the elephant in the room is the STL
implementation, I believe. CLang, GCC and Visual Studio STL
implementations can vary internally quite a lot.
Doing some microbenchmarking on the SOUWARIB version, the
bottleneck (for GCC 7.3.0 and libstdc++ 6.3.0) is by far the lookups in
std::unordered_map. [1] has an excellent discussion of the different
implementations each compiler uses for unordered associative maps.
The thing about the off-the-shelf implementations is that they have to be
flexible and behave well enough in most circumstances. But we have a
smaller problem space – for example, we have an upper limit to the number
of unique words (ie the size of the OED, or thereabouts, or the number of
symbols on a stock exchange), so we can allocate a fixed number of
buckets and forgo the re-sizing and re-bucketing, and we can skip the NVI
pattern [2] that an STL implementation might use to decrease compile
times. We also know that we won’t be removing any elements from our
map, and so on..
Now for the parental guidance bit – this code is highly experimental, and
somewhat of a hack, but it’s a proof of concept. This is a drop in
replacement for std::unordered_map, but only insofar as the features
that are used in the code for this critique – it’s missing most of the features
of a general purpose implementation (and I’ve also edited out a few things
for brevity).
#include <functional> // std::hash
#include <vector>
#include <utility> // std::pair
#include <iterator> // std::next
#include <boost/iterator/transform_iterator.hpp>
#include <boost/iterator/filter_iterator.hpp>
template <typename KeyT, typename T,
 class Hash = std::hash<KeyT>,
 class KeyEqual = std::equal_to<KeyT> >
class my_hashmap {
protected:
 typedef std::pair<const KeyT, T>
 value_type;
 typedef std::size_t hash_type;
 class nodeT {
 protected:
 alignas(alignof(value_type))
 uint8_t data [sizeof(value_type)];
 hash_type key_hash;
 //MSB is set flag, rest is next offset
 size_t next_and_set = 0;
 constexpr static
 decltype(next_and_set) SET_MASK =
 (1ULL << ((sizeof(next_and_set)<<3)-1));
 constexpr static
 decltype(next_and_set) NEXT_MASK =
 ~SET_MASK;
 void set(bool newval) noexcept {
 next_and_set = (next_and_set & NEXT_MASK)
 | (newval?SET_MASK:0); }
 public:
 bool is_set() const noexcept {
MAY 2018 | | 19{cvu}

 return next_and_set & SET_MASK; }
 bool isSameKey(const KeyT & other,
 const hash_type & other_hash) const {
 return (is_set() &&
 (key_hash==other_hash) &&
 KeyEqual()(get_cvalue().first,
 other));
 }
 value_type & get_value() noexcept {
 return *reinterpret_cast<value_type*>
 (&data);
 }
 const value_type & get_cvalue() const
 noexcept {
 return *reinterpret_cast<const
 value_type*>(&data);
 }
 size_t get_next_index() const noexcept {
 return next_and_set & NEXT_MASK; }
 void set_next_index(size_t next)
 noexcept {
 next_and_set = (next_and_set&SET_MASK)
 | (next & NEXT_MASK);
 }
 nodeT() = default;
 nodeT(const KeyT & key,
 const hash_type new_hash,
 const T & val): key_hash(new_hash) {
 new (&data) value_type{key,val};
 set(true);
 }
 nodeT(const nodeT & o)
 : key_hash(o.key_hash),
 next_and_set(o.next_and_set) {
 if(o.is_set()) new (&data)
 value_type(o.get_cvalue());
 }
 // assign (copy|move) op, move ctor
 // omitted for brevity
 ~nodeT() {
 if(is_set())
 reinterpret_cast<value_type*>(&data)
 ->~value_type(); }
 };
 const size_t n_buckets;
 std::vector < nodeT > storage;
 typedef typename decltype(storage)::
 iterator storage_iter;
 public:
 my_hashmap(size_t log2_num_buckets)
 : n_buckets(1<<log2_num_buckets),
 storage(n_buckets) { }
 T & operator[] (const KeyT & key) {
 // no exception safety
 hash_type keyhash = Hash()(key);
 size_t bucket_index =
 keyhash & (n_buckets-1);
 size_t last_index = bucket_index;
 nodeT * node = & storage[bucket_index];
 if (node->is_set()) {
 bool found = false;
 while ((!(found =
 node->isSameKey(key, keyhash))) &&
 node->get_next_index())
 node = & storage[(last_index =
 node->get_next_index())];
 if(!found) {
 storage.emplace_back(key, keyhash,
 T{});
 node = & storage[last_index];
 node->set_next_index(storage.size()

 -1);
 node =
 &storage[node->get_next_index()];
 }
 } else { // bucket not set yet
 node->~nodeT();
 new (node) nodeT(key, keyhash, T{});
 }
 return node->get_value().second;
 }
 constexpr static auto get_value_only =
 [](nodeT & n) -> value_type & {
 return n.get_value(); };
 constexpr static auto is_set_pred =
 [](nodeT & n) -> bool {
 return n.is_set(); };
 typedef boost::filter_iterator <
 decltype(is_set_pred), storage_iter >
 filtered_it_t;
 typedef boost::transform_iterator <
 decltype(get_value_only), filtered_it_t>
 value_iterator;
 value_iterator begin() {
 return value_iterator(filtered_it_t(
 is_set_pred, std::begin(storage),
 std::end(storage)), get_value_only);
 }
 value_iterator end() {
 return value_iterator(filtered_it_t(
 is_set_pred, std::end(storage),
 std::end(storage)), get_value_only);
 }
};
There’s much wrong with this – from the lack of exception safety, risk of
memory leaks, to the use of a power of two for the number of buckets (often
number of buckets is a prime to limit bucket collisions). It really is just a
back-of-the-laptop proof-of-concept. The point is that by dropping this in
to SOUWARIB, the execution time is now around 70% of the
SOUWARIB with std::unordered_map and around 50% of the
original program.
With some help from Hardware Performance Counters [3] (link is for Intel,
but AMD and ARM have equivalents) it can be shown that the
pe r f o rma nc e j ump i n SOUWARI B +my _h ash ma p ov e r
SOUWARIB+std::unordered_map is due to significantly less
memory accesses. Microbenchmarking with [4] shows that the cache hit
ratio remains about the same in the word extraction loop but the number
of accesses approximately halve.
For those not wanting to re-implement unordered_map or other STL
functionality, have a look at EASTL [5] as there is some mildly non-
standard, but otherwise very fast STL equivalent functionality in there.
References
[1] http://bannalia.blogspot.co.uk/2013/10/implementation-of-c-

unordered.html
[2] https://en.wikipedia.org/wiki/Non-virtual_interface_pattern
[3] https://software.intel.com/en-us/articles/intel-performance-counter-

monitor
[4] https://github.com/jasonspencer/CPP_LPE_wrap
[5] https://github.com/electronicarts/EASTL

Commentary
There’s a lot in this, seemingly quite simple, critique. The first design issue
is that of choosing to use string_view. For those not familiar with this
feature, new in C++17, it is a non-owning view over a sequence of
characters (it’s loosely a wrapper for pointer + length). The advantage,
from a performance point of view, is that there is no need to copy the data
going to make up each word but it can be used in place. However, this has
two disadvantages here. The first is that the original data must not be
disposed of before the last use of any of the string_views referring to
20 | | MAY 2018{cvu}

http://bannalia.blogspot.co.uk/2013/10/implementation-of-c-unordered.html
http://bannalia.blogspot.co.uk/2013/10/implementation-of-c-unordered.html
https://en.wikipedia.org/wiki/Non-virtual_interface_pattern
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://github.com/jasonspencer/CPP_LPE_wrap
https://github.com/electronicarts/EASTL

it. In this case it means we must leave the whole source file in memory as
we don’t know which portions of it are in use by the unordered_map.
The choice is predicated on the decision that the program can only deal
with data that can be read into memory in one go.
The second disadvantage here is that the keys in the map refer to memory
with little cache locality and this has a negative effect on performance with
most modern hardware. as Jason demonstrates towards the end of his
critique reduction in memory access cost is often the most significant
change that you can do to improve the performance of a program limited
by compute time.
The subsidiary design problems mostly concern boundary conditions:
 what should be done about punctuation and capitalisation
 in some languages you may also have to consider accents: Paul in

particular hit this problem
 what to do with a word ‘in progress’ at the end of the file
 what to do with ‘ties’ for counts

The entries between them covered most of these issues – for example all
suggested std::isalpha() rather than hand-crafted comparisons.
Pal expressed a concern over using a temporary for the call to insert.
Here for example emplace_hint could be used instead (as Scott Meyers
writes in Effective Modern C++: ‘Consider emplacement instead of
insertion’).
As Jason states, the STL containers are good general purpose containers;
the implementors work hard to ensure that they deliver the best overall
performance for a range of possible use cases. In any specific program,
especially where you the programmer may have additional knowledge
about the data sets being processed, it may well be possible to craft a
tailored collection or algorithm that out performs the one in the standard
library.
However, it is also likely that any replacement you provide will contain
its own bugs and it’s also important to verify that your proposed solution
is in fact faster than the standard library component as these have in general
had a lot of design put into them over many years!
I personally find myself a little torn over the style of using {} for
initialising variables. One advantage is consistency: you can use the same
syntax for a variety of different data types without having to read and parse
the various possible initialisation values. One disadvantage is that it relies
on the reader knowing what the value is for each type – bool
inword{false} makes this explicit. Alternatively, using the syntax
bool inword = false has the advantage that it is more like the syntax
that would be used in some other programming languages. I suspect
disagreements about the best style will continue as it does not seem that
there is an obvious reason to prefer one style.
Lack of error handling is a continual problem with the code critique
challenges – as it is in quite a lot of other code. Anything that relies on
external inputs, such as the presence of command line arguments and the
existence of files, should have some sort of check as these are the sort of
things that are very likely to go wrong and can also waste a surprisingly
large amount of time in resolving.

The Winner of CC 110
The four critiques all did a good job of identifying a number of things to
improve in the submitted code. James suggestion for using regex to do the
parsing does help to produce more robust and flexible code (although
unfortunately this seems to come at a price in terms of performance.) Paul
described some of the problems with handling French (other languages
may have similar issues) and suggested switching to a whitespace/
punctuation based approach.
Pal’s intuition that there might be a standard algorithm already written for
u s e i n t h e f i n a l s t a g e wa s s o u n d ; h e f o u n d t h i s i n
partial_sort_copy(). Few people know the whole set of standard
algorithms so it is well worth having a quick look when you are doing
something relatively straightforward to avoid having to re-invent the wheel!

However, I think that overall Jason did the best job of identifying both
some small nits but also the larger design issues and pointing towards the
sorts of things that need considering when you’ve ‘tried to make it pretty
fast’. It will depend on the specific use case whether the performance needs
in this case would justify the extra development cost of writing a bespoke
hash map, and one of the problems with the code critique format – as Pal
said – is that there is no mechanism for asking those sorts of questions. So,
congratulations to Jason and thanks to the other entrants.
I note that all of these entrants have submitted several times before; can I
encourage those of you who haven’t quite got round to sending in an entry
to give it a go?

Code Critique 111
(Submissions to scc@accu.org by Jun 1st)

I’m playing around with simple increasing sequences of small numbers
and seeing what various different generators produce. I had problems
that sometimes the result was wrong – for example if I produce a number
that overflows the integer size I’m using – and so I added a postcondition
check that the output sequence is increasing. However, I’ve found the
check doesn’t always ‘fire’ – it works with gcc with or without optimisation
but fails with MSVC unless I turn on optimisation. I’ve produced a really
simple example that still shows the same problem, can you help me see
what’s wrong?

Expected output, showing the postcondition firing:

 1,2,3,4,5,6,7,8,9,10,
 1,3,6,10,15,21,28,36,45,55,
 1,1,2,3,5,8,13,21,34,55,
 1,5,14,30,55,91,140,204,285,385,
 Postcondition failed!
 1,5,14,30,55,91,-116,-52,29,-127,
Can you help (and perhaps identify one or two other issues en route?) The
code is in Listing 2.

#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <vector>
class postcondition
{
public:
 postcondition(std::function<bool()> check)
 : check_(check) {}
 ~postcondition()
 {
 if (!check_())
 std::cerr << "Postcondition failed!\n";
 }
private:
 std::function<bool()> check_;
};
template<typename T>
std::vector<T> get_values(int n,
 std::function<T(T)> generator)
{
 std::vector<T> v;
 auto is_increasing = [&v]() {
 return is_sorted(v.begin(), v.end()); };
 postcondition _(is_increasing);
 T j = 0;
 for (int i = 0; i != n; ++i)
 {
 j = generator(j);
 v.push_back(j);
 }
 return v;
}

Listing 2
MAY 2018 | | 21{cvu}

Local ACCU Meetups
Frances Buontempo reports from meetups

in Bristol and London.

Bristol
28th February: ‘Simply the best: optimizing with an evolutionary
computing framework’

hris Simons and I gave a practical workshop in using evolutionary
algorithms in Java. I travelled there with Steve Love through the
snow and back through more snow. The snow meant only a small

handful of people made it.
We started with a brief introduction to evolutionary algorithms, including
an overview of the many freely available frameworks for optimization
with evolutionary computing. Next, we used the open source Java Class
L i b ra r y f o r E vo l u t i o na r y C o m pu t i n g (J C L E C) (h t t p : / /
jclec.sourceforge.net). The attendees got a chance to program with the
framework to address three optimization challenges:

1. ‘OneMax’, a ‘hello world’-type example for evolutionary
algorithms,

2. ‘How to program you way out of a paper bag’ by firing cannon balls,
and

3. The ‘travelling salesman problem’ (or TSP), wherein you must visit
everywhere in a list of places, returning where you began and trying
to find the shortest route. TSP is like a kata for Machine Learning.
TSP-type problems tend to crop up quite a lot.

We didn’t have enough time to go through the last two in detail, but this
was useful practice for the session we gave at the ACCU conference.
Chris, and a colleague Aurora Ramirez, previously wrote about the
framework for Overload if you want to try it out. [1]

London
12th February: ‘.Net Code Craft’
Jason Gorman, Managing Director of Codemanship [2] ran this session.
We discussed the five factors that make code more difficult and expensive
to change, and explored how we can write code that delivers value today,
and leave the door open to delivering more value tomorrow.
We looked at:

1. Automated tests, and how they help us make changes safely and
economically

2. Readability (and why comments are a cop-out)
3. Complexity and the ways it hurts us
4. Duplication (and how removing it can reveal better designs)
5. Dependencies and how to minimise the ‘Ripple Effect’

The presentation included demonstrations using Visual Studio, ReSharper
& NUnit.
We had a group of something like 20 people, including several new faces.
Having meetups on a variety of different topics pulls in a variety of

C

FRANCES BUONTEMPO
Frances has a PhD in machine learning and data
mining. She has been a programmer since the 90s, and
learnt to program by reading the manual for her Dad’s
BBC model B machine. She can be contacted at
frances.buontempo@gmail.com
22 | | MAY 2018{cvu}

 std::copy(result.begin(), result.end(),
 out (std::cout, ","));
 std::cout << std::endl;
}
template <typename T>
void sum_squares()
{
 T i{1};
 auto const & result = get_values<T>(10,
 [&i](T j) { return j + i * i++; });
 std::copy(result.begin(), result.end(),
 out (std::cout, ","));
 std::cout << std::endl;
}
int main()
{
 sequence<int>();
 triangular<int>();
 fibonacci<int>();
 sum_squares<int>();
 sum_squares<char>(); // overflow expected
}

Listing 2 (cont’d)

using out = std::ostream_iterator<int>;
template <typename T>
void sequence()
{
 auto const & result = get_values<T>(10,
 [](T i) { return i + 1; });
 std::copy(result.begin(), result.end(),
 out(std::cout, ","));
 std::cout << std::endl;
}
template <typename T>
void triangular()
{
 T i{};
 auto const & result = get_values<T>(10,
 [&i](T j) { return j + ++i; });
 std::copy(result.begin(), result.end(),
 out (std::cout, ","));
 std::cout << std::endl;
}
template <typename T>
void fibonacci()
{

Lis
tin

g 2
 (c

on
t’d

)

Code Critique Competition (continued)

ACCU Local Group
Jason Spencer reports on a recent visit to ACCU Oxford.

started regularly attending ACCU London meetings almost two years
ago. At the time, I just missed Jason McGuiness’s talk ‘Knuth,
Amdahl: I spurn thee!’ [1] but luckily I recently had a chance to attend

an updated talk [2] on the 27th of March 2018 at the ACCU Oxford
chapter.
To a packed room, Jason told us about the ins and outs of CPUs, compilers
and how to write C++ code to get it executed as fast as possible. The topic
is a broad one, and Jason’s treatment of it was very thorough.
Jason started by describing the problem of low latency systems and the
issues in an HFT (High Frequency Trading) context – the system isn’t
safe-critical, for example, but speed is paramount, even the slightest
improvement can make all the difference. Jason covered the environment
in which these systems operate: multiple cores, discussing system buses,
operating systems, compilers and libraries, and the most important part
being the internal units of a modern CPU with a super-scalar architecture,
deep pipelines, and SIMD units.
We were then led down the rabbit hole of assembly code generation and
the behaviour across compilers and even the chaos across different
versions of the same compiler. I won’t go into the details, nor parrot
Jason’s examples here, but I strongly recommend viewing the slides [3]
as they are very well explained.

Jason has also gone to great pains to precisely microbenchmark the
performance of different compilers for the same code, and elaborated on
why in some cases there were such significant changes in performance.
Later topics covered included static branch prediction, switch statements
and the use of compile-time techniques to direct the compiler to generate
optimal code (for example using C++ templates to create a faster
memcpy). All with the support and justification of extensive micro-
benchmarking and disassembled code.
Of course this was all with the usual flair and entertaining style of Jason’s
presentations. As already mentioned Jason has kindly provided the slides
from his talk at [3]. Alas, there was no video recording in Oxford, nor of
his 2016 talk at ACCU London. Jason also makes some related slides
available here [4].

I

JASON SPENCER
Jason is a software engineer interested in high
performance computing, distributed processing,
Complexity theory, and C++. He has degrees in
Electronic Engineering and Computer Science, and a
PhD in Telecommunications. He can be contacted at
contact@jasonspencer.org
23 | | MAY 2018{cvu}

different people, but we don’t always manage to persuade everyone to
join us for a drink afterwards, so didn’t get a chance to get to know the
new faces. Jason has spoken to us before a long while ago and always
presents well.

29 March: ‘The fantastic four coding patterns of Continuous
Delivery (CD)’, followed by ‘An introduction to data science’
The first speaker, Luca Minudel, is a Lean-Agile Coach and Trainer, and
founder and CEO at SmHarter.com. He contributed to the adoption of lean
and agile practices by Ferrari’s F1 racing team. When he joined Scoured
Ferrari F1 racing team in 2006, he was asked to increase the speed of
software development while at the same time increasing the reliability and
reducing the number of bugs. That sounded like a paradoxical puzzle to
him. And he wondered why didn’t he know the solution already, given
that he was hired as an expert. This challenge, in a high-pressure fast-
paced environment, led him to the find four CD coding patterns, two that
are known nowadays, and two that are new. He told us the story of this
discovery and the learning, and introduced the four patterns that enabled
his team to increase the speed of software development without the need
to trade speed for quality or safety.
He talked through how to cope with a version control system that doesn’t
support branching and showed how to make safe steps, allowing roll-back
in case of trouble. This was a practice run through for his ACCU
conference talk, and this is now on the ACCU YouTube channel [3].
Several other talks are up there too, so search for ‘[ACCU2018]’.
The second talk was an introduction to data science/machine learning
using python. Shagun Khare gave this session. She finished her Masters
in Data Science/Machine Learning at City, University of London
recently, so I invited her to do this. Having two talks in one evening was

ambitious, but it worked out. She used a Jupyter notebook to work
through a handful of algorithms.
This introduction to machine learning considered where it sits in Data
Science process, and covered supervised and unsupervised learning.
Shagun walked through steps in machine learning:
 splitting data into test and training,
 fitting a model,
 hyperparameter optimisation,
 predict from the model,
 evaluating the predictions.

She gave a code demo using a small dataset, using Anaconda, allowing
the audience to play along with the notebook. This is on Github if you
want to try it out [4]. The talk covered several common terms and some
classification algorithms using the iris dataset, which I used in
Visualisation of Multidimensional Data CVu, 29(6):3-5, January 2018.
It’s a relatively small dataset of three types of iris flowers, which is often
used to show case machine learning algorithms.
I’d love to see other people write up what’s happened at their local groups,
or start one if you aren’t near one already.

References
[1] Aurora Ramirez and Chris Simons (2017) ‘Evolutionary Computing

Frameworks for Optimisation’: Overload 142 December 2017.
https://accu.org/index.php/journals/2444

[2] Codemanship: http://www.codemanship.com
[3] Luca Minundel (2018) https://www.youtube.com/

watch?v=rw9I39nUkXI
[4] https://github.com/Shagun8ProductMadness/

IntroToMachineLearning

Local ACCU Meetups (continued)

https://accu.org/index.php/journals/2444
http://www.codemanship.com
https://www.youtube.com/watch?v=rw9I39nUkXI
https://www.youtube.com/watch?v=rw9I39nUkXI
https://github.com/Shagun8ProductMadness/IntroToMachineLearning
https://github.com/Shagun8ProductMadness/IntroToMachineLearning

24 | | MAR 2018

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org
The day-to-day operations of ACCU continue
to tick along, thanks to the generous donations
of time and effort by all of ACCU’s committee
members and volunteers.
After five years of declining membership
numbers, ACCU finished 2017 with a small
increase in membership (673) compared to the
end of 2016 (649). The 2017 ACCU
Conference also saw an increase in attendance
over 2016. (It is possible that the two trends are
related, with people joining ACCU in order to
take advantage of the conference discount.)
While these are positive trends, it is important
to note that our total membership of 673 at the
end of 2017 still is approximately 31% lower
than the 981 members ACCU had in 2007 (the
last year for which I could find numbers).
ACCU had other successes in the past year:
 The conference web site continues to be

improved, thanks to our Conference
Chair, Russel Winder, and his
collaborators.

 ACCU’s financial situation remains
strong, with ACCU finishing 2017 with a
surplus for the fiscal year. The 2017
surplus was 19.4% greater than 2016’s
surplus.

 Local group ACCU Cambridge was
started up, thanks to the efforts of Andy
Saul.

 CVu and Overload continue to be high-
quality publications, thanks to editors
Steve Love and Fran Buontempo, our
reviewers, and our member and non-
member contributors.

 We published our new, generalized Code
of Conduct, outlining our expectations for

people attending any event held under the
ACCU banner. (The ACCU Conference
will continue to use its more detailed Code
of Conduct.)

 Our local group affiliates have continued
to experience strong membership growth.
(I would warn against reading too much
into those numbers, however. A Meetup
group has no barrier to entry, and raw
numbers don’t necessarily reflect the
actual number of people participating in
the group. Also, the large increase in local
group numbers has not resulted in a
similar increase in paid ACCU
membership.)

 ACCU awarded an ISDF grant to Mr.
Walter Brown for his contributions to
WG21, the C++ standards committee.

We still have challenges:
 We continue to find it difficult to recruit

volunteers for committee positions. The
Web Editor, Publicity, Study Groups,
Social Media, and Book Reviews
positions remain vacant. The position of
Secretary will become vacant as of the
AGM, unless someone steps forward and
runs during the meeting. Our current
treasurer, Rob Pauer, would like to retire,
but has graciously agreed to remain in the
role until someone volunteers to replace
him.

 We are considering moving our web site
off of its current platform, Xaraya, and
onto a more modern, supported platform.
For most things Xaraya is satisfactory, but
it hasn’t been updated since October 2015,
and its facilities for preventing bot
accounts from being created is lacking.
(We currently get 100 bot sign-ups per
day, with most coming from just three

sources.) This will be a long-term project
for the committee.

I would like to take this opportunity to thank
Malcolm Noyes for his service on the
committee. Malcolm has served as Secretary
for four years, and has decided to retire as of
this year’s AGM. Malcolm tried to retire two
years ago, but agreed to remain as acting
Secretary until the special election of 2016, and
ran for, and won, the position again last year.
He will be missed.
Finally, a big thank you to all of ACCU’s
volunteers: committee members; magazine
editors, writers, and reviewers; local group
coordinators; and conference committee
members.

Local groups
Emyr Williams has notified the committee that
he will be standing down as the local group
coordinator for Bristol and Bath. (He intends to
remain in his position of Standards Officer.)
Please join me in thanking Emyr for his work on
the local groups.

Call for volunteers
Would you like to be thanked, in this very
magazine, by yours truly? Volunteer for any
one of ACCU’s open positions, and see your
name somewhere in this column in a future
issue of CVu.
 Secretary
 Web Editor
 Book Reviews
 Publicity
 Study Groups
 Social Media

Portions of this View appeared in the Annual
General Meeting Information Pack as part of the
Chair’s Report.

Compared to ACCU London, which is most often hosted at Code Node/
Skills Matter near Moorgate, this ACCU Oxford meetup (and most of
their meetups) was hosted in the function room at St. Aldate’s Tavern in
the centre of Oxford. A very nice and cosy venue with all the benefits of
a traditional Victorian pub.
It was also very nice to meet other ACCU members that are based outside
London, and to put names to faces on the mailing lists and publications.
Of course the ACCU conference in April is another great such
opportunity.
For someone based in London, the trip up to Oxford, as I’m sure most will
know, isn’t a tough one – a direct train from Paddington or Marylebone –
a journey of about 57 minutes to 1 hr and 15 minutes depending on the
time of day and the train operator/route (as well as the alignment of the
stars, a butterfly in China and snow taxonomy). If you can get out of work
in London a little before 17.30 (often wishful thinking, I know) then,

although a little tight, it’s possible to get to the tavern by 19.00, as in fact
Jason did, coming from Canary Wharf, in time for a 19.05 start.
I do recommend the occasional (or even regular) trip to ACCU Oxford –
the crowd are slightly different: in London it’s more people working in
finance, and some from gaming, database products, or a start-up; but in
Oxford while there are some people working in finance, from my limited
experience there is a more diverse group: biotech, scientists, researchers.
I look forward to making the trip again sometime soon.

References
[1] https://www.meetup.com/ACCULondon/events/229636136/
[2] https://www.meetup.com/ACCU-Oxford/events/245778124/
[3] https://www.slideshare.net/JasonMcGuiness/knuth-amdahl-i-spurn-

thee-92110552
[4] https://www.slideshare.net/JasonMcGuiness/presentations

ACCU Local Group (continued)

https://www.meetup.com/ACCULondon/events/229636136/
https://www.meetup.com/ACCU-Oxford/events/245778124/
https://www.slideshare.net/JasonMcGuiness/knuth-amdahl-i-spurn-thee-92110552
https://www.slideshare.net/JasonMcGuiness/knuth-amdahl-i-spurn-thee-92110552
https://www.slideshare.net/JasonMcGuiness/presentations

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	2009-07-01 Care About Code - online.pdf
	Slide 1

	CVu30-2a.pdf
	And another thing...
	Libraries, Console Apps and GUIs
	ACCU: The Early Days (Part 2)
	The New C++ Interview
	ACCU Conference 2018: Trip Report
	On Quaker’s Dozen
	Writing a Wayland Server Using Mir
	Standards Report
	Local ACCU Meetups
	Code Critique Competition 110
	ACCU Local Group
	View from the Chair

