

pre-conference tutorials 2018.4.10
www.accu.org/conference

Great conference
with fantastic
speakers and
amazing subjects.
I enjoyed it
thoroughly.”
ACCU 2017 Delegate

CONFIRMED
KEYNOTE
SPEAKERS

SEB ROSE

LISA LIPPINC
O

TT

FOR FURTHER INFORMATION AND TO REGISTER,
PLEASE VISIT https://conference.accu.org/

“

BRISTOL
MARRIOTT
HOTEL
CITY
CENTRE

2018.4.11-14

G
EN

 A
SH

LE
Y

HADI HA
RIRI

5
parallel
streams

60+
speakers

4
days

400+
attendees

MAR 2018 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

On Being Lazy
sometimes talk to people about being a ‘lazy’
programmer. Laziness in this case isn’t about
laziness for its own sake, but it is about not

doing things if you either don’t have to, or if
you know it’ll save you effort in the long run.
An example of the latter is often about
identifying manual, repetitive tasks and automating
them to reduce time, as well as the opportunity for
mistakes. It’s the former way of being lazy I want
to look at here.
Not doing things you don’t have to is, of course, not a
new idea – in programming, or elsewhere. It did garner
a kind of popularity about 20 years ago, when Kent Beck
and others were advocating ‘Extreme Programming’. One
of the principles behind that was ‘YAGNI’ – You Aren’t
Gonna Need It. It was mainly a reaction against the
prevailing ideas of big up-front design, and spending
time dreaming up features that ended up never being
used. It’s a worthy cause, for sure, and also features
in other lazy principles like doing the simplest thing
that could possibly work (tm). It can be summed up
as only implementing those features for which a
concrete requirement (not just a wish) has been
identified.
On the face of it, this seems fine, except that software
development is never so neat and tidy. There are some non-functional or hidden
requirements that are rarely considered by anyone except developers. One of these is
application configuration. If a system isn’t built from the beginning to be
configurable so it can (for example) be run on a developer’s workstation, or in any
one of many deployment environments, it can be detrimental to the overall effort. It’s
certainly the case that designing a system to be flexible like this can be difficult and
time consuming, but I think it’s well-spent if it makes life easier down the road. It’s
rare that something like this is identified as a formal requirement though, and back-
fitting it can be very difficult.
There are many examples like this that seem to fly in the face of the YAGNI
principle. Please write in with your own!

I
Volume 30 Issue1
March 2018

Editor
Steve Love
cvu@accu.org

Contributors
Baron M, Frances Buontempo,
Francis Glassborow, Pete
Goodliffe, Chris Oldwood, Roger
Orr, Sebastian Wilzbach

ACCU Chair
Bob Schmidt
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAR 2018

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
15 Code Critique Competition

110
The results from the last
competition and details
of the latest.

26 ACCU London
Frances Buontempo
reports from the
London chapter.

27 Report on Challenge 2
Francis Glassborow
presents the
answers to his last
challenge and gives
us a new one.

31 Book Review
The latest book
review.

REGULARS
32 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 30.2: 1st April 2018
C Vu 30.3: 1st June 2018

Overload 144:1st May 2018
Overload 145:1st July 2018

FEATURES
3 Testing Times (Part 2)

Pete Goodliffe continues the journey into software
testing.

6 Quaker’s Dozen
The Baron once again invites us to take up a
challenge.

7 The Expressive C++ Coding Challenge in D
Sebastian Wilzbach presents a D language solution
to a C++ problem.

12 Getting Personal
Chris Oldwood considers the effect of personal
choice on delivering software.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 109
Testing Times (Part 2)
Pete Goodliffe continues the journey into software testing.

If you don’t care about quality, you can meet any other requirement.
~ Gerald M. Weinberg

n the previous column, we started a journey into the world of software
testing; we considered why it’s important, why it should be automated,
and who should be doing this. We looked at the types of test we

perform, when we write them, and when we run them.
So, let’s round this off by looking at what should be tested, and what good
tests look like.

What to test
Test whatever is important in your application. What are your
requirements?
Your tests must, naturally, test that each code unit behaves as required,
returning accurate results. However, if performance is an important
requirement for your application, then you should have tests in place to
monitor the code’s performance. If your server must answer queries
within a certain time frame, include tests for this condition.
You may want to consider the coverage of your production code that the
test cases execute. You can run tools to determine this. However, this
tends to be an awful metric to chase after. It can be a huge distraction to
write test code that tries to laboriously cover every production line; it’s
more important to focus on the most important behaviours and system
characteristics.

Good tests
Writing good tests requires practice and experience; it is perfectly
possible to write bad tests. Don’t be overly worried about this at first – it’s
most important to actually start writing tests than to be paralysed by fear
that your tests are rubbish. Start writing tests and you’ll start to learn.
Bad tests become baggage: a liability rather than an asset. They can slow
down code development if they take ages to run. They can make code
modification difficult if a simple code change breaks many hard-to-read
tests.
The longer your tests take to run, the less frequently you’ll run them, the
less you’ll use them, the less feedback you’ll get from them. The less
value they provide.
I once inherited a codebase that had a large suite of unit tests; this seemed
a great sign. Sadly, those tests were effectively worse legacy code than the
production code. Any code modification we made caused several test
failures in hundreds-of-lines-long test methods that were intractable,
dense, and hard to understand. Thankfully, this is not a common
experience.

Bad tests can be a liability. They can impede effective
development.

These are the characteristics of a good test:
 Short, clear name, so when it fails you can easily determine what the

problem is (e.g., new list is empty)
 Maintainable: it is easy to write, easy to read, and easy to modify
 Runs quickly
 Up-to-date

 Runs without any prior machine configuration (e.g., you don’t have
to prepare your filesystem paths or configure a database before
running it)

 Does not depend on any other tests that have run before or after it;
there is no reliance on external state, or on any shared variables in
the code

 Tests the actual production code (I’ve seen ‘unit tests’ that worked
on a copy of the production code – a copy that was out of date. Not
useful. I’ve also seen special ‘testing’ behaviour added to the SUT
in test builds; this, too, is not a test of the real production code.)

These are some common descriptions of badly constructed tests:
 Tests that sometimes run, sometimes fail (often this is caused by the

use of threads, or racy code that relies on specific timing, by reliance
on external dependencies, the order of tests being run in the test
suite, or on shared state)

 Tests that look awful and are hard to read or modify
 Tests that are too large (large tests are hard to understand, and the

SUT clearly isn’t very isolatable if it takes hundreds of lines to set
up)

 Tests that exercise more than one thing in a single test case (a ‘test
case’ is a singular thing)

 Tests that attack a class API function by function, rather than
addressing individual behaviours

 Tests for third-party code that you didn’t write (there is no need to
do that unless you have a good reason to distrust it)

 Tests that don’t actually cover the main functionality or behaviour
of a class, but that hide this behind a raft of tests for less important
things (if you can do this, your class is probably too large)

 Tests that cover pointless things in excruciating detail (e.g., property
getters and setters)

 Tests that rely on ‘white-box’ knowledge of the internal
implementation details of the SUT (this means you can’t change the
implementation without changing all the tests)

 Tests that work on only one machine
Sometimes a bad test smell indicates not (only) a bad test, but also bad
code under test. These smells should be observed, and used to drive the
design of your code.

What does a test look like?
The test framework you use will determine the shape of your test code. It
may provide a structured set-up, and tear-down facility, and a way to
group individual tests into larger fixtures.
Conventionally, in each test there will be some preparation, you then
perform an operation, and finally validate the result of that operation. This
is commonly known as the arrange-act-assert pattern. For unit tests, at
the assert stage we typically aim for a single check – if you need to write
multiple assertions then your test may not be performing a single test case.
Listing 1 is an example Java unit test method that follows this pattern, and

the key
s t a ge s
are:

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
MAR 2018 | | 3{cvu}

 <1> Arrange: we prepare the input
 <2> Act: we perform the operation
 <3> Assert: we validate the results of that operation

Maintaining this pattern helps keep tests focused and readable.
Of course, this test alone does not cover all of the potential ways to use
and abuse String capitalisation. We need more tests to cover other
inputs and expectations. Each test should be added as a new test method,
not placed into this one.

Test names
Focused tests have very clear names that read as simple sentences. If you
can’t easily name a test case, then your requirement is probably
ambiguous, or you are attempting to test multiple things.
The fact that the test method is a test is usually implicit (because of an
attribute like the @Test we saw earlier), so you needn’t add the word
test to the name. The preceding example need not be called
testThatStringsCanBeCapitalised.
Imagine that your tests are read as specifications for your code; each test
name is a statement about what the SUT does, a single fact. Avoid
ambiguous words like ‘should’, or words that don’t add value like ‘must’.
Just as when we create names in our production code, avoid redundancy
and unnecessary length.
Test names need not follow the same style conventions as production
code; they effectively form their own domain-specific language. It’s
common to see much longer method names and the liberal use of
underscores, even in languages like C# and Java where they are not
idiomatic (the argument being strings_can_be_capitalised
requires less squinting to read).

The structure of tests
Ensure that your test suite covers the important functionality of your code.
Consider the ‘normal’ input cases. Consider also the common ‘failure
cases’. Consider what happens at boundary values, including the empty or
zero state. It’s a laudable goal to aim to cover all requirements and all the
functionality of your entire system with system and integration tests, and
cover all code with unit tests. However, that can require some serious
effort.
Do not duplicate tests: it adds effort, confusion, and maintenance cost.
Each test case you write verifies one fact; that fact does not need to be
verified again, either in a second test, or as part of the test for something
else. If your first test case checks a precondition after constructing an
object, then you can assume that this precondition holds in every other test
case you write – there is no need to reproduce the check every time you
construct an object.
A common mistake is to see a class with five methods, and think that you
need five tests, one to exercise each method. This is an understandable
(but naïve) approach. Function-based tests are rarely useful, as you cannot
generally test a single method in isolation. After calling it, you’ll need to
use other methods to inspect the object’s state.
Instead, write tests that go through the specific behaviours of the code.
This leads to a far more cohesive and clear set of tests.

Maintain the tests
Your test code is as important as the production code, so consider
its shape and structure. If things get messy, clean it, and refactor it.
If you change the behaviour of a class so its tests fail, don’t just
comment out the tests and run away. Maintain the tests. It can be
tempting to ‘save time’ near deadlines by skipping test
cleanliness. But rushed carelessness here will come back to bite
you.
On one project, I received an email from a colleague: I was
working on your XYZ class, and the unit tests stopped working, so

I had to remove them all. I was rather surprised by this, and looked at what
tests had been removed. Sadly, these were important test cases that were
clearly pointing out a fundamental problem with the new code. So I
restored the test code and ‘fixed’ the bug by backing out the change. We
then worked together to craft a new test case for the required functionality,
and then reimplemented a version that satisfied the old tests and the new.

Maintain your test suite, and listen to it when it talks to you.

Picking a test framework
The unit or integration test framework you use shapes your tests, dictating
the style of assertions and checks you can use, and the structure of your
test code (e.g., are the test cases written in free functions, or as methods
within a test fixture class?).
So it’s important to pick a good unit test framework. It doesn’t need to be
complex or heavyweight. Indeed, it’s preferable to not choose an
unwieldy tool. Remember, you can get very, very far with the humble
assert. I often start testing new prototype code with just a main method
and a series of asserts.
Most test frameworks follow the ‘xUnit’ model which came from Kent
Beck’s original Smalltalk SUnit. This model was ported and popularised
with JUnit (for Java) although there are broadly equivalent
implementations in most every language—for example, NUnit (C#) and
CppUnit (C++). This kind of framework is not always ideal; xUnit style
testing leads to non-idiomatic code in some languages (in C++, for
example, it’s rather clumsy and anachronistic; other test frameworks can
work better—check out Catch as a great alternative [1]).
Some frameworks provide pretty GUIs with red and green bars to clearly
indicate success or failure. That might make you happy, but I’m not a big
fan. I think you shouldn’t need a separate UI or a different execution step
for development tests. They should ideally be baked right into your build
system. The feedback should be reported instantly like any other code
error.
System tests tend to use a different form of framework, where we see the
use of tools like Fit [2] and Cucumber [3]. These tools attempt to define
tests in a more humane, less programmatic manner, allowing non-
programmers to participate in the test/specification-wring process.

No code is an island
When writing unit tests, we aim to place truly isolated units of code into
the ‘system under test’. These units can be instantiated without the rest of
the system being present.
A unit’s interaction with the outside world is expressed through two
contracts: the interface it provides, and the interfaces it expects. The unit
must not depend on anything else – specifically not on any shared global
state or singleton objects.

Global variables and singleton objects are anathema to reliable
testing. You can’t easily test a unit with hidden dependencies.

The interface that a unit of code provides is simply the methods,
functions, events, and properties in its API. Perhaps it also provides some
kind of callback interface.

@Test
public void stringsCanBeCapitalised()
{
 String input = "This string should be uppercase."; <1>
 String expected = "THIS STRING SHOULD BE UPPERCASE.";

 String result = input.toUpperCase(); <2>

 assertEquals(result, expected); <3>
}

Lis
tin

g 1
4 | | MAR 2018{cvu}

The interfaces it expects are determined by the objects it collaborates with
through its API. These are the parameter types in its public methods or
any messages it subscribes to. For example, an Invoice class that
requires a Date parameter relies on the date’s interface.
The objects that a class collaborates with should be passed in as
constructor parameters, a practice known as parameterise from above.
This allows your class to eschew hard-wired internal dependencies on
other code, instead having the link configured by its owner. If the
collaborators are described by an interface rather than a concrete type,
then we have a seam through which we can perform our tests; we have the
ability to provide alternative test implementations.
This is an example of how tests tend to lead to better factored code. It
forces your code to have fewer hardwired connections and internal
assumptions. It’s also good practice to rely on a minimal interface that
describes a specific collaboration, rather than on an entire class that may
provide much more than the simple interface required.

Factoring your code to make it ‘testable’ leads to better code
design.

When you test an object that relies on an external interface, you can
provide a ‘dummy’ version of that interface in the test case. Terms vary
in testing circles, but often these are called test doubles. There are various
forms of doubles, but we most commonly use:
 Dummies

Dummy objects are usually empty husks – the test will not invoke
them, but they exist to satisfy parameter lists.

 Stubs
Stub objects are simplistic implementations of an interface, usually
returning a canned answer, perhaps also recording information
about the calls into it.

 Mocks
Mock objects are the kings of test double land, a facility provided by
a number of different mocking libraries. A mock object can be
created automatically from a named interface, and then told up-front
about how the SUT will use it. A SUT test operation is performed,
and then you can inspect the mock object to verify the behaviour
was as expected.
Different languages have different support for mocking
frameworks. It’s easiest to synthesize mocks in languages with
reflection.
Sensible use of mock objects can make tests simpler and clearer.
But, of course, you can have too much of a good thing. Tests that are
encumbered by complex use of many mock objects can become very
tricky to reason about, and hard to maintain. Mock mania is another
common smell of bad test code, and may highlight that the structure
of the SUT is not correct.

Conclusion
Tests help us to write our code. They help us to write good code. They
help maintain the quality of our code. They can drive the code design, and
serve to document how to use it. But tests don’t solve all problems with
software development. Edsger Dijkstra said: Program testing can be used
to show the presence of bugs, but never to show their absence.

No test is perfect, but the existence of tests serves to increase confidence
in the code you write, and in the code you maintain. The effort you put
into developer testing is a trade-off; how much effort do you want to
invest in writing tests to gain confidence? Remember that your test suite
is only as good as the tests you have in it. It is perfectly possible to miss
an important case; you can deploy into production and still let a problem
slip through. For this reason, test code should be reviewed as carefully as
production code.

Nonetheless, the punchline is simple: if code is important enough to be
written, it is important enough to be tested. So write development tests for
your production code. Use them to drive the design of your code. Write
the tests as you write the production code. And automate the running of
those tests.
Shorten the feedback loop.
Testing is fundamental and important. This chapter can only really scratch
the surface, encourage you to test, and prompt you to find out more about
good testing techniques.

Questions
 How can you best introduce test-driven development into a

codebase that has never received automated testing? What kind of
problems would you encounter?

 Investigate behaviour-driven development. How does it differ from
‘traditional’ TDD? What problems does it solve? Does it
complement or replace TDD? Is this a direction you should move
your testing in?

 If you don’t already, start to write unit tests for your code today. If
you already use tests, pay attention to how they inform and drive
your code design.

References
[1] The Catch unit test framework (available from http://github.com/

philsquared/Catch).
[2] Fit: http://fit.c2.com/
[3] Cucumber: http://cukes.info
MAR 2018 | | 5{cvu}

http://github.com/philsquared/Catch
http://github.com/philsquared/Catch
http://fit.c2.com/
http://cukes.info

6 | | MAR 2018{cvu}

Quaker’s Dozen
The Baron once again invites us to take up a challenge.

ir R-----, my fine friend! The coming of spring always puts one in
excellent spirits, do you not find? Speaking of which, come join me
in a glass of this particularly peaty whiskey with which we might

toast her imminent arrival!
Might I tempt you with a little sport to quicken the blood still further?
It lifts my soul to hear it Sir!
I have in mind a game that I learned when in passage to the new world
with a company of twelve Quakers. I was not especially relishing the
prospect of yet another monotonous transatlantic crossing and so you can
imagine my relief when I spied the boisterous party embarking, dressed in
the finest silks and satins and singing a bawdy tavern ballad as they took
turns at a bottle of what looked like a very fine brandy indeed!
I ingratiated myself with them in short order and, to my delight,
discovered during our first night’s meal at sea that they were no less keen
sportsmen than I. Naturally, we followed each evening’s repast at the
captain’s table with cigars, brandy, tales of derring-do and, most
importantly, dice. Given my natural talent for wager, I was most surprised
that I found myself unable to best them; at least until the final night of our
voyage.
After I had retired with a small loss at the table the previous night, my
fellow travellers continued their revels well into the following day. In
consequence, they did not quite have their wits about them and at the
evening’s close I had had for my prize the contents of their purses, the
entirety of their cargo and, indeed, the very shirts and blouses off of their
backs.
For the sake of their modesty, I procured for them some plain labourer’s
clothing from the purser; they cut a sorry sight disembarking in quiet
contemplation of their folly, I must say!
Here, take another dram and I shall explain the rules of their game!
Your goal is to cast a higher score with this pair of dice than I shall with
a single twelve sided die and if you do so you shall have one coin for every
point greater that your score is than mine. Now it shall cost you two coins
and twelve cents to play but if you are dissatisfied with your dice you may
cast them again for a further cost of one coin and twelve cents, and again

and again for the same cost each time until you are satisfied, at which
point I shall cast mine.
 Sir R-----’s First roll

 Sir R----- Rolls again

 Sir R----- Sticks and wins

 Sir R-----’s payoff

When I told that godforsaken student, who fate has cruelly decreed that I
cannot evade, he began cooing about a gal named Constance with whom
he had become quite struck. That the coming of spring will surely
invigorate saplings as well as oaks must come as cold comfort to the poor
benighted maiden.
But let us not dwell upon her misfortune! Let me refresh your glass whilst
you decide whether to play!

Courtesy of www.thusspakeak.com

S

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

www.thusspakeak.com

The Expressive C++ Coding Challenge in D
Sebastian Wilzbach presents a D language

solution to a C++ problem.

ou might have seen that I have been coding a lot in D lately and as a
few weeks ago there was the ‘Expressive C++17 Coding Challenge’
[1] with its solution in C++ [2] and Rust [3] now being public, I

thought this is an excellent opportunity to show why I like D so much.

The requirements
Let me first recap the requirements of this challenge:

This command line tool should accept the following arguments:

 the filename of a CSV file,

 the name of the column to overwrite in that file,

 the string that will be used as a replacement for that column,

 the filename where the output will be written.

./program <input.csv> <colum-name> <replacement-
string> <output.csv>

Example input
Given this simple CSV as input
 name,surname,city,country
 Adam,Jones,Manchester,UK
 Joe,Doe,Cracow,Poland
 Michael,Smith,Paris,France
 Alex,McNeil,Gdynia,Poland
the program called with:
 ./program input.csv city London output.csv
should write:
 name,surname,city,country
 Adam,Jones,London,UK
 Joe,Doe,London,Poland
 Michael,Smith,London,France
 Alex,McNeil,London,Poland
Sounds fairly trivial, right?
Please have a short look first at the ‘best’ C++ [4] and Rust [3] solutions
before you look at the D solution.

The solution
Okay, so Listing 1 is one way to solve this in D.
If you are scared at the moment – don’t worry. I will explain it line by line
below.

So how does this compare to C++17 and Rust?

Later in the article I will present a solution which only uses 12 lines, but
it also uses the built-in std.csv module and I think D doesn’t need to
cheat.
I used the following D script to generate a simple CSV file with 10 fields
and 10 million lines:

 rdmd --eval='10.iota.map!(
 a=> "field".text(a)).join(",")
 .repeat(10_000_000).joiner("\n").writeln'
 > input_big.csv
The resulting input_big.csv has a size of 668M.
Aren’t you concerned that Rust is faster in this benchmark?
Not at all. The challenge was to write expressive code.
When performance really matters, D provides the same tools as C or C++
and D even supports native interoperability with C and most of C++.
In this example, however, I/O is the bottleneck and D provides a few
convenience features like using locked file handles, s.t. accessing files is
thread-safe by default, or supporting unicode input.
However, it’s easy to opt out of such productivity features and use other
tricks like memory mapped files [5]. For interested readers, I have
included a slightly optimized version at the end.
In addition, if you are interested in performance, Jon Degenhardt
(member of eBay’s data science team), has made an excellent
performance benchmark [6] between eBay’s tsv-utils and existing CSV/
TSV processing tools written in C, Go, and Rust.

Language LoC Time
C++ 125 15s

Rust 83 6s

D 19 12s

D (slightly tweaked) 25 6s

Y

SEBASTIAN WILZBACH
Sebastian is a D enthusiast who spends his nights
submitting pull requests to make the D language even
better. In his other life, he studies computational
biology in Munich and loves rock climbing. He can be
contacted at seb@wilzba.ch.

#!/usr/bin/env rdmd
import std.algorithm, std.exception, std.format,
std.range, std.stdio;
void main(string[] args) {
 enforce(args.length == 5, "Invalid args\n" ~
 "./tool <input.csv> <colum-name>
 <replacement-string> <output.csv>");
 auto inFile = args[1], columName = args[2],
 replacement = args[3], outFile = args[4];
 auto lines = File(inFile).byLine.map!(a
 => a.splitter(","));
 auto colIndex = lines.front.countUntil(
 columName);
 enforce(colIndex >= 0,
 "Invalid column. Valid columns: %(%s,
 %)".format(lines.front));
 auto os = File(outFile, "w");
 os.writefln("%(%s, %)", lines.front);
 foreach (line; lines.dropOne) {
 auto r = line
 .enumerate // iterate with an (index,
 // value) tuple
 .map!(a => a.index == colIndex
 ? replacement : a.value)
 .joiner(",");
 os.writeln(r);
 }
}

Listing 1
MAR 2018 | | 7{cvu}

1) What is #!/usr/bin/env rdmd?
One of my favorite parts of D is that it has a blazingly fast compiler.
Period. I can compile the entire D front-end of the compiler (~200 kLoC)
in less than two seconds or the entire standard library with lots and lots of
compile-time function evaluation and templates and > 300 kLoC in 5
seconds from scratch without any cache or incremental compilation.
This means that the compiler is almost as fast as an interpreter and the
rdmd tool allows you to use D as ‘pseudo-interpreted’ language. You can
invoke rdmd with any file and it will automatically figure out all required
files based on your dependencies and pass them to the compiler.
It’s very popular in the D community because for small scripts one
doesn’t even notice that the program is compiled to real machine code
under the hood. Also if the shebang header is added and the file is
executable, D scripts can be used as if they were script files:
 ./main.d input.csv city London output.csv

2) So you import a bunch of libraries. What do they do?
 import std.algorithm, std.exception, std.format,
 std.range, std.stdio;
In short std.stdio is for input and output, std.range is about D’s
magic streams called ‘ranges’ and std.algorithm abstracts on top of
them and provides generic interfaces for a lot of sophisticated algorithms.
Moreover, std.exception offers methods for working with exceptions
like enforce and finally std.format bundles methods for string
formatting.
Don’t worry – the functionality imported from these modules will be
explained soon.

3) Your program has a main function. What’s so special about it
compared to C or C++?
 void main(string[] args) {
 …
For starters, arrays in D have a length. Try:
 args[5].writeln;
Compared to C/C++ null-terminated strings and arrays, it won’t segfault.
It would just throw a nice Error (see Figure 1).

Oh so D performs automatic bounds-checking before accessing the
memory. Isn’t that expensive?
It’s almost negligible compared to the safety it buys, but D is a language
for everyone, so the people who want to squeeze out the last cycles of their
processor can do so by simply compiling with -boundscheck=off (for
obvious reasons this isn’t recommended).
In D, strings are arrays too and there’s another nice property about D’s
arrays. They are only a view on the actual memory and you don’t copy the
array, but just the view of the memory (in D it’s called a slice).
Consider this example:
 int[] arr = [1, 2, 3];
 auto bArr = arr[1 .. $];
 bArr[] += 2; // this is a vectorized operation
 arr.writeln; // [1, 4, 5]
There many other things D has learned from C and C++.
Walter has recently written a great article [7] on how D helps to vanquish
forever these bugs that blasted your kingdom, which I highly recommend
if you have a C/C++ background.

4) What’s up with this ‘enforce’?
 enforce(args.length == 5, "Invalid args.\n" ~
 "./tool <input.csv> <colum-name> <replacement-
 string> <output.csv>");
I have never seen the ~ operator before!
It’s the string concatenation (or more general array concatenation)
operator. How often how you encountered code like a + b and needed
to know the types of a and b to know whether it’s a addition or
concatenation?
Why don’t you use an if statement and terminate the program explicitly?
 if (args.length < 5) {
 writeln("Invalid args.");
 writeln("./tool <input.csv> <colum-name>
 <replacement-string> <output.csv>");
 return 1;
 }
That’s valid D too. D allows a lot of different programming styles, but this
article is intended to highlight a few specific D styles like enforce.
enforce [8] is a function defined in std.exception and throws an
exception if its first argument has a falsy value.
Hmm, I looked at the documentation [8] and saw this monster. I thought
it simply throws an exception?
 auto enforce(E : Throwable = Exception, T)
 (T value, lazy string msg = null, string file =
 __FILE__, size_t line = __LINE__)
I don’t have the time to fully dive into D’s syntax, but auto instructs the
compiler to infer the return type for you. This leads to the interesting
Voldemort return types [9] as they can’t be named by the user, but that’s
a good topic for another article.
The next part looks a bit complicated (E : Throwable =
Exception, T), but don’t worry yet. It means that E is a template
parameter which needs to inherit from Throwable (the root of all
exceptions), and is by default Exception. T is the template type of
value.
Wait. I just instantiated a template without specifying its template
parameters?

Yes, the D compiler does all the hard work for you.
The technical term is Implicit Function-Template Instantiation
[10] (IFTI). Of course, we could have instructed enforce to
throw a custom exception, but more on template instantiation
later.
Alright. So this function takes a generic value and a msg, but a
lazy string msg?
lazy is a special keyword in D and tells the compiler to defer the

evaluation of an argument expression until is actually needed.
I don’t understand. msg seems to be a string concatenation of two strings.
Isn’t this done before the enforce is called?
 "Invalid args.\n" ~ "./tool <input.csv>
 <colum-name> <replacement-string> <output.csv>"
No, lazy is lazy and the string concatenation doesn’t happen at the caller
site, but can be requested explicitly by the callee.
It gets a bit clearer if we look at the second enforce:
 enforce(colIndex < 0, "Invalid column name. Valid
 are: %(%s, %)".format(lines.front));
format and all the expensive work of formatting the error message is
never done on the default path, but only if an exception actually gets
thrown. Ignore the %(%s, %) formatting string for a bit, it will be
explained soon.
Ok, but how does that work?
In short: the compiler performs some smart formatting for you and creates
an anonymous lambda. For more details, see this advanced article about
D’s lazy [10].

core.exception.RangeError@./main.d(10): Range violation

??:? _d_arrayboundsp [0x43b622]
prog.d:9 void main.foo(immutable(char)[][]) [0x43ac93]
prog.d:4 _Dmain [0x43ac67]Fig

ur
e 1
8 | | MAR 2018{cvu}

But there’s more magic here. What’s __FILE__ and __LINE__?
 string file = __FILE__, size_t line = __LINE__
Remember that D is a compiled language and accessing the stack isn’t as
easy as asking the interpreter nicely. These two default arguments are
automatically set by the compiler with the file and line number of the
caller. This is important for logging or throwing exceptions like we have
done here.
So an API author can simply say “Hey, I would like to know the line
number of my caller.” and doesn’t depend on the user hacking the
replacements as you’d have to do in C/C++ with the preprocessor macros:
 #ifdef SPDLOG_DEBUG_ON
 #define SPDLOG_DEBUG(logger, ...) logger-> \
 debug(__VA_ARGS__) << " (" << __FILE__ \
 << " #" << __LINE__ <<")";
 #else
 #define SPDLOG_DEBUG(logger, ...)
 #endif
In fact, D doesn’t even have a preprocessor.

5) auto and a statically typed language
 auto inFile = args[1], columName = args[2],
 replacement = args[3], outFile = args[4];
Hmm, but what’s auto? I thought D was a statically typed system?
Yes D is statically typed, but the compiler is pretty smart, so we can let it
do all the hard for us. auto is a filler word for the compiler that means
‘whatever the type of the assignment, use this as type of this variable’.

6) What the hell is UFCS?
 auto lines = File(inFile).byLine.map!(a =>
 a.splitter(","));
One of the major features of D is the Unified Function Call Syntax
(UFCS) [11]. In short, the compiler will look up a function in the current
namespace if it’s not found as a member function of a type, but let’s go
through this step by step.
I looked at the documentation of File [12] and it has a method byLine
[13]. So where’s the magic?
Have another look at map [14], it’s located in std.algorithm.
Okay, wait. How does this work?
The compiler internally rewrites the expression File.byLine.map to
the following:
 map(File.byLine());
Missing parenthesis are allowed too – after all, the compiler knows that
the symbol is a function.
Okay, but what’s up with this !(a => a.splitter(",")))?
! is similar to C++/Java’s <> and declares a template. In this case it’s a
lambda function of a => a.splitter(","). Notice that for
splitter [15], UFCS is used again and your brain might be more used
to reading splitter(a, ",") for now.

7) Ranges
Okay to recap, we have taken the input of a file, and split lines using
commas ,.
Wouldn’t this result in a lot of unnecessary allocation?

The short answer is: D uses ‘iterators on steroids’ which are lazy and work
is only done when explicitly requested. Usually range algorithms don’t
even require any heap allocation as everything is done on the stack.
For example, in the next line .front returns the first line through which
countUntil explicitly iterates:
 auto colIndex =
 lines.front.countUntil(columnName);
So lines.front looks something like:
 ["name", "surname", "city", "country"]
countUntil will return the line of the first match or -1 otherwise. It’s
a bit similar to an indexOf function familiar from, for example,
JavaScript, but it accepts a template. So we could have supplied a custom
predicate function:
 lines.front.countUntil!(a => a.endsWith("ty"));

8) std.format: and compile-time checking of parameters
The next lines are:
 enforce(colIndex >= 0, "Invalid column name.
 Valid are: %(%s, %)".format(lines.front));
 auto os = File(outFile, "w");
 os.writefln("%(s, %)", lines.front);
I have never seen writefln("%(s, %)") before. What happens here?
writefln [16] is just a handy wrapper around D’s format [17]
function.
format itself provides a lot of options for serialization, but it’s very
similar to printf, although it does provide a few goodies like the special
syntax for arrays %(s, %).
This syntax opens an array formatting ‘scope’ delimited by %(and closes
it with %). Within this array ‘scope’ the elements should be formatted
with s (their string serialization) and use ,, a delimiter between the
element.
It’s a shorthand syntax that often comes in handy, but if you don’t like it
there are many other ways to achieve the same result. For example,
joiner:
 lines.front.joiner(",").writeln;
What would such an error message look like?
It would look like Figure 2.
Okay, but isn’t printf bad and unsafe? I heard that languages like
Python are moving away from C-like formatting.
A Python library can only realize that arguments and formatted string
don’t fit when it’s called. In D the compiler knows the types of the
arguments and if you pass the format string at compile-time, guess what,
the format can be checked compile-time. Try to compile a format string
that tries to format strings as numbers:
 writefln!"%d"("foo");
The compiler will complain:
 /dlang/dmd/linux/bin64/../../src/phobos/std/
 stdio.d(3876): Error: static assert "Incorrect
 format specifier for range: %d"
 onlineapp.d(4): instantiated from here:
 writefln!("%d", string)
Wow, that’s really cool. How does this work?

 object.Exception@./main.d(9): Invalid column name. Valid are: "name", "surname", "city", "country"

??:? pure @safe void std.exception.bailOut!(Exception).bailOut(immutable(char)[], ulong,
const(char[])) [0x7a34b57e]
??:? pure @safe bool std.exception.enforce!(Exception, bool).enforce(bool, lazy const(char)[],
immutable(char)[], ulong) [0x7a34b4f8]
??:? _Dmain [0x7a34b17f]

Figure 2
MAR 2018 | | 9{cvu}

D has another unique feature: compile-time function evaluation (CTFE)
that allows to execute almost any function at compile-time. All that
happens is that writefln is instantiated at compile-time with the string
as template argument and then it calls the same format function that
would normally be called at run-time with the known string. The coolest
part about this is that there’s no special casing in the compiler and
everything is just a few lines of library code.

9) Let’s parse the file
Now that we have found the index of the replacement column, have
opened the output csv file and have already written the header to it, all
that’s left is to go over the input CSV file line by line and replace the
specific CSV column with the replacement (Listing 2).
One of the cool parts of D ranges is that they are so flexible. You want to
do everything in a functional way? D has you covered (Listing 3).
There’s another cool thing about D – std.parallelism. Have you
ever been annoyed that a loop takes too long, but didn’t know a quick way
to parallelize your code? Again, D has you covered with .parallel
[18]:
 foreach (line; lines.parallel)
 // expensive operation in parallel
No way. I don’t believe this can be so simple.
Just try it yourself [19].

The Garbage Collector (GC)
On the internet and especially on reddit and HackerNews there’s a huge
criticism of D’s decision to do use a GC. Go, Java, Ruby, JavaScript, etc.
all use a GC, but I can’t better phrase it than Adam D. Ruppe:

D is a pragmatic language aimed toward writing fast code, fast. Garbage
collection has proved to be a smashing success in the industry,
providing productivity and memory-safety to programmers of all skill
levels. D’s GC implementation follows in the footsteps of industry giants
without compromising expert’s ability to tweak even further.

So ask your question:
Okay, “ability to tweak even further” sounds a bit vague, what does this
mean? I can tweak the memory usage?
Well, of course you can do that, but that’s something most languages with
a GC allow you to do. D allows you to get the benefit of both worlds:
profit from the convenience of the GC and use manual allocation methods
for the hot paths in your program. This is great, because you can use the
same language for prototyping and shipping your application.
A short and simplified summary of allocation patterns in D:
 malloc and friends are available in D (everything from C is)
 RAII is supported (e.g. File you saw earlier is reference-counted

and automatically deallocates its buffer and close the file once all
references are dead)

 there’s std.experimental.allocator for everyone with
custom allocation needs

 std.typecons provides a lot of library goodies like Unique,
Scoped, RefCounted for @nogc allocation.

Mike Parker has recently started an extensive GC Series [20] on the
DBlog which I recommend to everyone who prefers performance over
convenience.

Other goodies
std.csv
Hey, I saw that there’s std.csv in D, why didn’t you use it?
Simple – it felt like cheating. See Listing 4.

std.getopt
One of the reasons why this challenge used positional arguments and no
flags is that argument parsing is pretty hard in C++. It’s not in D.
std.getopt provides convenience for everything out of the box. See
Listing 5.

DMD, LDC and GDC
One of the things that newcomers are often confused by is that D has three
compilers. The short summary is:
 DMD (DigitalMars D compiler) – latest greatest features + fast

compilation (= ideal for development)
 LDC (uses the LLVM backend) – battle-tested LLVM backend +

sophisticated optimizers + cross-compilation (= ideal for
production)

 GDC (uses the GCC backend) – similar points as LDC

Benchmark and performance
Benchmarking a language compiler is a bit tricky as very often you end
up benchmarking library functions. In general, D code can be as fast as
C++ and often is even faster – after all the LDC and GDC compilers have
the same backend as clang++ or g++ with all its optimization logic. If you
are interested to see how D programs perform against similar programs
written in other languages, checkout Kostya’s benchmarks [21].
There’s also an excellent performance benchmark [6] from Jon
Degenhardt (member of eBay’s data science team) on how eBay’s tsv-

foreach (line; lines.dropOne)
 // remove the header
{
 auto r = line
 .enumerate // iterate with an (index, value)
 // tuple and lazily map a different
 // value for the specific CSV column
 .map!(a => a.index == colIndex ? replacement
 : a.value),
 .joiner(","); // join the lines back to a CSV
 // format
 os.writeln(r);
}

Lis
tin

g 2

import std.algorithm, std.csv, std.functional,
 std.file, std.range;

void main(string[] args)
{
 auto inputFile = args[1], columnName = args[2],
 replacement = args[3], outputFile = args[4];
 auto records = inputFile.readText.csvReader!(
 string[string])(null);
 outputFile.write(records.map!((r) {
 r[columnName] = replacement;
 return r;
 }).pipe!(rows => records.header.join(",") ~
 "\n" ~ rows.map!(
 r => records.header.map!(
 h => r[h]).join(",")).join("\n")
));
}

Listing 4

alias csvPipe = pipe!(enumerate,
 map!(a => a.index == colIndex ? replacement
 : a.value), partial!(reverseArgs!joiner,
 "_"),);
lines.dropOne.map!csvPipe.each!(
 a => os.writeln(a));

Listing 3
10 | | MAR 2018{cvu}

utils [6] compare against existing CSV/TSV processing tools written
in C, Go, and Rust.

@safe
Even though D is a system programming language that allows you to mess
with pointers, raw memory and even inline assembly, it provides a sane
way to deal with the dirty details. D has a @safe subset [22] [23] of the
language in which the compiler will enforce that you don’t do anything
stupid thing and shoot yourself in the feet with e.g. accessing undefined
memory.

Unittest
One strategic advantage of D is that unit-testing is so easy as it’s built-in
in the language and compiler. This is a valid D program:
 unittest {
 assert(1 == 2);
 }
And with -unittest the compiler can be instructed to emit a unittest
block to the object files or binary. Here, rdmd is again a friendly tool and
you can directly go ahead and test your line with you this:
 rdmd -main -unittest test.d
No advanced tooling setup required. Of course, this also means that it’s
particulary easy to automatically verify all examples that are listed in the
documentation, because they are part of the testsuite. I even went one step
further and made it possible to edit and run the examples on dlang.org
[23].

Other cool D features
There are many other cool features that D offers that didn’t make it into
this article, but as a teaser for future articles:
 Code generation within the language (cut down your boilerplate)
 Strong and easy Compile-Time introspection (Meta-programming)
 alias this for subtyping
 -betterC (using D without a runtime)
 mixin for easily generating code
 A module system that doesn’t suck
 debug attribute to break out of pure code
 Built-in documentation
 Contracts and invariants
 scope(exit) and scope(failure) for structuring creation

with its destruction
 Native interfacing with C (and most of C++)

 with for loading symbols into the current name
For a full list, see the ‘Overview of D’ [24] and don’t forget that the full
language specification [25] is readable in one evening.

Downsides
Okay, so you say D is so great, but why hasn’t it taken off?
There’s a lot more to a programming language than just the language and
compiler. D has to fight with the problems all young languages have to
deal with e.g. small ecosystem, few tutorials/sparse documentation and
occasional rough edges. Languages like Kotlin, Rust or Go have it a lot
easier, because they have a big corporate sponsor which gives these
language a big boost.
Without such a boost, it’s a chicken/egg problem: if nobody is learning D,
it also means that no one can write tutorials or better documentation. Also
many people have learnt a few languages and use them in production.
There’s little incentive for them to redesign their entire stack.
However, things improved greatly over the last years and nowadays even
companies like Netflix, eBay, or Remedy Games use D. A few examples:
 the fastest parallel file system for High Performance Computing

[26] is written in D
 if you drive by train in Europe, chances are good that you were

guided by D (Funkwerk [27] – the company that manages the
transport passenger information system – develops their software in
D)

 if you don’t use an Adblocker, chances are good that algorithms
written in D bid in real-time for showing you advertisement (two of
the leading companies in digital advertising (Sociomantic and
Adroll) use D)

The ‘organizations using D’ page [28] lists more of these success stories.
Of course, D – like every other language – has its ‘ugly’ parts, but there’s
always work in progress to fix these and compared to all other languages
I have worked with, the ugly parts are relatively tiny.

Where to go from here?
Okay that sounds great, but how do I install D on my system?
Use the install script [29]:
 curl https://dlang.org/install.sh | bash -s
or use your package manager [30].
And start hacking!
It’s possible to do three easy tweaks to make I/O faster in D:
 disabling auto-decoding with byCodeUnit
 non-thread-safe I/O with lockingTextWriter
 use of std.mmfile [5]

Acknowledgements
Thanks a lot to Timothee Cour, Juan Miguel Cejuela, Jon Degenhardt, Lio
Lunesu, Mike Franklin, Simen Kjærås, Arredondo, Martin Tschierschke,
Nicholas Wilson, Arun Chandrasekaran, jmh530, Dukc, and ketmar for
their helpful feedback.

References
[1] https://www.fluentcpp.com/2017/09/25/expressive-cpp17-coding-

challenge/
[2] https://www.fluentcpp.com/2017/10/23/results-expressive-cpp17-

coding-challenge/
[3] https://gist.github.com/steveklabnik/

ad0a33acc82e21ca3f763e4278ad31a5#file-main-rs-L36
[4] http://coliru.stacked-crooked.com/a/70f762ee7f9c2606
[5] Memory mapped files: https://dlang.org/phobos/std_mmfile.html
[6] Performance benchmark: https://github.com/eBay/tsv-utils-dlang/

blob/master/docs/Performance.md

import std.getopt;
int main(string[] args)
{
 string input, output, selectedColumn,
 fill = "FOO";
 auto opts = getopt(args,
 "i|input", &input,
 "o|output", &output,
 "s|select", "Select a column to overwrite",
 &selectedColumn,
 "f|fill", "Overwrite (default: FOO)", &fill,
);
 if (opts.helpWanted || input.length == 0) {
 defaultGetoptPrinter("./program",
 opts.options);
 return 1;
 }
 return 0;
}

Lis
tin

g 5
MAR 2018 | | 11{cvu}

https://www.fluentcpp.com/2017/09/25/expressive-cpp17-coding-challenge/
https://www.fluentcpp.com/2017/09/25/expressive-cpp17-coding-challenge/
https://www.fluentcpp.com/2017/10/23/results-expressive-cpp17-coding-challenge/
https://www.fluentcpp.com/2017/10/23/results-expressive-cpp17-coding-challenge/
https://gist.github.com/steveklabnik/ad0a33acc82e21ca3f763e4278ad31a5#file-main-rs-L36
https://gist.github.com/steveklabnik/ad0a33acc82e21ca3f763e4278ad31a5#file-main-rs-L36
https://dlang.org/phobos/std_mmfile.html
https://github.com/eBay/tsv-utils-dlang/blob/master/docs/Performance.md
https://github.com/eBay/tsv-utils-dlang/blob/master/docs/Performance.md
http://coliru.stacked-crooked.com/a/70f762ee7f9c2606

The Expressive C++ Coding Challenge in D (continued)
[7] https://dlang.org/blog/2018/02/07/vanquish-forever-these-bugs-
that-blasted-your-kingdom/

[8] https://dlang.org/phobos/std_exception.html#enforce
[9] https://wiki.dlang.org/Voldemort_types
[10] https://dlang.org/articles/lazy-evaluation.html
[11] https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-

ufcs
[12] https://dlang.org/phobos/std_stdio.html#.File
[13] https://dlang.org/phobos/std_stdio.html#.File.byLine
[14] https://dlang.org/phobos/std_algorithm_iteration.html#.map
[15] https://dlang.org/phobos/std_algorithm_iteration.html#splitter
[16] https://dlang.org/phobos/std_stdio.html#.File.writefln
[17] https://dlang.org/phobos/std_format.html#.format
[18] https://dlang.org/phobos/std_parallelism.html#.parallel
[19] https://run.dlang.io/is/9fbtpQ
[20] https://dlang.org/blog/the-gc-series/
[21] https://github.com/kostya/benchmarks
[22] https://dlang.org/articles/safed.html
[23] https://dlang.org/blog/2017/03/08/editable-and-runnable-doc-

examples-on-dlang-org/
[24] https://dlang.org/overview.html
[25] https://dlang.org/spec/spec.html
[26] https://www.theregister.co.uk/2017/12/22/

a_dive_into_wekaios_parallel_file_system_tech/
[27] https://dlang.org/blog/2017/07/28/project-highlight-funkwerk/
[28] https://dlang.org/orgs-using-d.html
[29] Install script: https://dlang.org/install.html
[30] Package manager: https://dlang.org/download.html

#!/usr/bin/env rdmd
import std.algorithm, std.exception, std.format,
 std.mmfile, std.range, std.stdio, std.utf;

void main(string[] args) {
 enforce(args.length == 5, "Invalid args\n" ~
 "./tool <input.csv> <colum-name>
 <replacement-string> <output.csv>");
 auto inFile = args[1], columName = args[2],
 replacement = args[3].byCodeUnit,
 outFile = args[4];
 scope mmFile = new MmFile(args[1]);
 auto lines = (
 cast(string) mmFile[0..mmFile.length])
 .splitter('\n').map!(
 a => a.byCodeUnit.splitter(","));
 auto colIndex =
 lines.front.countUntil!equal(columName);
 enforce(colIndex >= 0,
 "Invalid column. Valid columns: %(%s, %)"
 .format(lines.front));
 auto os = File(outFile, "w");
 os.writefln("%(%s, %)", lines.front);
 auto w = os.lockingTextWriter;
 foreach (line; lines.dropOne) {
 auto r = line
 .enumerate // iterate with an
 // (index, value) tuple
 .map!(a => choose(a.index == colIndex,
 replacement, a.value))
 .joiner(",".byCodeUnit);
 w.put(r);
 w.put('\n');
 }
}

Lis
tin

g 6
Getting Personal
Chris Oldwood considers the effect of personal

choice on delivering software.

he history of software development is littered with wars between
factions who have differing opinions on various aspects of the way
it should be analysed, designed, presented, tested, etc. Aside from

the tabs vs spaces debate the other giant flame war is almost certainly
around the choice of text editor – vi vs emacs. While the devotees of each
side remain steadfast in their cause there are other groups who seek to
douse the flames either by making the point a moot one (the ‘pragmatists’)
or by taking choice away altogether by mandating a preference. This latter
approach can, and does make sense in various circumstances, but it often
gets taken too far so that even when it doesn’t matter the only choice is
effectively Hobson’s choice – no choice at all.

Consistency – the sacred altar
When it comes to tooling, most notably in the enterprise arena, the
organisation will classically play its trump card – consistency. In its

endeavour to treat IT as a cost centre, and therefore be made as efficient
as possible, their desire appears to be to limit the choice of tooling as
much as possible on the premise that it’s then easier to move ‘resources’
around because there will be a shorter learning curve, at least technology
wise. Hence technology stacks tend to be limited to a set of core languages
and products, both for the system being built and the supporting
development ‘infrastructure’, i.e. CI service, test framework, deployment
tools, etc.

T

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise-grade technology
in plush corporate offices. He also commentates on
the Godmanchester duck race and can be easily
distracted via gort@cix.co.uk or @chrisoldwood
12 | | MAR 2018{cvu}

https://dlang.org/blog/2018/02/07/vanquish-forever-these-bugs-that-blasted-your-kingdom/
https://dlang.org/blog/2018/02/07/vanquish-forever-these-bugs-that-blasted-your-kingdom/
https://dlang.org/phobos/std_exception.html#enforce
https://wiki.dlang.org/Voldemort_types
https://dlang.org/articles/lazy-evaluation.html
https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://dlang.org/phobos/std_stdio.html#.File
https://dlang.org/phobos/std_stdio.html#.File.byLine
https://dlang.org/phobos/std_algorithm_iteration.html#.map
https://dlang.org/phobos/std_algorithm_iteration.html#splitter
https://dlang.org/phobos/std_stdio.html#.File.writefln
https://dlang.org/phobos/std_format.html#.format
https://dlang.org/phobos/std_parallelism.html#.parallel
https://run.dlang.io/is/9fbtpQ
https://dlang.org/blog/the-gc-series/
https://github.com/kostya/benchmarks
https://dlang.org/articles/safed.html
https://dlang.org/blog/2017/03/08/editable-and-runnable-doc-examples-on-dlang-org/
https://dlang.org/blog/2017/03/08/editable-and-runnable-doc-examples-on-dlang-org/
https://dlang.org/overview.html
https://dlang.org/spec/spec.html
https://www.theregister.co.uk/2017/12/22/a_dive_into_wekaios_parallel_file_system_tech/
https://www.theregister.co.uk/2017/12/22/a_dive_into_wekaios_parallel_file_system_tech/
https://dlang.org/blog/2017/07/28/project-highlight-funkwerk/
https://dlang.org/orgs-using-d.html
Install script: https://dlang.org/install.html
Package manager: https://dlang.org/download.html

Don’t get me wrong, consistency of tooling is undeniably important. The
modern ‘virtual machine’ approach to runtimes such as the JVM and .Net
allow for different components to be written in entirely different
languages and paradigms, but actually using a multitude of languages
within the same application is likely to cause more friction than it solves
unless the team are all seriously experienced polyglots. Similarly,
maintaining your own personal build scripts because you don’t like the
team’s is unlikely to be the best use of one’s time either. One size never
fits all but a few well picked sizes might fit most problems well enough
that the cost/benefit ratio is favourable without being over constraining.
Essentially we are talking about architectural level stuff here – the kind of
choices where changing your mind or going against the grain is likely to
incur some non-trivial expense, usually in the form of time, and therefore
indirectly in money.

Room for personal taste
Consistency however is also not the end of the argument. Just as my
choice of desktop wallpaper or text editor font or colour scheme does not
impact what I deliver, so the same goes for a number of tooling choices in
the overall development process. Sadly there appears to be a lack of
recognition that software development is far more than simply churning
out source code with an IDE. There are numerous additional activities
whilst programming such as research, design, documenting, testing,
support, etc. that demand very little consistency in tooling as the tools
themselves provide no material impact on the delivered artefacts (source
code, documentation, etc.), particularly when the artefact is of a common,
interoperable file format such a text file.
In an earlier episode of this column [1] I described how the answer to the
simple question of ‘what tool do you use to find text’ is a complex affair
with a dizzying array of answers that all depend heavily on the context of
the problem and the familiarity of the tools at hand. I am far more au fait
with the command line switches of the classic Unix grep tool than I am of
the Windows built-in find and findstr despite spending virtually my entire
career to date on that one platform. Over the years Microsoft have added
a few more command line tools here and there but many essentials, like
curl and tar are only just seeing the light of day which means we have to
rely on third parties to fill the void; or create our own [2]. There is an air
of irony about being labelled ‘inconsistent’ when you prefer to use the
same tools as the wider development community over the smaller
organisational sized one.

Pairing/mobbing
There is perhaps one area where differences in tooling could generate
some unnecessary friction and that is when pairing or mobbing on a
problem. The entire premise of the exercise is to share one machine and
focus on solving the problem together by allowing anyone to just get on
and move the solution further forward by being able to take over control
of the keyboard and ‘just start typing’. Putting a copy of Vim in front of
an entrenched Visual Studio developer or a Cygwin bash prompt towards
a CMD prompt die-hard is not going to be a recipe for rapid progression
if the impedance mismatch is a continual distraction.
That’s the theory, but I’m happy to report that I’ve found it doesn’t really
play out like that in practice, at least not with those people I’ve paired
with. Whilst the keyboard may not have moved around quite as freely as
you might hope, it’s fairly easy to remain focused on the problem and type
enough of a snippet to get your point across without having to go on and
produce production ready refactored code or a blazing one-liner; the
‘driver’ can easily adapt and finish off your ‘scribbles’.
If anything I prefer watching other people using other tools because that’s
when you get to see what you’re missing out on. A perfect example of this
was multi-cursor support in Sublime Text.

Common battlegrounds
The following non-exhaustive list contains some of the bigger areas of
contention that have arisen in the past for which I personally feel are

outside the scope of effecting delivery and provide a significant enough
impact on productivity that it’s worth fighting for.

Version control system client
The war on version control systems is over – git won. Unfortunately, like
databases, teams rarely switch their VCSs at the flick of a switch.
Consequently the long tail contains CVS, Visual SourceSafe, Subversion,
TFS, etc. Even Microsoft has seen the light of day and git is now
promoted to a first class citizen in its ongoing transformation. What this
means is that for those of us who have already experienced the benefits of
a distributed VCS, such as git or Mercurial, will find any means possible
to continue using it even if the back-end isn’t either of those.
One of the earliest bridges to be included with git was for Subversion and
it’s obvious to see why as Subversion was itself a logical step on from
CVS for many organisations. If you’ve ever messed up your working
copy trying to integrate the latest changes from the repo, ‘git svn’ is worth
the price of admission alone to avoid that expensive mistake. (Arguably
smaller commits also minimises the loss and is better from an integration
perspective.)
In a similar vein ‘git tfs’ is a bridge for talking to Microsoft’s heavily
ridiculed Team Foundation Server. If you’re using TFS without gated
check-ins it pretty much works out of the box and understands the normal
branching convention (like the Subversion bridge), although personally I
have always avoided branching with TFS. If you do have gated check-ins
then, when you push, it will invoke the standard TFS commit dialog to
invoke its custom workflow. It also supports automatically attaching
commits to work items using the normal ‘#<id>’ convention in the
commit message.

Code analysis & refactoring
One assumes that the starting point for this reluctance to allow
programmers the freedom to use their own choice of tools stems from the
need to restrict the download and installation of any third party software.
Whilst I understand some of the reasons why – security and licensing [3]
– they do not make it easy for those of us who wish to use our own
purchases of professional, licensed software tools on site (license
permitting, of course). It would be ludicrous to expect a carpenter or
plumber to arrive at your house and fix your problem only with the tools
laying around the garage or kitchen, but for some contract positions that
scenario is not quite as absurd as you might think.
One category of tools that falls squarely into this category are those plug-
ins and extensions to common major development products, such as IDEs,
which perform on-the-fly code analysis and refactoring. In particular
Whole Tomato’s Visual Assist and JetBrains’ ReSharper are two tools
which have fast become essential tools for the modern developer that likes
to write clean, maintainable code.
For me this particular battle started back in my C++ days with the
venerable PC-Lint and Visual Lint tools which, along with Visual Assist
provided a useful arsenal of tools for tracking down and fixing those kinds
of bugs which C++ is sadly all too famous for. On one contract I was
rejected a company licence for PC-Lint (a few hundred dollars back then)
and refused the option to use my own license too, but in a delicious twist
of irony a few months later I discovered that a colleague (a fellow
contractor) had wasted a day and a half tracking down an initialisation bug
that would have been picked up by PC-Lint. At contractor rates that bug
alone cost the company more than twice the license cost of the tool it
refused me access to and it wasn’t the only painfully buried initialisation
bug that surfaced later either.

Log viewer
Another tool I shelled out for because there were no decent open source
alternatives on Windows at the time was a log file viewer called BareTail.
With sterling incredibly favourable against the dollar and the pro version
offering all sorts of nice filtering and highlighting options it became my
tool of choice. Naturally log files are only read by this tool and not
MAR 2018 | | 13{cvu}

written, and therefore it makes very little sense to control the exact choice
and, given than support is usually of a time sensitive nature, I would have
thought familiarity with tooling was commendable.
There are a number of excellent freeware tools available now on Windows
that have since surpassed BareTail and with logs often being pumped
directly into cloud-based logging services the goalposts have moved on
significantly here from monitoring a handful of servers. Even so, due to
cost reasons these may not be available outside of the production
environment and therefore you might still be trawling log files in
development and test environments with a traditional set of tools.

File & folder comparison
I’ve never been a big fan of the classic patch file format for displaying
diffs in text files, and even less so for doing that in a command prompt
window. The ‘diff’ tool is another one of those bread-and-butter tools
which is in continual use and yet it has no impact on the delivered
artefacts – source files, mostly. Many years ago the diff tool bundled with
the version control system you were using was fairly limited – they might
only show the two files side-by-side and block colour the edits. Even
simple features like ignoring changes due to whitespace were missing.
Once again this is an area where there are number of excellent freeware
and open source alternatives that provide a pretty good experience. And
there are even products like Semantic Merge which aim to go beyond
simpler textural diffs and apply more far intelligence to changes it detects.
But even simple features like Beyond Compare’s CSV diff could make a
difference to your productivity without resorting to an ‘untrusted’ third
party tool.
The only reason I can imagine any company would stop you using
products like those from genuine software houses is to avoid any jealousy
your co-workers might have.

Web browser
I suspect the only modern battle that can outshine the war around text
editors is the one for your favourite web browser. For those actually
developing web based services it’s the bane of their life – having to
support so many different flavours, even with third party libraries
attempting to plug the gaps. Despite being dominant for so many years the
tyranny of IE 6 is finally behind us and even the enterprise has graciously
accepted that oranges are not the only fruit.
Once again I absolutely understand that if you are developing an in-house
web application the business is entirely justified in only putting its money
behind supporting the preferred ‘house’ option. However many of us
write traditional, non-web based applications and services or even
RESTful services and therefore our choice of browser is likely of very
little consequence to delivering our goals. In fact, once again, I suspect
familiarly is of more benefit, not for the core browser itself but the bells
and whistles.
For those outside the world of IT I suspect their view of the web browser
is still rooted in the simple display of text and images / videos.
Consequently they would have little cause to investigate the proliferation
of extensions and plug-ins the modern browser affords. If you store
documentation in your source code repo using some kind of mark-up
language then you’ll probably want to view them in their rendered state
when reading and browser extensions are one possible choice here. When
working on web APIs I found myself trying out a whole bunch of different
REST clients, such as Postman and Advanced REST Client, to see which
I preferred or had features I found useful. That didn’t cause me to stop
using CURL, but they make chaining together REST requests into a
‘journey’ far less painful with their support for variables and response
parsing.

Text editors & IDEs
You would think that the problem of editing text was a solved one by now
and yet the last few years have still seen remarkable growth in the market

with VS Code and JetBrains’ Rider proving that the hearts and minds of
developers are still yet to be won.
It’s hard to talk about text editors without crossing over into IDE territory
as the face of the IDE is pretty much the text editor. In my couple of
decades as a programmer I’ve seen the humble text editor grow into the
behemoth that is the modern, bloated IDE as more and more of the build
and debug tooling has been grafted on. At the same time the need to
automate builds and deployments has also meant that this tooling has had
to remain at arm’s length to some degree and therefore it’s still possible
to work with just a shell and simple text editor. The folly of proprietary
binary project files came and went with JSON now the in-vogue choice
for some languages, despite its shortcomings.
The enterprise IDE must seem like a bean counter’s dream – ‘a text editor,
build system, debugger and deployment tool all in one package!’ If
you’ve worked on a codebase of any appreciable size that only uses the
tools that come with the enterprise package you’ll eventually discover
their limitations, especially if you want to adopt a heavily automated
approach to testing. Ever tried merging or automating testing of an old-
fashioned DTS package? This isn’t the product’s fault, but it does put the
onus on us to recognise when we’ve outgrown it either because we want
more from our delivery process or the technology is moving too fast for it
to keep up.
The rise of the polyglot and concepts like ‘infrastructure as code‘ means
that we spend far more time editing source files that are not part of the
core product we’re delivering. Although you might be writing your REST
API in C# you might be using Terraform for your infrastructure, Go for
your deployment tools, and a range of batch files, PowerShell scripts and
Bash scripts for gluing it all together. Your documentation could be in
Markdown, your database support queries in N1QL and have a variety of
configuration files using XML, JSON and the classic .ini format.
The natural fallout of all this is that although I might be forced into using
the IDE of the company’s choice for the core product, there is still plenty
of room to use both open source offerings like VS Code and licensed
products such as Sublime Text because they offer certain essential
features which are missing from the jack-of-all-trades offering, e.g. multi-
cursor support or a plug-in that integrates the Go toolchain directly into it.
Editing documentation in markdown format for instance is so much easier
when you have the classic source + preview two-pane view like you have
in VS Code; and these days I expect everywhere that I have to type any
natural language to support spelling and grammar checking too.
If you think we’ve now reached ‘peak IDE’ know that JetBrains has
launched a commercial Go-centric IDE for those that need more than what
they’re getting from the current crop of plug-ins. VS Code happens to
suffice for my Golang purposes at the moment but it’s good to know this
is one battle that’s still raging on.

Other stuff
That list has covered all the big ones that immediately spring to mind and
yet I can still think of many other areas where I have a different personal
taste to my colleagues, such as still using the old fashioned Windows
command prompt in preference to PowerShell. Consequently the multi-
tabbed ConEmu fills a void you don’t have with its more modern
counterpart which, incidentally, shipped with its own IDE. And we
haven’t even touched on how the new Windows Subsystem for Linux is
going to shake things up. I may finally give up on Gnu on Windows (my
preferred bundle of the core Unix command line tools such as grep, sed,
awk, etc.) as I’ll have the real deal to use instead.
I don’t currently do much in the way of web based stuff myself but I know
from osmosis that the world of transpilers and Node.js adds another heap
of tooling choices into the melting point, some of which form part of the
end product, whilst others are alternative, portable implementations of
existing native tools. Despite what I said about personal build scripts
earlier I did once keep my own PSake (PowerShell) based build script
alongside the real Gulp (Node.js) one because it saved me a couple of
14 | | MAR 2018{cvu}

Code Critique Competition 110
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
Thanks to Jason Spencer for the random number generator suggestion
leading to this issue’s critique!

I’m trying to write a very simple dice game where the computer simulates
two players each throwing dice. The higher score wins and after a
(selectable) number of turns the player who’s won most times wins the
game. (I’m going to make the game cleverer once it’s working.) But the
games always seem to be drawn and I can’t see why. Here is what the
program produces:

 dice_game
 Let's play dice
 How many turns? 10
 Drawn!
 How many turns? 8
 Drawn!
 How many turns? ^D

What’s going wrong, and how might you help the programmer find the
problem? As usual, there may be other suggestions you might make of
some other possible things to (re-)consider about their program.
 Listing 1 contains zipit.h
 Listing 2 contains dice game.cpp

Getting Personal (continued)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

public:
 using std::pair<T, T>::pair;
 zipit &operator+=(int n)
 {
 return *this += std::make_pair(n, n);
 }
 zipit &operator-=(int n)
 {
 return *this += std::make_pair(-n, -n);
 }
 zipit &operator++()
 {
 return *this += 1;
 }
 zipit &operator--()
 {
 return *this += -1;
 }
 auto operator*()
 {
 return std::make_pair(
 *this->first, *this->second);
 }

Listing 1 (cont’d)

// Class to 'zip' together a pair of iterators
template <typename T>
class zipit : public std::pair<T, T>
{
 zipit &operator+=(std::pair<int,int> const
&rhs)
 {
 this->first += rhs.first;
 this->second += rhs.second;
 return *this;
 }

Lis
tin

g 1
minutes every build not waiting for ‘npm install’ to check its cache. (The
team switched over permanently soon after.)

(Executive) Summary
It’s not just in IT that we have our own personal choices in tooling; the
same is true in other walks of life. For instance nobody tells you what kind
of pen you have to use or whether you should be using lined or clear paper
to write your notes on. I happen to favour the gel pens but I know others
that still prefer to use traditional ink. I think it’s fair for any organisation
to expect me to speak and write documentation in the English language if
that’s the one most commonly by them.
What I find objectionable is the lack of distinction between when a choice
of tooling affects the deliverable itself as opposed to only affecting the
means of delivery, especially when the personal choice would be more

beneficial to the team or organisation. Consistency within tooling is not
an all or nothing affair – we need to question our choices when delivery
might be impacted but also embrace different approaches when possible
so that we can learn from our colleagues.

References
[1] ‘In The Toolbox – Finding Text’, C Vu 27.6,

http://www.chrisoldwood.com/articles/in-the-toolbox-finding-
text.html

[2] ‘In The Toolbox – Home-Grown Tools’, C Vu 28.4,
http://www.chrisoldwood.com/articles/in-the-toolbox-home-grown-
tools.html

[3] ‘Developer Freedom’, C Vu 26.1,
http://www.chrisoldwood.com/articles/developer-freedom.html
MAR 2018 | | 15{cvu}

http://www.chrisoldwood.com/articles/in-the-toolbox-finding-text.html
http://www.chrisoldwood.com/articles/in-the-toolbox-home-grown-tools.html
http://www.chrisoldwood.com/articles/developer-freedom.html

 auto operator*() const
 {
 return std::make_pair(
 *this->first, *this->second);
 }
 // Hmm, operator-> ??
};
template <typename T>
auto begin(T one, T two)
 -> zipit<typename T::iterator>
{
 return {one.begin(), two.begin()};
}
template <typename T>
auto end(T one, T two)
 -> zipit<typename T::iterator>
{
 return {one.end(), two.end()};
}

Lis
tin

g 1
 (c

on
t’d

)

Critiques
James Holland <James.Holland@babcockinternational.com>
In main(), the user has created an object named generator of type
randomize and then has sensibly passed it by reference to play().
Within play() the randomize object is then passed to the two
generate() functions by value. Passing by value makes a copy of the
object and this where problems begin. The randomize objects contain
state that is used in a predetermined way to generate the pseudo random
numbers. Two randomize objects that start in the same state will produce
the same sequence of numbers. The two calls to generate() each make
use of identical copies of randomize and so both will produce exactly
the same sequence of random numbers. This is why all runs of the dice
game end in a draw.
What we would like to happen is for both calls of generate() to use the
same randomize object. In this way when one call to generate() has
obtained a set of random numbers, the other call to generate() will
continue to use the same randomize object and so will obtain a different
sequence of numbers.
One way to achieve this is to pass the randomize object to generate()
by reference thus ensuring there is only ever one randomize object. This
can be done by employing the standard library reference wrapper ref().
This wrapper conveys references to function templates that take the
parameters by value. Fortunately, generate() is such a function. The
calls to generate() simply become as shown below.
 std::generate(player1.begin(), player1().end(),
 std::ref(generator);
 std::generate(player2.begin(), player2().end(),
 std::ref(generator);
While we are talking about random number generators, it is recommended
not to use one of the standard library generators, such as MT19937, on its
own but instead to use it with a distribution, also available from the
standard library. There are problems associated with dividing the output
from a generator by a constant and taking the reminder. Using a
distribution will ensure a high quality series of random numbers.
Running dice_game will now probably produce the desired result. I say
‘probably’ because the student’s software contains a serious flaw. The free
functions begin() and end() pass their values by value. This means
their parameters are copied. The functions begin() and end() construct
a zipit object from iterators that point to copies of player1 and
player2 arrays. When the functions return, the copies of player1 and
player2 will be destroyed. The zipit object will be returned to its caller
but the iterators it contains will be invalid as they point to objects that no
longer exist. It may be the case that the memory locations where the copies
of player1 and player2 existed maintain their values for as long as the
program requires them. It is in this way that the program appears to work

correctly. The behaviour of software should not be left to chance and so
this bug must be corrected. Fortunately, this is a relatively simple matter.
Instead of passing player1 and player2 to begin() and end() by
value, they should be passed by reference. In this way no copies are made
and the iterators returned in the zipit object will point to the original (and
still existing) versions of player1 and player2. The program is now
running with a firm footing!
Although the software now works correctly, it seems quite complicated for
what it does. Perhaps there is another way of structuring the program that
is shorter and easier to understand. The student’s software involves the
creation of two vectors that contain the results of rolling the dice, one for
each of the players. There is also quite an elaborate arrangement of
operator functions that are required to manipulate iterators that point to the
two vectors. Instead of having a pair of vectors, each element of which
contains a single value, I propose having a single vector that contains a pair

#include <algorithm>
#include <iostream>
#include <random>
#include "zipit.h"
class randomize
{
 std::mt19937 mt;
public:
 int operator()() { return mt() % 6 + 1; }
};
void play(int turns, randomize &generator)
{
 std::vector<int> player1(turns);
 std::vector<int> player2(turns);
 std::generate(player1.begin(),
 player1.end(), generator);
 std::generate(player2.begin(),
 player2.end(), generator);
 int total{};
 for (auto it = begin(player1, player2);
 it != end(player1, player2); ++it)
 {
 if ((*it).first != (*it).second)
 {
 auto diff = *it.first - *it.second;
 total += copysign(1.0, diff);
 }
 }
 if (total > 0)
 {
 std::cout << "Player 1 wins\n";
 }
 else if (total < 0)
 {
 std::cout << "Player2 wins\n";
 }
 else
 {
 std::cout << "Drawn!\n";
 }
}
int main()
{
 randomize generator;
 int turns;
 std::cout << "Let's play dice\n";
 while (std::cout << "How many turns? ",
 std::cin >> turns)
 {
 play(turns, generator);
 }
}

Listing 2
16 | | MAR 2018{cvu}

of dice values, one for each player. Iterating through a single vector is much
simpler that trying to iterate through two vectors at the same time. There
is no danger of getting out of step. I suggest my version of the software is
also considerably simpler as none of the code within zipit.h is required.
I have kept the interface to Play() the same as in the student’s code and
so main() can remain the same. I have modified the Randomize class
to take advantage of the standard library’s uniform integer distribution as
shown below.
 #include <algorithm>
 #include <functional>
 #include <iostream>
 #include <random>
 #include <vector>
 class Randomize
 {
 public:
 Randomize():d(1, 6){}
 std::pair<int, int> operator()()
 {
 return {d(e), d(e)};
 }
 private:
 std::mt19937 e;
 std::uniform_int_distribution<> d;
 };
 void play(int turns, Randomize & generator)
 {
 std::vector<std::pair<int, int>>
 players(turns);
 std::generate(players.begin(),
 players.end(), std::ref(generator));
 int total{};
 for (const auto & turn : players)
 {
 const auto p1_score = turn.first;
 const auto p2_score = turn.second;
 if (p1_score != p2_score)
 {
 const auto diff = p1_score - p2_score;
 total += diff > 0 ? 1 : -1;
 }
 }
 if (total > 0)
 {
 std::cout << "Player 1 wins\n";
 }
 else if (total < 0)
 {
 std::cout << "Player 2 wins\n";
 }
 else
 {
 std::cout << "Drawn!\n";
 }
 }
 int main()
 {
 Randomize generator;
 int turns;
 std::cout << "Let's play dice\n";
 while (std::cout << "How many turns? ",
 std::cin >> turns)
 {
 play(turns, generator);
 }
 }
Randomize now simulates rolling the dice for both players within one call
of operator()(). I felt that copysign() is a slightly strange function
to use in this context as it converts its integer parameters to doubles

before copying the sign of the second parameter to the first. The resulting
double is then converted back to an integer when added to total. The
same effect can be simply achieved by a conditional operator as I have
used. No conversion to and from double is required.

Paul Floyd <paulf@free.fr>
There are two main problems with this code. The first is the cause of the
draws, the second results in crashes.
For the cause of the draws, we have a misuse of the interface of std::
generate:
 template< class ForwardIt, class Generator >
 void generate(ForwardIt first,
 ForwardIt last, Generator g);
(from http://en.cppreference.com/w/cpp/algorithm/generate)
So in the original code, where the call to this is
 std::generate(player1.begin(),
 player1.end(), generator);
 std::generate(player2.begin(),
 player2.end(), generator);
then the variable generator is passed to std::generate by value (the
template deduces a type of randomize).
This is borne out by nm (output slightly reformatted for printing):
 nm -C cc109 | grep generate
 00000000004013d3 W void std::generate
 <__gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 randomize>(
 __gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 __gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 randomize)
This means that the original copy does not get updated by the first call, so
the second call to std::generate gets a copy of the same object. The
fix for this would be either to make the call to the template function explicit
(not nice) or to just use std::ref so that the template will be initialised
with a reference type rather than passing by value. Now with a reference
the variable generator does have its state modified by the first call.
Here’s nm again when using std::ref:
 nm -C cc109 | grep generate
 00000000004013ca W void std::generate
 <__gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 std::reference_wrapper<randomize>>(
 __gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 __gnu_cxx::__normal_iterator<int*,
 std::vector<int, std::allocator<int>>>,
 std::reference_wrapper<randomize>)
At first I thought that was the end of the story. But then I ran the code
through AddressSani t izer (compi led with c lang++ and the
-fsanitize=address option), and I saw:
Let's play dice
How many turns? 10
===
==2657==ERROR: AddressSanitizer: heap-use-after-
free on address 0x6040000003d0 at pc 0x0001085aeca3
bp 0x7ffee7654010 sp 0x7ffee7654008
READ of size 4 at 0x6040000003d0 thread T0
 #0 0x1085aeca2 in zipit<std::__1::
__wrap_iter<int*> >::operator*() .zipit.h:32
 #1 0x1085ad4f0 in play(int, randomize&)
dice_game.cpp:30
 #2 0x1085af3e6 in main dice_game.cpp:59
MAR 2018 | | 17{cvu}

 #3 0x7fff5c710114 in start (libdyld.dylib:
x86_64+0x1114)
0x6040000003d0 is located 0 bytes inside of 40-byte
region [0x6040000003d0,0x6040000003f8)
freed by thread T0 here:
 #0 0x1086226ab in wrap__ZdlPv
(libclang_rt.asan_osx_dynamic.dylib:
x86_64h+0x646ab)
 #1 0x1085af8f4 in std::__1::__vector_base<int,
std::__1::allocator<int> >::~__vector_base()
vector:445
 #2 0x1085af4c4 in std::__1::vector<int, std::
__1::allocator<int> >::~vector() iterator:1386
 #3 0x1085ae384 in std::__1::vector<int, std::
__1::allocator<int> >::~vector() iterator:1386
 #4 0x1085ad0b5 in play(int, randomize&)
dice_game.cpp:27
 #5 0x1085af3e6 in main dice_game.cpp:59
 #6 0x7fff5c710114 in start (libdyld.dylib:
x86_64+0x1114)

previously allocated by thread T0 here:
 #0 0x1086220ab in wrap__Znwm
(libclang_rt.asan_osx_dynamic.dylib:
x86_64h+0x640ab)
 #1 0x1085b0279 in std::__1::vector<int, std::
__1::allocator<int> >::allocate(unsigned long)
vector:925
 #2 0x1085b2631 in std::__1::vector<int, std::
__1::allocator<int> >::vector(std::__1::vector<int,
std::__1::allocator<int> > const&) vector:1200
 #3 0x1085ae35c in std::__1::vector<int, std::
__1::allocator<int> >::vector(std::__1::vector<int,
std::__1::allocator<int> > const&) vector:1193
 #4 0x1085acfcd in play(int, randomize&)
dice_game.cpp:27
 #5 0x1085af3e6 in main dice_game.cpp:59
 #6 0x7fff5c710114 in start (libdyld.dylib:
x86_64+0x1114)
So there is an error in the dereference operator for a vector that is created
and destroyed on the same line. That smells like a local variable being
created and destroyed.
The problem is with the zipit begin() and end() functions.
 template <typename T>
 auto begin(T one, T two)
 -> zipit<typename T::iterator>
 …
This is instantiated here
 for (auto it = begin(player1, player2);
Where player1 and player2 are the vectors of int. So T is a vector of
int, and one and two are passed by copy. The local copy gets destroyed
at the end of the call, leaving the returned pair of iterators dangling.
A third opinion from nm:
 nm -C cc109 | grep begin
 00000000004015a0 W zipit<std::vector<int,
 std::allocator<int>>::iterator>
 begin<std::vector<int, std::allocator<int>>>(
 std::vector<int, std::allocator<int>>,
 std::vector<int, std::allocator<int>>)
 0000000000401b9c W std::vector<int,
 std::allocator<int>>::begin() const
 0000000000401356 W std::vector<int,
 std::allocator<int>>::begin()
The fix for this is to make the begin/end arguments references:
 template <typename T>
 auto begin(T& one, T& two)
 -> zipit<typename T::iterator>

 {
 return {one.begin(), two.begin()};
 }
 template <typename T>
 auto end(T& one, T& two)
 -> zipit<typename T::iterator>
 {
 return {one.end(), two.end()};
 }
OK, now for the minor nits. I get a warning about the unused cout in the
while condition. This can be silenced by a cast
 while((void)(std::cout << "How many turns? "),
 std::cin >> turns)
 {
 play(turns, generator);
 }
 }
A bit ugly.
There are no include guards, and the cpp file does not include zipit.h before
the other files. This means that users that include zipit.h will have the
misfortune of playing ‘guess the header dependency’ (or fixing the header).
Lastly, the read of the int for the number of turns does not prevent against
reading negative values. This then gets converted to size_t in the vector
constructor. If the allocation succeeds then it’s going to be a very long game.

Russel Winder <russel@winder.org.uk>
First and foremost why try to invent a custom zip capability, and risk
getting it wrong? Where are the tests? I am sure there is a good criticism
to be made of the code in zipit.h, but I shall just circumvent all that and
say: use boost::combine to undertake the zip and delete zipit.h.
The original code also has output scattered around. OK so only in two
functions, but still, the design principle applies: keep all input and output
in one place and have functions return values to represent the result. Doing
this enhances testability, so must be a good thing. In this case play should
not do output but should return a ‘who won’ result. Seems like a good place
for an enumerated type. The output of the result then happens in main.
So ignoring the time it took to make those changes and get the code to
actually work (because the developer failed to read the documentation
correctly), we find it still delivers a draw in all cases. A bit of a WTF
moment, but surely one it was intended one would have. So what is the
problem? If you print out the value of the two std::vectors of rolls,
you find that you always get the same sequence of values. Always. Fairly
obvious then the same start state is the case for all calls to the Mersenne
Twister generator. It turns out that std::generate seems to clone the
generator passed so the player1 generation and the player2 generation are
identical since the randomize class creates a new generator for each
instance initialised exactly the same. A cure for this is to make the mt
instance shared by making it static. Since this is a single threaded
application this does not seem to be a problem, even if global shared state
is deemed anathema by some.
With this change in place, and resulting in the program shown in Listing 1,
the program seems to work as originally intended.
Of course, one has yet again to ask the question whether C++ is the best
programming language to use for this application. Let us assume no. So
what to choose? Well to investigate this let’s look at Python, D and Rust.
Python, see Listing 2, has a built in zip function. Also the sum function
acting over an iterable makes for a much nicer expression of the core part
of the algorithm - which is rolling the dice and checking for who wins.
Even though Python is a dynamic language at run time, type annotations
have been used so that using the mypy command, we can be sure that all
the function calls are correctly statically typed. The random numbers are
provided via the random package, using a Mersenne Twister algorithm,
which is ‘global’ so there are no problems about generating the same
sequence of random numbers. It would seem that Python makes it harder
to make errors in this sort of application.
18 | | MAR 2018{cvu}

D, see Listing 3, also has a builtin zip function, so no difficulties on that
front. Comparing the C++, Python, and D, one gets the sneaking suspicion
that D is the best language for writing this code: less faff. Well except
maybe for the random number generator. Rather than using a random
number generator creating integers from the set {1, 2, 3, 4, 5, 6} with each
integer result assumed to have equal probability, The std.random dice
function is used to create a random number generator of the values with
an explicit probability. Equal probabilities are used here, but it allows for
experimentation with ‘loaded dice’. Another ‘feature’ of the code worth
noting is the function call chaining approach as opposed to function
application as used in C++ and Python. This is blurring the ‘function
application’ and ‘method call on an object’ that is quite rigid in C++ and
Python. It is an aspect of trying to be as declarative as possible in what is
an imperative language.
Of course Rust, see Listing 4, is reputedly the language of the moment, set
to replace C, and perhaps C++, as the language of first choice for new
projects. Immediately obvious is the very different way enumerations work.
C++, Python, and D have very similar ways of defining and working with
enumerations, Rust takes a very different approach. In particular an
enumeration value can carry data of undefined value, just defined type. Rust,
like D, emphasises being declarative, hence the creation of pipelines of data
manipulation as seen in the D code. Of course Rust tries to go further and
mandates the use of monads to create what is arguably a functional
programming language (disguising the imperative language). This is seen
most clearly in main. The code seems to a bit bigger, but there an appeal
that error handling is enforced but in a quite pleasing way; especially
highlighting the nice use of enumerations.. After the interesting dice
emulation of D, in this Rust code returns to the generate an integer in a range
assuming equal probabilities. The random number generator is not global, but
it is shared, so no possibility of generating the same sequence for each player.
So is C++ the best language for this application? Probably not, but for
something like this using the language you are most ‘at home’ with is likely
the best choice. Unless you are challenging yourself as a programmer by
using a programming language you are not entirely familiar with.
Personally I quite favour the D code.
Why is Go not in this list of languages likely to be better than C++? It
should be, but I ran out of time to complete that version of the code. Bad
project management I admit.
Nota bene: the code presented here does not represent a reasonable
formatting of the code, and indeed violates many de facto and de jure code
formatting guidelines. However, the journal formatting structure requires
badly formatted code to be presented. :-(
PS There is clearly a difference in the languages behaviour here since the
different languages produce different frequencies of draws. Hummm…
[Editor: since the programs all model the same die throwing game then
statistically significant differences imply at least one is buggy.]

Listing 1
#include <algorithm>
#include <chrono>
#include <iostream>
#include <numeric>
#include <random>
#include <boost/range/combine.hpp>
#include <boost/tuple/tuple.hpp>
class randomize {
 private:
 static std::mt19937 mt;
 public:
 int operator()() { return mt() % 6 + 1; }
};
std::mt19937 randomize::mt {
 (unsigned long int)std::chrono::system_clock::now()
 .time_since_epoch()
 .count()
};

enum class result {
 draw = 0,
 player1_win = 1,
 player2_win = 2,
};
typedef boost::tuple<int, int> int_pair;
result play(int const turns, randomize & generator) {
 std::vector<int> player1(turns);
 std::vector<int> player2(turns);
 std::generate(player1.begin(), player1.end(), generator);
 std::generate(player2.begin(), player2.end(), generator);
 auto pairs = boost::combine(player1, player2);
 int_pair const t_t = std::accumulate(
 pairs.begin(),
 pairs.end(),
 int_pair{0, 0},
 [](int_pair t, int_pair i) {
 int a, b;
 boost::tie(a, b) = i;
 return int_pair{
 boost::get<0>(t)
 + (a > b ? 1 : (a < b ? -1 : 0)),
 0};
 });
 int const total = boost::get<0>(t_t);
 return total == 0
 ? result::draw
 : (total > 0 ? result::player1_win
 : result::player2_win);
}
int main() {
 randomize generator;
 int turns;
 std::cout << "Let's play dice" << std::endl;
 while (
 std::cout << "How many turns? ",
 std::cin >> turns) {
 auto const result = play(turns, generator);
 if (result == result::draw) {
 std::cout << "Drawn!" << std::endl;
 } else {
 std::cout
 << "Player "
 << (int)result
 << " wins"
 << std::endl;
 }
 }
}
Listing 2
#!/usr/bin/env python3
from enum import Enum
import random
from typing import Tuple
class Result(Enum):
 draw = 0
 player1_win = 1
 player2_win = 2
def player1_win(p: Tuple[int, int]) -> int:
 if p[0] > p[1]:
 return 1
 elif p[0] < p[1]:
 return -1
 return 0
def play(turns: int, gen) -> Result:
 player1_wins = sum(
 player1_win(p) for p in zip(
 (gen() for _ in range(turns)),
 (gen() for _ in range(turns))
))
MAR 2018 | | 19{cvu}

 if player1_wins > 0:
 return Result.player1_win
 elif player1_wins < 0:
 return Result.player2_win
 return Result.draw
def main() -> None:
 print("Let's play dice")
 random.seed()
 while True:
 try:
 turns = int(input('How many turns? '))
 except ValueError:
 return
 result = play(
 turns,
 lambda: random.randint(1, 6)
)
 if result == Result.draw:
 print('Drawn!')
 else:
 print('Player {} wins.'.format(result.value))
if __name__ == '__main__':
 try:
 main()
 except (EOFError, KeyboardInterrupt):
 print()
Listing 3
#!/usr/bin/env rdmd
import std.algorithm: map, sum;
import std.array: array;
import std.conv: to;
import std.random: dice;
import std.range: iota, zip;
import std.stdio: readln, write, writefln, writeln;
import std.string: strip;
enum Result {
 draw = 0,
 player1_win = 1,
 player2_win = 2,
}
Result play(uint turns, uint delegate(uint) generator) {
 auto player1_wins =
 zip(
 iota(turns).map!generator(),
 iota(turns).map!generator())
 .map!"a[0] > a[1] ? 1 : (a[0] < a[1] ? -1 : 0)"
 .sum;
 return player1_wins == 0
 ? Result.draw
 : player1_wins > 0
 ? Result.player1_win
 : Result.player2_win;
}
void main() {
 writeln("Let's play dice");
 try {
 while (true) {
 write("How many turns? ");
 uint turns = to!uint(readln().strip());
 auto result = play(turns, delegate uint(uint) {
 return to!uint(
 dice(0.0,
 16.67,
 16.67,
 16.67,
 16.67,
 16.67,
 16.67));
 });
 if (result == Result.draw) {

 writeln("Drawn!");
 } else {
 writefln("Player %d wins.", result);
 }
 }
 } catch (Exception) {
 writeln();
 }
}
Listing 4
extern crate itertools;
extern crate rand;
use std::io::{self, Write};
use itertools::Itertools;
use rand::distributions::{Range, Sample};
enum Result {
 PlayerWon(u8),
 Draw
}
fn play(
 turns: u32,
 dice_roll: &mut FnMut()->u8) -> Result
{
 let player1_wins: i32 =
 itertools::repeat_call(dice_roll)
 .tuples::<(_, _)>()
 .map(|p|
 if p.0 > p.1 { 1 }
 else if p.0 < p.1 { -1 }
 else { 0 }
)
 .take(turns as usize)
 .sum();
 if player1_wins != 0 {
 Result::PlayerWon(
 if player1_wins > 0 { 1 }
 else { 2 }
)
 }
 else { Result::Draw }
}
fn main() {
 println!("Let's play dice");
 let mut dice = Range::new(1u8, 7u8);
 let mut rng = rand::thread_rng();
 let mut buffer = String::new();
 loop {
 print!("How many turns? ");
 io::stdout()
 .flush()
 .expect("Could not flush stdout.");
 buffer.clear();
 match io::stdin().read_line(&mut buffer) {
 Ok(_) => match buffer.trim().parse::<u32>() {
 Ok(turns) => match play(
 turns,
 &mut ||{ dice.sample(&mut rng) }
) {
 Result::PlayerWon(p) =>
 println!("Player {} wins.", p),
 Result::Draw =>
 println!("Drawn!"),
 },
 Err(_) => break
 },
 Err(_) => break
 }
 }
}

20 | | MAR 2018{cvu}

Jason Spencer <contact+pih@jasonspencer.org>
The reason for all games ending in a draw is that the random number
generator actually creates a deterministic sequence of numbers, and since
the calls to std::generate copy the generator object, that is to say its
internal state, the die throws generated for both players are identical. There
is, however, another bug with invalidated iterators that potentially corrupts
the result calculation, and may cause a crash or non-draw result.
The issues with the code are as follows:

zipit.h
 The file requires the following includes: <utility> for std::

pair and std::make_pair. Also <iterator> for std::
advance, std::begin and std::end, which will be added next.
An include guard for the whole file is also a good idea.

 class zipit is derived from std::pair<T,T> with public access.
Consider making it protected, otherwise a user can access .first
and .second and change their values, putting them out of sync.
This might be a wanted behaviour, however. I think it breaks
encapsulation and the inheritance should be protected.

 Consider renaming the template parameter from T to Iter, to
express the meaning. T is used so often that it can get confusing.

 Two operator* functions (one const, one non-const) aren’t
required, only one – the function doesn’t change the zipit instance
– although dereferencing may then lead to a change in the pointed to
variable, but that doesn’t mean the zipit instance changes
(compare const char * ptr and char * const ptr). So
only the const version is needed, and the non-const should be
removed.

 operator* at the moment returns an rvalue, so zipit only
models an input iterator. We may want to return an lvalue to model
an output iterator. See the discussion and implementation later.

 zipit &operator+=(std::pair<int,int> const &rhs)
should use std::advance instead of += to advance this-
>first and this->second. If the underlying iterator is not a
random access iterator it may not have an operator+= overload.
std::advance will either use operator++ or operator+=,
preferring the latter as it has constant time complexity, while the
former is linear.

 operator-> is indeed required to at least satisfy the requirements
of InputIterator (see later for discussion of iterator types).

 The begin(T,T) and end(T,T) free functions should both have
their arguments passed by non-const reference. Both of the
functions extract iterators from the arguments passed and store them
in a zipit instance and return that. However, since the arguments
passed to these functions are currently temporary copies the iterators
are invalid as soon as the function returns. Since the score is later
calculated from dice throws stored in memory that has been
deallocated the program either crashes or has invalid results.

 In begin(T,T) and end(T,T) the use of T::iterator assumes
that the typedef exists in T. By using std::begin(one) instead
of one.begin() and changing the return type of these functions
they can be adapted to also support C-style arrays, thusly (just
s/begin/end/g for the end function):

 template <typename T>
 auto begin(T & one, T & two) ->
 zipit<decltype(std::begin(std::declval<T&>()))>
 {
 return { std::begin(one), std::begin(two) };
 }
dice_game.cpp
 In class randomize the mt19937 instance should not be left un-

seeded. Either pass the seed as an argument to the constructor or
call mt19937::seed in the randomize constructor, otherwise
every time the program is executed the numbers returned by

generator will be the same (and therefore the game results will be the
same for the same number of games played). I propose two
constructors for class randomize – a default constructor which
will use a source of entropy (some OS or hardware source, but worst
case the current time) to seed, and another constructor that takes the
seed as an argument. See below for a sample implementation and
later for a discussion on seeding.

 In randomize::operator() the use of %6+1 to scale the output
of mt() may produce a non-uniform distribution. While it is good
enough for this use, there’s a very tiny bias. If mt() were to
generate numbers uniformly distributed over the interval [0,7] then
taking modulo 6 of these numbers 0 would map to 0, 1=>1, 2=>2,
3=>3, 4=>4, 5=>5, 6=>0, 7=>1, so the probability of getting a 0 or
1 output is twice the probability of the other numbers. In our case,
however, mt() will produce numbers in the range 0–232-1, so the
bias is unnoticeable with a 1.4 * 10-7% higher probability of output
die rolls 1,2,3. Even so, prefer using std::uniform_int_
distribution to change the distribution of the mt19937
instance output – it doesn’t have the bias issue and is more
descriptive in terms of intent.
The randomize class then would look something like this:

 class randomize {
 std::mt19937 rng;
 std::uniform_int_distribution<int> D6;
 public:
 randomize(decltype(rng)::result_type seed)
 : rng(seed), D6(1,6) { }
 randomize ()
 : randomize (std::random_device()()) { }
 int operator()() { return D6(rng); }
 };

It might be an idea to log the seed value generated by std::
random_device, in case the program has to be debugged later.

 In play(...) the last argument of both std::generate calls
should be std::ref(generator). Since std::generate
takes the third argument by copy std::ref should be used to wrap
a reference to generator in an std::reference_wrapper
instance. As discussed later the random number generator actually
produces a deterministic sequence, rather than true unpredictable
random numbers. Without the wrapper the first call to std::
generate makes a temporary copy of the generator object for use
within the function, and all the internal state is copied with it,
afterwards in play(...) the internal state of the generator hasn’t
changed, so in the second call to std::generate the sequence of
numbers is repeated. The result is that both players get the exact
same die throws, hence the repeated draws for the headline bug.

 In play(...) this is personal choice, but I prefer int total =
0 over int total{} as the expected value is clear.

 In play(...) the use of an if and then a copysign call is
perhaps a little confusing. The intent is to do a three way
comparison. While there’s a proposal for such a feature in C++ [1]
it doesn’t currently exist. There are a number of ways to do this but
my preferred approach is a ternary conditional expression operator
– it is the most expressive, and simple to execute:

 total += (diff<0) ? -1 : ((diff==0)? 0 : 1);
Here the intent and the result values are explicit (-1,0,1) and appear
in order. If diff is more likely to be in one of the states, 0 for
example, then the two ternary conditionals could be re-ordered for
performance, so the most common case is dealt with first and the
second comparison doesn’t have to be executed, but that’s not the
case here.

 copysign is presumably from math.h, but the header isn’t
included, yet this compiles (g++ 7.3), so I’m not sure where it’s
from. Consider using std::copysign and include cmath if
MAR 2018 | | 21{cvu}

copysign must be used. Otherwise I’d recommend the ternary
operator approach.

 In play(...) consider replacing the whole for loop over the zip
iterator with std::accumulate:

 auto get_score_from_throws = [](auto p1,
 auto p2)
 {
 auto diff = p1 - p2;
 return (diff<0) ? -1 : ((diff==0)? 0 : 1);
 };
 total = std::accumulate (
 begin(player1, player2),
 end(player1, player2), 0,
 [&get_score_from_throws](auto sum,
 const auto & it) {
 return sum +=
 get_score_from_throws(it.first,
 it.second);
 }
);

or use std::inner_product:
 total = std::inner_product (
 std::begin(player1), std::end(player1),
 std::begin(player2), 0, std::plus<>(),
 get_score_from_throws);

The accumulate version uses the zip iterator, and the
function name is more self explanatory. The inner_product,
while confusingly named, achieves the same thing, and doesn’t even
need the zip iterator.
Alternatively std::reduce or std::transform_reduce
could be used, but neither libstdc++ (the STL used by g++) [2], nor
libc++ (the STL used by CLang) [3] have yet to support these
C++17 features, so I couldn’t produce sample code.

 In play(...) consider making the turns argument unsigned
instead of int. You cannot play a negative number of games.

 In main(...) turns should be bounds checked
So that should get the right result with the existing program design, but
I’d make some design changes also.
 If a zip iterator is still required consider using Boost.

ZipIterator instead – it supports the zipping of more than two
iterators and is tested and known to work.

 zipit::operator== is a potential source of errors. Since there
isn’t an explicit comparison operator the inherited one is used. This
is typically the correct behaviour, however if the vectors passed to
begin(T,T) and end(T,T) are different lengths there will never
be a time when the end zipit iterator is reached, since both first
and second have to match. Since they’re incremented together
they’ll never both match when there are different length vectors.
Consider tweaking end(T,T) to set .first and .second to the
same offset from the beginning of the vectors. The offset should be
the length of the shorter vector.

 With its current functionality the randomize class isn’t actually
needed at all. Assuming no other features are required the following
is a drop-in replacement:

 auto generator = std::bind (
 std::uniform_int_distribution<unsigned>(1,6),
 std::mt19937(rng_seed));

For fun, you could also create a loaded die that has double the
chance of rolling a six:

 auto loadedD6 = std::bind(
 std::discrete_distribution<unsigned>{
 0,1,1,1,1,1,2},
 std::mt19937(rng_seed));

Of course, for one player to have the advantage you’d need each
player to have different dice types.
With respect to seeding – it might be an idea to make the seed a
command line argument, so that you can have reproducible results
in testing, something along the lines of:

 void usage(char * execname) { std::cerr <<
 "Usage: " << execname <<
 "[--seed <unsigned integer>]\n"; }
 int main(int argc, char *argv[]) {
 using namespace std::string_literals;
 using rng_t = std::mt19937;
 rng_t::result_type rng_seed =
 std::random_device()();
 if (argc == 3) {
 if("--seed"s != argv[1]) {
 usage(argv[0]); return -1;
 }
 // could throw invalid_exception or
 // out_of_range
 int seed = std::stol(argv[2]);
 if(seed < 0) throw std::out_of_range(
 "Seed value must be a positive"
 " integer");
 rng_seed = seed;
 }
 else if(argc!=1) {
 usage(argv[0]); return -1;
 }
 std::cout << "RNG seed = " <<
 rng_seed << '\n';
 auto D6 = std::bind(
 std::uniform_int_distribution<unsigned>
 (1,6), rng_t(rng_seed));
 ...
 Something to consider is whether we actually need to keep the die

throws in memory. No game is dependant on the result of any other,
so there’s no need to store the throws or even the score per round. A
loop could make die throws, calculating the score and keeping a
running score, without any vectors.
Of course it can be shown that for two N sided fair dice the chance
of throwing the same value is 1/N, the chance the first die throws a
smaller number is (N-1)/2N, same for the second die. So we could
get the game result with the following generator:

 const unsigned die_sides = 6;
 auto game_point_generator = std::bind (\
 std::discrete_distribution<unsigned>{ 1.0,
 (static_cast<double>(die_sides)-1.0)/2.0,
 (static_cast<double>(die_sides)-1.0)/2.0 }, \
 std::mt19937(std::random_device()()) \
);

A call to game_point_generator() will generate 0 if the game
is a draw, a 1 if player1 wins, and 2 if player 2 wins.

 If the die throws do have to be kept in memory then consider a vector
of std::pairs to store the results – this way there is no chance of
one vector in the zip iterator being smaller than the other. We also
don't need the zip iterator then.

 zipit could be generalised by using a tuple to allow more than
two iterators to be zipped; and there’s no reason for all iterator types
to be the same.

 zipit should consider SFINAE/enable_if to enable the
operator overloads based on the type of the zipped iterators.

 std::iterator_traits<zipit> should be implemented so
that zipit can be better integrated into the STL (for example if it
happens to model a random access iterator and states so via
iterator_traits then std::advance will be optimised).
22 | | MAR 2018{cvu}

 In the spirit of C++20 zip_it can be implemented with constexpr
modifiers.

Points for discussion
Random number generation
Random number generators fall into two categories – deterministic and
non-deterministic. Since CPUs are deterministic state machines they
cannot, without special hardware or external input, produce true entropy.
‘Random’ numbers are therefore typically produced by pseudo-random
algorithms that are actually deterministic. If you know the internal state
and the algorithm, you can predict the next number exactly. This is how
the rand() library call works (that’s typically a linear congruential
generator [4]), as well as mt19937 which is available since C++11. To
change the sequence produced every time the program is run it is typical
(although perhaps not always correct) to bootstrap the generator from the
current time. Since C++11 std::random_device can be used to seed
the deterministic generator. std::random_device takes entropy from
an implementation dependant source (for example RDRAND on
Intel/AMD, or /dev/urandom under linux – both use external events
such as interrupts to accumulate entropy) to try and generate non-
deterministic random numbers, but the non-determinism is not guaranteed
by std::random_device (26.5.6.2 in [5]).
Creating custom iterators
We’re not so much creating a custom iterator here, as we are an iterator
adaptor. And we also cannot assume the underlying iterator type – it may
be a forward input, forward output, bidirectional, or random iterator [6].
And then there are the const and reverse variants. But I think the intention
of zipit is still to behave like an STL iterator. One thing is for sure
though, writing iterators isn’t easy. There’s a fair amount of responsibility
that goes into writing one.
If we try to model an input iterator then according to [6] zipit is still
missing a post-increment operator and an operator->. The post-
increment operator isn’t that difficult and can be expressed in terms of the
pre-increment operator:
 zipit operator++(int)
 {
 auto temp = *this;
 ++*this;
 return temp;
 }
operator-> makes my head hurt, however. It should allow
iter->member ... but how do we do that while managing two iterators?
 zipit<Iter> const * operator->() const
 {
 return this;
 }
works, but then usage is ugly:
 std::vector<std::string> sv1 = {"a","b","c"};
 std::vector<std::string> sv2 = {"c","b","a"};
 auto sv_zip = begin(sv1,sv2);
 std::cout << sv_zip->first->length() << '\n';
and possibly incorrect. Should usage be sv_zip->first.length()?
Or sv_zip.first->length()? The latter won’t call operator->
and is available for free as long as the inheritance from std::pair is
public.
Alas it’s hard to know what to return from a zip iterator when pointers or
references are involved.
If we want to take it further, and model an output iterator then we must
make the iterator dereferenceable as an lvalue (i.e. operator* returns a
type convertible to T &). This leads to a similar problem.
Bear in mind also that the iterator we’re storing is not necessarily a pointer,
it’s something that behaves like a pointer, but may not be a raw pointer.
Case in point – vector<bool>::iterator is a proxy class that
accesses the underlying storage through something sufficiently advanced
(magic?). Dereferencing it returns a vector<bool>::reference.

Using this for inspiration we can make an attempt at operator* for
output iterators:
 // references cannot be stored in std::pair,
 // so we create a wrapper
 template <typename T> class ref_wrap {
 private:
 T & p;
 public:
 explicit ref_wrap (T & t) : p{t} {}
 operator T & () const noexcept {
 return p; }
 T & operator= (const T & t) const {
 p = t; return p; }
 };
 // convert the iterator type to a reference
 // type
 template <typename T> struct
 iter_reference_type { typedef typename
 std::iterator_traits<T>::reference type; };
 template <typename T> struct
 iter_reference_type < T * > {
 typedef T & type; };
 // optionally wrap the reference in our
 // wrapper
 template <typename T> struct
 wrapped_reference_type { typedef T type; };
 template <typename T> struct
 wrapped_reference_type < T & > { typedef
 ref_wrap< T > type; };
 template <typename Iter> struct
 wrapped_iter_reference_type {
 typedef typename wrapped_reference_type< \
 typename iter_reference_type<Iter>::type \
 >::type type; };
 // a second template parameter is added to
 // zipit in case the reference deduction
 // doesn't work for some custom iterator
 template <typename Iter,
 typename wrapped_reference = typename
 wrapped_iter_reference_type<Iter>::type >
 class zipit : public std::pair<Iter, Iter>
 {
 ...
 public:
 typedef wrapped_reference reference;
 std::pair<reference, reference> operator*()
 const {
 return std::make_pair(
 reference(*this->first),
 reference(*this->second));
 }
 ...
 };
Here we have a simple class to wrap a reference, which allows us to store
it in an std::pair. std::reference_wrapper cannot be used since
it is implicitly convertible from T and any assignment then simply changes
the reference, not the referred to value.
The SFINAE is required to extract the true value reference type. T *
converts to T &, std::vector<T>::iterator converts to either the
proxy object, or if it is a raw pointer to T &. Raw references then get
wrapped and packed in a pair. Proxy objects don’t get wrapped, they just
get put into a pair.
The same wrapper could be used to implement operator-> but since we
have to return a pointer to the std::pair<reference, reference>
we might have to allocate the pair object on the heap and return as a
unique_ptr. And that’s really ugly. I want no part of it.
…and of course plenty more features are needed if the iterator is to model
one of the other iterator types.
MAR 2018 | | 23{cvu}

…and don’t forget to specialise std::iterator_traits (deriving
from std::iterator was deprecated in C++17).
…and since C++11 the iterators must be swappable through std::
swap… so specialise that too.
All in all, implementing iterators can lead to bouts of anxiety and heavy
drinking. So drop zipit from the code – just use Boost.ZipIterator
and accept its semantics, or std::inner_product without a zip
iterator, or std::vector<std::pair<int,int>>, or don’t store the
dice throws.

References
[1] http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/

p0515r0.pdf
[2] https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.

iso.2017
[3] http://libcxx.llvm.org/cxx1z_status.html
[4] https://en.wikipedia.org/wiki/Linear_congruential_generator
[5] The C++11 Programming Language standard – ISO/IEC 14882:

2011(E)
[6] http://www.cplusplus.com/reference/iterator/

Balog Pal <pasa@lib.hu>
This entry starts with a really good teaser. Dice game that is always drawn?
In real life I would ask “did you check your RNG sequence? I’d bet you
either keep generating the same number or the exact same sequence for
the two players.” It’s worth a look just to prove my gut right or wrong.
Looking at the code I see some iterator magic that I save for later. Then
more magic with the new <random> that I’m not up to date with.
However, in the past I read a lot of problems related to RNG. It reminds
me an old story from around the millennium. I had to write an application
that used winsock sockets for communication. When it was ‘ready’ I went
to the forums to ask some peers’ opinion. And the people, instead of
commenting on the code just pointed me to fetch the ‘winsock lame list’
and serve myself. As anyone would guess I found a good amount of
matches… And random looks like a similar can of worms, maybe
someone compiled a similar list? Let’s try a web search for ‘lame list for
rng’. Wow, guess what, first hit is titled ‘The C++ <random> Lame List
– Elbeno’ [1]. It even refers to the ws lame list as the muse. Unfortunately,
it lacks the explanations but even just the points can help a lot.
Matching the code against the list I see hits on 6, 7, 11, 14 and we get half-
dozen good hints on what to avoid as we try to fix. And especially 14 looks
like a killer that may match my first clue. But let’s stash that too, and put
the code in a compiler so we can instrument it with some output at
interesting points. And while at it, try some static analysis.
In Visual Studio 2017 (15.5.5) default W3 compile gives one warning on
total += – conversion double to int. Maybe Wall tells more. Huh,
indeed. 900 warnings! Too bad all but 4 come from the standard headers.
I wonder if the VS team ever tried the dogfood method that others use to
create actually usable stuff. The 3 warnings on our code are int
signed/unsigned mismatch that are not very interesting till we not
press the bounds. But the int turns that comes directly from user input
is just used to size the vector… we’ll try to play with -1 later. <evil grin>
Now let’s see analyze. We’re warned that begin() and end() can be
declared noexcept. Also ‘The reference argument generator for
function play can be marked as const”. That in general we treat by adding
the const, but for this case it is an indication of a problem: we expect the
generator to mutate, if it could be const, we messed up. Must be that
missing ref() from point 14.
Lastly, a warning “Do not dereference a invalid pointer (lifetimes rule 1).
return of += was invalidated by end of scope for allotemp.2”
that honestly beats me, especially as op -= has identical code without
warning.
Clang invoked through the ‘clang power tools’ extension also picked that
ref should be const [see the clang-tidy check google-runtime-references]
and said that in call play() the first arg is not initialized, what is not really

true for our case, if we got there, cin reported okay, so it did complete >>
properly.
Let’s just run it as is to see those draws. No luck here, we hit an assert:
“vector iterator not dereferencable” in operator*, debugger shows
this->first being null. Wow. While at it, I take a peek into the
sequences sitting in player 1: 3 1 3 6, and 2: same. Was I right or was I
right? But I really want to see the output, maybe in release build that assert
will not stand in the way? Indeed, now the program executes, and I get …
‘Player 1 wins’ on all my tries. Let’s hope we didn’t also launch some
nukes on another continent.
Originally, I did not want to bother with the code before class
randomize at all, but must push back the related rant even further, to at
least get UB out of the way. We don’t have too much code before the assert,
just the begin() so let’s look at that: guess what, it takes out vectors by
value, gets the iterator, stores it, then the copies are destroyed for good
leaving us with the invalid iterators. Same story with end(). Let’s add the
missing &s and see what happens. Yey, no more assert, and we’re finally
drawn for all attempts. And if we use std::ref(generator) in the two
generate() calls, then we get various results too.
So, once we have the program working as desired, what’s left besides to
throw it ALL away and create properly? From scratch, as we learnt from
the food industry, that if you already mixed the bad things with the good,
it is hopeless to separate them later, instead we only add what is good. It
does not stop us from reusing what we like from the original source be it
idea or a code fragment.
For start we paste the original main(). It looks okay-ish for the original
aim. We just need a bounds check on turns before passing it on. Call to
play() is fine, just make sure generator is passed by ref. And we will
need the random source. Having it on the stack will trigger #11. We might
ignore that reasoning it is a single case and we are positive to have enough
stack space. Or use some alternative, like making it static or have a
dynamic instance with make_unique. This program does not want
threads, so we can ignore the related points, but commit them to memory.
Now let’s make a proper random source. While at it, let’s also rename it
accordingly, random_source is way better description than
randomize. The list approves mt19937 as a good start, I have to look
up how to use it. Along with other hints that we’ll need random_device
and uniform_int_distribution. The latter on cppreference.com
has the code for our case. All together I came up with this:
 class random_source
 {
 static unsigned int get_seed()
 {
 try {
 std::random_device rd;
 return rd();
 }
 catch (std::exception const&)
 {
 return static_cast<unsigned int> (time(
 nullptr));
 }
 }
 std::mt19937 mt{get_seed()};
 std::uniform_int_distribution<> dis{1, 6};
 public:
 int operator()() {
 return static_cast<int>(dis(mt)); }
 };
The description of random_device is pretty vague, most of it is left to
the implementation, but it is intended to do the best to summon some
entropy. If it can’t and we get the exception the OP should decide what to
do, I just dumped in an alternative source that is less lame as the 2nd violin.
Time returns unspecified type, but it is numeric and for unsigned anything
goes. The other cast in the op() is benign as the number is in the known
range. I was thinking to change the return type instead to unsigned, but
24 | | MAR 2018{cvu}

http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/
p0515r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/
p0515r0.pdf
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.
iso.2017
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.
iso.2017
http://libcxx.llvm.org/cxx1z_status.html
https://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.cplusplus.com/reference/iterator/

for the use plain int is the natural thing. Or is it? Maybe byte is more
fitting. That can be rearranged later. Moving on to play().
The aim was to do play N rounds, in each make both player throw dice,
decide the round outcome and accumulate the result. One way to do that is
 int turn(random_source &generator)
 // returns score for player 1: -1 0 or +1
 {
 // return sign(generator() - generator());
 // too bad no stock sign function....
 auto const d1 = generator();
 auto const d2 = generator();
 return d1 < d2 ? -1 : d1 > d2;
 }
 int game(int turns, random_source &generator)
 // the difference between player 1 and 2's wins
 {
 int total = 0;
 for (int i = 0; i < turns; ++i)
 total += turn(generator);
 return total;
 }
And in the original play() function we just
 auto const total = game(turns, generator);
and print the result. And we are done. For good. No kidding. Fun thing that
it now even works with the original main without bound check and prints
draw for -1 instead of crash or assert.
Someone may object that we were supposed to criticize or fix zipit…
Were we actually? It breaks one of my fundamental rule for reviews (and
dev process): application programmers are forbidden to write blacklisted
stuff, that starts with known timewasters like ‘logger class’, ‘string class’
‘refcounting pointer’, and also contains ‘collection’ and ‘iterator’. For the
collection I can be convinced in theory if someone has a problem that
requires a really new type of collection not covered by either standard or
the many libraries we work with. And for iterator if one opens with “I have
this code full of algorithm use, I needed an iterator for that special
collection to drive them.” Not the case here. Even for that case I’d ask
whether it is really needed right now or we may wait a little till ranges
finally arrive.
If the more advanced version of the program have actual need to keep
record of turns, it can be simply done in a pair<int, int> per round,
collection of those and running whatever processing with tools that work
(WELL!) out of the box.
And those who really need to implement their own, can start with web
search for ‘how to write c++ iterator’, the first hit [2] is more than
promising.
An extra stab at header separation: this simple code does not need a header
at all, now, or probably ever. But if some parts are extracted, the header
shall be self-containing, have all needed #include lines, not rely on the
client.

References
[1] www.elbeno.com/blog/?p=1318
[2] https://stackoverflow.com/questions/3582608/how-to-correctly-

implement-custom-iterators-and-const-iterators

Commentary
There’s not much left to say so my commentary is brief. The presenting
problem contained undefined behaviour (UB), which in this case meant
different people found the code worked differently depending on the
compiler and flags they used. On of the nasty problems with UB is this
unpredictability: code containing UB may work perfectly for years and
then stop working when something changes – sometimes something very
small is enough to trigger it.
Fortunately the tools are improving at detecting UB statically or
dynamically – it is well worth investigating what is available for your
target platform(s).

In this case, the UB came from the poorly written iterator class. As several
entries pointed out, it’s generally better to try and find an available library
for such components than to write it yourself, at least initially. However,
if you do fail to find a suitable pre-written class, it is worth searching for
help online. Last millennium there was a great book written by Matt
Austern (Generic Programming and the STL: Using and Extending the
C++ Standard Template Library) – but I’m not aware of a similar
publication for modern C++.
It is important for C++ programmers to remember that the standard library
is generally value-based and so objects may be copied which is what
happens here to the arguments given to the generate() call

The Winner of CC 109
The four critiques remaining in the C++ world all found and fixed the two
main issues. However, there are other problems with random number
generation: both the distribution and the seed, as James noted and Pal and
Jason demonstrated.
The solution seemed slightly over-engineered as there didn’t really seem
to be any good reason to create two collections of the scores and then zip
them together. James and Pal both pointed to simplifications that remove
the need to use zipit at all. I think this is a more helpful direction for the
writer of the code than trying to fix the problems with their
implementation, but Jason did a pretty thorough job of listing a number of
the things that would need considering if a ‘proper’ iterator is actually
required.
Russel’s approach was very different; seeing what changes and what stays
the same when one re-implements similar logic in a different language is
very interesting. As he says, the right language to use for a particular
problem depends heavily on what language(s) you are ‘at home’ in.
There were several good critiques this time – thank you to all those who
spent time putting together their entry! Given that his suggestion was used
in this critique Jason has requested, in the interests of fairness, that he
would like not to be considered for the prize. Of the others, I have awarded
the prize for this issue to Balog Pal (I particularly liked his phrasing about
mixing good and bad code).

Code Critique 110
(Submissions to scc@accu.org by Apr 1st)

I’ve written a simple program to print the ten most common words in a
text file supplied as the first argument to the program. I’ve tried to make
it pretty fast by avoiding copying of strings. Please can you review the
code for any problems or improvements.

What would you comment on and why?
Listing 3 contains the code. (Note: if you want to try compiling this on a
pre-C++17 compiler you can replace string_view with string and
most of the issues with the code remain unchanged.)

#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <string_view>
#include <unordered_map>
#include <vector>

int main(int argc, char **argv)
{
 std::unordered_map<std::string_view, size_t>
 words;
 std::ifstream ifs{argv[1]};
 std::string ss{
 std::istreambuf_iterator<char>(ifs),
 std::istreambuf_iterator<char>()};

Listing 3
MAR 2018 | | 25{cvu}

www.elbeno.com/blog/?p=1318
https://stackoverflow.com/questions/3582608/how-to-correctly-implement-custom-iterators-and-const-iterators
https://stackoverflow.com/questions/3582608/how-to-correctly-implement-custom-iterators-and-const-iterators

ACCU London
Frances Buontempo reports from the London chapter.

n January 10th 2018 we started the new year with a joint meetup with
C++ London [1], organised by Phil Nash. There were two talks,
jointly titled ‘Origami and state machines’.

 Vittorio Romeo gave an ‘Introduction to C++ origami’.
Fold expressions, introduced in C++17, allow us to easily generate
code that combines variadic template arguments together or
performs an action on them.
After a brief overview of the feature’s syntax, this short talk showed
some cool and useful utilities that can be implemented using fold
expressions.
Some familiarity with variadic templateswas required – knowledge
of C++17 features is not required.

 Andrew Gresyk then talked on ‘Practical HFSM’.
He gave an update on the progress made on the Hierarchical Finite
State Machine library [2] since his April 2017 talk, and a live demo
showcasing its usage in production-like code. These were hosted at
skillsmatter and the recording is available [3].

On 12th February we invited Jason Gorman, Managing Director of
Codemanship [4] to talk about .Net Code Craft. We fed him a couple of
pints first and he asked not to be recorded, so if you weren’t there you’ve
missed it!
He talked about the five factors that make code more difficult and
expensive to change, and explored how we can write code that delivers
value today, and leaves the door open to delivering more value tomorrow.
We saw a hands-on demo, refactoring some unpleasant code to make it
easier to work with.

Both sessions were really well attended. We’re looking forward to the rest
of the talks this year. If you’d like to speak, put a message on our meetup
page [5] or get in touch with Ralph (ralph@dibase.co.uk), Fran
(frances.buontempo@gmail.com) or Steve (steve@arventech.com).
It would be wonderful if someone from each of the local groups sent
CVu@accu.org a short write up of when their talks/workshops etc.
happened and what they were about. Don’t wait for the organisers to do
this – anyone can write it up!
Don’t forget to check the local groups page on our website [6] to see if
there’s a group near you. If there isn’t why not contact Nigel at
nigellester99@gmail.com to find how to start one?

References
[1] https://www.meetup.com/CppLondon
[2] https://github.com/andrew-gresyk/HFSM
[3] https://skillsmatter.com/explore?q=C%2B%2B+London+January
[4] http://www.codemanship.com
[5] https://www.meetup.com/ACCULondon
[6] https://accu.org/index.php/accu_branches

O

FRANCES BUONTEMPO
Frances has been a programmer since the 90s, and
learnt to program by reading the manual for her Dad's
BBC model B machine. She can be contacted at
frances.buontempo@gmail.com.

Code Critique Competition (continued)

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website

(http://accu.org/index.php/journal). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

 auto *start = ss.data();
 bool inword{};
 for (auto &ch : ss)
 {
 bool letter = ('a' <= ch && ch <= 'z' ||
 'A' <= ch && ch <= 'Z');
 if (inword != letter)
 {
 if (inword)
 {
 std::string_view word(
 start, &ch - start);
 ++words[word];
 }
 else
 {
 start = &ch;
 }
 inword = !inword;
 }
 }

Lis
tin

g 3
 (c

on
t’d

)

 std::map<size_t, std::string_view> m;
 for (auto &entry : words)
 {
 auto it = m.lower_bound(entry.second);
 if (it != m.begin() || m.empty())
 {
 m.insert(it,
 {entry.second, entry.first});
 if (m.size() > 10)
 {
 m.erase(m.begin());
 }
 }
 }
 for (auto &entry : m)
 {
 std::cout << entry.first << ": "
 << entry.second << '\n';
 }
}

Listing 3 (cont’d)
26 | | MAR 2018{cvu}

https://www.meetup.com/CppLondon
https://github.com/andrew-gresyk/HFSM
https://skillsmatter.com/explore?q=C%2B%2B+London+January
http://www.codemanship.com
https://www.meetup.com/ACCULondon
https://accu.org/index.php/accu_branches

Report on Challenge 2
Francis Glassborow presents the answers to his

last challenge and gives us a new one.

here was a gratifyingly varied set of solutions offered. Some were
ingenious and surprised me. Here are the ones I received together with
my comments. At the end you will find my decision as to the ‘winner’
along with my next challenge.

From Alex Kumaila
// Casting to long to avoid assigning a sum that is
// larger than the max signed integer, to a signed
// integer.
long sumInts(const int x, const int y){
 return (long)x + (long)y;
}

void add(const int a, const int b, long *const c){
 if(a<0 && b<0) { // Both negative,
 // therefore decrement.
 do {
 (*c)--;
 } while(*c > sumInts(a,b));
 } else if((a<0 && b>0)||(a>0 && b<0)) {
// Different signs, therefore decrement to the
// negative value, and then increment to the
// positive.
 do {
 (*c)--;
 } while(*c > std::min(a,b));
// min(a,b) returns the negative value,
// given the above predicate.
 do {
 (*c)++;
 } while(*c < sumInts(a,b));
 } else {
// Both positive, including both zero,
// therefore increment.
 while(*c < sumInts(a,b)){
 (*c)++;
 };
 }
}

int main() {
 static long c;
//Static long initialises to zero.
//Test cases assuming a 4 byte signed integer.
std::cout
 << "Integer size on repl.it (should be 4): "
 << sizeof(int) << "\n";
//endl doesn't appear to work on repl.it
 add(0,0,&c);
std::cout << "Both zero: " << c << "\n";
 add(1,2,&c);
std::cout << "Sum of two small (+ve) numbers: "
<< c << "\n";
 add(-2147483647,-2147483647,&c);
std::cout << "Both lower (-ve) bound: " << c
 << "\n";
 add(2147483647,2147483647,&c);
std::cout << "Both upper (+ve) bound: " << c

 << "\n";
 add(-2147483647,2147483647,&c);
std::cout
 << "Different signs at lower/upper bound: "
 << c << "\n";
 add(2147483647,-2147483647,&c);
std::cout
 << "Different signs at upper/lower bound: "
 << c << "\n";
}
FG: The odd reference to repl.it is because the code is loaded there so that
you can test it. The link is https://repl.it/repls/WideeyedRepulsiveHoatzin. I
leave it to the reader to discover what a Hoatzin is (there really is such a
beast).

FG: The code in main tests several corner cases as well as one straight
forward addition.

FG: As you can see, this solution is a pure solution that avoids any form of
assignment though that is rather severe (and was not intended). It also
results in rather long run times for large absolute values of the operands.

Note that the basic solution will work in C if the output lines are rewritten to
use printf.

FG: However, the code can have undefined behaviour on any platform
where int and long have the same range (allowed by the standard)

From Silas Brown
Hi Francis, please find a response below.
Thanks.
Silas
FG: A great pleasure to see a contribution from you. (For readers who do
not know, Silas joined ACCU whilst he was still at school and served as our
disabilities officer for many years.)

One obvious way to do assignment without = is to use constructors in
C++:
 #include <iostream>
 using namespace std;
 int main() {
 int a(1),b(2);
 int c(a+b);
 cout << c << endl;
 }
Apart from that, C++ before C++17 also supports or_eq as a ‘trigraph’
[FG: No, that is an alternative token, not a trigraph] for |=, which I’m not
sure should qualify for the challenge, because it’s technically the same as
using |=, it’s just representing it differently in the source file:
 static int c;
 c or_eq (a+b);
FG: Using the alternative tokens is fine and is one of the solutions I expected
someone would come up with. These are still valid in C++ 17. What has been
removed is the trigraphs. Those were a ghastly fix C invented to deal with
some keyboards that lacked some keys for characters C uses. I heard one

T

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.
MAR 2018 | | 27{cvu}

person opine that it would have been cheaper to give them all new
keyboards than the cost of supporting those rarely used alternatives.

This relies on static being initialised to 0 by default. Without the
static, it might work anyway but this is not guaranteed (and it also
might result in reformatting your hard drive). The above will not work if
the code is called more than once in the same program, unless you first
clear c by calling memset() or similar.
FG: Actually you can set a variable to zero by using xor_eq (a xor_eq
a will set a to zero). The problem is that you need to initialise variables before
use or suffer the potential for undefined behaviour. Static and global
variables get default initialised to zero.

FG: Note that what had to be avoided was the = symbol.

In C, you could use simple counting, but it’s inefficient and it destroys the
values of a and b:
 #include <stdio.h>
 int main() {
 static int a, b, c;
 a++; b++; b++; /* so a is 1 and b is 2 */

 /* addition starts here;
 we assume a and b are both > 0 */
 while (a--) c++;
 while (b--) c++;

 printf("%d\n",c);
 }
(The same considerations as above apply re the use of static.)
But I very much prefer a method that does not deconstruct the addition
into increments and decrements. You didn’t say if we can use any
standard libraries for the addition code; there are two approaches there
that spring to mind. One is memset() which I’ve already alluded to: if
we are dealing with small numbers that fit into a char, then it’s trivial:
 #include <stdio.h>
 #include <string.h>
 int main() {
 char a, b, c;
 memset(&a, 1, 1);
 memset(&b, 2, 1);
 memset(&c,a+b,1);
 printf("%d\n",c);
 }
But you never said the integers won’t overflow the bounds of char. We
could extend the above to larger numbers if we know how the platform
represents integers, e.g. on a 32-bit little-endian system:
 #include <stdio.h>
 #include <string.h>
 int main() {
 int a,b,c;
 /* ... set a and b ... */
 memset(&c,(a+b)&0xFF,1);
 memset(((char*)(&c))+1,((a+b)>>8)&0xFF,1);
 memset(((char*)(&c))+2,((a+b)>>16)&0xFF,1);
 memset(((char*)(&c))+3,((a+b)>>24)&0xFF,1);
 printf("%d\n",c);
 }
But I don’t like introducing this dependency on the underlying hardware,
nor repeating the addition so much (although an optimising compiler
would likely re-use the intermediate result).
The other ‘standard library’ approach that springs to mind is using
sprintf and sscanf:
 #include <stdio.h>
 int main() {
 int a,b,c;
 sscanf("1","%d",&a);
 sscanf("2","%d",&b);

 char buf[22]; /* sufficient for 64-bit */
 sprintf(buf,"%d",a+b);
 sscanf(buf,"%d",&c);

 printf("%d\n",c);
 }
But that has the disadvantage of converting to and from a string at runtime
(not quite as bad as the counting approach, but not as fast as the C++
solutions).
Finally I have a ‘cheat’ answer, which is to write the C file in the UTF-7
character set, which (similar to the or_eq trigraph) lets you write =
without using the '=' byte:
 +ACM include +ADw stdio.h +AD4
 int main() +AHs
 int a +AD0 1 +ADs
 int b +AD0 2 +ADs
 int c +ADs
 c +AD0 a +- b +ADs
 printf (+ACIAJQ-d+AFw-n+ACI, c) +Ads
 +AH0
This can be compiled with GCC using the -finput-charset=UTF-7
option [FG: Oh! Dear! You can write it but not compile it without using the
= key] but only if your GCC has been compiled with the iconv library
(which is not the case as standard on every GNU/Linux distribution), and
it’s certainly not Standard C, so it ought to be disqualified.
FG: I had wondered about whether something along the lines of your last
solution was possible. Thanks for demonstrating that it is, at least using
GCC.

Incidentally, this kind of challenge now has a real application in computer
museums. For example, the Computing History Museum at Cambridge
has a BBC Micro with a broken ‘F’ key. Well, you could exploit a bug in
its operating system to program all 10 of its extra function keys to ‘F’ in
just 12 keystrokes (type !2832=17937 and press Return), but other
machines from the era didn’t have function keys, and if you want to do a
live programming demonstration on a restored mainframe with a terminal
from the period, it’s entirely possible you’ll have to work around certain
keys not working on its keyboard.
FG: Thank you Silas for a comprehensive set of solutions as well as a reason
that one might actually need to do something like this (apart from doing exam
questions from the dawn of computing)

From Hubert Mathews
Assigning the sum of two integer variables to a third variable without
using = is easy in languages that don’t use = for assignment. For instance
in R:
 a <- 10
 b <- 25
 c <- a+b
 sprintf("%d + %d is %d", a, b, c)
or even in COBOL:
 IDENTIFICATION DIVISION.
 PROGRAM-ID. HELLO-WORLD.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 A PIC 99.
 77 B PIC 99.
 77 C PIC 99.
 PROCEDURE DIVISION.
 SET A TO 10.
 SET B TO 25.
 ADD A B GIVING C.
 DISPLAY A " + " B " IS " C.
 STOP RUN.
C++ has ways of initialising variables without using =, specifically using
direct initialisation (either the C++98 version with parentheses or the
C++11 uniform initialisation syntax with braces):
28 | | MAR 2018{cvu}

 #include <iostream>
 int main()
 {
 int a(10);
 int b(25);
 int c(a+b);
 std::cout << a << " + " << b << " is "
 << c << std::endl;
 }
Since these examples use facilities built into the language it hardly seems
worth writing tests for them.
Things get more interesting for languages like C that have no obvious way
of initialising variables without =:
 #include <assert.h>
 #include <string.h>
 #define SET_VALUE(x, value) \
 memset(&x, 0, sizeof((x))); \
 while ((x) < (value)) (x)++; \
 while ((x) > (value)) (x)--;
 int main()
 {
 int a, b, c;
 SET_VALUE(a, -4);
 SET_VALUE(b, 7);
 SET_VALUE(c, a+b);
 printf("%d + %d is %d\n", a, b, c);
 assert(!(a < -4) && !(a > -4));
 assert(!(b < 7) && !(b > 7));
 assert(!(c < 3) && !(c > 3));
 assert(!(a+b < c) && !(a+b > c));
 return 0;
 }
This sort of code definitely requires tests as it is easy to get wrong. Tests
without using = are even more fun and the above code uses the same
technique as used by C++’s std::map for determining equality (not less
than and not greater than). Using a macro means that there’s no need to
worry about accessibility of variables as there would be if using a
function.
Which leads to the contortions that are necessary when trying the same in
Java:
 public class Add {
 int a, b, c;
 public void calculate() {
 while (a < 6) a++;
 while (a > 6) a--;
 while (b < 7) b++;
 while (b > 7) b--;
 while (c < a+b) c++;
 while (c > a+b) c--;
 System.out.println(String.format(
 "%d + %d is %d", a, b, c));
 assert !(a < 6) && !(a > 6);
 assert !(b < 7) && !(b > 7);
 assert !(c < a+b) && !(c > a+b);
 }
 public static void main(String... args) {
 new Add().calculate();
 }
 }
The variables have to be fields in order that they will be initialised to zero.
There is no obvious way of encapsulating the initialisation code into a
function as ints are primitives and are passed and returned by value in
Java, thus requiring an assignment and so an equals sign. Using boxed
java.lang.Integer instead doesn’t help as that would still require an
assignment statement.
FG: Thanks for the language tour. I have to confess that I do not understand
the Java solution.

From Pete Disdale
Hello Francis,
I will be very interested to see the ‘several simple solutions’ to this
challenge – I have thought a fair bit about this and can come up with no
more than 3 using only C! And of those, only 1 is a ‘pure’ solution
inasmuch as the other 2 likely depend on = somewhere inside the library
code. I also excluded asm { } code as it’s not in the spirit of the
challenge (and it’s not C/C++ either). Perhaps there are more ‘simple’
solutions in C++?
Please see the attached test.c: add1() takes advantage of sscanf by
storing the result in an int*, add2() is the ‘pure’ C solution and works
because there is no mandate to initialise a variable before use (bad, of
course!) and add3() requires a support function, foo().
Out of curiosity, I compiled this with and without optimisation, and whilst
I was pleasantly reassured that the expression (a + b) was cached in the
optimised code, I was really impressed that the optimiser had completely
optimised away the call to memcpy() in foo()! The plain version
(expected) is:
 _foo: pushl %ebp
 movl %esp, %ebp
 subl $24, %esp
 movl $4, 8(%esp)
 leal 8(%ebp), %eax
 movl %eax, 4(%esp)
 movl 12(%ebp), %eax
 movl %eax, (%esp)
 call _memcpy
 leave
 ret
whilst the optimised version is:
 _foo: pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl 12(%ebp), %eax
 movl %edx, (%eax)
 popl %ebp
 ret
(This with a fairly ancient version of gcc too.)
I look forward to reading all the other contributions in the next CVu.
ps. did anybody manage to find a single solution using Java?
 test.c
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int add1(int, int);
 int add2(int, int);
 int add3(int, int);

 int main (int argc, char *argv[])
 {
 /* int a, b; unused */
 if (argc > 2)
 {
 printf ("add1(%s, %s) gives %d\n", argv[1],
 argv[2], add1 (atoi (argv[1]),
 atoi (argv[2])));
 printf ("add2(%s, %s) gives %d\n", argv[1],
 argv[2], add2 (atoi (argv[1]),
 atoi (argv[2])));
 printf ("add3(%s, %s) gives %d\n", argv[1],
 argv[2], add3 (atoi (argv[1]),
 atoi (argv[2])));
 }
 return 0;
 }
MAR 2018 | | 29{cvu}

 int add1 (int a, int b)
 { /* use hex for fixed length string,
 2 chars per byte, no ±, plus 1 for '\0' */
 char s[sizeof(int)*2 + 1];
 int c;

 snprintf (s, sizeof(s), "%x", a + b);
 sscanf (s, "%x", &c);

 return c;
 }
 int add2 (int a, int b)
 {
 int c;

 if (c > a + b)
 while (--c > a + b);
 else if (c < a + b)
 while (++c < a + b);
 return c;
 }
 void foo (int x, int *y)
 {
 // memmove ((unsigned char *) y,
 //(unsigned char *) &x, sizeof(int));
 memcpy (y, &x, sizeof(int));
 }
 int add3 (int a, int b)
 {
 int c;
 foo (a + b, &c);
 return c;
 }
FG: It is amazing what modern optimisers are able to do. With a bit of AI
perhaps we can get them to rewrite our entire code to run more efficiently
even if the resulting source code is completely incomprehensible to humans.
Just joking (or am I?)

From James Holland
Francis uses the word ‘assign’ and so I assume initialisation doesn’t
count. That’s a pity because statements something like int c{a + b}
would fit the bill. Furthermore, when Francis says “without using the =
symbol”, I assume I can’t use |= and its like. This is also a pity because I
could have used two statements such as c ^= c; c |= a + b; to
assign the sum of a and b to c. This gives me an idea, however. I could
use the C++ ‘alternative tokens’.
 c xor_eq c;
 c or_eq a + b;
 c xor_eq ~c;
 c and_eq a + b;
There are other ways of assigning the sum to the variable without using
the = symbol, some more useful than others. We can ask the computer
user for help.
 while (a + b - c)
 {
 std::cout
 << "Please type the number followed by Enter"
 << a + b << ' ';
 std::cin >> c;
 }
Possibly not the most efficient method but at least the result can be
checked. Instead of using a person, let’s use the file system.
 std::ofstream out_file("file.dat");
 out_file << a + b;
 out_file.close();
 std::ifstream in_file("file.dat");
 in_file >> c;

This is an improvement over the previous attempt, but we need not use the
file system. We can use a string stream.
 std::stringstream ss;
 ss << a + b;
 ss >> c;
Another way is to make use of sscanf() as shown below.
 std::string s(std::to_string(a + b));
 sscanf(s.c_str(), "%d", &c);
Perhaps we could keep incrementing the variable until it becomes the
required value. This could take quite a while for a variable with a large
number of bits!
 while (a + b - c) ++c;
Lastly, many of the standard library algorithms can be persuaded to do the
job as well.
 int d{a + b};
 std::swap(c, d);

 std::fill(&c, &c + 1, a + b);

 std::fill_n(&c, 1, a + b);

 int d{a + b};
 std::copy(&d, &d + 1, &c);

 std::generate(&c, &c + 1, [a, b](){
 return a + b;});

 std::iota(&c, &c + 1, a + b);
FG: I am not sure that any of these are more in the spirit of assignment
without using an equals sign than just the simple int c{a+b};.

That said it is remarkable how many standard library functions can be
subverted into storing the result of a+b in c.

The Winner is…
Well I am stuck because each of the entrants have strong positives.
 Alex took time to consider the corner cases and write a test to ensure

they worked and then placed the test where anyone can see that it
works.

 Silas walked us through several solutions and then added a
motivation for this kind of problem.

 Hubert gave us a language tour and even provided a solution for
Java.

 Pete demonstrated that optimisers can produce something
respectable even when our code is pretty crude.

 James offered us a smorgasbord of ways to achieve our objective
and actually came up with an effective solution without using
initialisation.

So which do you like best? I am going to cheat (like James, asking the user
to provide the answer) and ask you, the reader to email me with your
choice. I will publish the voting figures in my next Challenge column.

Challenge 3
Here is an old problem that might just be new to some of you. Write a
program that outputs its own source code. Please attempt this in C++.
There are two categories of solution:

1. A solution that will run on your computer
2. A solution that will run on my computer.

In each case you are allowed to use standard library functions but
everything but the output directed to a file must compile to produce the
same executable. The first should be easy; the second may prove more
challenging.
30 | | MAR 2018{cvu}

MAR 2018 | | 31{cvu}

Ruby Cookbook 2e
By Lucas Carlson & Leonard
Richardson, published by
O’Reilly, ISBN 978-
1449373719.
Reviewed by Ian Bruntlett
Before attempting to read
this book, I’d recommend
reading and understanding
The Ruby Programming Language first.
This is the first O’Reilly Cookbook I have read
from cover to cover. It has 25 chapters on a
variety of subjects. It has flaws – ranging from
daft (e.g. ignoring Array#to_h and writing it
from scratch) to wrong (e.g. its description of
the <=> operator in 5.5 ‘Sorting an array’). It is
big – just over 970 pages long. It looks like this
edition is orphaned – the online errata is sparse
and O’Reilly stated in an e-mail that the sample
source code would not be available for
download – which is a pity – O’Reilly’s former
reputation for maintaining errata and making
examples available for download was a
significant factor for me when I bought this
book.
Chapter 1: Ruby 2.1. Discusses the changes
made to Ruby between version 1.8 and 2.1.
The remaining chapters can be grouped by
overall topic:
 Built-in data structures (6 chapters)
 Ruby idioms & philosophy (4 chapters)
 Popular ways of storing data (3 chapters)
 Network applications (4 chapters)
 Programming support (3 chapters)
 Miscellany (4 chapters)

Chapter 2 (19 Recipes): Strings. Deals with
the obvious and introduces the use of irb
(interactive Ruby) which is used heavily
throughout the book. It covers many things that
will augment the knowledge of someone with a
basic grasp of Ruby strings.
Chapter 3 (17 Recipes): Numbers. Covers
many things. From the obvious (converting
strings to integers, comparing floating-point
numbers) to more specialist stuff (matrices,
logarithms).

Chapter 4 (14 Recipes): Date and Time.
There are three classes in Ruby that handle time
– the Time class (an interface to the C time
libraries) and the Ruby classes (Date and
DateTime). It handles the measurement of
time, formatted output, Daylight Saving Time,
running a code block periodically, waiting for
time to elapse and adding a time-out to a long-
running operation.
Chapter 5 (15 Recipes): Arrays. Starts off
with the obvious (iterating over an array,
building a hash from an array – note, use
Ruby’s Array#to_h). In 5.5 ‘Sorting an
array’ there is a seriously wrong explanation of
the <=> operator’s behaviour.
Chapter 6 (15 Recipes): Hashes. This is an
interesting chapter both for people who have
encountered hashes / dictionaries / associative
arrays in other languages and those who are
seeing them for the first time.
Chapter 7 (21 Recipes): Files and
Directories. Covers day-to-day handling of
them at a fairly high-level and O.S. independent
perspective. Dig into the topic deep enough and
you will uncover the underlying C / UNIX
foundations.
Chapter 8 (11 Recipes): Code blocks and
Iterations. This is fundamental to the idiomatic
use of Ruby and this chapter is full of useful,
pertinent examples. I’d read The Ruby
Programming Language first, though.
Chapter 9 (19 Recipes): Objects and Classes.
Good examples but best read by an intermediate
Ruby programmer rather than a novice.
Chapter 10 (10 Recipes): Modules and
Namespaces. Another interesting chapter but
let down by a poor online errata. Some of its
examples are useful – others are clever but
fraught with pitfalls.
Chapter 11 (16 Recipes): Reflection and
Metaprogramming. This is an interesting and
challenging chapter, ranging from finding an
object’s class through to quite involved meta-
programming (Aspect-Oriented Programming
and enforcing software contracts).
Chapter 12 (15 Recipes): XML and HTML.
The preface of this book states that this book

has ‘copy-and-paste code snippets’. This
chapter explodes that myth. Consider 12.1
‘Checking that XML is well-formed’. It
casually uses the method
assert_nothing_thrown without even
telling the reader that this method belongs to a
testing framework or where to find out more
about it (it is discussed in Chapter 19 ‘Testing,
Debugging, Optimizing and Documenting’).
Chapter 13 (14 Recipes): Graphics and
Other File Formats. Has recipes for graphics,
graphs, sparklines, text (encryption, csv file
handling), compressed and compressing files,
YAML, PDFs and MIDI files.
Chapter 14 (17 Recipes): Databases and
Persistence. Covers RDBMSs – from database-
specific bindings (MySQL, Postgres) to generic
RDBMS support (DBI – an idea borrowed from
Perl) and an accessing an RDBMS without
using SQL (ActiveRecord). A plethora of other
approaches (YAML, Marshal, Madeleine,
SimpleSearch, Ferret (inspired by Java’s
Lucene library), Berkeley DB. The chapter
finishes with a section on avoiding SQL
injection attacks.
Chapter 15 (20 Recipes): Internet Services. I
am no expert in networking but this chapter
covers a lot of ground and supports just about
everything I’ve ever wanted to do on a network
and the Internet.
Chapter 16 (23 Recipes): Web development:
Ruby on Rails. I have dabbled with web
development, previously, studying Learning
PHP, MySQL, JavaScript, CSS & HTML5 (3rd
Edition). After that, I looked around for
something else to study. Rails was the killer app
that attracted me to Ruby. This chapter covers

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

32 | | MAR 2018

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org
This will be a short View, as i t is the last before
the Annual General Meeting, and I don’t have
much to report.

2018 Annual General Meeting
This will be your last reminder – ACCU’s 2018
Annual General Meeting (AGM) will be held
on Saturday, April 14th, 2018, at the Marriott
City Centre in Bristol, UK, in conjunction with
the 2018 ACCU conference. The table at the top
of the page shows the important, remaining
dates associated with the AGM (the Proposal
and Nomination deadline has already passed).
Please take the time to vote when your
notification arrives via email.

Code of conduct
The website page previously titled ‘Diversity
Statement’ has been renamed ‘ACCU Values’,
and a generalized Code of Conduct has been
added. This Code of Conduct was derived from
the conference Code of Conduct; it is
considerably shorter, since it concentrates more
on our expectations of courteous conduct and
less on the punitive and administrative aspects
of enforcement.
All people at any event held under the auspices
of ACCU are expected to abide by the Code of
Conduct. The more expansive Conference Code

of Conduct will be used during the
ACCU Conference.
For more information, refer to the Code
of Conduct [1] and the Conference Code
of Conduct [2]. If you have any
questions, comments, or criticisms,
please contact me.

Web site redesign
I have received some feedback on my previous
requests for comments on web site platforms.
My thanks to Hubert Matthews, Russel Winder,
and Martin Moene for their responses. There is
certainly a lot to be considered prior to starting
a project of this scope. I hope to have further
discussions on the topic at the conference in
April.

Web site status
After working on the backlog for several
months, I now believe that the web site is up to
date with respect to CVu and Overload articles
and book reviews. PDF and HTML versions of
all articles published since 1 July 2017 are
posted, and the by-author and by-article
bibliographies are caught up. In addition, I have
made changes to several of the informational
pages to bring them up to date.
We are still searching for a full time web editor.
It has been taking me approximately three to
four hours a month to get the magazines posted
and the bibliographies created. If you are

interested in volunteering for the position,
please let me know.
I know I have said this several times over the
past 8 months, but it needs repeating – I am very
grateful for all of the work Martin Moene did
creating multiple sets of instructions prior to his
retirement from the role of web editor last year,
and for all of the help he has provided me while
I’ve stumbled around trying to keep up with the
work since. My failures as interim web editor
are my own, and my successes are directly
related to Martin’s legacy and ongoing help.

ACCU 2018
As mentioned above, the next ACCU
conference will be held in Bristol, U.K., from
the 11th through the 14th of April, 2018, with
pre-conference workshops on April 10th.
Barring some unforeseen circumstance, I will
be there. Stop by the ACCU table between
sessions and say hello.

References
[1] General Code of Conduct: https://accu.org/

index.php/aboutus/diversity_statement
[2] Conference Code of Conduct:

https://conference.accu.org/
coc_code_of_conduct.html

Important dates for ACCU AGM
3 March 2018 Draft agenda 42 days prior to AGM

17 March 2018 Agenda freeze (28 days prior to AGM)

24 March 2018 Voting opens (21 days prior to AGM)

Bookcase (continued)
a lot of Rails including basics, web application
patterns and use of tools. For me, it provides a
taste of things to come. I’ll return to this chapter
after reading a dedicated Rails tutorial.
Chapter 17 (12 Recipes): Sinatra. Sinatra is a
slim web framework. I don’t know enough
about this sort of thing but this is another
chapter that I will return to.
Chapter 18 (16 Recipes): Web Services and
Distributed Programming. The previous
chapters dealt with network programming
(where you write software to enable people to
do stuff on a network / the Internet). This
chapter deals with distributed programming –
where you write software to enable different
computers to cooperate on a network / the
Internet.
Chapter 19 (14 Recipes): Testing,
Debugging, Optimizing and Documenting.
This is an introduction to many useful things. I
think there is the occasional typing error but I
am not experienced enough in Ruby to decide
that.
Chapter 20 (8 Recipes): Packaging and
Distributing Software. This chapter is quite an

eye-opener – Ruby has a lot of infrastructure for
packaging and distributing software – typically
in the form of gems. This is a particularly useful
chapter.
Chapter 21 (8 Recipes): Automating tasks
with Rake. I think Rake is a contraction of
‘Ruby Make’ and it performs so many repetitive
tasks for Ruby programmers that it could be
called the Ruby Butler. Like make, Rake is
flexible and can be used for things beyond Ruby
software development.
Chapter 22 (11 Recipes): Multitasking and
Multithreading. Deals with threads, processes,
Windows services, synchronising object access,
and remote execution of code (via the net-ssh
gem) and discusses various ‘gotchas’ that can
trap the unwary. In places this chapter has been
updated for Ruby 2.1
Chapter 23 (16 Recipes): User Interface.
Covers the terminal / console / text UI,
graphical UI, (with Tk, wxRuby, Ruby/GTK,
AppleScript) and command line arguments
using optparse. Other chapters cover Internet
user interfaces. I didn’t try all of the examples.
This chapter can be a bit bleeding edge. I

couldn’t get the curses examples to run because
support for it has been moved out of the
Standard Library and I couldn’t persuade the
relevant gem to install.
Chapter 24 (5 Recipes): Extending Ruby
with other languages. This has three recipes
about accessing C functions in shared object
files but also covers writing C code inline in a
Ruby script. It also covers accessing Java class
libraries from within a Ruby script.
Chapter 25 (11 Recipes): System
Administration. This covers system
administration tasks being performed by Ruby
in Windows and UNIX-like systems.
Personally, I believe that these tasks might be
better solved by writing a script in bash or
PowerShell – but, as a piece of software
becomes more and more complex, Ruby
becomes more appealing.
Conclusion. Software changes. Things break.
This book won’t protect you from that but the
breadth of Ruby Programming knowledge here
has proven to be useful and for that I am
grateful.
VERDICT: Recommended.

https://accu.org/index.php/aboutus/diversity_statement
https://accu.org/index.php/aboutus/diversity_statement
https://conference.accu.org/coc_code_of_conduct.html

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	On Being Lazy
	Testing Times (Part 2)
	Quaker’s Dozen
	The Expressive C++ Coding Challenge in D
	Getting Personal
	Code Critique Competition 110
	ACCU London
	Report on Challenge 2
	Bookcase
	View from the Chair

