

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

JUL 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

It’s written, that’s why
omputer programs take many forms, from the
very small, probably single person hobby
projects, to the mind-bogglingly large

enterprise multi-tiered distributed applications.
It’s rare for any program to be a write-once,
deploy, forget affair, but it’s probably fair to say
that the larger applications tend to have a longer
lifetime, if only because they represent so much
investment and effort.

We’ve not yet reached the stage where source code
no longer requires human understanding, so a long-
lived program needs frequent intervention by
programmers: adding features, fixing bugs, maybe even
improving the code. All these things require those
programmers to understand not just the technology,
programming languages and so on, but also the
conventions used during the program’s development.

There are a whole slew of things we programmers
do ‘by convention’. C++ compilers do not care how
many types you define in a given file, but it’s
conventional (although not universal) for it to be
one. C# compilers don’t care how many lines of code
per method. Javascript is famously tolerant of how much
code you can fit on a single line. Conventionally, in all
these cases, it is considered good practice to make the
code understandable.

Some conventions can end up being more of a hindrance than a help, however. I’ve
written before about the ‘I’ prefix for interface types. Others that I find unhelpful are
things like namespace hierarchies encoding corporate structure – especially if the
directory structure on disk has to match – and always pairing getters with setters.
These conventions all, I suspect, began with good intentions, but add nothing
genuinely useful, and have become so common that they take on the nature of ‘rules’
rather than ‘guidelines’.

If we take a default position of not flying in the face of convention, we run the risk of
introducing unnecessary complexity almost by accident. Instead we should look
critically at the things we do ‘by convention’, and only do them ‘by intention’.

C
Volume 29 Issue 3
July 2017

Editor
Steve Love
cvu@accu.org

Contributors
Samathy Barratt, Francis
Glassborow, Pete Goodliffe,
Paul Grenyer, Jez Higgins,
Roger Orr

ACCU Chair
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JUL 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
9 Code Critique Competition

Competition 106 and
the answers to 105.

REGULARS
12 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.3: 1st August 2017
C Vu 29.4: 1st October 2017

Overload 140:1st September 2017
Overload 141:1st November 2017

FEATURES
3 Living Within Constraints

Pete Goodliffe constrains what’s possible in your
code.

4 In Java I Wish I Could...
Paul Grenyer wishes for features of one language in
another.

5 Rip It Up And Start Again
Jez Higgins shares a tale of re-implementing a
software system.

6 Learning Other Languages
Francis Glassborow considers natural and computer
languages as tools of communication.

7 A Magical New World?
Samathy Barratt shares her experience as a first time
ACCU Conference attendee.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 105
Living Within Constraints
Pete Goodliffe constrains what’s possible in your code.

e have already considered defensive programming techniques (in
CVu 29.1) to help make your code better. These techniques force
you to consider what might go wrong – to assume the worst. So

how can we physically incorporate these assumptions into our software so
they’re not elusive problems waiting to emerge? Clearly, we can simply
write a little extra code to check for each condition. In doing so, we’re
codifying the constraints on program functionality and behaviour.

Constraints
The most obvious implementation of constraint checking in C and C++ is
the humble assert. We’ll look at it in detail later, but it’s simple to use:

 assert(itemIndex < maxNumItems);

When running a program with assertions enabled (usually this has to be
within a ‘debug’ configuration build) a failure to satisfy the assertion will
force the program to unceremoniously stop. Immediately. The program
will dump out some diagnostic information about the assertion failure.
But it will do so in an ugly way the programmer will understand. It’s
definitely not a nice user experience!

assert is simple, but can sometimes be a sledgehammer used to crack a
walnut. There’s no subtly; you cannot control what it does (apart from
switch it on or off).

In a mature system, what do we want the program to do if a constraint is
broken?

Since this kind of constraint will likely be more than a simple detectable
and correctable run-time error, it must be a flaw in the program logic.
There are few possibilities for the program’s reaction:

 Turn a blind eye to the problem, and hope that nothing will go wrong
as a consequence.

 Give it an on-the-spot fine and allow the program to continue (e.g.,
print a diagnostic warning or log the error).

 Go directly to jail; do not pass go (e.g., abort the program
immediately, in a controlled or uncontrolled manner – either
allowing it to neatly clean up if possible, or just exiting like assert).

Indeed, you may have different types of constraint condition that require
different ways of handing.

For example, it is invalid to call C’s strlen function with a string pointer
set to zero, because the pointer will be immediately dereferenced, so the
latter two options are the most plausible. It’s probably most appropriate to
abort the program immediately, since dereferencing a null pointer can
lead to all sorts of catastrophes on unprotected operating systems.

Checking a value is ‘sane’ before displaying it on the screen might not
need such a brute force approach.

Many debug/logging libraries provide constraint checking services.
Generally they are configurable and flexible. Constraint checking is often
bound in logging libraries because often you want to log a broken
constraint, but allow the application to continue nevertheless.

How to use constraints

There are a number of different scenarios in which constraints are used:

 Preconditions These are conditions that must hold true before a
section of code is entered. If a precondition fails, it’s due to a fault
in the client code.

 Postconditions These must hold true after a code block is left. If
a postcondition fails, it’s due to a fault in the supplier code.

 Invariants These are conditions that hold true every time the
program’s execution reaches a particular point: between loop
passes, across method calls, and so on. Failure of an invariant
implies a fault in the program logic.

 Assertions Any other statement about a program’s state at a given
point in time.

The first two are frustrating to implement without language support – if a
function has multiple exit points, then inserting a postcondition gets
messy. Eiffel supports pre- and postconditions in the core language and
can also ensure that constraint checks don’t have any side effects.

Good constraints expressed in code make your program clearer and more
maintainable. This technique is also known as design by contract, since
constraints form an immutable contract between sections of code.

Without built-in language-level constraint checking, the code mechanism
used to check each of type of constraint is usually identical, and the type
of constraint is just implicit from its location in the code.

What to constrain

There are a number of different problems you can guard against with
constraints. For example, you can:

 Check all array accesses are within bounds.

 Assert that pointers are not zero before dereferencing them.

 Ensure that function parameters are valid.

 Sanity check function results before returning them.

 Prove that an object’s state is consistent before operating on it.

 Guard any place in the code where you’d write the comment We
should never get here.

The first two of these examples are particularly C/C++ focused. Other
languages have their own ways of avoiding some of these pitfalls.

Just how much constraint checking should you do? Placing a check on
every other line is a bit extreme. As with many things, the correct balance
becomes clear as the programmer gets more mature. Is it better to have too
much or too little? It is possible for too many constraint checks to obscure
the code’s logic. Readability is the best single criterion of program
quality: If a program is easy to read, it is probably a good program; if it is
hard to read, it probably isn’t good.

Realistically, putting pre- and postconditions in major functions plus
invariants in the key loops is sufficient.

Removing constraints

This kind of constraint checking is usually only required during the
development and debugging stages of program construction. Once we
have used the constraints to convince ourselves (rightly or wrongly) that
the program logic is correct, we would ideally remove them so as not to
incur an unnecessary runtime overhead.

Thanks to the wonders of modern technology, all of this is perfectly
possible. As we’ve already seen, the C and C++ standard libraries provide
a common mechanism to implement constraints – assert. assert acts

W

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
JUL 2017 | | 3{cvu}

Living Within Constraints (continued)

In Java I Wish I Could...
Paul Grenyer wishes for features of one language in another.

started programming in BBC Basic on an Acorn Electron in 1985. I
then went on to learn and use commercially C, C++ (there’s no such
language as C/C++), C# and Java. When I was a C++ programmer, I

looked down on Java with its virtual machine, just in time compiling and
garbage collector. When I became a Java programmer, I completely fell
in love with it and its tool chain. Not so with Ruby, especially its tool
chain, a lack of a static type system and lack of interfaces.

However, there are some fantastic features in the language and a few of
them I wish I could use in Java. For example, in Ruby, you can put
conditional statements after expressions, for example:

 return '1' if a == 1
 return '2' if a == 2

whereas in Java you’d have to write:

 if (a == 1)
 return "1";
 if (a == 2)
 return "2";

which is more verbose and less expressive.

Ruby also has the unless keyword, which Java lacks, so in Ruby you can
do this:

 return @colour unless @colour.nil?

The example shows off another feature in Ruby. To test for nil in Ruby
you can call .nil? on any object, whereas the equivalent null check in
Java is more verbose:

 if (colour != null)
 return colour;

I could go on, but I’ll leave that for a later piece in the series. These
features of Ruby may only be, in the main, syntactic sugar, but they are
the ones I miss most when I’m developing in Java. 

I

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com
as a procedural firewall, testing the logic of its argument. It is provided as
an alarm for the developer to show incorrect program behaviour and
should not be allowed to trigger in customer-facing code. If the assertion’s
constraint is satisfied execution continues. Otherwise, the program aborts,
producing an error message looking something like this:

 bugged.cpp:10: int main(): Assertion "1 == 0"
 failed.

assert is implemented as a preprocessor macro, which means it sits
more naturally in C than in C++. There are a number of more C++-
sympathetic assertion libraries available.

To use assert you must #include <assert.h>. You can then write
something like assert(ptr != 0); in your function. Preprocessor
magic allows us to strip out assertions in a production build by specifying
the NDEBUG flag to the compiler. All asserts will be removed, and their
arguments will not be evaluated. This means that in production builds
asserts have no overhead at all.

Whether or not assertions should be completely removed, as opposed to
just being made non fatal, is a debatable issue. There is a school of thought
that says after you remove them, you are testing a completely different
piece of code. Others say that the overhead of assertions is not acceptable
in a release build, so they must be eliminated. (But how often do people
profile execution to prove this?)

Either way, our assertions must not have any side effects. What would
happen, for example, if you mistakenly wrote:

 int i = pullNumberFromThinAir();
 assert(i = 6); // hmm - should type more
 // carefully!
 printf("i is %d\n", i);

The assertion will never trigger in a debug build; its value is 6 (near
enough true for C). However, in a release build, the assert line will be
removed completely and the printf will produce different output. This
can be the cause of subtle problems late in product development. It’s quite
hard to guard against bugs in the bug-checking code!

It’s not difficult to envision situations where assertions might have more
subtle side effects. For example, if you assert(invariants());, yet
the invariants() function has a side effect, it’s not easy to spot.

Since assertions can be removed in production code, it is vital that only
constraint testing is done with assert. Real error condition testing, like
memory allocation failure or file system problems, should be dealt with in
ordinary code. You wouldn’t want to compile that out of your program!
Justifiable run-time errors (no matter how undesirable) should be detected
with defensive code that can never be removed.

Java has a similar assert mechanism, which throws an exception
(java.lang.AssertionError) instead of causing a program abort.
.NET provides an assertion mechanism in the framework’s Debug class.

When you discover and fix a fault, it is good practice to slip in an assertion
where the fault was fixed. Then you can ensure that you won’t be bitten
twice. If nothing else, this would act as a warning sign to people
maintaining the code in the future.

A common C++/Java technique for writing class constraints is to add a
single member function called bool invariant() to each class.
(Naturally this function should have no side effects.) Now an assert can
be put at the beginning and end of each member function calling this
invariant. (There should be no assertion at the beginning of a constructor
or at the end of the destructor, for obvious reasons.) For example, a
circle class invariant may check that radius != 0; that would be
invalid object state and could cause later calculations to fail (perhaps with
a divide by zero error). 

Questions
 How much constraint checking do you employ in your codebase?

 Are there some functions that benefit more from pre/post condition
checking? Why?

 How can you ensure that the logic in a constraint expression will
have no observable affect on the program’s behaviour?
4 | | JUL 2017{cvu}

JUL 2017 | | 5{cvu}

JEZ HIGGINS
Jez is the 2017 Player of the Season for Kings Heath
Hockey Club Mens IIIs – the high point of a moderate
sporting career. When not playing hockey, he writes
software for money and for fun. Contact him at
jez@jezuk.co.uk or @jezhiggins.

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

Rip It Up and Start Again
Jez Higgins shares a tale of re-implementing

a software system.

’ve just wrapped up a hectic couple of weeks for a client and realised
I’m now in a position to write one of those ‘We reimplemented a piece
of software originally written in language X using language Y and you

won’t believe what happened next’ articles. You might not believe it but
you can probably guess it, because articles like that are 10-a-penny and
the reported results are always that some problem with the original code
was solved in the most wonderful way. That problem could be speed,
maintainability, memory use, lack of suitable job applicants, almost
anything, but you can be sure it was resolved by the simple expedient of
chucking out a load of code and writing some new code. The new code is
invariably shorter and more expressive, somehow lacking the cruftiness
of the old. The author invariably had lots of fun writing the new code, and
often declares their chosen language to be their favourite. Frequently the
article conclude with a little coda encouraging others to follow suit, or
roundly insulting those so blinkered they choose not to.

This is not that article.

It is the case that I replaced a piece of production code developed by
several people over a number of months in nine days, by myself. The new
code is visibly faster, in the way that people notice without having to run
benchmarks and draw graphs. It’s leaner too – the VM it deployed to has
half the CPU and a quarter of the memory of the previous version. It
doesn’t time out, exceed its memory quota, or crash.

I must be ace on the old keyboard, right?

Well, perhaps. But if there’s any lesson to be learned here, it’s that
reimplementing a system is generally substantially easier than building it
the first time round. In this case, a data access layer for a website, the
existing code told me exactly which endpoints I needed to support, and
which parameters they took. The productions logs told me which of those
endpoints were actually being used, and with which parameter
combinations. Almost straightaway, therefore, I knew where to
concentrate my efforts, and what I could ignore completely. The existing
code had a reasonable set of unit tests, which saved me the bother of
having to come up with my own. I was able to look at the existing database
queries, and translate them across into my new code. I could examine how

the existing code had a addressed a particular issue and evaluate whether
I wanted to bring that into the new code. I had the ridiculous luxury of
being able to run up the old code and my new code side by side, prod them
with the same requests, and compare the results, one with the other.

In short then, I benefited hugely from the fact that the system already
existed. There was a just a ton of stuff I had to think a whole lot less about,
and quite a lot I didn’t have to think about at all. Consequently, I was able
spend more of my effort thinking about the things that did matter, and the
result, unsurprisingly, was less code.

While I rarely suggest an all-out rewrite, I did one here because I was
asked to. The language I worked in wasn’t my choice, it was the client’s.
The new code is quicker, not because of any special property of that
language, but because I was able to look at the old code, see the
inefficiencies, and was given time and space to do something about it. If
they’d chosen another language, the results would have been similar.
Hell, if they’d chosen the same language as before, the results would have
been similar. If I’d been left to work on the original code for the same
amount of time, I probably could have produced something similar [1].

Even when you’re throwing it out, there’s a lot of value in old code. Be
grateful for it. 

Note
[1] Given their lack of faith in the existing code, I suspect that if I’d

suggested just letting me have at it, I may well have been turned
down. Had that suggestion been accepted, I probably would have
only been given half as much time.

I

6 | | JUL 2017{cvu}

Learning Other Languages
Francis Glassborow considers natural and computer

languages as tools of communication.

have this theory (actually it is a bit more than just a theory) that learning
other languages improves my ability to use the language of my choice.
This does not just apply to natural languages but to computer languages

as well.

To get the greatest benefit one needs languages as different from ones first
choice as possible. As a native English speaker learning French is of
relatively little benefit. But learning Arabic, Chinese or a version of Sign
has considerable impact. You do not need to be fluent in another language
to benefit from studying it.

Let me take my three exemplars.

Arabic is fascinating in that its grammatical structure is radically different
to English. It has only two tenses (completed and ongoing action) but
seven moods including the very emphatic mood. In Spoken English we
can use tone to emphasise and in the printed form we can use typeface but
before printed writing became almost universal we had a problem that was
solved by the use of ‘particles’ such as the classic biblical verses that start
‘verily, verily’ which is an attempt to translate the very emphatic mood
that Hebrew shares with Arabic.

There is a great deal more to Arabic such as its use of consonants to
convey root meaning and vowel structures to create nouns, verbs,
adjectives, etc. As context often defines the part of speech written Arabic
often omits many of the vowels. That makes it hard for the novice to read
the local newspaper and much easier to practice on religious works where
vowels are never omitted.

Because of the way vowels are used, rhymes are very easy in Arabic, so
classical Arabic poetry usually requires very extensive triple rhyme
schemes.

Written Chinese exhibits one of the great advantages of an ideographic
language: you do not need to be able to speak it to read it. However, all
the various spoken languages that come under the heading ‘Chinese’
share a common facet: they are very deficient in phonemes. This makes
them rich languages for puns. That means that not being able to speak
Mandarin, Cantonese, etc. detracts from your ability to appreciate
Chinese poetry that relies heavily on puns.

I sometimes hear people opining that ideographic languages cannot have
dictionaries. Well, I have a perfectly good Chinese dictionary somewhere
on my book shelves. To use a dictionary for an alphabetic language you
need to know the order of the alphabetic symbols (including how to deal
with accents, etc.) For example, a German dictionary needs to have rules
to deal with various idiosyncrasies of the German symbols.

In the case of Chinese, you need to be able to cope with two concepts: ‘The
master stroke’ and the count of strokes (which if memory serves me correctly,
can be anything from 1 to 17). The master stroke tells you which part of the
dictionary to look in and the number of strokes takes you to the correct
subsection. You may then have to look a little to find the one you want.

The group of languages under the heading ‘Sign’ Because of the extra
dimensions brought about by the use of space, facial expression, etc., a
Sign language is capable of shades of expression that spoken languages

lack. However, it is almost impossible to represent them in writing. In the
modern era, video has opened up their potential.

How does one produce poetry in Sign? I have no idea but I can hazard a
guess that the visual representation would play a key part. I am reminded of
Chinese calligraphy, so perhaps there is or should be an equivalent in Sign.

I wish that every school taught a version of Sign to every child. It is useful
for communication across crowded rooms, noisy factories and other
places where speech is difficult or frowned upon.

I could write a great deal more on natural languages and why I find the
work of Noam Chomsky unsatisfying but let me move on.

Computer Languages
I can remember one Saturday when I had been commissioned by the local
School Sailing Warden to write some race control software to run on his
BBC Micro. It took me a couple of hours (the job was not that
complicated). It had to be written in BBC Basic because that is what he
had available, not a language with which I was enamoured. There were far
better dialects of Basic. At the end the client commented that the code did
not look like Basic. He was absolutely correct. The internal design and
structure was Forth, the language in which I was most fluent in the 1980s.
Had I tried the task by thinking in Basic it would certainly have taken me
much longer and it would have been a much larger program. Yes, I was
pretty fluent in Basic but it was the synergy of Forth with Basic that
enabled me to work quickly and effectively.

This is just one example of the benefits of being multi-lingual. However
the great benefit comes from having some familiarity with seriously
different languages. It is to my eternal regret that I never managed to
master any dialect of Lisp. I simply failed to make that fundamental step
from procedural/functional type thinking.

What I am interested in is the fundamental design and construction of
computer languages. I can use ideas from languages such as Prolog or
Haskell, to name but two, to extend my skills in other languages in which
I may be superficially more fluent.

The current crop of popular languages are, in my mind, too similar to each
other to create any great benefit from studying them. Is Java better than
C++? Is Ruby better than Python? I simply do not care. What I want to
know is what do each of those languages teach my about the wider art of
programming that makes it worth my while to invest time in studying
them even if I do not actually master them or use them with a vengeance.

Studying Haskell has extended my understanding of C++ template
metaprogramming. And actually it is much easier to do the design thought
in Haskell and then implement it with templates.

My challenge to the readers of CVu is to write an article (as long as
necessary but no longer) that tells me what your language(s) of choice
have to reveal about the art of programming. I do not want to know why
they are better but I want to know why they are different. I want to
understand what they offer. For example, why are pure functions
beneficial in problem solving? What is wrong with globals? Can you
actually write real, useful code that is free of side-effects?

I do not want a better X where X is any language you like to name. I want
a better understanding of the wider art of programming and how X can
contribute to my understanding.

Over to you, reader. I am certain that you have insights worth sharing. 

I

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.

SAMATHY BARRATT
Samathy is a magical code fairy with a passion for
tackling really hard problems, teaching others and
supporting a diverse and friendly tech community. She
enjoys C, C++, Python, Linux, Coffee and people. She
tweets @samathy_barratt and can be contacted at
samathy@sbarratt.co.uk.

A Magical New World?
Samathy Barratt shares her experience as a first time

ACCU Conference attendee.

went t o my f i r s t AC CU
Conference last week. It was
great. I’d heard about ACCU

from Russel Winder several
months ago. He recommended I
check out the conference (for
which he’s on the programme
board) since I’m a fan and user of
the C and C++ languages.

I arrived in Bristol on Tuesday
excited for what the week held. We
started the conference proper with
a fantastically explosive keynote
delivered by Russ Miles, who
jumped on stage to deliver a
programming parody of Highway
to Hell accompanied by his own
guitar playing. His keynote was all about modern development and how
most of a programmer’s tools currently just shout information at the
programmer, rather than actually helping.

Later on the Wednesday, I headed into a talk from Kevlin Henny that
totally re-jigged how I think about concurrency. Thinking outside the
Synchronisation Quadrant was wonderfully entertaining, with Kevlin
excitedly bouncing across the floor.

Wednesday’s talks continued with several other good talks and a number
of great lightning talks too. Finalising with the welcome reception where
delegates gathered in the hotel for drinks, food and conversation. It was
here that I really got the chance to socialise with a good few people,
including Anna-Jayne and Beth, who I’d been excited about meeting
since I found out they were going to be there!

Thursday began with an interesting keynote about
the Chapel parallel programming language. The talk
has encouraged me to try the language out and I’ll
certainly be having a good play with that soon.

Thursday’s stand out talks included Documentation
for Developers workshop by Peter Hilton. I really
enjoyed the workshoppy style that Peter used to
deliver the talk. He got the audience working in
groups, talking to each other and essentially
complaining about documentation. He finished with
suggesting a method of writing docs called Readme
Driven Development as well as other suggestions.

The other talk on Thursday which I really loved was ‘The C++ Type
Sys tem i s your Fr iend’ . Huber t
Matthews was a great speaker with clear
experience in explaining a complex
topic in an easier to understand fashion.
I can’t say I understood everything, but
I certainly liked listening to Hubert
speak.

Thursday evening I headed out for
dinner with Anna-Jayne and Beth before
heading back to my accommodation to
write up a last minute talk for Friday.

My talk was covering Intel
Software Guard Extensions –
Russel announced that there
was an open slot on Friday for a
15 minute topic and I took the
chance to speak then.

Friday began with a curious but
thought-provoking talk from
Fran Buontempo called ‘AI:
Actual Intelligence’. I’m not
entirely sure what the take away
from the talk was intended to be,
bu t none t he l e s s i t was
interesting!

Friday morning was full of 15
minute talks. A format I think is
wonderful. I really loved that
amongst the 90 min ta lks
throughout the rest of the week,
there was time for these quick
fire shorter talks too that were
still serious technical talks
(unlike the 5min lightning talks). The talks I went to see were:

 ‘The missing piece of the continuous integration puzzle – what to do
with all those test failures?’ – Greg Law

 ‘Named Parameters’ – Odin Holmes. Using Template magic to
impliment named params in C++. I loved this talk and fully intend
to investigate the idea!

 ‘Passwords. Are. Not. Hard!’ – Dom Davis. A hilarious rant about
how nonsensical password handling is.

At Friday lunch time I took part in a bit of an
unplanned workshop on sketch noting with Michel
Grootjans. It was essentially an hour of trying to
make our notes prettier! It was a lot of fun.

Friday was the conference dinner – a rock themed
night of fun and frivolities. This was by far the high
point of the conference for me. It offered a great
evening of meeting people and having a lot of fun. I
loved how everyone loosened up and spoke to
anyone else there.

I met a whole bunch of people, and got on super well
with a few people who I would like to consider friends now.

ACCU made it easy to get to know people too by forcing everyone who
isn’t a speaker to move tables between each meal course. It’s a great idea!

Saturday’s talks started with a really fun talk from Arjan van Leeuwen
about string handling in C++1x. Covering the differences between char

I

Russ Miles opens ACCU 2017

Lightening talks on WednesdayLightening talks on Wednesday

Peter Hilton’s ‘Documentation
for Developers workshop’

Odin Holmes talks about
Named Parameters
JUL 2017 | | 7{cvu}

a r r a ys an d
std::strings
and how best to
use them. As well
as tantalising us
wi t h a C+ +1 7
fea t u re ca l l e d
std::string_
view (immutable
views of a string).

Later I watched a
talk from Anthony
Wi l l i ams and

another from Odin, both of which went wildly over my head, but all the
same I gained a few things from both of them.

Finishing off the conference was a brilliant keynote from renowned
speaker and member of the ISO C++ standards committee, Herb Sutter.

Herb Sutter on Metaclasses at ACCU 2017
Herb introduced a new feature of
C++ that he may be proposing to
the standards committee.

He described a feature allowing one
to create meta-classes.

Essentially, one could describe a
template of a class with certain
interfaces, data and operators.
Then, one could implement an
instance of that class defining all
the functionality of the class. Its
essentially a way to more cleanly
desc r i be some th ing ak i n t o
inheritance with virtual functions.

I highly suggest you try to catch the
talk, since it was so interesting that
even an hour or so after the talk,
there was still quite a crowd of
people gathered around Herb asking him questions.

The conference environment
As a first time ACCU attendee, I want to say a few words about the
environment at the conference.

As most of the readers of my blog[1] know, I’m a young transwomen, so
a safe and welcome environment is something that I very much appreciate
and makes a huge difference to my experience of an event.

It’s something that’s super hard to achieve in a world like software
development where the workforce is predominantly male.

I’m glad to say that ACCU did a great job of creating a safe and
welcoming space. Despite being predominantly male as expected,

e ve ry on e I
encountered
was not only
friendly and
helpful, but
e ve r so
willing to go
out of their
way to make
m e fe e l
welcome and
comfortable.
Eve ryone I

met simply accepted
me for me and didn’t
treat me any way other
than friendly.

I would suggest that
o f fe r ing d ivers i ty
t i c ke t s t o ACCU
would help make me
feel even better there,
since I’d feel better
with a more diverse
set of delegates.

I wa s e spec i a l l y
comforted by Russel
mentioning the code
of conduct, without
fail, every day of the
conference. As well as
one of the lightning
talks, being delivered
by a man, taking the form of a spoke word-ish piece praising the
welcoming nature of ACCU and calling for the maintenance of the
welcoming nature to all people in the community, not just people like
himself.

I’d like to especially mention Julie and the Archer-Yates team for
checking up on my happiness throughout the conference. They really
helped me feel safe there.

I think there still could be work to do about making the conference a good
place for younger adults – I was rather overwhelmed by the fact that
everyone seemed older than me and clearly had a better idea of how to
conduct themselves in the conference setting. However, I think the only
real way of solving this problem would be to make the conference easier
to access to younger people (cheaper tickets for students – it’s still super

expensive) which wouldn’t always be possible. Additionally, the
inclusion of some simpler, easier to understand talks would have been
great. Lots of the talks were very complicated and easily got to a level that
was way over my head.

Thanks to everyone who helped me feel welcome at ACCU – including
but not limited to Richard, Antonello, Anna-Jayne, Beth, Jackie, Fran,
Russel and Odin.

In conclusion
ACCU was a fantastic experience for me. I would highly recommend it to
anyone interested in improving their C and C++ programming skills as
well as general programming skills. I’ll certainly be heading back next
year if I can, and am happily a registered ACCU member now! 

Reference
[1] My blog: https://medium.com/

@samathy_barratt?source=post_header_lockup

Lightening talks on WednesdaySketch Noting with Michel GrootjansLightening talks on WednesdaySketch Noting with Michel Grootjans

Odin enjoys inflatable instruments

Herb Sutter on Metaclasses

A presentation is underway...

Herb Sutter surrounded by curious programmers
8 | | JUL 2017{cvu}

https://medium.com/@samathy_barratt?source=post_header_lockup
https://medium.com/@samathy_barratt?source=post_header_lockup

#pragma once
class programmer
{
public:
 // Add a language
 void add_language(std::string s)
 { languages_.push_back(s); }
 // the programmer's languages - original
 std::vector<std::string>
 original() const
 {
 return {languages_.begin(),
 languages_.end()};
 }
 // new - avoid copying for performance
 std::list<std::string> const &
 languages() const
 { return languages_; }
 programmer() = default;
 programmer(programmer const& rhs)
 : languages_(rhs.languages_) {}
 programmer(programmer &&tmp)
 : languages_(std::move(tmp.languages_)) {}
 ~programmer() { languages_.clear(); }
private:
 std::list<std::string> languages_;
};

Li
st

in
g

1

Code Critique Competition 106
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I was writing a simple program to analyse the programming languages
known by our team. In code review I was instructed to change
languages() method in the programmer class to return a const
reference for performance. However, when I tried this the code broke.
I’ve simplified the code as much as I can: can you help me understand
what’s wrong? It compiles without warnings with both MSVC 2015 and
gcc 6. I am expecting the same output from both ‘Original way’ and ‘New
way’ but I get nothing printed when using the new way.

The listings are as follows:

 Listing 1 is programmer.h

 Listing 2 is team.h

 Listing 3 is team_test.cpp

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <list>
#include <map>
#include <string>
#include <vector>
#include "programmer.h"
#include "team.h"

int main()
{
 team t;
 programmer p;
 p.add_language("C++");
 p.add_language("Java");
 p.add_language("C#");
 p.add_language("Cobol");
 t.add("Roger", std::move(p));

 p.add_language("javascript");
 t.add("John", std::move(p));

 std::cout << "Original way:\n";
 for (auto lang : t.get("Roger").original())
 {
 std::cout << lang << '\n';
 }
 std::cout << "\nNew way:\n";
 for (auto lang : t.get("Roger").languages())
 {
 std::cout << lang << '\n';
 }
}

Listing 3

#pragma once
#include <map>
class team
{
public:
 // Add someone to the team
 void add(std::string const &name,
 programmer const & details)
 {
 team_.emplace(
 std::make_pair(name, details));
 }
 // Get a team member's details
 auto get(std::string const &name) const
 {
 auto it = team_.find(name);
 if (it == team_.end())
 throw std::runtime_error("not found");
 return it->second;
 }
private:
 std::map<std::string, programmer> team_;
};

Li
st

in
g

2

JUL 2017 | | 9{cvu}

Critique

James Holland < james.holland@babcockinternational.com>

The problem with the student’s code lies in the ‘New way’ range-based
for loop. Calling the get() member function on t results in a temporary
object of type programmer. The temporary object’s languages()
function is then called which returns an std::list of std::strings.
The range-based for loop then effectively calls begin() on the
std::list thus returning an iterator to the list. The iterator will be then
compared with the end of the list to determine whether there are any items
in the list. Unfortunately, it is around this time (and I must admit I am not
exactly sure when) that the temporary programmer object will go out of
scope, its destructor called and will no longer be valid. We are now in the
realms of undefined behaviour. Anything could happen and we should not
be too surprised if nothing is printed.

Obtaining a reference to t’s programmer object, instead of making a
copy, will result in the range-based for loop referring to a valid list of
strings and ultimately in the expected printed output. This can be achieved
by amending team’s get() function to return a reference to a
programmer object. As the t object will remain valid while the for loop
is executing, there is no need to make a copy.

I think there are other oddities with the student’s code. The std::move()
within the second parameter of the t.add() has no effect as the parameter
is being passed by (const) reference. This means object p contains the
same programming languages after the call to t.add() as before. This
results in John possessing all the programming languages of Roger plus
Javascript. This is probably not what was required. If std::move(p) is
used, it must be assumed that p is left in a valid but unknown state. It may
contain values or it may not. It is best to modify the programmer class
to have a public clear() function. This function should then be called
before repopulating p with another member of staff’s programming
languages.

Commentary
The main problem with this critique, as James explained, is holding a
reference to a temporary after its destruction. This is, unfortunately, quite
easy to do in C++ and the new-style range based for provides a potential
site.

In C++ the statement

 for (auto lang : t.get("Roger").languages()){}

is equivalent to this rewritten block of statements:

 {
 auto &&__range = t.get("Roger").languages();
 auto __begin = __range.begin();
 auto __end = __range.end();

 for (; __begin != __end; ++__begin) {
 auto lang = *__begin;
 {}
 }
 }

Since languages() returns a const reference to an std::list this
means __range in turn is a const reference to an std::list – but the
target of the reference is member data of a temporary that is destroyed at
the end of the first statement in the re-written code.

James’ solution in this case, of making the get() function return a
reference not a copy, solves the problem as __range now refers to an
object owned by t, whose lifetime lasts after the end of the for loop, and
so there is no longer a ‘dangling reference’.

The root cause of the problem is the declaration of the method:

 auto get(std::string const &name) const;

Somehow it seems the presence of auto partially disables the
programmer’s critical mind. Without auto the programmer, in my
experience, is more likely to notice the implied copy in:

 programmer get(std::string const &name) const;

and to have written the method to return a reference:

 programmer const
 &get(std::string const &name) const;

In other cases, though, this may not be a possible solution (for example,
the data returned by get() might be generated during the call). We can
make the code safe by binding the temporary to a named variable that
outlasts the for loop:

 auto temp = t.get("Roger");
 for (auto lang : temp.languages()) {}

One drawback with this solution is that the variable introduced remains in
scope until the end of the enclosing block; it would be nicer to ensure it
gets deleted at the end of the for loop. By a bit of a co-incidence, two
proposals published this year would provide alternative ways of making
the code safe. (Note that neither proposal has, as yet, been approved by
the standards committee.)

Firstly Zhihao Yuan’s proposal P0577R0 (‘Keep that temporary!’) would
allow using the proposed ‘register’ expression to extend the lifetime
of the temporary to the end of the loop, using this syntax:

 for (auto lang :
 (register t.get("Roger")).languages()){}

Secondly Thomas Köppe’s proposal P0614R0 (‘Range-based for
statements with initializer’) would allow using an initializer in a range for
loop, using this syntax:

 for (auto tmp = t.get("Roger");
 auto lang : tmp.languages()){}

This elegantly ensures the scope of the introduced variable ends at the end
of the for loop.

Even if either or both of these proposals are accepted, the underlying
problem of indirectly binding a reference to a temporary object remains
untouched, and can be hard to diagnose. The problem occurs when
chaining method calls where the final call returns a reference but one or
more of the intermediate calls return a temporary. This is something a static
analysis tool could in principle detect; does anyone know of an existing
tool that does so?

The second problem with the code is the re-use of the moved-from p –
James correctly explains the problem. In order for the std::move() to
have any effect, the argument to add() would need to be either a value
or an r-value reference, for example:

 void add(std::string const &name,
 programmer details)
 {
 team_.emplace(
 std::make_pair(name,
 std::move(details)));
 }

(Note you also need to add std::move() when passing the details
object to emplace().)

However, it is still unspecified what the state of the object will be after the
call, so it cannot be assumed to be empty.

The Winner of CC 105
After a full post-bag of six entries for CC104 I was disappointed to only
receive one entry for CC105 – but it was a clear and concise critique of
the code and so I have no qualms in awarding James this issue’s prize.

Code Critique 106

(Submissions to scc@accu.org by Aug 1st)
I am learning some C++ by writing a simple date class. The code
compiles without warnings but I’ve made a mistake somewhere as the
test program doesn’t always produce what I expect.
10 | | JUL 2017{cvu}

 > testdate
 Enter start date (YYYY-MM-DD): 2017-06-01
 Enter adjustment (YYYY-MM-DD): 0000-01-30
 Adjusted Date: 2017-07-31
 >testdate
 Enter start date (YYYY-MM-DD): 2017-02-01
 Enter adjustment (YYYY-MM-DD): 0001-01-09
 Adjusted Date: 2018-03-10
 >testdate
 Enter start date (YYYY-MM-DD): 2017-03-04
 Enter adjustment (YYYY-MM-DD): 0001-00-30
 Adjusted Date: 2017-04-03

That last one ought to be 2018-04-04, but I can’t see what I’m doing
wrong.

Please can you help the programmer find his bug – and suggest some
possible improvements to the program!

 Listing 4 contains date.h

 Listing 5 contains date.cpp

 Listing 6 contains testdate.cpp

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

// A start of a basic date class in C++.
#pragma once

class Date
{
 int year;
 int month;
 int day;

public:
 void readDate();
 void printDate();
 void addDate(Date lhs, Date rhs);
 bool leapYear();
};

Li
st

in
g

4

#include "date.h"
#include <iostream>
using namespace std;

// Read using YYYY-MM-DD format
void Date::readDate()
{
 cin >> year;
 cin.get();
 cin >> month;
 cin.get();
 cin >> day;
}
// Print using YYYY-MM-DD format
void Date::printDate()
{
 cout << "Date: " << year << '-' <<
 month/10 << month%10 << '-' <<
 day/10 << day %10;
}

void Date::addDate(Date lhs, Date rhs)
{
 year = lhs.year + rhs.year;
 month = lhs.month + rhs.month;
 day = lhs.day + rhs.day;

Li
st

in
g

5

 // first pass at the day -- no months
 // are over 31 days
 if (day > 31)
 {
 day -= 31;
 month = month + 1;
 if (month > 12)
 {
 year += 1;
 month -= 12;
 }
 }
 // normalise the month
 if (month > 12)
 {
 year += 1;
 month -= 12;
 }
 // now check for the shorter months
 int days_in_month = 31;
 switch (month)
 {
 default: return; // done 31 earlier
 case 2: // Feb
 days_in_month = 28 + leapYear()?1:0;
 break;
 case 4: // Apr
 case 6: // Jun
 case 9: // Sep
 case 11: // Nov
 days_in_month = 30;
 }
 if (day > days_in_month)
 {
 day -= days_in_month;
 month += 1;
 if (month > 12)
 {
 month -= 12;
 year += 1;
 }
 }
}
bool Date::leapYear()
{
 // Every four years, or every four centuries
 if (year % 100 == 0) return year % 400 == 0;
 else return year % 4 == 0;
}

Listing 5 (cont’d)

#include "date.h"
#include <iostream>

using std::cout;

int main()
{
 Date d1, d2, d3;
 cout << "Enter start date (YYYY-MM-DD): ";
 d1.readDate();
 cout << "Enter adjustment (YYYY-MM-DD): ";
 d2.readDate();

 // Add the two dates
 d3.addDate(d1, d2);
 cout << "Adjusted ";
 d3.printDate();
}

Listing 6
JUL 2017 | | 11{cvu}

http://accu.org/index.php/journal

12 | | JUL 2017

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org

2017 ACCU Conference
Our annual conference once again was held in
the Bristol Marriott City Centre from the 26th
through to the 29th of April. Russell Winder
and his merry band of programme committee
members [1] did a wonderful job of making the
conference an educational and social
extravaganza. Please join me in expressing our
thanks to Russell and the programme [2]
committee for their outstanding work. (Russell
was particularly outstanding in his bright
orange sweater!)

Thanks also to our Conference sponsors [1] for
their support; and to Julie Archer and her team
at Archer Yates Associates Ltd. [3]

Videos of most of the sessions are now
available on ACCU’s YouTube channel. Head
on over to YouTube and check out the sessions
you weren’t able to attend. [4]

Annual General Meeting
ACCU held its Annual General Meeting on
Saturday, the 29th of April, 2017, in
conjunction with the 2017 ACCU Conference.
On the agenda were approving the minutes from
the 2016 AGM; annual reports from the
officers; approval of the accounts for fiscal year
2016; election of auditors; and election of
Officers and the Committee.

The minutes and the accounts were approved,
and the results of the election were announced.
All persons running for office were elected. The
meeting pack has copies of the officers’ annual
reports and a list of persons who ran for
election. [5] There were several positions for
which nominations were not received prior to
the deadline. The incumbents for each of these
positions were re-elected by acclamation. [6]
Thank you to all of you who took the time to
vote.

Committee Spotlight
ACCU starts its new operating year with a fully
staffed executive committee, and a mostly
staffed non-executive committee. Current
committee members are listed on our web site,
so there is no need to duplicate that list here.
[6][7]

The committee remains mostly unchanged from
the previous year, which has its advantages and
disadvantages. An advantage is the continuity
that results from low or slow turnover. One
large disadvantage is the absence of new people
and their new ideas. We had people running for
election for each of the executive positions, but
we only had one person running for each
position.

You don’t have to be a committee member to
work with the committee. If you have an idea
that will benefit ACCU and your fellow
members, please let one of us know. If you want
to find out what being on the committee is like,
any Member can attend committee meetings,
where you can join in the conversation.

Call for Volunteers
Currently we have four vacancies in our roster
of committee members. Our most immediate
need is for one or more people to take over the
role of web editor. As I mentioned in the last
issue of CVu, long-time web editor Martin
Moene has stepped down from the position as
of 1 July, 2017. Prior to announcing his
retirement Martin wrote a detailed description
of the role. [8]

That description is quite daunting – I’m not sure
any of us quite realized all that Martin has done
for us during his years as web editor; thanks
again, Martin! – and it may be more than any
one person might want to commit to. We have
discussed the idea of splitting the role amongst
more than one person. If you want to contribute,
but don’t want to commit to everything in the
description, please let me know. All help is
welcome.

 The ACCU web site uses Xaraya, a PHP
framework that has been moribund for the
last 4 years at least, and a replacement is
overdue. [9]

 The Publicity, Study Groups, and Social
Media positions have been vacant for
some time. [10]

Being on the Committee is an amazing
opportunity to try doing something new. You
are very welcome to start and just focus on
making one thing happen, and in a way the fits
with your family, professional and social
activities. Just getting one thing done however
small is better than the post being left vacant.
Committee members will support you in any
way they can.

Please contact me if you are interested.

Member News
Submitting a short piece of member news is
your opportunity to share your successes with
your fellow members, or make a call for
volunteers to help with a project you may have.
I will continue to send out a reminder on accu-
members shortly before the CVu deadline.

On a personal note – with this column I have the
honour and privilege of starting my second year
as Chair of ACCU. Thank you for your votes.
Now, what am I going to write about for the
next 5 issues of CVu?

References
[1] ACCU Conference Programme

Committee Members and Sponsors
https://conference.accu.org/site/
index.html

[2] Microsoft Word really does not like it
when I spell ‘programme’ the British way,
with the extra ‘me’. I get the red squiggly
line of bad-spelling shame. It’s time to add
it to the dictionary.

[3] Archer Yates Associates Ltd.
https://conference.accu.org/site/
index.html

[4] ACCU YouTube Channel
https://www.youtube.com/channel/
UCJhay24LTpO1s4bIZxuIqKw

[5] 2017 AGM Pack
http://accu.org/content/agm/AGM-2017-
Pack.pdf

[6] ACCU Committee for 2017-2018
https://accu.org/index.php/members/
committee

[7] Listing all of the committee members here
would be one way of padding the word
count of this column.

[8] Role of Website Editor https://accu.org/
index.php/members/committee/
posts_and_roles#website_editor

[9] Ardent followers of this column (and that
is all of you, hmm?) will notice that this
item has been hanging around for some
months now. Anyone out there know
Xaraya and/or PHP and can lend a hand?
Contact Jim Hague.

[10] ACCU Social Media
https://plus.google.com/
+AccuOrganisation
https://www.facebook.com/accuorg/
https://twitter.com/accuorg

Silas Brown and co-authors published an
open-access paper in ‘Biology Methods &
Protocols’ (Oxford University Press),
thereby giving biologically-qualified peer
review to his free cancer-research tool
(‘Delivering Bad News From QA’, CVu,
28(5):4–5, November 2016). He hopes
other labs can now take the tool seriously.

Member news

Frances Buontempo has been talking and
writing about how to program your way out
of a paper bag, often using machine
learning, for a while now.

She is pleased to announce she has now
signed a deal to publish a book to pull
together some of these ideas and add
some new recipes. She would like to thank
ACCU members for encouraging her and
helping to proof read the pitch and sample
chapter. Watch this space for more news.

https://conference.accu.org/site/index.html
https://www.youtube.com/channel/UCJhay24LTpO1s4bIZxuIqKw
http://accu.org/content/agm/AGM-2017-Pack.pdf
https://accu.org/index.php/members/committee
https://accu.org/index.php/members/committee/posts_and_roles#website_editor
https://accu.org/index.php/members/committee/posts_and_roles#website_editor
https://plus.google.com/+AccuOrganisation
https://www.facebook.com/accuorg/
https://twitter.com/accuorg
https://conference.accu.org/site/index.html

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	CVu29-3.pdf
	It’s written, that’s why
	Living Within Constraints
	In Java I Wish I Could...
	Rip It Up and Start Again
	Learning Other Languages
	A Magical New World?
	Code Critique Competition 106
	View from the Chair

