

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

MAY 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Production legacy
expect we’ve all had our moments of wishing for
the demise – or perhaps better yet, obliteration
– of some legacy system, usually where we

ourselves hadn’t had a hand in its
implementation, and we have our own
opinions of what could have been done to make
it better. Or at least, bearable. Sometimes the
prospect of tearing an existing system down and
rebuilding from scratch is incredibly alluring, but it
is a luxury that we don’t get to indulge very often.

There is much debate in technology circles about what
the term ‘legacy’ means, but one common definition is
any system that’s being used for real work – i.e., it’s ‘In
Production’. Some prefer a looser definition along the
lines of having survived a version upgrade, but either
way, projects either survive and become ‘legacy
systems’, or they fail. Whether those that survive are
successes, or merely not failures, is a debate perhaps
for another time.

Even in a continuous delivery environment, where a
deployed system undergoes almost constant change,
it is still in some sense a legacy system after initial
release, although the term seems to be frowned upon.
This seems to be because ‘legacy’ is equated with ‘bad’,
although its more general English definition is to do with
handing something down as a gift. It’s also associated with ‘old’, which carries its
own disparaging connotations in technology.

Still the fact remains that most of us spend most of our time working on – fixing,
upgrading, maintaining, maybe even improving – legacy systems, rather than
producing new systems from scratch. After all, if the majority of work was on new
endeavours, that would mean that the majority of past projects had failed.

Maybe we should start seeing the positive aspects of our ‘Legacy’ and strive to make
our systems as welcome a gift to future generations of programmers as we are able.

I
Volume 29 Issue 2
May 2017

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Sean Corfield,
Reginald Garnepudi,
Pete Goodliffe, Roger Orr

ACCU Chair
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAY 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
8 Code Critique Competition

Competition 105 and
the answers to 104.

15 ACCU Oxford – 28 March
2017
Frances Buontempo
talked about Actual
Intelligence, and a
few people wrote
about the evening.

REGULARS
16 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.3: 1st June 2017
C Vu 29.4: 1st August 2017

Overload 140:1st July 2017
Overload 141:1st September 2017

FEATURES
3 An Ode to Code

Pete Goodliffe shares his annual programming
practice poem.

4 Myths about ‘Big Data’
Reginald Gamepudi dispels some of the
hype around one popular technology.

5 On Turnabout is Fair Play
A student responds to the Baron’s latest
challenge.

6 A Hollywood Take on Dangling Pointers?
Silas S. Brown tells a fable about read-only variables.

7 I Can’t Think Fast Enough in a Coding Interview
Sean Corfield shares his thoughts on the technical
interview process.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

MAY 2017 | | 3{cvu}

An Ode to Code
Pete Goodliffe shares his annual programming practice poem.

or the last few years at the excellent ACCU Conference, I’ve shared
a short coding poem as one of the lightening talks. (I have to admit
that the lightening talks have always been somewhat of a highlight of

the conference for me not only because of my contributions. You never
know what short nugget of wisdom or entertainment you’ll hear next.)

This year I felt I couldn’t possibly break from this tradition, so I present
for your delight this year’s entry. It’s worth reproducing in CVu because:
many of the membership are not able to attend the conference, and every
time I ‘perform’ a poem, people come up afterwards and ask for a copy.
Well, here it is…

Every year a coder here1 will bring a coding rhyme.
Some might be bad, but five minutes is not too long a time.
But often these performances, whilst they might entertain
Don’t do much to help us learn, to teach us, or to train.

So this year, here, I’d like to bring a far more useful thing:
Coder wisdom, earned with scars, that’s set for you to sing.
Hopefully among the other conference presentations
Its memorable, through meter, humour and practical demonstration.

ACT 1

‘Lay code out well’ is our first theme, it’s what we’re often taught.
But should we care? Yes! Let me share one way that I was caught...
One time I worked upon some code of Japanese descent;
The experience was eye opening and led to this lament.

When you can’t tell a single thing about the code you’re reading,
The lack of comprehension makes your working quite misleading.
Without clear names and clean code shape, subtle bugs can hide.
So, syntax faults and code horrors can lurk unseen inside.

It bit us once: to ship this beast with behaviour that was dumb
caused by a missing equals sign (that should stand out like a sore thumb)
We had to spend more than four days on extended bug foray.
If the sign aligned, we’d save that time, and reduce shipping delay.

Whilst you yourself might not have code from more than one location,
The lesson from this story serves as adequate indication.
Care how code looks; the ease of reading every coding line
Impacts the speed of your code feed: you shrink your debug time.

ACT 2

‘Code reviews’ are our theme two, a practice often skipped,
Although without it quality is often seen to slip.
We want the highest standard code, we aim for code hygiene;
Review accountability helps to achieve this dream.

It shouldn’t take much extra time if it is done correctly,
The benefits outweigh the costs; you’ll reap rewards directly.
Is interesting that modern workflows agree that this is best;
It’s seen most clearly used today in Github’s pull request.

You don’t want such an onerous scheme that it is hard to do.
You need to find the review balance that works the best for you.
And, if you don’t – you let your team commit what code they wanta --
Don’t be surprised if over time the code becomes a monster.

Story two that I’ll tell you corroborates this claim,
And shows why code reviewing should be high among your aims.
We’ll see a way a team once failed through poorly managed process,
And hopefully improve when learning from the diagnosis.

To get some software fully built the team, but one, ploughed on
To fix the final showstoppers and get a release done.
A solitary coder split to start on the next thing.
“We’ll join you shortly” said the rest, believing their planning.

But problem upon problem beset the release crew;
And as quickly as they worked they found more work they had to do.
So, rather than a week or two, for months they parted ways,
And the solitary coder worked with no-one to appraise.

He built most of the next release, and built it by himself.
One man writing all code alone may not lead to code health.
His labours worked, the code it ran, so all seemed pretty cool.
But some time later they found out he was a coding fool.

After months and months of coding, the next release was nigh.
There was no time to re-write, so they used his code and sighed.
It was painful but they did it, the next release date met.
But their precious codebase was now stuck with much more technical
debt.

The moral of the story told is clear for you to see:
Coding and design reviews help you work efficiently.
Even the most accomplished dev, when given things to do
May get it wrong, and code review helps stop you go askew.

EPILOGUE

So that’s the end of this lecture; my five minutes are done.
I trust the lessons shared with you were useful and were fun.
Now, keep your coding clean and your process goodness showing,
Or else you’ll end up starring in a conference coding poem. 

1. Me, usually

F

Becoming a Better Programmer # 104

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

4 | | MAY 2017{cvu}

REGINALD GARNEPUDI
Reginald is a passionate freelance software architect/
analyst/leader/developer/geek. He enjoys solving
complex data science challenges for clients and
teaching programming to kids. He can be reached at
reg@constantgeeks.com.

Myths about ‘Big Data’
Reginald Garnepudi dispels some of the hype around

one popular technology.

f I could borrow the neuralyzer for just one day, I would erase the
phrase “Big Data” from the memories of all people. (By the way, a
neuralizer is a device about the size of a large cigar, seen in the Men in

Black movie series that gives a bright flash and erases the memories of
people.)

Since you are reading this, I assume that you’ve definitely heard of what
Big Data is and if you are like most, you have more questions than
answers. People selling Big Data solutions make a lot of (false) promises
and build a lot of hype around it, so this is an attempt to shed some light
on the reality.

Myth #1
Big Data is an actual thing, a tool, a piece of software that you can install
or do something with it.

Myth buster #1: It is not a tool, or a platform or an API or a database. Big
Data is actually a kind of a problem that specifically affects people in the
data world (database admins, data warehouse admins, data governance
people, IT infrastructure folks). When they have a situation where the data
that their organisation is generating (or consuming) is bigger (or coming
in faster) than they can efficiently and cost effectively handle, then they
have a “Big Data” problem on their hands. That’s all there is to it. Nothing
more.

Myth #2
If you setup a Hadoop (Big Data) platform in your organisation, it will
automatically spit out insights that will transform your business.

Myth buster #2: Hadoop or any other so-called Big Data platforms are
software tools that solve a specific class of problems. i.e., they make it
easy for you to store and manipulate data on multiple smaller servers
instead of just one massive server (like traditional database servers). What
this gives you (as a person in the data world) is that you can scale
horizontally across multiple servers as your organisation grows. They
don’t have any inbuilt capabilities to spit out business insights if you
throw more data at them. That’s all there is to it. Nothing more.

Myth #3
Everyone has a Big Data problem and everyone at the CXO level should
be worried about it.

Myth buster #3: As I said in myth buster #1, the Big Data situation is a
problem in the data folks’ realm. It should never be a concern at the CXO
level. Unfortunately, the hype starts at the top of the organisation and is
forced down the hierarchy.

Myth #4
A Big Data platform is a cheap alternative to traditional data warehouse
solutions.

Myth buster #4: In the slide decks of people who sell these platforms, you
will most definitely see a slide that shows that Hadoop (being open

source) is so much cheaper compared to proprietary platforms. But if you
add up all the infrastructure costs, cloud hosting or on-premise costs,
support license costs, hiring external consultants, up-skilling your
existing team, development costs, etc., the difference could be
insignificant.

Myth #5
A Big Data platform (aka, Data Lake) is where you dump all your data and
worry about it later.

Myth buster #5: Only insane people will even think of doing this. Why
would anyone spend thousands of dollars creating a brand new data
repository, only to aimlessly dump today’s data so that it might be useful
tomorrow? Data is the most precious commodity that an organisation has.
And it has to be treated with utmost care and upfront planning. It is very
common to hear statements like “just dump everything you have in a data
lake, because its cheap, and you can worry about how to use the data
later”. I implore you to please don’t fall for this theory. Always, always
start with a plan about what you want to do with your data upfront.

Myth #6
Big Data is a new problem

Myth buster #6: The problem of insufficient storage and processing
capacity for the amount of data you have (or want to have in the future) is
not a new problem. Organisations’ data needs have always been playing
catch-up with the available capacity ever since computers were invented.
Technologies like Hadoop make it possible to scale horizontally,
assuming you are willing to spend time, effort and sweat.

Myth #7
Big Data platform will make the Data Analysts’ life easy

Myth buster #7: This is probably the worst myth I always hear. There are
two distinct kinds of people in an organisation…

1. Folks who are responsible for collecting, storing and managing data.
(These are the people I talk about in Myth #1 above). And

2. The ones that use the data and do something with it. I’ll put these
people in the broad bucket called Data Analysts (aka, Data
Scientists). These are the ones that take data from one or more
sources, do some data wrangling, munging and massaging in order
to dig out answers to business questions about “how to save money”
or “how to make more money”.

The number of problems that the Data Analysts solve that need huge
amounts of data is so minuscule, that they hardly ever think in terms of
big data. The (statistical and machine learning) algorithms that they use
often don’t need huge data.

If you understand these myths, you might then ask, “There seems to be so
much buzz around this, so there has to be something here that we can use.
What is it?”

Yes, there is something!! For an organisation, data is often the most under
utilised asset. If you really want to see how data can be useful in your
organisation, you have to embrace a new/different paradigm. It is the
paradigm of becoming a ‘Data Driven Organisation’. Big data is just a
small challenge, once you start thinking about how data can be the new
oil that runs your organisation. 

I

MAY 2017 | | 5{cvu}

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

On Turnabout is Fair Play
A student responds to the Baron’s latest challenge.

ast time they met, the Baron challenged Sir R----- to turn a square of
twenty five coins, all but one of which the Baron had placed heads up,
to tails by flipping vertically or horizontally adjacent pairs of heads.

As I explained to the Baron, although I’m not at all sure that he was
following me, this is essentially the mutilated chess board puzzle and can
be solved by exactly the same argument. Specifically, we need simply
imagine that the game were played upon a five by five checker board

which we mutilate by removing the square upon which the Baron had
placed the tail

Now, at each turn of a pair of coins Sir R----- must place tails upon both
one white and one black square, and so if there are more of the one than
there are of the other then he cannot possibly succeed in turning them all.
The Baron could have ensured that this was the case by placing his tail
upon a black square, leaving eleven heads upon the black squares and
thirteen of them upon the white squares, and I should therefore have
advised Sir R----- to most emphatically decline the wager! 

Acknowledgement
Courtesy of www.thusspakeak.com

L

Fi
gu

re
 1

Figure 2

www.thusspakeak.com

A Hollywood Take on Dangling Pointers?
Silas S. Brown tells a fable about read-only variables.

friend wrote someString.substr(3).c_str() and her code
seemed to work but her colleagues were saying something about
“going out of scope” that she didn’t understand. So I sent her a film

script.

The scene opens in some forgotten alleyway. Cue scary music. In walk the
Silly Evil Overlord (SEO) and his Minions, all dressed in black. (Yes, I’m
afraid it’s only a B movie. We’re not super-rich you know.)

The SEO speaks. “And now”, he says, “my secret plans for dominating
the world are well in progress. I tricked the book-shop chain into opening
up a new book shop that contained just the books we wanted. And then”,
(turns to shout at his Minions) “Minion Number One! Did you accomplish
your Mission for me?”

“Yes my lord. I stole a special piece of paper from the new book shop, my
lord. This should tell us everything we need to know.”

“Good”, said the SEO. “And now, because I am Evil, and the audience
need to see my Evilness, it’s time for my first Evil Act of the Film. Mwa-
hahaha!” (stereotypical evil laughter) “Seeing as we have now got what
we want from the new book shop, we have no use for that book shop
anymore. Mwahaha!” (Pulls out a small cylindrical gadget marked ‘Scope
of Destruction’ and presses a button on it. Explosion sounds. Stock
footage of pyrotechnics. Hole in the ground.)

SEO still chuckling. “And now” (pause) “for the second part of my Evil
Secret Plan. The piece of paper you took from the book shop contains all
the details we need to break into the bank and steal a gazillion dollars.”
(We’re in America of course. Where else would make movies this bad?
Oh, I’ll probably get some flak for that.)

Scene changes to inside a tunnel. A sign says ‘Bank Vault’ above a
myriad flashing lights and buttons. SEO and Minions arrive.

“And now” says the SEO, “Minion Number Five! Read the special piece
of paper that tells us the Secret Security Key!”

Minion Number Five starts to read. “Breaking Into Movie Banks for
Dummies. The book you require is located on shelf 451 of the Book
Shop.”

Minion Number Four steps forward. “My lord, I will go to the book shop
and get it at once.” (runs off)

Minion Number Three: “ummmm... my lord? He won’t get very far my
lord.”

SEO thunders “WHY not?”

“Because, um, er, my lord, pardon me please, your evilness, I mean, um,”

“You blew up the book shop, my lord” says Minion Two.

SEO is indignant. “We didn’t have to keep the book shop around, wasting
all that space! We had no use for it anymore after we took out the one
sheet of paper we really needed. Besides, imagine the inconvenience of
having to keep a whole book shop on my List of Things to Blow Up
Before I Die. Besides, didn’t Mr Black assure us that one piece of paper
from the book shop was all that would be needed?”

“With all due respect my lord” said Minion One, “perhaps what Mr Black
really meant to say is, he can manage on one piece of paper as long as the
book shop is still around for him to...”

“WHY DIDN’T Mr COMPILER pick me up on this??” thundered the
SEO.

Enter Mr Complier. “My lord, technically you didn’t break any of my
Compiler Rules. You said you needed to keep the piece of paper, and you
kept it. You never said the book shop it points to has to still be around for
you to check what it refers to. That’s not in my department to spot. Maybe
Mr Lint might have seen it, if you’d happen to catch him on a good day,
but fundamentally you must understand that, although we do try to point
out your mistakes as best we can, there’s a certain class of error that
always sneaks past us and -”

“Enough!” thunders the SEO. “I’ll blow YOU up next. Suggestions!
There must be Something we can do.”

“My lord”, chimes in another Minion, “we put a special lock on it called
const, so it can’t change. Doesn’t that mean the book will have been
protected from change even though you blew up the book shop?”

Laughter all round. “Wait” said the SEO, “I want to look into this. Minion
Number Five! You didn’t read the whole piece of paper, I know it. Read
it again.”

Minion Number Five was nervous. “OK”, he managed, “here we go my
lord: Breaking Into Movie Banks for Dummies. The book you require is
located on shelf 451 of the Book Shop. The bearer of this Ticket is entitled
to read the Book but not to write in it.”

Silence. Camera pans around everyone’s faces.

Minion Three pipes up. “So in other words, const doesn’t mean it can’t
change, it just means they won’t let US change it with that ticket. It might
still change behind our backs if someone else has a better ticket. Or a…”
(looks nervously at the spent detonator and breaks off)

Mr Compiler comes back in, “It means I’ll moan at you if you try to write
in the book” he said. “Unless of course you tell me to stop moaning with
a Cast. In which case I’ll let you write in it. And yes, of course it’s no
guarantee against somebody else writing in it, or moving it, or blowing it
up. That’s the trouble with those tickets. If you’ve got the ticket, it doesn’t
mean you’ve got the book, so you’d better know where the book is and
who’s looking after it.”

“Oh” spat the SEO. “Useless Tickets. Next time I have an Evil Plan, I’ll
have my minions copy the whole Book, not just the Ticket!”

Gasps around all the Minions. “My lord! Tickets can be very useful for
speed, much faster than copying a whole book! You just have to make
sure you know what you’re doing with…”

“Silence!” thundered the SEO. “Until I know what I’m doing, I’m having
you all copy out whole books next time before I blow up the book shop,
even if that does slow me down a bit! In fact, I’m going to find some more
intelligent Minions that know when to steal a book instead of copy it. But
that comes later.”

A Minion dares to speak up: “Maybe we should try to get that book
anyway, my lord. I mean, it might have survived the explosion.
Sometimes they do, especially if nobody’s got around to re-building
something else on the same spot before we get there. Like when we
vandalised the market stall in the Prequel Film That Shouldn’t Be Made,
remember? So it does sometimes work anyway. And if it doesn’t, we’ll
just get nothing or gibberish, and we’ll know. It can’t be worse than that,
can it?”

Minion Number Four comes back, panting and clutching a book. “My
lord, guess what? Your Arch-Rival, sir, the Intelligent Evil Overlord. He
persuaded the Town Planners to allocate the freed-up spot to him, and he

A

SILAS S. BROWN
Silas is a partially-sighted Computer Science post-doc in Cambridge
who currently works in part-time assistant tuition. He has been an
ACCU member since 1994 and can be contacted at ssb22@cam.ac.uk
6 | | MAY 2017{cvu}

SEAN CORFIELD
Sean Corfield used to build compilers, virtual
machines, databases and telecom systems but he
finally found his first love again – functional
programming – and now he writes Clojure almost
every day, and blogs about it at
https://seancorfield.github.io/

I Can't Think Fast Enough in a
Coding Interview

Sean Corfield shares his thoughts on the
technical interview process.

ractice’ is not the answer. ‘Cracking the Coding Interview’ is not
the answer. A few people have said it – and more of us should be
saying it: these ‘coding monkey interviews’ are stupid. They do

not determine how good a programmer someone will be once they’re
actually hired and working. The big companies that use them have finally
started to admit this. The hiring process is broken and we need to stop
participating in this silly game so many companies have adopted because
they’re too lazy to figure out how to interview people effectively. I’ve
refused to interview with companies that do this and I’ve walked out of
interviews that have turned out that way. If a company really believes a
quick fire ‘coding monkey interview’ will find them the ‘best
programmers’ then that is a company you want to avoid – they don’t
understand their engineers, they don’t know what makes a good team.

Remember that the interview is a two-way street. You are interviewing
the company as much as they are interviewing you. An interview should
be a conversation about what you enjoy in a software project, in a team,
in a manager – as well as what you find problematic. It should be a chance
for you to talk about how you approach problems – both technical
problems and people problems – how you balance trade offs, and how you
deal with things that don’t go your way. You should be able to defend
your choice of technology but you should also know it well enough to be
able to talk about its flaws or the situations where it isn’t such a good fit.
You should be able to ask about the company’s processes, how they
manage teams, how they resolve conflict, how they reward success.

An interview should reflect the sort of collaborative process you can
expect once you are an employee at that company. If an interview seems
to be a confrontational process, assume that’s how the company will treat
you once you’re hired.

I’ve been a hiring manager for about twenty years now. I do not do
‘coding monkey interviews’ because I know they do not work. And I have
never hired anyone that can’t do the job I’ve hired them for. 

Reference
https://www.quora.com/Im-a-software-engineer-with-20-years-
experience-but-I-cant-think-fast-enough-in-coding-interview-What-
should-I-do/answer/Sean-Corfield?share=1587c4af#

‘P

A Hollywood Take on Dangling Pointers? (continued)
MAY 2017 | | 7{cvu}

made sure we still had the access rights. And he built an exact replica of
the book shop you blew up, in the exact same place, and sure enough it
had the right-looking book on shelf 451. Hot off the press too! And it’s a
signed copy, look at this.” (opens at the first page, SEO reads) “Dear SEO,
I know you’ll enjoy using this special replacement edition I made
specially for you. I wouldn’t normally say anything, but I just had to sign
it this time for the audience’s benefit. Mwa-hahaha. IEO.” (Let’s not call
him Cunning Evil Overlord because that’s how you get fired.)

Minion grabs book. “Isn’t that kind of him? I’ll start using it at once, my
lord. What could possibly go wrong?” (Jarring orchestral chord. Fade to
black.)

Two months later my friend was unfortunately fired from her post, saying
they'd criticised her for failing to work independently, but also for failure
to sufficiently communicate with colleagues.

She found this contradictory, and I must confess I would have expected a
little more clarity from an 84,000-employee German enterprise.

I recommended she make a point of asking future potential employers if
they practise pair programming – it sounds like that’s what she needs. 

Write for us!
C Vu and Overload rely on article contributions from members.
That’s you! Without articles there are no magazines.

What do you have to contribute?

 What are you doing right now?

 What technology are you
using?

 What did you just explain to
someone?

 What techniques and idioms
are you using?

For further information, contact the
editors: cvu@accu.org or
overload@accu.org

https://www.quora.com/Im-a-software-engineer-with-20-years-experience-but-I-cant-think-fast-enough-in-coding-interview-What-should-I-do/answer/Sean-Corfield?share=1587c4af#
https://seancorfield.github.io/

#include <iterator>
#include <vector>
// get unique values in the range [one, two)
template <typename iterator>
std::vector<typename iterator::value_type>
unique(iterator one, iterator two)
{
 if (distance(one, two) < 2)
 {
 // no duplicates
 return {one, two};
 }
 // first one can't be a duplicate
 std::vector<typename iterator::value_type>
 result{1, *one};
 while (++one != two)
 {
 auto next = *one;
 bool is_unique =
 (*result.rbegin() != next);
 if (is_unique)
 {
 result.push_back(next);
 }
 }
 return result;
}

Li
st

in
g

1

Code Critique Competition 105
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I was trying to write a simple template that gets the unique values from
a range of values (rather like the Unix program uniq) but my simple test
program throws up a problem.

 test with strings
 a a b b c c => a b c
 test with ints
 1 1 2 2 3 3 => 1 1 2 3

Why is the duplicate 1 not being removed?

The code is in Listing 1 (unique.h) and Listing 2 (unique.cpp).

Critique

Jon Summers <la_solutions@btconnect.com>

Header file unique.h initialises the result vector in this statement:

 std::vector<typename iterator::value_type>
 result{ 1, *one };

The initial values are passed in an initialiser list. Unfortunately, at least for
this question, the initialiser list passed to a vector can have two meanings.
The data can either be a list of values, each having the same type; or an
integer that specifies the initial size, followed by data either of the same
or a different type.

The data type of *one is templatised. When instantiated with a
std::string, the initialiser list is

 { 1, std::string ("some string") }

The compiler understands that to mean: “Create a vector having one
element, whose value is ‘string’”.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <string>
#include <vector>
#include "unique.h"
template <typename T>
void test(std::ostream &os,
 std::vector<T> const &vector)
{
 auto result =
 unique(vector.begin(), vector.end());
 auto out =
 std::ostream_iterator<T>(os, " ");
 copy(vector.begin(), vector.end(), out);
 os << "=> ";
 copy(result.begin(), result.end(), out);
 os << "\n";
}
int main()
{
 std::cout << "test with strings\n";
 std::vector<std::string> ptrs;
 ptrs.push_back("a");
 ptrs.push_back("a");
 ptrs.push_back("b");
 ptrs.push_back("b");
 ptrs.push_back("c");
 ptrs.push_back("c");
 test(std::cout, ptrs);

 std::cout << "test with ints\n";
 std::vector<int> ints;
 ints.push_back(1);
 ints.push_back(1);
 ints.push_back(2);
 ints.push_back(2);
 ints.push_back(3);
 ints.push_back(3);
 test(std::cout, ints);
}

Listing 2
8 | | MAY 2017{cvu}

When instantiated with an int, the initialiser list is

 { 1, 1 }

The compiler understands that to mean: “Create a vector having two
elements, whose values are 1 and 1.”

The following loop that examines successive values for uniqueness
doesn’t see the first element in the vector<int>, because its logic
assumes an initial length of 1.

Paul Floyd <paulf@free.fr>

My first reactions on reading the code were

 why is this reinventing the wheel when std::unique exists?
(http://en.cppreference.com/w/cpp/algorithm/unique)

 which constructor is being called for ‘result’ in ‘unique’?

The compiler [clang++ on Mac OS] also isn’t too happy with this re-
inventing of the wheel:

 cc104.cpp:10:6: error: call to 'unique' is
 ambiguous
 unique(vector.begin(), vector.end());

In order for it to compile, I had to rename ‘unique’.

The behaviour of this unique is different to that of std::unique. The
version presented here copies unique elements to a new vector (without
any call to reserve). It then returns this vector, which may require another
copy operation – ‘unique’ has more than one return path which may
inhibit NRVO. std::unique modifies the container, moving unique
elements towards the head. This minimizes the amount of allocation and
copying, and still allows the user to make a copy if she doesn’t want the
original vector to be modified. Personally I prefer std::unique as it is
more in the C++ philosophy that it doesn’t make you pay for something
that you don’t necessarily want.

As to which constructor is being called for result in unique, let’s look
at the code:

 result{1, *one};

Unfortunately, this could have two meanings. If the type of *one is the
same as 1, i.e., an int, then this can be a std::initializer_list,
corresponding to the following vector constructor:

 vector(std::initializer_list<T> init,
 const Allocator& alloc = Allocator());

If the type of *one isn’t int, then the constructor is

 vector(size_type count,
 const T& value,
 const Allocator& alloc = Allocator());

The second case occurs when the vector is instantiated with
std::string, consequently result contains a single value, the first
value of referenced by the input iterator one. This is probably the intent
of the code.

The first case occurs when the vector is instantiated with int. In this case,
the first 1 isn’t considered to be the count, it is treated as a value in the init
list. By coincidence it happens to be the same as the input vector values.
So it isn’t the case that the first 1 isn’t being removed, rather an extra 1 is
always being inserted at the head position.

To wrap up, I have a few nits. I don’t like the arguments called vector
and iterator. In fact I don’t like any language keywords or standard
library names to be used as variable names. This just makes the code harder
to read and more difficult to talk about.

Lastly, the std::vectors in main could be more concisely initialized
with init lists.

Raimondo Sarich <rai@sarich.co.uk>

Firstly, I could not compile the code with “error: call to 'unique'
is ambiguous”. I renamed the function to myunique, I assume the
developer is using a more permissive compiler.

The bug is pretty easy to spot, this:

 std::vector<typename iterator::value_type>
 result{1, *one};

has to change to this:

 std::vector<typename iterator::value_type>
 result(1, *one);

This problem is covered Scott Meyers’ Effective Modern C++, Item 7:

If, however, one or more constructors declare a parameter of type
std::initalizer_list, calls using the braced initialization syntax
strongly prefer the overloads taking std:initalizer_lists.
Strongly. If there’s any way for compilers to construe a call using a
braced in i t i a l i ze r to be a cons t ruc to r tak ing a
std::initalizer_list, compilers will employ that interpretation.

He goes on to explain exactly this difference between constructing a
std::vector of numeric types with curly braces versus parentheses.
Beware std::vector!

There seems to be little else to remark on. The code could use braced
initialization of the test vectors, a scattering of const (the vectors, two,
next, and is_unique), and cbegin/cend.

std::vector::back() wou ld b e b e t t e r t h an
*std::vector::rbegin(). And of course, std::unique should be
preferred outside academic purposes.

James Holland < james.holland@babcockinternational.com>

At first glance, the result of the student’s program seems baffling. How
can the software produce two different results just because on one occasion
the vector contains elements of type int and on another occasion elements
of type std::string? The reason for this behaviour hinges on the set
of constructors std::vector possesses and the way a particular
constructor is selected.

Consider what happens when the compiler comes across the statement
std::vector<std::string> result{1, "a"}, for example. The
compiler tries to match the parameter types to one of std::vector’s
constructors. The compiler’s first choice is to select the constructor with
a parameter type of std::initializer_list<T>. This is feasible as
the vector’s definition used braces in the initialisation. However, the
compiler cannot use this constructor as the first value in the initialisation
list is not convertible to a string. The compiler has to discard the
constructor and attempt to select another. Eventually the compiler comes
across a constructor that takes a numerical value and an std::string.
The compiler will use this constructor to create an std::vector
containing, in this case, one string of value "a".

Now, consider what happens when the definition is changed to
std::vector<int> result{1, 1}. As brace initialisation is used,
t he compi l e r f i r s t cons ide r s a c ons t ruc to r w i th
std::initializer_list<T> as a parameter type, as before. This
time the compiler does not reject the constructor as all the braced
initialisation values are of type int (the type specified in the angle
brackets of the definition). In this case the selected constructor creates an
std::vector with two elements, both of value 1.

What we have seen is that similar looking definitions can initialise vectors
with a varying number of elements. This behaviour is regrettable and
probably represents a flaw in the design of std::vector. It is this
problem that the student has unwittingly encountered.

 The troublesome statement in the student’s code is just after the comment
"// first one can't be a duplicate". Using parenthesises
instead of braces will result in the appropriate constructor being called and
will provide the required initialisation. The student’s program will now
work as expected.

When designing code to fulfil some requirement, it is always beneficial to
see if library functions can be used in place of writing code from scratch.
In the student’s code, unique() contains two if statements and a while
loop and is quite difficult to understand and reason about. I suggest it is
possible to use functions from the standard library to perform the same
MAY 2017 | | 9{cvu}

function while being simpler to understand. Using such library functions
will go a long way in ensuring the software performs as required. I offer
the code below as a direct replacement for the student’s unique()
function.

 template <typename iterator>
 std::vector<typename iterator::value_type>
 unique(iterator one, iterator two)
 {
 std::vector<typename iterator::value_type>
 result{one, two};
 const auto end = std::unique(result.begin(),
 result.end());
 result.resize(std::distance(result.begin(),
 end));
 return result;
 }

The body of the replacement function has only three statements of any
significance. The first creates a vector containing the range of values, the
second moves any adjacent duplicates to the end of the vector and the
fourth reduces the size of the vector by discarding the duplicate values.
Finally, the function returns the processed vector.

Robert Lytton <robert@xmos.com>

Elizabeth Barrett Browning once said of C++, “How do I construct thee?
Let me count the ways”, and let us follow her lead with a class T.

 T t1; T t2(t1); T t3=t1; T t4(1,2,3);
 T t5{}; T t6{t1}; T t7={t1}; T t8{1,2,3};
 T t9={1,2,3};

As an aside, T’s implementation uses the non-rule “rule of zero”,
outsourcing ownership to smart pointers, thus the compiler produces just
what we need, including rvalue constructors such as:

 T t2b(returnsT());

Phew!

Regarding all this construction Liz may “love thee to the depth and breadth
and height” but I am not so sure. It seems less “smiles” and more “tears,
of all my life”.

So “as men strive for right” can’t we cut through all of this for one true
construction syntax and forget about the rest?

The brace constructor syntax arrived in C++11 and at first glance looks
like a uniform initializing syntax, with benefits. As intimated above, all
we need to do is replace the parentheses with braces and get a few bonus
constructs for free viz:

 T t{}; is not a function declaration but constructs an object.

 class T { int i{0}; } is an alternative to using a member
initializer list.

We can also construct containers more elegantly.

For example, in the exercise main() function, the container initialisation:

 std::vector<std::string> ptrs;
 ptrs.push_back("a");
 ptrs.push_back("a");
 ptrs.push_back("b");
 ...

can use an initializer_list as the constructor argument:

 std::vector<std::string> ptrs {"a","a","b",...

Hang on, what does “initializer_list as the constructor argument”
mean?

Ah, yes. A class may declare a T(std::initializer_list<U>)
constructor along side its other constructors. Ay, there’s the rub – the
compiler will do all it can to use the initializer_list constructor,
even if it needs to convert types to make it fit and one of the other
constructors is an exact fit.

For example, in the exercise unique() function, the vector result is
constructed using the literal integer 1 and a value of type ‘dereferenced
iterator’ inside of braces:

 std::vector<typename iterator::value_type>
 result{1, *one};

In the first test:

 the dereferenced iterator is of type std::string;

 the compiler can’t convert an integer to a string nor a string to an
integer;

 thus it can’t create an initializer_list;

 thus it can’t call the vector’s initializer_list constructor;

 instead it calls the vector(size_type, const T&)
constructor.

In the second test:

 the dereferenced iterator is of type int;

 the compiler can create an std::initializer_list<int>;

 it can call the vector’s initializer_list constructor;

 thus ‘result’ is initialized with two values {1,1}.

Hence the output when the test is run.

Changing from braces to parentheses force the compiler to use
vector(size_type,const T&) viz:

 std::vector<typename iterator::value_type>
 result(1, *one);

As auto with braces prefers std::initializer_list<> too (unless
it’s a return or lambda type or ...) but templates don’t, it seems a uniform
initializing syntax is out of reach. I have to be content with, as Liz puts it,
“if God choose, I shall but construct thee better after this.”

Herman Pijl <herman.pijl@telenet.be>

To start with, I don’t like the name iterator as a name for a template
parameter type. The template parameter type should use a naming
conven t i on , i nd i ca t i ng wh i ch i t e r a t o r ca t e g o ry (e . g .
std::input_iterator_tag) is expected by the template algorithm.
Concretely, I would like to see something like

 template<typename In>

I would even suggest to use a static_assert at the beginning of the
template function definition. When the static_assert fails, a
descriptive string would explain that assumption about the iterator
category is not met, e.g.

 {
 static_assert(std::is_base_of<
 std::input_iterator_tag,
 typename std::iterator_traits<In>::
 iterator_category>(),
 "iterator category must be (derived from)"
 " std::input_iterator_tag");
 ...
 }

I like this ‘concept’ ;-).

The second problem I see in the template declaration is the use of
iterator::value_type. This assumes that the iterator is a ‘complex’
type, i.e. some struct or class. In other words, the iterator cannot be a simple
(plain old Kernighan and Ritchie) pointer. I would like to call the template
with ‘legacy’ code

 int intArray[] = {1, 1, 2, 3};
 auto result = unique(intArray + 0,
 intArray + sizeof(intArray)/sizeof(int));

In order to achieve this, replace

 typename iterator::value_type
10 | | MAY 2017{cvu}

by

 typename std::iterator_traits<In>::value_type

It looks like std::iterator is deprecated in C++17, so get used to the
std::iterator_traits instead.

Some comments about the template definition

The implementation starts with an attempt to find out the size of the iterator
range. It is clear that if the range contains 0 or 1 element, then there can
be no duplicates. Unfortunately, the distance algorithm is a serious
overhead. I would guess that the standard implementation of ‘distance’
will use the iterator_traits to have an almost immediate answer for
random access iterators, but for the other categories, the overhead is
enormous.

The intention was clearly to have a (premature) optimisation for small
collections, more in particular the empty collection and the singleton
collection, but trying to find the size of the iterator range by entirely
traversing the range is far from optimal.

Traversing the whole iterator range becomes a disaster when the iterators
are traversing an input stream. As the iterators are incremented, the input
stream is effectively consumed!

 std::istringstream is("1 1 2 2 3 3");
 std::istream_iterator<int> isit(is), isend;
 auto result = unique(isit, isend);

After the call to the distance template, the while-loop will not even
be entered!

More critique to come.

When the (distance < 2) condition is met, the template function
returns a braced initialiser. As the initialiser doesn’t fit the
std::initializer_list<T> constructor, the compiler tries to find
some non-explicit constructors that fit and it finds a template constructor.
Personally I (still) prefer to use the traditional constructor instead of an
inialiser because I want to keep control. I only use the curly braces for
default construction or when I want to the construct the object with the
std::initializer_list<T> constructor.

 return std::vector<typename
 std::iterator_traits <In>::value_type>(
 one, two);

As the vector has move semantics there is no overhead. You only have to
type some more characters.

Now we arrive at the bug.

 std::vector<typename In::value_type>
 result {1, *one};

When the value type is int, the initialiser (curly braces) syntax causes the
compiler to find two potential constructors

 vector(size_type, const T& value,

 const Allocator&alloc = Allocator());
 // not explicit since C++11

 vector(initializer_list<T> init,

 const Allocator&alloc = Allocator());

And the Standard says that the winner is: the initializer_list!
Unfortunately this was not the one that we wanted. You can solve the
ambiguity by using the parentheses instead of the curly braces.

 std::vector<typename In::value_type>
 result (1, *one);

When the value type is string, there is only one constructor to consider.

At first sight I liked the trick to find the previous element

 *result.rbegin()

but when looking closer to the vector template there exists a back member
function.

 result.back()

could be slightly more performant.

I made another version my_unique that should do the trick. I
experimented a bit with a binary predicate.

 #include <iterator>
 #include <vector>
 //extra
 #include <iostream>
 #include <string>
 #include <sstream>
 #include <type_traits>
 #include <functional>
 template<typename In> std::vector<
 typename In::value_type>
 unique(In one, In two)
 {
 // concept
 static_assert(std::is_base_of<
 std::input_iterator_tag,
 typename std::iterator_traits<In>
 ::iterator_category>(),
 "iterator category must be (derived"
 " from) std::input_iterator_tag");
 if (std::distance(one,two) < 2)
 {
 return std::vector<
 typename In::value_type>(one, two);
 //return {one, two};
 }
 std::vector<typename In::value_type>
 result (1, *one);
 while(++one != two)
 {
 auto next = *one;
 bool is_unique =
 (*result.rbegin() != next);
 if (is_unique){
 result.push_back(next);
 }
 }
 return result;
 }

 //template<typename In, typename BinPred =
 //std::not_equal_to<typename In::value_type>>
 template<typename In>
 std::vector<typename
 std::iterator_traits<In>::value_type>
 my_unique(In one,
 In two,
 std::function<bool(typename
 std::iterator_traits<In>::value_type
 const &,
 typename
 std::iterator_traits<In>::value_type
 const &)> binPred =
 std::not_equal_to<typename
 std::iterator_traits<In>::value_type>{})
 {
 static_assert(std::is_base_of<
 std::input_iterator_tag,
 typename std::iterator_traits<In>::
 iterator_category>(),
 "iterator category must be (derived from)"
 " std::input_iterator_tag");
 std::vector<typename
 std::iterator_traits<In>::value_type>
 result;
 if (one != two)
 {
 result.push_back(*one);
 while (++one != two){
MAY 2017 | | 11{cvu}

 if(binPred(*one ,result.back())){
 result.push_back(*one);
 }
 }
 }
 // post condition: one == two
 return result;
 }
 template<typename In>
 void test(std::ostream &os, In one, In two)
 {
 auto result = my_unique(one, two);
 auto out = std::ostream_iterator<typename
 std::iterator_traits<In>::value_type>(
 os, " ");
 std::copy(one, two, out);
 os << "=> ";
 std::copy(result.begin(),
 result.end(), out);
 os << "\n";
 }
 template<typename T>
 void test(std::ostream &os,
 std::vector<T> const &vec)
 {
 test(os, vec.begin(), vec.end());
 }
 int main()
 {
 std::vector<std::string> strPtrs
 {"a", "a", "b", "b", "c", "c"};
 test(std::cout, strPtrs);
 std::vector<int> intPtrs{1, 1, 2, 2, 3, 3};
 test(std::cout, intPtrs);
 int intArray[] = {1, 1, 2, 3};
 std::cout << "intArray ";
 test(std::cout, intArray + 0,
 intArray + sizeof(intArray)/sizeof(int));
 // auto resultForArray = my_unique(intArray
 // + 0, intArray +
 // sizeof(intArray)/sizeof(int)
 std::istringstream is("1 1 2 2 3 3");
 std::istream_iterator<int> isit(is), isend;
 auto result = my_unique(isit, isend);
 std::copy(result.cbegin(),
 result.cend(),
 std::ostream_iterator<int>(std::cout,
 " "));
 std::cout << '\n';
 std::vector<int> intPtrsOrig
 {1, 1, 2, 2, 3, 3};
 auto resultOrig =
 unique(intPtrsOrig.begin(),
 intPtrsOrig.end());
 std::copy(resultOrig.cbegin(),
 resultOrig.cend(),
 std::ostream_iterator<int>(std::cout,
 " "));
 std::cout << '\n';
 }

Commentary
This is, as a couple of people noted, a fairly straightforward critique with
one main point – the troublesome construction of std::vector when
used with braced initialisers.

The subsidiary point, which was about preferring the standard library over
hand-written code, was slightly overtaken by events for those whose

compilers detected the ambiguous overload with std::unique for them.
(This occurs when some of the contents of <algorithm> are included
indirectly by one of the headers explicitly listed.)

My own replacement for the hand-written unique was:

 std::vector<T> result;
 std::unique_copy(one, two,
 std::back_inserter(result));
 return result;

In production code which approach one might take would depend on the
precise context.

I was a little surprised that no-one commented on this line:

 auto next = *one;

as this takes an unnecessary copy of the object: I would prefer to see auto
const & used here. Somehow poor use of auto seems be easy to
overlook.

Additionally, I dislike the use of the names one and two – it would be
clearer, I feel, to follow the naming convention for algorithms in the
standard library and name them first and last.

Finally I would like to expand on Robert’s closing remark about the
interaction of auto and initializer_list. The following simple
program demonstrates the issue:

 #include <initializer_list>
 int main()
 {
 auto i{1};
 return i; // Is this valid?
 }

In the published wording for C++11 and C++14, i is deduced as a variable
of type std::initializer_list<int> and so the return statement
is invalid.

The good news is that this behaviour has been changed: the relevant paper
N3922 was voted into the C++17 working paper in Urbana-Champaign in
Nov 2014. With this change, i is now deduced as int. Even better, it was
decided to treat the resolution as a defect for previous versions of C++.

So this example already compiles successfully with g++ 5.1, clang 3.8 and
Visual Studio 2015.

The Winner of CC 104
I was pleased to see all five entrants found the problem and were all able
to explain, with more or less detail, what it was and how to fix it. Rai’s
reference to Scott Meyers was helpful for any who wish to read further.

Several people commented that it would be preferable to make use of the
standard library; it is a good habit to get into, when you are needing a fairly
standard algorithm, to start by searching the standard library to see if it has
already been written!

Herman pointed out a couple of places where the existing code was
insufficiently general; input iterators can cause particular problems to
generic algorithms (this surfaced recently in the discussions over the
changes that were necessary when adding parallel versions of various
algorithms into C++17).

Overall though I think Rai picked up the largest number of incidental
improvements and so I have awarded him this issue’s prize.

 iterators with pointers was valid and did have the side-effect of removing
the undefined behaviour. I did like his introduction of a simple helper struct
NameScoreEntry to assist with reading the data in: it is very easy to
create such structs in C++ and there can be significant benefits for
readability with having named fields.

Overall, I think James provided the best critique, so I have awarded him
the prize.
12 | | MAY 2017{cvu}

Code Critique 105

(Submissions to scc@accu.org by Jun 1st)
I was writing a simple program to analyse the programming languages
known by our team. In code review I was instructed to change
languages() method in the programmer class to return a const reference
for performance. However, when I tried this the code broke. I’ve
simplified the code as much as I can: can you help me understand what’s
wrong? It compiles without warnings with both MSVC 2015 and gcc 6.
I am expecting the same output from both ‘Original way’ and ‘New way’
but I get nothing printed when using the new way.

The listings are as follows:

 Listing 3 is programmer.h

 Listing 4 is team.h

 Listing 5 is team_test.cpp

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

#include <iostream>
#include <list>
#include <map>
#include <string>
#include <vector>

#include "programmer.h"
#include "team.h"

int main()
{
 team t;
 programmer p;
 p.add_language("C++");
 p.add_language("Java");
 p.add_language("C#");
 p.add_language("Cobol");
 t.add("Roger", std::move(p));

 p.add_language("javascript");
 t.add("John", std::move(p));

 std::cout << "Original way:\n";
 for (auto lang : t.get("Roger").original())
 {
 std::cout << lang << '\n';
 }

 std::cout << "\nNew way:\n";
 for (auto lang : t.get("Roger").languages())
 {
 std::cout << lang << '\n';
 }
}

Listing 5

#pragma once

class programmer
{
public:
 // Add a language
 void add_language(std::string s)
 { languages_.push_back(s); }

 // the programmer's languages - original
 std::vector<std::string>
 original() const
 {
 return {languages_.begin(),
 languages_.end()};
 }

 // new - avoid copying for performance
 std::list<std::string> const &
 languages() const
 { return languages_; }

 programmer() = default;

 programmer(programmer const& rhs)
 : languages_(rhs.languages_) {}

 programmer(programmer &&tmp)
 : languages_(std::move(tmp.languages_)) {}

 ~programmer() { languages_.clear(); }
private:
 std::list<std::string> languages_;
};

Li
st

in
g

3

#pragma once

#include <map>

class team
{
public:
 // Add someone to the team
 void add(std::string const &name,
 programmer const & details)
 {
 team_.emplace(
 std::make_pair(name, details));
 }

 // Get a team member's details
 auto get(std::string const &name) const
 {
 auto it = team_.find(name);
 if (it == team_.end())
 throw std::runtime_error("not found");
 return it->second;
 }

private:
 std::map<std::string, programmer> team_;
};

Listing 4
MAY 2017 | | 13{cvu}

http://accu.org/index.php/journal

14 | | MAY 2017{cvu}

ACCU Oxford – 28 March 2017
Frances Buontempo talked about Actual Intelligence, and a

few people wrote about the evening.

really appreciated Fran travelling from London to give this thought
provoking talk to this well attended ACCU Oxford monthly meeting.
This focused on the philosophical issues behind AI and what

intelligence is. One of the standout points for me was about how AI
systems are reflecting our prejudices even though this was not the
designer’s intention. This is something we will have to guard against, and
this will become more pressing as trust builds in AI systems e.g. in the
areas of law. I can foresee governments introducing regulations regarding
AI system behaviours because what is unacceptable behaviour for
humans will be unacceptable for AI systems too. The challenge will be
finding unprejudiced data to train the systems on. There was a very
interesting observation regarding Microsoft’s controversial AI chatterbot
Tay which was if it had been left running would it have cleaned up its act?

Nigel Lester

was so pleased to catch the great Fran Buontempo at ACCU Oxford,
especially so as I will miss Conference.

Fran took us on a quick one hour trip around all of the significant
features of the field of Artificial Intelligence, through the lens of a
mathematician, scientist and coder, by asking the question, “What is
Actual Intelligence?”

She explained that most of the current rash of successes for ‘AI’ are really
just maths.

Us i ng t he f an t a s t i c Dead Sa l mon S t udy h t t p s : / /
blogs.scientificamerican.com/scicurious-brain/ignobel-prize-in-
neuroscience-the-dead-salmon-study/ she reminded us that statistics and
science are hard.

The real challenge for machines and people is kindness. The fact that AI
is now raising questions about what it is to be human and how to behave
towards others in a way which includes non-humans is an achievement
and leads to hope for benefits from the field.

The lively conversation afterwards had memorable contributions from
Francis Glassborow, founding elder of ACCU, who pointed out that

Human Intelligence has been responsible for much death throughout
history.

The evening was rounded off with an explanation of how easy and
pleasant it is to contribute to the ACCU publications from the CVu Editor,
Steve Love.

Much thanks to Nigel Lister for organising a very well attended evening.

Tim Pizey

don’t often get a chance to attend the Oxford meetings of ACCU even
though I live in the town because they clash with my Bridge teaching
commitments. So it was a pleasure to be able to come to listen to Fran’s

run through of her keynote for the coming Conference. I probably had far
too much to say at the end but her talk was thought provoking (as keynotes
should be).

One thing I noted was that less than half the audience had read Gödel,
Escher, Bach: An Eternal Golden Braid by Douglas R. Hofstadter. I think
this book is essential reading for anyone with an interest in AI. I
remember struggling as I approached halfway and wondered if it was time
to put it aside and let my mind digest what I had read so far before re-
reading the first part and then going on. (I find that is a great technique for
dealing with technical books at the boundaries of my understanding.)
However I actually managed to keep going and found the second half
easier.

Intelligence is emergent behaviour and that whether we like it or not the
current trend in computing will result in an alternative intelligence to ours.
What I am also pretty sure is that we will not create an intelligent machine
through our skills but through accident. I hope it is a benign intelligence
because anything like our own intelligence is too dark to want (think of
the mess we are making of our world). Of course that leads to the thought
that a sane machine intelligence would probably want to remove at least
90% of the human race in the interests of its own self preservation.

Thanks, Fran, for a thought provoking talk.

Francis Glassborow

I

I

I

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Pellentesque nec justo id libero
mollis accumsan nec et justo. Proin sit amet
dignissim nibh. Duis at erat nec sapien interdum
elementum posuere ut risus. Nulla egestas eros
volutpat mi pharetra maximus. Fusce sit amet
pellentesque elit. Nulla cursus commodo ante et
tempor. Suspendisse feugiat, neque vitae luctus
dignissim, augue nulla aliquam risus, eu porttitor
quam urna in est. Cras finibus turpis eget
malesuada molestie. Sed accumsan, ipsum ac
viverra pharetra, ipsum odio congue felis, eget
sagittis nisl dui a nunc. Sed tempus porta justo, a
ullamcorper sapien semper ut. Aenean pharetra
molestie tortor, vel sodales felis pellentesque ac.
Mauris euismod sem maximus, porttitor nunc
non, maximus tellus. Proin ipsum lectus,
ullamcorper eu dolor et, convallis rhoncus nisl.
Sed convallis quam id neque sollicitudin, in
ultrices nunc pretium. Duis ut posuere mauris,
nec dignissim diam. Donec commodo feugiat
ipsum quis tincidunt. Pellentesque sit amet nisi
leo. Duis ullamcorper vulputate nunc. Phasellus
suscipit odio tellus, et eleifend ante mattis sed.
Morbi sed bibendum nisi, sed finibus odio. Ut ut
ipsum facilisis eros egestas blandit a mattis felis.
Nullam iaculis, risus eget aliquam tempus, purus
tellus ultricies tellus, id fringilla odio arcu sed
mauris. Maecenas feugiat a nulla vitae convallis.
Proin at ornare sem. Phasellus mattis tincidunt
est nec varius. Nam imperdiet venenatis blandit.
Fusce molestie purus at lacus euismod, id fringilla
leo sollicitudin. Nullam semper neque velit.

Instructions
Prerequisites:
■ Etiam bibendum diam vitae tellus vehicula

pellentesque.
■ Aliquam bibendum magna non tellus

sollicitudin pharetra.
■ Duis vestibulum ex vitae quam venenatis, in

tempus mi congue.

Step-by-step:
1 Lorem ipsum dolor vitae.
2 Aliquam bibendum magna.
3 Duis vestibulum ex vitae quam venenatis.

...clear

www.clearly-stated.co.uk

Good supporting documentation:

■ Clarifies, doesn't confuse

■ Provides answers, not information

■ Doesn't make people hunt for solutions

■ Is right for the job (text, images, video, simulations, online or printed...)

MAY 2017 | | 15

accu ACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org

This instalment of the ‘View’ is my sixth, which
means that a full year has gone by since I started
as acting chair. I volunteered for the position of
Acting Chair after last year’s AGM, when the
position remained vacant after the election. My
stated main goal at that time was to “keep the
organization ticking along.” I will be the first to
admit that, as goals go, keeping the organization
ticking along is not the most inspiring, but it had
the advantage of being achievable.

ACCU has had successes in the past year:

 Our website was migrated successfully to
a new hosting platform, thanks to the
efforts of Jim Hague.

 We published our new Diversity
Statement.

 The conference web site has been
reworked, and continues to improve as
new features are added, thanks to our
Conference Chair, Russel Winder, and his
collaborators.

 Our new Code of Conduct was developed
for the 2017 conference, along with
guidelines for reporting and processing
violations.

 Our local group affiliates have
experienced strong membership growth.

 Our financial situation remains strong,
with ACCU finishing 2016 with a small
surplus for the fiscal year.

 Instructions on creating a Local Group
were developed and published, thanks to
the efforts of Nigel Lester.

 Overload and CVu continue their
traditions of being high-quality
publications, thanks to editors Fran
Buontempo and Steve Love, and our
member and non-member contributors.

We have also had our challenges:

 ACCU membership has continued its
slow, gradual decline. Reversing this
trend is a constant topic amongst the
committee, as it has been for several
years. I’m sorry to say that I have not been
successful in finding a solution to this
problem; I consider this my biggest failure
over the past year.

 We still need to replace several pieces of
our web infrastructure.

 We continue to find it difficult to recruit
volunteers for committee positions. We
had an acting chair and acting secretary
from April 2016 until the special election
in September. The Publicity, Study
Groups, and Social Media positions
remain vacant. The web editor position
will become vacant as of the first of July.

On balance, I believe the past year has been a
success, and I have every confidence that the
coming year will continue the trend. This year
we have a full slate of candidates for the
executive members of the committee, so it is
unlikely that we will start off the 2017–2018
term with a critical vacancy.

I started the role of chair without having any
other experience working with the committee.
(I was an auditor for one year, but that role is
separate from the committee.) I’d like to thank
the other committee members for their help in
getting me up to speed; their comments and
suggestions to make my bi-monthly Views

from the Chair better and more accurate; and
their commitment of time and energy to making
ACCU a success.

Committee Spotlight. As I mentioned in the last
CVu, Martin Moene is stepping down as
ACCU’s website editor effective the first of
July. Martin has served as website editor since
2013. A quick look at the description of the role
of web editor on the ACCU website (written by
Martin) [1] shows how valuable his
participation has been. In addition to all of that,
he introduced the production of ePub versions
of our two magazines.

Please join me in thanking Martin for all of his
contributions and hard work. He will leave
large shoes to fill.

Call for volunteers
 The ACCU web site uses Xaraya, a PHP

framework that has been moribund for the
last 4 years at least, and a replacement is
overdue.

 We hope to recruit someone to fill the
position of website editor before Martin’s
term concludes.

 As mentioned above, the Publicity, Study
Groups, and Social Media positions have
been vacant for some time.

Please contact me if you are interested in any of
these positions.

Portions of this View appeared in the Annual
General Meeting Information Pack as part of
the Chair’s Report.

References
[1] Role of Website Editor https://accu.org/

index.php/members/committee/
posts_and_roles#website_editor

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	Production legacy
	An Ode to Code
	Myths about ‘Big Data’
	On Turnabout is Fair Play
	A Hollywood Take on Dangling Pointers?
	I Can't Think Fast Enough in a Coding Interview
	Code Critique Competition 105
	ACCU Oxford – 28 March 2017
	View from the Chair

