

We at JetBrains have spent the last
decade and a half helping developers
code better faster, with intelligent
products like IntelliJ IDEA, ReSharper
and YouTrack. Finally, you too have
a C++ development tool
that you deserve:

Rely on safe C++ code
refactorings to have all usages
updated throughout the whole
code base

Generate functions
and constructors instantly

Improve code quality
with on-the-fly code analysis
and quick-fixes

Find a C++ tool for you
jb.gg/cpp-accu

A Power Language
Needs Power Tools
—

ReSharper C++

Visual Studio Extension
for C++ developers

CLion

Cross-platform IDE
for C and C++ developers

AppCode

IDE for iOS
and OS X development

MAR 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Unnecessary complexity
n the last issue, I used this space to talk about the
Software Crisis of the 1970s and 80s, and how
luminaries of the day noted that the solution

was the pursuit of simplicity. I also wrote
briefly about how that Crisis lives on in the
shape of Internet of Things’ security (amongst
other problems), and I think the same solution
applies. I’m not suggesting that security is simple –
far from it! Its complexity is not, however, best
managed by more complexity. Simplicity, when
applied to computer programs, means two things:
removing unnecessary complexity, and containing all
necessary complexity so that it doesn’t ‘infect’ the entire
system.

Getting rid of un-needed or useless features is one way
of removing complexity. Applying unnecessary
technology to stuff isn’t even a new idea. Calculator
watches, anyone? Perhaps not quite useless, but
almost un-usable, and certainly not necessary. The
idea of a Smart (tm) baby monitor might seem great
until someone uses it to monitor your home
network, capture your bank details and steal your
money. Is an Internet connection really necessary for a
baby monitor? Is it even a convenience? Or just a
gimmick?

Smart energy meters are a hot topic in the UK and elsewhere at the moment, and there
is some suggestion that having a Smart Meter will become mandatory at some point
(it’s not, in the UK, at the time of writing). There are some undeniable conveniences
for bill-payers, although the conveniences for the providers seem to me to be more
compelling. That’s a distraction from a much more important issue, though: how
much can we trust their security as an online device? Some people suggest that being
able to inspect the source code running on devices such as meters would help.

And so we come back to Simplicity and the Software Crisis. Even if we are allowed
to see the source code running on our IoT devices, that won’t help if it’s too complex
to understand.

I
Volume 29 Issue 1
March 2017

Editor
Steve Love
cvu@accu.org

Contributors
Pete Goodliffe, Chris Oldwood,
Roger Orr, Adam Tornhill,
Emyr Williams

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAR 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
14 Code Critique Competition

Competition 104 and
the answers to 103.

18 Troy Hunt: An Interview
Emyr Williams
continues the series
of interviews from
the world of
programming.

REGULARS
19 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.2: 1st April 2017
C Vu 29.3: 1st June 2017

Overload 139:1st May 2017
Overload 140:1st July 2017

FEATURES
3 On the Defensive

Pete Goodliffe demonstrates defensive programming
techniques for robust code.

8 Beyond Functional Programming:
Manipulate Functions with the J Language
Adam Tornhill explores a different kind of
programming language.

12 Be Available, Not Busy
Chris Oldwood considers how agility is best
achieved.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 103
On the Defensive
Pete Goodliffe demonstrates defensive programming

techniques for robust code.

We have to distrust each other. It’s our
only defense against betrayal.

~ Tennessee Williams

t seems an age ago now. When my daughter was only 10 months old,
she liked playing with wooden bricks. Well, she liked playing with
wooden bricks and me. I’d build a tower as high as I could, and then

with a gentle nudge of the bottom brick, she’d topple the whole thing and
let out a little whoop of delight. I didn’t build these towers for their
strength – it would have been pointless if I did. If I had really wanted a
sturdy tower, then I’d have built it in a very different way. I’d have shorn
up a foundation and started with a wide base, rather than just quickly
stacking blocks upon each other and building as high as possible.

Too many programmers write their code like flimsy towers of bricks; a
gentle unexpected prod to the base and the whole thing falls over. Code
builds up in layers, and we need to use techniques that ensure that each
layer is sound so that we can build upon it.

Towards good code
There is a huge difference between code that seems to work, correct code,
and good code. M. A. Jackson wrote, “The beginning of wisdom for a
software engineer is to recognize the difference between getting a program
to work, and getting it right.” There is a difference:

 It is easy to write code that works most of the time. You feed it the
usual set of inputs, it gives the usual set of outputs. But give it
something surprising, and it might just fall
over.

 Correct code won’t fall over. For all
possible sets of input, the output will be
correct. But usually the set of all possible
inputs is ridiculously large and hard to test.

 However, not all correct code is good code – the logic may be hard
to follow, the code may be contrived, and it may be practically
impossible to maintain.

By these definitions, good code is what we should aim for. It is robust,
efficient enough and, of course, correct. Industrial strength code will not
crash or produce incorrect results when given unusual inputs. It will also
satisfy all other requirements, including thread safety, timing constraints,
and re-entrancy.

It’s one thing to write this good code in the comfort of your own home, a
carefully controlled environment. It’s an entirely different prospect to do
so in the heat of the software factory, where the world is changing around
you, the codebase is rapidly evolving, and you’re constantly being faced
with grotesque legacy code – archaic programs written by code monkeys
that are now long gone. Try writing good code when the world is
conspiring to stop you!

In this torturous environment, how do you ensure that your code is
industrial strength? Defensive programming helps.

While there are many ways to construct code (object-orientated
approaches, component based models, structured design, Extreme
Programming, etc.), defensive programming is an approach that can be
applied universally. It’s not so much a formal methodology as an informal
set of basic guidelines. Defensive programming is not a magical cure-all,
but a practical way to prevent a pile of potential coding problems.

Assume the worst
When you write code, it’s all too easy to make a set of assumptions about
how it should run, how it will be called, what the valid inputs are, and so
on. You won’t even realize that you’ve assumed anything, because it all
seems obvious to you. You’ll spend months happily crafting code, as
these assumptions fade and distort in your mind.

Or you might pick up some old code to make a vital last-minute fix when
the product’s going out the door in 10 minutes. With only enough time for
a brief glance at its structure, you’ll make assumptions about how the code
works. There’s no time to perform full literary criticism, and until you get
a chance to prove the code is actually doing what you think it’s doing,
assumptions are all you have.

Assumptions cause us to write flawed software. It’s easy to assume:

 The function won’t ever be called like that. I will always be passed
valid parameters only.

 This piece of code will always work; it will never generate an error.

 No one will ever try to access this variable if I document it For
internal use only.

When we program defensively, we shouldn’t make any assumptions. We
should never assume that it can’t happen. We should never assume that
the world works as we’d expect it to work.

Experience tells us that the only thing you can be certain about is this:
Your code will somehow, someday, go wrong. Someone will do a dumb

thing. Murphy’s law puts it this way: “If it can
be used incorrectly, it will.” Listen to that man –
he spoke from experience [1]. Defensive
programming prevents these accidents by
foreseeing them, or at least fore-guessing them
– figuring out what might go wrong at each
stage in the code, and guarding against it.

Is this paranoid? Perhaps. But it doesn’t hurt to be a little paranoid. In fact,
it makes a lot of sense. As your code evolves, you will forget the original
set of assumptions you made (and real code does evolve). Other
programmers won’t have any knowledge of the assumptions in your head,
or else they will just make their own invalid assumptions about what your
code can do. Software evolution exposes weaknesses, and code growth
hides original simple assumptions. A little paranoia at the outset can make
code a lot more robust in the long run.

Assume nothing. Unwritten assumptions continually cause
faults, particularly as code grows.

Add to this the fact that things neither you nor your users have any control
over can go wrong: disks fill up, networks fail, and computers crash. Bad
things happen. Remember, it’s never actually your program that fails – the
software always does what you told it to. The actual algorithms, or
perhaps the client code, are what introduce faults into the system.

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

defensive programming
is an approach that can
be applied universally
MAR 2017 | | 3{cvu}

As you write more code, and as you work through it faster and faster, the
likelihood of making mistakes grows and grows. Without adequate time
to verify each assumption, you can’t write robust code. Unfortunately, on
the programming front line, there’s rarely any opportunity to slow down,
take stock, and linger over a piece of code. The world is just moving too
fast, and programmers need to keep up. Therefore, we should grasp every
opportunity to reduce errors, and defensive practices are one of our main
weapons.

What is defensive programming?
As the name suggests, defensive programming is careful, guarded
programming. To construct reliable software, we design every component
in the system so that it protects itself as much as possible. We smash
unwritten assumptions by explicitly checking for them in the code. This
is an attempt to prevent, or at least observe, when our code is called in a
way that will exhibit incorrect behaviour.

Defensive programming enables us to detect minor problems early on,
rather than get bitten by them later when they’ve escalated into major
disasters. All too often, you’ll see ‘professional’ developers rush out code
without thinking. Tinker with the code–run it–crash. Tinker–run–crash.
Tinker–run–crash.

They are continually tripped up by the incorrect assumptions that they
never took the time to validate. Hardly a promotion for modern day
software engineering, but it’s happening all the time. Defensive
programming helps us to write correct software from the start and move
away from the code-it, try-it, code-it, try-it… cycle.

Okay, defensive programming won’t remove program failures altogether.
Far from it. But problems will become less of a hassle and easier to fix.
Defensive programmers catch falling snowflakes rather than drown under
an avalanche of errors.

Defensive programming is a method of prevention, rather than a form of
cure. Compare this to debugging – the act of removing bugs after they’ve
bitten. Debugging is all about finding a cure.

Is defensive programming really worth the hassle? There are arguments
for and against.

The case against:

 Defensive programming consumes resources, both yours and the
computer’s.

 It eats into the efficiency of your code; even a little extra code
requires a little extra execution. For a single function or class, this
might not matter, but when you have a system made up of 100,000
functions, you may have more of a problem.

 Each defensive practice requires some extra work. Why should you
follow any of them? You have enough to do already, right? Well,
then just make sure people use your code correctly. If they don’t,
then any problems are their own fault.

The case for:

 Defensive programming saves you literally hours of debugging and
lets you do more fun stuff instead. Remember Murphy: If your code
can be used incorrectly, it will be.

 Working code that runs properly, but ever-so-slightly slower, is far
superior to code that works most of the time but occasionally
collapses in a shower of brightly coloured sparks.

 We can design some defensive code to be physically removed in
release builds, circumventing the performance issue. The majority
of the items we’ll consider here don’t have any significant overhead,
anyway.

 Defensive programming avoids a large number of security problems
– a serious issue in modern software development. More on this
below.

As the market demands software that’s built faster and cheaper, we need
to focus on techniques that deliver results. Don’t skip the bit of extra work
up-front that will prevent a whole world of pain and delay later.

The big bad world
Someone once said, “Never ascribe to malice that which is adequately
explained by stupidity.” [2] Most of the time we are defending against
stupidity, against invalid and unchecked assumptions. However, there are
malicious users, and they will try to bend and break your code to suit their
vicious purposes.

Defensive programming helps with program security, guarding against
this kind of wilful misuse. Crackers and virus writers routinely exploit
sloppy code to gain control of an application and then weave whatever
wicked schemes they desire. This is a serious threat in the modern world
of software development; it has huge implications in terms of the loss of
productivity, money, and privacy.

Software abusers range from the opportunistic user exploiting a small
program quirk to the hardcore cracker who spends his time deliberately
trying to gain illicit access to your systems. Too many unwitting
programmers leave gaping holes for these people to walk through. With
the rise of the networked computer, the consequences of sloppiness
become more and more significant.

Many large development corporations are finally waking up to this threat
and are beginning to take the problem seriously, investing time and
resources into serious defensive code work. In reality, it’s hard to graft in
defences after an attack.

Techniques for defensive programming
So what does all this mean to programmers working in the software
factory?

There are a number of common sense rules under the defensive
programming umbrella. People usually think of assertions when they
think of defensive programming, and rightly so. We’ll talk about those
later. But there’s also a pile of simple programming habits that will
immeasurably improve the safety of your code.

Despite seeming common sense, these rules are often ignored – hence the
low standard of most software at large in the world. Tighter security and
reliable development can be achieved surprisingly easily, as long as
programmers are alert and well informed.

The next few sections list the rules of defensive programming. We’ll start
off by painting with broad strokes, looking at high-level defensive
techniques, processes, and procedures. As we progress, we’ll fill in finer
detail, looking more deeply at individual code statements. Some of these
defensive techniques are language-specific. This is natural – you have to
put on bulletproof shoes if your language lets you shoot yourself in the
foot.

As you read this list, evaluate yourself. How many of these rules do you
currently follow? Which ones will you now adopt?

There are a few common misconceptions about defensive
programming. Defensive programming is not:

Error checking

If there are error conditions that might arise in your code, you should be
checking for them anyway. This is not defensive code. It’s just plain
good practice – a part of writing correct code.

Testing

Testing your code is not defensive. It’s another normal part of our
development work. Test harnesses aren’t defensive; they can prove the
code is correct now, but won’t prove that it will stand up to future
modification. Even with the best test suite in the world, anyone can make
a change and slip it past untested.

Debugging

You might add some defensive code during a spell of debugging, but
debugging is something you do after your program has failed. Defensive
programming is something you do to prevent your program from failing
in the first place (or to detect failures early before they manifest in
incomprehensible ways, demanding all-night debugging sessions).

What Defensive Programming Isn’t
4 | | MAR 2017{cvu}

Employ a good coding style and sound design

We can prevent most coding mistakes by adopting a good coding style.
Simple things like choosing meaningful variable names and using
parentheses judiciously can increase clarity and reduce the likelihood of
faults slipping past unnoticed.

Similarly, considering the larger scale design before ploughing into the
code is key. “The best documentation of a computer program is a clean
structure.” [3]. Starting off with a set of clear APIs to implement, a logical
system structure, and well-defined component roles and responsibilities
will avoid headaches further down the line.

Don't code in a hurry

It’s all too common to see hit-and-run programming. Programmers
quickly hack out a function, shove it through the compiler to check
syntax, run it once to see if it works, and then move on to the next task.
This approach is fraught with peril.

Instead, think about each line as you write it. What errors could arise?
Have you considered every logical twist that might occur? Slow,
methodical programming seems mundane – but it really does cut down on
the number of faults introduced.

More haste, less speed. Always think carefully about what
you’re typing as you type it.

A particular C-family gotcha that snares speedy programmers is
mistyping == as just =. The former is a test for equality, the latter a
variable assignment. With an unhelpful compiler (or with warnings
switched off) there will be no indication that the program behaviour is not
what was intended.

Always do all of the tasks involved in completing a code section before
rushing on. For example, if you decide to write the main flow first and the
error checking/handling second, you must be sure you have the discipline
to do both. Be very wary of deferring the error checking and moving
straight on to the main flow of three more code sections. Your intention
to return later may be sincere, but later can easily become much later, by
which time you will have forgotten much of the context, making it take
longer and be more of a chore. (And of course, by then there will be some
artificially urgent deadline.)

Discipline is a habit that needs to be learned and reinforced. Every time
you don’t do the right thing now, you become more likely to continue not
doing the right thing in the future. Do it now, don’t leave it for a rainy day
in the Sahara. Doing it later actually requires more discipline than doing
it now!

Trust no-one

Your mother told you never to talk to strangers. Unfortunately, good
software development requires even more cynicism and less faith in
human nature. Even well-intentioned code users could cause problems in
your program; being defensive means you can’t trust anybody.

You might suffer problems because of:

 Genuine users accidentally giving bogus input or operating the
program incorrectly.

 Malicious users trying to consciously provoke bad program
behaviour.

 Client code calling your function with the wrong parameters or
supplying inconsistent input.

 The operating environment failing to provide adequate service to the
program.

 External libraries behaving badly and failing to honour interface
contracts that you rely on.

 You might even make a silly coding mistake in one function or
forget how some three-year-old code is supposed to work and then
use it badly.

Don’t assume that all will go well or that all code will operate correctly.
Put safety checks in place throughout your work. Constantly watch for
weak spots, and guard against them with extra defensive code.

Trust no one. Absolutely anyone – including yourself – can
introduce flaws into your program logic. Treat all inputs and all
results with suspicion until you can prove that they are valid.

Write code for clarity, not brevity

Whenever you can choose between concise (but potentially confusing)
code and clear (but potentially tedious) code, use code that reads as
intended, even if it’s less elegant. For example, split complex arithmetic
operations into a series of separate statements to make the logic clearer.

Think about who might read your code. It might require maintenance
work by a junior coder, and if he can’t understand the logic, then he’s
bound to make mistakes. Complicated constructs or unusual language
tricks might prove your encyclopedic knowledge of operator precedence,
but it really butchers code maintainability. Keep it simple.

If it can’t be maintained, your code is not safe. In really extreme cases,
overly complex expressions can cause the compiler to generate incorrect
code – many compiler optimization errors come to light this way.

Simplicity is a virtue. Never make code more complex than
necessary.

Don’t let anyone tinker with stuff they shouldn’t

Things that are internal should stay on the inside. Things that are private
should be kept under lock and key. Don’t display your code’s dirty
laundry in public. No matter how politely you ask, people will fiddle with
your data when you’re not looking if given half a chance, and they will try
to call ‘implementation only’ routines for their own reasons. Don’t let
them.

 In object-oriented languages, prevent access to internal class data by
making it private. In C++, consider the Cheshire cat/pimpl idiom.

 In procedural languages, you can still employ object-oriented (OO)
packaging concepts, by wrapping private data behind opaque types
and providing well-defined public operations on them.

 Keep all variables in the tightest scope necessary; don’t declare
variables globally when you don’t have to.
Don’t put them at file scope when they can be
function-local. Don’t place them at function
scope when they can be loop-local.

When do you program defensively? Do you start when things go wrong?
Or when you pick up some code you don’t understand?

No, these defensive programming techniques should be used all the
time. They should be second nature. Mature programmers have learned
from experience – they’ve been bitten enough times that they know to
put sensible safeguards in place.

Defensive strategies are much easier to apply as you start writing code,
rather than retrofitting them into existent code. You can’t be thorough
and accurate if you try to shoehorn in this stuff late in the day. If you start
adding defensive code once something has gone wrong, you are
essentially debugging – being reactive, not preventative and proactive.

However, during the course of debugging, or even when adding new
functionality, you’ll discover conditions that you’d like to verify. It’s
always a good time to add defensive code.

Say “when”

Always do ALL of the tasks involved in
completing a code section before rushing on
MAR 2017 | | 5{cvu}

Compile with all warnings switched on

Most languages’ compilers draw on a vast selection of error messages
when you hurt their feelings. They will also spit out various warnings
when they encounter potentially flawed code, like the use of a C or C++
variable before its assignment [4]. These warnings can usually be
selectively enabled and disabled.

If your code is full of dangerous constructs, you’ll get pages and pages of
warnings. Sadly, the common responses are to disable compiler warnings
or just ignore the messages. Don’t do either.

Always enable your compiler’s warnings. And if your code generates any
warnings, fix the code immediately to silence the compiler’s screams.
Never be satisfied with code that doesn’t compile quietly when warnings
are enabled. The warnings are there for a reason. Even if there’s a
particular warning you think doesn’t matter, don’t leave it in, or one day
it will obscure one that does matter.

Compiler warnings catch many silly coding errors. Always
enable them. Make sure your code compiles silently.

Use static analysis tools

Compiler warnings are the result of a limited
static analysis of your code, a code inspection
performed before the program is run.

There are many separate static analysis tools
available, like lint (and its more modern
derivatives) for C and FxCop for .NET
assemblies. Your daily programming routine
should include use of these tools to check your code. They will pick up
many more errors than your compiler alone.

Use safe data structures

Or failing that, use dangerous data structures safely.

Perhaps the most common security vulnerability results from buffer
overrun. This is triggered by the careless use of fixed-size data structures.
If your code writes into a buffer without checking its size first, then there
is always potential for writing past the end of the buffer.

It’s frighteningly easy to do, as this small snippet of C code demonstrates:

 char *unsafe_copy(const char *source)
 {
 char * buffer = new char[10];
 strcpy(buffer, source);
 return buffer;
 }

If the length of the data in source is greater than 10 characters, its copy
will extend beyond the end of buffer’s reserved memory. Then
anything could happen. In the best case, the result would be data
corruption – some other data structure’s contents will be overwritten. In
the worst case, a malicious user could exploit this simple error to put
executable code on the program stack and use it to run his own arbitrary
program, effectively hijacking the computer. These kinds of flaw are
regularly exploited by system crackers – serious stuff.

It’s easy to avoid being bitten by these vulnerabilities: don’t write such
bad code! Use safer data structures that don’t allow you to corrupt the
program – use a managed buffer like C++’s string class. Or
systematically use safe operations on unsafe data types. The C code above
can be secured by swapping strcpy for strncpy, a size limited string
copy operation:

 char *safer_copy(const char *source)

 {
 char * buffer = new char[10];
 strncpy_(buffer, source, 10);
 return buffer;
 }

Check EVERY return value

If a function returns a value, it does so for a reason. Check that return
value. If it is an error code, you must inspect it and handle any failure.
Don’t let errors silently invade your program; swallowing an error can
lead to unpredictable behaviour.

This applies to user-defined functions as well as standard library ones.
Most of the insidious bugs you’ll find arise when a programmer fails to
check a return value. Don’t forget that some functions may return errors
through a different mechanism (i.e., the standard C library’s errno).
Always catch and handle appropriate exceptions at the appropriate level.

Handle memory (and other precious resources) carefully

Be thorough and release any resource that you acquire during execution.
Memory is the example of this cited most often, but it is not the only one.
Files and thread locks are other precious resources that we must use
carefully. Be a good steward.

Don’t neglect to close files or release memory because you think that the
OS will clean up your program when it exits. You really don’t know how
long your code will be left running, eating up all file handles or

consuming all the memory. You can’t even be
sure that the OS will cleanly release your
resources – some OSs don’t.

There is a school of thought that says, “Don’t
worry about freeing memory until you know
your program works in the first place; only then
add all the relevant releases.” Just say no. This
is a ludicrously dangerous practice. It will lead
to many, many errors in your memory usage;

you will inevitably forget to free memory in some places.

Treat all scarce resources with respect. Manage their
acquisition and release carefully.

Java and .NET employ a garbage collector to do all this tedious tiding up
for you, so you can just ‘forget’ about freeing resources. Let them drop to
the floor, since the runtime sweeps up every now and then. It’s a nice
luxury, but don’t be lulled into a false sense of security. You still have to
think. You have to explicitly drop references to objects you no longer care
about or they won’t be cleaned up; don’t accidentally hold on to an object
reference. Less advanced garbage collectors are also easily fooled by
circular references (e.g., A refers to B, and B refers to A, but no one else
cares about them). This could cause objects to never be swept up; a subtle
form of memory leak.

Initialize all variables at their points of declaration

This is a clarity issue. The intent of each variable is explicit if you
initialize it. It’s not safe to rely on rules of thumb like: If I don’t initialize
it, I don’t care about the initial value. The code will evolve. The
uninitialized value may turn into a problem further down the line.

C and C++ compound this issue. If you accidentally use a variable without
having initialized it, you’ll get different results each time your program
runs, depending on what garbage was in memory at the time. Declaring a
variable in one place, assigning it later on, and then using it even later
opens up a window for errors. If the assignment is ever skipped, you’ll
spend ages hunting down random behaviour. Close the window by
initializing every variable as you declare it; even if the value’s wrong, the
behaviour will at least be predictably wrong.

Safer languages (like Java and C#) sidestep this pitfall by defining an
initial value for all variables. It’s still good practice to initialize a variable
as you declare it, which improve code clarity.

Declare variables as late as possible

By doing this, you place the variable as close as possible to its use,
preventing it from confusing other parts of the code. It also clarifies the

if your code generates any
warnings, fix the code

immediately to silence
the compiler’s screams
6 | | MAR 2017{cvu}

code using the variable. You don’t have to hunt around to find the
variable’s type and initialization; a nearby declaration makes it obvious.

Don’t reuse the same temporary variable in a number of places, even if
each use is in a logically separate area. It makes later reworking of the
code awfully complicated. Create a new variable each time – the compiler
will sort out any efficiency concerns.

Use standard language facilities

C and C++ are nightmares in this respect. They suffer from many different
revisions of their specifications, with more obscure cases left as
implementation-specific undefined behaviour. Today there are many
compilers, each with subtly different behaviour. They are mostly
compatible, but there is still plenty of rope to hang yourself with.

Clearly define which language version you are using. Unless mandated by
your project (and there had better be a good reason), don’t rely on
compiler weirdness or any non-standard extensions to the language. If
there is an area of the language that is undefined, don’t rely on the
behaviour of your particular compiler (e.g., don’t rely on your C compiler
treating char as a signed value – others won’t). Doing so leads to very
brittle code. What happens when you update the compiler? What happens
when a new programmer joins the team who doesn’t understand the
extensions? Relying on a particular compiler’s odd behaviour leads to
really subtle bugs later in life.

Use a good diagnostic logging facility

When you write some new code, you’ll often include a lot of diagnostics
to check what’s going on. Should these really be removed after the event?
Leaving them in will make life easier when you have to revisit the code,
especially if they can be selectively disabled in the meantime.

There are a number of diagnostic logging systems available to facilitate
this. Many can be used in such a way that diagnostics have no overhead if
not needed; they can be conditionally compiled out.

Cast carefully

Most languages allow you to cast (or convert) data from one type to
another. This operation is sometimes more successful than others. If you
try to convert a 64-bit integer into a smaller 8-bit data type, what will
happen to the other 56 bits? Your execution environment might suddenly
throw an exception or silently degrade your data’s integrity. Many
programmers don’t think about this kind of thing, and so their programs
behave in unnatural ways.

If you really want to use a cast, think carefully about it. What you’re
saying to the compiler is, “Forget your type checking: I know what this
variable is, you don’t.” You’re ripping a big hole into the type system and
walking straight through it. It’s unstable ground; if you make any kind of
mistake, the compiler will just sit there quietly and mutter, “I told you so,”
under its breath. If you’re lucky (e.g. using Java or C#) the runtime might
throw an exception to let you know, but this depends on exactly what
you’re trying to convert.

C and C++ are particularly vague about the precision of data types, so
don’t make assumptions about data type interchangeability. Don’t
presume that int and long are the same size and can be assigned to one
another, even if you can get away with it on your platform. Code migrates
platforms, but bad code migrates badly.

Conclusion
It is important to craft code that is not just correct but is also good. It needs
to document all the assumptions made. This will make it easier to
maintain, and it will harbour fewer bugs. Defensive programming is a
method of expecting the worst and being prepared for it. It’s a technique
that prevents simple faults from becoming elusive bugs.

The use of codified constraints alongside defensive code will make your
software far more robust. Like many other good coding practices (unit
testing, for example), defensive programming is about spending a little

extra time wisely (and early) in order to save much more time, effort, and
cost later. Believe me, this can save an entire project from ruin. 

Questions
 Can you have too much defensive programming?

 Should you add an assertion to your code for every bug you find and
fix?

 Should assertions conditionally compile away to nothing in
production builds? If not, which assertions should remain in release
builds?

 Are exceptions a better form of defensive barrier than C-style
assertions?

 How carefully do you consider each statement that you type? Do
you relentlessly check every function return code, even if you’re
sure a function will not return an error?

Notes and references
[1] Edward Murphy, Jr., was a US Air Force Engineer. He coined this

infamous law after discovering a technician had systematically
connected a whole row of devices upside down. Symmetric
connectors permitted this avoidable mistake; afterwards, he chose a
different connector design.

[2] Some historians attribute that quote to Napoleon Bonaparte. Now
there’s a guy who knew something about defence.

[3] The Elements of Programming Style. B.W. Kernighan, P.J. Plauger.
1978.

[4] Many languages (like Java and C#) class this as an error.

Attack is the best form of defence.
~ Proverb

While writing this article, I wondered, What’s the opposite of defensive
programming? It’s offensive programming, of course!

There are a number of people I know who you could call offensive
programmers. But I think there’s more to this than swearing at your
computer and never taking baths.

It stands to reason that an offensive programming approach would be
actively trying to break things in the code, rather than defending against
problems. That is, actively attacking the code rather than securing it. I’d
call that testing. Testing, when done properly, has an incredibly positive
effect on your software construction. It improves code quality greatly and
brings stability to the development process.

We should be all offensive programmers.

Offensive programming?
MAR 2017 | | 7{cvu}

Beyond Functional Programming:
Manipulate Functions with the J Language

Adam Tornhill explores a different kind of
programming language.

he Pragmatic Programmer [1] recommends that we learn at least one
new language every year. To be effective, the languages we learn
should differ sufficiently from those we already master and ideally

introduce us to a new paradigm too. Learning a different programming
language affects the way we view code. A new paradigm may even alter
our problem solving abilities by reshaping the way we think. The J
programming language offers both of these qualities.

In this article, we’ll get a brief introduction to the J programming
language [2]. The goal is to whet your appetite for an exciting
programming paradigm rather than providing an in-depth introduction.
As we move along, we’ll learn just enough J to explore a fascinating
corner of the language that lets us manipulate functions as data. You’ll see
how these techniques differ from traditional functional programming,
why manipulating functions is interesting and how it lets you solve real
problems with a minimum of code.

The brevity of array languages
The J language stems from the family of array
languages. Array languages sit on an interesting,
albeit relatively unknown, branch in the family
tree of programming languages. APL, the first
array language, presents a radical departure from
how we typ ica l ly th ink about computer
programming. Even though modern languages let
us express our programs on a fairly high level,
we’re still basically moving and processing data
element by element. This level of abstraction is a
constant source of irregularity and special cases in
code. APL – and more recent array languages like
J – give us as an alternative and interesting
contrast to the von Neumann languages of today.

So what makes array languages so different? First of all, they’re
extremely compact. Let me show you how compact by exploring a piece
of APL code: ̀ x[⍋x ← 6?40]`. Alright. What was that? A burst of line noise
that made its way past the editors into the article you’re reading? No, no.
What we just saw was a complete APL program. This brief program
generates six lottery numbers in the range 1 to 40, no duplicates, and
delivers them sorted in ascending order.

The first thing that strikes us in this APL example is the character set. APL
uses a special set of symbols in its syntax. Today we can play around with
virtual keyboards (see Try APL [3]), but in the 1960s, when APL was first
implemented, the language required special hardware. It’s probably fair to
assume that requiring a curious programmer to buy a special keyboard and
graphics card just to try a new programming language could be something
of a deal breaker in terms of language adoption. That said,

I’ve become a fan of the APL syntax. I even think that special symbols
and character sets are underused in today’s programming languages.
Symbols help us build compact mental models and make it easier to spot
patterns and idioms in our code. It’s a learning curve for sure, but a flat
one.

When I started to talk about APL in some of my presentations (for
example ‘Code That Fits Your Brain’ [4]), people often remark that APL
looks opaque and cryptic. If you agree with that statement, you’d be
happy to learn that the J language abandoned APL’s symbols for a pure
ASCII syntax. So let’s translate our APL example above to J and see if we
can make sense of it: `/:~>:6?40`. Much simpler, right? It’s 100%
ASCII after all.

As evident from this example, J is also a compact language. The example
also shows that a different representation, like ASCII, doesn’t necessarily
improve our understanding in the strange world of array languages. That’s
because this is not a matter of syntax; array languages present a radically
different way to code and solve problems. Let’s explore how.

Meet true simplicity in the J language

What fascinates me the most about our APL and J
examples is not so much what’s there, but rather
what’s absent. Have a look at the code once again.
There is no conditional logic. Even more
interesting, there are no explicit loops even though
the code models an inherently iterative problem.

The reason array languages pull this off is because
arrays are the fundamental datatype. That means
functions in J operate on collections of things
rather than individual values. The implication is
that as soon as we start to think about data as

collections rather than individual elements, a whole set of potential
coding issues just go away. Suddenly there’s no difference if we have
1,000, a single value or none; our J code will look exactly the same. That
means we can get rid of many special cases that we need to deal with in
other languages. For example, think of the disastrous ‘null’ pointers that
plague most mainstream languages. In J, you’d just model the absence of
something as an empty array; the rest of your code stays the same. It’s a
simple yet powerful abstraction that lets you focus on the problem you’re
trying to solve without littering your code with special cases.

Alright, let’s move ahead and get started with some J. I’d suggest that you
download the latest version of the J language and environment [5] to
follow along as we walk though some examples.

Our first example is fairly trivial:

 1 + 1
2

In the example above we add two numbers and J, since it’s an interactive
and interpreted language, prints the result immediately. As you see, the
code you write yourself (like 1 + 1) is always indented in the J prompt.
Results and errors from the J runtime are left aligned.

Next we’ll do something more interesting. Let’s repeat our addition, but
this time with two arrays:

T

ADAM TORNHILL
Adam is a programmer who combines degrees in
engineering and psychology. He’s the author of Your
Code as a Crime Scene, has written the popular ‘Lisp
for the Web’ tutorial and self-published a book on
Patterns in C. Adam also writes open-source software
in a variety of programming languages.

Array languages sit on
an interesting, albeit
relatively unknown,
branch in the family
tree of programming

languages
8 | | MAR 2017{cvu}

 1 2 3 + 4 5 6
5 7 9

Remember when I said that arrays are fundamental data types in J? That’s
the array capabilities I’ve been talking about. We could repeat this
operation with data of higher dimensions stored in multi-dimensional
arrays. Our code would look the same and the J interpreter would handle
the looping for us. But J can do more. Let’s see how we can calculate the
sum of the numbers in an array:

 +/ 1 2 3 4 5
15

We’ve already met +, but what’s that slash character we put after it? And
how does J manage to sum our array without any explicit loop? I’ll answer
it in a minute, but first we need to learn a bit of J jargon. J doesn’t really
have functions. Instead, the language borrows its terminology from
natural languages. + is a verb in J speech. And / is an adverb that, just as
in natural languages, modifies its verb. In this case, the slash inserts +, the
verb it refers to, between each number in our array. That is, +/ has the
same effect as writing 1 + 2 + 3 + 4 + 5. If you’re into functional
programming, you can think of an adverb as a higher-order function; it
takes a function as input and returns a new function that modifies the
behavior of the original function.

The simplicity of J goes deeper than avoiding explicit loops. J’s verbs
have a remarkable simplicity in their definitions. It turns out that a verb/
function in J always takes either one or two arguments and you usually
don’t even name those arguments. That’s it. No more code review battles
over the one true way to name an index argument. No need for syntactic
sugar like keywords and variable arguments. Just one or two implicit
arguments. Follow along and I’ll explain how we program with those
constraints by introducing a tacit style of programming.

Tacit programming

The J language supports a tacit programming style (also called point-free
style). A tacit style means that our functions don’t identify the arguments
they operate upon. We can exemplify a tacit function by specifying a verb
of our own:

 sum =: +/

The code above introduces a user defined verb names sum. As you see,
there’s no mention of any variable or function argument: the argument is
implicit. We can now use sum like you’d expect:

 sum 1 2 3 4 5
15

Yeah – works just like our previous example with adverbs when we typed
+/ 1 2 3 4 5. Our sum verb is called a monadic definition. The term
is unrelated to the kind of monads you’d find in Haskell land. Instead
monadic means that it’s a function that takes exactly one argument. That
argument is always given to the right of the verb as you see in the
invocation of sum in the example above.

The other category of verbs in J are called dyadic. A dyadic takes
exactly two arguments, one to its left and one to its right. A simple
example is the addition 1 + 1 that we met earlier.

Learn to box

Limiting functions to only one or two arguments sounds like quite a
constraint. The reason it works so well in J is because, remember, our
arguments are always arrays and these arrays can be of any dimension.
Learning to re-frame our understanding of a problem to be able to express
it as an operation on arrays is part of the challenge when you start out with
J. However, that learning is likely to translate to other languages too. After
all, taking some input, doing something to it, and generating some output
is pretty much all a computer program does. J helps us get better at
expressing that universal pattern.

But of course, sometimes we do run into limitations in J too. For example,
arrays in J have to contain the same data type. Let’s say you want to pass
an array with an integer and a string into one of your verbs. In that case

you need a box. A box in J is a data type that supports heterogeneous
values. Listing 1 shows how we work with boxes.

In the first line we use the monadic verb < to put the value 1 into a box
and the string hello into another box. We then use the dyadic verb ,
(called Append in J) to create an array out of our two boxes. The result of
Append is assigned to our variable b. You also see that J has a nice printed
representation of our boxed values. Finally we meet the monadic verb #
(called Tally) that counts the number of items in our boxed array. Just as
we’d expect, Tally reports two items.

Armed with our basic J knowledge, we’re ready to get some serious
business going by starting to manipulate verbs just as if they were data
too.

Write functions that manipulate functions
The J language has several functional elements although it’s not a strict
functional language. However, it does take function abstraction a step further.

The basic idea in functional programming is that functions are first-class
citizens. This promise looks rather shallow once we see its realization in
different languages. Sure, we can pass functions as arguments, return
functions from other functions and even compose functions. But there are
few languages that allow us to really manipulate functions in the same
way we massage data. For example, what would it mean to subtract one
function from another? Or to calculate the derivate of a function? I’d say
both of these examples make sense from a mathematical perspective, yet
Clojure doesn’t know how to do it and neither does Scala nor F#. This is
where J takes off.

Again we’ll start simple. The verb Double +: does what it says and
doubles its input values:

 +: 2
4
 +: 3
6

We talked about J’s terminology earlier and so far we’ve met verbs and
adverbs. J also has conjunctions. In natural language grammar, a
conjunction is something that connects different words and phrases. J’s
conjunctions have a similar effect and we’ll see that as we explore the
Power Conjunction ^:.

The power conjunction applies a given verb n times. Here’s how it works
when applied to our Double verb:

 (+: ^: 2) 2
8
 (+: ^: 2) 3
12

The examples above instruct the power conjunction to apply its verb,
Double (+:), twice. We could of course also write +: ^: 3 and have the
Double verb applied three times. Let’s capture that in a user defined verb,
tacit style:

 threeTimes =: +: ^: 3
 threeTimes 2
16
 threeTimes 1 2 3 4 5
8 16 24 32 40

As you see in the example above, our user defined verb threeTimes
automatically generalizes to whole arrays. Instead of spending precious
code on loops or iterations, we just let the language do the job for us. That

 b =: (< 1) , (< 'hello')
 b
+-------+
¦1¦hello¦
+-------+
 # b
2

Listing 1
MAR 2017 | | 9{cvu}

leaves our code free to focus on the stuff that actually does something, the
core of the problem we’re trying to solve.

There’s a particular beauty to conjunctions. But J’s way of manipulating
functions go deeper. We can let the language inverse the meaning of a
verb. As we’ll see soon, inversing verbs is more than just a neat party
trick. Once we have the ability of automatically inversing a function we
are able to abstract several common programming tasks using succinct
idiomatic expressions.

Inverse functions with the Power Conjunction

As I decided to learn the J language I looked for some small yet realistic
problems to work on. I decided to start with the Dyalog APL challenge,
an annual APL programming competition, but doing it in J instead. The
2014 competition [6] had a simple and interesting problem labelled ‘How
tweet it is’. The task here is to shorten a message, yet retain most of its
readability, by removing interior vowels from words. For example, the
phrase ‘APL is REALLY cool’ would be shortened to ‘APL is RLLY cl’.
Let’s give it a try.

The first step in this task is to tokenize the string. That’s straightforward
with J’s Words verb (written ;:):

 b =: ;: 'APL is really cool'
 b
+------------------+
¦APL¦is¦really¦cool¦
+------------------+

The ;: verb splits our string on its separators. It also partitions the
resulting sub-string into a box since the tokens have different lengths. We
let the variable b refer to our boxed array so that we can play around with
it in the J interpreter and iterate towards our solution.

The next step towards a tweetable sentence is to remove the interior
vowels. This is fairly straightforward, but the details would distract us
from our main topic of function inverses as we would need to learn more
J verbs. So instead, we’ll pretend that we already have a verb trimWord
that does the job for us (head over to my GitHub repository [7] if you’d
like to look at its implementation).

To use our trimWord verb we need to take the words out of the box,
apply trimWord, and put the results back into a boxed array. We’ve
already seen how the < verb lets us box a value. J provides a
corresponding unbox operation with the > verb. Semantically, unbox (>)
is the inverse of box (<). As a programmer, we immediately see that. More
interesting, the J language knows about it.

J has a unique language feature that lets you inverse the meaning of a verb.
It’s a mechanism that works on most built-in verbs and, fascinatingly, also
on most of our own user defined verbs. And in the cases where J isn’t able
to deduce an inverse automatically, you can teach J about it by assigning
an inverse yourself.

We already learned that the Power Conjunction ^: lets us control how
many times a verb is applied. So what happens if we apply the power

conjunction -1 times? That’s right – we get an inverse that undoes the
effect of applying the particular verb. Let’s play around with this idea in
the J interpreter to see how it may solve our tweetable problem. I’ve
introduced comments (NB.) to explain the steps. Please note that negative
numbers are entered with an underscore, like _1, in the J interpreter (see
Listing 2).

The example in Listing 2 shows a mathematical inverse like plus and
minus. We also see a logical relationship between box and unbox (those
kind of non-mathematical relationships are the reason J prefers the term
‘obverse’ over ‘inverse’).

So far I hope you find the inverse trick just as cool as I do. But how does
it apply to our tweetable problem? Well, let’s recap the pattern we want
to express: first we’ll unbox our words, then we let J apply trimWord to
each of the words before we box the results. As we’ll soon see, the general
form of this pattern is common to many familiar programming problems.
That’s why J provides an idiomatic expression for it.

In J speech, this pattern is called Under (&.). Under works on two verbs
that form a pipeline: the first verb is applied, then the second verb is
applied to that result before the inverse of the first verb is applied to form
the final result. Let’s see it in action:

 b =: ;: 'APL is really cool'
 b
+------------------+
¦APL¦is¦really¦cool¦
+------------------+
 (trimWord&.>) b
+--------------+
¦APL¦is¦rlly¦cl¦
+--------------+

And there we are – we have a tweetable sentence. However, there’s a bit
more work before we’re done. That’s good because it gives us an
opportunity to uncover some more J ideas.

Turn the dial to 11: Under under an Under

Our solution so far works as long as we have our words in an array of
boxes. But our starting point is a raw string, not a box. How do we glue
that together? Well, since we now have a solid grip on function inverses
with Under, we’ll use the same idiom. We tokenize the string with ;:,
trim the words in a box using our Under pipeline trimWord&.> before
we put the trimmed tokens back into a string with the inverse to ;:. Here
are those steps in J code. Note how J automatically deduces the inverse to
the tokenize (;:) verb:

 tweetable =: trimWord&.> &.;:
 tweetable 'APL is really cool'
APL is rlly cl

As you might note in our solution above, J executes expressions from
right to left. Sure, as you dive deeper into J, you’ll see that there are some
exceptions. Or, to be more correct, J has a certain set of execution patterns

 addTwo =: 2 & + NB. & binds one argument of a verb (think partial application)
 addTwo 1 2 3 4 5
3 4 5 6 7
 undoAddTwo =: addTwo ^: _1 NB. Create the inverse of addTwo.
 NB. That is, a verb that undoes the effect of addTwo
 undoAddTwo 3 4 5 6 7
1 2 3 4 5

 b =: < 1 NB. box the value 1
 b NB. type the variable name to see its content
+-+
¦1¦
+-+
 unbox =: < ^: _1 NB. undo the effect of box by taking its inverse
 unbox b
1

Li
st

in
g

2

10 | | MAR 2017{cvu}

that help your express more functionality with less code (these patterns
are called ‘forks’ and ‘hooks’, which we won't cover this time).

Function inverses in the real world

Function inverses are the kind of construct that change how we view code.
Once you’ve learned about function inverses, you’ll see use cases
everywhere. It turns out to be a general pattern, no matter what
programming language we use. For example, consider pairs of malloc/
free, acquire/release, and open/close. All of them follow the
pattern captured in the Under idiom: We do something to create a context,
apply some functions in that context, and then leave our context by
undoing the initial effects with a logical inverse like free, close, etc.

Most modern languages provide some mechanism to capture these steps
– in C++ we use the RAII idiom, in Lisp we express it with macros, and
in Java, well, we just wait a few years for an extension of the core
language – but no approach is as succinct and powerful as J’s.

Exploring the J language is likely to change how you view programming
and make you think differently about both functions and data. The Under
idiom introduced in this article is just one example. J is full of mind
melting ideas. For instance, just as we can inverse a function we can also
derivate it or provide a list of functions as a declarative alternative to
traditional conditional logic. I hope to explore those paths in future articles.

How hard is J to learn?
If this article is your first exposure to J, you probably find the language
tricky at best and pure line noise at worst. You’re in good company; the
Internets are full of attempts at learning to decipher array languages. My
favourite is a blog post by Ron Jeffries [8] that starts with “J. This is
HARD. However...No, really. This is hard”. I owe a lot to Ron since it was
his blog post that turned my attention to J. Somehow I thought I needed
that challenge (it was a good day). I also found J hard to learn and I still
struggle with problems I know how to solve in languages I’m more
comfortable with.

However, if J makes it hard to write code, perhaps that’s a good thing; We
don’t need more code. We need less code but with higher quality. The best
way to achieve that is by re-framing and simplifying the problems we try
to solve. J helps us with that.

That said, I don’t think J is hard per se. J is only hard to learn if you
already know how to program. In that case there are lots of habits to
unlearn. We also need to break our automated interpretation of common
programming symbols since they carry a radically different meaning in J.
For example, a seasoned programmer expects curly braces and
parentheses to be balanced. That’s not the case in J where those symbols

form different verbs. Breaking those code reading habits takes time, yet
it’s kind of the easy part. The hard part is to change how we approach
problem solving in code.

Finally, if you struggle with the J language, you’ll always find comfort in
Dijkstra’s words [9] about its predecessor: “APL is a mistake, carried
through to perfection”. Now we know that Dijkstra was slightly wrong; J
clearly carried both that mistake and its perfection further. 

References
[1] The Pragmatic Programmer, https://www.amazon.com/Pragmatic-

Programmer-Journeyman-Master/dp/020161622X
[2] http://jsoftware.com/
[3] http://tryapl.org/
[4] https://www.youtube.com/watch?v=NoGn2RWbBoE
[5] http://jsoftware.com/stable.htm
[6] http://www.dyalog.com/uploads/files/student_competition/

2014_problems_phase1.pdf
[7] https://github.com/adamtornhill/apl-challenge-2014-in-J
[8] http://ronjeffries.com/xprog/articles/j-this-is-hard-however/
[9] http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/

EWD498.html
MAR 2017 | | 11{cvu}

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

https://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
https://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://jsoftware.com/
http://tryapl.org/
https://www.youtube.com/watch?v=NoGn2RWbBoE
http://jsoftware.com/stable.htm
http://www.dyalog.com/uploads/files/student_competition/2014_problems_phase1.pdf
http://www.dyalog.com/uploads/files/student_competition/2014_problems_phase1.pdf
https://github.com/adamtornhill/apl-challenge-2014-in-J
http://ronjeffries.com/xprog/articles/j-this-is-hard-however/
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD498.html

Be Available, Not Busy
Chris Oldwood considers how agility is best achieved.

e all like to be busy; at least most people I’ve worked with would
much prefer to get on with something than just sit around all day
twiddling their thumbs. That’s not to say taking a break once in

a while is not desirable, or even beneficial, but that by-and-large we
generally have a good work ethic which means we want to pull our weight
and make an equal contribution to the team’s efforts. In essence, if we’re
always busy, we can’t be accused of not earning our keep through being
idle.

The best-laid plans…
Anyone who’s ever had to employ builders to do any non-trivial building
work, like an extension for example, will be all too aware of how
detrimental busy people can be to a project’s progress. The extension
starts great – the builders are in full time so the footings and walls spring
up nicely and they move on to the roof. Then the unexpected happens – it
starts to rain – and the builders don’t appear that day. It might be for safety
reasons they haven’t shown up, or just because no one likes working
outside in the cold, driving rain when they could be
doing something else in the warm indoors instead.

The following day, it’s raining again and it’s a no-
show as before, fair enough. But by the fourth day the
rain has stopped and the builders are still nowhere to
be seen, so you give them a call to find out what’s
going on. It turns out it was unsafe for them to put on
the roof in the horrendous weather so they spent the
last few days on another job whilst waiting for the
weather to clear up. Despite the rain stopping they
decided to finish up this other job as it was only
going to be a couple of days. Only, this other job hasn’t quite gone
according to plan either and the owner currently has no windows so they
really need to get that sorted before coming back to carry on your
extension. They’ve sent the faulty ones back and the manufacturer has
absolutely promised them replacements this afternoon…

Different strokes
And so it goes on. This is a classic example of how people’s desire to be
busy means that their own agenda comes before that of the project – in this
instance, your extension. Your goal is probably to have the extension built
as quickly and cheaply as possible with the minimum of disruption,
whereas the builder’s is likely after maximising their income. To offer the
cheapest price and yet still earn income on days where work on your
project is not possible, they will find other paid work to do. The
alternative for you and them would probably be a retainer in the form of
a more expensive overall cost. Don’t get me wrong, I’m not suggesting
that builders do not have our interests at heart, as I’m sure they want a
successful outcome too, but that their top priority and the customer’s top
priority may not always be in alignment.

This effect of context switching and delay often becomes even more
apparent as the project moves to completion. Once the structural work is
done and we move onto the plumbing, electrics and

decorating then, every time we have a handover or need a different trade,
we may have to wait an indeterminate amount of time for them to become
free if they are not being very tightly orchestrated. If the job is not done
satisfactorily, any rework may also have to be fitted in around other
client’s jobs and so the eventual date of completion gradually slips back
again, and again.

So that’s how it pans out in small scale construction, but how about for
software delivery?

Virtual extensions
There are potentially different forces at play here because of inherent
differences in the two industries, but there are definitely parallels, even
when you have a dedicated team on a software project. Unless the team is
truly cross-functional with the full gamut of infrastructure and security
skills, along with complete autonomy, it will require collaboration with
people outside their control. The question is whether inside the team, at

least, they can operate in a way that reduces delays
and maximises the flow of features.

Intuition tells us that if everyone is working as
efficiently as possible then the whole team must, by
definition, also be working as efficiently as possible.
Hence if we’re always busy we are being efficient
(time wise) because there is no slack in the day. And
this all makes perfect sense if the aim is to keep
people busy, but sadly it does not appear to be the
most effective way to get new features and fixes as
quickly into production as possible.

Dampening inertia
There is a moment in Eliyahu Goldratt’s The Goal where there is a
suggestion that it may be more beneficial for a worker to be idle for 10
minutes than to immediately get on with the next piece of work. This
almost certainly sounds like heresy and goes against our intuition, which
is likely why the characters in the book were suspicious of the hypothesis
too. The difference of course is that the work they could pick up now
might not be as important as the piece they pick up in 10 minutes time. If
they start work on a lower priority task and have to finish it, it will delay
the start of the higher priority one. Anyone who’s ever looked into priority
inversion problems in a multi-threaded system will be all too aware of
how lower priority work can starve the more important stuff when it can’t
be interrupted. The overall effect is that work is being done but it’s not
necessarily the work we want to be done right now.

In software delivery, we’re ideally looking to ensure that the moment a
piece of work enters the team, the finished article pops out the other end
as quickly as possible. The quicker we put a feature into production the
quicker we can exploit its ‘value’. Potentially more importantly, though,
is that the faster we can move a change through the pipeline, the quicker
we can remediate unforeseen problems and react to new customer
feedback. Unless you’ve got a product owner who paradoxically believes
‘everything is the number one priority’ then you will find greater riches in
ensuring you finish what you start, rather than keep starting new things.

Small is beautiful
Context switching, as we know from watching computers thrash about
when they have too many tasks on the go at once, does not appear to be
the answer – smaller units of change (done to completion), however,

W

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in
plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted
via gort@cix.co.uk or @chrisoldwood

lower priority work
can starve the more

important stuff
when it can’t be

interrupted
12 | | MAR 2017{cvu}

appears to work better. If you’re used to working on features that take
many days or weeks to complete, then it might seem impossible to
imagine how you can break your work down into such small pieces that
they generally only last a few hours to a couple of days, but in many cases
you can.

For example, refactoring work, by definition, does
not change the observable behaviour of the system
and therefore is a candidate for delivery into
production the moment it’s complete. Similarly, the
use of feature toggles enables us to deliver working
code straight into production, even if real users don’t
have access to it whilst we iron out the wrinkles.
Finally the use of ‘spikes’ allows us to decouple the
act of learning about a problem from delivering the
solution to it.

Outside of writing production code, the modern
programmer has many other tasks on their plate,
which can be separated off into distinct units of work.
These can be independently prioritised and executed,
such as documentation, updating tools, reviewing
other people’s changes, improving the deployment
process, monitoring, etc. Even if all that is done and dusted there is always
far more learning to do than we have hours in the day so reading a few
blog posts, book chapters or articles about the tools and technology stack
is another excellent way to spend a very small amount of time in a
valuable way. Note that this should not be ‘busy work’ work invented just
to keep you out of trouble; everything we do should be because it adds
value to the product directly or indirectly through improving the delivery
process – ‘being available’ does not mean ‘killing time’.

The net result of this decomposition of chunks of work into much, much
smaller units is that it’s easier to smooth out the flow because at the
huddle each day you can re-prioritise based on the previous day’s events.
With really small tasks (on most days) people in the team are available to
either pick something new up or even pair or mob with others to help get
the most important feature out the door. If someone goes off sick for a few
days, rather than waiting for their return you could probably finish
whatever it was they were doing, or even repeat their work again because
the time lost is minimal and you may generate more disruption by trying
to work around their unfinished efforts.

Being busy is a natural state that we will find ourselves in most of the
time, but that should be because the work we are doing is effectively the

most useful thing we could be doing at that moment in time. What we
need to be aware of is the consequence of being busy all the time so that
we begin to lose sight of the proverbial wood hidden behind the trees. Not
all tasks are created equally and some even become redundant before

we’ve started them, so it’s important that we keep re-
evaluating what we’re doing and why. If you begin to
realise you can fork off the latter part of a task into a
separate lower value one and finish early, you will be
available to trade-off lower value work for
something higher. Whether you actually do or not is
somewhat irrelevant, being able to is what really
counts.

Culture shock
Switching management styles to one that focuses on
the outcome of the work instead of what each
‘resource’ is up to is hugely liberating for the
workers but also difficult for some to grasp. When a
team self-organises almost on a daily basis to meet
the demands of the product backlog it may be harder
to know exactly what any one individual is up to or

what contribution they may make to any single piece of work.

In essence, it shouldn’t matter as long as the cost of developing any
feature is less than the value it generates, but given how hard it is to put a
figure on that for any one item, it’s even more important that the team
continuously delivers a working product to see how the costs are
measuring up. Always being available to work on the next most important
thing helps ensure that the money is biased towards the more valuable
pursuits rather than being diluted within bigger tasks of mixed value.

Summary
Agility comes from being in a position to make a change in direction
sooner. To react to the ever changing landscape, which could easily be a
daily occurrence (or sometime less!) the members of the team should
work in a way that allows them to start and complete ‘useful’ tasks in a
small period of time. Being more aware of what is going on around us and
where our current piece sits in the pecking order means we can make a
judgement call on whether to soldier on alone, call for reinforcements or
even stop short and offer ourselves up instead. If the spotlight switches
from the people to the outcome then it helps those people to self-organise
around that goal when their availability is higher. 

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

being available to
work on the next
most important

thing helps ensure
that the money is

biased towards the
more valuable

pursuits
MAR 2017 | | 13{cvu}

#include <functional>
#include <iostream>
#include <map>
#include <sstream>
#include <unordered_map>

// Best scores
std::multimap<int, std::string, std::less<>>
best_scores;

// Map people to their best score so far
std::multimap<int, std::string>::iterator typedef
entry;
std::unordered_map<std::string, entry>
peoples_scores;
entry none;
void add_score(std::string name, int score)
{
 entry& current = peoples_scores[name];
 if (current != none)
 {
 if (score <= current->first)
 {
 return; // retain the best score
 }
 best_scores.erase(current);
 }
 current = best_scores.insert({score, name});
}
void print_scores()
{
 // top down
 for (auto it = best_scores.end();
 it-- != best_scores.begin();)

Li
st

in
g

1

Code Critique Competition 104
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I am trying to keep track of a set of people’s scores at a game and print
out the highest scores in order at the end: it seems to work most of the
time but occasionally odd things happen...

Can you see what’s wrong?

The code – scores.cpp – is in Listing 1.

Critique

Chris Main <cmain@fastmail.fm>

This is a tricky problem as I haven’t been able to come up with any valid
test data that makes ‘odd things happen’ on my platform, which is:

g++ 5.4 on Ubuntu 16.04, compiling with -std=c++11.

My first point is therefore the importance of a precise statement of the
issue. Ideally this should state the actual input, the expected result and the
actual result. Even if this is not possible because the issue cannot be
repeatedly reproduced, the description should at least state the kind of
issue, for example:

 the program crashes

 the program outputs spurious values

 the program outputs incorrect values

 the program outputs lines in the wrong order

 the program does not output as many lines as it should

Compilation failed for me because of the std::less<> in the declaration
of best_scores . T h i s ca n b e f i xe d b y ch a n g i n g i t t o
std::less<int>, or better still by removing it altogether as that is the
default. I assume this was just a typo.

There is no validation of input lines, so if something other than a name and
a score is entered that might cause strange results, but the way the question
is posed suggests that the problem is less obvious than that.

My first thought was iterator invalidation. Multimap iterators are being
held as the mapped_type in an unordered_map. These iterators are
associated with entries in best_scores, so I wondered whether they
could become invalid when other entries are added to or removed from
best_scores. However, after some research I found that multimap
iterators are not invalidated in these cases.

In add_score(), the test for whether a person has a previous score is
done by calling operator[] and comparing the result with a default
constructed iterator. Although this works, it is more idiomatic to call

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

Listing 1 (cont’d)

 {
 std::cout << it->second << ": "
 << it->first << '\n';
 }
}
int main()
{
 for (;;)
 {
 std::cout << "Enter name and score: ";
 std::string lbufr;
 if (!std::getline(std::cin, lbufr)) break;
 std::string name;
 int score;
 std::istringstream(lbufr)
 >> name >> score;
 add_score(name, score);
 }
 std::cout << "\nBest scores\n";
 print_scores();
}

Listing 1 (cont’d)
14 | | MAR 2017{cvu}

find() and compare the result with the end() iterator. The function
would then look like:

 auto current = peoples_scores.find(name);
 if (current == peoples_scores.end())
 {
 peoples_scores.insert({name,
 best_scores.insert({score, name})});
 }
 else if (current->second->first < score)
 {
 best_scores.erase(current->second);
 current->second =
 best_scores.insert({score, name});
 }

I don’t think this makes any functional difference to the implementation.

In print_scores(), the for loop is not idiomatic, and this is where I
think the problem may be. best_scores needs to be iterated in reverse
order. The correct way to do this is to use the reverse iterators from begin
to end, and in fact the const versions of these can be used:

 const auto end_it = best_scores.crend();
 for (auto it = best_scores.crbegin();
 it != end_it;
 ++it)
 {
 std::cout << it->second << ": "
 << it->first << '\n';
 }

There is no range based for loop for reverse iterators in the C++ language
itself yet. With a bit of refactoring, std::for_each could be used
instead:

 #include <algorithm>
 struct output_score
 {
 void operator()(
 const std::pair<int, std::string>& score)
 {
 std::cout << score.second << ": "
 << score.first << '\n';
 }
 };
 void print_scores()
 {
 std::for_each(best_scores.crbegin(),
 best_scores.crend(),
 output_score());
 }

The original implementation uses forward iterators from end to begin, with
a post decrement in the condition. As observed, this does in fact work, but
there is a potential problem with the terminating step of the loop. This
decrements the iterator to a position before best_scores.begin(),
which does not exist, and technically this is undefined behaviour. Because
the iterator is never dereferenced when it reaches this invalid position, I
expect you would usually get away with this implementation, but maybe
this is the cause of “occasionally odd things happen ...”. I haven’t been able
to find anything else.

James Holland < james.holland@babcockinternational.com>

It may be the case that the student’s code runs without error on a particular
system. This would be unfortunate as there are two features of the program
that rely on undefined behaviour. The program may well fail on other
platforms. The first feature that results in undefined behaviour is located
in add_score() and is the comparison of default-constructed iterators.
One i t e r a to r i s c r ea t ed by operator[]() be lon g in g t o
peoples_scores. The other is the global none.

The fact that the standard does not permit the comparison of default
constructed iterators is a pity as it renders invalid what would otherwise

be a perfectly good function. Perhaps later versions of the standard will
permit such comparisons. I could not think of a reasonable way of
modifying the student’s code while still employing operator[]().
Instead, I adopted a fairly straightforward approach that first searches
peoples_scores for a record with a key of name and then adds a record
or modifies the existing record accordingly.

The second undefined feature is located in print_scores() and results
in an iterator pointing to one element before the start of best_scores.
This is also not permitted under the standard. Probably the simplest way
of resolving this problem is to rewrite the loop using a range-based for
loop. The original loop was designed to print best_scores starting with
the last record. The range-based for loop can only iterate through the
container starting from the first record. The desired result can be obtained
by storing the elements of best_scores with the greatest key value at
the start of the container. This is achieved by changing the third template
parameter of the best_scores type to std::greater<int>. The best
scores will now be printed starting with the highest value.

One slight deficiency with the program that still exists is that people’s
names are stored twice; once in peoples_scores and once in
best_scores. It would be more efficient for best_scores to refer the
names already stored in peoples_scores. This is a little fiddly to
achieve and I do not attempt the modification here.

Finally, I present my version of the student’s code below.

 #include <iostream>
 #include <map>
 #include <sstream>
 #include <unordered_map>
 using best_scores_type = std::multimap<
 const int, const std::string,
 std::greater<int>>;
 best_scores_type best_scores;
 std::unordered_map<std::string,
 best_scores_type::const_iterator>
 peoples_scores;
 void add_score(const std::string & name,
 const int score)
 {
 const auto people_position =
 peoples_scores.find(name);
 if (people_position != peoples_scores.end())
 {
 if (score > people_position->
 second->first)
 {
 best_scores.erase(
 people_position->second);
 people_position->second =
 best_scores.insert({score, name});
 }
 }
 else
 {
 const auto best_scores_position =
 best_scores.insert({score, name});
 peoples_scores.insert({name,
 best_scores_position});
 }
 }
 void print_scores()
 {
 for (const auto & person : best_scores)
 {
 std::cout << person.second << ": "
 << person.first << '\n';
 }
 }
 int main()
 {
MAR 2017 | | 15{cvu}

 for (;;)
 {
 std::cout << "Enter name and score: ";
 std::string lbufr;
 if (!std::getline(std::cin, lbufr)) break;
 std::string name;
 int score;
 std::istringstream(lbufr) >> name
 >> score;
 add_score(name, score);
 }
 std::cout << "\nBest scores\n";
 print_scores();
 }

Herman Pijl <herman.pijl@telenet.be>

Apparently the developer wants to keep track of the high scores and
simultaneously maintain a lookup that maps the user to an entry in the high
score table.

The print_scores function looks a bit suspicious.

I decide to run the program, and after the prompt appears, I press Ctrl-d to
end the input. The result is a segmentation fault (I am running on Cygwin).
Iterating over the elements of a container in reverse order should not be
an adventure. Just use the reverse iterators that were designed exactly for
this purpose (rbegin() and rend()) to avoid problems or even crashes
as the one I had.

Reverse iteration doesn’t look natural at first sight. The ordered containers
allow to specify an ordering criterion. The default ordering criterion
happens to be std::less, but nothing keeps you from using another
ordering criterion from the algorithm library, e.g. std::greater. The
given code explicitly mentions the default ordering criterion and this
explicit (default) choice is probably meant to be a hint to change the
program. Ordering from high to low values allows to iterate over the
container with the usual begin() and end() boundaries.

Let’s move to the next problem in this code. The peoples_scores map
attempts to keep track of the position in the best_scores map.
Unfortunately it is not such a good idea to keep a copy of an iterator in a
table. Stroustrup (4th Ed. $31.2) mentions that the ordered [multi]map/sets
are usually implemented as balanced binary trees (mostly red-black trees).
To keep such a tree balanced (and therefore performant O(log(n))) some
pruning is needed causing the traversal (=iteration) to be different after
insertions/deletions.

So if you cannot use an iterator, then what can you use? Remarkably the
answer is: a pointer! There is no such thing as a commandment that says:
“Thou shalt not use pointers!” Some people try to avoid them
dogmatically, but sometimes you have no choice.

The standard library does this too in some cases, e.g. when you construct
an istream_iterator, you typically pass an istream to the
constructor as reference, BUT the istream iterator takes the address of
that istream (thus a pointer) and it keeps that as a private member. One
of the good reasons to keep a pointer is that the istream_iterator is
an input iterator ($33.1.2) and as such it has to be copyable.

I am going to keep the const_pointer type of the multimap, i.e.
std::multimap<int, std::string>::const_pointer will
become my entry type.

The value_type of a map is typically a (K, V) pair.

I assume that the standard allocator will allocate the nodes on the heap, so
that the addresses of the value_type will not change when a red-black
tree gets reorganised.

The best_scores and peoples_scores maps have to be maintained
‘transactionally’, so that there is always exactly one entry in both for a
particular user.

In order to add an entry to the best_scores map, I use the emplace
method. As it returns an iterator, I deference it and use the address-of
operator to find my const_pointer:

 &*best_scores.emplace(score, name);

When there is no entry for the user I can just do:

 peoples_scores.emplace(name,
 &*best_scores.emplace(score, name));

When there is already an entry for the user, then I have to check whether
the score is better than the previous score. If that is the case, then I have
to erase the previous score. Unfortunately, multiple users can have the
same score. So in order to find the right entry and erase it I use

 // bs is reference to best_scores
 bs.erase(std::find_if(
 bs.lower_bound(prevScore),
 bs.upper_bound(prevScore),
 [&](auto & it)-> bool{
 return it.second == name;
 }));

After that I need to add a new entry in the best_scores table and update
the reference to it in the peoples_scores map.

 itFind->second = &*bs.emplace(score, name);

It seems to work fine.

Further enhancements could be the introduction of a good old fashioned
struct containing name and score and defining the extraction operator >>
on it so that so that you can write the processing as a for_each call.

A complete solution is shown below:

 #include <functional>
 #include <iostream>
 #include <map>
 #include <sstream>
 #include <unordered_map>
 // added
 #include <algorithm>
 #include <cassert>
 #include <iterator>
 // Best scores
 /*added*/ std::multimap<int, std::string,
 std::less<>> typedef best_scores_type;
 std::multimap<int, std::string,
 std::less<>> best_scores;
 auto & bs = best_scores;
 // new unordered map
 std::unordered_map<std::string,
 best_scores_type::const_pointer>
 nps;//new_peoples_scores
 void new_add_score(std::string name,
 int score)
 {
 auto itFind = nps.find(name);
 if (itFind != nps.end()){
 // player already present
 int prevScore = itFind->second->first;
 if (prevScore < score){
 bs.erase(std::find_if(
 bs.lower_bound(prevScore),
 bs.upper_bound(prevScore),
 [&](auto & it)-> bool{
 return it.second == name;}));
 itFind->second =
 &*bs.emplace(score, name);
 }
 } else { // new player
 nps.emplace(name,
 &*bs.emplace(score, name));
 }
 }
 void print_scores()
 {
 std::for_each(best_scores.rbegin(),
 best_scores.rend(),
16 | | MAR 2017{cvu}

 [](auto & it){
 std::cout << it.second << ": "
 << it.first << '\n';});
 }
 struct NameScoreEntry{ std::string name;
 int score; };
 std::istream & operator>>(std::istream& is,
 NameScoreEntry& entry)
 {
 is >> entry.name >> entry.score;
 return is;
 }
 void extract(std::istream & is){
 std::istream_iterator<NameScoreEntry>
 ist(is), eos;
 std::for_each(ist, eos, [&](auto i){
 new_add_score(i.name, i.score);});
 }
 int main(){
 std::cout <<
 "Enter name and score (multiple lines): ";
 extract(std::cin);
 print_scores();
 }

Commentary
This is a critique that is principally about undefined behaviour – often
abbreviated to UB. There are in fact three different examples of this in the
code presented. You might want to stop now and see if you can find them
with this hint before reading on!

The first problem is the use of the default-constructed entry object named
none. As James noted, the standard does not allow comparisons between
default-constructed iterators and so the comparison

 if (current != none)

is not valid. As it happens, the code appears to run successfully with a
number of combinations of compilers and flags: one of the problems with
undefined behaviour is that it can be quite hard to detect.

The second problem is that the loop in print_scores counting
backwards through best_scores decrements the iterator it to point
before the beginning of the collection. This is also not valid, and may cause
runtime failures depending on exactly how multimap is implemented in
the standard library being used. Some years ago I encountered a similar
problem with code that removed items from a std::list and
decremented the iterator referring to the item being removed. This had
worked for years with one implementation of the standard library, but
when ported to a different environment decrementing the iterator when the
item being deleted was at begin() caused failures at runtime.

The third problem is that the typedef for entry is incorrect. It refers to
an iterator into a multimap with a defaulted comparator but the actual
map has an explicitly specified comparator of std::less<>. This subtle
difference means the resultant iterators are of different types and adds
some more possibly troubling behaviour.

(Note: std::less<> was added in C++ 14, which is why Chris Main
couldn’t compile the code using -std=c++11. It was proposed by Stephan
Lavavej and his proposed wording was voted into the standard without
needing any editing, which is very unusual!)

There are several ways to attack these problems; but identifying them is
often the hardest step. Fortunately, many compilers provide extra
validation when using the standard library that can make this easy.

For example, compiling the sample code using gcc and adding the flag
-D_GLIBCXX_DEBUG will use an instrumented version of the standard
library. The code as presented won’t even compile with this flag specified
because of the mismatched iterator types.

Similar instrumentation is available with MSVC when using the
debugging runtime library (eg adding -MDd).

Incidentally, this is another reason to prefer using the standard library to
your own hand-written code…

As the entries showed, solving the problem caused by trying to use none
as a sentinel value can be resolved by the use of find rather than the simple
use of the square bracket operator.

The over-enthusiastic decrementing of the iterator can be resolved by using
a more idiomatic loop: either by changing the comparator to
std::greater<> or by changing the loop to use crbegin and crend.
The first option has the additional benefit of allowing use of range-for.

I was expecting someone to comment about the placement of typedef
in the middle of the line: placing typedef at the beginning of the line is
an extremely common coding convention. In modern C++ code though I
would recommend using over typedef as I think it is more readable.

The winner of CC 103
I was (deliberately) a little vague in setting the critique about what exactly
the symptoms were (“occasionally odd things happen”) – perhaps I should
have been a little more forthcoming! Unfortunately, of course, when
undefined behaviour occurs the symptoms are often just like this…

While Chris did not identify the undefined behaviour, his instincts for
writing idiomatic code were sound and so his modifications did in fact deal
with the two main pieces of UB.

James identified the two main sources of UB and he also, by changing the
comparator, was able to change the code in print_scores to use range-
for, which makes it clearer.

Herman was very close to identifying the problem; but in fact the iterators
are not invalidated when the map is re-balanced. His replacement of
iterators with pointers was valid and did have the side-effect of removing
the undefined behaviour. I did like his introduction of a simple helper struct
NameScoreEntry to assist with reading the data in: it is very easy to
create such structs in C++ and there can be significant benefits for
readability with having named fields.

Overall, I think James provided the best critique, so I have awarded him
the prize.

#include <iterator>
#include <vector>
// get unique values in the range [one, two)
template <typename iterator>
std::vector<typename iterator::value_type>
unique(iterator one, iterator two)
{
 if (distance(one, two) < 2)
 {
 // no duplicates
 return {one, two};
 }
 // first one can't be a duplicate
 std::vector<typename iterator::value_type>
 result{1, *one};
 while (++one != two)
 {
 auto next = *one;
 bool is_unique =
 (*result.rbegin() != next);
 if (is_unique)
 {
 result.push_back(next);
 }
 }
 return result;
}

Listing 2
MAR 2017 | | 17{cvu}

18 | | MAR 2017{cvu}

Troy Hunt: An Interview
Emyr Williams continues the series of interviews with people

from the world of programming.

roy Hunt is based in Gold Coast, and is a Microsoft Regional Director
as well as an MVP (Microsoft Valued Professional) in the field of
developer security, and has become a world class security consultant.

He has travelled the globe giving training lectures on security for software
engineers. As well as being a Pluralsight author, he is also the man behind
the website haveibeenpwned.com where a user can enter their e-mail and
check if they have an account on a site that’s been compromised. His blog
can be found at www.troyhunt.com

How did you get in to computer programming? Was it a sudden interest? Or
was it a slow process?

I had a curiosity as a young teenager but frankly, I preferred to be
outdoors doing something active. It wasn’t until I turned 14 and we
moved from Australia to the Netherlands (which is often not very
conducive to outdoor activities!) that I began showing more interest
in computing.

What was the first program you ever wrote? And in what language was it
written in?

It would have been something in BASIC but I honestly can’t
remember what. Most of my code exposure then was hacking
around games and other subversive activities.

What would you say is the best piece of advice you’ve been given as a
programmer?

I can’t think of one piece of advice specifically, but a friend I worked
with many years ago pushed me into blogging and that then opened
up many opportunities that leveraged my coding experience and led
to where I am today.

How did you get in to the field of software security? Was this part of your
day job when you worked at Pfizer? Or did it occur naturally?

I worked as a software architect at Pfizer responsible for how we
delivered solutions across Asia Pacific and whilst security was also
a component of that, it wasn’t the sole focus of the role. But what the
role did is exposed me to many seriously bad security practices;
Pfizer outsourced everything to vendors in low cost markets and had
a very strong focus on price so you can imagine some of the security
transgressions that led to!

T

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk

 auto out =
 std::ostream_iterator<T>(os, " ");
 copy(vector.begin(), vector.end(), out);
 os << "=> ";
 copy(result.begin(), result.end(), out);
 os << "\n";
}
int main()
{
 std::cout << "test with strings\n";
 std::vector<std::string> ptrs;
 ptrs.push_back("a");
 ptrs.push_back("a");
 ptrs.push_back("b");
 ptrs.push_back("b");
 ptrs.push_back("c");
 ptrs.push_back("c");
 test(std::cout, ptrs);

 std::cout << "test with ints\n";
 std::vector<int> ints;
 ints.push_back(1);
 ints.push_back(1);
 ints.push_back(2);
 ints.push_back(2);
 ints.push_back(3);
 ints.push_back(3);
 test(std::cout, ints);
}

Listing 3 (cont’d)

#include <iostream>
#include <string>
#include <vector>
#include "unique.h"
template <typename T>
void test(std::ostream &os,
 std::vector<T> const &vector)
{
 auto result =
 unique(vector.begin(), vector.end());

Li
st

in
g

3

Code critique 104
(Submissions to scc@accu.org by April 1st)

I was trying to write a simple template that gets the unique values from
a range of values (rather like the Unix program uniq) but my simple test
program throws up a problem.

 test with strings
 a a b b c c => a b c
 test with ints
 1 1 2 2 3 3 => 1 1 2 3

Why is the duplicate 1 not being removed?

The code is in Listing 2 (unique.h) and Listing 3 (unique.cpp).

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://accu.org/index.php/journal). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

Code Critique Competition 104 (continued)

https://haveibeenpwned.com
www.troyhunt.com
http://accu.org/index.php/journal

accu ACCU Information
Membership news and committee reports
View from the Chair
Bob Schmidt
chair@accu.org

In my last column I mentioned that I was
scheduled to participate in the Hour of Code
program. Hour of Code is a “global movement
reaching tens of millions of students in 180+
countries” [1] sponsored by code.org, a “non-
profit dedicated to expanding access to
computer science, and increasing participation
by women and under-represented minorities.”
[2]

I volunteered for Hour of Code in 2015, but was
not contacted to participate that year. Last year,
Dr. Kathleen Neuber of St. Charles School here

in Albuquerque asked if I would come to her
school and talk to her students.

I spent two hours the morning of December 5th
at the school, interacting with approximately 50
students ranging in age from ten to 13 years. As
I worked my way through the slides I had
prepared, I talked about how I had never seen a
computer until I was 18 years old and in my
second college semester, and how that
compares to today’s students who grow up with
a computer in their hands.

I explained that the type of systems on which I
work, from large-scale process control systems
to very-small-scale embedded systems, are
somewhat different from the type of

applications they are used to using on their
phones and tablets. I gave a brief introduction to
closed-loop control, using a heating thermostat
as a simple example.

I spent a little time talking directly to the young
ladies in the audience. I explained that women
are under-represented in our field, and that there
are several reasons why – including peer
pressure and bullying. I encouraged the young
ladies, if they are interested in a career in one of
computer industries, to push back against those
pressures. I explained that diverse project teams
have been shown to be more successful than
those that aren’t. I showed a picture of a
computer system I helped develop, install, and
MAR 2017 | | 19{cvu}

I see from your blog that some folks send you details of breaches, such as
data dumps etc? But do you carry out tests yourself on websites or web
services? And if so, how do you do that within the bounds of staying legal?
Do you poke and prod at online systems looking for holes and attack
vectors?

I make a real point of doing data breach verification in a very
transparent way; I expect that people may be watching and I’m
exceptionally cautious to ensure I remain ethical the entire time. I
look for publicly observable patterns of vulnerable coding, things
like missing HTTPS, email address enumeration risks, improperly
configured servers, risky patterns with cookies etc. I try and answer
the question “does this look like the sort of site that would be
vulnerable to attack?”. I also reach out to HIBP subscribers in the
alleged data breach and simply ask them – “Did you use that service
and is this your data”. That’s a very reliable means of verification.

Having read your blog for some time now, I get the impression you’re
insanely busy. How do you maintain the balance between work and family
life?

We all trade off work and families. Many people don’t like to think
about it that way, but we put a price on our families every day we go
to work even in very traditional jobs. The balance my wife and I
strike is that I travel a lot and work long hours at home too, but I
have heaps of flexibility. I’m often taking the kids to school, I
always watch them at tennis, my wife and I often go out for lunch
and of course we enjoy the rewards of a successful career too. It
wouldn’t work for many other people, but it’s a balance that works
well for us.

What would be an average work day for you?

Who knows! If I’m at home, getting up by 5am and sitting outside
near the water with a coffee doing emails and catching up on
everything that’s happened overnight for an hour or 2. After that I’m
often having meetings about upcoming events or courses, writing
new blog material, working on HIBP and doing any number of other
things. When I’m travelling, it’s non-stop going between hotels,
airports, conferences and workshops. That’s a really intense period
that often takes me weeks to unwind from once I’m home.

If you were to start your career again now, what would you do differently?
Or if you could go back to when you started programming what would you
say to yourself?

It’s a different world now to when I was starting out. My first year
at uni was the first time I saw the internet so I never really had the
advantage of all the online resources we have today. If I’d had them,
I would have done a heap of learning online through resources like

Pluralsight and built up an online identity much earlier. That’s been
the most valuable thing for me in later years and what I wish I had
have done earlier.

What would you say is one of the most important books you’ve read as a
developer?

HTML for dummies. Seriously, I still have the book I bought in ’95
and used that to start building web apps. It’s such a trivial thing by
today’s standards, but that’s what helped get me started in a time
where information was sparse.

What would you describe as the biggest “ah ha” moments, or surprises
you’ve come across when you’re chasing down a bug?

I’m continually surprised at how on earth some code ever worked to
begin with! We all do this – look back at the things we wrote with
wonderment – and I do the same thing on a regular basis.

Do you have any regrets? Such as followed a different technical route or
something like that?

I’m really happy with my life at present so it’s hard to have regrets
as all the things I’ve done have led me to where I am now. Perhaps
the biggest would be not starting down the online identity path
earlier. I wish I’d been able to fast track the path to my current life
but even then, other environmental factors may not have made that
happen any earlier. I spend very little time regretting things, I’m
usually looking forward to the next thing.

Do you mentor other developers? Or did you ever have a mentor when you
started programming?

12. I’m not overly fond of the premise of mentoring as some sort of
discrete process. I prefer the idea of having many people you talk to,
draw inspiration from and give advice to. Of course I’ve had those
relationships more with some people than others, my suggestion to
people is to surround yourself (either physically or virtually) with
people you respect and aspire to be like and that’s certainly had a
very positive impact on me.

Finally, what advice would you give to someone is looking to start a career
as a programmer?

Build stuff. More than anything, experience counts massively
towards your future potential. Go and learn from resources like
Pluralsight then start a project or contribute to open source projects
or do something that actually produces an end product. As someone
who’s interviewed a lot of people before, I care very little about
what school they went to or the grades they got and I care massively
about what they’re actually able to do.

Troy Hunt: An Interview (continued)

accuACCU Information
Membership news and committee reports
REVIEWS

maintain starting in 1981, and which ran until it
was replaced in 2013. In the foreground of the
picture was a young lady who was at the time
younger than the computer system. I explained
that she was the software project lead on that
system’s replacement project, and was
supervising my work as part of my current
contract.

I also brought samples of some of the embedded
system products I’ve produced over the past 20
years, including prototypes and production runs
of the printed circuit boards (PCBs), and the
schematics that were used to generate the PCB
layouts. I had some spare boards that the kids
could pass around so they could get an up-close
look.

We talked about areas of computing that I’ve
seen in the literature – including Big Data – that
are predicted to be high growth areas (and used
pictures of the Large Hadron Collider as an
example, generating a petabyte of data per year
when it is running).

The older students are participating in the
Future City competition [3], so I talked a bit
about where computer systems might be
applied in cities the future. I also opined that we
aren’t very good at predicting the future, and
used as an example that when I wrote my first
program in 1978 (in FORTRAN, for an IBM
360), nobody (that I knew of, at least) was
predicting we’d all be carrying around
computers in our pockets.

I was worried I was going to blow through the
slides, but I ended up talking for longer than I
expected. When it came time for questions,
most of the students were quiet, but there was
one young lady who asked multiple questions.
She stayed behind after the rest of the students
had gone back to their regularly scheduled
classes, and we talked one-on-one for a short
time. I gave her one of the sample boards that
had been passed around.

Why spend so much ink on this? Not long ago,
Russel Winder (our conference chair) asked
what we (ACCU) could do to support
computing in schools, and we discussed the
issue in our January committee meeting. The
answer to the question is, as an organization,
‘not much’, because ACCU as an organization
does not have a lot of unallocated resources;
however, as a collection of professionals, we
are rich in individual resources, and we each
have the potential to contribute.

One thing ACCU has done is to adopt Code
Club [4] as one of our charities, and we
anticipate they will have a presence at the
conference this year. Several of our members
are active with the group. Russel mentioned
Computing at School, another organization
“promoting and supporting excellence in
computer science education”.[5] Hour of Code

is another option. I encourage you to consider
participating in one of these fine programs, and
if you do, consider writing up your experience
and share it with the rest of us. If I can do it, so
can you.

Member news
We are starting a new section in CVu this issue
– Member News. This is an opportunity for our
members to let us know what’s happening in
their professional lives. This is a work-in-
progress, but the general rules are as follows:

 The section is available to members only;
 News should be of a professional nature:

new jobs, promotions, completion of
major projects, release of a product from a
company owned by the member, etc.;

 The news should be member-oriented, not
company-oriented;

 The editor of CVu has the final say over
what is published, and may edit
submissions for length and content.

ACCU Conference 2017
The 2017 ACCU conference is scheduled for
Wednesday, April 26th through Saturday, April
29th, with pre-conference tutorials on Tuesday
the 25th [6]. The schedule for the conference
has been announced, and is available on our
website [7].

Election of officers
The ACCU Annual General Meeting will be
held in conjunction with the conference, on
Saturday April 29th. These are the important
dates associated with the election:

We will once again be utilizing on-line voting
for the election. Details will be posted to accu-
members and accu-announce.

Independent-of-the-committee spotlight
Those of you who have been keeping score
know that, for the past 8 months, I have been
asking for a volunteer to take my place as
Auditor for the second year of my term. I’m
pleased to announce that Niall Douglas has
volunteered for the role. Niall has impeccable
qualifications for the role, with an education
and business experience in accounting. Please
join me in thanking Niall for volunteering.

Call for volunteers
We finally have an auditor, but we still have
several opportunities available for
volunteering:

 The ACCU web site uses Xaraya, a PHP
framework that has been moribund for the
last 4 years at least, and a replacement is
overdue.

 Martin Moene has informed the
committee that he will be stepping down
as our web site editor effective July 1st.
Please join the committee and me in
expressing our thanks for all of his
contributions over his years of service. (I
will have more to say on this in the next
issue.) This means we are not only still
looking for someone to assist with web
site admin duties; we now are also looking
for a volunteer to take over the web site
editor duties.

Please contact me if you are interested in any of
these positions.

I’d like to thank Dr. Neuber and her students at
St. Charles School for inviting me to participate
in their Hour of Code. I had a great time
interacting with the students.

References
[1] Hour of Code: https://hourofcode.com/us
[2] code.org: https://code.org/about
[3] Future City Competition:

http://futurecity.org/
[4] Code Club: https://www.codeclub.org.uk/
[5] Computing at School:

https://www.computingatschool.org.uk
[6] ACCU 2017: https://conference.accu.org/

site/index.html
[7] ACCU 2017 Schedule:

https://conference.accu.org/site/stories/
2017/schedule.html

Announcement 29 January, 2017
(90 days before AGM)

Proposal deadline 28 February, 2017
(60 days before AGM)

Draft agenda 18 March, 2017
(42 days before AGM)

Agenda freeze 1 April, 2017
(28 days before AGM)

Voting opens 8 April, 2017
(21 days before AGM)

Pavol Rovensky (Devon, UK) has
released version 1.0 of ProudNumbers,
through the company he founded, Hexner
Limited.

ProudNumbers is a management account
report generator for Sage 50 accounting
software. The program is designed to
generate Management Account reports for
various time periods and enables full
customisation of the chart of accounts for
reporting purposes. The reports are
generated in seconds. The generated
output is in spreadsheet or PDF format
and facilitates communication between
accountants and their clients.

Pavol spent more than 5 years developing
ProudNumbers. He has been a member of
ACCU since 2007. (www.hexner.co.uk)

Member news
20 | | MAR 2017{cvu}

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

FASTER APPLICATIONS OUTSIDE

CREATE FASTER CODE, FASTER
Reach new heights on Intel Xeon and
Intel Xeon Phi processors and coprocessors
with new standards-driven compilers,
award-winning libraries and
innovative analyzers.

To �nd out more about Intel products please contact us:

020 8733 7101 | enquiries@qbssoftware.com
www.qbssoftware.com/parallelstudio

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner.

Intel Parallel Studio XE Composer Edition
for Fortran Win Commercial Licence (SKU: 349062) £634⁹⁹

C

M

Y

CM

MY

CY

CMY

K

ACCUMagazine_Intel_Campaign_December_WORKINGON1.pdf 1 18/01/2017 12:33:06

	CVu29-1.pdf
	Unnecessary complexity
	On the Defensive
	Beyond Functional Programming: Manipulate Functions with the J Language
	Be Available, Not Busy
	Code Critique Competition 104
	Troy Hunt: An Interview
	View from the Chair

