

JAN 2018 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Know It All
here’s a perception of the computer
programmer as a kind of hermit wizard:
alone with a keyboard, late at night, face lit

by the light from an array of monitors,
working magic spells with dread incantations.
Notwithstanding the reinforcement of gender
stereotypes going on here, it’s probably not a
completely unjustified image, but today’s
programmer is much more likely to work in a team,
and the spell books are widely available in
mainstream bookstores. The bad-tempered bedroom
hacker image persists, mostly in terms of cyber-
criminality, but by and large, what programmers do is
no longer shrouded in mystique.
It’s probably true that programmers are more
comfortable in the company of other programmers,
overall, because it’s still easier to converse with
someone who understands your (spoken) language.
Nevertheless, the idea of ‘hacker culture’ that was
so prized during the last century has become diluted
to some extent. The sheer number of different
programming languages and practices makes it
impossible to know everything, and so as we specialise,
new sub-sub-cultures arise. We mix and match the
various sub-genres, of course, along various axes of
programming language, platform, DB, favourite editor, etc.
I once had a kind of parody Tarot card, called ‘The Developer’. I’d now need a whole
deck: The Functional, The Embedded, The High-Performance, The Security, The
Service, The Scientific, The UX...
Which brings me neatly to the term ‘Full Stack Developer’. It began, fairly simply, as
meaning a developer who could put together a full application with one of the popular
technology ‘stacks’: LAMP, MEAN, LEAP, WINS. It now seems that ‘Full Stack’
cannot be expressed as a pronounceable word, never mind one with a single syllable.
ANTJPMCDKMRK would be needed for one job I saw advertised – and that was just
some of the technologies being used. Any takers on what that might stand for?

T
Volume 29 Issue 6
January 2018

Editor
Steve Love
cvu@accu.org

Contributors
Frances Buontempo, Francis
Glassborow, Pete Goodliffe,
Roger Orr, Emyr Williams

ACCU Chair
Bob Schmidt
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JAN 2018

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
9 Programmers’ Puzzles

Francis Glassborow
shares the results of
the previous puzzle
and outlines the
next.

11 Code Critique Competition
109
The results from the last
competition and details
of the latest.

18 Standards Report
Emyr Williams
updates us on the
latest in C++
Standardisation.

19 Book Review
The latest book
review.

REGULARS
20 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 30.1 1st February 2018
C Vu 30.2: 1st April 2018

Overload 143:1st March 2018
Overload 144:1st May 2018

FEATURES
3 Visualisation of Multidimensional Data

Frances Buontempo considers how to represent large
data sets.

6 Testing Times (Part 1)
Pete Goodliffe explores how to test code to ensure it
works as expected.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Sepal.Length

2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

2.
0

2.
5

3.
0

3.
5

4.
0

Sepal.Width

Petal.Length

1
2

3
4

5
6

7
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
5

1.
0

1.
5

2.
0

2.
5

1 2 3 4 5 6 7

Petal.Width

Visualisation of Multidimensional Data
Francis Buontempo considers how to represent large data sets.

e are familiar with scatter plots for two dimensional data. Simply
use the a-axis for one dimension and the y-axis for the other and
plot your points. Job done. How do you visualise data with more

than two dimensions? You can manage a three dimensional plot, though
either need this to be interactive so you can look at your graph from
different angles or print plots from a variety of projections to draw out
salient features. For more than three dimensions you are in trouble.
Let’s look at two ways to display high-dimensional data. The UCI holds
a repository of a variety of data sets that are commonly used to show case
machine learning algorithms. One frequently used set is the iris data [1].

This contains 150 instances of measurements of iris flowers along with
the category or class of iris each belongs to:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
5. class:
 Iris Setosa
 Iris Versicolour
 Iris Virginica

There are 50 examples or instances in each class, in blocks, so you know
which is which. A machine learning algorithm will try to find ways to
group the data correctly. We will ignore the class and just concentrate on
the over-whelming (!) four dimensions of the data.

Scatter plots
This data set is extremely common. You can just load it in R:

 data(iris)
You can then ask for pairs of scatter plots. Exclude the final class column
to see how the attributes correlate:
 pairs(iris[, 1:4])
This plots a matrix of scatter plots showing each pair of attributes in turn
(Figure 1). (See the Quick-R website [2] for further details.)
You can’t immediately see the three different types of iris in these plots.
You can seem some apparent correlations between the attributes though.
This will get out of hand for more than a few dimensions. Let’s see an

alternative approach to plotting lots of x values.

Parallel coordinates
A common way to plot such data is one line per data point on parallel y
axes. Wikipedia [3] has an example point of the fabled iris data set. I said
it was common! This approach, unlike our pairs of scatter plots, is
scalable. You just need an extra y-axes in parallel for each new attribute.
If you download the data, and put quotes around the text in the final
category column you can load it easily in Python. If you use numpy, you
will make your life easier. Import pylab, or a graph package of your
choice and load the data (see Listing 1).
This code plots 150 lines, on the same graph. The magic T transposes the
data, swapping the rows and columns. Without the magic T,you are

W

Figure 1

Frances Buontempo Frances has a BA in Maths + Philosophy, an
MSc in Pure Maths and a PhD technically in Chemical Engineering, but
mainly programming and learning about AI and data mining. She has
been a programmer since the 90s, and learnt to program by reading the
manual for her Dad's BBC model B machine. She can be contacted at
frances.buontempo@gmail.com.
JAN 2018 | | 3{cvu}

sending the four attributes to pylab, so get four lines; one per attribute,
with 150 data points on each. Once transposed, you have 150 lines with
four points on each; one point per attribute. This gives you the four
parallel coordinates you are after.
You can see (in Figure 2) where the four numeric attribute columns are;
obviously at the left and right and then at the trough and spike in between.
We end up with a colour for each, which is a bit multi-coloured. For those
viewing in black and white, that’s a relief I assure you.
We just get a y-axis labelled for the first attribute, which we could add to.

The a-axis is a bit pointless. We want four y axes, in parallel. I’ll leave
that as an exercise for the reader. It’s easy enough to use axvline to
draw vertical lines where you need them. You could try to plot each line
in a colour dependant on the iris type too. In general, you should
normalise the data. In the iris case, the numbers are all between 0 and 8 or
so. However, you can see the last column has smaller values, so to do this
properly we should scale everything between 0 and 1. If you had data
with, say height in centimetres and shoe size you are likely to get the shoe
sizes squashed up compared to the heights.
As your data sets increase in size, you can easily add extra coordinates.
One potential downside of parallel coordinates is the patterns you see can
depend on the order you place the axes in. Many visualization are
interactive, allowing you to drag the columns around to see what’s
happening. Let’s look at one last way to visualise multi-dimensional data
that circumvents this problem.

Chernoff faces
Herman Chernoff deigned a way to show multi-dimensional data using
faces in 1973 [4]. The idea is to map attributes of a dataset to salient
features of faces, for example face shape, nose size, slant of mouth, eye
shape and so on. I fell across this on Twitter and tried it for the iris data
set. His motivation was an assumption that you are wired up to recognise
faces, so will spot similar and different patterns easily. Wikipedia [5]

shows a plot of rating of judges, in which you can see some very similar
faces and a few outliers (see Figure 3).
Wikipedia has a link to some Python code [6], providing a function called
cface, which I will leave you to experiment with. This uses 18 attributes:

1. height of upper face
2. overlap of lower face
3. half of vertical size of face
4. width of upper face
5. width of lower face
6. length of nose
7. vertical position of mouth
8. curvature of mouth
9. width of mouth
10. vertical position of eyes
11. separation of eyes
12. slant of eyes
13. eccentricity of eyes
14. size of eyes
15. position of pupils
16. vertical position of eyebrows
17. slant of eyebrows
18. size of eyebrows

Using this for the iris data is not very sensible, since this data set only has
four attributes. This didn’t stop me, though, and after a bit of

with open('iris.data', 'r') as csvfile:
 reader = csv.reader(csvfile)
 fig = figure(figsize=(11,11))
 i = 0
 for row in reader:
 ax = fig.add_subplot(15,10,i+1,aspect='equal')
 data = [0.5]*17
 data[0] = float(row[1]) #overlap of lower face
 data[1] = float(row[0]) # half of vertical
size of face
 data[2] = float(row[2]) # width of upper face
 data[12] = float(row[3]) # size of eyes
 cface(ax, .9, *data)
 ax.axis([-1.2,1.2,-1.2,1.2])
 ax.set_xticks([])
 ax.set_yticks([])
 i += 1

Listing 2

import numpy as np
from pylab import *

def display():
 csv = np.genfromtxt ('iris.data',
delimiter=",")
 fig = figure(figsize=(11,11))
 plot(csv [:, 0:4].T) #Magic!
 show()

Lis
tin

g 1
Fig

ur
e 2

Figure 3
4 | | JAN 2018{cvu}

Figure 4
experimentation I chose four of the eighteen facial features. The sample
code fixed the first feature, height of upper face to 0.9. so I followed suit.
I set the others to 0.5, apart from the four, related to face size and eye size,
to produce 150 faces for the 150 data points. (See Listing 2 and Figure 4.)
You can clearly see the first 50, setosa iris flowers look very different to
the next 100. Since the data is in groups of 50; setosa, versicolor then
virginica, we know the first five rows are setosa, and so on. Had I labelled
the earlier plots more clearly, you would have seen the petal width and
lengths are much smaller for setosa flowers. The scatter plots have a
clump of separated points for the petal attributes. The parallel coordinates
also have a bunch of lines separated from the rest on the last two columns.
You can also see a slight difference between the next two groups of
flowers. The eyes, mapped to petal length does provide some
disambiguation between versicolor and virginica flowers.

Conclusion
There are many ways to display multi-variate data. None are ideal, so it’s
worth trying a few approaches if you have some data you want to explore.
Everyone has seen scatter plots before. They are common because they

can be very informative. Parallel coordinates are not so widely known -
you probably didn’t study them at school. They do crop up quick
frequently in serious data analysis studies so are worth knowing about.
Chernoff faces seem to be relatively obscure. I can see a few academic
articles and critiques of the technique on Google. I think the idea of a
projection onto features is worth considering for data analysis. However,
I suggest you have the same number of features as data columns, rather
than spending far too much time trying to find the best four of eighteen to
use if you want to spot differences in the iris data! 

References
[1] Iris database: https://archive.ics.uci.edu/ml/machine-learning-

databases/iris/
[2] Quick-R: https://www.statmethods.net/graphs/scatterplot.html
[3] Wikipedia: https://en.wikipedia.org/wiki/Parallel_coordinates
[4] Chernoff faces: https://en.wikipedia.org/wiki/Chernoff_face
[5] Wikipedia (Chernoff faces): https://en.wikipedia.org/wiki/

Chernoff_face
[6] Python example: https://gist.github.com/aflaxman/4043086
JAN 2018 | | 5{cvu}

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/
https://www.statmethods.net/graphs/scatterplot.html
https://en.wikipedia.org/wiki/Parallel_coordinates
https://en.wikipedia.org/wiki/Chernoff_face
https://en.wikipedia.org/wiki/Chernoff_face
https://en.wikipedia.org/wiki/Chernoff_face
https://gist.github.com/aflaxman/4043086

Becoming a Better Programmer # 108
Testing Times (Part 1)
Pete Goodliffe explores how to test code

to ensure it works as expected.

Quality is free, but only to those who are willing to pay heavily for it.
~ Tom DeMarco and Timothy Lister,

Peopleware: Productive Projects and Teams

est-driven development (TDD): to some it’s a religion. To some, it’s
the only sane way to develop code. To some, it’s a nice idea that they
can’t quite make work. And to others, it’s a pure waste of effort.

What is it, really?
TDD is an important technique for building better software, although
there is still confusion over what it means to be test driven, and over what
a unit test really is. Let’s break through this and discover a healthy
approach to developer testing, so we can write better code.

Why test?
It’s a no-brainer: we have to test our code.
Of course you run your new program to see whether it works. Few
programmers are confident enough, or arrogant enough, to write code and
release it without trying it out somehow. When you do see corners cut, the
code rarely works the first time: problems are found, either by QA, or –
worse – when a customer uses it.

Shortening the feedback loop
To develop great software, and develop it well, programmers need
feedback. We need to receive feedback as frequently and as quickly as
possible. Good testing strategies shorten the feedback loop, so we can
work most effectively:
 We know that our code works when it’s used in the field and returns

accurate results to users. If it doesn’t, they complain. If that was our
only feedback loop, software development would be very slow and
very expensive. We can do better.

 To ensure correctness before we ship, the QA team tests candidate
releases. This pulls in the feedback loop; the answers come back
more quickly, and we avoid making expensive (and embarrassing)
mistakes in the field. But we can still do better.

 We want to check that our new subsystems work before integrating
them into the project. Typically, a developer will spin up the
application and execute their new code as best they can. Some code
can be rather inconvenient to test like this, so it’s possible to create
a small separate test harness application that exercises the code.
These development tests again reduce the feedback loop; now we
find out whether our code is functioning correctly as we work on it,
not later on. But we can still do better.

 The subsystems are comprised of smaller units: classes and
functions. If we can easily get feedback on correctness and quality
of code at this level, then we reduce the feedback loop again. Tests
at the smallest level give the fastest feedback.

The shorter the feedback loop, the faster we can iterate over design
changes, and the more confident we can feel about our code. The sooner

we learn
t ha t

there’s a problem, the easier and less expensive the fix is, because our
brain is still engaged with the problem and we recall the shape of the code.

To improve our software development we need rapid feedback,
to learn of problems as soon as they appear. Good testing
strategies provide short feedback loops.

Manual tests (either performed by a QA team, or by the programmers
inspecting their own handiwork) are laborious and slow. To be at all
comprehensive, it requires many individual steps that need repeating each
time you make a minor adjustment to the code.
But hang on, isn’t repeated laborious work something that computers are
good at? Surely we can use the computer to run the tests for us
automatically. That speeds up the running of the tests, and helps to close
the feedback loop further.
Automated tests with a short feedback loop don’t just help you to develop
the code. Once you have a selection of tests, you needn’t throw them
away. Stash them in a test pool, and keep running them. In this way your
test code works like a canary in a mine – signalling any problem before it
becomes fatal. If in the future someone (even you on a bad day) modifies
the code to introduce errant behaviour (a functional regression), the test
will point this out immediately.

Code that tests code
So the ideal is to automate our development testing as much as possible:
work smarter, not harder. Your IDE can highlight syntax errors as you
type – wouldn’t it be great if it could show you test breakages at the same
speed?
Computers can run tests rapidly and repeatedly, reducing the feedback
loop. Although you can automate desktop applications with UI testing
tools, or use browser-based technology, most often development tests see
the coder writing a programmatic test scaffold that invokes their
production code (the SUT: System Under Test), prodding it in particular
ways to check that it responds as expected.
We write code to test code. Very meta.
Yes, writing these tests takes up the programmer’s precious time. And
yes, your confidence in the code is only as good as the quality of the tests
that you write. But it’s not hard to adopt a test strategy that improves the
quality of your code and makes it safer to write. This helps reduce the
time it takes you to develop code: more haste, less speed. Studies have
shown that a sound testing strategy substantially reduces the incidence of
defects. [1].
It is true that a test suite can slow you down if you write brittle, hard to
understand tests, and if your code is so rigid that a change in one method
forces a million tests to be re-written. That is an argument against bad test
suites, not against testing in general (in the same way that bad code is not
an argument against programming in general).

Who writes the tests?
In the past some have argued for the role of a dedicated ‘unit-test
engineer’ who specialises in verifying the code of an upstream
programmer. But the most effective approach is for the programmers
themselves to write their own development tests.
After all, you’d be testing your code as you write it, anyway.

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
6 | | JAN 2018{cvu}

We need tests at all levels of the software stack and
development process. However, programmers particularly
require tests at the smallest scope possible, to reduce the
feedback loop and help develop high-quality software as
quickly and easily as possible.

Types of tests
There are many kinds of tests, and often when you hear someone talk
about a ‘unit test’ they may very likely mean some other kind of code test.
We employ:

Unit tests
Unit tests specifically exercise the smallest ‘units’ of functionality in
isolation, to ensure that they each function correctly. If it’s not driving a
single unit of code (which could be one class or one function) in isolation
(i.e., without involving any other ‘units’ from the production code), then
it’s not a unit test.
This isolation specifically means that a unit test will not involve any
external access: no database, network, or filesystem operations will be
run.
Unit-test code is usually written using an off-the-shelf ‘xUnit’ style
framework. Every language and environment has a selection of these, and
some have a de facto standard. There’s nothing magical about a testing
framework, and you can get a long way writing unit tests with just the
humble assert. We’ll look at frameworks later.

Integration tests
These tests inspect how individual units integrate into larger cohesive sets
of cooperating functionality. We check that the integrated components
glue together and interoperate correctly.
Integration tests are often written in the same unit test frameworks; the
difference is simply the scope of the system under test. Many people’s
‘unit tests’ are really integration-level tests, dealing with more than one
object in the SUT. In truth, what we call this test is nowhere near as
important as the fact that the test exists!

System tests
Otherwise known as end-to-end tests, these can be seen as a specification
of the required functionality of the entire system. They run against the
fully integrated software stack, and can be used as acceptance criteria for
the project.
System tests can be implemented as code that exercises the public APIs
and entry points to the system, or they may drive the system from outside
using a tool like Selenium, a web browser automator. It can be hard to
realistically test all of an application’s functionality through its UI layer,
in which case we employ subcutaneous tests that drive the code from the
layer just below the interface logic.
Because of the larger scope of system tests, the full suite of tests can take
considerable time to execute. There may be much network traffic
involved or slow database access to account for. The set-up and tear-down
costs can be huge to get the SUT ready to run each system test.
Each level of developer tests establishes a number of facts about the SUT,
and constructs a series of test cases that prove that these facts hold.
There are different styles of test-driven development. A project can be
driven by a unit-test mentality: where you would expect to see more unit
tests than integration tests, and more integration tests than system tests. Or
it may be driven by a system-test mentality: the reverse, with far fewer
unit tests. Each kind of test is important in its own right, and all should be
present in a mature software project.

When to write tests
The term TDD (that is, test-driven development) is conflated with test-
first development, although there really are two separate themes here.

You can ‘drive’ your design from the feedback given by tests without
religiously writing those tests first.
However, the longer you leave it to write your tests, the less effective
those tests will be: you’ll forget how the code is supposed to work, fail to
handle edge cases, or perhaps even forget to write tests at all. The longer
you leave it to write your tests, the slower and less effective your feedback
loop will be.
The test-first ‘TDD’ approach is commonly seen in XP circles. The
mantra is: don’t write any production code unless you have a failing test.
The test-first TDD cycle is:
 Determine the next piece of functionality you need. Write a test for

your new functionality. Of course, it will fail.
 Only then implement that functionality, in the simplest way

possible. You know that your functionally is in place when the test
passes. As you code, you may run the test suite many times. Because
each step adds a small new part of functionality, and therefore a
small test, these tests should run rapidly.

 This is the important part that’s often overlooked: now tidy up the
code. Refactor unpleasant commonality. Restructure the SUT to
have a better internal structure. You can do all this with full
confidence that you won’t break anything, as you have a suite of
tests to validate against.

 Go back to step 1 and repeat until you have written passing test cases
for all of the required functionality.

This is a great example of a powerful, and gloriously short, feedback loop.
It’s often referred to as the red-green-refactor cycle in honour of unit-test
tools that show failing tests as a red progress bar, and passing tests as a
green bar.
Even if you don’t honour the test-first mantra, keep your feedback loop
short and write unit tests during, or very shortly after, a section of code.
Unit tests really do help ‘drive’ our design: not only does it ensure that
everything is functionally correct and prevent regressions, it’s also a great
way to explore how a class API will be used in production – how easy and
neat it is. This is invaluable feedback. The tests also stand as useful
documentation of how to use a class once it’s complete.

Write tests as you write the code under test. Do not postpone
test writing, or your tests will not be as effective.

This test-early, test-often approach can be applied at the unit, integration,
and system level. Even if your project has no infrastructure for automated
system tests, you can still take responsibility and verify the lines of code
you write with unit tests. It’s cheap and, given good code structure, it’s
easy. (Without good code structure, an attempt to write a test will help
drive you towards better code structure.)
Another essential time to write a test is when you have to fix a bug in the
production code. Rather than rush out a code fix, first write a failing unit
test that illustrates the cause of the bug. Sometimes the act of writing this
test serves to show other related flaws in the code. Then apply your
bugfix, and make the test pass. The test enters your test pool, and will
serve to ensure that the bug doesn’t reappear in the future.

When to run tests
You can see a lot by just looking.

~ Yogi Berra

Clearly, if you develop using TDD, you will be running your tests as you
develop each feature to prove that your implementation is correct and
sufficient.
But that is not the only life of your test code.
Add both the production code and its tests to version control. Your test is
not thrown away, but joins the suite of existent tests. It lives on to ensure
that your software continues to work as you expect. If someone later
JAN 2018 | | 7{cvu}

modifies the code badly, they’ll be alerted to the fact before they get very
far.
All tests should run on your build server as part of a continuous
integration toolchain. Unit tests should be run by developers frequently
on their development machines. Some development environments
provide shortcuts to launch the unit tests easily; some systems scan your
filesystem and run the unit tests when files change. However, I prefer to
bake tests right into the build/compile/run process. If my unit-test suite
fails, the code compilation is considered to have failed and the software
cannot be run. This way, the tests are not ignorable. They run every time
the code is built. When invoked manually, developers can forget to run
tests, or will ‘avoid the inconvenience’ whilst working.
Injecting the tests directly into the build process also encourages tests to
be kept small, and to run fast.

Encourage tests to be run early and often. Bake them into your
build process.

Integration and system tests may take too long to run on a developer’s
machine every compilation. In this case, they may justifiably run only on
the CI build server.
Remember that code-level, automated testing doesn’t remove the need for
a human QA review before your software release. Exploratory testing by
real testing experts is invaluable, no matter how many unit, integration,
and system tests you have in place. An automated suite of tests avoids
introducing those easily fixable, easily preventable mistakes that would

waste QA’s time. It means that the things the QA guys do find will be
really nasty bugs, not just simple ones. Hurrah!

Good development tests do not replace thorough QA testing.

Next time
In the next instalment, we’ll look at what should be tested, what a (good)
test looks like, and how we structure tests.
See you next time. 

Questions
 How many styles of testing have you been exposed to?
 Which is the best development test technique: test-first, or test (very

shortly) after coding? Why? How has your experience shaped this
answer?

 Is it a good idea to employ a specialist unit-test writing engineer to
help craft a high-quality test suite?

 Why do QA departments traditionally not write much test code, and
generally focus on running through test scripts and performing
exploratory testing?

Reference
[1] David Janzen and Hossein Saiedian, ‘Test-Driven Development

Concepts, Taxonomy, and Future Direction,’ Computer 38:9 (2005).
8 | | JAN 2018{cvu}

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178

Co
ur

se
s: Moving Up to Modern C++:

An Introduction to C++11/14/17 for experienced
C++ developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++:
A 4-Day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++
facilities.

An Effective Introduction to the STL:
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++.

n site C++ Training

Mention ACCU and receive the U.S. training
rate for any location in Europe!

Programmers’ Puzzles
Francis Glassborow reviews his last challenge

and presents a new one.

s any magazine editor (commercial or otherwise) knows, the
number of responses to a competition is a small fraction of those
who tried it. Readers often try competitions and even finish them but

choose not to send in their solutions. I know how many of the New
Scientist’s puzzles I solved – about 50% in the days when they ran a
regular one – yet I never sent in one of my solutions. I also regularly tackle
the Bridge competitions in the English Bridge Union magazine but never
submit an answer. That behaviour makes me depressingly normal.
My first challenge required you to find some difference between C and
C++ that could be exploited to switch the behaviour of a program. The
difference could manifest at any stage from pre-processor through to run
time behaviour.
I had in mind many little differences that might be exploited. In a way the
more interesting ones are those that can trap programmers writing real
code. A couple of quick examples:
The way in which the struct keyword introduces a name. C, for reasons
that will seem strange to modern programmers, has a completely separate
namespace (do not confuse with the C++ keyword namespace) for
typenames created by the keywords struct and union. That is the reason
that portable code (code that will necessarily behave the same way both
as C and C++) couples a typedef with struct in the idiom:
 typedef struct A {
 // declarations
 } A;
A C compiler distinguishes between the plain name A and the elaborated
name struct A.
Here is an example from James Holland.

If I understand Francis’s challenge correctly, what is needed is some
source code that will produce two different outputs depending on
whether the code was compiled by a C compiler or a C++ compiler. I
assume using built-in compiler macros is not allowed! The solution must,
therefore, rely on the code behaving differently depending on which
compiler is used. My solution makes use of the fact that a C++ compiler
enters the name of a struct in the scope in which it is declared. A C
compiler does not do this. The following code [in Listing 1] makes use
of this feature.

When evaluating sizeof(T), a C compiler will not see T as being the
name of the struct as it is not within scope but will see the global
typedef and conclude that sizeof(T) is 1. The body of the if
statement will, therefore, not be executed. A C++ compiler, on the other
hand, will see the locally declared struct and conclude that
sizeof(T) is 2. The if statement can then be used to realise the
different behaviour as required.

I will deal with James’ assumption about the allowability of built-in
compiler macros later. However, there is a flaw in James’ code that means

that it will often fail to work as expected because compilers are not
prohibited from adding padding at the end of a struct so his test for
equality with 2 will often fail because the compiler (usually for alignment
purposes) may have added space at the end of T. Existing compilers will
frequently return 4 or 8 for the sizeof T (the struct version).
 if(sizeof (T) == 2)
needs to be replaced by
 if (sizeof(T) > 1;
Apart from the flaw, the idea will work for any type, not just char.
Note that James avoided the flawed use of:
 sizeof (char) == sizeof ‘a’;
as a test. This will usually work because character literals are of type int
in C and char in C++. However, some compilers (largely for DSPs) use
the same storage allocation for int and char types.
The other aspect is that James assumed that built-in compiler macros were
not allowed. In these challenges, anything not explicitly excluded is
allowed. Every C++ compiler is supposed to have __cplusplus as a
built-in macro. This is absolutely essential so that code can test which
version of C++ is in use. I leave it to the reader to surf the net to discover
what values are required for conforming C++ compilers. Non-conforming
C++ compilers will normally provide a value for __cplusplus but one
that is not one of the standard values.
Hubert Matthews exploited this in the first of offering in his submission:

Francis threw out a challenge for pieces of code that produce different
results when compiled as C or as C++. Here are two: one cheaty
[Listing 2] and one sneaky [Listing 3].

I do not think that is a cheat. It shows a grasp of what is provided by the
C++ Standard but I think he did not fully exploit the potential of the pre-
processor to bizarrely alter the behaviour of code.
Using __cplusplus gives us all kinds of potential. Instead of
conditionally adding a couple of characters at compile time, we can define
complicated macros. We even have the ability to redefine a C++ keyword
that is not also a C keyword for when our code is being compiled as C,
without stepping into undefined territory. For example something such as:

A

#include<stdio.h>
typedef char T;
int main()
{
 struct T {char c[2];};
 printf("I was compiled by a C");
 if (sizeof(T) == 2)
 printf("++");
 printf(" compiler.\n");
}

Lis
tin

g 1

// prints "C" when compiled as C and "C++"
// when compiled as C++

include <stdio.h>
int main()
{
 puts("C"
#ifdef __cplusplus
 "++"
#endif
);
}

Listing 2

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.
JAN 2018 | | 9{cvu}

 #ifndef __cplusplus
 #define try struct A
 #endif
will work if we can design code that is a try block in C++ but a struct
definition in C. That is just an idea for the reader to think about (replacing
keywords, not specifically replacing try).
Hubert’s second offering is interesting.
I have not been able to check that auto x without an explicit int
specifier is allowed in current versions of C (post the abolition of ‘implicit
int’). GCC in C mode gives me a warning that auto x defaults to auto
int x, which is sane even if it is not required that strictly conforming C
makes the int explicit.
I leave it as an exercise for the reader to work out why this code produces
different output. (Hint, you need C++11 or later compiler to reliably see
the difference).
My choice of winner of this challenge is Hubert because his use of auto
surprised me and highlighted another potential trap for the unwary C

programmer accidentally using a C++ compiler. Of course, no reasonable
C programmer uses auto and I suspect quite a number do not even know
it is a C keyword.

Challenge 2
In the early days of computing, a frequent task was to write code with a
missing instruction (such tests were even frequently set in Computer
Science A level papers of the early 1980s).
I think it is time to revive this kind of mind exercise. As an example to get
you on track, suppose that you have no + available, you could write
 template <typename T>
 T add (T a, T b){
 T result = -b);
 return a –result;
 };
which will work for any type that supports minus as an inverse operation
to plus. You would then need to specialise for other types such as
std::string. That would be an interesting challenge in itself but it is
not what I am going to set you.
The challenge is to write code that will assign the sum of two integer
values, a and b and store the result in c without using the = symbol in your
code. There are several simple solutions. Bonus points for multiple
solutions.
You are restricted to C and C++ because those are the languages that I am
familiar with (well you could try it in Forth, Prolog or Snobol?) 

// prints "12" when compiled as C
// and "13" when compiled as C++

#include <stdio.h>
int main()
{
 auto x = 5.6, y = 7.5;
 printf("%d\n", (int) (x+y));
}

Lis
tin

g 3
10 | | JAN 2018{cvu}

Best Articles 2017
Vote for your favourite articles:

 Best in CVu

 Best in Overload

Voting open now at:
https://www.surveymonkey.co.uk/r/3PHRMRZ



Write for us!
C Vu and Overload rely on article contributions from members.
That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you
don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or
overload@accu.org

https://www.surveymonkey.co.uk/r/3PHRMRZ

namespace util
{
 class Record {
 public:
 Record(uint64_t id,
 std::string value = {});
 std::string to_string() const;
 // other methods elided
 private:
 uint64_t const id;
 std::string value;
 };
 inline
 std::string to_string(Record const &r)
 {
 return r.to_string();
 }
}

Lis
tin

g 1

Code Critique Competition 109
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I’ve got a problem with an extra colon being produced in the output from
a program. I’ve stripped down the files involved in the program a fair bit
to this smaller example. Here is what the program produces:

 test_program Example "With space"
 1:: 1001:Example
 2:: "1002:With space"

I can’t see where the two colons after each initial number come from as
I only ask for one.

Please can you help the programmer find the cause of their problem and
suggest some other possible things to consider about their program.
 Listing 1 contains record.h
 Listing 2 contains record.cpp
 Listing 3 contains escaped.h
 Listing 4 contains test_program.cpp

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <cstdint>
#include <iostream>
#include "record.h"
#include "escaped.h"

using namespace util;
template <typename K, typename V>
void output(K key, V value)
{
 std::cout << escaped_text(key) << ": "
 << escaped_text(value) << '\n';
}
int main(int argc, char **argv)
{
 static uint64_t first_id{1000};
 for (int idx = 1; idx != argc; ++idx)
 {
 Record r{++first_id, argv[idx]};
 output(idx, r);
 }
}

Listing 4

#pragma once
#include <string>

namespace util
{
 // provide 'escaped' textual representation
 // of value
 // - any double quotes need escaping with \
 // - wrap in double quotes if has any spaces
 template <typename T>
 std::string escaped_text(T t)
 {
 using namespace std;

 auto ret = to_string(t);
 for (std::size_t idx = 0;
 (idx = ret.find(idx, '"')) !=
 std::string::npos;
 idx += 2)
 {
 ret.insert(idx, "\\", 1);
 }
 if (ret.find(' ') != std::string::npos)
 {
 ret = '"' + ret + '"';
 }
 return ret;
 }
}

Listing 3

#include <cstdint>
#include <sstream>
#include <string>
#include "record.h"
util::Record::Record(uint64_t id,
 std::string value)
 : id(id), value(value) {}
std::string util::Record::to_string() const
{
 std::ostringstream oss;
 oss << id << ":" << value;
 return oss.str();
}

Lis
tin

g 2
JAN 2018 | | 11{cvu}

Critiques
Paul Floyd <paulf@free.fr>
The issue presented in this Code Critique all centres around one line.
 auto ret = to_string(t);
This is called from templatized escaped_text. This is itself called, with
both of the templatized arguments, from the double templatized output.
This means that escaped_text gets instantiated with t having type int
and also with t having type Record. What the author of the code probably
intended was for the int specialization to call std::to_string and for
the Record specialization to call util::to_string. The arguments
match so it should work, right? No, wrong. This is not the full picture of
how function call overload resolution works.
I won’t go into the whole gory details (though if you are interested, almost
everything I ever learnt about overload resolution I got from a set of
fantastic videos by Stephan T. Lavajev on the Microsoft Channel 9 site [1],
and there are the usual cppreferences [2] [3]). In short, overload resolution
performs the following steps:
 Name lookup to get the candidate functions. This can involve

argument dependent lookup and template argument deduction.
 Check for validity (correct number of arguments)
 Select the best match
 Member access check (e.g, public or private)

As you can see, name lookup occurs before selecting the best match. In
this case it is ‘unqualified lookup’ since there is no scope operator
indicating which scope to search for to_string. The lookup searches
scopes from the current to the global scope until it finds one or more names.
Once it has found a name in a scope it stops.
Obviously the lookup finds util::to_string which is in the same
namespace as the call. But what about std::to_string? From the
cppreference description:

For the purpose of unqualified name lookup, all declarations from a
namespace nominated by a using directive appear as if declared in the
nearest enclosing namespace which contains, directly or indirectly, both
the using-directive and the nominated namespace.

The nearest enclosing namespace that contains both std:: and util::
is the global namespace, i.e., std::to_string is considered to be in the
global namespace. This means that the lookup stops in the util
namespace and only considers util::to_string.
Unfortunately, Record has a non-explicit constructor that can convert
from uint64_t
 Record(uint64_t id,
 std::string value = {});
This means that for the second call to escaped_text, a Record is
passed and it produces a string of the format "id:name". For the first call
to escaped_text, instead of std::to_string generating the string
representation of the index, the index is implicitly converted to a Record
with a default value for the name, the empty string. This produces the
output "index:[empty_string]" or just simply "index:". And
here we have the extra colon.
To fix the code, it would be possible to remove the util namespace so
that the overload resolution really does take place between std::
to_string and util::to_string. I don’t like that, and I’d rather
suggest just simplifying output to call std::to_string and also to
make the Record constructor explicit.

References
[1] https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-

Core-C-
[2] http://en.cppreference.com/w/cpp/language/lookup
[3] http://en.cppreference.com/w/cpp/language/overload_resolution

James Holland <James.Holland@babcockinternational.com>
The student should not be surprised that two colons appear in the output.
The first colon comes from Record’s member function to_string().
The second colon comes from the output() function called directly from
main(). If only one colon is required, I suggest removing the one in
output().
Although the code now works correctly with the supplied examples, there
are some features that need attention. From reading the code it is clear that
should a supplied argument contain a quotation mark, a backslash is to be
inserted just before it. It is a pity that this feature has not been tested, as
far as is known, because there is a flaw in the mechanism that is responsible
for doing this. It transpires that the arguments of find() (within
escaped_text()) are swapped. The first parameter of find() is of
type char, the second is of type size_t. The function call should,
therefore, be ret.find('"', idx). The student’s code is attempting
to find a NUL character starting at character position 34 (the ASCII code
for the quotation mark character) as opposed to a quotation mark starting
at position 0. It is, perhaps, unfortunate that the compiler is willing to cast
a size_t to a char and a char to a size_t without comment.
Incidentally, it is my understanding that starting a search beyond the end
of the string is permissible, find() will simply return std::string:
:npos to indicate that the character was not found. Testing code to show
that it meets its requirements is always important.
Some other features of the student’s code that are immediately apparent
include the following.
 It should be noted that if using namespace std is used, as in

escaped_text(), there is no need to make explicit references to
that namespace.

 The include guard #pragma once is not standard C++. #ifndef
should be used, as shown below, to be standard compliant.

 #ifndef <file name>_H
 #define <file name>_H
 // ...
 #endif
 The header file, record.h is missing any form of include guard.
 The function void output(K key, V value) does not need

to be a template as the types are always int and Record
respectively.

 There is no need to make the variable first_id static.
 The constructor of Record need not have a default value for its

second parameter.
 Record’s non-const member function to_string() is not used.

I am sure there are many other improvements to be made but I think this
is enough to be going on with.

Jason Spencer <contact+pih@jasonspencer.org>
The reason for the two colons being printed is to do with function name
lookup of to_string in escaped_text.
The output on each line is "<okey>: <ovalue>" (as per output<K,V>
in test_program.cc), where ovalue is what is returned by Record:
:to_string(value) (via util::to_string via escaped_text)
(after some formatting changes to make it ‘escaped’ if necessary). What
is printed for okey, on the other hand, is expected by the student to be the
result of std::to_string(unsigned long long int) (via
escaped_text), which is expected to be chosen since T = uint64_t
in escaped_text<T>(T t), and probably the reason why using
namespace std was included.
However, due to the function lookup rules util::to_string is first
checked as a suitable function, and is found to be suitable as uint64_t
can be implicitly converted to a Record thanks to the Record ctor’s
default second argument. The output is therefore:
 <id_of_okey>:<value_of_okey>:
 <id_of_ovalue>:<value_of_ovalue>
12 | | JAN 2018{cvu}

https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Core-C-
https://channel9.msdn.com/Series/C9-Lectures-Stephan-T-Lavavej-Core-C-
http://en.cppreference.com/w/cpp/language/lookup
http://en.cppreference.com/w/cpp/language/overload_resolution

value_of_okey is an empty string as per the default second argument
in the ctor, and the printed output is now
 <id_of_okey>:: <id_of_ovalue>:<key_of_ovalue>
The solution is discussed below.
There are also other issues with the program:
 in record.h
 #include <cstdint> and <string> are missing. They’re

in record.cc, and record.h is included after they are, but
they’re still be needed in record.h for when Record is used
elsewhere and later linked with the object file generated from
Record.cpp.

 The file is missing an include guard or #pragma once
 Unless you have a really good reason to keep it, the default value

for second arg in the Record class constructor should be
dropped or the constructor should be marked explicit, otherwise
there’s a high risk of implicit conversion from int. I don’t quite
see a use case where a key:value pair is created and the value is
assumed to be some default (ie blank).

 in record.cc
 looks fine, but perhaps consider making id and value

arguments const in the constructor definition – they’re copied
anyway to the member variables.

 in escaped.h
 consider renaming escaped_text to

as_escaped_string? escaped_text sounds like a
variable, and text can take many forms. The return type is string.

 input argument t should be const reference because T may not
be copyable, or expensive to copy, or a temporary.

 I’m strongly against doing the conversion to string and escaping
in a single function – this function should only do the escaping
and the conversion can be done in output(...) in
test_program.cpp

 To fix the headline problem of the double colon, using
namespace std should be using std::to_string. This
will add std::to_string to the list of candidates when doing
the unqualified function name lookup of to_string. I’ll come
back to the lookup later.

 ret.find(idx, '"') has the arguments the wrong way
around, but because a char is implicitly convertible to int, and
int to char, there is no error. The easy way to remember the
order of the arguments is to remember that the thing you are
searching for is not optional and has no obvious default value,
but the start position is and does (the default could be the start of
the string), so it must come as the latter argument.

 Maybe I’m nitpicking but consider using std::string::
size_type over std::size_t for the type of idx as that is
the exact type returned by find, and required by std::
string::insert. While it’s almost definitely a typedef for
size_t, std::string::size_type is there for a reason.

 The use of += 2 in the for loop is brittle – it’s pretty much a
magic number (a hard coded pre-calculated value without
context or adaptability to other changes). If someone changes
the escaping char to a multiple char sequence and changes the
third argument of the insert (the number of chars to insert from
the second arg) to a value other than 1, then the +=2 is wrong.
Consider putting const std::string escape_prefix
{ "\\" }; before the for loop and make the for step
1+escape_prefix.length(), and the insert statement
ret.insert(idx, escape_prefix); (ie the version that
takes a string and no length argument).

 The use of ret.find(' ') works for space, but not for all
whitespace – there are other forms of whitespace including \t, \n,

\r, in ASCII, as well as other characters in unicode. If the student
would like to search for any of a list of chars in a string then
std::string::find_first_of takes a null terminated
string which is a list of chars to search for. Alternatively, use a
regular expression and a character group, as described later.

 in test_program.cc
 output(K key, V value): key and value should be

passed by const reference, as we don’t know whether the types
are copyable.
Additionally, we might like to avoid a potentially expensive
copy by using a reference. The const is to alert us if we
accidentally mutate the object and to allow temporaries to be
passed. Consider passing an output stream as an argument so
output could be sent elsewhere rather than the hard coded std:
:cout. As later described the conversion of types K and V
should not be done in escaped_text, so should be done here
instead. That also gives us control over formatting.

 main: There isn’t much point in declaring first_id static as
main cannot be called by the program itself, so its value cannot
be required to be maintained across calls. I can see two side-
effects of declaring a local variable static in main – firstly, it
is initialised before main is called, and secondly its storage is in
the data segment rather than the stack. However, I cannot see
any reason why any of these may be required, so I’d suggest the
static modifier be removed. Since C++11, local static
variables are also known as ‘magic statics’ and their
initialisation is guaranteed to be thread-safe. But again, there’s
no good reason to do this in main.

 main: perhaps rename first_id to next_id? Once you’ve
incremented the value, it’s no longer the first id.

Aside from the corrections above I’d recommend bigger changes to the
code – and they are all to do with escaped_text.
Firstly, move the conversion of type T to std::string out of
escaped_text. Let escaped_text have one responsibility
escaped_text escaping the text. The conversion can then be much more
flexible. Consider using a std::stringstream and the stream
operators for the conversion, rather than to_string, as they are
supported by more STL types (e.g. std::bitset), and more likely to be
supported by user defined types.
The output of std::to_string can also often be unexpected – usually
in terms of precision. Streams also have I/O manipulators, so there’s a lot
of flexibility in formatting (the base of output integers, capitalisation,
number of decimal points, padding). On the subject of I/O manipulators,
there’s actually one in C++14/17 that will do the escaping for us:
 template <typename K, typename V> void
 output(const K & key, const V & value) {
 using std::to_string;
 std::cout << std::quoted(to_string(key))
 << ": " << std::quoted(to_string(value))
 << '\n';
 }
Note however, that std::quoted doesn’t return an std::string, so
it isn’t exactly equivalent, but it is designed to be very efficient, and it can
also be used on input streams to unquote an incoming string.
Secondly, the original escaped_text has a worst-case time complexity
of O(N^2). The loop iterates through the entire input string, and
potentially, if the string were composed entirely of double quotes, could
call std::string::insert(...) that many times, which itself is
linear in time complexity wrt string length. This gets worse when you
consider insert might trigger a dynamic memory allocation in the string.
This probably isn’t too bad if the string is small (and fits within the SSO
[1] buffer), but if it is expected to be long then a two-pass algorithm could
be considered:
JAN 2018 | | 13{cvu}

1) First count the number of double quotes appearing in the input string
(as unsigned number_of_quotes), and test for the presence of
spaces (as bool has_whitespace)

2a) Create a new empty string that reserves input_string_length
+ number_of_quotes + (has_whitespace ? 2 : 0) chars.

2b) Iterate over the input string again, copying chars to the new string
and inserting quotes and slashes as required.

This in now linear in time and should have at most a single allocation.
A sample implementation might look like:
 std::string escaped_text(
 const std::string & in) {
 unsigned number_of_quotes = 0;
 bool has_whitespace = false;
 const std::string escape_prefix { "\\" };
 for (const char c : in) {
 if(c=='"') ++number_of_quotes;
 if(c==' ') has_whitespace = true;
 }
 std::string out;
 out.reserve(in.length()
 + escape_prefix.length()*number_of_quotes
 + (has_whitespace?2:0));
 if (has_whitespace) out.push_back('"');
 for (const char c : in) {
 if(c=='"') out.append (escape_prefix);
 out.push_back(c);
 }
 if (has_whitespace) out.push_back('"');
 return out;
 }
There are, of course other, more generic ways to do this (see regular
expressions later), but this is an O(N) solution that has no C++11
requirements (aside from the range for loop which can be factored out).
There are a number of points of further investigation when considering the
student’s program:

1. Name lookup in C++
Name lookup in C++ has a number of nuances depending on the
exact calling conditions. The call to to_string here is an
unqualified lookup – that is there is no scope specifier preceding it
(ie class name or namespace). See basic.lookup.unqual in [2] for the
details behind the selection criteria and namespace.udecl in [2]
describes the use of using to bring std::to_string into the
lookup space.
Bear in mind also that you cannot just add your own to_string
implementation of your UDT to the std namespace. The C++
specification allows adding specialisations of templates to the std
namespace (e.g. std::swap, std::hash), but adding overloads
of existing functions is considered undefined behaviour (see
namespace.std in [2]). std::to_string is not a template but a
series of overloads for arithmetic plain-old datatypes (int, float
and variations).

2. Whitespace, escape sequences and regular expressions. In ASCII,
there are more whitespace characters [3] than just space (' '), tab ('\t')
and newline ('\n') – there are also the less commonly seen carriage
return ('\r'), vertical tab ('\v') and formfeed ('\f'). UTF-8 and UTF-16
add a whole lot more. You could check for all known whitespace
directly, or you could rely on a regex (regular expression)[4] class
to match the whitespace (single byte char example below, use std:
:wregex instead to match std::wstring contents):

 std::string escaped_text(
 const std::string & in) {
 std::regex doublequote_regex(R"(")");
 std::regex whitespace_regex("[[:space:]]");
 const char *
 prefix_pattern_with_backslash_fmt =

 "\\$&";
 std::string ret = std::regex_replace(in,
 doublequote_regex,
 prefix_pattern_with_backslash_fmt);
 if (std::regex_search(ret,
 whitespace_regex))
 ret = '"' + ret + '"';
 return ret;
 }

This example uses ECMAScript[5] type regexes (the default type
for C++ regexes), but there are other types[6].
There are many ways to escape a string – which method is used
typically depends on which elements of the char set are reserved or
otherwise have a special meaning. You wouldn’t want to see a
newline in a URL, for example, or a colon, or a bell, null or
otherwise unprintable character – but they could appear as part of
the data in a GET HTTP request URL (whether you should include
such data in a GET URL is a discussion for another time). The
escaping being done by the student here is reminiscent of CSV
escaping, but there is no formal spec for CSV escaping, and some
may argue that this isn’t proper CSV escaping; for example, a
comma should also be treated as special. I’d argue all non-printable
and whitespace characters should also be escaped, as well as the
backslash.
Irrespective of the type of escaping, regular expressions are a great
way to match patterns in strings and potentially perform some
operation on them.
Have a look also at Boost.Xpressive for an even more sophisticated
library of string manipulation. It allows lambdas to be called where
a regex matches so you can do hex conversion, for example, and
spaces can be URL encoded to %20.

3. Testing
If I may be blunt: there are many gaping holes in the testing here.
There’s no test for the escaping of quotes in the input, for example,
which would have caught the swapped args in ret.find(idx,
'"') in the for loop in escaped_text. The functionality in the
student’s program has a relatively good separation, apart from the
conversion being in escaped_text. This makes it prime for unit
testing [7] [11], and the related Test Driven Development [8] [11].
Using the header-only Catch2 [9] testing framework it’s trivial to
check expected output against a given input:

 #define CATCH_CONFIG_MAIN
 #include <catch.hpp>
 #include <string>

 const char * no_changes_tests [] = {
 "",
 "abcdef", "a_b_c_d_e_f", "_a_b_c_d_e_f_",
 "123456", "1_2_3_4_5_6", "_1_2_3_4_5_6_",
 "a1b1c", "_a_1_b_1_c_",
 "_", "1_", "_1", "_1_", "__", "11"
 };
 const char * quotes_added_tests [] = {
 " ", " ", " ",
 "a b c d e f", " a b c d e f ",
 "1 2 3 4 5 6", " 1 2 3 4 5 6 ",
 "a 1 b 1 c", " a 1 b 1 c", "a 1 b 1 c ",
 " a 1 b 1 c "
 };
 TEST_CASE("correctness", "[escaped_text]") {
 SECTION("No change to string") {
 for (const char * test_string :
 no_changes_tests)
 REQUIRE (escaped_text(test_string) == \
 test_string);
 }
14 | | JAN 2018{cvu}

 SECTION("Quotes should be added") {
 for (const char * test_string : \
 quotes_added_tests)
 REQUIRE (escaped_text(test_string) == \
 std::string("\"") + test_string + '"');
 }
 SECTION("Existing quotes should be escaped")
 {
 REQUIRE(escaped_text(R"(")") == \
 R"(\")");
 REQUIRE(escaped_text(R"("")") == \
 R"(\"\")");
 REQUIRE(escaped_text(R"(" ")") == \
 R"("\" \"")");
 REQUIRE(escaped_text(R"(")") == \
 R"(" \"")");
 REQUIRE(escaped_text(R"(")") == \
 R"("\" ")");
 REQUIRE(escaped_text(R"(")") == \
 R"(" \" ")");
 }
}
For increased coverage, tests for non space whitespace escaping should
also be added. Long string testing also, etc. Writing good tests can be
somewhat of an art [11].
I think that’s it for now. I hope I don’t sound too nit-picky, but the compiler
can mis-understand intent, and the CPU is unforgiving, and even if that’s
all fine, the user (API user or end user) will find a way of breaking or
abusing things. There’s also the whole broken windows argument [10].

References
[1] https://stackoverflow.com/questions/10315041/meaning-of-

acronym-sso-in-the-context-of-stdstring/10319672#10319672
[2] The C++11 Programming Language standard – ISO/IEC 14882:

2011(E)
[3] https://en.wikipedia.org/wiki/Whitespace_character
[4] https://www.regular-expressions.info/
[5] http://ecma-international.org/ecma-262/5.1/#sec-15.10
[6] http://www.cplusplus.com/reference/regex/regex_constants/

#syntax_option_type
[7] https://en.wikipedia.org/wiki/Unit_testing and

https://martinfowler.com/bliki/UnitTest.html
[8] https://www.agilealliance.org/glossary/tdd/
[9] http://catch-lib.net/
[10] https://pragprog.com/the-pragmatic-programmer/extracts/software-

entropy
[11] The Clean Coder: A Code of Conduct for Professional Programmers

by Robert C. Martin ISBN 978-0137081073

Commentary
The presenting problem is caused by an interaction between two different
things: C++ name lookup rules and implicit constructors.
The idiomatic way to ensure the correct version of swap, for instance, is
used in a template is write code like this:
 {
 using std::swap;
 swap(a, b);
 }
As the critiques pointed out, this has the right characteristics when there
is a swap visible in another namespace whereas using namespace std
does not.
There is good reason for this: bringing in the whole namespace allows
access to a potentially large number of identifiers and if the added symbosl
were all added into the immediate scope there is a strong likelihood of
accidentally hijacking a call to a function in the current namespace in
favour of one in the referenced namespace that happens to be a better

match. So the rule for using namespaces adds the names to an enclosing
scope, where they will be found if necessary when no closer symbol
matches.
The second problem that went into the issue experienced by the user was
that a constructor with defaulted arguments can provide an implicit
conversion from one type to another. This can easily be prevented by
making this constructor explicit so preventing most of the places where
an implicit conversion occurs – notably for function arguments. It is worth
considering the habit of making at least single argument constructors
explicit by default – some static analysis tools will recommend this
automatically. (It can of course be argued that making the second argument
to the Record object optional might not make sense from a design
perspective, but single argument constructors are common.)
Header files generally ought to have some kind of include guard to prevent
errors caused by duplicate definitions. While #pragma once is a non-
standard pragma, as James pointed out, it is in practice supported by the
vast majority of modern compilers and does have two main advantages
over ‘traditional’ include guards when the environment allows its use.
Firstly it avoids adding additional macro identifiers into the program’s
scope and secondly the macro identifiers used for include guards
sometimes end up duplicating each other (or are used incorrectly), which
can cause some very confusing problems.
One problem in the example that no-one commented on was that the eighth
line in the file escaped.h contains a comment ending with a backslash,
hence turning it and the following line into a multi-line comment. While
benign in the current code, this does occasionally have the consequence
of accidentally commenting out a line of code, for example:
 // check for \
 if (s.find('\\') != std::string::npos)
 {
 // code
 }
where the if statement is commented out by the trailing backslash and so
the following code is executed unconditionally. (Fortunately, many IDEs
will show the affected line in comment markup, giving a visual cue.)

The Winner of CC 108
I liked Paul’s links to information about name lookup: both the
introduction and the reference. There are a lot of useful resources available
to help with C++ programming.
James made several simplification suggestions – such as not requiring the
output function to be a template. It is often a good thing to pass through
code, once it is believed to be functionally complete, and remove some of
the ‘cruft’ that tends to creep in. One of the advantages of code reviews is
that additional pairs of eyes, seeing the code for the first time, often notice
little details like these which those familiar with code are no longer
surprised by.
Jason also discusses a number of improvements to the program – including
a small design change to separate the escaping of text and the conversion
of the types to a string. This sort of low-level refactoring enables each piece
of code to focus on a single task and, when used well, can result in code
that is much simpler to understand and test.
There is a bit of an open question over the best type for argument passing.
Is it best to pass by value or by const reference? As with many things in
C++, ‘it depends’. What are some of the issues we must consider? On the
one hand, passing by value requires an accessible copy/move constructor
and, depending on whether the argument is a temporary or not, may require
an actual copy. On the other hand passing by value is simpler for scalar
types and, when passing temporary objects, can end up being more
efficient than passing the temporary by reference.
Overall the entrants found a lot of issues to discuss in a relatively small
critique, but I think that Jason provided the best set of answer to this issue’s
problem.
JAN 2018 | | 15{cvu}

https://stackoverflow.com/questions/10315041/meaning-of-acronym-sso-in-the-context-of-stdstring/10319672#10319672
https://stackoverflow.com/questions/10315041/meaning-of-acronym-sso-in-the-context-of-stdstring/10319672#10319672
https://en.wikipedia.org/wiki/Whitespace_character
https://www.regular-expressions.info/
http://ecma-international.org/ecma-262/5.1/#sec-15.10
http://www.cplusplus.com/reference/regex/regex_constants/#syntax_option_type
http://www.cplusplus.com/reference/regex/regex_constants/#syntax_option_type
https://en.wikipedia.org/wiki/Unit_testing
https://martinfowler.com/bliki/UnitTest.html
https://www.agilealliance.org/glossary/tdd/
http://catch-lib.net/
https://pragprog.com/the-pragmatic-programmer/extracts/software-entropy
https://pragprog.com/the-pragmatic-programmer/extracts/software-entropy

Code Critique 109
(Submissions to scc@accu.org by Feb 1st)

I’m trying to write a very simple dice game where the computer simulates
two players each throwing dice. The higher score wins and after a
(selectable) number of turns the player who’s won most times wins the
game. (I’m going to make the game cleverer once it’s working.) But the
games always seem to be drawn and I can’t see why. Here is what the
program produces:

 dice_game
 Let's play dice
 How many turns? 10
 Drawn!
 How many turns? 8
 Drawn!
 How many turns? ^D

What’s going wrong, and how might you help the programmer find the
problem? As usual, there may be other suggestions you might make of
some other possible things to (re-)consider about their program.
 Listing 5 contains zipit.h
 Listing 6 contains dice game.cpp

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://accu.org/index.php/journal). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

// Class to 'zip' together a pair of iterators
template <typename T>
class zipit : public std::pair<T, T>
{
 zipit &operator+=(std::pair<int,int> const &rhs)
 {
 this->first += rhs.first;
 this->second += rhs.second;
 return *this;
 }
public:
 using std::pair<T, T>::pair;
 zipit &operator+=(int n)
 {
 return *this += std::make_pair(n, n);
 }
 zipit &operator-=(int n)
 {
 return *this += std::make_pair(-n, -n);
 }
 zipit &operator++()
 {
 return *this += 1;
 }
 zipit &operator--()
 {
 return *this += -1;
 }
 auto operator*()
 {
 return std::make_pair(
 *this->first, *this->second);
 }
 auto operator*() const
 {
 return std::make_pair(
 *this->first, *this->second);
 }
 // Hmm, operator-> ??
};
template <typename T>
auto begin(T one, T two)
 -> zipit<typename T::iterator>
{
 return {one.begin(), two.begin()};
}
template <typename T>
auto end(T one, T two)
 -> zipit<typename T::iterator>
{
 return {one.end(), two.end()};
}

Lis
tin

g 5

#include <algorithm>
#include <iostream>
#include <random>
#include "zipit.h"

class randomize
{
 std::mt19937 mt;
public:
 int operator()() { return mt() % 6 + 1; }
};
void play(int turns, randomize &generator)
{
 std::vector<int> player1(turns);
 std::vector<int> player2(turns);

 std::generate(player1.begin(),
 player1.end(), generator);
 std::generate(player2.begin(),
 player2.end(), generator);

 int total{};

 for (auto it = begin(player1, player2);
 it != end(player1, player2); ++it)
 {
 if ((*it).first != (*it).second)
 {
 auto diff = *it.first - *it.second;
 total += copysign(1.0, diff);
 }
 }
 if (total > 0)
 {
 std::cout << "Player 1 wins\n";
 }
 else if (total < 0)
 {
 std::cout << "Player2 wins\n";
 }
 else
 {
 std::cout << "Drawn!\n";
 }
}
int main()
{
 randomize generator;

 int turns;
 std::cout << "Let's play dice\n";
 while (std::cout << "How many turns? ",
 std::cin >> turns)
 {
 play(turns, generator);
 }
}

Listing 6
16 | | JAN 2018{cvu}

If you need some help in developing a
sustainable strategy, get in touch.

www.clearly-stated.co.uk

Wishing you a productive
and prosperous 2018!

Develop relevant and
interactive user
guidance materials
and tutorials.

Why not make 2018 the year that you move developing a modern
approach to user assistance from your ‘To Do’ list to ‘Done’

Standards Report
Emyr Williams updates us on the latest in C++ standardisation.

He’s probably best known as ‘the guy who interviews people for CVu’, but
he branched out by responding to a call for volunteers to be the new ACCU
Standards Officer. Emyr is interested in C++, and as an attendee of the BSi
C++ Panel in London, felt volunteering seemed the logical choice. He
volunteered so he could learn more about C++, and how a language is put
together; the role will also force him to be a better programmer, and gain a
deeper knowledge of the language.

he last ISO C++ Committee meeting was held in Albuquerque, New
Mexico for six days in November, hosted by the folks at Sandia
National Laboratories, and by all accounts was quite a busy week with

around 140 people in attendance representing 10 national bodies. [1] [2]
Allow me to start with a caveat: I found it’s quite difficult to write a report
for a meeting you didn’t attend, but thanks to numerous blog posts and
articles online, I’m able to provide something of a digest of the meeting.
While I cannot comment on the atmosphere at the meetings, I can
comment on what the outcomes were and where C++ is headed.
Additional contributions were made to the report by Guy Davidson and
Roger Orr, and are accredited accordingly.
As Roger mentioned in his previous standards report, the ISO voting was
still ongoing for the draft International Standard for C++ 17; however, I’m
happy to report that the draft was accepted, and that we do now in fact
have C++ 17. Which is great news. In terms of compilers, the latest
versions of both GCC and Clang have complete support for C++17, and
MSVC expects to be feature complete by March 2018.
One of the primary goals of the meeting was to address the comments that
the national bodies had sent in, in regards to the Modules TS comment
ballot. These were addressed in a single meeting. The main area for
additional work was when entities were implicitly exported from a
module – for example return types of functions. The discussions on
modules are still on going but it’s hoped that it will make it in to C++ 20.
It was also the second time that changes to the current C++ 20 draft could
be voted on. And some of the highlights include (in no particular order…):

Range-based for statements with an initializer
(p0614r1)
This allows you to initialise an object within the parenthesis of the for
loop [3]. The benefit is that it allows the developer to use locally scoped
variables, so for example, you could do something like this:
 for(T widgets = getWidgets() ;
 auto& w : widgets.items())
 {
 // do stuff here…
 }
Whereas before you’d have to do something like this:
 {
 T widgets = getWidgets();
 for(auto& w : widgets.item()) {
 // it's worth noting that
 // for(auto & w : w().items())" is wrong
 }
 }

This change makes the range-based for loop consistent with other
control flow statements such as if and while, which gained the facility
to contain variable initialization before their condition in C++ 17. A
simple example would be if you had a vector that you wanted to populate
then loop over, you could do it all in the parenthesis of the for loop.

Consistent comparison (spaceship operator)
(p0515r3)
One of the more significant features voted in was Herb Sutter, Jens
Maurer and Walter E. Brown’s proposal for consistent comparison [4],
which is also known by colloquially as the spaceship operator, or
operator<=>.
There had been previous efforts and proposals to create a Consistent
Comparison proposal which all served as the basis of the paper as
proposed. The proposal sought to pursue three-way comparison, by
allowing default copying to guide default comparison, and it would allow
developers to write a memberwise comparison function body far easier
than it is at present, and to enable more powerful and precise comparisons,
with less code.
The paper gave two cases, the common case, where if you wanted to write
all comparisons for your type X with type Y with memberwise semantics,
all you needed to write would be :
 auto X::operator<=>(const Y&) = default;
And that’s it! Whereas previously you’d need to write:
 class point{
 int x;
 int y;

 public:
 friend bool operator==(const Point& a,
 const Point& b)
 { return a.x == b.x && a.y == b.y; }
 friend bool operator< (const Point& a,
 const Point& b)
 { return a.x <b.x ||
 (a,x == b.x && a.y < b.y);
 }
 // you'd still need to write another 4
 // of these operator overloads!
 }
Herb Sutter has an excellent example on his trip write up comparing two
case insensitive strings. [5]

Modules TS
At the last meeting (Toronto), the Modules TS was published and
circulated for balloting, which is where national bodies could vote, and
submit comments on the TS. The ballot did pass, but there were numerous
technical comments that were worked through during the meeting.
Progress was made, but not enough to publish a final TS at the end of the
meeting. I believe there are teleconference meetings taking place over the
coming few months to work on this, and an update will follow in due
course.
There were a couple of planned TS’s proposed as well, these do not have
an official project or a working draft at the time of writing.

T

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
18 | | JAN 2018{cvu}

Make good art
By Neil Gaiman, published by
Headline in May 2013,
ISBN-13: 978-1472207937
Reviewed by Ian Bruntlett
This book is brief, visually rich
and full of wisdom, based on a
speech successful author Neil Gaiman made to
the Philadelphia University of the Arts in May
2012. That speech (just under 20 minutes) can

be viewed online at this page – https://
vimeo.com/42372767. Chip Kidd did the
graphic design – in an attempt to look edgy
graphically (e.g. white text on a pale blue
background), it can be very difficult to read in
dim light. Despite the speech being aimed at
artists and writers, it still has good advice that
can be of benefit to software developers, both at
the start of a career and during it. It is a
hardbacked book and looks like it could also

have been entitled The Ladybird Guide to being
a Creative. Kevlin Henney suggested I provide
a favourite quote from the book. I went through
the book again and I came up with seven. My
favourite quote is at the start – “This book is for
anybody who is looking around and thinking
Now What?” – and it expands on that
throughout the book. Overall I enjoyed this
book and intend to have it on-hand for future
reference.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website, which
contains a list of all of the books currently available. If there is something that you want to review, but can’t
find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it. I will
instruct you from there. Remember though, if the book review is such a stinker as to be awarded the most un-
glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

Standards Report (continued)

Library
The Library Working Group (LWG) discussed how Concepts should be
used in the C++ library. The consensus was that a full proposal would
need to be seen at a future meeting before Concepts are to be used in
future proposals.
The LEWG approved proposals which are mainly aimed at C++ 20, and
were sent to the LWG for a wording review. These proposals included:
 std::polymorphic_value<T> (p0201r2)
 <version> (p0754r1)
 Calendars and Timezones (p0355r4)
 std::hash_combine (p0814r0)
 Bit operations (rotr, popcount etc) (p0553r2)
 Integral power-of-2 operations (p0556r2)
 Efficient access to basic std::stringbuf’s buffer (p0408r3)
 std::bind_front (p0356r3)
 std::spanstream (p0448r1)
 .contains() for std::map (p0458r0)

The following proposals were discussed and given design feedback and
guidance from the group:
 std::transform_if (p0838r0): Brings the implementation of

transform_if from boost (boost/compute/algorithm)
 std::flat_map (p0429r3)

A more space/runtime efficient representation of a map structure.
Commonly used in gaming, embedded or system software
development. Its intention is that the flat_map is a drop-in
replacement for std::map but with different time and space
efficiency properties. It’s primarily based on Boost’s flatMap, and
its API is nearly identical to std::map.

 std::function_ref (p0792r0)
The idea behind function_ref is allow further functional
programming idioms to be added to the language. ‘Higher-order’

functions are one of the key areas of this paradigm; essentially, they
are functions that take functions as arguments, and can return
functions as results. At present, the language doesn’t support
referring to an existing Callable object, or at least not flexibly at any
rate. The proposal hopes to change that.

 std::wide_int (p0539R2)
There’s no cross-platform solution to have bigger numbers than
int64_t. While there’s the non-standard type __int128 which is
provided by GCC and clang, there is no other way to do this. The
paper proposes a templated class where you can specify the size of
integer you want: e.g.
std::wide_uint<128> veryBigNumber;

 Endian support (p0803r0)
At the moment, there’s no standardised way to handle endianness in
C or C++. Some platforms provide a mechanism for this in C, it
varies between platforms. The paper was written to determine
whether or not there was interest in adding this to the C++ STL or a
library TS.

Details are available online of all the papers being discussed by the
committee. [6]

References
[1] https://botondballo.wordpress.com/2017/11/20/trip-report-c-

standards-meeting-in-albuquerque-november-2017/
[2] https://www.reddit.com/r/cpp/comments/7ca2sh/

2017_albuquerque_iso_c_committee_reddit_trip/
[3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/

p0614r1.html
[4] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/

p0515r3.pdf
[5] https://herbsutter.com/2017/11/11/trip-report-fall-iso-c-standards-

meeting-albuquerque/
[6] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/

#mailing2017-11
JAN 2018 | | 19{cvu}

https://herbsutter.com/2017/11/11/trip-report-fall-iso-c-standards-meeting-albuquerque/
https://herbsutter.com/2017/11/11/trip-report-fall-iso-c-standards-meeting-albuquerque/
https://vimeo.com/42372767
https://vimeo.com/42372767
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/#mailing2017-11
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/#mailing2017-11
https://www.reddit.com/r/cpp/comments/7ca2sh/2017_albuquerque_iso_c_committee_reddit_trip/
https://www.reddit.com/r/cpp/comments/7ca2sh/2017_albuquerque_iso_c_committee_reddit_trip/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0515r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0614r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0614r1.html
https://botondballo.wordpress.com/2017/11/20/trip-report-c-standards-meeting-in-albuquerque-november-2017/
https://botondballo.wordpress.com/2017/11/20/trip-report-c-standards-meeting-in-albuquerque-november-2017/

20 | | JAN 2018

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org

Committee spotlight
We have some upcoming changes to the
makeup of the ACCU committee.
 Malcolm Noyes, ACCU’s Secretary, has

informed the committee that he will not be
seeking re-election in 2018, after four
years of service. If I recall correctly,
Malcolm tried to step away from the role
in 2016, but volunteered to continue as
secretary when no one else stood for
election that year, and then stood for re-
election in 2017. Malcolm will finish his
out his term ending at the AGM in April,
2018.

 Rob Pauer has announced that he would
like to retire from his role as Treasurer.
Rob has been treasurer since 2011, and
has been retired from his career in
insurance and pensions for several years.
Rob would like to have a new treasurer
shadow his activities for a few months in
preparation for taking over full-time. (Rob
has been a member of ACCU since 1987,
and is believed to be the longest current
member of ACCU.)

 Jonathan Wakely is stepping down from
his role as Standards Officer. Jonathan
recently became a father (congratulations
Jon!), with all of the time constraints
associated with parenthood.

Please join me in thanking Malcolm, Rob, and
Jon for their contributions to ACCU.
Emyr Williams and Guy Davidson have
volunteered to work together to be Standards
officer. There are details remaining to be
worked out, since Guy currently is serving his
second year as Auditor, a position that is
independent of the committee. Thank you to
both of them for volunteering.

2018 Annual General Meeting
ACCU’s 2018 Annual General Meeting (AGM)
will be held on Saturday, April 14th, 2018, at
the Marriott City Centre in Bristol, UK, in
conjunction with the 2018 ACCU conference.

The important dates associated with the AGM
are in the table below.
The most important part of our pre-AGM
activities is election of officers. From ACCU’s
constitution [1]:
5.3.1 Members of the Committee shall hold

office from the date of appointment until
the next Annual General Meeting, and
shall be eligible for re-election.

5.3.3 Any member of the Association can stand
as a candidate for election to any role on
the committee. Any such member shall
notify the Secretary in writing (letter or
email), including names of a nominating
member and a seconder, on or before the
Proposal Deadline (described in ‘Section
7 – General Meetings’). The same person
cannot stand for more than one role in the
same election.

As of now, ACCU will have at least three
critical committee positions to fill in April:
secretary, treasurer, and auditor (and possibly a
fourth, as I have not yet decided if I will stand
for re-election as chair). Secretary and treasurer
are elected each year; auditors volunteer for
staggered two year terms.
ACCU has had trouble getting people to
volunteer for positions in the organization. (In
2016, two executive committee roles had no
one standing for election; in 2017, all
incumbents ran unopposed. The position of
Web Editor has been vacant for six months.) In
this I suspect we are not much different from
most volunteer organizations.
I get it. We all have other stuff to do. I myself
have never been much of a joiner, let alone a
volunteer. (You may recall, from my very first
View, my wife’s reaction to the news that I
volunteered to serve on the committee – “she
just laughed”.) Nevertheless, ACCU needs
people to fill these roles. Ideally we need
multiple people standing for each role, to give
substance to our elections.
If you would like to nominate someone for a
role, or would like to volunteer to stand for
election, please send an email to accu-
committee@accu.org. Nominations are due by
13 February 2018.

WG21 Albuquerque
Carter Edwards (sponsor of the meeting) and
Herb Sutter (convener of WG21) graciously
allowed ACCU to distribute copies of the most
recent Overload and advertise the upcoming
conference during the week. Thanks to both of
them for their support.

International standards
development fund
You may recall from my last column that the
committee awarded an ISDF grant to Mr Walter
Brown. I’m pleased to report that the grant
allowed Mr Brown to travel to Albuquerque for
the fall WG21 meeting, where I was honoured
to make his acquaintance.

ACCU 2018
As mentioned above, the next ACCU
conference will be held in Bristol, U.K., from
the 11th through the 14th of April, 2018, with
pre-conference workshops on April 10th. The
conference again will be held at the Marriott
City Centre, our home for the past several years.

Web site redesign
As announced last issue, we are soliciting ideas
for a new platform for ACCU’s website. As this
issue goes to press we have not gotten any
feedback. If you have experience with a content
management platform and would like to express
your opinion on it, please send your comments
to accu-committee@accu.com.

Overload Reviewers
Fran Buontempo, editor of Overload, has
announced additions to the makeup of the
magazine’s peer review team. Please join me in
welcoming these new reviewers to the
Overload team:

Kaartic Sivaramm Craig Inches
Yubin Ruan Tor Arve Strangeland
Balog Pal † Araray Velho
Philipp Schwaha † Gennaro Prota
Christopher Gilbert Ben Curry †
Paul Johnson †

† Have already commented on Overload 142 articles!

Finally, Fran has announced that Phil Bass has
stepped down as a reviewer. On behalf of the
committee I’d like to thank Phil for his service
to Overload and ACCU.

Reference
[1] ACCU Constitution.

https://accu.org/index.php/constitution

AGM Deadlines
14 January 2018 Official Announcement Date 90 days prior to AGM

13 February 2018 Proposal and Nomination Deadline 60 days prior to AGM

3 March 2018 Draft Agenda 42 days prior to AGM

17 March 2018 Agenda Freeze 28 days prior to AGM

24 March 2018 Voting Opens 21 days prior to AGM

https://accu.org/index.php/constitution

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

	CVu29-6.pdf
	Know It All
	Visualisation of Multidimensional Data
	Testing Times (Part 1)
	Best Articles 2017
	Programmers’ Puzzles
	Code Critique Competition 109
	Standards Report
	Bookcase
	View from the Chair

	2009-07-01 Care About Code - online.pdf
	Slide 1

