

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

NOV 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Fiction
ow long do you think it would take to drive
from London, capital city of the UK, to
Florence, centre of culture and fine art in

Italy? Piece of string calculation with an Atlas
(old school!) says it’s around 750 miles.
Average speed on the good roads of France and
Italy should be about 50mph, so that’s 15 hours.
Add a couple for good measure, we could still do it
in one day, right? We both know how to drive a
car, so we can share the driving.
The GPS reports that we’ve underestimated the
distance by well over 200 miles. That’ll add maybe 5
hours to the journey, but we can manage 11 hours each
in stints of 5 hours or so, and we should be able to make
up some time on the motorways. The first real hitch is in
leaving the UK – without a booking we need to wait for
a free slot on a boat. 2 hours wasted, and most of
2 hours on a boat – that’s almost 20% of our time
budget on about 10% of the distance!
France is a breeze and we swap places near the
Swiss border. We’ve made up some time, but it’s
getting dark. The Swiss border guard politely checks
our driving licences, and yours has expired. He hands
them back, and just as politely makes it clear that I must
do the driving. After another hour we have to stop for
strong coffee. And a quick nap.
It is starting to become clear to me that my initial estimate of 1 day is looking
increasingly ambitious, and there are still so many things that can happen:
breakdown, accident, diversion – we’re not over the Alps yet – and with another
6 hours (at least!) of driving, I’m going to need a good rest before attempting it.
Which means we’ll be getting to Milan in the rush-hour...
Knowing how to drive a car might be a little bit like knowing how to write code in a
given programming language, and marking way-points on a map (or GPS) like
sketching a project plan. Predicting future events is a whole different thing. And as
for predicting when they will happen, that’s just for fiction.

H
Volume 29 Issue 5
November 2017

Editor
Steve Love
cvu@accu.org

Contributors
Andy Balaam, Silas S. Brown,
R. Brian Clark, Francis
Glassborow, Pete Goodliffe,
Roger Orr, A Student

ACCU Chair
Bob Schmidt
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | NOV 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
10 Two Pence Worth

Another crop of sage
sayings from ACCU
members.

12 Old money, new money...
Two pence or
tuppence? A trip
down memory lane...

18 Code Critique Competition
108
The results from the last
competition and details
of the latest.

23 Planet Code
Andy Balaam
introduces his blog
aggregator.

REGULARS
24 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.6: 1st December 2017
C Vu 30.1: 1st February 2017

Overload 142:1st January 2017
Overload 143:1st March 2018

FEATURES
3 Code Aesthetics

Pete Goodliffe implores us to care (enough) about
code beauty.

6 On Share and Share Alike
A Student gets to grips with the Baron’s coin puzzle.

8 A Brief Introduction to Docker
Silas S. Brown shares his experiences of setting up a
virtual appliance.

9 ACCU – The Early Days (Part 1)
Francis Glassborow recalls how the ACCU came about.

10 Good Intentions
R. Brian Clark proves that sometimes tomorrow does
eventually come.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 107
Code Aesthetics
Pete Goodliffe implores us to care (enough)

about code beauty.

Appearances are deceptive.
Aesop

ode aesthetics are the most immediate determinant of how easy a
section of code will be to work with. No one likes working with
messy code. No one wants to wallow in a mire of jagged,

inconsistent formatting, or battle with gibberish names. It’s not fun. It’s
not productive. It’s the programmer’s purgatory.
Sadly, programmers care so much about code presentation that they end
up bickering about it. This is the stuff that holy wars are made of. That,
and which editor is best [1]. Tabs versus spaces. Brace positioning.
Columns per line. Capitalisation. I’ve got my preferences. You have
yours.
Godwin’s law states that as any discussion on the Internet grows longer,
the probability of a comparison to the Nazis or Hitler approaches one.
Goodliffe’s law (unveiled here) states that as any discussion about code
layout grows, the probability of it descending into a fruitless argument
approaches one.
Good programmers care deeply about good code presentation. But they
rise above this kind of petty squabble. Let’s act like grown-ups.

Stop fighting over code layout. Adopt a healthy attitude to your
code presentation.

Our myopic focus on layout is most clearly illustrated by the classic
dysfunctional code review. When given a section of code, the tendency is
to pick myriad holes in the presentation. (Especially if you only give it a
cursory skim-read, then layout is all you’ll pick up on.) You feel like
you’ve made many useful comments. The design flaws will be completely
overlooked because the position of a bracket is wrong. Indeed, it seems
that the larger the code review, and the faster it’s done, the more likely this
blindness will strike.

Presentation is powerful
We can’t pretend that code formatting is unimportant. But understand
why it matters. A good code format is not the one you think looks
prettiest. We do not lay out code in order to exercise our deep artistic
leanings. (Can you hear the code-art critics? Daaaahling, look at the
wonderful Pre-Raphaelite framing on that nested switch statement. Or: you
have to appreciate the poignant subtext of this method. I think not.)
Good code is clear. It is consistent. The layout is almost invisible. Good
presentation does not draw attention or distract; it serves only to reveal the
code’s intent. This helps programmers work with the code effectively. It
reduces the effort required to maintain the code.

Good code presentation reveals your code’s intent. It is not an
artistic endeavour.

Good presentation techniques are important, not for beauty’s sake, but to
avoid mistakes in your code. As an example, consider the following C
snippet:
 bool ok = thisCouldGoWrong();
 if (!ok)
 fprintf(stderr, "Error: exiting...\n");
 exit(0);
You can see what the author intended here: ++exit(0)++ was only to
be called when the test failed. But the presentation has hidden the real

behaviour: the code will always ++exit++. The layout choices have
made the code a liability. [2]
Names have a similarly profound effect. Bad naming can be more than
just distracting, it can be downright dangerous. Which of these is the bad
name?
 bool numberOfGreenWidgets;
 string name;
 void turnGreen();
The numberOfGreenWidgets is a variable, right? Clearly a counter is
not represented by a boolean type. No; it’s a trick question. They’re all
bad. The string does not actually hold a name, but the name of a colour; it
is set by the turnGreen() function. So that variable name is misleading.
And turnGreen was implemented thus:
 void turnGreen()
 {
 name = "yellow";
 }
The names are all lies!
Is this a contrived example? Perhaps; but after a little careless
maintenance, code can quickly end up in this state. What happens when
you work with code like this? Bugs. Many, many bugs.

We need good presentation to avoid making code errors. Not
so we can create pretty ASCII art.

Encountering inconsistent layout and hodgepodge naming is a sure sign
that code quality is not high. If the authors haven’t looked after the layout,
then they’ve probably taken no care over other vital quality issues (like
good design, thorough testing, etc.).

It’s about communication
We write code for two audiences. First: for the compiler (or the language
runtime). This beast is perfectly happy to read any old code slop and will
turn it into an executable program the only way it knows how. It will
impassionately do this without passing judgment on the quality of what
you’ve fed it, nor on the style it was presented in. This is more a
conversion exercise than any kind of code ‘reading’.
The other, more important, audience is other programmers. We write
code to be executed by a computer, but to be read by humans. This means:
 You right now, as you’re writing it. The code has to be crystal clear

so you don’t make implementation mistakes.
 You, a few weeks (or months) later as you prepare the software for

release.
 The other people on your team who have to integrate their work with

this code.
 The maintenance programmer (which could be you or another

programmer) years later, when investigating a bug in an old release.
Code that is hard to read is hard to work with. This is why we strive for
clear, sympathetic, supporting presentation.

C

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
NOV 2017 | | 3{cvu}

Remember who you’re writing code for: other people.

We’ve already seen that code can look pretty but obscure its intent. It can
also look pretty, but be unreasonably hard to maintain. A great example
of this is the ‘comment box’. Some programmers like to present banner
comments in pretty ASCII-art boxes:
 /**
 * This is a pretty comment. *
 * Note that there are asterisks on the right- *
 * hand side of the box. Wow; it looks neat. *
 * Hope I never have to fix this tiypo. *
**/
It’s cute, but it’s not easy to maintain. If you want to change the comment
text, you’ll have to manually rework the right-hand line of comment
markers. Frankly, this is a sadistic presentation style, and the people who
choose it do not value the time and sanity of their colleagues. (Or they
hope to make it so crushingly tedious to edit their comments that no one
dare adjust their prose.)

Layout
Code layout concerns include indentation, use of
whitespace around operators, capitalisation, brace
placement (be it K&R style, Allman, Whitesmith, or the
like), and the age-old tabs versus spaces indent debate.
In each of these areas there are a number of layout
decisions you can make, and each choice has good
reasons to commend it. As long as your layout choices
enhance the structure of your code and help to reveal
the intent, then they’re good.
A quick glance at your code should reveal the shape and
structure. Rather than argue about brace positioning,
there are more important layout considerations, which
we’ll explore in the following sections.

Structure well
Write your code like you write prose.
Break it up into chapters, paragraphs, and sentences.
Bind the like things together; separate the different things. Functions are
akin to chapters. Within each chapter may be a few distinct but related
parts of code. Break them up into paragraphs by inserting blank lines
between them. Do not insert blank lines unless there is a natural
‘paragraph’ break. This technique helps to emphasise flow and structure.
For example:
 void exampleFunction(int param)
 {
 // We group things related to input
 param = sanitiseParamValue(param);
 doSomethingWithParam(param);

 // In a separate "paragraph" comes other work
 updateInternalInvariants();
 notifyOthersOfChange();
 }
The order of code revelation is important. Consider the reader: put the
most important information first, not last. Ensure APIs read in a sensible
order. Put what a reader cares about at the top of your class definition.
That is, all public information comes before private information. Creation
of an object comes before use of an object.
This grouping might be expressed in a class declaration like the one in
Listing 1.
Prefer to write shorter code blocks. Don’t write one function with five
‘paragraphs’. Consider splitting this up into five functions, each with a
well-chosen name.

Consistency
Avoid being precious about layout styles. Pick one. Use it consistently. It
is best to be idiomatic – use what fits best with your language. Follow the
style of standard libraries.
Write code using the same layout conventions as the rest of your team.
Don’t use your own style because you think it’s prettier or better. If there
is no consistency on your project then consider adopting a coding
standard or style guide. This does not need to be a lengthy, draconian
document; just a few agreed upon layout princples to pull the team
together will suffice. In this situation, coding standards must be agreed on
mutually, not enforced.
If you’re working in a file that doesn’t follow the layout conventions of
the rest of your project, follow the layout conventions in that file.
Ensure that the entire team’s IDEs and source code editors are configured
the same way. Get the tab stop size the same. Set the brace position and
comment layout options identically. Make the line ending options match.
This is particularly important on cross-platform projects where very
different development environments are used simultaneously. If you
aren’t diligent in this, then the source code will naturally become
fractured and inconsistent; you will breed bad code.

Names
We name many things: variables, functions and methods, types (e.g.,
enumerations, classes), namespaces, and packages. Equally important are
larger things, like files, projects, and programs. Public APIs (e.g., library
interfaces or web service APIs) are perhaps the most significant things we
choose names for, as ‘released’ public APIs are most often set in stone and
particularly hard to change.
A name conveys the identity of an object; it describes the thing, indicates
its behaviour and intended use. A misnamed variable can be very
confusing. A good name is descriptive, correct, and idiomatic.
You can only name something when you know exactly what it is. If you
can’t describe it clearly, or don’t know what it will be used for, you simply
can’t name it well.

Avoid redundancy
When naming, avoid redundancy and exploit context. Consider:
 class WidgetList {
 public int numberOfWidgets() { ... }
 };
The numberOfWidgets method name is unnecessarily long, repeating
the word Widget. This makes the code harder, and more tedious, to read.
Because this method returns the size of the list, it can simply be called
size(). There will be no confusion, as the context of the enclosing class
clearly defines what size means in this case.
Avoid redundant words.
I once worked on a project with a class called DataObject. That was a
masterpiece of baffling, redundant naming.

class Example
{
public:
 Example(); // lifetime management first
 ~Example();

 void doMostImportantThing(); // this starts a new "paragraph"
 void doSomethingRelated(); // each line is like a sentence

 void somethingDifferent(); // this is another paragraph
 void aRelatedThing();

private:
 int privateStuffComesLast;
};

Listing 1
4 | | NOV 2017{cvu}

Be clear
Favour clarity over brevity. Names don’t need to be short to save you key
presses – you’ll read the variable name far more times than you’ll type it.
But there is, however, a case for single-letter variable names: as counter
variables in short loops, they tend to read clearly. Again, context matters!
Names don’t need to be cryptic. The poster child for this is Hungarian
Notation. It’s not useful.
Baroque acronyms or ‘amusing’ plays on words are not helpful.

Be idiomatic
Prefer idiomatic names. Employ the capitalisation conventions most often
used in your language. These are powerful conventions that you should
only break with good reason. For example:
 In C, macros are usually given uppercase names.
 Capitalised names often denote types (e.g., a class), where

uncapitalised names are reserved for methods and variables. This
can be such a universally accepted idiom that breaking it will render
your code confusing.

Be accurate
Ensure that your names are accurate. Don’t call a type WidgetSet if it
behaves like an array of widgets. The inaccurate name may cause the
reader to make invalid assumptions about the behaviour or characteristics
of the type.

Making yourself presentable
We come across badly formatted code all the time. Be careful how you
work with it.
If you must ‘tidy it up’ never alter presentation at the same time as making
functional changes. Check in the presentation change to source control as
a separate step. Then alter the code’s behaviour. It’s confusing to see
commits mixing the two things. The layout changes might mask mistakes
in the functionality.

Never alter presentation and behaviour at the same time. Make
them separate version-controlled changes.

Don’t feel you have to pick a layout style and stick with it faithfully for
your entire life. Continually gather feedback from how layout choices
affect how you work with code. Learn from the code you read. Adapt your
presentation style as you gain experience.
Over my career, I have slowly migrated my coding style, moving ever
towards a more consistent and easier to modify layout.
From time to time, every project considers running automated layout tools
over the source tree, or adding them as a pre-commit hook. This is always
worth investigating, and rarely worth using. Such layout tools tend to be
(understandably) simplistic, and are never able to deal with the subtleties
of code structure in the real world.

Conclusion
Stop fighting about code presentation. Favour a common convention in
your project, even if it’s not your personal preferred layout style.
But do have an informed opinion on what constitutes a good layout style,
and why. Continually learn and gain more experience from reading other
code.

Strive for consistency and clarity in your code layout.

Questions
 Should you alter layout of legacy code to match the company coding

standard? Or is it better to leave it in the author’s original style?
Why?

 Which is more important: good code presentation or good code
design?

 How consistent is your current project’s code? How can you
improve this?

 Tabs or spaces? Why? Does it matter?
 Is it important to follow a language’s layout and naming

conventions? Or is it useful to adopt a different ‘house style’ so you
can differentiate your application code from the standard library?

 Does our use of colourful syntax-highlighting code editors mean
that there is less requirement for certain presentation concerns
because the colour helps to reveal code structure?

Notes
[1] Vim is. That is all.
[2] This is not just an academic example to fill books! Serious real-life

bugs stem from these kinds of mistakes. Apple’s infamous 2014 goto
fail security vulnerability in its SSL/TLS implementation was caused
by exactly this kind of layout error.

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178

Co
ur

se
s: Moving Up to Modern C++:

An Introduction to C++11/14/17 for experienced
C++ developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++:
A 4-Day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++
facilities.

An Effective Introduction to the STL:
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++.

n site C++ Training

Mention ACCU and receive the U.S. training
rate for any location in Europe!
NOV 2017 | | 5{cvu}

On Share and Share Alike
A Student gets to grips with the Baron’s coin puzzle.

hen last they met, the Baron challenged Sir R----- to a wager in
which, for a price of three coins and fifty cents, he would make
a pile of two coins upon the table. Sir R----- was then to cast a

four-sided die and the Baron would add to that pile coins numbering that
upon which it settled. The Baron would then make of it as many piles of
equal numbers of no fewer than two coins as he could muster and take
back all but one of them for his purse. After doing so some sixteen times,
Sir R----- was to have as his prize the remaining pile of coins.
The upshot of these rules is that at each turn the pile of coins would be
reduced to the lowest prime factor of the number that it had after those
indicated by the die were added, the primes being those positive integers
that cannot be wholly divided by any positive integers other than
themselves and one. For example, if Sir R----- had started a turn with
seventeen coins and had thrown a one then he would have ended it with

coins.
The first consequence of this is that the pile could only consist of a prime
number of coins at the end of a turn.
The second is that it could never be larger than twenty three coins, since

We need therefore only consider the implications of the rules of the wager
for piles of two, three, five, seven, eleven, thirteen, seventeen, nineteen
and twenty three coins in order to figure its fairness.
If we construct a table showing how many ways Sir R----- could start and
end a turn with some numbers of coins in the pile by column and row
respectively

create a matrix of its elements, and multiply it by one quarter

then the result is the transition matrix of a turn, representing the
probabilities of beginning and ending it with the numbers of coins
associated with the table’s columns and rows.
If we further define a vector with

where is the probability that the pile contains coins at the start of a
turn, then is a vector whose elements correspond to the
probabilities that it should contain a given number of coins at the end of
that turn.
That this is necessarily so follows firstly from the fact that the transitions
from a particular starting number of coins to a particular ending number
are independent, meaning that we may simply multiply the probabilities
of the former by the probabilities of those transitions and add together the
resulting probabilities of each of the latter and secondly that, by the rules
of matrix-vector multiplication, we have

where is the summation sign, which is trivially that sum of the
products of those probabilities.
Now it must also be the case that if the probabilities of the pile having
particular numbers of coins at the start of a turn are , then at the
end of that turn they must be

and so if they were instead at the start of a turn, they will be
at the end of the following turn, since the rolls of the die at each turn are
also independent.
Carrying on in the same fashion, we find that if the probabilities were
at the start of the game, then they should be at its conclusion.
Such probabilistic systems are known as Markov chains and are of
tremendous utility when it comes to figuring the probabilities of the
outcomes of processes for which the transitions between various states at
any given time are independent of those that have come before, not least
for the ease with which we may use matrices and vectors to do so. I said
as much to the Baron, but I fear that I may not have had his full attention.

Start

 2 3 5 7 11 13 17 19 23

End

2 2 2 2 2 2 2 2 2 2

3 1 1 1 1 1 1 1 1

5 1 1 1

7 1 1

11 1

13 1

17 1

19 1

23 1

W

6 | | NOV 2017{cvu}

Now we may spare ourselves some considerable effort by noting that

and so we need but four matrix multiplications to figure the probabilities
of the pile having any particular number of coins at the game’s end. With
some small measure of patience my fellow students and I have reckoned
these to equal the equation in Figure 1.
Since the probability of having two coins in the pile at the outset equals
one, the initial probability vector must have a one for its first element and

zero for the rest and so the product of a matrix and it is simply equal to the
first column of that matrix, giving us a probability vector at the end of the
game of

Finally, Sir R-----’s expected prize was simply

which comes out to

Now the cost of the wager was

and so this represents a slight loss for Sir R----- and I should have advised
him to decline it.

Acknowledgement
Courtesy of www.thusspakeak.com

Fig
ur

e 1
NOV 2017 | | 7{cvu}

www.thusspakeak.com

8 | | NOV 2017{cvu}

A Brief Introduction to Docker
Silas S. Brown shares his experiences of

setting up a virtual appliance.

ocker is basically a convenient way of setting up chroot jails on the
GNU/Linux platform, but some companies now use it to deploy
software to their servers. Docker is like having a lightweight virtual

machine, except only on Linux (don’t expect to be able to run it on
Windows or Mac except inside a Linux VM). One advantage of Docker
over virtual machines is ease of initial setup. For example, on several
versions of Red Hat Linux as used in some corporate environments,
Virtualbox won’t run without significant extra effort, but Docker ‘just
works’. Want to do something on a virtual Debian box? Install Docker,
ensure sudo dockerd is running, and do:
 docker pull debian
 docker run -it debian /bin/bash
and you should be away (except you’ll need an apt-get update before
doing any serious amount of package installation).
But as soon as that first shell exits, any changes you made to the system
(such as installing extra packages and changing the configuration) will be
lost. That might be OK for a one-off experiment, but for serious use you
probably want some of the configuration to persist. That’s usually done
by writing build instructions for your own derived Docker image.
Just as the make command uses a file typically named Makefile, so
Docker uses a file called Dockerfile, which should be placed at the top of
your source tree (or at least the part of it relevant to the Docker image
you’re creating). Dockerfiles almost always name an existing GNU/Linux
distribution to use as a base, followed by files or directories to copy into
the container and setup commands to run:
 FROM centos:6.8
 COPY myDirectory /etc/myDirectory
 COPY src/*.c /home/user/src/
 RUN yum install -y myPackage
but if you need to start daemons, you shouldn’t do so as an effect of the
RUN commands here, since these run only when the image is generated,
not every time it’s started. You may add a single CMD command to the
Dockerfile saying what command should be run when docker run is
called on the image (there’s also an alternative called ENTRYPOINT
which can take additional command-line arguments from the docker
run command, in which case CMD is repurposed to specify default
arguments to add when these are missing), and this will be responsible for
starting any necessary daemons, running the foreground process, and, if
necessary, cleanly shutting down the daemons afterwards (otherwise
they’ll all be aborted as soon as the master process exits).
It may also be worth noting that Docker will try to cache all intermediate
states between commands in the Dockerfile, so combining multiple RUN

commands into one can save disk space. (RUN commands are also
expected to produce practically-identical results each time they are run:
the cache will be refreshed if the source file of a COPY is changed, but it
will not be refreshed just because the expected result of some RUN
command changes unless the RUN command itself is changed. This might
affect you if you try to install your own work via a network-fetching RUN
instead of via a COPY: changes you make upstream will not be reflected
in the Docker build, unless you give Docker some other reason to
invalidate its cache before reaching that RUN, such as by making changes
to a file that’s COPY’d in first.)
Base images can be found on https://hub.docker.com/explore/ but the
presence of application-specific base images (nginx, golang etc) is
slightly misleading: you can’t ‘import’ multiple applications by
depending on multiple base images, so it’s not as much of a ‘package
manager’ as it seems. Granted, if you need one base environment to
compile something, but then wish to copy only its final binary into another
base environment (discarding the compiler etc), you can do this with
Docker’s ‘multi-stage builds’:
 FROM golang:1.7.3 as builder
 RUN build-my-Go-program
 FROM centos:6.8
 COPY --from=builder /path/to/my/binary .
but you’d then have to make sure all the right libraries are in the final
image. This might be useful if you need a compiler that’s harder to set up
on all development machines due to distribution differences, and don’t
want the bloat of putting the compiler in the final image. But beyond this,
there unfortunately doesn’t yet seem to be a way of asking Docker to
‘merge’ base images, so you can’t use Docker itself as a package
manager. At least it makes it easier to obtain minimal distributions (which
can be different from the distribution you’re running) and use their own
package managers. Please change the distro’s package-manager
configuration to use your nearest mirror before downloading large
packages with it, especially in a Docker image that’s likely to be re-built
frequently (in extreme cases it might even be a good idea to cache some
packages locally).
Further documentation can be found on docker.com; the EXPOSE
command is worth a look if you want to run a server inside the container
that you wish to be visible from the outside.

D

SILAS S. BROWN
Silas is a partially-sighted Computer Science post-doc in Cambridge
who currently works in part-time assistant tuition. He has been an
ACCU member since 1994 and can be contacted at ssb22@cam.ac.uk

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

https://hub.docker.com/explore/

NOV 2017 | | 9{cvu}

ACCU – The Early Days (Part 1)
Francis Glassborow recalls how the ACCU came about.

ack when my career as a teacher was coming to a close (stress-
related ill-health was the proximate cause, but that is another story),
in June of that same year, I came across a small ad in a news-stand

magazine (Computer World, if memory serves me correctly) for the C
User Group (UK). I thought it might be interesting and sent off my £10
for membership and six issues of its newsletter. I soon received a
mimeographed A4 newsletter titled C Vu, which largely consisted of
reprints from the US based CUG (long deceased, and which continued as
a ghost organisation for a number of years having been absorbed by its
newsletter, The C Users Journal, which had grown up to being a glossy
print publication). By the way, try searching the Web for ‘C magazines’;
not at all the results you might expect. In addition, the Wikipedia entry is
completely wrong, not least because both CVu and Overload continue as
print magazines. Anyone got the time to get them to correct the entry?
After several months, the next issue had not materialised on my doormat
so, before actually giving up and assuming that it was a transient
publication, I rang the contact number for Martin Houston that was on the
issue I had (I think it was issue 4) to ask what had happened to the next
issue. He told me that there wasn’t one yet, but that my telephone call was
very timely as he was planning a meeting to discuss the future
of CUG(UK) for January. He had booked a room at the
Aeronautical Institute in London.
I decided that I would go and that was one of those momentous
decisions that seem so unimportant when they are made. I
arrived in a very luxurious room to find a couple of dozen other
C enthusiasts.
The discussion that ensued began to meander. Being an old hand
at taking control of meetings, I looked around and suggested that
we had just about what we needed for a Committee. Martin
Houston was obviously the person for the chair and I
volunteered to be membership secretary (well, it seemed a pretty
harmless job). Someone volunteered as secretary and someone
else as editor. I am afraid that I have forgotten the names, though
I guess a bit of digging could bring them to light.
I next addressed the issue of regular publication. I pointed out
that people would only write articles in a timely fashion if they
had deadlines and a regular publication schedule. The original
decision was for it to be quarterly. As we will see, that was not
to last very long.
The meeting closed and I started find computer-interest events
that I could beg a free table at to publicise CUG(UK). That
brought me in contact with a lot of interesting people, including
Alan Lenton. It also resulted in my being invited to a lunch with
the person responsible for the computer books at Addison
Wesley. Out of that contact grew our wide reviewing coverage
of programming books. I can still recall a conversation at one
show with the representative for Wiley’s. She made some
remark about editors who just asked for review copies of books
because they wanted them for their personal bookshelves. I
replied that, in all honesty, I did the same. I can remember the

smile on her face when she told me that I was not like those other editors
because, unlike them, I read and reviewed the books before putting them
on my shelf.
Enough for this episode. Next time (if the editor likes the idea) I will tell
you how I came to be editor of CVu and how I had the nerve to tell Bjarne
Stroustrup that the 2nd edition of The C++ Programming Language was
much better than the first.

B

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?

10 | | NOV 2017{cvu}

Good Intentions
R. Brian Clark proves that sometimes

tomorrow does eventually come.

The road to hell is paved with good intentions.
Never do today what you can put off ’til tomorrow.

’ve had good intentions for a long time to write something for an
ACCU journal but kept putting it off until tomorrow! However, the
request from the Membership Secretary to give details of my Honorary

Membership has at last roused me to pen the following. Please don’t be
put off by what is now considered to be somewhat old fashioned jargon.
I can’t remember when I joined CUG(UK), the forerunner of ACCU, but
it was a few years after its formation. Francis Glassborow kept requesting
articles for the journal and at last I’ve got round to submitting one! He also
kept asking me to attend the AGM, which then I think was held at a
Motorcycle Museum in the Birmingham area. As they were held on a
Saturday, I never did, as the weekends were the only time I had to devote
full time to my family.
In 1998, I retired and the ACCU very kindly offered me Honorary
Membership. In the early years, email wasn’t as widely available as now
and some members of the Committee weren’t connected! So I acted as a
hub for email, forwarding minutes of meetings, messages, etc to those
who had and by smail to those who hadn’t, and also helped in a minor
administrative role. Then my email address was username@uk.man.ac
and you had to route the messages, eg to send to the USA it went via
University College, London. However, we thought it was wonderful as it
was so much faster than smail and cheaper than a telephone call. You had
to be careful not to use too much bandwidth. Of course, by 1998 I had long
stopped doing these as everyone was connected and we had www (who
remembers when it was text driven!).
It may be of interest to give a brief account of my life in computing from
those far off days. In 1978, I was appointed ‘Computer Manager’ to
manage a DEC machine which the Department had just bought. My

knowledge of computing then was as an infrequent user but I knew a little
about what made them tick. Some years previously, I had to do some
calculations and it was suggested that I did them on the University
computer. So I learnt Atlas Autocode – sorry, I can’t now remember
anything about it. In preparation for my new job I learnt Basic, and some
Assembly Language. About 1980, one of the professors said he had heard
that Unix developed by Bell Telephones was a much better operating
system then DEC’s so off I went to Newcastle University with a
removable Winchester Disc and got a copy. It was duly installed and over
the years updated, as was the computer.
The Unix machine was considered as a main frame, so very early on
Apples and BBC mini computers were also used and eventually
computers running Windows. I used to write programs in Fortran and
Pascal and finally C. A few years before I retired, I attended a course on
C++ given by B Stroustrup and as it seemed a bit complicated and C
fulfilled my requirements I decided not to bother.
When I retired, I installed Linux, which I still use, on my PC with the
intention of installing some of the programs I had written. Of course, I
only did a couple before my interest waned and I started on something
else.
I started computing untrained, I wonder would I be taken on now with
such a background?
I hope you have found the above interesting and don’t consider them the
ramblings of an old man.

I

R. BRIAN CLARK
R. Brian Clark is an Honorary Member of ACCU and has recently been
contacted by the Membership Secretary as part of the project to
document the association’s history.

It’s not just a case
of providing all
the instructions
your customers
could ever need.

You need to provide a
clear route through them

as well, regardless of
where your customers are

starting, or want to end up.

Get in touch for an informal
discussion on how we can help you:

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

12 | | NOV 2017{cvu}

Two Pence Worth
Another crop of sage sayings from ACCU members.

One of the marvellous things about being part of an organisation like
ACCU is that people are always willing to help out and put in their two-
pence-worth of advice. We are capturing some of those gems and will
print the best ones.

“Write your documentation in LaTeX in case a customer wants a
bound copy of it.” P. Diephe, UK

“Embrace cultural diversity in your team by using Unicode variable
names.” Anon

“Rebuild your machine every week to make sure you don’t pick up
spurious DLLs when testing.” James B, London

“Managers: encourage your coders to work on Open Source projects,
giving you free access to any good ideas they have outside of work
hours.” A Consultant, Chicago

“Lose weight by ensuring your code doesn’t cause a build failure when
you check it in.” S Dahli, UK

“Make sure your developers are using the correct tab/space policy by
reviewing their code changes with Notepad.”

T. More, Canterbury

“Before editing every source file create a new branch so that you can
merge the required features into your release branch.”

N Machiavelli, Italy

“Improve compilation times by removing all whitespace from your
source files.” Phil H, Birmingham

“Give your code a more mathematical feel by overloading lots of
different operators.” Anon

“Save time on lengthy handover notes when you leave by documenting
as you go along.” Anon

“Buy your manager two copies of The Mythical Man Month so they
can read it quicker.” Fred B, USA

“Avoid having to keep learning new programming languages by just
transpiling your favourite language to JavaScript.”

Ryan D, The Internet

If you have your own 2p to add, send it to cvu@accu.org

Old money, new money...
Alison Peck looks at the origins of ‘two pence worth’.

can still hear adults in my local area, in an exasperated tone of voice after
finally losing patience with children ‘butting in’, saying, “You just had
to add your tupp’orth, didn’t you?” I hadn’t thought about the phrase

for a long time – not until we did the first in this (very occasional) series
back in 2012 – and it set me thinking. What exactly does it mean?
Basically, it has to do with money. Pre-decimal British money, to be
precise. As now, you could get a penny coin and a two-penny coin. (As an
aside, the names of the coins then sounded much more interesting than now
to my ears – half-a-crown, a sixpence, a thrupenny bit… and don’t get me
started on guineas!)
Almost instinctively, I equated tuppence (two pennies) to ‘a small amount’,
but one still worth counting. I can (vaguely) remember going to the corner
shop to buy tuppence – or sometimes thruppence (three pennies) – worth
of sweets with my pocket money, which was a threepenny (pronounced
‘thrup’ny’) bit. I stress I was very young at the time!
But am I right? After a bit of research online, the answer is, probably. Most
of the sources indicate that there are very similar phrases in most of the
English-speaking world, with variations to account for currency
differences. For example, Wikipedia suggests that ‘My 2¢’ was first used
in print in March 1926 [1] as the title of a newspaper article in the USA.
The current usage is more to do with self-deprecation before joining in a
discussion, or immediately before or after offering an opinion. However,
this is starting to remove the ‘but still worth counting’ part of my own
understanding, and concentrating on the (potential) low worth.

Explanations for the origins of the phrase fit well with my British
upbringing and my personal understanding of its meaning. First, ‘A penny
for your thoughts’ is another familiar phrase – offering to pay a penny (a
token amount) but being given twice as much (tuppence worth) suggests
you got more than you were expecting, and maybe more than you wanted
in return. [2] Secondly, it seems that the phrase started to be used in the
UK in the middle of the 19th Century, and there is a suggested link with
the standard cost of sending a letter: tuppence. When I get 5 minutes, I may
investigate further…
Oh, and if you’re interested in the English language – its history and
evolution, its spelling and its regional variations – I suggest you read some
of David Crystal’s excellent books on a fascinating subject. [3]

References
[1] https://en.wikipedia.org/wiki/My_two_cents
[2] https://idioms.thefreedictionary.com/put+in+my+tuppence+worth
[3] http://www.davidcrystal.com/biography

I

ALISON PECK
Alison loves language and the ways we communicate.
She couldn’t write a novel to save her life, so instead puts
her enthusiasm into her work as a technical author and
trainer. Contact her at alison@clearly-stated.co.uk

https://en.wikipedia.org/wiki/My_two_cents
https://idioms.thefreedictionary.com/put+in+my+tuppence+worth
http://www.davidcrystal.com/biography

#pragma once
#include <iosfwd>
#include <sstream>
#include <string>
enum class meal : int
{
 breakfast, lunch, dinner,
};

// Used for name <=> value conversion
struct
{
 meal value;
 std::string name;
} names[] =
{
 { meal::breakfast, "breakfast" },
 { meal::lunch, "lunch" },
 { meal::dinner, "dinner" },
};

std::istream &operator>>(std::istream &is,
 meal &m)
{
 std::string name;
 if (is >> name)
 {
 for (auto p : names)
 {
 if (p.name == name)
 m = p.value;
 }

Lis
tin

g 1

Code Critique Competition 108
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I want to collect the meals needed for attendees for a one-day event so
I’m reading lines of text with the name and a list of the meals needed,
and then writing the totals. However, the totals are wrong – but I can’t
see why:

 > meals
 Roger breakfast lunch
 John lunch dinner
 Peter dinner

 Total: 3 breakfast: 3 lunch: 2 dinner: 2

There should only be 1 breakfast, not 3!

Please can you help the programmer find the bug – and suggest some
possible improvements to the program!
 Listing 1 contains meal.h
 Listing 2 (overleaf) contains meals.cpp

Critiques
Kaartic Sivaraam <kaarticsivaraam91196@gmail.com>
The issue seems to be with the ‘enum class’
 enum class meal : int
 {
 breakfast, lunch, dinner,
 };
They have the values of 0, 1, 2 each having ‘at most’ one bit set in binary,
of course. The issue is that as ‘breakfast’ has value of 0 it is impossible to

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

 } return is;
}

std::ostream &operator<<(std::ostream &os,
 meal const m)
{
 for (auto p : names)
 {
 if (p.value == m)
 os << p.name;
 }
 return os;
}

// Type-safe operations
constexpr meal operator+(meal a, meal b)
{
 return meal(int(a) + int(b));
}

meal operator+=(meal &a, meal b)
{
 a = a + b;
 return a;
}

constexpr meal operator|(meal a, meal b)
{
 return meal(int(a) | int(b));
}

constexpr meal operator&(meal a, meal b)
{
 return meal(int(a) & int(b));
}

// Check distinctness
static_assert((meal::breakfast | meal::lunch |
 meal::dinner) == (meal::breakfast +
 meal::lunch + meal::dinner), "not distinct");

Listing 1 (cont’d)
NOV 2017 | | 13{cvu}

distinguish between the one who wants breakfast and who doesn’t. That’s
because the expression
 (item.meals & m) == m
always evaluates to true for the value of breakfast (0). The following
change would fix the issue.
 enum class meal : int
 {
 breakfast=1, lunch=2, dinner=4,
 };
Further, the following method seems to need a little tweak,
 std::istream &operator>>(std::istream &is,
 meal &m)
It doesn’t seem to be setting the failbit of the is in case it doesn’t
identify the ‘valid’ input. I guess the following change fixes that. Correct
me, if I’m wrong.
 std::istream &operator>>(std::istream &is,
 meal &m)
 {
 std::string name;
 bool found = false;
 if (is >> name)
 {
 for (auto p : names)
 {
 if (p.name == name) {
 m = p.value;
 found = true;
 break;
 }
 }
 }
 if(!found)
 is.setstate(std::ios::failbit);
 return is;
 }

Nitpicking a little more, the file meal.h doesn’t look like a header though
it has the .h suffix, which isn’t such a good thing. It should be split into
two files named meal.h and meal.cpp. The file currently named
meals.cpp should be renamed to something else more meaningful,
probably attendee_meal_requirements.cpp.

Russel Winder <russel@winder.org.uk>
Having looked at the C++ code presented for Code Critique 107, my
reaction was WTF. After a moment to collect myself, I realised: C++ is
just totally the wrong language with which to attempt the problem as stated.
Thus I provide no answer to “Please can you help the programmer find his
bug” (*), and thus likely relinquish any possibility of winning this code
critique. However for “suggest some other possible problems with their
program.” I suggest: the single biggest problem with this code is that it is
written in C++.
Clearly I need to follow up on this conclusion with some positive and
constructive thoughts.
What language would be good for this problem? The answer is clearly (**)
Python (https://www.python.org). In rw_meals.py I provide a program
that answers the problem as set by “I”. Python has proper enums and sets,
so obviates the need for all the extra code to be found in the C++ files: “I”
had some good implementation ideas, but trying to realise them in C++ is,
well let us be kind and say non-trivial. Multiple calls of the C++ count
function are replaced by a single call of the Python reduce function from
the functools package (Python 3 is, of course, assumed here). The brevity
and clarity of the Python code mean that it is likely right just by
observation. However, given the test data:
 |> rw_meals.py
 Roger breakfast lunch
 John lunch dinner
 Peter dinner
 Total: 3, breakfast: 1, lunch: 2, dinner: 2
we discover the code actually does give the answer expected. Obviously
though this is but a single functional test, more tests, unit as well as
functional should be provided if the code is to go into service for more than
this one occasion.
Of course there will be people unwilling to accept this Python code as a
solution because it isn’t native code, or some other third rate excuse of this
sort. OK, I shall cope with this quasi-objection by providing a solution
using D (https://dlang.org). In rw_meals.d is code that is very similar
to the Python code, and produces the same result, the correct result:
 |> rdmd rw_meals.d
 Roger breakfast lunch
 John lunch dinner
 Peter dinner
 Total: 3, breakfast: 1, lunch: 2, dinner: 2
D doesn’t have a built in set type, nor does it have an explicit set type in
the standard library. The obvious (***) choices for implementing a set in
D are to use a Red-Black Tree (there is an implementation in the standard
library) or use an associative array (aka hash map, dictionary). In this case,
I have used an associative array with the value of each key being the same
as the key, which is about as close to a hash set as makes little difference.
I wonder what a good C++ code would look like? I am not sure I actually
care as I have Python and D versions that satisfy me. Use the right tool for
the right job as the saying goes.

Notes
(*) Let us assume “I” is actually a man, rather than this being bad phrasing
by the CVu team.
(**) Though obviously others will say Ruby, or Lisp, or… well anything
other than C++ really.
(***) To me, others may have a different view.

Source code follows
(Ed: reformatted slightly for publication.)

#include "meal.h"
#include <iostream>
#include <list>
struct attendee
{
 std::string name;
 meal meals; // set of meals
};

using attendees = std::list<attendee>;

attendees get_attendees(std::istream &is)
{
 attendees result;
 std::string line;
 while (std::getline(is, line))
 {
 std::istringstream iss(line);
 std::string name;
 iss >> name;
 meal meal, meals{};
 while (iss >> meal)
 meals += meal; // add in each meal
 if (is.fail())
 throw std::runtime_error("Input error");
 result.push_back({name, meals});
 }
 return result;
}

Lis
tin

g 2
14 | | NOV 2017{cvu}

https://www.python.org
https://dlang.org

---- rw_meals.py ----
#!/usr/bin/env python3

import enum
import functools
import sys

class Meal(enum.Enum):
 breakfast = 'breakfast'
 lunch = 'lunch'
 dinner = 'dinner'

def get_attenders():
 result = {}
 for line in sys.stdin.readlines():
 data = line.strip().split()
 result[data[0]] =\
 {Meal(x) for x in data[1:]}
 return result

if __name__ == '__main__':
 attenders = get_attenders()
 counts = functools.reduce(
 lambda t, x: [t[0] +\
 (1 if Meal.breakfast in x else 0),
 t[1] + (1 if Meal.lunch in x else 0),
 t[2] + (1 if Meal.dinner in x else 0)],
 attenders.values(),
 [0, 0, 0]
)
 print('Total: {}, breakfast: {}, lunch: {},\
 dinner: {}'.format(len(attenders),\
 *counts))

---- rw_meals.d ----
import std.algorithm: map, reduce;
import std.array: array, split;
import std.conv: to;
import std.stdio: lines, stdin, writefln,
 writeln;
import std.string: strip;

enum Meal: string {
 breakfast = "breakfast",
 lunch = "lunch",
 dinner = "dinner",
}
auto getAttenders() {
 Meal[Meal][string] people;
 foreach (string line; stdin.lines()) {
 auto data = line.strip().split();
 Meal[Meal] mealSet;
 foreach (item;
 data[1..$].map!(a => to!Meal(a))) {
 mealSet[item] = item;
 }
 people[data[0]] = mealSet;
 }
 return people;
}
void main() {
 auto attenders = getAttenders();
 auto counts = reduce!(
 (t, x) => [t[0] + ((Meal.breakfast in x) ?
 1 : 0),
 t[1] + ((Meal.lunch in x) ?
 1 : 0),
 t[2] + ((Meal.dinner in x) ?
 1 : 0)])(
 [0, 0, 0],
 attenders.byValue().array);

 writefln("Total: %d, breakfast: %d,"
 " lunch: %d, dinner: %d",
 attenders.length, counts[0], counts[1],
 counts[2]);
}

Jim Segrave <jes@j-e-s.net>
The basic problem with this program is that the enums being used have
the values breakfast: 0, lunch: 1 and dinner: 2. For every attendee, the test
to see if they want breakfast tests:
 if((item.meals & 0) == 0)
which will always be true, so everyone is listed as wanting breakfast. This
could be fixed by changing the enum definition to read:
 breakfast = 1, lunch = 2, dinner = 4,
That still leaves problems: if someone orders breakfast twice on one line,
they’ll get lunch instead, two lunches results in only dinner, etc. No error
report is generated.
If someone orders two dinners, they only get the default breakfast, as the
sum of two dinner enums is 4 and only 0, 1 and 2 are recognised in this
code.
If one of the input lines is duplicated, that attendee will be scheduled to
have two of each meal they’ve selected.
Invalid meal names are ignored, but not reported, which is probably not a
good idea.
If someone is attending but doesn’t choose any meal at all, with the current
code she still gets put down for breakfast, which is wrong, if the enum is
fixed, she’s not considered as attending and the number of attendees will
only be the number of people having a meal, which should be separate
counts.
Then there are style problems:
meal is a class, but it’s also the name of a variable, attendees is a class
and again, the name of a variable, resulting in lines such as:
 meal meal, meals{};
and
 auto attendees{ get_attendees(std::cin) };
These are syntactically valid, but make reading the code difficult.
While it’s valid to replace the body of main with a try{} catch{}
block, it is, to say the least, not idiomatic.
The code uses function-style casts, the widespread consensus among C++
developers is that these and C-style casts should be replaced with the C++
cast operator.
The fact that no less than 4 operator overloads are used to perform dubious
operations on enums (assigning the sum of two enums to an enum may be
correct, but more often is not. The fact that these overloads are needed for
handling enums should be a hint that an enum probably isn’t the right type
to use.)
Realistically, C++ isn’t the right language for a task like this, an ordinary
scripting language would be more appropriate (shorter, quicker to write,
easier to debug). There are still other lurking issues – the attendee names
and meal names are case-sensitive. While it would be easy to ensure that
the meal choices are handled caselessly, names are a different problem;
they may contain UTF characters or they may not be convertible between
lower and upper case (I believe that there is a variant of 'I’ in Turkish which
has no lower case). The program also doesn’t address names well in that
it isn’t designed to handle multi-word names (Gerrit Jan for example is
often taken as a first name, not a first and middle name). The sample input
uses first names only, for any sizeable list, the probability of a clash is not
insignificant.
These problems require a lot more design and specification before trying
to implement a real solution.
Nonetheless, I’ve re-written this in C++11 or later and addressed the earlier
problems I’ve noted with duplicated entries on the same line, misspelled
NOV 2017 | | 15{cvu}

meal names, attendees choices being spread over more than one line. As
a side benefit, it’s possible to get a list of all the attendees, whether they
are on a strict diet or not and, for each meal type, a list of who has chosen
that meal. The program can either receive the list of attendees and their
meal choices on stdin or read it from a file given as the sole argument to
the program.
The meal choices have been moved to an initializer list at the top of the
C++ file, simply adding another meal name to that list is sufficient to
enable it to be processed (note the commented out "high-tea" in the
initializer list).
I’ve attached the header file meal.h, the C++ code cc106.cpp, and a
somewhat larger sample input file cc106.input.
-- revised header file --
#pragma once
#include <fstream>
#include <initializer_list>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <map>
#include <string>
#include <vector>
class Meal_name {
 private:
 static int new_id;
 static int total_meals;
 int count;
 public:
 int const id;
 std::string const meal_name;
 Meal_name(const char * name);
 // return number of these meals needed
 int get_count() const { return count; }
 // return total number of meals
 // (all types)
 int get_total_meals() const {
 return total_meals; }
 // somebody wants one of these meals
 void incr() { ++count; ++total_meals;}
};
using Selection =
 std::pair<const std::string, int>;
using Attendee_map =
 std::map<const std::string, int>;
using Choice_vec =
 std::vector<Meal_name>;

ssize_t lookup_meal(const std::string & name,
 const Choice_vec & vec);

Selection parse_line(
 const std::string & input_line, int line_no,
 Attendee_map & attendees,
 const Choice_vec & vec);

void process_line(
 const std::string & input_line, int line_no,
 Attendee_map & attendees,
 Choice_vec & vec);

-- revised C++ code --
#include "meal.h"
// initializer list with the names of all the
// different meals attendees can choose
std::initializer_list<Meal_name> all_choices
{"breakfast", "lunch", "dinner",
 /* "high-tea", */ };
// ensure each Meal_name has an id which is a
// power of 2 (1, 2, 4, ...)

int Meal_name::new_id = 1;
Meal_name::Meal_name(const char * name)
: count(0),
 id(Meal_name::new_id), meal_name(name) {
 new_id *= 2;
}
int Meal_name::total_meals = 0;

// return index of meal 'name' in the vector
// or -1 if not found
ssize_t lookup_meal(const std::string & name,
 const Choice_vec & vec) {
 for(size_t i = 0; i < vec.size(); ++i) {
 if(vec[i].meal_name.compare(name) == 0) {
 return static_cast<ssize_t> (i);
 }
 }
 return -1;
}
// parse an input line, returning the attendee
// name (if any) and the bitwise
// or of the meals selected (blank lines will
// return this as zero)
Selection parse_line(
 const std::string & input_line, int line_no,
 Attendee_map & attendees,
 const Choice_vec & vec) {

 std::string name;
 std::istringstream is(input_line);
 // skip blank lines
 is >> name;
 if(name.size() == 0) {
 // skip blank lines
 return Selection{"", 0};
 }
 // ensure the name is registered if new
 attendees.emplace(name, 0);
 int choice = 0;
 std::string meal;
 // accumulate all errors for this input line
 std::ostringstream errs;
 while(is >> meal) {
 auto idx = lookup_meal(meal, vec);
 if(idx < 0) {
 errs << "\t\"" << meal <<
 "\" is not a valid name for a meal" <<
 std::endl;
 continue;
 }
 if((choice & vec[idx].id) != 0) {
 errs << "\t\"" << meal <<
 "\" appears more than once"
 " on this line" << std::endl;
 continue;
 }
 choice |= vec[idx].id;
 }
 // report if there were any problems on this
 // line
 if(errs.str().size() != 0) {
 std::cout << "Line " << line_no << ": "
 << input_line << std::endl;
 std::cout << errs.str();
 }
 return Selection(name, choice);
}
void process_line(
 const std::string & input_line, int line_no,
 Attendee_map & attendees, Choice_vec & vec) {
 Selection sel(parse_line(
16 | | NOV 2017{cvu}

 input_line, line_no, attendees, vec));
 const std::string & name = sel.first;
 int choice = sel.second;
 if(choice == 0) {
 // blank line or no meals ordered on this
 // line
 return;
 }
 // previously ordered meals
 int old_choice = attendees[name];
 // newly ordered meals
 int new_choice = ~old_choice & choice;
 int idx = 0;
 while(new_choice != 0) {
 if(new_choice & 1) {
 // update no. of these meals ordered,
 // total meals
 vec[idx].incr();
 }
 new_choice >>= 1;
 ++idx;
 }
 attendees[name] = choice | old_choice;
}
int main(int argc, char **argv) {
 // set up the possible meals
 Choice_vec meal_choices(all_choices);
 // a map to track attendees
 Attendee_map attendees;
 // use cin unless there's a CLI parameter
 // (file of input lines)
 std::istream *f = &std::cin;
 std::ifstream ifs;
 ifs.exceptions(std::ifstream::badbit |
 std::ifstream::failbit);
 try {
 if(argc > 1) {
 ifs.open(argv[1]);
 f = &ifs;
 }
 std::string line;
 int line_no = 0;
 while(std::getline(*f, line)) {
 process_line(line, ++line_no,
 attendees, meal_choices);
 if(ifs.eof()) {
 ifs.close();
 break;
 }
 }
 }
 catch (std::ios_base::failure &ex) {
 std::cerr << "File read error on " <<
 ((argc > 1) ? argv[1] : "standard input")
 << std::endl;
 exit(1);
 }
 std::cout << "\nAttendees: " <<
 attendees.size() << " Total meals: ";
 std::cout <<
 meal_choices[0].get_total_meals();
 for(auto meal : meal_choices) {
 std::cout << " " << meal.meal_name << ": "
 << meal.get_count();
 }
 std::cout << "\n\n" << std::setw(9) <<
 "Attendees" << ":";
 std::string separator = " ";
 for(auto participant: attendees) {
 std::cout << separator <<
 participant.first;

 separator = ", ";
 }
 for(auto meal: meal_choices) {
 std::cout << "\n\n" << std::setw(9) <<
 meal.meal_name << ":";
 int id = meal.id;
 separator = " ";
 for(auto participant: attendees) {
 if(participant.second & id) {
 std::cout << separator <<
 participant.first;
 separator = ", ";
 }
 }
 }
 std::cout << std::endl;

}
-- sample input --
 Roger breakfast lunch dinner
 John lunch dinner
 Peter dinner
 Dave

 Paul dinner lunch
 Mary dinner
 Sadie high-tea dinner
 Peter dinner lunch
 Dave

 Kevin breakfast lunch lunch
 Huey lunch
 Alvin

Felix Petriconi <felix@petriconi.net>
The main problem of the code is in the definition of the enum at the very
beginning:
 enum class meal : int
 {
 breakfast,
 lunch,
 dinner
 };
Later in the code the enum is used as a bit field, so the values were
combined with plus and or operators. But the enum values were not defined
as a bitfield. Per default the first enum is initialised with zero and the next
ones follow continuously. So the present code is equal to
 enum class meal : int
 {
 breakfast = 0,
 lunch = 1,
 dinner = 2
 };
So a combination of breakfast | lunch is equal to 0 | 1 which is
equal to 1. That means that the information of breakfast would be lost.
The bitfield should be corrected to
 enum class meal : int
 {
 breakfast = 1,
 lunch = 2,
 dinner = 4
 };
Further this should be improved:
The choice of enum class at the beginning is good. This C++11 feature
ensures that potential accidental conversions to an integer type will not
happen.
NOV 2017 | | 17{cvu}

The loop inside the following stream operator std::istream
&operator>>(std::istream &is, meal &m) should be changed
to
 for (const auto& p : names) {
 if (p.name == name)
 m = p.value;
 }
because the existing code would create a copy of p for every loop iteration,
which is a waste of resources. The same is valid for the loop inside the
std::ostream &operator<<(std::ostream &os, meal const
m) operator.
The operator
 constexpr meal operator+(meal a, meal b) {
 return meal(int(a) + int(b));
 }
tries to combine enumerated values but it may return values that are no
valid meal. So a dinner + lunch results into a 2+4 (or 1+2 in the original
code) None of the results is a valid meal value. So the operator should not
return a type of meal, but an int.
The same is true for the meal operator+=(meal &a, meal b).
So all operators would become:
 constexpr int operator+(meal a, meal b) {
 return int(a) + int(b);
 }
 int operator+=(int &a, meal b) {
 a = a + int(b);
 return a;
 }
 constexpr int operator|(meal a, meal b) {
 return int(a) | int(b);
 }
 constexpr int operator&(int a, meal b) {
 return a & int(b);
 }
The following static_assert is a great way to ensure that the bitfield
uses each enum value exclusively. Since I changed the results type of the
operators, the static_assert would have to be changed to
 static_assert((int(meal::breakfast) |
 int(meal::lunch) | int(meal::dinner)) ==
 (int(meal::breakfast) +
 int(meal::lunch) + int(meal::dinner)),
 "not distinct");
The problem of possible invalid enum values implies that the struct
 struct attendee
 {
 std::string name;
 meal meals; // set of meals
 };
should be changed to
 struct attendee
 {
 std::string name;
 int meals; // set of meals
 };
The type definition using attendees = std::list<attendee>;
s h o u l d be c h a n g e d t o using attendees =
std::vector<attendee>; because all non array like types have a
very bad cache locality. Sometime ago I read the good advice, that every
usage of a different container than array or vector should be explicitly
justified.
I had to change the get_attendees function on my Mac to
 attendees get_attendees(std::istream &is) {
 attendees result;
 std::string line;

 while (std::getline(is, line)) {
 std::istringstream iss(line);
 if (line.empty()) // new line
 return result; // new line

 std::string name;
 iss >> name;
 meal meal;
 int meals{};
 while (iss >> meal)
 meals += meal; // add in each meal
 if (is.fail())
 throw std::runtime_error("Input error");
 result.push_back({name, meals});
 }
 return result;
 }
Otherwise the while loop did not terminate.
Inside the while loop the variable meals is default initialised by using
{} to zero which is in the old code breakfast, even if the attendee might
not have breakfast. So I would extend the enum class with a none = 0
enumerated value so that a {} results in an initialised variable with no
value.
The function count
 size_t count(attendees a, meal m) {
 size_t result{};
 for (auto &item : a) {
 // Check 'm' present in meals
 if ((item.meals & m) == m)
 ++result;
 }
 return result;
 }
is written with the correct intention in mind. But it fails when the first
enumerated value has the implicit value of zero. The expression of
(time.meals & 0) == 0 is always true. This results in the described
failure of three breakfasts. Within this for loop I would change the type of
the loop variable from auto& to const auto&, because the function has
const semantics. As well there is no need to pass the attendees a
parameter by value. In this case const & would be better, so the
unnecessary copy of the complete container could be avoided. So the
improved version would look like:
 size_t count(const attendees& a, meal m) {
 size_t result{};
 for (const auto& item : a) {
 // Check 'm' present in meals
 if (static_cast<meal>(item.meals & m)
 == m)
 ++result;
 }
 return result;
 }
In a next step I would change the routine by using an STL algorithm,
because here a reduce is implemented by hand.
 size_t count(const attendees& a, meal m) {
 return std::accumulate(a.cbegin(), a.cend(),
 0,
 [m](std::size_t r, const auto& item) {
 return r + (((item.meals & m) != 0)
 ? 1 : 0);
 });
 }
The main function is a little bit unusual, because its body is the try–
catch block. So I would slightly change it to:
 int main() {
 try {
 auto attendees{get_attendees(std::cin)};
18 | | NOV 2017{cvu}

 std::cout << "Total: " << attendees.size()
 << '\n';
 for (auto m : {meal::breakfast,
 meal::lunch, meal::dinner}) {
 std::cout << ' ' << m << ": " <<
 count(attendees, m);
 }
 std::cout << '\n';
 return 0;
 }
 catch (const std::exception &ex) {
 std::cout << ex.what() << '\n';
 }
 return -1;
 }
So I recommend to add a newline at the end of the ‘Total’ line. From my
point of view that would improve the readability of the output. Initialising
the ranged based for loop per value is fine, because it is a loop over integral
values and there is no performance penalty compared to a const& value.
At the end of the output I would return in case of an overall success a zero
and in case of a failure a non-zero value. That is the common behaviour
of programs.

James Holland <james.holland@babcockinternational.com>
The student has recognised that the meal enumerations have to be distinct
and has had the foresight to construct a static_assert in an attempt
to enforce that condition. Unfortunately, there are two problems associated
with the student’s code. Firstly, not only do the enumerations have to be
unique, they have to contain one, and only one, bit position that has a value
of ‘1’. This is so that each bit position within the enumeration is associated
with a single meal type. The second problem is that the student’s
static_assert does not fully test for these conditions.
Making the meal enumerations fit the above requirements is simple; just
make each a successive integer power of 2. This gives the enumerations
breakfast, lunch and dinner the values of 1, 2 and 4 respectively.
Enforcing this at compile-time is a little more difficult, however.
The approach I have adopted is to count the number of ‘1’s in each
enumeration and to ensure it is equal to one. I have written a constexpr
function to do this. Then, to ensure each enumeration is unique, I ‘or’ all
the enumerations and compare the result with the number of enumerations
I am ‘or’ing, in this case, three. Thanks to constexpr, all this is done at
compile-time.
 // Count the number of 1 bits.
 constexpr size_t number_of_one_bits(
 const meal & m)
 {
 using meal_type =
 typename std::underlying_type_t<meal>;
 size_t number_of_ones = 0;
 for (size_t bit_position = 0;
 bit_position <= 8 * sizeof (meal_type);
 ++bit_position)
 {
 if (static_cast<meal_type>(m) &
 (1L << bit_position))
 {
 ++number_of_ones;
 }
 }
 return number_of_ones;
 }
 static_assert(
 number_of_one_bits(meal::breakfast) == 1 &&
 number_of_one_bits(meal::lunch) == 1 &&
 number_of_one_bits(meal::dinner) == 1 &&
 number_of_one_bits(meal::breakfast |
 meal::lunch | meal::dinner) == 3,
 "Meal enumerations are not distinct.");

Finally, I am not sure how the student intended to signal to the program
that all attendees’ meal requirements have been entered. I have amended
the software so that a blank line will bring things to a satisfactory close by
employing line.empty() as shown below.
 while (std::getline(is, line), !line.empty())

Jason Spencer <contact@jasonspencer.org>
The basic problem with the code is that the meal enum is being used as a
bit mask but actually expresses a bit position. Enum entries (scoped and
unscoped) are assigned values which increment by one from the previous
entry, starting from 0 for the first entry, unless the value is explicitly
specified. So in the code meal::breakfast has a value of 0 (0000b),
meal::lunch a value of 1 (0001b), and meal::dinner a value of 2
(0010b). I believe the intent of the programmer is to use the enum as a
bitmask where every enum value has a different single bit set, so in this
case the least significant bit (LSB) should signify breakfast, the second
LSB lunch and the third LSB dinner – the values of which should be 0001b,
0010b, 0100b. The simple solution would be to make the enum:
 enum class meal : int { breakfast = 1,
 lunch = 2, dinner = 4, };
or
 enum class meal : int { breakfast = 1 << 0,
 lunch = 1 << 1, dinner = 1 << 2, };
My preferred solution would be to keep the enum the way it is, consider
it a bit position rather than a bitmask, and wherever the meal bits are set
or tested use (1 << meal) instead of just meal.
But I’ll come back to the design later. There are other problems in the code,
in order of the listings:
meal.h:
 <iosfwd> should be <iostream> – the stream operators are

actually called on istreams and ostreams in the code, so we use more
than just forward declarations. Yes, sstream will include
iostream anyway, but it’s more robust to include iostream
directly if sstream is ever removed...

 <sstream> should be removed – no stringstreams are used in
this file.

 Don’t use a signed type for the enum underlying type – whether the
enum is a bit position, or a bit mask. You lose one bit for the sign,
and if you ever shift the bits you might run into trouble with sign
extension. Consider perhaps using an unsigned integer type with a
specific size e.g. uint16_t, uint32_t or uint64_t (from the
<cstdint> header) – this way it’ll be easier to read your intent
with respect to memory usage. And if the mask is ever stored in
another struct the issue of padding and storage can be more easily
addressed.

 Consider renaming the meal enum to meal_t – so then there’s no
confusion between the meal type and the instance (see my (1 <<
meal) sentence above).

 struct names[] should be const as it’s a lookup table which isn’t
expected to be changed. And if some code does change it, it may
break the enum to string search loops.

 the operator>>(istream,meal) overload:
 The range for loop doing a linear search should be const auto

& p : names instead of auto p : names to prevent an
unnecessary copy or an accidental overwrite of p.

 Currently, if the meal isn’t found in names then the word is still
consumed from the stream, without an error being set, or the
meal result variable being updated. The failbit must be set
on the istream when the meal isn’t found. This is done with
is.setstate(std::ios_base::failbit); Note that
setstate could also throw an exception at this point,
depending on prior calls to istream::exceptions(..).
NOV 2017 | | 19{cvu}

 Prefer using istream::sentry to trim whitespace from the
input stream and to skip processing if the input stream already
has the failbit set.
You might not be expecting whitespace, but you don’t know
where the operator>> overload will be used in future, so
don’t rely on it being stripped (although of course is >> name
should strip it for you anyway, so this isn’t a hard rule).

 the operator<<(ostream,meal) overload: Nothing is printed
if the meal isn’t found in names. Also, if multiple bits are set then
all recognised meals would be printed, but without a delimiter. If the
bit position is not found in names consider whether an exception
should be thrown, or the failbit set on the ostream, or whether
you just print the raw bitmask (as a binary string)? The const ref is
again missing from the range for loop search.

 operator+(meal,meal), operator|(meal,meal) and
operator&(meal,meal) would preferably have (const
meal, const meal) arguments since we’re not planning on
changing them.

 operator+=(meal & a, meal b) should return an lvalue, so
the return type should be meal & and not meal:
(meals+=lunch)+=dinner should be valid. The second arg,
meal b could be const meal b as we don’t expect to change it.

 In the enum manipulation functions (that is the overloads of +, +=,
|, &) – I’d strongly advise against hardcoding the int type into the
operation – consider

 meal(static_cast<
 std::underlying_type<meal>::type>(a)+...)

instead of meal(int(a)+...) – this way if you change the
enum’s underlying type your arithmetic won’t break and there’s
much less maintenance. C++14 has the slightly shorter
std::underlying_type_t<meal> over C++11’s
std::underlying_type<meal>::type.

 The static_assert test isn’t perfect – it wouldn’t catch the
enum values set to { breakfast = 0, lunch = 0, dinner = 0, }. There’s
also a question over what distinct means – unique values or no
overlapping set bits? This seems to test for no-overlapping bits, so
adding a fourth meal { breakfast, lunch, dinner, beer
} (i.e. as a bit position enum, and not the shifted bit mask enum)
would cause the assert to fail. There’s also no equivalent test that
::name in names[] are unique, although that might be overkill.
Some might argue the test of uniqueness in the enum is overkill.

meals.cpp:
 #include <string> and #include <sstream> are missing.

There’s no compilation error because they were already included in
meals.h, but if that ever changes (sstream should be dropped
from meals.h anyway), it’s best to include here.

 consider renaming attendee type to attendee_t to prevent
confusion with an instance.

 attendee::name could be const as there’s no obvious use case
for changing the name after the struct is created.

 in get_attendees(..):
 Perhaps consider a rename to better express that meals are also

read? Maybe read_attendees_meals? get usually implies
an accessor, not a stream reader.

 Regarding the initialisation of meal and meals in meal meal,
meals{};: the meal variable is uninitialised, while meals is
initialised to the default value, which should be 0. Perhaps
consider initialising to 0 explicitly, since that’s what we want in
an empty mask. If iss >> meal cannot find the meal in names
it won’t update the meal variable – and then meals will either be
corrupted by the uninitialised meal, or will have another meal
added of the value of the previously read meal (which

complicates things even more when you consider the next
point).

 The use of arithmetic add to add a meal in operator+= called
by meals += meal; would mean that adding two lunches
would become a single dinner (easy to do since we don’t test for
duplicates, or report errors). That’s wrong.

 std::istream &operator>>(std::istream &is, meal
&m) doesn’t set the istream’s fail bit if the meal isn’t recognised, so
get_attendees(std::istream &is) won’t catch unknown
meals. Worse still the meal variable in get_attendees is
uninitialised and may now not be set in the read, while still being
‘inserted’ into meals.
 There is no testing whether the read value for meal is already

set in meals.
 In main():
 The main function is a special case when it comes to return

values in that when there is no return statement an implicit
return 0; is added (3.6.1.5 of [1]). In the case of a function-
try-block when the function is main the compiler should do this
at the end of the try clause.
However, when reaching the end of the catch clause in the
function-try-block the behaviour is equivalent to a return with
no argument (15.3.14 of [1]), and therefore in this case the exit
code is undefined. An explicit return 1; statement should be
added to the end of the catch clause.

 Rename count(..) to count_meals(..) – a function
called ‘count’ could count anything, and could be confused with
std::count. By the way – count_meals could easily be
implemented with std::count_if:

 size_t count_meals(const attendees_t a,
 const meal m) {
 return std::count_if(std::begin(a),
 std::end(a), [m] (
 const attendees_t::value_type & item) {
 return (item.meals & m);
 });
 }

 when outputting the meals in the for range loop an
initialiser_list of enums is used – this is yet another
location to update if the enum list is ever changed. Unless a
specific order of meals output is required consider using the
enum values in names[]:

 for (const auto & mn : names)
 std::cout << ' ' << mn.name << ": "
 << count_meals (attendees, mn.value);
In terms of general design:
 If new meals are ever added to the meal enum in meal.h there are

four places that need to be updated – the enum, names, the
static_assert and the list in main. Consider grouping at least
the first three in the header file for easier updating.

 Consider changing the output text to say Number of guests: instead
of Total: as the latter could be interpreted as the total number of
meals.

 Consider moving the enum-to-string and string-to-enum mapping to
two new functions – it’ll make testing easier, the code will be self
documenting, error handling can be made cleaner and the code may
be reused elsewhere. These could be methods in attendee_t,
although ideally the responsibility would be put in a new meal_t
class alongside other helper functions and tests.

 in get_attendees(..) consider splitting the stream reading
from the input parsing – in the future the reading and parsing can
then change independently. Meals and attendees can also then be
parsed from a string, without having to create a stringstream
object.
20 | | NOV 2017{cvu}

 Although it’s syntactically sugary, I’d consider dropping the enum
+, +=, |, & overloads – since we’re going to the trouble of naming
the meals and having an enum for them, why confuse things by
using cryptic symbols to manipulate them? meals += meal might
be more intuitive than meals |= meal, but also possibly wrong.
And is the meal enum type (meal, singular) a valid place to hold
multiple meals (as the superposition of meals in a bitfield) ? The
merged value is no longer one of the listed enum tokens, and is that
conceptually still a meal?
Do we even need both operator| and operator+? If it’s just
used for the static_assert then do the addition there rather than
making a user think it’s valid for general use – an API is as much
about preventing users from doing things, as it is about facilitating
things.

I see four points for further investigation:

Information encoding
Do we need a bitmask? Yes, it’s very memory efficient, but it has a limited
and fixed number of available flags that are stored in it. If the meal names
are hard-coded into an enum each bit field must have a given meaning at
compile time. What if new meals are introduced, or the meals of multiple
days need encoding in the future? a re-write and re-compile is needed
(making sure to catch all four places that need the enum list needs to be
updated).
My preferred design is to take a list of meals on the command line, and
fo r each inpu t l i ne e i t he r pu t t h e mea l s a s s t r i ng s i n an
std::unordered_set, or an std::unordered_multiset (if in the
future you want to allow multiple instances of a meal), without a bitmask.
Or read the meal names as strings and directly increment a map like
std::unordered_map<std::string, size_t> meal_tally;
Alternatively, encode the meals (the valid values of which are again
specified on the command line) into a std::bitset (you’d need to
specify a compile time limit on the number of meal options) or a
std::vector<bool>. You have the meal names on the command line
so can easily map bit positions to and from meal names. The ordering of
meals on the command line can also specify the output ordering.
The drawback of dynamically specifying names is that if the bitmask is
ever serialised as an integer the bit position meanings must be encoded
separately.

Bitmask use
I would urge caution on using the enum type you’ve created to represent
multiple meals as a bitmask. Their superposition has a different meaning
to the original enums, and possibly has a conflicting absolute value. If you
do want to use bitmasks, and you want the bit meaning to be specified at
compile time as an enum, then use the enum as a bit position. Make it a
scoped enum with an underlying type that is an unsigned integer. Have a
typedef specifying an unsigned integer type which is called mealset_t
(for the actual bitmask), or use an std::bitset, since the latter will deal
with the bit positions and offsets for you. But don’t use the meal enum
type as a bitmask type, because you’d be killing the meaning.
To get an idea of how an enum bitmask could be implemented have a look
at 17.5.2.1.3 in [1].

enum management
C++ has very limited introspection, so you can’t at runtime convert an
enum entry into a string with the human-readable name, and you can’t
iterate over the enum values, nor even get the number of entries. Enums
are just a bunch of scoped, or unscoped, constants. You could, however
do things like:
 enum class meal_t : uint32_t { breakfast,
 lunch, dinner, leftovers, NUM_MEALS };
 const char * meal_names[] = { "breakfast",
 "lunch", "dinner", "leftovers" };
 static_assert(
 std::size(meal_names)==NUM_MEALS);

which is similar to what the student did with struct names[], but this
suffers from poor maintenance, so you could get a little hacky with
Boost.Preprocessor [2] and use the compiler pre-processor to automate the
code generation:
 #include <boost/preprocessor/seq/for_each.hpp>
 #define STRINGIFYADDCOMMA_(s) #s,
 #define STRINGIFY_ADD_COMMA(r, data, elem)\
 STRINGIFYADDCOMMA_(elem)
 #define COMMAIFY(r, data, elem) elem,
 #define PREFIX_COMMA(r, data, elem)\
 data::elem, using utype = uint32_t;

 #define MEALS_SEQ\
 (breakfast)(lunch)(dinner)(beer)(icecream)
 enum class meal_t : utype {
 BOOST_PP_SEQ_FOR_EACH(COMMAIFY, DUMMY,
 MEALS_SEQ)
 };
 constexpr meal_t allmeals [] = {
 BOOST_PP_SEQ_FOR_EACH(PREFIX_COMMA,
 meal_t, MEALS_SEQ)
 };
 const char * meal_names[]= {
 BOOST_PP_SEQ_FOR_EACH(STRINGIFY_ADD_COMMA,
 DUMMY, MEALS_SEQ)
 };
It’s somewhat of a mess, I know, and the code is a little difficult to read,
but to iterate over all meal enums you just iterate over allmeals, to map
names, use meal_names[] , to get number of meal types use
std::size(allmeals). And if you need to add new meals, you just
add them to MEALS_SEQ and the rest is automatically generated. In GCC
you an use the -E switch to see the output of the pre-processor.
Or you could just use a library like Better Enums [3].

iostream overloading
If you’ve overloaded a stream operator then there are a number of
expectations. The expectations are in regard to exception handling and
error reporting. As mentioned already the istream’s failbit must be
set if formatted input is expected and it is a different format. Further, the
streams and data must be left in a consistent state. Most formatted stream
overloads leave, on bad input, the stream with the failbit set, no update
of the variable, but possibly some characters taken from the input stream.
This is a basic exception guarantee, and a strong guarantee would be hard
or impossible to do with a stream (it may not be possible to roll back the
underlying buffer or look-ahead far enough). All the details are covered
in [4] and it is probably the go-to book for IOStreams – although the book
is a little dated, the principles are all there.
It’s a good exercise in stream use, but instead of the overloads I’d
recommend writing string to enum conversion functions and leave the I/O
to the enum user.
In terms of further reading, apart from what is already mentioned above,
[5] may be a useful reference to the state of streams (section 15.4) and
exception use (section 15.4.4), as well as sentry objects (section 15.5.4)
and std::bitset (section 12.5). In fact section 12.5.1 has an example
use of an enum to specify bit position in a bitset used as a bitmask.
Of course, you could also implement the whole thing about two orders of
magnitude faster in awk:
echo -e "Roger breakfast lunch\nJohn lunch
dinner\nPeter dinner" | awk
'{ for(i=2;i<=NF;++i) ++cnt[$i] } END { printf
"Guests: " NR; for (i in
cnt) printf " " i ": " cnt[i]; printf"\n"; }'
References
[1] Working Draft, Standard for Programming Language C++, n4296,

2014-11-19
[2] http://www.boost.org/doc/libs/release/libs/preprocessor/
[3] http://aantron.github.io/better-enums/
NOV 2017 | | 21{cvu}

http://www.boost.org/doc/libs/release/libs/preprocessor/
http://aantron.github.io/better-enums/

[4] Standard C++ IOStreams and Locales: Advanced Programmer’s
Guide and Reference by Angelika Langer and Klaus Kreft, Addison
Wesley, 1st edition (31 Jan. 2000), ISBN 0321585585

[5] The C++ Standard Library: A Tutorial and Reference 2nd Edition by
Nicolai M. Josuttis, Addison-Wesley, 25 May 2012 ISBN
0132977737

Commentary
The basic problem in the critique – that of using an enumeration to contain
a set of values – is one that crops up in various guises. I would suggest that
defining arithmetic operations on an enumeration is a category error.
While, as noted in some of the critiques, use of an enum is very efficient
in terms of data storage it does have some other issues with usability. I
suspect data storage is unlikely to be a serious problem for this program
so I would probably recommend using an alternative design.
It might be worth exploring std::bitset as this already provides the
logical operators, but the simplest design might just be to use a std::set
of enumeration values (or even of strings) unless and until performance or
memory use is a constraint.
Unfortunately, C++ does not provide any assistance with ensuring that
enumerated values used as a bitmask are ‘sane’ (each defines a single bit
with no overlaps). C# has an attribute (Flags) which at first sight looks
useful, but it does not affect nor check the values in the enum.
Another problem with bitmasks is that of the detection of the ‘no bits set’
case. I recall when Microsoft Windows added a new value to the bitmask
of file attributes, FILE_ATTRIBUTE_NORMAL, which is a simulated
attribute that is set when no other attributes are set. The intent was that the
‘no flags set’ case could be detected by checking for this ‘special’ bit, but
its existence caused a number of other problems and the need in some cases
to special-case this value.

The Winner of CC 107
All the critiques that engaged with the code identified the fundamental
problem with a bitmask value for breakfast of 0. Jason’s approach of
keeping the implicit assignment of enum values and using bit shifting
operations could a good way to proceed as it works with the flow of the
language idioms; I’d probably want to see the bit shifting encapsulated to
avoid confusion for the user.
While combining enumeration values with logical ‘or’ can produce values
that are not in the list of named values this is not a problem, syntactically
anyway, in C++ as the standard is careful to define the valid range of an
enumeration to include these unnamed values. The danger of converting
to the underlying type is that type safety is lost.
Jason’s point about the number of places to change if a new meal type were
added is a good teaching point to make to the author of the code. These
sort of hidden dependencies in code bases make changes significantly
harder, and learning to avoid creating them in the first place is good
practice.
I have a great deal of sympathy with Russel’s approach to the problem
(echoed by Jim as well) that this problem does not seem to be a natural fit
for the language used.
As Titus Winters pointed out in his keynote that this year’s CppCon, one
of the oddities of programming is that the lifetime of a program can vary
by many orders of magnitude. Efficiency (whatever that means) must
factor in the cost of writing and modifying the program; since the author
here states they are writing a program for a one-off event the time spent
developing the program is likely to significantly exceed the total time spent
executing it. Ease of development then becomes very significant. So I’m
not persuaded that using Boost.Preprocessor is a good solution to this
particular problem as I suspect that might increase development time!
I was unable to explain Felix’s problem with requiring a check on
line.empty() – perhaps someone more experienced with the internals
of the Mac C++ runtime can explain this? (The extra check does no harm
however, and may even make the intent clearer.)

Several people mentioned the need to take care when overloading
streaming operators to ensure the flags are set correctly, especially on
input. In many cases this happens incidentally, as a call inside the
implementation of the operator fails and sets the flags; this critique
demonstrates one of the cases where a fully fledged solution needs to
ensure the failbit is set manually on error.
Overall I am awarding Jason the prize for this critique as I thought he both
covered the presenting problems well but also gave some other good
suggestions for the author to improve their skill at programming.

Code Critique 108
(Submissions to scc@accu.org by Dec 1st)

I’ve got a problem with an extra colon being produced in the output from
a program. I’ve stripped down the files involved in the program a fair bit
to this smaller example. Here is what the program produces:

 test_program Example "With space"
 1:: 1001:Example
 2:: "1002:With space"

I can’t see where the two colons after each initial number come from as
I only ask for one.

Please can you help the programmer find the cause of their problem and
suggest some other possible things to consider about their program.
 Listing 3 contains record.h
 Listing 4 contains record.cpp
 Listing 5 contains escaped.h
 Listing 6 contains test_program.cpp

namespace util
{
 class Record {
 public:
 Record(uint64_t id,
 std::string value = {});
 std::string to_string() const;
 // other methods elided
 private:
 uint64_t const id;
 std::string value;
 };
 inline
 std::string to_string(Record const &r)
 {
 return r.to_string();
 }
}

Listing 3

#include <cstdint>
#include <sstream>
#include <string>

#include "record.h"

util::Record::Record(uint64_t id, std::string
value)
 : id(id), value(value) {}

std::string util::Record::to_string() const
{
 std::ostringstream oss;
 oss << id << ":" << value;
 return oss.str();
}

Listing 4
22 | | NOV 2017{cvu}

ANDY BALAAM
Andy Balaam is happy as long as he has a programming language and
a problem. He finds over time he has more and more of each. You can
find his many open source projects at artificialworlds.net or contact him
on andybalaam@artificialworlds.net

Planet Code
Andy Balaam introduces his blog aggregator.

ince 2011 I have been maintaining a blog aggregator ‘Planet Code’
[1] that collects together blogs by people interested in coding. Many
of the blogs that are aggregated are written by ACCU members, but

it’s not an official ACCU web site.
(By the way, I’d be happy to help set up an official one, or transform
Planet Code into one, if the ACCU committee wanted to do that.)
If you’d like to suggest a site to add to Planet Code, including your own,
or ask for a site to be removed (also including your own!) please drop me
an email on andybalaam@artificialworlds.net.
I’d also welcome feedback on the site redesign I published this month,
switching over to a WordPress platform instead of the static Venus system
I was using before. Hopefully. this makes the site more mobile-friendly,
readable, searchable and capable of aggregating feeds on modern HTTPS
servers. Please let me know how it could be improved.
If anyone would like to help administer the site, making it a little more
bus-proof, I’d like to hear from you.
If you’re wondering how decisions are made about what to include, it’s
done in an informal way at the moment, with all decisions being made by
me. If you’d like to raise any concerns with me, please get in touch.

I include feeds if:
 A significant proportion of their content covers programming

topics, especially those I judge to be of interest to ACCU members.
(This includes not too much blatant advertising!)

 They don’t contain material that promotes hate or prejudice, or
harasses or marginalises people and they don’t contain imagery or
language that would be unsuitable for children.

In most cases if I felt I needed to remove a feed I would contact its author
to discuss it. In urgent cases, though, I might remove the feed before
having that conversation.

Reference
[1] http://artificialworlds.net/planetcode/

S

Code Critique Competition 108 (continued)
You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

#pragma once
#include <string>

namespace util
{
 // provide 'escaped' textual representation
 // of value
 // - any double quotes need escaping with \
 // - wrap in double quotes if has any spaces
 template <typename T>
 std::string escaped_text(T t)
 {
 using namespace std;

 auto ret = to_string(t);
 for (std::size_t idx = 0;
 (idx = ret.find(idx, '"')) !=
 std::string::npos;
 idx += 2)
 {
 ret.insert(idx, "\\", 1);
 }
 if (ret.find(' ') != std::string::npos)
 {
 ret = '"' + ret + '"';
 }
 return ret;
 }
}

Lis
tin

g 5 #include <cstdint>
#include <iostream>
#include "record.h"
#include "escaped.h"

using namespace util;

template <typename K, typename V>
void output(K key, V value)
{
 std::cout << escaped_text(key) << ": "
 << escaped_text(value) << '\n';
}

int main(int argc, char **argv)
{
 static uint64_t first_id{1000};
 for (int idx = 1; idx != argc; ++idx)
 {
 Record r{++first_id, argv[idx]};
 output(idx, r);
 }
}

Listing 6
NOV 2017 | | 23{cvu}

http://accu.org/index.php/journal
http://artificialworlds.net/planetcode/

24 | | NOV 2017

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org
After last issue’s detour, I’m back to my usual,
chatty column. Let’s get started…

International Standards Development
Fund
At our September meeting, the committee voted
to award an ISDF grant of £500.00 to Mr Walter
Brown. Mr Brown was nominated for the grant
by Roger Orr, for his contributions to the ISO
C++ Standards effort. Mr Brown has recently
retired, and it is hoped that the grant will assist
his participation in future standards meetings.
Mr Brown reports that he has six or so papers
for consideration at the WG21 meeting in
Albuquerque in November.
ACCU’s ISDF is funded by contributions,
which are kept separate from our operating
accounts. Do you know someone who should be
considered for an ISDF grant? Forward your
nomination information to the committee – we
will consider the nomination at our next
scheduled committee meeting.

ACCU 2018
The next ACCU conference will be held in
Bristol, UK, from the 11th through the 14th of
April, 2018, with pre-conference workshops on
April 10th. The conference again will be held at
the Marriott City Centre, our home for the past
several years.
Conference Chair Russel Winder reports that
the proposal submission and review system is
being rewritten. Russel says:

If you fancy contributing to the usability
and/or efficacy of this Flask/
SQLAlchemy/Bootstrap3/Jinja2 system,
head over to github[…] [1] and get stuck
in. I have no budget for any paid work on
this, but if there is anyone who makes

outstanding contributions, I will certainly
blag [2] them a free ticket to ACCU 2018.

Russel also reports that
Austin Bingham has contributed his Elm-
implemented ACCU schedule Web
application. If anyone fancies working on
that then head over to github[…] [3]
and use the issues to debate ideas.

Web editing
Three of us on the committee have tried to take
up some of the responsibilities of the web editor
position. Meeting minutes are being posted.
We’ve been successful at posting the PDF
versions of the magazine, and have started
getting caught up on posting the HTML
versions. The by-author and by-article
bibliographies are next on the list to tackle,
followed by more regular updates of our social
media channels. The e-pub versions of C Vu and
Overload have been suspended until a new web
editor can be found.
If you are interested in becoming web editor,
please contact me at chair@accu.org.

History of ACCU
As I reported last issue, Matt Jones has been
spearheading an effort to reconstruct the history
of ACCU, concentrating on past committee
members and honorary members. Matt reports
that after an initial flurry of activity, incoming
updates have started to slow down. Hopefully
this means that we have fewer holes to fill in the
history.
If you have information you would like to share,
contact Matt at membership@accu.org.

Web site redesign
The committee discussed the idea of
redesigning our web site using a newer content
management platform. Currently the web site is
implemented using Xaraya, which hasn’t been

updated in several years. We are soliciting ideas
for a new platform, such as WordPress. If you
have experience with a content management
platform and would like to express your opinion
on its ‘-ilities’ [4], please send your comments
to accu-committee@accu.com.

References
[1] https://github.com/ACCUConf/

ACCUConf_Submission_Web_Applicati
on

[2] www.thefreedictionary.com blag – 1. to
obtain by wheedling or cadging: she
blagged free tickets from her mate.
My vocabulary is greatly expanded by
reading Russel’s emails.

[3] https://github.com/ACCUConf/
ACCUConf_Schedule_Web_Application

[4] ‘The 7 Software “-ilities” You Need To
Know’
{codesqueeze}
http://codesqueeze.com/the-7-software-
ilities-you-need-to-know/

Member news

Francis Glassborow contacted us with
some exciting news:

I have just learnt that Bjarne Stroustrup
has been awarded the 2017 Faraday
Medal. It is the Institute of Engineering and
Technology’s highest award and previous
recipients include such notable computer
scientists as Maurice Wilkes, Professor
Hoare, Roger Needham and, most
recently, Donald Knuth.”

Bjarne is receiving the award:

For significant contributions to the
history of computing, in particular
pioneering the C++ programming
language.

He is receiving it on 15th November.

Member news

http://codesqueeze.com/the-7-software-ilities-you-need-to-know/
http://codesqueeze.com/the-7-software-ilities-you-need-to-know/
https://github.com/ACCUConf/ACCUConf_Schedule_Web_Application
https://github.com/ACCUConf/ACCUConf_Schedule_Web_Application
https://github.com/ACCUConf/ACCUConf_Submission_Web_Application
https://github.com/ACCUConf/ACCUConf_Submission_Web_Application

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	2009-07-01 Care About Code - online.pdf
	Slide 1

	CVu29-5 Final #2.pdf
	Fiction
	Code Aesthetics
	On Share and Share Alike
	A Brief Introduction to Docker
	ACCU – The Early Days (Part 1)
	Good Intentions
	Old money, new money...
	Two Pence Worth
	Code Critique Competition 108
	Planet Code
	View from the Chair

