

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

SEP 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

The art of laziness
'm often moved to remark that being lazy, as a
programmer, can be a virtue. I see it as a
(rather trite, I admit) variation on the equally

clichéd adage that it’s better to work smarter
than to work harder. The goal of laziness is to
avoid the need to work harder at some point in
the future, rather than to evade working now. In
that respect, the distinction is very much like the
difference between tax avoidance and tax evasion,
although with less drastic consequences for
contravening the laws that apply.
A simple example of avoiding (unnecessary) work
would be to automate something that has to be repeated,
such as a software deployment script or even a build, if
they are tasks with several steps. It’s easy to make
mistakes when doing these things manually, partly
because they’re generally boring to do. Putting effort
in to creating a script that can be run with a simple
command-line (or a single click) saves time, effort
and possibly embarrassment later. For complex
tasks, the effort of automating can be significant, but
the payoff is commensurately large, because the
more complicated a thing is, the more opportunity there
is to get it wrong.
A simple example of evading work would be to copy
some code (say from the Internet) that does almost what you need right now, and then
to bang it with a hammer until it’s just right. A more subtle version would be to use
some freely available third-party library, without paying sufficient attention to how
active the code-base is, and without considering the burden of how and when
upgrades should be introduced, and the testing that goes with that. You might have to
fix any bugs you discover yourself, and even if you do not need to re-publish the fixes
you make, there is the added burden of merging changes back to your own version of
the code.
Doing something because it’s expedient might not necessarily be beneficial in the
long run. There is a fine line between convenience and imprudence. If you want to be
lazy, it’s worth making the effort to do it right.

I
Volume 29 Issue 4
September 2017

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Pete Cordell,
Francis Glassborow, Pete
Goodliffe, Baron M, Roger Orr

ACCU Chair
chair@accu.org

ACCU Secretary
Malcolm Noyes
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | SEP 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
10 Standards Report

Roger Orr reports
from the latest C++
meeting.

12 Code Critique Competition
107
The results from the
last competition and
details of the latest.

18 A New Competition
Francis Glassborow
presents a new
challenge.

19 Books
A visit to the
bookshelf.

REGULARS
20 Members

Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.5: 1st October 2017
C Vu 29.6: 1st December 2017

Overload 141:1st November 2017
Overload 141:1st January 2018

FEATURES
3 Navigating a Route

Pete Goodliffe helps us work with unfamiliar code.

5 Thonny: Python IDE for Beginners
Silas S. Brown introduces a new Python IDE.

6 Share and Share Alike
Baron M has learned another game.

7 A Glint of Ruby
Pete Cordell shares his experiences with learning a
new scripting language.

9 Why I Avoid PHP
Silas S. Brown shares a war story.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 106
Navigating a Route
Pete Goodliffe helps us work with unfamiliar code.

...the Investigation of difficult Things by
the Method of Analysis ought ever to
precede the Method of Composition.

~ Sir Isaac Newton

 new recruit joined my development team. Our project, whilst not
vast, was relatively large and contained a number of different areas.
There was a lot to learn before he could become effective. How

could he plot a route into the code? From a standing start, how could he
rapidly become productive?
It’s a common situation; one which we all face from time to time. If you
don’t, then you need to see more code and move on to new projects more
often. (It’s important not to get stale from working on one codebase with
one team forever.)
Coming into any large existing codebase is hard. You have to rapidly:
 Discover where to start looking at the code
 Work out what each section of the code does, and how it achieves it
 Gauge the quality of the code
 Work out how to navigate around the system
 Understand the coding idioms, so your changes will fit in

sympathetically
 Find the likely location of any functionality (and the consequent

bugs caused by it)
 Understand the relationship of the code to its important satellite

parts (e.g., its tests and documentation)
You need to learn this quickly, as you don’t want your first changes to be
too embarrassing, accidentally duplicate existing work, or break
something elsewhere.

A little help from my friends
My new colleague had a wonderful head start in this learning process. He
joined an office with people who already knew the code, who could
answer innumerable small questions about it, and point out where existing
functionality could be found. This kind of help is simply invaluable.
If you are able to work alongside someone already versed in the code, then
exploit this. Don’t be afraid to ask questions. If you can, take
opportunities to pair program and/or to get your changes reviewed.

Your best route into code is to be led by someone who already
knows the terrain. Don’t be afraid to ask for help!

If you can’t pester people nearby, don’t fear; there may still be helpful
people further afield. Look for online forums or mailing lists that contain
helpful information and helpful people. There is often a healthy
community that grows around popular open source projects.
The trick when asking for help is to always be polite, and to be grateful.
Ask sensible, appropriate questions. “Can you do my homework for me?”
is never going to get a good response. Always be prepared to help others
out with information in return.
Employ common sense: make sure that you’ve Googled for an answer to
your question first. It’s simple politeness to not ask foolish questions that
you could easily research yourself. You won’t endear yourself to anyone
if you continually ask basic questions and waste people’s precious time.
Like the boy who cried wolf and failed to get help when he really needed

it, a series of mind-numbingly dumb questions will make you less likely
to receive more complex help when you need it.

Look for clues
If you are rooting in the murky depths of a software system without a
personal guide, then you need to look for the clues that will orient you
around the code.
These are good indicators:
Ease of getting the source

How easy is it to obtain the source?
Is it a single, simple checkout from version control that can be
placed in any directory on your development machine? Or must you
check out multiple separate parts, and install them in specific
locations on your computer?
Hardcoded file paths are evil. They prohibit you from easily
building different versions of the code.

Healthy projects require a single checkout to obtain
the whole codebase, and the code can be placed in
any directory on your build machine. Do not rely on
multiple checkout steps, or code in hardcoded
locations.

As well as availability of the source code itself, consider availability
of information about the code’s health. Is there a CI (continuous
integration) build server that continually ensures that all parts of the
code build successfully? Are there published results of any
automated tests?

Ease of building the code
This can be very telling. If it’s hard to build the code, it’s often hard
to work with it.
Does the build depend on unusual tools that you’ll have to install?
(How up-to-date are those tools?)
How easy is it to build the code from scratch? Is there adequate and
simple documentation in the code itself? Does the code build
straight out of source control, or do you first have to manually
perform many small configuration tweaks before it will build?
Does one simple, single step build the entire system, or does it
require many individual build steps? Does the build process require
manual intervention? [1] Can you work on a small part of the code,
and only build that section, or must you rebuild the whole project
repeatedly to work on a small component?

A healthy build runs in one step, with no manual
intervention during the build process.

How is a release build made? Is it the same process as the
development builds, or do you have to follow a very different set of
steps?

A

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
SEP 2017 | | 3{cvu}

When the build runs, is it quiet? Or are there many, many warnings
that may obscure more insidious problems?

Tests
Look for tests: unit tests, integration tests, end-to-end tests, and the
like. Are there any? How much of the codebase is under test? Do the
tests run automatically, or do they require an additional build step?
How often are the tests run? How much coverage do they provide?
Do they appear appropriate and well constructed, or are there just a
few simple stubs to make it look like the code has test coverage?
There is an almost universal link here: code with a good suite of tests
is usually also well factored, well thought out, and well designed.
These tests act as a great route into the code under test, helping you
understand the code’s interface and usage patterns. It’s also a great
place from which to start working on a bugfix (you can start by
adding a simple, failing unit test—then fix that test, without
breaking the others).

File structure
Look at the directory structure. Does it match the code shape? Does
it clearly reveal the areas, subsystems, or layers of the code? Is it
neat? Are third-party libraries neatly separated from the project
code, or is it all messily intermingled?

Documentation
Look for the project documentation. Is there any? Is it well written?
Is it up-to-date? Perhaps the documentation is written in the code
itself using NDoc, Javadoc, Doxygen, or a similar system. How
comprehensive and up-to-date does this documentation appear?

Static analysis
Run tools over the code to determine the health and to plot out the
associations. There are some great source navigation tools available,
and Doxygen can also produce very usable class diagrams and
control flow diagrams.

Requirements
Are there any original project requirements documents or functional
specifications? (In my experience, these often tend to bear little
relation to the final product, but they are interesting historical
documents nonetheless.) Is there a project wiki where common
concepts are collected?

Project dependencies
Does the code use specific frameworks and third-party libraries?
How much information do you need to know about them? You can’t
learn every aspect of all of them initially, especially because some
libraries are huge (Boost, I’m looking at you). But it pays to get a
feel for what facilities are provided for you, and where you can look
for them.
Does the code make good use of the language’s standard library? Or
do many wheels get reinvented? Be wary of code with its own set of
custom collection classes or homegrown thread primitives. System-
supplied core code is more likely to be robust, well tested, and bug-
free.

Code quality
Browse through the code to get a feel for the quality. Observe the
amount and the quality of code comments. Is there much dead
code—redundant code commented out but left to rot? Is the coding
style consistent throughout?
It’s hard to draw a conclusive opinion from a brief investigation like
this, but you can quickly get a reasonable feel for a codebase from
some basic reading.

Architecture
By now you should be able to get a reasonable feel for the shape and
the modularisation of the system. Can you identify the main layers?
Are the layers cleanly separated, or are they all rather interwoven?
Is there a database layer? How sensible does it look? Can you see the

schema? Is it sane? How does the app talk to the outside world?
What is the GUI technology? The file I/O tech? The networking
tech?
Ideally, the architecture of a system is a top-level concept that you
learn before digging in too deeply. However, this is often not the
case, and you discover the real architecture as you delve into the
code.

Often the real architecture of a system differs from
the ideal design. Always trust the code, not the
documentation.

Perform software archaeology on any code that looks questionable.
Drill back through version control logs and ‘svn blame’ (or the
equivalent) to see the origin and evolution of some of the messes.
Try to get a feel for the number of people who worked on the code
in the past. How many of them are still on the team?

Learn by doing
A woman needs a man like a fish needs a bicycle.

~ Irina Dunn

You can read as many books as you like about the theory of riding a
bicycle. You can study bicycles, take them apart, reassemble them,
investigate the physics and engineering behind them. But you may as well
be learning to ride a fish. Until you get on a bicycle, put your feet on the
pedals and try to ride it for real, you’ll never advance. You’ll learn more
by falling off a few times than from days of reading about how to balance.
It’s the same with code.
Reading code will only get you so far. You can only really learn a
codebase by getting on it, by trying to ride it, by making mistakes and
falling off. Don’t let inactivity prevent you from moving on. Don’t erect
an intellectual barrier to prevent you from working on the code.
I’ve seen plenty of great programmers initially paralysed through their
own lack of confidence in their understanding.
Stuff that. Jump in. Boldly. Modify the code.

The best way to learn code is to modify it. Then learn from your
mistakes.

So what should you modify?
As you are learning the code, look for places where you can immediately
make a benefit, but that will minimise the chances you’ll break something
(or write embarrassing code).
Aim for anything that will take you around the system.

Low-hanging fruit
Try some simple, small things, like tracking down a minor bug that has a
very direct correlation to an event you can start hunting from (e.g., a GUI
activity). Start with a small, repeatable, low-risk fault report, rather than
a meaty intermittent nightmare.

Inspect the code
Run the codebase through some code validators (like Lint, Fortify,
Cppcheck, FxCop, ReSharper, or the like). Look to see if compiler
warnings have been disabled; re-enable them, and fix the messages. This
will teach you the code structure and give you a clue about the code
quality.
Fixing this kind of thing is often not tricky, but very worthwhile; a great
introduction. It often gets you around most of the code quickly. This kind
of nonfunctional code change teaches you how things fit together and
about what lives where. It gives you a great feel for the diligence of the
existing developers, and highlights which parts of the code are the most
worrisome and will require extra care.
4 | | SEP 2017{cvu}

Navigating a Route (continued)

Thonny: Python IDE for Beginners
Silas S. Brown introduces a new Python IDE.

hose of us following (or just occasionally checking) the Raspberry
Pi blog might be aware of the Raspberry Pi foundation’s recent
approval of Thonny (http://thonny.org) as a Python 3 IDE for

beginners, and for good reason. Not only is it a simple all-inclusive setup
for Python, a syntax-highlighting editor (with library-method completion)
and the Pip package manager (with a GUI front-end); it also includes a
variable inspector, ‘step over’ and ‘step into’ debugging, and a depiction
of how expressions are evaluated and which scope a variable applies to. I
don’t expect advanced programmers to need such things in Python, but I
expect they can indeed be useful to beginners, especially young ones, who
will also benefit from the philosophy of keeping a simple initial interface
(I know how bewildering it can feel to start an IDE that demonstrates all
its functions up-front, as if you’ve just walked up to an aeroplane’s
cockpit and don’t know where to start). I’m glad to see Thonny provided
by default on the Raspberry Pi, and it’s also an easy install on Windows,

Mac (including some older OS X versions) and GNU/Linux (a
downloader/installer shell script is provided that’s supposed to work on
any distribution).
It should be noted that Thonny is for Python 3 only; Python 2 is not
supported. A significant number of older Python texts assume Python 2,
and the version difference can confuse beginners (in hindsight it might
have been better if they’d called the new version Python Plus or
something). But if that’s not an issue, I’d recommend Thonny for
beginners any day.

T

SILAS S. BROWN
Silas is a partially-sighted Computer Science post-doc in Cambridge
who currently works in part-time assistant tuition. He has been an
ACCU member since 1994 and can be contacted at ssb22@cam.ac.uk
Study, then act
Study a small piece of code. Critique it. Determine if there are weak spots.
Refactor it. Mercilessly. Name variables correctly. Turn sprawling code
sections into smaller well-named functions.
A few such exercises will give you a good feel for how malleable the code
is and how yielding to fixes and modifications. (I’ve seen codebases that
really fought back against refactoring).
Be wary: writing code is easier than reading it. Many programmers, rather
than putting in the effort to read and understand existing code, prefer to
say “it’s ugly” and rewrite it. This certainly helps them get a deep
understanding of the code, but at the expense of lots of unnecessary code
churn, wasted time, and in all likelihood, new bugs.

Test first
Look at the tests. Work out how to add a new unit test, and how to add a
new test file to the suite. How do the tests get run?
A great trick is to try adding a single, one-line, failing test. Does the test
suite immediately fail? This smoke test proves that the tests are not
actively being ignored.
Do the tests serve to illustrate how each component works? Do they
illustrate the interface points well?

Housekeeping
Do some spit-and-polish on the user interface. Make some simple UI
improvements that don’t affect core functionality, but do make the app
more pleasant to use.
Tidy the source files: correct the directory hierarchy. Make it match the
organisation in the IDE or project files.

Document what you find
Does the code have any kind of top-level README documentation file
explaining how to start working on it? If not, create one and include the
things that you have learned so far.

Ask one of the more experienced programmers to review it. This will
show how correct your knowledge is, and also help future newbies.
As you gain understanding of the system, maintain a layer diagram of the
main sections of code. Keep it up-to-date as you learn. Do you discover
that the system is well layered, with clear interfaces between each layer
and no unnecessary coupling? Or do you find the sections of code are
needlessly interconnected? Look for ways of introducing interfaces to
bring about separation without changing the existing functionality.
If there are no architectural descriptions so far, yours can serve as the
documentation that will lead the new recruit into the system.

Conclusion
The more you exercise, the less pain you feel and the greater the benefit
you receive. Coding is no different. The more you work on new
codebases, the more you are able to pick up new code effectively.

Questions
 Do you often enter new codebases? Do you find it easy to work your

way around unfamiliar code? What are the common tools you use to
investigate a project? What tools can you add to this arsenal?

 Describe some strategies for adding new code to a system you don’t
understand fully yet. How can you put a firewall around the existing
code to protect it (and you)?

 How can you make code easier for a new recruit to understand?
What should you do now to improve the state of your current
project?

 Does the likely time you will spend working on the code in the
future affect the effort and manner in which you learn existing code?
Are you more likely to make a ‘quick and dirty’ fix to code that you
will no longer have to maintain, even though others will have to later
on? Is this appropriate?

Notes
[1] A single, automatic build step means your build can be placed into a

CI harness and run automatically.
SEP 2017 | | 5{cvu}

http://thonny.org

6 | | SEP 2017{cvu}

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

Share and Share Alike
Baron M has learned another game.

ir R----- my fine fellow! Come join me in
quenching this summer eve’s thirst with a
tankard of cold ale! Might I presume that

your thirst for wager is as pressing as that for
refreshment?
I am gladdened to hear it Sir! Gladdened to hear
it indeed!
This day’s sweltering heat has put me in mind of
the time that I found myself temporarily
misplaced in the great Caloris rainforest on
Mercury. I had been escorting the Velikovsky
expedition, which had secured the patronage of
the Russian Imperial court for its mission to
locate the source of the Amazon, and on one
particularly close evening our encampment was
attacked by a band of Salamanders which,
unlike their diminutive Earthly cousins, stood
some eight feet tall and wielded vicious looking
barbed spears.
Naturally, I leapt into action, dispatching two of
their number with my trusty rapier ere they
realised that I was there. The vigour with which
I prosecuted my attack sufficiently startled them
that they took to their heels and fled. I pursued
them some distance in their rout and, when I
eventually returned to the camp, found it quite
abandoned.
In my long search for my fellow explorers, I
chanced upon the very spring that was the
object of their quest, close to which was a small
village in which I determined that I should await
their arrival. The inhabitants were of a most
egalitarian disposition, happily dividing the

fruits of their labours between their neighbours;
the hunters their catch, the gatherers their
pickings and so on and so forth.
To instil this instinct to share and share alike in
the minds of their children they would play a
curious dice game with them, which I propose
that we employ for our wager.
Here I shall set two coins from my purse upon
the table to begin. You shall then cast this four
sided die and I shall add to those coins the
number that you throw. I shall then divide up
the pile of coins into as many piles of equal
numbers of coins as I may; if there were six I
should make of them three piles of two coins
apiece, if there were five then I could make just
one pile of five. Of these piles you may keep
one for the table and I shall have back the rest
for myself. We shall then start again with the
pile of coins left upon the table.
The game shall last sixteen such turns and cost
you a mere three coins and fifty cents to play.
When I told that loathsome student, whose
presence it seems that I am incapable of entirely
escaping, of the rules of this wager he paid them
no mind whatsoever but instead set to lamenting
that the path to his local market had been
chained off; why he should not think to take
another is quite beyond me!
But enough of his petty grumblings! Come refill
your tankard whilst you decide whether or not
this wager is to your taste!

Courtesy of www.thusspakeak.com

S

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

www.thusspakeak.com

A Glint of Ruby
Pete Cordell shares his experiences with

learning a new scripting language.

mainly program in C++. I also use C# for Windows GUI programming,
PHP for web work and a scripting language for odd tasks such as
analysing text files or running tests.

I have been using Perl in the scripting language role. However, even I had
to admit that that was getting long in the tooth and it would be good for
my skill set to move onto something more modern. The logical choice was
Python. I’ll admit that I never really got on with Python. The sorts of
things I wanted to do often seemed harder to do in Python than in Perl. But
Python seemed to be the way things should be done, so I decided to
persevere. Then, by chance, I got involved in a project with someone who
was using Ruby [1]. After an initial ‘whatever’, it has been love at first
sight ever since!
I tell you this to put the rest of the article into context. I’m not an
experienced Ruby programmer, and like an infatuated teenager, I may
well be blind to any warts the language might have.
There are many Ruby tutorials online, so I don’t intend to teach you Ruby
here. Instead, my aim is to help you recognise a Ruby program when you
see one, try to pique your interest in learning more about Ruby, and cover
a few things that might be intriguing to a C++ (and possibly Python)
programmer not familiar with Ruby.
You may already have Ruby on your system if you are using Linux. If not,
you should find a suitable download option at [2]. In addition to providing
the ability to run Ruby programs on your system, you should also find an
interactive Ruby shell called irb. This is very handy for experimenting
with Ruby, and you may wish to use it to play around with some of the
examples below (most of which you should find at [3]).

A contrived example
The obligatory “Hello, World!” program looks as follows in Ruby:
 puts "Hello, World!"
It’s always a good sign when a scripting language allows “Hello, World!”
to be a one-liner, but it doesn’t tell us much about the language. So, in the
spirit of feature creep, let’s look at Listing 1.
Working through the example, comments start with the # character and
continue to the end of the line.
Class names (i.e. Greeter) must begin with a capital letter, and, by
convention, use PascalCase.
Chunks of code (a ‘block’ has a special meaning in Ruby so I’m avoiding
its usage here) typically start with a keyword such as class, def, if,
while and continue until a matching end keyword.
Indenting is not particularly important in Ruby. The Ruby style guide
specifies two spaces per tab. I’m yet to get comfortable with that, but I’ve
adopted it here as it’s more idiomatic, and better for presentation in a print
publication.
The def keyword defines a method. Method names typically are all lower-
case and sub-words are underscore separated. The last character can also
be one of ?, ! or =. The initialize method is analogous to a constructor
in C++, and is called when a new instance of an object is created.
The scope of variables in Ruby is indicated by an optional prefixed
character. Without a prefix, a variable is local to the chunk it is defined in.
Variables prefixed by a single @ character have object instance scope.
Variables prefixed by @@ have class scope, similar to C++ static class
variables. Variables prefixed by $ are global. So, the line @who = who

translated to Python would look like self.who = who. Variables names
must begin with a lower-case letter or underscore, and, by convention, are
all lower-case with sub-words separated by underscores (e.g.
my_variable). (Constants on the other hand must start with an upper-
case letter, and are usually all upper-case along with underscore
separators, e.g. MY_CONSTANT.)
Moving onto the greet method, we get our first glimpse of how
minimalist and token free Ruby can be. There are no brackets around the
if clause and there is no delimiter such as then or : to explicitly mark
the end of the condition. One of the goals of the Ruby designer (Yukihiro
Matsumoto, or Matz to his friends) was to make programming faster and
easier. One aspect of this is to make the interpreter work harder in order
to make life for the programmer easier. Typically a Ruby expression ends
at the end of a line, unless there is some kind of binary operator, or a , to
suggest that there is more on the next line. Sometimes additional brackets
are needed for disambiguation (and semi-colons can be used to terminate
expressions), but the preferred Ruby style is to avoid them if possible.
This can take a bit of getting used to, but after a while the result looks
more narrative like than typical C++ programs.
The condition of the if expression shows that regular expressions have
first-class support in Ruby. Those with a Perl background will find this
syntax familiar.
The puts method call should be familiar to C++ programmers, although
you may be excused for having forgotten about it. puts prints its
arguments to standard output, followed by a newline sequence. If you
don’t want the newline characters, use print instead.

I

PETE CORDELL
Pete Cordell started with V = IR many decades ago and
has been slowly working up the stack ever since. Pete
runs his own company, selling tools to make using XML
in C++ easier. Pete can be reached at
accu@codalogic.com.

A class to say Hello
class Greeter
 def initialize(who)
 @who = who
 end
 def greet
 if @who =~ /^\s*PETE\s*$/i
 puts "Hello author"
 else
 named_greeting
 end
 end
 private def named_greeting
 puts "Hello #{@who}"
 end
end
greeter = Greeter.new "reader"
greeter.greet
Greeter.new(" Pete ").greet

Listing 1
SEP 2017 | | 7{cvu}

Moving to the else clause we have a call to the named_greeting
method. Unlike in Python, there is no need to prefix a call to another
method in the same object with self..
The named_greeting method definition itself is preceded by the
private method, showing Ruby gives you the ability to control access
to object methods. Note that private isn’t a keyword like in C++, but a
method call. There’s some Ruby subtlety here which is too detailed to go
into in this article. Suffice to say that the use of private on the same line
as a def will make only that method private (similar to Java and C#’s
usage), whereas private on its own line (a call to private with no
arguments) will make all following methods private (similar to C++’s
usage).
The puts line in named_greeting shows Ruby’s syntax for string
interpolation. Many scripting languages support string interpolation, but
Ruby takes this to the max. The code between the opening #{ and closing
} can be any expression and is not limited to just variables. It can include
operators, method calls, and even if statements. If the result of the
expression is not a string, then the interpreter will automatically convert
it to one.
The class definition described creates a runtime object called Greeter.
That object includes a method called new. When the new method is called
on the Greeter object, it creates a new object that conforms to the class
definition. It then calls the newly created object’s initialize method
with the arguments given in the new method call. Note again that there are
no brackets around the arguments to the new method call.
In the example, we assign a reference to the new object to the greeter
variable. Once we have a reference to an object instance, we can invoke
methods on it as shown by the expression greeter.greet.
As you might expect, Ruby is garbage collected so there’s no need to
clean up any objects that have been created.
Hopefully it won’t be a surprise to you that the output of the program is:
 Hello reader
 Hello author

Digging for gems
Now you hopefully have a feel for what a Ruby program looks like, let’s
have a closer look at a few things that might be intriguing to a programmer
who only knows C++, and things that are more unique to Ruby.

Objects everywhere
Everything in Ruby is an object. There are no primitive, machine word
level types such as char, int and float like you find in C++.
Consequently, you can call methods directly on explicit values such as
floating-point numbers. For example, 1.5.round evaluates to 2.
All classes are open to extension in Ruby and are similar to C# partial
classes. For example, you can augment the Float class with your own
methods (although this isn’t a recommendation to do it). The following
program outputs 4.5:
 class Float
 def triple
 3 * self
 end
 end
 puts 1.5.triple
It may look like the usage of puts above is a free-standing function. But
it is actually a member of the Object class from which all objects derive.
The other ‘fudge’ is that the outer-most level of execution takes place
within the scope of an automatically defined, but largely hidden, object
called main.

Types and what’s true
In addition to numbers, strings and the regular expressions already
mentioned, Ruby also supports arrays and hashes using the handy syntax

you’d expect from a scripting language. Additionally, Ruby has a range
type which captures a start value and an end value within a single object.
I’ll touch on ranges in a bit, but here’s some examples of the syntax for
these types:
 my_array = [1, 2, 3, "Four", 5]
 my_hash = { "author" => "Pete",
 "reader" => "you" }
 my_range = 0..10
Ruby will automatically convert between numbers of different types (for
example, integer to floating point number) as the operations require. But
unlike some languages, outside of string interpolation, it won’t
automatically convert to and from numerical types and strings.
As with Python, but not with Perl, Ruby has a Bignum type that can store
integers of any size. If integer operations get too big to fit within a native
machine sized integer, they will be transparently converted to a Bignum.
This is shown in the following code, where ** is the ‘to the power of’
operator, and the output is shown in the comments:
 puts 2**4 # 16
 puts (2**4).class # Fixnum
 puts 2**70 # 1180591620717411303424
 puts (2**70).class # Bignum
 puts (2**70/
 2**60).class # Fixnum
Then there is true, false and nil. nil is equivalent to C#’s null and
Python’s None. Only false and nil are treated as false in conditional
expressions. Everything else is treated as true, including 0, empty strings
and empty arrays. Those familiar with Python and Perl might find the
latter surprising, but it does seem to fit in with the language quite well. If
nothing else, it’s easy to remember!

The block
One of the more unique features of Ruby is the concept of a ‘block’.
Similar to lambdas, any method can be given a block which it can call
with a set of parameters, and receive a result back. The ‘block’ follows a
method call, and is either contained between opening and closing braces,
or the do and end keywords. The former syntax is typically used for one-
line (or even in-line) blocks, and the latter for multi-line blocks. The
arguments to the block are delimited by a pair of | pipe characters, and
the value of the last expression executed in the block is returned to the
calling method. For example, using the variables set up previously:
 my_array.each { |x| print "_#{x}" }
 puts # Put new line at end of above
 my_hash.each do |role, name|
 if role == "reader"
 puts "#{name}, Thanks for reading"
 end
 end
Outputs:
 _1_2_3_Four_5
 you, Thanks for reading
Blocks are not limited to iterating through arrays and hashes.
If the File.open method is given a block, it will close the opened file
on return from the block. As such, this usage scenario is similar to C#’s
using and Python’s with constructs.
In combination with suitable methods, blocks are often used as an
alternative to conventional counted for loops. In place of C++ like:
 for (int i=0; i<10; ++i)
 std::cout << "_" << i;
you can do any of these (wherein the last one is an example of the range
type I mentioned earlier):
 10.times { |x| print "_#{x}" }
 0.upto(9) { |x| print "_#{x}" }
 (0..9).each { |x| print "_#{x}" }
8 | | SEP 2017{cvu}

Blocks, and the fact that most methods return something ‘useful’, opens
up the way to a more functional coding style. Among many functional-
like methods, Ruby supports map, select and reduce on arrays. Using
these, if you wanted to know the sum of the odd squared numbers, for the
numbers 0 to 100, you could do:
 puts (0..100).map { |x| x * x }
 .select { |x| x.odd? }
 .reduce { |acc,x| acc + x }
Why Ruby uses select rather than the more traditional filter, I’m not
sure. If it bothers you, though, you can do class Array; alias
filter select; end and use filter in your code instead.
One thing that perhaps should be said here is that I haven’t been able to
see how to make an expression like the above ‘lazy’ in the same way that
Haskell does. Each method call creates a new array before the next
method acts on it, rather than just acting on iterators. This won’t cause
problems in many cases, but does prevent Haskell-like solutions of the
form ‘for all positive integers…’.

There’s more…
There’s much more to Ruby than I’ve been able to cover here. Ruby has
parallel assignment, slices, exceptions, threads and coroutines.
It also has an extensive library of third-party code in the form of
RubyGems [4], and a dependency management system called Bundler [5]
that ensures that the correct versions of the Gems are installed for your
program.

Finding out more
If you want to explore further, there are numerous Ruby tutorials on-line
(e.g. [6]). I have found The Ruby Programming Language book [7] to be
very good. This is a depth-first look at the language that assumes you
already know a bit about programming. It feels as close to a language

definition as you can get without having to be a language lawyer. The
Ruby documentation [8] is good, but I find it hard to navigate. Hence, I
tend to use Google as it’s front-end! Googling will also bring you to Stack
Overflow. Perhaps because Ruby is slightly less common than other
languages, the answers for Ruby seem to be of a higher quality than you
might find for other languages. The irb interactive Ruby shell is also a
fun way to poke around to test your understanding.

Conclusion
I hope I’ve given you enough to be able to recognise a Ruby program.
Possibly you’re now interested in finding out a little more information. I
can understand that some people might find the various naming
constraints difficult to get over, but in my case I had already adopted
similar rules, and so wasn’t bothered. My biggest gripe is that if your code
changes a constant, the Ruby interpreter will only generate a warning
rather than an error. I console myself that, for the sorts of things I use
Ruby for, I don’t need a lot of constants. Those wanting to make more
extensive use of Ruby might consider this more of an issue.
Overall, I’ve found code solving similar problems is simpler and clearer
in Ruby than in other languages. As such, it has exceeded my expectations
and I hope it will for you too.

References
[1] https://www.ruby-lang.org/en/
[2] https://www.ruby-lang.org/en/downloads/
[3] https://github.com/codalogic/accu-ruby
[4] https://www.ruby-lang.org/en/libraries/
[5] http://bundler.io/
[6] https://www.ruby-lang.org/en/documentation/
[7] Flanagan, D & Yukihiro Matsumoto, Y (2008), The Ruby

Programming Language, O’Reilly.
[8] http://ruby-doc.org/core-2.4.1/

A Glint of Ruby (continued)
Why I Avoid PHP
Silas S. Brown shares a war story.

eaders of the CVu ‘Members’ column will notice that for some time
ACCU has been seeking a volunteer to update a website that was
done in Xaraya, a PHP framework. This has reminded me of my own

(negative) experience of a project using the language. My experience has
made me wary of volunteering even though I have no reason to believe I
would encounter similar issues. I’m writing this, not to put anybody off,
but as a starting point for discussion. Is there something wrong with my
attitude? Have you had experiences – bad or good – with a language
outside its technical aspects that have affected your willingness to use it
again? (This article also has some relevance to Francis Glassborow’s
article in CVu 29.3, asking us to discuss other languages, although I fear
it’s not the type of response he wanted.)
I have some friends who started small businesses. One of them wanted a
website (with a database and various bits of business logic and so on), and
outsourced it to an offshore development company. They implemented it
using Laravel (a PHP framework). My friend then said they weren’t
happy with the result and needed it to be fixed in a week. And said could
they pay me to look at it, as I’m supposedly a good Computer Scientist
and PHP is supposedly an ‘easy’ language, so surely I could fix it in a
week, couldn’t I?
I said I’ll take a look. Someone at that company showed me some of the
source code on his laptop. It seemed to have meaningful variable names

and to be reasonably formatted, so I said it looks good so far, but I’ll need
to browse the whole thing myself. Could I sign an NDA they said. Which
I did (as, in my experience, if you have to sign a non-disclosure agreement
to see something, then the chances are it’s not going to be high-quality
enough for disclosure to be desirable in any case), and then they gave me
the root password to the virtual machine they were hosting it on.
So I started reading through it (I always like to look through any new
codebase, to see what’s where), and reading through it, and reading
through it, and.... And then I had the bright idea of doing a line count.
830,000 lines of PHP, 81,000 lines of CSS, and nearly 300,000 lines of
Javascript.
I was shocked. How could I even finish reading this thing on time, let
alone making changes? And how did a simple small-business website
become 1.2 million lines of code?
Well I could see how the CSS blew up. I thought ‘responsive Web design’
was supposed to mean using sensible CSS rules to specify how the
elements on a page are positioned with respect to one another, using

R

SILAS S. BROWN
Silas is a partially-sighted Computer Science post-doc in Cambridge
who currently works in part-time assistant tuition. He has been an
ACCU member since 1994 and can be contacted at ssb22@cam.ac.uk
SEP 2017 | | 9{cvu}

https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/downloads/
https://github.com/codalogic/accu-ruby
https://www.ruby-lang.org/en/libraries/
http://bundler.io/
https://www.ruby-lang.org/en/documentation/
http://ruby-doc.org/core-2.4.1/

Why I Avoid PHP (continued)

measurements relative to the font and screen size but without depending
on exact numbers of pixels. I didn’t think it meant ‘create 52 particular
screen sizes and apply a separate set of pixel-driven stylesheet rules to
each, with lots of duplicate code’. Oh and some of the CSS and Javascript
was ‘minimised’ (i.e. obfuscated) so it wasn’t at all easy to debug.
So the first thing I did was to disable 51 out of the 52 screen sizes, and
improve the remaining rules so that they worked properly without having
to special-case anything (I think that’s called ‘fluid design’). But then they
complained I was breaking more than I was fixing, and no wonder: there
was far too much coupling between the CSS, the Javascript, and the PHP;
I couldn’t just change something and expect nothing else to break.
I don’t know which version of Laravel they had used. It certainly wasn’t
the latest version, and the latest Laravel documentation didn’t help me. Of
course the company had no idea what the outsourcers had done, and the
outsourcers were no longer available for questioning. And nobody had
thought to save a copy of the documentation that corresponded to the old
version of Laravel in use, or at least make a note of which version that
was. Comments had been removed and things had been customised. And
the more I tried to make sense of the code, the less sense it made: I kept
finding components that seemed to be completely irrelevant. Does that
outsourcing team simply dump their entire code-base into every project,
switching parts of it on and off as necessary? And yet I couldn’t find any
obvious place I could use as a starting point to tell me which parts of the
code were actually relevant. Did they use some kind of front-end or IDE
to edit all this? I only had Emacs. They wouldn’t tell me what else to use.
When I voiced my complaints, their first reaction was ‘we do things
differently in our country’, as if I’m a bigot to say a design is bad when it
just happens to have been made in a different country. (Should I go out of
my way to find that country’s top designers and ask them to back me up?
Or find a few examples of bad design from my own country just to make
it even?)
“Why can’t you just change the layout?” they said. Surely it’s as simple
as that isn’t it: just change the layout. You’re a computer scientist,
remember? This should be easy for you.
I sent them the words of Rupert Gould, as portrayed by Jeremy Irons in
Charles Sturridge’s 1999/2000 television adaptation of Longitude, when
Gould was trying to restore John Harrison’s early prototype maritime
clock:

I’m going crazy! No don’t worry, not that crazy. It’s this machine. There’s
not a straight line in it. It’s layer upon layer of corrections, each one fitting
on top of the other. Whenever he came across a problem, instead of
going back to the beginning, he’d add another level of complexity.
Springs, working against levers, working against other springs and other
levers, it’s madness! This man is born of a refusal to be wrong! He

couldn’t just say “I’ve made a mistake”; he’d say, “I’ll add something else
and then it won’t BE a mistake.”

(If you want to find that scene, try looking just before the 30-minute mark,
but there might be differences between the original UK release and the
cut-down US one. I’d like to be able to show the clip on demand in any
conversation. I wonder if the scriptwriters realised how salient that scene
is for some software-development situations.)
Still they kept insisting that I was a good enough computer scientist to be
able to fix it easily. I was tempted to say “OK, I’m not really a computer
scientist, all my qualifications are fake” just to get out of that. I suggested
they let me re-write the whole thing from scratch to an internal design that
I can understand. They said I wouldn’t be able to do a rewrite in time. I
said that’s probably true, but the chances of being able to do a rewrite in
time are actually greater than the chances of being able to fix the original
in time. They didn’t buy it.
And then I realised I did actually have a trick up my sleeve. My Web
Adjuster! Never mind trying to fix the PHP: just bolt my Web Adjuster on
the front, and set it to make all the changes the company wanted as
regular-expression substitutions on the HTML and CSS going out to the
browser. Yes it would make me guilty of ‘adding another level of
complexity’ myself, but it would at least buy time and then I could suggest
a rewrite later.
But then I made the mistake of making certain substitutions global instead
of restricting them to particular pages, and that meant they had unwanted
side-effects across the rest of the site, reinforcing the idea that I was
creating more problems than I was solving. That would have been a
simple change to fix, but they said “forget it – we’ve had a meeting and
decided to abandon the launch, and we’re getting a UK company to
rewrite it in Wordpress”. They were nice enough to pay me something
anyway, although it was only about 35% of what they’d originally said. (I
said OK, although just to prove a point I did then put in the fix for that
‘last straw’ problem. Their style of management involved looking at ‘how
many pages you’ve got through so far’, which didn’t particularly help
them understand the concept of a global change.)
This has all left me with a rather bad impression of PHP. While I’m sure
it is indeed possible to write beautiful code in PHP, it seems the barrier to
entry is so low that much (perhaps most?) existing production PHP code
is bloated, badly-designed beginners’ ‘cruft’ that shouldn’t be anywhere
near a serious commercial business. That means there’s a high probability
that fixing an existing PHP project will be frustrating, and I certainly can’t
recommend the idea to students who want marketable experience, since I
wouldn’t wish a PHP career on my worst enemy. Perhaps Rasmus Lerdorf
could tell me why it’s not his language itself that’s the problem, but the
codebase? Just don’t go there.
Standards Report
Roger Orr reports from the latest C++ meeting.

ur usual correspondent, Jonathan Wakely, is an expectant father at
the time of writing and so I have offered to write a report instead.
The last C++ committee meeting was in Toronto in July and was, as

usual, a busy week. There were around 120 people present for the
meetings, which were held at the University of Toronto and also
sponsored by the Fields Institute, Waterfront International, Codeplay,
IBM, Google, and Christie Digital. Nine national bodies were
represented: Canada, Finland, France, Poland, Russia, Spain,
Switzerland, UK, and US.

The ISO voting on the draft International Standard for the 5th edition of
C++ (colloquially referred to as ‘C++17’) was still in progress during the
meeting – the voting period actually ends on Sept 3rd. All being well it isO
ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk
10 | | SEP 2017{cvu}

hoped that all the national bodies will vote ‘Yes’ and we’ll soon be able
to report that we do in fact have C++17.
In the meantime, work is progressing on the next edition of the standard
– provisionally named C++20. Somewhat to my surprise, we ended the
week by adding a sizeable feature to the next standard: the plenary session
voted by a large majority in support of a paper adding concepts into the
C++ working paper by merging in much of the Concepts Technical
Specification (TS). While this has been on the agenda for C++20 (after we
failed to achieve consensus for doing so in C++17) I was not expecting
this to happen so quickly – and with such a high level of support.
This vote had been preceded by a long discussion on Tuesday afternoon,
resulting in accepting a number of relatively minor changes to the existing
Concepts TS. These include:
 Overloading on constrained functions restricted to named concepts.

(The existing matching on the expressions used in the requires
clause was found to be problematic in some cases.)

 Adopting a single concept definition syntax. The new syntax moves
away from the alternatives in the TS of function template and
variable template syntax to a slightly simpler form, which looks like
a variable template but without the (unnecessary) specification of the
bool type. It is also a grammar term in its own right, which means
future enhancements to the syntax are possible without causing
interference with other types of template. A simple example of the
new syntax defining a concept for 'integer sized' types might be:

 template <typename T>
 concept int_sized = (sizeof(T) == sizeof(int));
This discussion in turn was followed by an evening session, hosted by the
Evolution working group, which primarily focussed on the so-called
‘abbreviated’ syntaxes, which have proved quite controversial. During
this session, two polls were taken about this specific issue. There was a
very small majority in favour of merging everything achieved so far into
the working paper and a strong majority (4:1) in favour of moving
everything except some of the abbreviated syntaxes into the working
paper. This does not preclude adding abbreviated syntax later – there was
almost unanimous support for encouraging further work on this.
Andrew Sutton (the Concepts project editor) and Richard Smith (the C++
standard project editor) worked extremely hard – and accurately – to
produce draft wording for this merge for the Core working group to start
reviewing after lunch on Wednesday. We spent most of two days in CWG
on wording review of the paper and also made a few small drive-by fixes
of the wording and completed the review in time for a vote on the paper
[1] on Saturday.
So, what have we got? Given a concept, such as int_sized above, we
can write:
 template <typename T> requires
 int_sized<T> bool foo(T t);
or, equivalently, we can write this as:
 template <int_sized T> bool foo(T t);
The function foo will only be visible in the overload set when the
constraint is satisfied: in this case sizeof(T) == sizeof(int).
The Concepts TS provides for two additional syntaxes that are as yet not
merged, they are the template introduction syntax:
 int_sized{T}
 bool foo(T t);
and the abbreviated function template syntax:
 bool foo(int_sized t);
Note that there are a variety of different terms being bandied about for
these two syntaxes: for this report, I’ve stayed with the terms used in the
TS itself.) The Ranges TS, which is based on the Concepts TS, does not
use either of these syntaxes in its specification so any decisions about
merging this into the working paper are not dependent upon making
progress with the abbreviated forms. (There are a couple of small edits
that will be needed before merging, but nothing major.)

This was probably the biggest news of the meeting, but there was a lot
going on with other technical specifications as well.
Three technical specifications are now completed, and will be moved to
publication once the final changes from the week are made and reviewed.
(So there is, at present, no final document to link to: for the latest working
papers see [2], [3] and [4].)
These are the Coroutine TS, the Ranges TS, and the Networking TS.
The Coroutines TS is based on work by Microsoft, with considerable
design input from the concurrency working group, and has recently also
been implemented on Clang trunk.
The Ranges TS is a ‘conceptised’ version of the STL algorithms, with
additional features included such as support for ranges (!) – that is, objects
with a begin iterator and an end – and support for projections to enable
on-the-fly data transformations. While specified in terms of the Concepts
TS, there is an experimental implementation without them [5].
The Networking TS is heavily based on Boost.Asio, so has a long track
record and much user experience. We’re now getting close to having a
standardised network library in C++, which will remove an
embarrassment in today’s connected world!
The intention is for experience to be gained with these three – both in
implementing them and also in using them. For example, Gor Nishanov
(the project editor for the Coroutine TS) is keen for someone other than
him to implement the Coroutine TS in a compiler to validate that the
wording is sufficiently precise. The wider the variety of compilers
offering each TS, and of users trying them out, the more sure we will be
that the design is ready to add into the main C++ standard.
Finally, the Modules TS is now ready for voting [6], and the various
national bodies will shortly receive the draft for review. I personally hope
we get the TS published soon, as this will give people a chance to work
on different implementations and experiment with using it. We can then
see what the benefits and difficulties really are and how much it delivers
of what has been anticipated!
Those who attended this year’s conference and enjoyed Herb Sutter’s
closing keynote may be interested to know that he presented a paper about
meta classes [7] at the Toronto meeting in an evening session. (Those who
missed the keynote can now watch the video – this was embargoed by
Herb until after the Toronto meeting [8].) There was a lot of interest in
Herb’s direction, and strong encouragement to address this level of
metaprogramming. I anticipate we’ll see further papers in this area, but it
will need other facilities – such as reflection – to be included in the
working paper before something like this could be considered for
inclusion.
The next WG21 meeting will be in Albuquerque, New Mexico, in
November. This is incidentally where the ACCU Chair Bob Schmidt
lives, so there might be opportunity for an informal ACCU get-together
sometime during the week.
I note that WG14, the C working group, is also meeting in Albuquerque;
it is the week before the C++ meeting. This is intended to make travel
arrangements simpler for the people who attend both meetings. They are
working on a C17 version (this will be a Technical Corrigendum, i.e.
containing fixes for bugs in the C11 standard) and also looking for a major
revision in the future.

References
[1] Wording Paper, C++ extensions for Concepts, http://wg21.link/

p0734
[2] Working Paper for the Coroutine TS: http://wg21.link/n4649
[3] Working Paper for the Ranges TS: http://wg21.link/n4671
[4] Working Paper for the Networking TS: http://wg21.link/n4656
[5] Experimental range library for C++11/14/17: https://github.com/

ericniebler/range-v3
[6] Modules PDTS: http://wg21.link/n4681
[7] Metaclasses: http://wg21.link/p0707
[8] https://www.youtube.com/watch?v=6nsyX37nsRs
SEP 2017 | | 11{cvu}

http://wg21.link/p0734
http://wg21.link/p0734
http://wg21.link/n4649
http://wg21.link/n4671
http://wg21.link/n4656
https://github.com/ericniebler/range-v3
https://github.com/ericniebler/range-v3
http://wg21.link/n4681
http://wg21.link/p0707
https://www.youtube.com/watch?v=6nsyX37nsRs

// A start of a basic date class in C++.
#pragma once

class Date
{
 int year;
 int month;
 int day;

public:
 void readDate();
 void printDate();
 void addDate(Date lhs, Date rhs);
 bool leapYear();
};

Lis
tin

g 1

Code Critique Competition 107
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I am learning some C++ by writing a simple date class. The code
compiles without warnings but I’ve made a mistake somewhere as the
test program doesn’t always produce what I expect.

 > testdate
 Enter start date (YYYY-MM-DD): 2017-06-01
 Enter adjustment (YYYY-MM-DD): 0000-01-30
 Adjusted Date: 2017-07-31
 >testdate
 Enter start date (YYYY-MM-DD): 2017-02-01
 Enter adjustment (YYYY-MM-DD): 0001-01-09
 Adjusted Date: 2018-03-10
 >testdate
 Enter start date (YYYY-MM-DD): 2017-03-04
 Enter adjustment (YYYY-MM-DD): 0001-00-30
 Adjusted Date: 2017-04-03

That last one ought to be 2018-04-04, but I can’t see what I’m doing
wrong.

Please can you help the programmer find his bug – and suggest some
possible improvements to the program!
 Listing 1 contains date.h
 Listing 2 contains date.cpp
 Listing 3 contains testdate.cpp

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include "date.h"
#include <iostream>
using namespace std;

// Read using YYYY-MM-DD format
void Date::readDate()
{
 cin >> year;
 cin.get();
 cin >> month;
 cin.get();
 cin >> day;
}
// Print using YYYY-MM-DD format
void Date::printDate()
{
 cout << "Date: " << year << '-' <<
 month/10 << month%10 << '-' <<
 day/10 << day %10;
}
void Date::addDate(Date lhs, Date rhs)
{
 year = lhs.year + rhs.year;
 month = lhs.month + rhs.month;
 day = lhs.day + rhs.day;
 // first pass at the day -- no months
 // are over 31 days
 if (day > 31)
 {
 day -= 31;
 month = month + 1;
 if (month > 12)
 {
 year += 1;
 month -= 12;
 }
 }
 // normalise the month
 if (month > 12)
 {
 year += 1;
 month -= 12;
 }
 // now check for the shorter months
 int days_in_month = 31;
 switch (month)
 {
 default: return; // done 31 earlier
 case 2: // Feb
 days_in_month = 28 + leapYear()?1:0;
 break;
 case 4: // Apr
 case 6: // Jun
 case 9: // Sep
 case 11: // Nov
 days_in_month = 30;
 }

Listing 2
12 | | SEP 2017{cvu}

Critique
Jason Spencer <contact+pih@jasonspencer.org>
I have to admit, I can’t reproduce the error. I get 2018-04-03 for the last
test. Perhaps if there was more information on OS, compiler and STL used
I could get 2017-04-03. I suspect this is Windows (the > command prompt)
and Visual Studio (the #pragma once directive is non-standard and used
there more often), but don’t have such a dev environment to hand right
now. Is it possible your build manager is using an old object file with
different date calculation logic? Or that you’ve compiled one file but
pasted a different file? (It happens to all of us.)
I get 2018-04-03 – the reason it is not 2018-04-04 is because your carry
logic in addDate adds 30 to 4, gets 34 and then subtracts 31 – the
remainder is 3, days_in_month is set to 30 in the switch statement
(month was earlier incremented to 4), but that’s more than the day, so
nothing else happens. There are coincidentally 31 days in March, so 2018-
04-03 is correct. If you’d added 0000-00-30 to a February date, you’d get
the wrong answer. If you were adding across a leap year, you’d also get
the wrong answer.
As to why you might get 2017 – I can’t see it – there’s no decrement in
the year and no pointer usage. Perhaps there is some garbled input from
the console when reading the adjustment date, and because there is no input
validation (of range, int parsing or delimiters) the date may be read as
year=0, month=1, day=0, ie the adjustment shifted to the right with the 30
left in the buffer (although that would return 2017-04-04 as the adjusted
date). This shouldn’t happen though – if there is garbage on the input, the
first int parse will set the fail flag on the stream and the later int parsings
will return with the variables unchanged (unchanged and therefore
uninitialised!).
To test what is being read, put a debugger breakpoint on readDate and
step through it while monitoring the values, or just print the year, month
and day values at the end of the function.

Taking the functions in order, I’d comment thusly:
 Date::readDate() should check whether the delimiters are

correct. Perhaps some bounds checking on the read day, month and
year. If you use the same class to also express a duration then this
becomes a problem (you might want to add 20 months, but that
would be an invalid date). '-' is not only a delimiter but a valid prefix
to a signed int and could be consumed by the int read, so check
bounds. "-1--1--1" is a valid date. Your code would also accept "a-
a-a", "abc", "a". There should be a test to see if the stream is valid at
the end of the function – to detect EOF, and use cin::fail() to
check if the integer has been correctly parsed.

 Date::printDate() should have a const suffix as it doesn’t
change the object [1]. Rather than print the 1s and 10s separately,
presumably to print "01" and not "1" for the first month, consider
setfill('0') and setw(2) stream manipulators from
<iomanip> instead.

 Date::addDate(Date lhs, Date rhs) is almost
impenetrable. Rather than implementing the number of days in a
month as logic in a switch statement, consider instead a look-up
table and also try to avoid magic numbers. Try to make your code as
self-documenting as possible. Also, you don’t need to pass the
objects by mutable (ie non-const) copy. You could try by const
reference: Date::addDate(const Date & lhs, const
Date & rhs), but then the compiler has to insert possibly
superfluous memory reads because lhs and rhs may be the same
object (see "pointer aliasing"), and may even be the current object
d1.addDate(d1,d1), which will probably corrupt the result.
Date::addDate(const Date lhs, const Date rhs), on
the other hand, will copy the Date objects on to the current stack
frame, and may elide (omit) the copy if it sees it’s unnecessary (see
‘copy elision’). It also means that when implementing addDate,
the compiler will complain if you accidentally write to lhs or rhs.
Do we need two arguments to the method? This function is actually
doing two things – addition and assignment. Perhaps
Date::addDate(const Date other)?
And your addDate logic assumes that the adjustment date is
positive – it might not be.

 Date::leapYear() should have a const suffix [1], but I’d also
propose a second version that is a static method, so that the
programmer can test whether a specific year is a leap year without
having to create a dummy Date object. The non-static method
should call the static method so you don’t repeat yourself (see ‘DRY
principle’) and keep the leap year logic in one place. Consider
renaming to isLeapYear() to make it obvious it is a test.

 In terms of general class design, you really should initialize the year,
month and day member ints in a default constructor,
Date::Date(): year(0), month(0), day(0) {}, as C++
doesn’t always default initialise built-in data types. In main(), try
printing d3 before the call to addDate to see what I mean.

So now the main problem with this code – a conceptual error. What does
it really mean to add two dates? Is the year you are adding 365 or 366 days
long? And in another situation, are the 7 months you want to add each 28,
29, 30 or 31 days long? And in what order do you add the year, month and
day? The order affects the result. I’d suggest the simplest way to remove
the ambiguity is not to add dates at all, but add a duration to a date.
If you want to program more defensively then you could create wrappers
for days, months and years before they are passed to Date methods:
class Days {
 int days;
public:
 explicit Days(int days): days(days) {}
 operator int() const { return days; }
};
Then you could create Date::add(const Days); and call
d1.add(Days(1000)) if you want to add 1000 days to d1. Do not allow

 if (day > days_in_month)
 {
 day -= days_in_month;
 month += 1;
 if (month > 12)
 {
 month -= 12;
 year += 1;
 }
 }
}
bool Date::leapYear()
{
 // Every four years, or every four centuries
 if (year % 100 == 0) return year % 400 == 0;
 else return year % 4 == 0;
}

Lis
tin

g 2
 (c

on
t’d

)

#include "date.h"
#include <iostream>
using std::cout;

int main()
{
 Date d1, d2, d3;
 cout << "Enter start date (YYYY-MM-DD): ";
 d1.readDate();
 cout << "Enter adjustment (YYYY-MM-DD): ";
 d2.readDate();
 // Add the two dates
 d3.addDate(d1, d2);
 cout << "Adjusted ";
 d3.printDate();
}

Lis
tin

g 3
SEP 2017 | | 13{cvu}

the addition of Date to Date. If you also create Months and Years
wrappers then you can have a Date::Date(const Years, const
Months, const Days) constructor which removes the confusion of
US vs ISO ordering:
 Date d1 (Years(2017), Months(3), Days(4))
The Days constructor is marked as explicit so that the compiler doesn’t
attempt to automatically convert between types.
I suppose you could also create an overloaded Date::add(const
Years) and do d1.add(Days(30)); d1.add(Years(1)); This
moves the responsibility of the ordering of the addition on to the Date
class user, but do still be very careful that you do the carry correctly. In
fact, perhaps reconsider whether storing three ints is the best way to
represent the date internally – you could store the number of days since a
fixed epoch (see ‘Unix time’, and the 2038 problem).
And rather than using program logic to determine how many days there
are in a month, why not try a lookup table stored in a static protected
member variable like:
 static const constexpr struct {
 char name [MONTH_NAME_MAXLEN+1];
 uint8_t days_nonleap_year;
 uint8_t days_leap_year;
 } MONTH_DETAILS [] = {
 { "Jan", 31, 31 },
 { "Feb", 28, 29 },
 { "Mar", 31, 31 },
 ...
 { "Nov", 30, 30 },
 { "Dec", 31, 31 },
 { "", 0, 0 }
 };
I’ve included a human readable month name for convenience. The struct
c o u l d a l s o b e b r o ke n ou t i n t o s e pa ra t e a r r a ys
(MONTH_NAMES[],DAYS_PER_MONTH_NON_LEAP_YEAR[],DAYS_
PER_MONTH_LEAP_YEAR[]) to simplify internationalisation.
Having this look up table will also allow you to check input data (in
readDate or equivalent) bounds more easily and uniformly across your
code. You could also create a function static:
 Date::numberOfDaysInMonth(int month)
so your class could be used as part of a calendar printer, for example.
To remove various magic values consider using:
 enum MONTHS { JAN, FEB, MAR, APR, MAY, JUN,
 JUL, AUG, SEP, OCT, NOV, DEC, LAST };
 static const constexpr int MONTHS_IN_YEAR = 12;
Beware of off-by-one errors when converting the enum to an int, though
(JAN above i s 0 , no t 1 , bu t wou l d a l l ow you t o do
MONTH_DETAILS[FEB].days_leap_year).
Another issue your code has is class design. The Date class should have
one responsibility – to store and manipulate dates, not to read or print them.
What if you want to read in a US date format, YYYY-DD-MM (an almost
related story can be found here [2]), or from a string or file?
readDate and printDate should be standalone functions outside of
Date, and then you can do readISODate (std::cin, d1) and
readUSDate (std::cin, d1).
Try to avoid repeating information in method names – instead of
d1.readDate(), why not d1.read()? Or declare a function outside
the class called std::istream& operator>> (std::istream &
input_stream, Date & read_date), so you can then do cin >>
d1.
In general have a look at Boost:Date [3], java.util.Date, and
std::chrono for design inspiration. And of course they’re already
known to be working, so use them, when you’re not doing this for
educational purposes.

In terms of class design, have a look at the books Clean Code [4], Code
Complete [5] and The Pragmatic Programmer [6]. All excellent books.

References
[1] https://isocpp.org/wiki/faq/const-correctness#const-member-fns
[2] See root cause here:

https://mars.jpl.nasa.gov/msp98/news/mco991110.html
[3] http://www.boost.org/doc/libs/1_61_0/doc/html/date_time.html
[4] Clean Code by Robert C. Martin, Prentice Hall, ISBN 0132350882
[5] Code Complete by Steve McConnell, Microsoft Press, ISBN

0735619670
[6] The Pragmatic Programmer by Andrew Hunt and David Thomas,

Addison Wesley, ISBN 020161622X

James Holland <james.holland@babcockinternational.com>
As with many student code examples, it is not entirely clear what the
sample code is meant to do. At first glance, it appears that an attempt is
being made to add two dates. This doesn’t really make sense. I assume what
is meant to happen is that the two values of years entered are to be added,
the two values of months are to be added and the two values of days are
to be added. If the total number of days is greater than the current month,
I assume the days and months are to be adjusted accordingly. If this results
in the number of months exceeding 12, the months and years are to be
adjusted. All this has to be performed while taking into account leap years.
Furthermore, can any value be entered for the adjustment year, month and
day?
The sample program output provided by the student adds to the confusion.
The first two runs are quite easy to work out in one’s head and agree with
my run of the student’s program. The third run is baffling. I do not
understand how the program can produce a year of 2017. When I run the
program I get 2018 as expected. According to my calculations, 30 days
from 4th March is 3rd April, regardless of the year. This value is in
agreement with the student’s printout and my running of the program. Why
the student insists the date should be the 4th of April, I cannot fathom.
Despite these peculiarities, let’s have a look at the software to see if there
is anything definitely wrong. When adding 38 days to 25th July 2017, for
example, the student’s program gives 2017-08-32 which is clearly not a
valid date. The problem is partly the order in which the student is
normalising the days and months, and partly because normalising is not
performed often enough and so not completely normalising the date. My
solution consists of three while-loops that ensure complete date
normalisation. I will not give further details as they are not specific to C++
and, as the student says, it is the writing of simple C++ classes that is of
immediate interest. I have provided a few embellishments to the student’s
Date class, described below, that may be of some value.
It is often desirable for programmer-defined objects to behave in a similar
way to built-in types. For example, it would be convenient to print the value
of a Date object by using << as the student does for text strings. This can
be achieved by defining the free function operator<<() that takes two
parameters; a reference to the output stream on which the value of Date
is to be written, and a reference to the Date object. The function prints
the value of year, month and day in a similar way to the student’s
printDate() member function. One difference is that I have chosen to
format the value of month and day using manipulators. In this way the
intent of the code is, I think, more clearly stated. Because operator<<()
needs access to the private members of the Date class, Date has to grant
operator<<() permission by declaring operator<<() as a friend.
Another way to make Date behave more like built-in types is to allow two
Date objects to be added using a simple + operator. This is achieved by
defining a class member operator+(). This function takes a reference
to the ‘right-hand side’ Date object as a single parameter and returns a
Date object that is the sum of the current object plus the one referenced
by the parameter. From the attached code, it can be seen that
operator+() returns a const value. This is to prevent statements such
as d1 + d2 = d3 from compiling, as is the case for built-in types.
14 | | SEP 2017{cvu}

Finally, I provide a copy constructor and a constructor taking a text string
as a parameter. The copy constructor is fairly standard and allows one
Date object to be constructed from another Date object. The constructor
taking a string may be considered somewhat unconventional but ensures
that the object is initialised and provides a convenient way of specifying
the text to prompt the user. Declaring a constructor prevents the compiler
from automatically generating a default constructor. This can be
considered a good thing in this case as it prevents the user from
constructing an uninitialised Date object.
Having defined the additional operators and constructors, Date objects
can be created and manipulated in a more natural way as shown in main()
of the supplied code.
 #include <iostream>
 #include <iomanip>
 using namespace std;
 class Date
 {
 int year;
 int month;
 int day;
 bool leap_year(int year) const
 {
 if (year % 100 == 0)
 return year % 400 == 0;
 return year % 4 == 0;
 }
 int days_in_month(int year, int month) const
 {
 switch (month)
 {
 case 2:
 return leap_year(year) ? 29 : 28;

 case 4: case 6: case 9: case 11:
 return 30;

 default:
 return 31;
 }
 }
 Date (int new_year, int new_month,
 int new_day)
 : year(new_year), month(new_month),
 day(new_day){}
 public:
 const Date operator+(const Date & rhs)
 {
 int year = this->year + rhs.year;
 int month = this->month + rhs.month;
 int day = this->day + rhs.day;
 while (month > 12)
 {
 month -= 12;
 ++year;
 }
 while (day > days_in_month(year, month))
 {
 day -= days_in_month(year, month);
 ++month;
 }
 while (month > 12)
 {
 month -= 12;
 ++year;
 }
 return {year, month, day};
 }
 Date(string request)
 {

 cout << request;
 cin >> year;
 cin.get();
 cin >> month;
 cin.get();
 cin >> day;
 }
 friend ostream & operator<<(ostream &,
 const Date &);
 };
 ostream & operator<<(ostream & os,
 const Date & d)
 {
 os << d.year << '-'
 << setw(2) << setfill('0') << d.month
 << '-'
 << setw(2) << setfill('0') << d.day;
 return os;
 }
 int main()
 {
 Date d1("Enter start date (YYYY-MM-DD): ");
 Date d2("Enter adjustment (YYYY-MM-DD): ");
 Date d3 = d1 + d2;
 cout << "Adjusted " << d3 << endl;
 }

Robert Lytton <robert@xmos.com>
It would be helpful to start the code review with first impressions.

1. This looks like something that could be found in a library;
2. The ‘WET’ principle is being used;
3. The algorithm used by addDate() is difficult to perceive;
4. class Date is easy to use incorrectly and has a twinge of

astonishment.
Let me unpack these impressions and hopefully find the bug in the process.

1. As this is a learning exercise, recreating a solution to a problem is an
interesting thing to do. This does not necessarily mean the writer
should not make use of lower level libraries during the exercise.
More of this later. It should be noted that the cost of not using
external libraries includes things such as maintenance & bug fixing;
fewer users and tests exercising the code; more tacit knowledge
required by people getting on board; Effort to get thing right – the
interface.

2. The ‘WET’ (‘Write Every Time’) principle can be seen in the code
that truncates months > 12 and increments the year. This
fragment is repeated three times during addDate().
‘WET’ code is bad for several reasons including:
a) an opportunity to raise the level of abstraction has probably been

missed;
b) there is more code to compile and to maintain;
c) if the copies diverge during maintenance, it may be a bug;
d) there is more code to read and thus hide the essential detail.
Instead of WET, the ‘Don’t Repeat Yourself’ (DRY) principle
should be followed. For addDate(), moving the repeated code into
a function may be the correct choice.

3. One of the reasons the addDate() algorithm is difficult to perceive
is the ‘WET’ code referred to in #2. Refactoring the functionality
into void normaliseMonth(int& month, int& year);
(taking the name from the comment and thus making the comment
redundant) makes is easier to follow the intention of the code.
Further refactoring could include adding the functions, both adding
clarity to the code but keeping to the original intention:
 void normaliseDay(int& day, int& month);
 int daysInMonth(int month);
SEP 2017 | | 15{cvu}

During such refactorings, the bug may become apparent, or just
vanish with the replacement code. Vanishing bugs are not good –
they may reappear. Also, we want to understand how the defect
happened so we can change our practises to avoid similar defects.
In this case, the bug was in the first block where if (day > 31)
reduces the day by 31 and increments the month. This is incorrect –
some months require normalising with values less than 31. Later
code normalises correctly, using days_in_month, but this can’t
fix the earlier mistake. Could this be a case of #2c above – the WET
normalise-day code being fixed in the 2nd but not the 1st
occurrence?
The aim of refactoring should be to turn ‘no obvious bugs’ into
‘obviously no bugs’ (paraphrasing Tony Hoare). In our case it
should be possible to reason with the refactored code and reorder,
reduce and simplify – an exercise for the reader.

4. Class design is more than a correct implementation, or even an
implementation that is ‘obviously correct’. Scott Meyers exhorts
“Make Interfaces Easy to Use Correctly and Hard to Use
Incorrectly” – let us explore this principle. The class interface
consists of the public elements: four methods plus six default
methods added by the compiler. The default copy-constructor,
move-constructor, copy-initialiser, move-initialiser and destructor
all handle the private member data as we would wish.
However:
a) The default constructor – does not initialise the member data. To

prevent undefined behaviour, the members need to be
initialised.
This may be done with default values in the declaration:

 int year=0;
 int month=0;
 int day=0;

or by reusing our readDate() method:
 void Date::Date() {readDate();}

or it may be better to specify a constructor that force the user to
pick a valid date instead:

 void Date::Date(int y, int m, int d):
 year{y}, month{m}, day{d} {}

N.B. the use of int for each parameter in this example makes
the constructor easy to misuse (wrong order) – see later.

b) readDate() – the implementation is coupled to std::cin
and is not robust. This coupling is hidden from users, is not
necessary and reduces usability. An alternative is to have a
stream passed in explicitly by the caller:

 void Date::readDate(std::istream& in);
Or use a non-member function (which calls a Date setter):

 std::istream& operator>>(std::istream& is,
 Date& d) {
 // read in the values and validate them!
 //...

As the comment suggests, the current version lacks error or
sanity checking of input values. Should day be set to 1000, the
class will not work as expected!
A bonus of using an istream is that we can using automated
unit tests rather than typing!

c) printData() – the implementation is coupled to std::cout
and is not const. The choices are similar to those of
readDate() but the preferred option is to add a print()
method:

 std::ostream& Date::print(std::ostream &out)
 const;

and a non-member function to call it:
 std::ostream& operator<<(std::ostream& os,

 const Date& d) {
 return d.print(os);
 }

It should also be noted that printing month and day don’t need
to use / & %.

d) addData() – does not follow the ‘principle of least
astonishment’. This astonishment could be lessened by turning
the method into a constructor. An alternative would be to do
what other classes do and overload +:

 Date& Date::operator+=(const Date &rhs) {
 year += rhs.year;
 //...
 }

and add a non-member function too:
 Date operator+(Date lhs, const Date& rhs) {
 lhs += rhs;
 return lhs;
 }

e) leapYear() – is not an essential part of the interface. This
should be removed from the interface by making it private. If it
is require later, it may be added at the cost of a recompilation –
thus following the ‘open close’ principle.

We could spend longer digging in deeper with issues such as:
 Constraining values within valid limits using unsigned, or enums;
 Using strong types for day, month, year rather than an int or weak

typedef;
 Checking values entering the class are valid – thus maintaining

invariants;
 Using lower-level abstractions to hold and manipulate state on

behalf of the class e.g. time_t & time.h or Boost::DateTime;
 White-box unit testing of normalisation paths & combinations of

paths;
 The true cost of a class.

But they are not first impressions.

Commentary
First off, an apology: I can’t explain the final result I posted in the original
critique. While I thought I’d copy-pasted it into the critique from a
command prompt, I obviously didn’t do this successfully because (a) I
cannot reproduce this result and (b) the result is in fact correct and does
not demonstrate the bug in the program. I apologise for the confusion this
error caused!
I haven’t a lot of commentary to add as I think the entries between them
cover pretty well all the ground; both the problems with the implementation
and the various higher-level issues with the design of the class.
While it was mentioned that you don’t need to split the month and day into
tens + units to ensure they print correctly, with standard iostreams it is quite
painful as you need to:
 save the current state of the fill character and set it to '0'
 set the width to 2 (for each field)
 restore the fill character (avoids future surprises with the ostream...).

For example:
 // Print using YYYY-MM-DD format
 void Date::printDate()
 {
 auto orig(cout.fill('0'));
 cout << "Date: " << year << '-' <<
 std::setw(2) << month << '-' <<
 std::setw(2) << day;
 cout.fill(orig);
 }
It is arguable whether this is better than the original.
16 | | SEP 2017{cvu}

The Winner of CC 106
All three entrants did a good job of explaining the problem with the class
and suggesting improvements. Pointing out ways in which the design
differs from the usual C++ idioms for value types would be particularly
useful given the context of someone trying to get more familiar with C++.
On balance, I think Jason’s critique was overall the best one, so I have
awarded him this month’s prize.

Code Critique 106
(Submissions to scc@accu.org by Oct 1st)

I want to collect the meals needed for attendees for a one-day event so
I’m reading lines of text with the name and a list of the meals needed,
and then writing the totals. However, the totals are wrong – but I can’t
see why:

 > meals
 Roger breakfast lunch
 John lunch dinner
 Peter dinner

 Total: 3 breakfast: 3 lunch: 2 dinner: 2

There should only be 1 breakfast, not 3!

Please can you help the programmer find the bug – and suggest some
possible improvements to the program!
 Listing 4 contains meal.h
 Listing 5 contains meals.cpp

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

#pragma once
#include <iosfwd>
#include <sstream>
#include <string>
enum class meal : int
{
 breakfast, lunch, dinner,
};
// Used for name <=> value conversion
struct
{
 meal value;
 std::string name;
} names[] =
{
 { meal::breakfast, "breakfast" },
 { meal::lunch, "lunch" },
 { meal::dinner, "dinner" },
};
std::istream &operator>>(std::istream &is,
 meal &m)
{
 std::string name;
 if (is >> name)
 {
 for (auto p : names)
 {
 if (p.name == name)
 m = p.value;
 }
 }
 return is;
}

Lis
tin

g 4

std::ostream &operator<<(std::ostream &os,
 meal const m)
{
 for (auto p : names)
 {
 if (p.value == m)
 os << p.name;
 }
 return os;
}
// Type-safe operations
constexpr meal operator+(meal a, meal b)
{
 return meal(int(a) + int(b));
}
meal operator+=(meal &a, meal b)
{
 a = a + b;
 return a;
}
constexpr meal operator|(meal a, meal b)
{
 return meal(int(a) | int(b));
}
constexpr meal operator&(meal a, meal b)
{
 return meal(int(a) & int(b));
}
// Check distinctness
static_assert((meal::breakfast | meal::lunch |
 meal::dinner) == (meal::breakfast +
 meal::lunch + meal::dinner), "not distinct");

Listing 4 (cont’d)

#include "meal.h"

#include <iostream>
#include <list>

struct attendee
{
 std::string name;
 meal meals; // set of meals
};

using attendees = std::list<attendee>;

attendees get_attendees(std::istream &is)
{
 attendees result;
 std::string line;
 while (std::getline(is, line))
 {
 std::istringstream iss(line);
 std::string name;
 iss >> name;
 meal meal, meals{};
 while (iss >> meal)
 meals += meal; // add in each meal
 if (is.fail())
 throw std::runtime_error("Input error");
 result.push_back({name, meals});
 }
 return result;
}

Listing 5
SEP 2017 | | 17{cvu}

http://accu.org/index.php/journal

Code Critique Competition 107 (continued)

A New Competition
Francis Glassborow presents a new challenge for CVu readers.

any years ago, when I was editor of CVu, I ran a number of
programming challenges. The most successful of these was to
design a deterministic sort algorithm (i.e. it must terminate so

looping through random shuffles and checking if the result was sorted did
not qualify). Some readers managed to come up with some truly
horrendous algorithms. I suppose that spending so much time working
hard to write good efficient and correct code makes the challenge of
writing bad, inefficient but correct code a relief.
I was reminded of this by one of the events at the recent ACCU conference
where teams clearly enjoyed the challenge of writing code that would
compile but with a serious number of constraints such as the twin
requirements to keep the character count low whilst including particular
keywords or tokens. Some of the entries were tours de force and I am not
sure of the adjudicator’s decision to rule against a piece of code that
compiled because of a bug in the compiler. To my mind that sort of thing
should get a bonus.
I thought that it might be fun to run some more coding challenges in CVu
and I hope that lots of you will take part (not only try the challenge but
submit your code to the editor).
I will aim to be imaginative and provide challenges that are nothing like
what you have to do in the day job. I do not promise to provide one for
every issue but I will do my best.

Challenge 1
Many years ago, a programmer wrote a piece of machine code that ran on
two different machines to do two entirely different things. The author had

spotted that a specific instruction was valid on both systems but on one it
was an unconditional jump and on the other it was effectively a harmless
instruction that could be ignored. So the first instruction of his program
was that and on one machine the code simply ran from the start; on the
other, it jumped to code that was valid on the other machine.
That leads me to your first programming challenge: write a program that
will compile both as C and as C++ but will do different things. To keep
things simple you need to use a GCC C and C++ compiler. The code must
compile for the current versions of C (11) and C++ (14).
The entries will be judged on two criteria.
 One (subjective): how different the output is for the C and C++

versions.
 Two: the ratio of instructions executed in the C version to the overall

number of instructions in the original source code. In other words
you should strive to have the maximum amount of commonality.

There is a further limitation in that you may only use standard header files.

M

FRANCIS GLASSBOROW
Since retiring from teaching, Francis has edited C Vu,
founded the ACCU conference and represented BSI at
the C and C++ ISO committees. He is the author of two
books: You Can Do It! and You Can Program in C++.
size_t count(attendees a, meal m)
{
 size_t result{};
 for (auto &item : a)
 {
 // Check 'm' present in meals
 if ((item.meals & m) == m)
 ++result;
 }
 return result;
}
int main()
try
{
 auto attendees{ get_attendees(std::cin) };
 std::cout << "Total: " << attendees.size();
 for (auto m : { meal::breakfast,
 meal::lunch, meal::dinner })
 {
 std::cout << ' ' << m << ": " <<
 count(attendees, m);
 }
 std::cout << '\n';
}
catch (std::exception &ex)
{
 std::cout << ex.what() << '\n';
}

Lis
tin

g 5
 (c

on
t’d

)

18 | | SEP 2017{cvu}

SEP 2017 | | 19{cvu}

Effective Ruby – Live
Lessons
by Sam Phippen, Peter J. Jones and
Scott Meyers, published by
Addison-Wesley Professional,
ISBN: 978-0-13-417537-9
Reviewed by Ian Bruntlett
If you are already familiar with Ruby, skip this
paragraph. The first thing you do regarding
Ruby is to visit www.ruby-lang.org/en/
documentation/ so you can play around with it
to see if it suits you. The first detailed book to
read about Ruby would have to be The Ruby
Programming Language by Flanagan and
Matsumoto, but this only covers Ruby 1.8 and
1.9. I figure that the Ruby language is changing
so much that books and videos are like booster
rockets. They can be used to get you off the
ground but, once in orbit, you find that you rely
on the main Ruby websites: www.ruby-
lang.org and ruby-doc.org/.
The bad news. The videos lack a detailed listing
of contents and time offsets of subsections.
Knowing which lesson is at which point in a
video file and how long that lesson is would
have saved me a lot of time. During the course
of this review, I have created a detailed contents
listing. The quality of the video footage of vim
being used to edit and run Ruby programmes
isn’t too good. For example the [] operator
looks like a square box when viewed in the first
chapter. It would have been helpful if the screen
was used more intelligently – in particular,
showing an example’s source code alongside its
output would have been particularly helpful.
Showing the filename of the example would
have made life easier as well (later examples do
show the filename and initial directory).
Ruby has more than its fair share of quirks. This
is where this set of videos comes in handy. It
complements the other books and websites
quite well but should be regarded as a booster
rocket.
These videos also rely on third party modules
for Ruby (colloquially known as ‘gems’).
You’ll be needing to be familiar with Gems and
how to install them. On Linux, the command
man gem will get you so far. Then you’ll need

to visit the website rubygems.org. When you
have downloaded the example code of these
lessons, there will be files ending in .rb –
they’re the examples and there will be a file
called Gemfile that lists the external
dependencies of the example files.
Another useful resource is ri. On Ubuntu
Linux, the ri command is installed along with
Ruby. However, the information pages for
Ruby are in a separate package, rubyn.n.doc,
where n.n are the major and minor version
numbers of the Ruby interpreter you are using.
The video files are O.K. – there are 5 of them
but it would have been very helpful if they’d
supplied an overview of their contents, along
with time offsets so that people could jump to a
particular point when needed.
One of the problems that happen when learning
a new programming language on your own is
that you don’t get to see production code or find
out about the ‘gotchas’ of the language you are
learning. From that point of view, these videos
are invaluable as it provides both.
I am still learning Ruby so, rather than relying
on my opinion of individual items, I’ll give a
brief overview of each lesson. All languages
have ‘gotchas’ and Ruby is no exception – these
videos point out some of Ruby’s gotchas.
Lesson 1 – Arrays and Hashes [38 minutes].
This is a reasonably gentle start and not too
long. I am not sure why ‘Arrays’ is in the lesson
title – as well as Hashes it covers preserving
object encapsulation, using Set instead
of Hash and an item on delegation that
is useful if you have a class with a hash
that you want to partially expose to the
users of your class.
Lesson 2 – Seams [37 minutes]. This
lesson deals with writing your code to
make refactoring easier, later on in life
when your system need improving.
Some things I slightly disagree with but
I cannot dispute the fact that the advice
provided here, used rationally, is really
important.
Lesson 3 – Testing [42 minutes]. I am
using these videos to expand my Ruby
knowledge and with this lesson I

haven’t typed in all the examples and tested
them. However, I found this lesson to be
particularly useful in showing to me lots of
things I wasn’t aware of. It answered some
unanswered questions that I had about how to
test Ruby applications.
Lesson 4 - Enumerables and Callables [1 hour
and 25 minutes]. This is a long lesson, but
important. Item 17 covers Enumerables and
Callables, noteworthy features of Ruby. As
mentioned earlier, you really need to read The
Ruby Programming Language and that is
especially true of this lesson. This lesson will
take you far further than the use of #each.
Lesson 5 – The Standard Library [34 minutes].
In general, it is best to use Ruby’s Standard
Library. It will have less bugs than handwritten
code and, if used wisely, will handle platform
specific quirks, and may offer better
performance. It covers the use of block forms to
avoid failing to close files when an exception is
raised, a little bit of Net::HTTP and describes
how to use the File module’s functions for
manipulating file and path names.
There is a web page on www.informit.com for
these videos – search for “effective ruby
livelessons” and you should find it. That page
will let you buy a digital download copy of the
lessons and has a link to the Ruby source code
files for the videos.
Now you have a reasonable idea of what this
video course offers. Have fun :)

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

www.ruby-lang.org
www.ruby-lang.org
ruby-doc.org/
www.informit.com
www.informit.com

20 | | SEP 2017

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Bob Schmidt
chair@accu.org
When I started as Chair last year, I took some
time to go back and reread the ‘Views’ of some
of my predecessors. One of the things I noticed
is that occasionally a Chair would take the time
to wax philosophical about a subject. So far, I
have taken a different approach. I have tried to
make my Views a chatty update on what’s
going on in the organization; to take the
opportunity to thank people for jobs well done;
and to ask for volunteers for one thing or
another.
This month I’m going to deviate from my well-
trod path, and attempt to emulate my
predecessors and talk about something about
which I have strong feelings.

On the value of mentoring
I recently hit another annual milestone in my
career, passing my 36th year as a professional.
As I am wont to do sometimes, I spent the
anniversary of the start of my first real job
thinking about the people with whom I worked
all those years ago, and invariably I take some
time to remember my mentor, Don Perkins.
Don was the lead software analyst on my first
projects. Among many other things, Don
guided me through my first really large scale,
reusable software project; gave me my first
opportunity to work with software that
interfaces with custom data-acquisition
hardware (which to this day remains my
favorite type of work); sent me out on my first
foray into solo field work; and gave my first
opportunity to schedule and run a project [1].
One of my more vivid memories of our time
working together occurred late in the afternoon
one day. We were working on a system that

used a different operating system than the one
to which I was accustomed, and I was having
trouble linking my program. I asked Don for
help. He gave me a quick answer, and when I
asked for details, he said to “just trust” him. I
said that I did trust him, but I didn’t completely
understand the answer and if I just trusted him
I’d never learn. Don took a deep breath, nodded
his head, and proceeded to fully explain the
answer he had given. We were both late leaving
the office that night.
I can’t recall Don ever hoarding information or
knowledge, unlike some of the people with
whom I’ve worked over the years. (There are
few things I hate more than being told I don’t
need to know the answer to a question I have
asked.) I’ve tried to emulate his example by
freely, and sometimes expansively, providing
help and transferring knowledge when asked.
Don also provided me with career advice from
time to time. I was young and not finished with
college when I started working for him; his
perspectives on work and professionalism were
invaluable.
I worked for Don for more than five years
before moving on to a different position with
the company. We continued to work together
intermittently until I left the company to move
to New Mexico, and he moved to California to
support the large project on which he was
working. I haven’t seen him for more than 20
years, although we have exchanged emails from
time to time.
Thanks, Don. If you didn’t already, I hope you
now realize how much of an impact your
mentoring and friendship had on me in my early
years.
One reason I’ve been thinking about mentoring
is ACCU’s emphasis on supporting
organizations like Code Club [2] and Hour of

Code [3]. Mentoring can take many forms; it is
not limited to the type of mentoring I received.
I encourage our membership to be a good
mentor: to a child, a teen, a college student, a
co-worker. The rewards are worth the effort.

History of ACCU
Matt Jones has been spearheading an effort to
reconstruct the history of ACCU, concentrating
on past committee members and honorary
members. If you have been a committee
member, or are an honorary member, please
contact Matt with details of your service to
ACCU (accumembership@accu.org). Dates of
service are particularly helpful.

Call for volunteers
As this is being written, the web editor position
has been vacant for more than a month. We are
actively seeking one or more people to take on
the responsibilities of the position. Until
someone steps into the role, web site updates
will be slower and less robust than they were
while Martin Moene was web editor. Martin has
indicated that the job takes about six hours a
month, concentrated after the magazine is
released. Please contact me if you are interested
(chair@accu.org).

Notes and references
[1] ‘A Scheduling Technique for Small

Software Projects and Teams’, Overload
123, October 2014, Page 123.
Don was the lead analyst on both of the
projects mentioned in this article, and is
listed in the acknowledgements.

[2] Code Club: www.codeclub.org.uk
[3] Hour of Code: https://hourofcode.com

Member news

www.codeclub.org.uk
https://hourofcode.com

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	2009-07-01 Care About Code - online.pdf
	Slide 1

	CVu29-4.pdf
	The art of laziness
	Navigating a Route
	Thonny: Python IDE for Beginners
	Share and Share Alike
	A Glint of Ruby
	Why I Avoid PHP
	Standards Report
	A New Competition
	Code Critique Competition 107
	View from the Chair

