

Start a free 30-day trial
jb.gg/cpp-accu

A Power Language
Needs Power Tools

ReSharper C++
Visual Studio Extension
for C++ developers

CLion
Cross-platform IDE
for C and C++ developers

AppCode
IDE for iOS
and OS X development

Smart editor
with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation
and navigation
Generate menu,
Find context usages,
Go to Symbol, and more

Reliable
refactorings
Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound
code analysis
On-the-fly analysis
with Quick-fixes & dozens
of smart checks

GET A C++ DEVELOPMENT TOOL
THAT YOU DESERVE

JAN 2017 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

No obvious deficiencies
dsger Dijkstra didn’t approve of the term ‘bug’
when talking or writing about code,
preferring instead the more brutal – and

honest – ‘error’. He was also an advocate of
being able to formally prove code correctness,
and famously spoke out against the unrestricted
use of the goto statement. Much of his writing
covered what was termed ‘The Software Crisis’,
coined in 1968 to describe the fact that
developments in computer hardware out-stripped
those in software, resulting in a programming industry
unable to produce software that could take advantage of
it reliably. The crisis was really about complexity. As
hardware became more capable, software had responded
by becoming more complex to the point that it could no
longer be understood by its creators. What Dijkstra,
Tony Hoare, and others, identified was that the solution
should be more simplicity.

Then they had a new crisis, because they knew they
had no idea how to achieve it. In 1999, Dijkstra told
the ACM Symposium on Applied Computing that
“we have to keep the design simple [...] but we do not
know how to reach simplicity in a systematic manner.” The
software industry as a whole is still struggling with this.
We have found ways to solve ever more difficult
problems, produce increasingly sophisticated systems, and have developed
techniques and practices that address some of the issues of the 1970s and 80s
regarding project management, software testing, parallelism and high-level
abstractions. In doing so, however, we have introduced new complexity.

We have become so successful at applying technology and computing that it appears
(to me, anyway) that we think we can apply it to anything. And we do so without
apparently much thought for the consequences. The Internet of Things is growing,
and already the lack of security in these devices is being called a Crisis. It is, at its
heart, a software problem, so it’s up to us – the programmers – to do something about
it. The Software Crisis of the 1970s/80s never ended, it just changed its stripes to
blend in.

E
Volume 28 Issue 6
January 2017

Editor
Steve Love
cvu@accu.org

Contributors
Baron M, Pete Goodliffe,
Paul Grenyer, Chris Oldwood,
Roger Orr, Sven Rosvall,
Emyr Williams

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JAN 2017

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
10 Kate Gregory: An Interview

Emyr Williams
returns with a new
interview from the
world of
programming.

12 Code Critique Competition
Competition 103 and
the answers to 102.

REGULARS
17 Book Reviews

The latest roundup
of book reviews.

19 Members
Information from the
Chair on ACCU’s
activities.

SUBMISSION DATES
C Vu 29.1: 1st February 2017
C Vu 29.2: 1st April 2017

Overload 138:1st March 2017
Overload 139:1st May 2017

FEATURES
3 Speak Up! (Part 2)

Pete Goodliffe talks to us about communication.

5 A Case of Mistaken Identity
Chris Oldwood puts values to the test

7 Turnabout is Fair Play
Baron M is still game for a wager.

8 How Do You Read?
Sven Rosvall shares his perspective on
electronic publications.

9 A Class What I Wrote
Paul Grenyer reduces the boilerplate with
simple abstraction.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer #102
Speak Up! (Part 2)
Pete Goodliffe talks to us about communication.

First learn the meaning of what you say, and then speak.
~ Epictetus

n the previous ‘Becoming a Better Programmer’ column I started to
look at how we, as programmers, communicate. We reminded
ourselves that code is communication, and considered how to improve

our communication in that medium.

Now, let’s look at the communication most people would expect us to
‘talk about’ – interpersonal communication. Programmers are never
solely confined to the act of writing code. We have to work with other
people: with other coders, with the wider development team (testers, UX,
managers), and even – shock horror – with the customer.

Interpersonal communication
We don’t just communicate by typing code. Programmers work in teams
with other programmers. And with the wider organisation.

There’s a lot of communication going on here. Because we’re doing this
all the time, high-quality programmers have to be high-quality
communicators. We write messages to speak with, even gesticulate at,
others all the time.

Ways to converse

There are many communication channels we use for conversations, most
notably:

 Talking face-to-face

 Talking on the phone, one-to-one

 Talking on the phone in a ‘conference call’

 Talking on VoIP channels (which isn’t necessarily different from
the phone, but is more likely to be hands-free and allow you to send
files over the same communication
channel)

 Email

 Instant messaging (e.g., typing in Skype,
on IRC channels, in chatrooms, or via
SMS)

 Videoconferencing

 Sending written letters via the physical
postal system (do you remember that quaint practice?)

 Fax (which has largely been replaced by scanners and common
sense; however, it still has a place in our comms pantheon because
it is regarded as useful for sending legally binding documents)

Each of these mechanisms is different, varying in the locations spanned,
the number of people involved at each end of the communication, the
facilities available and richness of interaction (can the other person hear
your tone of voice, or read your body language?), the typical duration,
required urgency and deferrability of a discussion, and the way a
conversation is started (e.g., does it need a meeting request to set up, or is
it acceptable to interrupt someone with no warning?).

They each have different etiquettes and conventions, and require different
skills to use effectively. It is important to select the correct
communication channel for the conversation you need to have. How
urgent is an answer? How many people should be involved?

Don’t send someone an email when you need an urgent answer; email can
sit ignored for days. Walk over to them, ring them, Skype them.

Conversely, don’t phone someone for a non-urgent issue. Their time is
precious, and your interruption will disrupt their flow, stopping them from
working on their current task.

When you next need to ask someone a question, consider whether you are
about to use the correct communication mechanism.

Master the different forms of communication. Use the
appropriate mechanism for each conversation.

Watch your language

As a project evolves, it gains its own dialect: a vocabulary of project and
domain-specific terms, and the prevalent idioms used to design or think
about the shape of the software design. We also settle on terminology for
the process used to work together (e.g., we talk about user stories, epics,
sprints).

Take care to use the right vocabulary with the right people.

Does your customer need to be forced to learn technical terms? Does your
CEO need to know about software development terminology?

Body language

You’d be upset if someone sat beside you, sparked up a conversation, but
spent the whole time facing in the opposite direction. (Or you could
pretend they were from a bad spy movie; I hear the gooseberries are doing
well this year...and so are the mangoes. [1])

If they pulled rude faces every time you spoke, you’d be offended. If they
played with a Rubik’s cube throughout the conversation you’d feel less

than valued.

I t i s easy to do exact ly th is when we
communicate electronically; to not fully
respect the person we’re talking with. On a
voice-only conversation, it’s easy to zone out,
read email, surf the Web, and not give someone
else your full attention.

Having fully embraced our modern, always-
connected, broadband age, I now default to selecting a video-on
communication channel. Often I’ll kick off a conversation that might have
been via phone or instant message with a VOIP video chat. Even if my
conversant will never enable their own video, I like to broadcast a picture
so that my face and body language are clearly visible.

This shows I’m not hiding anything, and fosters a more open
conversation.

A video chat forces you to concentrate on the conversation. It engages the
other person more strongly, and maintains focus.

Parallel communication

Your computer is having many conversations at once: talking to the
operating system, other programs, device drivers, and other computers.

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

As a project evolves, it
gains its own dialect: a

vocabulary of project and
domain-specific terms
JAN 2017 | | 3{cvu}

It’s really quite clever like that. We have to make sure that our code
communication with it is clear and won’t confuse matters whilst it’s
having conversations with other code.

That’s a powerful analogy to our interpersonal communication. With so
many communication channels available simultaneously, we could be
engaging in office banter, instant messaging a remote worker, and
exchanging SMSs with our partner, all whilst participating in several
email threads.

And then the telephone rings. Your whole tottering pile of communication
falls over.

How do you ensure that each of your conversations is
clear enough and well-structured so it won’t confuse
any other communication you’re concurrently
engaged in?

I’ve lost count of the number of times I’ve typed the
wrong response into the wrong Skype window and
confused someone. Fortunately, I’ve never revealed
company confidential information that way. Yet.

Effective communication requires focus.

Talking of teams
Communication is the oil that lubricates teamwork. It is simply
impossible to work with other people and not talk to them.

This, once more, underscores Conway’s law. Your code shapes itself
around the structure of your teams’ communications. The boundaries of
your teams and the effectiveness of their interactions shapes, and is
shaped by, the way they communicate.

Good communication fosters good code. The shape of your
communications will shape your code.

Healthy communication builds camaraderie, and makes your workplace
an enjoyable place to inhabit. Unhealthy communication rapidly breaks
trust and hinders teamwork. To avoid this, you must talk to people with
respect, trust, friendship, concern, no hidden motives, and a lack of
aggression.

Speak to others transparently, with a healthy attitude, to foster
effective teamwork.

Communication within a team must be free-flowing and frequent. It must
be normal to share information, and everyone’s voice must be heard.

If teams don’t talk frequently, if they fail to share their plans and designs,
then the inevitable consequences will be duplication of code and effort.
We’ll see conflicting designs in the codebase. There will be failures when
things are integrated.

Many processes encourage specific, structured communication with a set
cadence; the more frequent the better. Some teams have a weekly progress
meeting, but this really isn’t good enough. Short daily meetings are far
better (often run as scrums, or stand-up meetings). These meetings help
share progress, raise issues, and identify roadblocks without apportioning
blame. They make sure that everyone has a clear picture of the current
state of the project.

The trick with these meetings is to keep them short and to the point;
without care, they degrade into tedious rambling discussions of off-topic
issues. Keeping them running on-time is also important. Otherwise they
can become distractions that interrupt your flow.

Talking to the customer
There are many other people we must talk to in order to develop excellent
software. One of the most important conversations that we must hold is
with the customer.

We have to understand what the customer wants, otherwise we can’t build
it. So you have to ask them, and work in their language to determine their
requirements.

After you’ve asked them once, it’s vital to keep talking to them as you go
along to ensure that it’s still what they want, and that assumptions you

make match their expectations.

The only way to do this is in their language (not
yours), using plenty of examples that they understand
– for example , demos of the sys tem under
construction.

Other communication
And still, the programmer’s communication runs

deeper than all this. We don’t just write code, and we don’t just have
conversations. The programmer communicates in other ways; for
example, by writing documentation and specifications, publishing blog
articles, or writing for technical journals.

How many ways are you communicating as a programmer?

Conclusion
A good programmer is hallmarked by good communication skills.
Effective communication is:

 Clear

 Frequent

 Respectful

 Performed at the right levels

 Using the right medium

We must be mindful of this, and practise communication – we must seek
to constantly improve in written, verbal, and code communication. 

Questions
 How does personality type affect your communication skills? How

can an introverted programmer communicate most effectively?

 How formal or casual should our interactions be? Does this depend
on the communication medium?

 How do you keep colleagues abreast of your work without endlessly
bugging them about it?

 How does communication with a manager differ from
communication with a fellow coder?

 What kind of communication is important to ensure that a
development project runs successfully?

 How do you best communicate a code design? They say a picture
speaks a thousand words. Is this true?

 Do distributed teams need to interact and communicate more than
co-located teams?

 What are the most common barriers to effective communication?

Reference
[1] See the ‘Secret Service Dentists’ sketch from Monty Python’s Flying

Circus

Communication
within a team must
be free-flowing and

frequent
4 | | JAN 2017{cvu}

A Case of Mistaken Identity
Chris Oldwood puts values to the test.

recently unearthed a bug in some C# code where, superficially, the
cause appeared to be a single character, but on closer inspection it was
not entirely clear what the author’s intentions really were. This was

down to a number of factors, not least the lack of tests, but it got me
thinking about what those intentions might have been and what other
practices could have prevented it in the first place.

The bug
The line of failing code was a simple conditional statement that would
induce some error handling logic when true. My suspicion there was a bug
were immediately aroused when the tool reported an error code of ‘none’.
If you’ve ever seen a Windows application report an error with the text
‘The operation completed successfully’ then you’ll know what I’m talking
about. This was the statement:

 if (result != Error.None)
 {
 // report error
 }

Naturally I switched to the Error class definition to see what it looked
like. It was a pretty sparse class with None defined as a simple static
property alongside a couple of other static methods (see Listing 1).

Initially I didn’t spot the mistake, but I realised from the way the
conditional statement was behaving that it had to be something to do with
the object’s identity. The lack of an Equals() implementation meant it
would be using reference based equality, not value semantics, which
suggested that the two objects were not exactly the same object in
memory.

My gut instinct was that the return site was creating the object directly
instead of using the static property and so I was surprised when it was
correct, like so:

 return Error.None;

Scratching my head I went back to the Error class, studied it more
closely, and then I noticed the subtle mistake – the extra > in the property
definition. This static property, instead of creating a single instance of the
value when the class type is initialised, creates one every time it’s
invoked! This explains why the reference based comparison fails – it will
never be the same object in memory.

New syntax, new bugs
Prior to C# 6, the syntax for defining static properties was somewhat more
verbose. For example if you wanted to declare a static property backed by
a value, you would write:

 public static Error None
 = new Error(ErrorCode.None);

This creates a writeable property. If you wanted a read-only static
property you could use a custom getter like this:

 public static Error None {
 get { return new Error(ErrorCode.None); }
 }

With C# 6, however, came a simplified syntax especially for read-only
properties which either have automatic backing storage or are
implemented by an expression body. Hence, the former now becomes:

 public static Error None { get; } =
 new Error(ErrorCode.None);

…and the latter can be turned into just this:

 public static Error None =>
 new Error(ErrorCode.None);

These two forms together don’t look so similar but if you compare the
very first and last side-by-side you’ll see they are incredibly similar:

 public static Error None =
 new Error(ErrorCode.None);
 public static Error None =>
 new Error(ErrorCode.None);

The only difference between these two statements in fact is a single
character, the >, which turns the assignment operator into the lambda
arrow operator. Semantically, this changes a writeable static property
which has a value created at class initialisation, into a read-only static
property backed by an expression body that returns a new value every
time it’s invoked. As you can see these two are functionally very similar
but, as we’ve just seen from the bug, subtly different depending on the
value semantics of the enclosing type.

The fix, or is it?
The ‘obvious’ minimal fix from the calling code’s perspective is to
remove the extraneous > character from the property definition and ensure
that there is only one instance of None ever retrieved from it. With only a
single instance in play, a reference based equality comparison will always
succeed. In fact, we can go one better and avoid the backdoor that allows
None to be replaced by using the readonly keyword to ensure that it

I

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in
plush corporate offices. He also commentates on the
Godmanchester duck race andcan be easily
distracted via gort@cix.co.uk or @chrisoldwood

public enum ErrorCode
{
 None,
 NotFound,
 AccessDenied,
}
public class Error
{
 public ErrorCode Code { get; }
 public string Message { get; }
 public Error(ErrorCode code,
 string message = "")
 {
 Code = code;
 Message = message;
 }
 public static
 Error None => new Error(ErrorCode.None);
 public static
 Error NotFound(string message) =>
 new Error(ErrorCode.NotFound, message);
 public static Error
 AccessDenied(string message) =>
 new Error(ErrorCode.AccessDenied, message);
}

Li
st

in
g

1

JAN 2017 | | 5{cvu}

cannot ever be changed by a client or the class itself (outside the type
constructor):

 public readonly static Error None =
 new Error(ErrorCode.None);

That fixes the actual bug, but it still leaves a number of questions. For
example, was the reference based comparison really the intention, and if
so, how hard did the author try to avoid letting a caller create a duplicate
object like None? As you can see the Error type’s constructor was
marked public and so the consuming code could have just as easily
written this instead:

 return new Error(ErrorCode.None);

Once again the reference based comparison would have failed because the
returned object was never the same as the single instance held by the static
property.

Another observation is that the underlying error value (from the
ErrorCode enumeration) is accessible via a public read-only property:

 public ErrorCode Code { get; }

Therefore, it’s entirely possible the author may have intended for the
conditional statement to be written like this instead:

 if (result.Code != ErrorCode.None)

Now we’re doing a comparison of two values from an enumerated type
and therefore we get a value based comparison instead which will always
succeed irrespective of whether result holds the None singleton or not.
The big similarity in the name of the Error class and the name of the
underlying ErrorCode enumeration could easily explain how one could
have been written instead of the other.

Factory methods
Perhaps we are on the right lines with assuming that reference based
equality was desirable if we bring in an observation around the two
factory methods, which also use the new expression body syntax to make
them light on ceremony:

 public static Error NotFound(. . .) =>
 new Error(. . .);
 public static Error AccessDenied(. . .) =>
 new Error(. . .);

Maybe there is one other mistake and the Error constructor was never
intended to be made public in the first place. Perhaps it should have
been marked private so that clients are forced to create an instance of
the object thorough one of the factory methods, or use the None value.
Hence, in the scenario of an error, the returning code would therefore
write something this:

 return Error.NotFound($"{path} not found");

Given the potential for a free format message, it’s highly unlikely the
calling code would ever attempt to perform an equality comparison on an
instance of the Error type, except for a comparison against None.
Consequently these two little fixes (one to the None property and the
other to the constructor) might be enough for us to declare the problem
‘properly fixed’.

Value semantics
Up until this point, I have worked on the assumption that the author really
did want the comparison using the == operator to work correctly and so
we’ve found ways to make that happen for the scenario that initially
brought it to our attention. However, these little tweaks feel somewhat
akin to moving the deckchairs around on the Titanic as we’re not really
fixing the type itself to perform all comparisons correctly.

The Error type is composed of two values which should both take part
in a proper value based comparison. As anyone who attended Steve Love
and Roger Orr’s ACCU talk a few years back about implementing
equality comparisons will remember, these are non-trivial things to
implement in languages like C# and Java. There is a lot of boilerplate code
to add (and a GetHashCode() implementation for completeness) which

many IDEs will happy produce for you to save typing and ensure all the
options are correctly covered, but the meat is essentially just a comparison
of the two embedded properties:

 public static
 bool operator==(Error lhs, Error rhs)
 {
 return (lhs.Code == rhs.Code) &&
 (lhs.Message == rhs.Message);
 }

Now when we invoke our original failing comparison against None in the
client’s error handling code, we will get a fuller comparison of the
object’s embedded members instead of just their references. Additionally,
because we’re performing a deeper comparison, we don’t have to change
the None definition because any instance of None will now be equivalent
to any other (although creating one every time could be considered
wasteful).

This feels like a more complete fix for our equality bug but I’m still left
wondering if it’s the right thing to do. Making a type into a value type just
because I want an equality comparison to do the right thing in one
scenario does not feel overly compelling. When pondering whether to
make something a value type or not, I have an acid test that asks if I’d ever
likely use it as a key in a dictionary or put it into some kind of set.

Once again, the free-text error message property suggests to me that this
isn’t really a classic value type. Yes, the comparison with None feels
more succinct but in any other situation you are likely to ignore the
message part and only consider the ErrorCode. This implies to me that
the message isn’t really part of the object’s identity per se but is being
bundled along with the code for convenience (as C# does not support
multiple return values). This leads me back to believing the real mistake
is in the conditional statement in the caller and should have been this one
which we covered earlier that compares the Code property directly:

 if (result.Code != ErrorCode.None)

Software archaeology
At this point, I’ve pretty much exhausted my analysis based on the current
state of the callers and implementation and so I decided to do a spot of
software archaeology [2] and trawl the version control logs to see what
else it could tell me about the history of this code.

It turns out it has very little to say. The Error class only has one revision
which means that whatever the initial implementation was, that sufficed.
We can’t tell if the design changed at all in response to its use in the client
code but given the nature of the bug I’d posit that any tweaking that did
occur during testing would have happened in the caller instead.

Switching to the call site changes, we also see only a single check-in.
Looking at the diff for the file where the bug occurred we see that there
are five modified call sites – three of them directly compare the Code
property and the other two use the buggy comparison. What’s also
noticeable is that the format of the error handling code is slightly different
in the former and latter cases – the code is logically the same but spaced
out differently.

If the original author copy-and-pasted the error block, I’d expect them all
to look the same, which makes me wonder if they were, to start with, but
during testing when the silly mistake was fixed the formatting was
cleaned up too. This hypothesis gains a little more ground when we
consider that the three call sites that work are in code paths which are
exercised by a smoke test which is usually run by developers before
check-in. In contrast the other two sites are in a code path which is very
rarely exercised and has to be done manually, if anyone remembers.

Epilogue
Luckily this piece of code was authored by someone who was still present
in the team (although away at the time this showed up, hence the
somewhat over-engineered analysis). Consequently I have been able to
find out which of my various hypotheses, if any, were correct.
6 | | JAN 2017{cvu}

Turnabout is Fair Play
Baron M is still game for a wager.

ihy, you look chilled to the bone Sir R-----! Come, sit by the
hearth and warm yourself whilst I fetch you a medicinal glass of
brandy.

To your very good health sir! Will you join me in a wager whilst you
recover?

Good show!

I propose a game that I learned upon the banks of the river Styx whilst my
fellow travellers and I were waiting for the ferry. This being the third time
that I had died, I was quite accustomed to the appalling service quality of
the Hadean public transport system and so was most appreciative of a
little sport to pass the time.

When the ferry eventually arrived, the ferryman, a cantankerous old
curmudgeon I must say, set to beating me upon my back with one of his
oars for making him wait whilst I finished a game. Needless to say, I
should not tolerate such treatment at the hands of a common matelot and
so I snatched his other oar and engaged him in a duel!

He was remarkably spry given his advanced years and put up quite the
fight, I can tell you! Nevertheless, he was ultimately no match for my skill
at arms and I bested him with a particularly well placed blow to his head.
Realising that I was now faced with yet another interminable wait for the
next ferry, I decided to take the long trek back to the land of the living
instead.

But I digress! I must tell you the rules of that game!

Here, I have laid out twenty five coins face up in five rows of five coins
apiece and have turned one of them face down. For a price of one coin if,
by turning pairs of horizontally or vertically neighbouring heads over to
tails, you can turn every coin to tails then you shall have two coins as your
prize! What say you sir?

When I told that loathsome
student, who it appears that
despite my very best efforts I
am q u i t e i nc apab l e o f
eluding, about this game he
paid it no heed whatsoever
but instead commenced to
harping on about his and his
fellows’ mutual hatred of
board games. I suppose that
one shouldn’t be altogether
surprised to find that those
whose wits would be sorely
tested by snakes and ladders
eschew such sport entirely,
but let us not concern ourselves with the likes of them! Come, take
another glass and weigh up your chances! 

Courtesy of www.thusspakeak.com

W

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Speak Up! (Part 2) (continued)

It turns out that the type was never intended to be used as a value type but
just a simple bucket for holding the two bits of error information, i.e. a
way to return multiple values in C#. The three call sites that directly
compared the Code property with the enumeration value None was the
intended pattern of use and was fixed when the smoke test failed. The
other two were missed as they didn’t break any existing tests.

Although the smoke test (which is also run automatically on deployment)
picked up the bug, it also goes to show that it does not help in conveying
the author’s intentions. One of the roles of lower level tests (e.g. unit tests)
along with verifying our expectations is to document how our code is
intended to be used and illustrates the scenarios we’ve considered. In this
instance, we had to piece that together purely from the way the code is
used in production, which was inconsistent. The cost of rewriting would
have been minimal this time, but in other cases we’re not so lucky. It also
shows that code which is not tested at all automatically will be forgotten
about. Once again, the broken feature didn’t matter this time but next time
it might.

The only other niggle I had was why the two missed code paths didn’t get
picked up at commit time. The pre-commit review [3] is an excellent point
to jog our memory about such matters, particularly if the change didn’t go
smoothly, i.e. we wrote some code and we didn’t get it right first time. To
me the difference in code formatting between the working and failing
cases was another little sign that something was out of place. However,
we need to be careful what our tools are showing us because the patch-
style diff made this apparent, whereas the full context diff showed that

actually the code was in keeping with its surroundings. So the author
didn’t really miss anything after all.

Somewhat ironically, all the above analysis actually turned out to be a
waste of time. A static analysis tool highlighted some dead code which,
when investigated, further revealed that the only property used was the
None one, for the happy path. All other code paths resulted in an
exception and therefore the Error class was in fact redundant and the
intervening methods could all be changed to return nothing (i.e. void).
Once done, all the error handling blocks where the bug had shown up
could be deleted too.

Did I say waste of time? As Ken Thompson once said, “One of my most
productive days was throwing away 1,000 lines of code.” This was only 50
lines of code but it still feels like time well spent. 

References
[1] Some objects are more equal than others, Roger Orr & Steve Love,

ACCU 2011 Conference,
https://accu.org/content/conf2011/Steve-Love-Roger-Orr-
equals.pdf

[2] In The Toolbox – Software Archaeology, C Vu 26-1,
http://www.chrisoldwood.com/articles/in-the-toolbox-software-
archaeology.html

[3] In The Toolbox – Commit Checklist, C Vu 28-5,
https://accu.org/index.php/journals/2306
JAN 2017 | | 7{cvu}

www.thusspakeak.com
https://accu.org/content/conf2011/Steve-Love-Roger-Orr-equals.pdf
http://www.chrisoldwood.com/articles/in-the-toolbox-software-archaeology.html
https://accu.org/index.php/journals/2306

8 | | JAN 2017{cvu}

How Do You Read?
Sven Rosvall shares his perspective on electronic publications.

here have been discussions/opinions/thoughts about electronically
distributed club magazines in ACCU and many other organizations
I am a member of. These discussions have sometimes been calm and

sometimes heated. Some of my clubs have gone entirely electronic for
cost reasons and to save volunteer labour in printing/folding/enveloping/
sending their magazines. Even though I am a computer professional, it
took me a while to get comfortable with electronic magazines. I’d like to
share my journey with others to make their lives easier. Note that I am not
going to suggest that ACCU goes entirely electronic, even though this is
an organization with technologically advanced members. Hopefully the
text below will also help others become comfortable with electronic
magazines or help them decide whether they want to stick with printed
magazines.

First we need to look at the ‘reading experience’. (A term I first heard
when I worked for Amazon when they introduced the Kindle reader.)
How do we read and what do we want to get out of the reading? The ‘how’
starts with ‘where’, as in where do we read? I prefer to read my magazines
at bedtime when I relax after a good day. Another place is on the crowded
tram on my way to work when I have nothing else to do than to wait for
arrival. Sometimes reading happens in the armchair, half-listening to the
TV and my wife. Sitting at a desk in front of a big screen does not appeal
to me as it is not a relaxing place. A desk is the only place you can have
your 10 kg PC. In bed, you can use your 3 kg laptop, but the keyboard is
in the way and you have to sit up in the bed. The laptop works fine in the
armchair though. Instead I prefer to use my ½ kg tablet in bed. It is light
enough that I can hold it in my arms. A thick book is just as heavy but
more awkward to hold. The best device for the bed is an e-book reader like
the Kindle which only weighs 200g. On the tram, I mostly use the Kindle
thanks to its size and weight. Sometimes I use the phone but it is a bit
fiddly. I don’t like using the tablet on the tram as I have to stand most
times and there is a greater risk that I will drop it when people squeeze by
to get on or off the tram. The Kindle is slightly smaller but the lower
weight means it is easier hold on to and move aside to let people pass. And
the Kindle doesn’t break that easily if I drop it. An A4 magazine just
doesn’t work on this tram as there is not enough space between the
passengers or in my pocket.

A note on the Kindle is that my version is not suitable for some magazines
as it doesn’t do colours. The Kindle Fire has colour but I would call it a
tablet in this context.

It has been said many times that a computer screen is hard on the eyes
compared to a printed book. This is certainly true for the old CRT
(Cathode Ray Tube) screens where the pixels were blurred. An old or
badly adjusted CRT is certainly difficult to read and the eyes get tired very
quickly. The flat LCD screens found in laptops are much easier on the
eyes. Modern ones are even better. I just got a new laptop with twice the
resolution found in HD TV screens. Each letter is nicely rounded just like
in print. The electronic ink screens found in electronic readers like a
Kindle also have very good resolution and these screens reflect light
rather than using back-lighting. This makes the electronic ink comparable
to printed paper.

Different kinds of texts require different reading techniques. A fiction text
is usually flowing from the start to the end. You just need to remember
where you were between reading sessions. For a book, you just put your
bookmark between the pages you have just read. E-book readers
remember where you were. PDF documents, like the electronic version of
CVu and Overload, are trickier to keep track of. One trick is to never close
the document and never shutdown the computer/tablet. This is not always
practical. Adobe Reader allows you to add sticky notes. Create one such
note and write “Read to here” or something similar and save the PDF
document. Later, when you open it again you look up that note and
continue reading. Adobe Reader can also highlight text just as you would
do on paper with a highlighting pen.

Non-fiction text usually has references to previous or following sections.
When you read a printed book or magazine it is easy to hold a thumb
where you are and flick through the pages to find the section you need. It
is easy to go back to your thumb again. It is trickier to browse through an
electronic document in the same way. Electronic documents on the other
hand sometimes have links that refer to the sections with the explanation
I needed. Most electronic readers have a search feature to aid searching.

Another challenge when reading electronic magazines is which ones you
have not yet read. I put printed magazines in a pile on my bedside table.
When I have finished reading one, I archive it on my book shelf and
continue with the next magazine in the pile. Electronic magazines require
a different organization. They arrive as PDF documents attached to
emails. Initially I tried to use my inbox to keep track of which magazines
I hadn’t read yet. This filled up my inbox as the PDF documents can be
quite large, and the magazine emails were soon hidden in the large
amounts of emails in my inbox that I hadn’t cleaned up. Instead, I save
each magazine file from the email as they arrive in a folder for each
organization I am a member of. This is my archive, which is also backed
up regularly. Once archived, I copy the magazine file to a separate TO
READ folder. When I have finished one magazine I simply remove it
from this folder. As I use several devices for reading my magazines, I
synchronize this folder with my tablet and my phone. Personally I use
Microsoft’s OneNote for this synchronization. You may use cloud based
solutions like Dropbox or use a local file server if you have set one up.
Using a synchronized folder between different devices helps you
remember which magazines to read as you now see the same list of
magazines whatever device you use. When you have finished one, you
just delete it and it will disappear from the other devices too. The Kindle
does not have any good tools for such synchronization so I have to copy
the file manually and remember to remove the magazine from the Kindle
and the shared folder. Of course, it is a lot easier if you only use one device
for reading the magazines.

If you are reading on a laptop, tablet or a smartphone you have another
challenge: the distractions of social media. Usually these social apps are
running in the background and show a notification now and then. Of
course, you want to see the cute kitten and respond to your friend. And
then you find it hard to get back to your reading and catch up where you
were.

This is my way of reading electronic magazines. Others may have other
systems that suit them better. Now that I found my way, I actually prefer
electronic versions as they don’t take any space in my bookshelf. And I
find it easier to find old articles in my electronic bookshelf. 

T

SVEN ROSVALL
Sven has been on the software scene a while and been
exposed to many markets and technology shifts. Living
in Dublin, he enjoys his spare time with his bike, his
model railway and the odd pint of the black stuff. He may
be brought back to reality by sending a message to
sven@rosvall.ie

A Class What I Wrote
Paul Grenyer reduces the boilerplate with simple abstraction.

hen I was a member of ACCU, their regular publications always
appealed for people to write articles for them. There were a few
suggested topics, but the one which stuck in my mind was to

write about a class you’d written. I often used to wonder about doing this,
but it’s quite difficult as I rarely wrote a class which was stand alone
enough to write about, without having to write about a load of other
classes too. Maybe that’s a symptom of a design which is not loosely
coupled, but I’ll leave that for a late night discussion with Kevlin Henney.

Today I wrote such a class, and was very pleased with it as it reduced a lot
code which was repeated in a number of methods down to a single line of
code – it even manages a resource! The code I started with is in Listing 1.

It’s Java. It gets an output stream from a HttpServletResponse
instance passed into a Spring MVC controller method, writes some JSON
to it, flushes the buffer and cleans up. If there’s an error and an exception
is thrown, the output stream is still cleaned up, the exception is handled
and logged. All reasonably simple and straightforward.

With the class that I wrote, it’s reduced to:

 try
 {
 new ServletResponseWriter(response)
 .write(JsonTools.toJson(...));
 }
 catch (ServletResponseWriterException e)
 {
 log.warn(e);
 }

An instance of the class is initialised with the HttpServletResponse
instance and a single method called to write the JSON to the output
stream. If an error occurs and an exception is thrown, it’s handled and
logged, just as before.

There is far less code to maintain by using the class instead of repeating
the original code.

Let’s take a look at the class itself, ServletResponseWriter in
Listing 2.

Let’s start at the top and work our way down. The constructor takes a
ServletResponse , which is an interface implemented by

HttpServletResponse containing the getOutputStream method.
The ServletResponse is saved within the class as an immutable field.

The first of the write overloads allows the user of the class to write to the
output stream using UTF-8 without having to specify it every time. It calls
the second overload with the UTF-8 encoding.

The second write overload is much the same as the original code. It gets
an output stream from the response and writes the supplied string to it,
flushes the buffer and cleans up. If there’s an error and an exception is
thrown, the output stream is still cleaned up, the exception is handled,
translated and re-thrown.

W

try
{
 final OutputStream os =
 response.getOutputStream();
 try
 {
 IOUtils.write(JsonTools.toJson(...), os,
 "UTF-8");
 response.flushBuffer();
 }
 finally
 {
 os.close();
 }
}
catch (IOException e)
{
 log.warn(e);
}

Li
st

in
g

1

public class ServletResponseWriter
{
 private static final String UTF8 = "UTF-8";

 private final ServletResponse response;

 public ServletResponseWriter
 (ServletResponse response)
 {
 this.response = response;
 }

 public void write(String data)
 {
 write(data, UTF8);
 }

 public void write(String data, String encoding)
 {
 try
 {
 final OutputStream os =
 response.getOutputStream();
 try
 {
 IOUtils.write(data, os, encoding);
 response.flushBuffer();
 }
 finally
 {
 os.close();
 }
 }
 catch (IOException e)
 {
 throw new ServletResponseWriterException
 (e.getMessage(), e);
 }
 }
}

Listing 2

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com
JAN 2017 | | 9{cvu}

A Class What I Wrote (continued)
The keen-eyed among you will have noticed that there are two new
classes here, not just one. I’m not a fan of Java’s checked exceptions.
They make maintenance of code more laborious. So I like to catch them,
as I have here, and translate them into an appropriately named runtime
exception such as ServletResponseWriterException.

ServletResponseWriter implements the finally for each release
pattern of the original code and the common pattern implemented by

classes such as Spring’s JDBCTemplate which wraps it in a reusable
class intended to manage resources for you.

Resource management is vital, but the real advantage here is that the code
is more concise, more readable and reusable. And, I’ve had the chance to
write about a class I once wrote. 
Kate Gregory: An Interview
Emyr Williams returns with a new interview from

the world of programming.

ate Gregory is a C++ expert, who has been using C++ for nearly four
decades. She is the author of a number of books, and is an in-demand
speaker who’s given talks at the ACCU, CppCon, TechEd and

TechDays among many others. She is a Pluralsight author, a Microsoft
Regional Director, and a C++ Microsoft Valued Professional, and despite
her hectic schedule she still manages to write code every week.

How did you get in to computer programming? Was it a sudden interest? Or
was it a slow process?

I did my undergrad work at the University of Waterloo. I started in
the Faculty of Mathematics and they taught us algorithms and
Fortran as a first year course. I didn’t choose it, but I had to do it.
Other such courses followed, and when I transferred to
engineering I discovered this was a useful and in‐demand skill. I got
opportunities to program on my co‐op jobs, and it kind of grew
from there.

What was the first program you ever wrote? And in what language was it
written in?

I don’t actually remember, but it’s a good bet it was an assignment
1 in that first year Algorithms/Fortran course. And yes, punch cards
were involved. My first program for money was a simulation of the
way scale grows inside a pipe – in the piping of steam turbines scale
forms in layers that can spall off and cause tremendous damage, so
understanding that is an important problem. It led to a published
paper for the researcher who hired me, and an award-winning co-op
work term report for me. I probably should have demanded credit in
the paper.

What would you say is the best piece of advice you’ve been given as a
programmer?

Sleep when the baby sleeps. It’s the best advice ever, and I pass it on
whenever I can. Second best: the smaller the problem is, the more
ridiculous it will be when you finally find it, the harder it is to find.
Don’t feel bad about that. Laugh when you finally find the one
character typo or the wrong kind of bracket or whatever the tiny
thing is that has kept you aggravated for hours.

How did you get in to C++? What was it that drew you to the language?

In the late 80s, I needed to write some numerical integration
programs for these multiple partial differential equations I was
tackling for my PhD work on blood coagulation. Fortran, PL/1,
COBOL, MARKIV and the like were just not going to work for me.
My partner was doing some C++ at the time and it seemed like it was
going to be much better. Turns out, it was! I had experienced the

misery that was the Fortran “common block” so I didn’t want to use
Fortran any more, and the other languages were mostly about
manipulating text and records, turning input into output. C++ was a
better fit for working with numbers, for implementing an algorithm,
for giving me what I needed to show some properties of those
equations.

Since 2004, you have been a Microsoft Valued Professional in Visual C++,
how did that come about? That must feel pretty awesome?

MVPs are chosen primarily for their generosity. You can be a
complete and utter expert on the C++ language or on Microsoft’s
products, but if you don’t share that and help people with those
tools, you won’t get the award. Mine I believe was triggered by my
books, and more recently my activities on Stack Exchange sites,
backed up of course by conference speaking. It’s nice to have that
effort recognized. What I like best about the MVP program is the
access it gives us to the team. I can reach just the right person if I
have some issue with the Microsoft tools, and get advice or an
explanation or “we’ll fix that in the next release.” Of course, the
award certificates look good on my “bookshelf of showing off” as
well.

You hold an incredibly busy schedule between speaking at conferences,
travelling, and doing Pluralsight courses, how do you keep your skills up to
date?

It’s part of my job to stay current. If I spend an hour (or an afternoon)
swearing at a development environment on a platform I don’t
normally use, well that counts as work. It’s as valuable work as
preparing a talk or doing something billable for a client. So is
reading long documents about what’s new in C++ or trying out a
new library someone has released. What’s nice for me is that once
I’ve put that learning time in, I can use it in many different ways –
as the backbone of a talk, a blog post, to help a client going through
the same thing, as part of a course, and so on.

If you were to start your career again now, what would you do differently?
Or if you could go back to when you started programming what would you
say to yourself?

I came up through a sort of golden age. You had to teach yourself
things, or find someone to teach them to you, because there wasn’t

K

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
10 | | JAN 2017{cvu}

a lot of training available. But then again, people didn’t demand
credentials or challenge your background. If you said you could do
something, the general response was to let you go ahead and show
that you could. I think I would just reassure myself that my
somewhat unusual path was going to work out to be amazing. I
really only had a traditional job for two years after I finished my
undergrad work. By the time my grad work was done I had a
business with my partner, and we have made our own path for three
decades now. It’s had some ups and downs, but I don’t think I would
actually change any of it.

If there is such a term, what would an average working day look like for you?

Oh there are most definitely no average days. I have routines when
I’m home – swimming in the morning, coffee and email before I get
out of bed – but I do so many different kinds of work that it’s hard
to characterize. I try to react to my moods if I can – some days are
better for writing a lot of code, others are better for big picture
design whether of code, a course, or something I’m writing, and still
others are the days when you have to catch up on emails, phone
calls, paperwork, and buying things. Some days I might be elbow-
deep in code when it’s time for my evening meal and I just keep right
on working well past when I should have gone to bed. Other days I
stop in the afternoon and for the rest of the day I just do something
– anything - that isn’t work. It’s nice to be able to work according to
my own rhythms. I have to be diligent about deadlines and promises,
and some days I have to do things that are a little suboptimal because
I have no more room to rearrange, but for the most part I do things I
like from when I get up until when I go to bed, I do them side by side
with my partner (my husband is my business partner) and I get paid
for it, so that’s a pretty nice life, isn’t it?

What would you say is the best book/blog you’ve read as a developer?

The Mythical Man Month got me thinking about the big picture of
managing teams and people, managing projects, instead of just
writing code. And it showed me that people can disagree and best
practices can change. While I rarely draw on specific facts or quote
from it, it changed the way I thought about creating software.

Do you mentor other developers? Or did you ever have a mentor when you
started programming?

Yes, I mentor others – I’ve done so as part of a paid engagement and
I occasionally just offer unsolicited advice to those I think need it.
People ask me to help them and if I can, I do. That doesn’t mean I’m
going to write half their application pro bono, but I answer questions
and suggest things to learn or try. I’ve been the happy recipient of a
great deal of marvellous advice from friends and peers, folks who
were a little further ahead on one aspect of all the huge difficulty that
is being a developer, and would tell me things I needed to know or
introduce me to the right people. I try to do the same for others as
often as I can.

If you do mentor others, how did that come about? Do you do face to face
mentoring, or do you do electronic mentoring?

Because I live in the middle of nowhere, most of my advising is not
in person. I have had regular Skype calls with those who I am
advising, and that works really well. Sometimes people email me
their questions, or even message my public Facebook page, but the
nice thing about Skype is I can see their screen, or show mine, while
we’re talking live. That’s generally a lot better than email or other
kinds of asynchronous messaging.

Then again, some of my most valuable advice has been given in
restaurants and pubs. There’s no need to be in the same place if I’m
explaining C++ syntax or architecture or “good design”, but career
advice, soft skills things like dealing with difficult people or
knowing if you’re charging enough for your time – that works better
when we’re in the same place and relaxed. It’s one of the great things
about conferences and other in-person get-togethers – a chance to
give and get advice, or to listen to other people’s advice sessions.

Finally, what advice would you give to someone is looking to start a career
as a programmer?

Be prepared to keep learning your whole life. Be prepared to spend
a long time learning something, to use it for a while, and then to see
it become useless. Don’t fight that, move to the next thing. Watch
for the big architectural and people lessons that still apply even
when you don’t work on that platform, in that language, or for that
kind of business any more. Hold onto the wisdom you build up,
while realizing you still need to learn new knowledge (language
syntax, tool use, platform idiosyncrasies) every day.

You can learn from online courses, from working on a project on
your own time, on the job if you’re lucky, from just trying things and
then frantically Googling when they don’t work. You can combine
dozens of different ways of learning things, getting unstuck when
you’re stuck, and realizing when to give up and start over. We all
feel stupid from time to time, that doesn’t mean we really are. (If
you’re working with the pre-release of something, you may have
found a bug – I’ve done it and most of my friends have too. It isn’t
always you who’s wrong.) And we all have to start over – new
languages, new tools, new teams, new platforms – from time to time.
If you know how to learn, how to start at something and recognize
where you can use things you know from before, how to ask the right
questions and how to make sure you don’t have to ask the same
question twice – you’ll be doing very well indeed.

Oh, and sleep when the baby sleeps. Do not forget that. In the larger
sense, that advice applies even for people who never raise a baby.
There are times in your life when there just isn’t time to do
everything, so you have to do the most important thing whenever
you get the chance. Don’t waste time doing the second most
important thing if there’s a good chance you won’t get another
opportunity to do the most important thing. When you have a new
baby, that means you don’t tidy during naps – your most important
thing is sleeping and you do it whenever you can. When you’re
writing software, there’s never enough time for everything. If you
spend time doing less important things, you may never get to do the
most important ones. That’s a disaster. Know your priorities and
don’t skimp on what’s most important when there isn’t enough time
to go around – which is most of the time, to be honest.
JAN 2017 | | 11{cvu}

#include <iostream>
#include <sstream>
#include <memory>
#include <string>

// pointer type
template<typename t> using ptr =
 std::shared_ptr<t>;

// forward declarations
struct document;
struct sentence;
struct word;
document read_document(std::istream & is);
sentence read_sentence(std::istream & is);
void write_document(std::ostream & os,
 document const & d);
void write_sentence(std::ostream & os,
 sentence const & s);

// A document is a list of sentences
struct document
{
 ptr<sentence> first_sentence;
};

Li
st

in
g

1

Code Critique Competition 103
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I am trying to parse a simple text document by treating it as a list of
sentences, each of which is a list of words. I'm getting a stray period
when I try to write the document out:

 -- sample.txt --

 This is an example.

 It contains two sentences.

 $ parse < sample.txt
 This is an example.
 It contains two sentences.
 .

Can you help fix this?

Listing 1contains parse.cpp.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

Listing 1 (cont’d)

// A sentence is a list of words
struct sentence
{
 ptr<sentence> next_sentence;
 ptr<word> first_word;
};
struct word
{
 ptr<word> next_word;
 std::string contents;
};

// read a document a sentence at a time
document read_document(std::istream & is)
{
 sentence head;
 auto next = &head;
 std::string str;
 while (std::getline(is, str, '.'))
 {
 std::istringstream is(str);
 ptr<sentence> s(new sentence(
 read_sentence(is)));
 next->next_sentence = s;
 next = s.get();
 }
 document d;
 d.first_sentence = head.next_sentence;
 return d;
}

// read a sentence a word at a time
sentence read_sentence(std::istream & is)
{
 word head;
 auto next = &head;
 std::string str;
 while (is >> str)
 {
 ptr<word> w(new word{nullptr,str});
 next->next_word = w;
 next = w.get();
 }
 sentence s;
 s.first_word = head.next_word;
 return s;
}

// write document a sentence at a time
void write_document(std::ostream & os,
 document const & d)
{
 for (auto s = d.first_sentence; s;
 s = s->next_sentence)
 {
 write_sentence(os, *s);
 }
}

Listing 1 (cont’d)
12 | | JAN 2017{cvu}

Critique

Paul Floyd <paulf@free.fr>

First, let’s see what happens when the code is compiled. Firstly clang++:

clang++ -g -Wall -Wextra -std=c++11 -stdlib=libc++
-pedantic -o cc102 cc102.cpp
cc102.cpp:89:36: warning: unused parameter 'os' [-
Wunused-parameter]
void write_sentence(std::ostream & os, sentence
const & s)
 ^

Next, Oracle CC 12.5:

CC +w2 -g -std=c++14 -o cc102 cc102.cpp
"cc102.cpp", line 48: Warning: is hides the same
name in an outer scope.
"cc102.cpp", line 88: Warning: os is defined but
not used.
2 Warning(s) detected.

Both of these are relatively harmless. The ‘os’ error can be fixed by
streaming to os rather than cout, i.e., change

 std::cout << delim << w->contents;

to

 os << delim << w->contents;

In this case, it makes no difference since write_sentence is called from
write_document which is passed cout . However, if ever
write_document were called with another ostream the program would
encounter a ‘discovered bug’ (similar to ‘discovered check’ in chess).

The second warning can be removed by renaming the second is variable,
e.g. to iss.

Neither of these affect the behaviour of the program as it stands. The issue
is due to how std::getline works in the following loop:

 while (std::getline(is, str, '.'))
 {
 std::istringstream is(str);
 ptr<sentence> s(new sentence(
 read_sentence(is)));
 next->next_sentence = s;
 next = s.get();
 }

Basically, std::getline has 2 overloads (if I ignore the rvalue
reference overloads). The first takes just an istream and a string and
reads to the next newline (or eof). The second adds a character delimiter,
and getline reads to this delimiter (or eof). Here we have the second
overload. When it is called the first time, before the call we have the input
like this:

 This is an example.\n

 ^
 Stream pointer here

Then the read takes place and we read to the . delimiter:

 This is an example.\n

 ^
 Stream pointer here (under newline).

So far so good. Or is it? The stream pointer is not pointing to the null
termination at the end of the line but rather the newline character.

On the second call to getline, we read "\nIt contains two
sentences" into str. The leading newline gets stripped when it gets
streamed into the str string variable in read_sentence which is
breaking the line into words.

After the second call to getline, the stream is as follows:

 It contains two sentences.\n

 ^
 Stream pointer again under newline

There is then a third call to newline. This just reads the second newline
up to eof, and this is the source of the spurious extra line in the output.

There are many ways that this could be fixed. One would be to use the
getline overload without the character delimiter and to then extract the
sentence up to the full stop. As a quick and simple solution, I just added
an extra call to getline to eat the newline characters:

 while (std::getline(is, str, '.'))
 {
 std::istringstream iss(str);
 ptr<sentence> s(new sentence(
 read_sentence(iss)));
 next->next_sentence = s;
 next = s.get();
 std::getline(is, str);
 }

In terms of design, this code needs a lot more work to be able to handle
other punctuation like question and exclamation marks, more than one
sentence on a line, and sentences that span several lines.

Jim Segrave <jes@j-e-s.net>

The error in this program is t r ivial – the while condi t ion
std::getline(is, str, '.') will return true when you reach end
of file. Adding a simple if(is.eof()) { break; } at the top of the
loop will cause the while loop to terminate without trying to make a
sentence from an empty read.

But there are other issues:

A minor one:

The code uses a large number of forward declarations. Rearranging the
code so that struct word is defined before struct sentence and
struct sentence before struct document, read_sentence()
before read_document() , write_sentence() be fore
write_document() allows all the forward declarations to be removed.
If this were a multi-module program, the forward declarations would need
to be in a header file, and would have some value. As it’s a single file,
removing them removes duplication, so changing any of the struct
definitions or function signatures has a smaller impact (DRY– don’t repeat
yourself).

Another minor one:

write_document() and write_sentence() are passed an
ostream parameter. write_document() simply passes it on to
write_sentence(), but it’s not actually used there. It should be
removed from both functions or the function should be altered to actually
use the ostreams rather than cout.

Most importantly, the author has chosen to build his own singly-linked list.
One has to ask ‘Why?’ While linked lists are good when you need to do

// write sentence a word at a time
void write_sentence(std::ostream & os, sentence
const & s)
{
 std::string delim;
 for (auto w = s.first_word; w;
 w = w->next_word)
 {
 std::cout << delim << w->contents;
 delim = ' ';
 }
 std::cout << '.' << std::endl;
}

int main()
{
 document d(read_document(std::cin));
 write_document(std::cout, d);
}

Li
st

in
g

1 (
co

nt
’d

)

JAN 2017 | | 13{cvu}

inserts and deletes at random locations within the list, but otherwise they
are a performance and memory waste (pointers which aren’t needed, lack
of contiguous allocation).

This program simply needs to maintain the order of words encountered in
sentences and sentences encountered in documents. For that, the
std::vector class is ideal – it performs well, maintains the insert order
and keeps the data contiguous.

If you are going to use a linked list in spite of this, there’s already a
container type for this purpose which is likely to be implemented better
and tested more thoroughly than a one-off version. But as I said, there’s
no reason to use a linked list here.

Finally, why not use the make_shared library function when you want
to create an object and get a shared pointer to it? To me at least, the resulting
code is clearer.

I attach a version using vectors and make_shared (with a heavy use
of auto to save typing and shared pointers for all the robustness they bring
with them.

 #include <iostream>
 #include <sstream>
 #include <memory>
 #include <string>
 #include <vector>

 using word = std::string;
 using word_shp = std::shared_ptr<word>;
 using sentence_vec = std::vector<word_shp>;
 using sentence_vec_shp =
 std::shared_ptr<sentence_vec>;
 using doc_vec = std::vector<sentence_vec_shp>;
 using doc_shp = std::shared_ptr<doc_vec>;

 // read a sentence a word at a time, return a
 // vector of the words in it
 sentence_vec_shp read_sentence(
 std::istream & is) {
 std::string str;
 auto s = std::make_shared<sentence_vec>();
 while (is >> str) {
 s->push_back(std::make_shared<word>(str));
 }
 if(s->size()) {
 return s;
 }
 // if no words found, don't return an empty
 // vector, let it die here
 return nullptr;
 }

 // read a document a sentence at a time,
 // return a vector of the sentences in it
 doc_shp read_document(std::istream & is) {
 std::string str;
 auto d = std::make_shared<doc_vec>();
 while (std::getline(is, str, '.')) {
 if(is.eof()) {
 break;
 }
 std::istringstream is(str);
 auto s = read_sentence(is);
 if(s) {
 d->push_back(s);
 }
 }
 if(d->size()) {
 return d;
 }
 // if no sentences found, don't return an
 // empty vector, let it die here

 return nullptr;
 }

 // write a sentence one word at a time
 void write_sentence(
 const sentence_vec_shp & s) {
 std::string delim;
 for (auto wp: *s) {
 std::cout << delim << *wp;
 delim = ' ';
 }
 std::cout << '.' << std::endl;
 }

 // write document one sentence at a time
 void write_document(const doc_shp & d) {
 for (auto s : *d) {
 write_sentence(s);
 }
 }

 int main() {
 auto dp = read_document(std::cin);
 write_document(dp);
 }

James Holland <James.Holland@babcockinternational.com>

On first glance, the problem could be anywhere within the student’s code.
In such a situation it is best to divide the code into roughly two equal parts
and to attempt to discover which half contains the bug. This process is
repeated until the defect is found. Fortunately, the student’s code is already
divided into two parts; one that puts information into the linked list and
another that reads it out.

An investigation revealed that the unwanted full stop is displayed because
there are three sentences in the linked list; the last sentence being empty.
It would appear that the linked list is being displayed properly and so it
must be the part of the code that assembles the list that is at fault. Therefore,
read_document() requires further investigation.

Closer inspection shows that the body of the while loop within
read_document() is executing three times. This is despite there being
only two sentences in the sample document. I think we are getting close
to the root of the problem. It all hinges on what keeps the while loop
executing.

The controlling clause of the while loop consists solely of the function
std::getline() and so the loop will keep executing for as long as the
value returned by std::getline() can be evaluated as true.
std::getline() returns its first parameter which, in our case, is of type
std::iostream. A Boolean function is defined for std::iostream
that returns true if the stream has not failed. The function does not
consider the end of file being encountered as a failure. This has the effect
that when std::getline() is attempting to read the third sentence (that
does not exist) no fault is reported (despite eof being set) and the loop
body is executed for a third time. No characters are read into str, with
the result that a blank sentence is added to the linked list. This explains
why an unwanted full stop appears when the content of the linked list is
displayed.

What is needed is for read_document()’s while loop to stop
executing as soon as eof is encountered. Possibly the simplest way to
achieve this is to modify the while loop controlling statement by calling
good() as shown below.

 while (std::getline(is, str, '.').good())

good() returns false when the stream has failed or when eof is
encountered. This is exactly what is required. The student’s code will now
behave as expected.

There are some aspects of the use of std::shared_ptr that should be
drawn to the student’s attention. When using a shared pointer to point to
14 | | JAN 2017{cvu}

a newly constructed object, it is best to use std::make_shared<>()
as it has the advantages of exception safety and executes more quickly. I
suggest the second line of read_document()’s while loop should be
replaced by

 auto s(std::make_shared<sentence>(
 sentence(read_sentence(is))));

and the first statement of read_sentence()’s while loop should be
replaced by

 auto w(std::make_shared<word>(
 word{nullptr, str}));

It is, however, questionable as to whether std::shared_ptr is required
in the student’s program. std::unique_ptr is an alternative that should
be considered as it is faster and occupies less memory. Unfortunately, it
i s no t poss ib le to s imply rep lace std::shared_ptr by
std::unique_ptr within the students code, mainly because copying
std::unique_ptr is not permitted. Some restructuring of the code
would be necessary which I have not undertaken. Instead, I propose a
different approach.

From reading the student’s code, it is clear that extensive use of linked lists
is made. While it is an interesting challenge to construct linked lists from
first principles, there is no need as the C++ standard library provides such
containers ready to use. Doubly linked list have been available since
C++98 and singly linked lists since C++11. The advantages of using the
library linked lists include the following.

 There is no need to explicitly allocate and release memory.

 There is no need to directly manipulate pointers.

 The lists are generic. They can contain elements of just about any
type.

 Programs using library linked lists are simpler to read and write and
therefore less error prone.

I have rewritten the student’s program to use standard library linked lists.
In keeping with the student’s approach I have used std::forward, a
singly linked list.

It is a simple matter to add elements to the front of an std::forward
list; push_front() is provided for that. Unfortunately, that results in the
list being populated in the reverse order. The last sentence of the document
would be printed first and the last word of a sentence would be printed first.
What is needed is for elements to be added to the back of the list. This is
not quite so easy as there is no such function as push_back() for
std::forward lists.

It may seem slightly odd that std::forward does not provide a function
to add an item to the back of the list but this omission results from the desire
for std::forward to be as memory efficient as possible. All is not lost.
We simply have to keep track of where in the list to insert the next element.
When there are no elements in the list, before_begin() provides the
appropriate location. When there are elements in the list, it is always the
location of the element at the back of the list that is required. This location
is conveniently returned by insert_after(); the function used to insert
elements at the back of the list. Given this, a simple while loop can be
constructed that adds the required elements to the std::forward lists.
I use this technique twice in my version of the program, once in
read_sentence() and once in read_document() as shown below.

 #include <forward_list>

 #include <iostream>

 #include <sstream>

 #include <string>

 using Sentence =

 std::forward_list<std::string>;

 using Document = std::forward_list<Sentence>;

 Sentence read_sentence(std::istream & is)

 {

 Sentence sentences;

 auto position = sentences.before_begin();

 std::string str;

 while (is >> str)

 {

 position =

 sentences.insert_after(position, str);

 }

 return sentences;

 }

 Document read_document(std::istream & is)

 {

 Document document;

 auto position = document.before_begin();

 std::string str;

 while (std::getline(is, str, '.').good())

 {

 std::istringstream is(str);

 position = document.insert_after(position,

 read_sentence(is));

 }

 return document;

 }

 void write_document(const std::ostream & os,

 const Document & document)

 {

 for (const auto & sentence : document)

 {

 std::string delimiter;

 for (const auto & word : sentence)

 {

 std::cout << delimiter << word;

 delimiter = ' ';

 }

 std::cout << '.' << std::endl;

 }

 }

 int main()

 {

 Document d(read_document(std::cin));

 write_document(std::cout, d);

 }

Commentary
There were a number of different problems with the code presented, and
I think that between them the authors of the critiques covered most of the
issues.

As both Jim and James noted, the writer of the code has implemented their
own singly linked list; there is no need to do this nowadays! Additionally,
there is no separation of concerns with the implementation embedded in
the code – if a special sort of list were required it would probably be better
to write a separate class to do the list management, templatized on the
contained type.

One problem that no-one commented on is that the code contains a
potential bug when exiting main. Naive use of smart pointers to build up
complex data structures can cause stack overflow on destruction as the
destruction of the tree of objects can consume a large amount of stack. In
this case the document object d is the root object, its destruction results
in calling the destructor of first_sentence, which then destroys the
next_sentence member of this object, and so on, recursively down the
list of objects.

The bug might be avoided if the compiler is able to perform some tail-call
optimisation in the destructor, but this is not possible in all cases.
JAN 2017 | | 15{cvu}

For example, I found this example crashed for large input when compiled
without optimisation with g++ (64-bit) and MSVC (both 32-bit and 64-
bit). Enabling optimisation resolved the crash for gcc, and for one of the
MSVC builds. This is not desirable behaviour!

So, how might you solve this problem?

In order to resolve the stack overflow you need to write an explicit
destructor that iterates through the objects rather than using recursion.

For example, in this case:

document::~document()
{
 while (first_sentence)
 {
 first_sentence =
 first_sentence->next_sentence;
 }
}

We also ought to make a similar change for the list of words in sentence,
in case we try processing James Joyce’s Ulysses!

This is an unfortunate issue with using smart pointers for managing object
graphs, especially as debugging the root cause of a stack overflow can be
quite hard.

(Herb Sutter’s talk at CppCon this year touches on some other options that
solve the same sort of problem.)

The winner of CC 102
I was amused to note that while all three critiques found and fixed the
problem they used three slightly different techniques. It is surprisingly
hard to use C++ standard input correctly and the range of possible solutions
makes it less obvious when a given piece of code is correct.

Paul gave a fairly detailed explanation of the presenting problem with the
original code, which would hopefully make the problem and its solution
clear to the writer of the code.

Each critique went on to cover additional problems; these included

 design issues such as dealing with 'real world' sentences containing
punctuation (perhaps more could have been made of this)

 preferring use of make_shared

 changing to use unique_ptr rather than shared_ptr

 replacing the list logic with forward_list

I liked James’ direction in using std::forward_list; this solution has
the additional benefit of (silently) solving the stack overflow problem I
discuss in my commentary. Hence, by a short head, I have awarded him
the prize for this critique.

As always, thank you to all those who entered the competition!

Code critique 103
(Submissions to scc@accu.org by Dec 1st)

I am trying to keep track of a set of people’s scores at a game and print
out the highest scores in order at the end: it seems to work most of the
time but occasionally odd things happen...

Can you see what’s wrong?

The code – scores.cpp – is in Listing 2.

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

Listing 3

#include <functional>
#include <iostream>
#include <map>
#include <sstream>
#include <unordered_map>

// Best scores
std::multimap<int, std::string, std::less<>>
best_scores;

// Map people to their best score so far
std::multimap<int, std::string>::iterator typedef
entry;
std::unordered_map<std::string, entry>
peoples_scores;
entry none;

void add_score(std::string name, int score)
{
 entry& current = peoples_scores[name];
 if (current != none)
 {
 if (score <= current->first)
 {
 return; // retain the best score
 }
 best_scores.erase(current);
 }
 current = best_scores.insert({score, name});
}

void print_scores()
{
 // top down
 for (auto it = best_scores.end();
 it-- != best_scores.begin();)
 {
 std::cout << it->second << ": "
 << it->first << '\n';
 }
}

int main()
{
 for (;;)
 {
 std::cout << "Enter name and score: ";
 std::string lbufr;
 if (!std::getline(std::cin, lbufr)) break;
 std::string name;
 int score;
 std::istringstream(lbufr)
 >> name >> score;
 add_score(name, score);
 }
 std::cout << "\nBest scores\n";
 print_scores();
}

Listing 2

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?
16 | | JAN 2017{cvu}

http://accu.org/index.php/journal

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)
Ubuntu Server
Essentials LiveLessons
By Sander van Vugt, published
by Prentice Hall, ISBN10: 0-7897-
5549-1, ISBN13: 9780789755490

Reviewed by Tim Green

Ubuntu Server Essentials
LiveLessons is a series of videos divided into 8
‘lessons’ totalling 3 hours 45 minutes. The
complete download is 615MB in h.264 MP4
format. I have been an Ubuntu Desktop user for
about 9 years (Debian and Slackware before
that), and have recently started looking into
Ubuntu Server. Would I learn anything new?
After a brief introduction in Lesson 1, the useful
content starts in Lesson 2 with installation. The
presenter covers most of the options
encountered on a default install plus some detail
on LVM (Logical Volume Management), but
saves installing a web server until Lesson 8.

Lesson 3 covers some admin tasks, including
selection of a text editor. Nano is presented, but
vim is used through out for its syntax colour
highlighting. If you already love emacs then
you know what to do! Lesson 4 covered
networking, including how the old ‘ifconfig’
command has been replaced by ‘ip’. ssh is
mentioned, as is ufw, the Uncomplicated Fire
Wall. Unfortunately the lessons are only shown
on an installation in a virtual machine (on a
Mac!) and only localhost networking used
within. Later on the topic of virtual webservers
the presenter mentions needing to talk to your
ISP for network addresses and domain name
resolutions, so beyond the scope of these
lessons.

After installing ssh there is no mention of ssh
keys, nor rate limiting attackers with Fail2Ban
or similar.

Lesson 5 is all about software management, apt
and dpkg. In the video they say "apt" supersedes
apt-get and apt-cache in Ubuntu 14.10 and later.
Just in the last month Ubuntu have back ported
apt to 14.04 and it will install with a standard
"apt-get upgrade" (now just "apt upgrade"). A
very useful command I learnt was "dpkg -S

filename" to find which package installed a file
matching that filename.

Disk storage is the topic of Lesson 6. After a
brief look at partitions there is a lot of meat on
the topic of LVM. It is very tempting when
installing to a single (large) disk system to think
LVM is not useful, but it certainly comes into
its own for separating data from software, and
with multiple disks. As someone who has never
chosen LVM the benefits could have been
better explained to me.

In Lesson 7 the presenter covers top, ps, nice
and kill for processes. For services there is
upstart from Ubuntu 14.04 and earlier, and
systemd in 14.10+. In Lesson 8 we install
Apache and learn about how to configure it for
virtual hosts. The presenter's clever trick is to
add the new domain names to /etc/hosts so local
testing will show it working before configuring
external DNS. The presenter also recommends
"apt-get install apache2-doc" which installs all
the documentation in http://localhost/manual/

Overall the videos are good at getting you going
with a web server. If you want to follow along
judicious use of pause button will be needed to
read the commands and output in the screen-cap
sections. The presenter Sander van Vugt is from
the Netherlands and with his accent, and quite
flat delivery style, I needed to concentrate hard
to avoid the beeping distractions of email,
Twitter and the rest of the Internet. At a list
price of $150, I am not sure of the replay value
of the videos for individuals, but in a corporate
environment this is a lot cheaper than having
van Vugt attend to speak in person.

Introduction to
Programming in
Python: An
Interdisciplinary
Approach
By Robert Sedgewick, Kevin
Wayne and Robert Dondero,
ISBN: 97801340769430,
published in 2015, 771 pages

This book has been independently reviewed by
two people.

Reviewed by Barry Nichols

This book is very ambitious, attempting to teach
programming to first year undergraduates of
any scientific discipline. It not only aims to
introduce basic programming concepts, but also
recursion, object oriented programming and the
fundamentals of algorithms and data structures.
I believe this would be challenging for a
computer science student within an
introductory course let alone a student from
another subject, especially if using this book for
self study in addition to their own workload.
However, this book generally explains these
concepts well and contains some interesting
problems from a range of application areas,
including mathematics; physics and biology.

A problem encountered by most beginner
Python programmers is that Python 2 is still
widely used alongside Python 3. The two
versions having significant differences, such as
print being changed to a function and the
behaviour of the division operator on two
integers. The authors go out of their way to
ensure this book is compatible with both
versions. Unfortunately, the approach they take
is to write their own "std" modules which the
student must download and use to accomplish
even basic tasks, without being clearly
instructed to do so. Even the hello world
program requires the module "stdio" for the
function "writeln". This could have been
avoided by using the __future__ module. This
standard Python 2 module allows the use of the
print function and can change the division
operator to be equivalent to Python 3. The
standard Python functions, i.e. without using
the authors modules, are not discussed. This
continues throughout the book, even where the
module functions simply call built-in functions.

If this book was written using Python libraries;
built-in data types; and, where required,
common external libraries such as NumPy and
SciPy it would be a very good introduction to
programming in Python. As it is this book is a
good introduction to several programming
topics in the authors non-standard version of
Python, after which the student must invest
JAN 2017 | | 17{cvu}

more time and effort to learn the actual Python
programming language.

Reviewed by Jim Segrave

The title is a bit misleading – this is not a book
for learning to program in Python, it is on
overview of the sorts of subjects university
computer science courses will cover. It does
teach some things about Python programming
as part of showing how problems can be solved,
but it is hardly complete in that area; for
example list comprehensions are never
mentioned, dictionaries appear only in passing
in the last chapters of the book.

As might be expected given the authors, there is
a heavy emphasis on algorithms and the use of
recursion in particular. It is assumed the reader
is a science or engineering student, the vast
majority of the exercises deal with
mathematical concepts that occur in such an
environment. However it is not a text on design
and analysis of algorithms, it does not delve
deeply into the mathematics behind analysing
time and memory usage.

The book does put a heavy emphasis on good
programming practices – tasks should be
broken down into functions which have single
purpose, programmers should pay attention to
and measure how programs perform as a
function of input size, advice on how to choose
an API when building modules as part of a
larger program, etc. There are a huge number of
interesting challenges in the exercises for each
chapter which can keep the reader busy for
quite some time.

In summary, this is not a book you will keep as
a reference on your bookshelf, you won’t be
going back to it over and over again. From a
learning Python perspective, this is not what
you will want. From a comp-sci perspective, I
found too much of the treatment to be
insufficient in depth. It’s a good overview of
what there is to learn in the field, but doesn’t
treat any of the topics sufficiently on its own.

Designing Software
Architecture. A
practical approach
Reviewed by Marco Dinacci

Designing Software
Architecture eschews formal
architectural models such as
the IEEE standards or the
“4+1” view model and provides instead a more
practical (according to the authors) view of
architecting a software system. The authors
refer to the design process they adopted as ADD
Attribute-Driven-Design (ADD).

The book is essentially split into four main
sections.

The first part is a definition of architectural
design and is mostly aimed in my opinion to
new software architects. The second part goes

into the description of the ADD architectural
design process. The third, probably the most
useful part of the book, focuses on use cases.
This is where one can actually see what ADD
involves in practice. The last part are
appendixes on design useful for reference.

The first part of ADD consists on capturing
functional and non functional requirements
using what the authors call Use Case Model,
Quality Attribute Scenarios and Constraints.

There is a refreshing focus on iterations in this
methodology, which is something usually
missing from other architecture methodologies
but still enough rigour so that an inexperienced
architect won’t feel lost during the process.

The first part of the design process is about
capturing the overall software architecture in
text and diagrams and recording the design
decisions. The last bit of the first iteration is
about cross-referencing the use case model with
the chosen architecture to make sure all use
cases are addressed.

The second iteration is about selecting
technologies and explaining the rational for
selecting one or another. The following
iterations goes more in detail into aspects
specific to the chosen architecture.

Overall I recommend this book to all software
architects. ADD may not be the most suitable
methodology for every project but it’s another
tool at our disposal. The use cases are well
described and serve as a reference while
attempting to use this system in the real world.

Test-Driving
JavaScript
Applications
By Venkat Subramaniam,
ISBN-13: 978-1680501742

Reviewed by Paul Grenyer

I wanted to start this
review simply with
"Wow! Just wow!", but that’s not really going
to cut it. It’s true to say that when I first learned
that there was going to be a book published
called "Test-Driving JavaScript Applications" I
was sure it was going to be the book I had been
waiting for since at least late 2007 when I was
forced to write JavaScript in production for the
first time. It’s publication date was pushed back
and back, so it really felt like I was being made
to wait. However, I wasn’t disappointed and
this book was everything I hoped it would be
and more.

We all know JavaScript is evil, right? Why is it
evil? It’s the lack of a decent type system, the
forgiving nature of the compilers and an
inability to write meaningful unit tests,
especially for the UI (User Interface). It’s
difficult to do a huge amount about the first two
points, but now JavaScript can be meaningfully
unit tested, even in the UI context, with Karma,
Mocha and Chai. Test coverage can be

measured with Istanbul and System Tests
(referred to by Subramanian as Integration
Tests - this is my one bugbear with the book)
written with Protractor. All of this is described
in Test-Driving Java Applications.

I think it’s important to read all of part 1,
Creating Automated Tests. The chapters cover
everything you need to know to get started
writing unit tests for both server side code and
UI code, how to test asynchronous code (very
important in JavaScript) and how to replace
dependencies with test doubles such as fakes,
stubs and spies. It’s all demonstrated with a
completely test first approach with excellent
commentary about how this leads to good
design.

I cherry picked from part 2, Real-World
Automation Testing. I was only really
interested in how to write automated tests for
the DOM and JQuery and how to write
‘Integration’ tests. Other chapters included how
to write tests for Node.js, Express and two
versions of AngularJS. The DOM and JQuery
chapter was excellent showing me exactly how
to take advantage of test doubles to write fully
tested JavaScript without having to fire up a
browser, resulting in something I can make
immediate use of.

The Integrate and Test End-to-End chapter,
which describes how to use Protractor, was
almost enough to encourage me to abandon
Java (Selenium) for System Tests and move to
JavaScript. However, while looking at the latest
version of Selenium, there are some other
things I want to investigate first.

The final chapter, Test-Drive Your Apps is the
equivalent of Pink Floyd playing Run Like Hell
at the end after Comfortably Numb. It’s still
good, but is really there to help you wind down
from the climax and could just as easily have
been omitted, but it would feel a bit odd if it
was.

If there was one more thing I could get from this
book it would be how to send test and coverage
results to SonarQube.

If you want to use JavaScript, intend to use
JavaScript or are forced to use JavaScript, get
this book and automated the testing of your
JavaScript.
18 | | JAN 2017{cvu}

accu ACCU Information
Membership news and committee reports
View from the Chair
Bob Schmidt
chair@accu.org

Today is Thanksgiving in the U.S. That means
a four-day holiday for some of us. But there’s
no rest for the weary, as I have to get this article
written, and then I have to finish my Hour of
Code [1] presentation. I committed to talking to
approximately 50 ten- to 13-year-old students
(5th through 8th grade) on December 5th,
which is just fantastic because I have absolutely
no recent experience talking to any large group,
and less experience talking to children. If I
survive the experience, I’ll provide you with an
update in the next CVu.

Diversity statement
The Diversity Statement was given final
approval during our bi-monthly committee
meeting held on November 19th, and has been
published on the ACCU website [2]. Thank you
to all who participated in its drafting and
refinement.

ACCU Conference 2017
The 2017 ACCU conference is scheduled for
Wednesday, April 26th through Saturday, April
29th, with pre-conference tutorials on Tuesday
the 25th [3]. The schedule for the conference
will be announced on January 20th. The
conference once again will be held at the
Marriott City Centre in Bristol, UK. Members
of ACCU get a discount on the conference – if
you are not already a member, please join the
organization and take advantage of the benefits
of membership. Go to https://accu.org/
index.php/joining to get started.

Just announced (well, ‘just’ being while this
was being written) – Herb Sutter will be giving
one of the keynote presentations at ACCU
2017.

Code of conduct
The conference committee has published a
Code of Conduct on the ACCU website [4].
This Code of Conduct will apply to all events
run under the aegis of ACCU and all its local
groups, and will evolve as necessary. If you are
running an ACCU event, presenting at an event,
or planning to attend an event, please be aware
of your rights and responsibilities under the
code.

Election of officers
The ACCU Annual General Meeting will be
held in conjunction with the conference, on
Saturday April 29th. An important part of the
AGM is the election of officers to serve on the
committee for the coming year [5]. Serving on
the committee is a great way to give back to the
organization. To find out more about being a
committee member, or if you are interested in

serving on the committee for the 2017–2018
term, please contact me or one of the other
committee members.

Conference web site improvements
The new conference session proposal
submission system has been up and running
since mid-November. After a bit of a shaky
start, the major problems were sorted and the
system made available to prospective speakers.
Conference Chair Russel Winder reports the
system is not pretty, but is functional. He is
hoping that this time next year it will be a lot
smoother, and prettier.

Committee spotlight
Matt Jones has been a member of ACCU since
2005, and our Membership Secretary since
2014 (taking over from Mick Brooks after his
seven year term). Matt started programming
with BBC Basic, and then learnt C on a summer
job between school and VI form. He did a four
year mixed electronics and software degree at
Southampton, but took all the software options.
He’s been programming professionally for over
20 years, becoming freelance 2 years ago. He
works mainly in C++ but occasionally reverts to
pure C when required, and sometimes Python.
Most of his work has been on large real time
and/or embedded systems. When bit bashing he
misses the freedom of working at high level, but
when the tables are turned, he eventually gets
bored with the abstracted nature of high level
code and yearns to get dirty with hardware
again. At the moment he is writing GUI code in
C++11 and Qt 5.7 – about as advanced as he’s
ever been!

The duties of the membership secretary are

varied. Usually the signup/pay/renew cycle is
handled electronically by the web site, and
automatic credit card payments are handled via
Worldpay. Corporate members who require
invoices, and members who pay by standing
order or cheque, have to be dealt with by hand
which includes poring over the bank statement
once a month to tie payments back to members.
Once a month, the address lists for the magazine
have to be prepared and sent to the company
who print and distribute them for us. Once the
paper copies are out, the excess from the print
run is delivered to Matt’s house, where he stores
them for up to a year. This is in order to supply
back issues on request, for members who have
missed copies, and marketing hand outs (e.g.
for local groups, and at the conference). Postal
delivery problems (i.e. ‘Return to sender’) also
end up in his post box, at which point the
member is contacted and the problem resolved.
Matt knows his local post office quite well.
Official duties include preparing a yearly report
for the AGM, regular reports to the committee,
and being a signatory for cheques.

Call for volunteers
I have been ‘advertising’ for an auditor (to
replace me) for the past several issues, without
success. It has been suggested that perhaps the
duties of the auditor were unknown and
mysterious – a description of the position does
not exist on our website or in the constitution –
and this could be the reason no one has stepped
forward. Well, I can rectify that.

The role of an ACCU auditor is to conduct a
high-level review of the accounts which have
been prepared by a professional firm of
Accountants using information supplied by our
Treasurer. The auditor is expected to question
any unusual transactions, ask for evidence to
support transactions, verify assets, and ensure
that the accounts provide an accurate statement
of ACCU’s financial situation. A detailed
investigation into every single transaction is not
usually required, nor is the auditor expected to
duplicate the work of the Accountants.

The work is not particularly difficult; it’s a bit
like balancing a cheque register. Familiarity
with, and access to, Microsoft Excel is helpful
as that is how the records are kept.

There should be two auditors at all times,
serving two-year stints, with one auditor being
replaced each year. By design, auditors are
separate from, and independent of, the
committee. Auditors report their findings to the
committee. If all is in order the Chair signs the
audited financial statement on behalf of the
organization.

We still have several other open positions:

 The ACCU web site uses Xaraya, a PHP
framework that has been moribund for the
last 4 years at least, and a replacement is
overdue.

 We are hoping to recruit someone to assist
Martin Moene with the web site sys admin
duties.

 Please contact me if you are interested in any of
these positions.

Local groups
Nigel Lester, our Local Groups Coordinator,
reports that local groups Meetup membership
has grown by five percent in the past two
months, and by approximately 50% since the
beginning of the year. To those of you who have
joined a local Meetup group this year –
welcome. If you have not already done so
please consider becoming members.
Membership entitles you to print copies of our
journals, discounts to the annual conference,
and the ability to participate in the direction the
organization takes through voting and
committee activities [6].

Finally, with magazine production schedules
being what they are, by the time you read this
our calendars will have rolled over to 2017. On
JAN 2017 | | 19{cvu}

https://accu.org/index.php/joining
https://accu.org/index.php/joining

accuACCU Information
Membership news and committee reports
REVIEWS

behalf of your ACCU committee I wish you a
happy, safe, healthy and prosperous New Year.

References
[1] Hour of Code https://hourofcode.com
[2] ACCU Diversity Statement

https://accu.org/index.php/aboutus/
diversity_statement

[3] ACCU 2017 https://conference.accu.org/
site/index.html

[4] ACCU Code of Conduct
https://conference.accu.org/site/stories/
coc_code_of_conduct.html

[5] I know that we just had a Special General
Meeting and election. The realities of
CVu’s publishing schedule means that this
issue may be a little early to be thinking

about the AGM election, but the next issue
may be leaving it too late.

[6] Yes, I am aware that this magazine is
distributed and available online to
members only; however, copies are made
available to local groups, so I am hopeful
that this message will be read by
prospective new members.
20 | | JAN 2017{cvu}

 Provide answers, not information

 Don’t make people hunt for
solutions to their problems

 Help them get the job done

 Let them decide how much they
need to know... and when they
need to know it

Start 2017 as you mean to go on

If your current strategy is to make sure everything is covered
somewhere, you may need to rethink your approach...

If you need some help in developing a
user‐assistance strategy, get in touch.

www.clearly‐stated.co.uk

https://hourofcode.com
https://accu.org/index.php/aboutus/diversity_statement
https://conference.accu.org/site/index.html
https://conference.accu.org/site/index.html
https://conference.accu.org/site/stories/coc_code_of_conduct.html

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

To �nd out more about Intel products please contact us:

020 8733 7101 | enquiries@qbssoftware.com
www.qbssoftware.com/parallelstudio

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner.

FASTER APPLICATIONS OUTSIDE

CREATE FASTER CODE, FASTER
Reach new heights on Intel Xeon and
Intel Xeon Phi processors and coprocessors
with new standards-driven compilers,
award-winning libraries and
innovative analyzers.

Intel Parallel Studio XE Composer Edition
for Fortran Win Commercial Licence (SKU: 349062) £639⁵⁰

	CVu28-6-final.pdf
	No obvious deficiencies
	Speak Up! (Part 2)
	A Case of Mistaken Identity
	Turnabout is Fair Play
	How Do You Read?
	A Class What I Wrote
	Kate Gregory: An Interview
	Code Critique Competition 103
	View from the Chair

