

Start a free 30-day trial
jb.gg/cpp-accu

A Power Language
Needs Power Tools

ReSharper C++
Visual Studio Extension
for C++ developers

CLion
Cross-platform IDE
for C and C++ developers

AppCode
IDE for iOS
and OS X development

Smart editor
with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation
and navigation
Generate menu,
Find context usages,
Go to Symbol, and more

Reliable
refactorings
Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound
code analysis
On-the-fly analysis
with Quick-fixes & dozens
of smart checks

GET A C++ DEVELOPMENT TOOL
THAT YOU DESERVE

NOV 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Necessary technology
here is much ado in the media at the moment
about the Internet of Things. Specifically it’s
been precipitated by the recent occurrence

of ‘the Internet is broken’, wherein several
high-traffic and high-profile Internet presences
were unavailable – to pretty much everyone in
Europe and North America. The reason for the
outage was that key DNS servers run by Dyn were
suffering a Denial of Service attack – since
reported to have been the largest on record. My
understanding from several sources is that Dyn in
particular coped with the attacks, and the outages, very
well under the circumstances, but that’s not really what
I’m writing about. It seems that much of the traffic that
caused the problems was sourced from, or routed
through, the so-called IoT – the Internet of Things.
Web-cams, baby monitors, tooth-brushes, printers,
refrigerators, who knows what else.

Some devices require access to the Internet in order
to be useful – for example, if you have a broadband
router, it would not be very useful without access to
the Internet. The problem, of course, is that without
sufficient security, access to the Internet means access
from the Internet, too. Some devices, on the other hand,
do not require access to the Internet but have it because
it’s become fashionable. I’ve already mentioned some such devices. It’s a problem
because these devices are extremely resource-restricted (you can’t get much
processing power onto a toothbrush), and there simply isn’t space for the extra
security needed to make them resilient. I do, however, question the necessity of their
connectedness. I’ve alluded (cynically, yes) to the marketability of being an on-line
device, and it’s a bandwagon that’s being overwhelmed by a huge variety of
seemingly innocuous devices which, frankly, aren’t up to the job of doing it securely.
A lack of security in one device has the potential to put entire residential networks at
risk, with the subsequent fall-out in identity theft, online fraud and so on.

Is there something that the software community at large can do to help? And how
does one change the default password on a toothbrush, anyway?

It will come as no surprise to anyone that this is a topic to which I will return...

T
Volume 28 Issue 5
November 2016

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Pete Goodliffe,
Chris Oldwood, Roger Orr,
Clint Swigart

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | NOV 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
15 ConFoo

Clint Swigart
introduces a multi-
discipline
conference in
Canada.

16 Code Critique Competition
Competition 102 and
the answer to 101.

REGULARS
19 Members News

SUBMISSION DATES
C Vu 28.6 1st December 2016
C Vu 29.1: 1st February 2017

Overload 137:1st January 2017
Overload 138:1st March 2017

FEATURES
3 Speak Up!

Pete Goodliffe urges us to speak to the
animals (that is, to other developers).

4 Delivering Bad News from QA
Silas S. Brown describes how not to report your
senior colleague’s bug.

6 Commit Checklist
Chris Oldwood goes through the motions of
version control.

11 On High Rollers
A student investigates the Baron’s last puzzle.

14 A Commoner’s Response
Roger Orr offers an analysis of the Baron’s last game.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer #101
Speak Up!
Pete Goodliffe urges us to speak to the animals

(that is, to other developers).

The single biggest problem in communication is
the illusion that it has taken place.

~ George Bernard Shaw

t’s the classic stereotype of a programmer: an antisocial geek who
slaves alone, in a stuffy room with dimmed lights, hunched over a
console tapping keys furiously. Never seeing the light of day. Never

speaking to another person ‘in real life’.

But nothing could be further from the truth.

This job is all about communication. It’s no exaggeration to say we
succeed or fail based on the quality of our communication.

This communication is more than the conversations that kick off at the
water cooler. Although those are essential. It’s more than conversations in
a coffee shop, over lunch, or in the pub. Although those are all also
essential.

Our communication runs far deeper; it is multifaceted.

Code is communication
Software itself, the very act of writing code, is a form of communication.

This works several ways...

Talking to the machines

When we write code we are talking to the computer, via an interpreter.
This may literally be an ‘interpreter’ for scripting languages that are
interpreted at runtime. Or we communicate via a translator: a compiler or
JIT. Few programmers these days converse in the CPU’s natural
language: machine code.

Our code exists to give a literal list of instructions to the CPU.

Every so often, my wife leaves me a list of jobs to do. Make dinner, clean
the living room, wash the car. If her instructions are illegible, or unclear,
I won’t do what she actually wants me to. I’ll iron the cutlery and hoover
the bathtub. (I’ve learnt to not argue, and do what I’m told, even if it
makes no sense to me.) If she wants the right results, she has to leave me
the right kind of instructions.

It is the same with our code.

Sloppy programmers are not explicit. The results of their code can be the
equivalent of ironed cutlery.

Code is communication with the computer. It must be clear and
unambiguous if your instructions are to be carried out as you
intend.

We are not talking in the CPU’s mother tongue, so it’s always important
to know what nuances of its language get lost in translation to our
programming language. The convenience of using our preferred language
comes at a cost.

Talking to the animals

Although your code forms an ongoing conversation with your mechanical
friend, the computer, it does not just speak to a CPU.

It speaks to other humans, too – to the other people who share the code
with you, and who have to read what you have written. It is read by the
people you are collaborating with. It is read by the people who review

your work. It is read by the maintenance programmer who picks up your
code later on. It will be read by you when you come back in a few months
to fix nasty bugs in your old handiwork.

Your code is communication to other humans. Including you. It
must be clear and unambiguous if others are to maintain it.

This is important.

A high-calibre programmer strives to write code that clearly
communicates its intent. The code should be transparent: exposing the
algorithms, not obscuring the logic. It should enable others to modify it
easily.

If code does not reveal itself, showing what it does, then it will be difficult
to change. And the one thing we know about coding in the real world is
the only constant is change. Uncommunicative code is a bottleneck and
will impede your later development.

Good code is not terse to the point of unreadability. But neither is it
lengthy and laboured. And it is most definitely not filled with comments.
More comments do not make code better, they just make it longer – and
probably worse as the comments can easily get out of sync with the code.

More comments do not necessarily make your code better.
Communicative code does not need extra commentary to prop
it up.

Good code is not trickily clever, deftly using ‘advanced’ language
features to such aplomb that it will leave maintenance programmers
scratching their heads. (Of course, the amount of head scratching does
depend on the quality of the maintenance programmers; this kind of thing
always depends on context.)

The quality of our expression in code is determined by the programming
languages we choose to use, and in how we use them. Are you using a
language that allows you to naturally express the concepts you are
modelling?

We must talk the same language at the same time, or we’ll suffer a biblical
Tower of Babel cacophony. The team working on a section of code must
write in the same language; it’s not a winning formula to add lines of
Basic to a Python script. If your entire application is written in C++, then
the first person to add code in another language had better have a
compelling reason.

However, even in an environment using the same programming language,
it is possible to use different dialects and end up introducing
communication barriers. You may adopt different formatting
conventions, or employ different coding idioms (e.g., using ‘modern’
C++ versus ‘C++ as a better C’).

Of course, using multiple programming languages is not evil. Larger
projects may legitimately be composed of code in more than one
language. This is a standard for big distributed systems

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
NOV 2016 | | 3{cvu}

Speak Up! (continued)
where the backend runs on a server in one language, with remote clients
implemented in other, often more dynamic, browser-hosted languages.
This kind of architecture allows you to employ the right kind of language
for each task. We see here yet another language in play: the language that
those parts communicate through (perhaps a REST API with JSON data
formatting).

Consider also the natural language you program in.
Most teams are based in the same country, so this is
not a concern. However, I often work on multi-
country projects with many non-native English
speakers. We made a conscious choice to write all
code in English: all variable names, comments, class
or function names, everything. This affords us a
degree of sanity.

I’ve worked on multi-site projects that didn’t do this,
and it’s a real problem having to run code comments
through Google Translate to work out if they’re
important or not. I’ve been left wondering whether a
variable name has a Hungarian wart at the start, is misspelled,
abbreviated, or if I just have a very bad grasp of the natural language used.

How well code communicates depends on the programming
language, idioms employed, and the underlying natural
language. All these have to be understood by the readership.

Remember that code is read by humans far more often than it is written.
Therefore, it should be optimised for reading, not for writing. Use a
concise construct only if it’s easier for someone else to understand, rather
than easier for you to type. Follow a layout convention that reveals intent
clearly, not one that requires fewer keystrokes.

Talking to tools

Our code communicates even further – to other tools that work with it.
Here ‘tools’ is not a euphemism for your colleagues.

Your code may be fed into documentation generators, source control
systems, bug tracking software, and code analysers.
Even the editors we use can have a bearing (what
character set encoding is your editor using?).

It isn’t unusual to add extra directives to our code to
sate these processors’ whinging, or to adapt our code
to suit those tools (adjusting formatting, comment
style, or coding idioms).

How does this affect the readability of the code?

Next time
So: code is communication. It’s the kind of
communication we continually strive to improve on.

In the next instalment we’ll step beyond this, and look at how to improve
our interpersonal communication. We’ll consider how we communicate
with other people, with the wider development team, and even – shock
horror – with the customer. 

Questions
 How clear is the code you write?

 Does it always communicate your intent?

 What can a programmer do to improve communicate when using
code as a medium?

 Should the code you write be adjusted based on the audience you
expect for it (e.g. the make up of the team that are working on it)?

it’s a real problem
having to run code
comments through
Google Translate to
work out if they’re
important or not
Delivering Bad News from QA
Silas S. Brown describes how not to report your

senior colleague’s bug.

s I type this on a vintage 1999 Psion Revo (remember them?), my
Cantonese wife of 18 months is tapping away into LibreOffice on
her old laptop (whose malware-infested Windows I upgraded to

Linux shortly into our marriage), on the kitchen table of my parents’
house in a West Dorset village (we’re visiting them this week),
occasionally calling me over to check some aspect of English grammar.
She is writing to a Nature journal about a C program I wrote which we
hope will speed up cancer research teams across the world. But just last
week, that same program caused her to feel so bullied by a senior
colleague that she resigned, took her notice period off sick and doesn’t
want to go anywhere near a research lab again.

About a month previously, my wife had been asked to check batches of
molecular primers for a battery of DNA tests and ended up waiting on into
the night for the lab’s computer to finish simulating their mutual
interactions, then bringing home the Visual Basic 6 program which we
tried to run on WINE but it got nowhere all weekend (I later found her
input was one or two orders of magnitude larger than what that program

was designed to take). So I sat her down and fired off a string of stupid
non-biologist questions until I’d coaxed out a specification that I could
use as a starting point for re-implementing the thing, except my version
was in C with bit-pattern techniques (making full use of 64-bit registers to
test many DNA bases at a time) and OpenMP parallelisation. Because this
ran literally thousands of times faster than their Visual Basic affair, it
opened up the possibility of simulating on larger scales and automating
more aspects of the pooling process; I added the extra features they
needed, and it seemed none of the other pieces of software out there had
features in just the right combination for that kind of cash-strapped cancer
research lab (I heard the principal investigator was trying to employ three
assistants on a grant that was meant to be for one, so they obviously

A

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
4 | | NOV 2016{cvu}

needed to conserve resources at every turn and that’s why optimisation
was important). Everyone seemed excited that I’d been able to write what
they needed.

But then it turned sour. We tested the software by asking it to check the
mutual interactions in a set of pools that had been meticulously derived by
hand by one of that lab’s senior academics a couple of years earlier, and
it pointed out 11 amplicon overlaps [1]. That
academic was supposed to have eliminated all
amplicon overlaps, and had done a pretty good job
of getting rid of hundreds of them, but the fact that
there’d been 11 left called into question their work
and potentially the lab’s results for the last 2
years. We carefully checked if my software report
was incorrect. It wasn’t. My wife went to the lab
and basically said ‘look how good our software is:
it found these 11 mistakes in Dr X’s work’. And
said senior academic took things very badly and,
I’m told, began the workplace bullying that led to
my wife’s resignation as previously mentioned.

I should have insisted on going to her lab myself to present the software
and take Q&A. Not because I’m macho (which I’m not over much), nor
because my visual impairment deprives the bullies of one of their
dimensions of expression, nor because I have the experience of being
physically bullied by dozens of boys in primary school and therefore
ended up with a wider sense of perspective, but simply because, as a
programmer, I know that bugs can happen to anybody. I could have
included in my presentation tales of Cambridge professor Sir Maurice
Wilkes finding a bug in his second EDSAC program in the late 1940s, and
no doubt other examples to show that to err is human (no matter how
clever you are) and it’s good for all of us to run our work through some
form of automated testing, and that sanity-checking tools that work well
are good no matter who we are (note the ‘we’; it sounds better than ‘you’
when the subject is human error). One does not join an organisation and
within months walk up to seniority (especially non-programmers) and say
‘I found a bug in your work’ (so there). One says ‘I was trying to put your
work through this compiler and it said this; do you think that’s a
problem?’ or some such. (Make sure to say it was the compiler that found
the problem, not you. You might have thought finding problems gets you
credit, but it might instead get you some wrath.) Non-programmers are not
used to bug reports, so we have to be tactful especially if we’ve just
developed a new QA tool that’s throwing up newly-discovered problems
(after all, it’s also possible the tool is simply wrong to flag up all that).
Unfortunately I didn’t think to warn my wife about all this in advance; she
didn’t have previous experience delivering such reports to senior non-
programmers and she naturally put the proverbial foot in it. I honestly
don’t know how far their project is going to get now she’s left, and let’s
not even think about how many more patients die while things are

delayed. At least we’re still trying to get the software past peer review so
other labs can start using it (I asked an old classmate who now works in a
commercial bio lab and she basically said ‘sounds good but tell me when
it’s gone through peer review’; many labs have a policy of not being the
first to try new tools, so having it published in a medical journal is
important).

Once our Nature paper is ready to submit, we take
the daily village bus (which my late grandmother
campaigned for and subsequently couldn’t use) to
visit the public library of the small nearby town
(around which my parents lived all their lives),
where we have to battle with Windows against a
time limit – shorter than expected because
somebody else had booked the computer, and
they’ve locked down the configuration so I can’t
turn up the print size or type in the Dvorak
keyboard layout, and accidentally muttering ‘for
goodness’ sake’ gets me told off for swearing in
the library – but we somehow get it done. Two

days later, I am able to briefly get a signal in the village by holding my
mobile phone against a tree on the hillside (the capacitative coupling
seems to help) and we see Nature thought our paper was too specialist for
them. Their response is a model of how to say this the right way: they
specifically said they didn’t doubt the technical quality of our work or its
interest to others working with primer pools; they just didn’t think the
advances presented would have sufficiently significant immediate impact
on the broader readership. They wanted to return it to us as soon as
possible so it can be sent elsewhere without delay. My wife is very happy
about this and says we will look at it once we’re back in Cambridge
(perhaps we’ve done enough of rushing it from the rurals). We’ll probably
try the Oxford Bioinformatics journal (I wouldn’t want to task our very
own Frances Buontempo with assembling a medically-qualified peer
review team for an Overload paper).

If we could all train ourselves to be as nice as those Nature editors when
reporting problems within an organisation, perhaps our professional
relationships would be a tiny bit better. Perhaps.

Postscript: Shortly after we returned, my father succumbed to his illness
and passed away. We immediately made a second visit to Dorset and
wrote the second paper while there, which my wife decided we should
send to Nucleic Acids Research. That editor felt it’s still off-topic but was
kind enough to transfer it to another journal which might be appropriate;
their decision is still pending. 

Note
[1] An amplicon overlap is the error of placing primers for two

overlapping sections of the DNA into the same pool.

to err is human (no
matter how clever you

are) and it’s good for all
of us to run our work

through some form of
automated testing
NOV 2016 | | 5{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines.
We need articles at all levels of software development experience; you don’t have to write about rocket science or
brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

In The Toolbox # 15
Commit Checklist
Chris Oldwood goes through the motions of version control.

nce I’ve finished the inner development cycle for a new feature or
bug fix – write tests, code, build and run – it’s time to think about
committing those changes and therefore publishing them to a wider

audience, i.e. my team. With the fun part out of the way, it’s quite easy to
rush this last stage and therefore publish a change that falls short in some
way, either from a short or longer term perspective. At its most disruptive,
it could be the code which is broken through lack of proper integration or
a partial (or overzealous) change-set that excludes (or unexpectedly
includes) files or code that was never intended to be published. On the
flip-side, the actual code might be good but the cohesiveness or
surrounding documentation may be lacking, therefore making future
software archaeology [1] harder than it need be.

VCS tool differences
Although the mental checklist I follow when committing any change is
pretty much the same, there are some significant differences that have
emerged due to the version control product I might be using. For the
purposes of this article, I’ve tried to talk about ‘publishing’ a change when
I mean the act of making it visible to the outside world. In a classic
centralised VCS like Subversion the act of committing and publishing are
one and the same (private branches notwithstanding), whereas for a
distributed VCS like Git they are distinct steps. The latter (DVCS) brings
a number of affordances over the former (CVCS) around committing that
are particularly useful at commit time.

Hence the general order that these steps are done are somewhat dependent
on the VCS tool in use. For example with a CVCS like Subversion where
you have (had) no ability to commit to an integration branch locally first,
you need to consider how you’ll address the implicit merge that will occur
as part of the integration step. In contrast with Git, you can focus on the
steps one at a time – get your commit sorted, then integrate other’s work,
and finally tidy up before publishing.

In this article I’ve ordered the steps more like the CVCS world (review,
integrate, then commit & publish) rather than the DVCS style (review,
commit, integrate, then publish). Either way, the checklist I’ll describe is
essentially portable, it’s just a little easier when you have more time
between getting your house in order and showing it to the world at large.

Preparing the change-set
The first thing to do after hacking around the codebase trying to get the
bug fixed or the feature added is to ensure the set of changes that will
comprise the eventual commit is ‘clean’. This means that what we
eventually commit is what we intended to commit – no unexpected side-
effects caused by transient workarounds, accidents or interference from
the IDE and tools.

As a starter for ten, the code needs to compile and the tests need to pass.
It’s all too easy to make localised changes and run just the handful of tests
that you believe is required to verify the change is working. Before
committing, we need to take a step back as we switch mind-set from
creator to publisher so, after a deep breath, I need to run the build script

which should clean the workspace, compile the code and run all the
necessary tests to give me the confidence I need to promote the change.
It’s important that the build script I use is the same one that my team-
mates and the build server will use so that we all agree on what process is
used to create the final deliverable.

I make an extra special effort to deep cleanse my workspace before doing
the final build because too often in the past I’ve been caught out by stray
artefacts leftover from development that have somehow managed to taint
the change and make it appear to work. The CI server should be working
from a fresh workspace and therefore I try and do the same, albeit by
cleaning up rather than creating a fresh one. With Git, it’s as easy as git
clean -fdx, but with other VCS tools I manually write a script [2] to
do it.

Reviewing the change-set
With a (hopefully) minimal set of edited files and folders in my working
copy, the next step is to verify that only the code I intended to change
exists there. During development or manual testing I may have
commented out some code, tweaked a default value or adjusted the
configuration to get things into a known state for such testing. Or perhaps
a tool did something I didn’t realise and I need to back that out because it
happened by accident.

Alternatively I may have added a new setting that I defaulted for the tests
but which needs applying to other environments too. With the rise of
automated refactoring tools and smarter IDEs many of the changes we
make might now be done for us. However, a tool like this will only go so
far and try to keep the code intact after each small edit, but it’s common
for a single small refactoring, such as the deletion of code, to unearth
further similar refactorings. Static code analysis is usually limited to
advising on the current snapshot instead of chasing the turtles all the way
down, so we still have to do that bit manually.

In essence the review step may need to be done a number of times as we
identify a problem with the change, make a correction, potentially re-
build and re-run the tests, and then review the change once more in the
context of the revised change-set.

Reviewing the code structure

My reviewing process probably follows that of most other people –
initially I look at the set of files that have been added, modified or deleted.
Depending on the type of change it might be mostly source code or project
files / package configuration. Whilst scanning the list of files, I’m looking
for anything that’s obviously out of place, such as a project file change
when I haven’t added a new class, or a source file in a namespace that I
wouldn’t expect to have changed that might indicate some unintended
coupling. Design smells that come out of this structural review usually get
logged in my notebook [3] for later consideration (the discipline of
staying out of the bigger rabbit holes is a tricky one to master).

The converse is also true – there may be files I’d expect to change if I
changed at least one of them. For example adding a new setting to the
DEV configuration probably means I need to do the same for other
environments. Another is the updating of project dependencies as the
version number usually causes a ripple across a couple of files such as the
package configuration and project file. The same occurs at a higher level
too – if a production code project file changes the associated test ones
should too.

One mistake that’s less of an issue with modern VCS tools is accidentally
checking in temporary files because now they tend to support an exclusion

O

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise-grade technology
in plush corporate offices. He also commentates on
the Godmanchester duck race and can be easily
distracted via gort@cix.co.uk or @chrisoldwood
6 | | NOV 2016{cvu}

list (e.g. .gitignore). Before this feature, you needed to be careful you
didn’t accidentally check-in some binary artefacts or per-user tool
configuration files as it could cause very odd behaviour for your team
mates. My clean script would ensure they were deleted before the review
thereby side-stepping the issue, but tool upgrades and refactoring meant
that the script still needed revisiting now-and-then and so I’d still be on
the lookout at this stage for files which have escaped the ignore list.

Reviewing the code itself

Naturally the part we are probably most interested in is reviewing the
actual code. First we need to ensure that what we think we changed was
what we actually changed and that are no hangovers from spikes, testing,
etc. I may have also commented out some code with the intention of
deleting it before publication and so I need to make sure I actually did this
as checking in commented out code is almost always a mistake.

In the pre-commit review, I’m not looking at the code changes from the
perspective of ‘does it work, does the design make sense and does it meet
the guidelines’, I’m looking at it to see if the diff makes sense to the future

r eade r . Whe n the
software archaeologist is
looking back over the
revision history they are
of ten looking a t the
evolut ion of change
rather than each snapshot
in isolation. This is why
you often hear the advice

about not checking in functional and formatting style changes in the same
commit – it makes it hard to work out what the former is if it’s buried in
the latter. That doesn’t mean I don’t care about the more traditional style
of code review, it’s just that I would have done all that before I even get
to the commit stage.

I tend to look at diffs in two different ways depending on the change and
how much I want to see of the surrounding context. The classic patch
format where you only get to see the actual change and the odd line of
context either side is great for simple changes where I just expect some in-
place editing to have occurred. In large files this avoids all the scrolling
around or navigating you might need to do as it usually fits on a single
screen. Sadly many diff tools show the patch format highlighted on a per-
line basis and so simple character changes can be harder to spot, but they
are great for quickly eyeballing change sets you do frequently, such as
updating 3rd party package versions.

The other diff view I use is the more fully featured 2-way (and 3-way for
a merge) diff tool that shows the entire file with highlighting around the
changes, e.g. KDiff3. I find these tend to make small intra-line changes
and block movements a little more visible. When the change is a
refactoring, I’m often more interested in seeing all the surrounding code
because if a tool is involved it will limit its scope and seeing the change
in situ often points out new inconsistencies that have resulted from the
surgical precision of the tool.

Whilst I’m happy with the command line for many VCS tasks, diff’ing is
one place where the GUI still does it for me. This includes both the
structural and code reviews. I’ve found tools like TortoiseSvn (Git) or Git
Extensions allow me to quickly execute different actions to clean up a
change set. For example I might need to revert a few mistakes, scan the
commit log of others, the odd blame here-and-there, and finally diff the
lot.

Yes, you read that right, I always diff every change I commit. If that
commit contains a lot of edits then it’s a lot of files to diff, but I decided
I’m not going to compromise on this principle because it takes time. In
fact the more files in the change-set the more inclined I feel to review it
thoroughly exactly because there is a greater chance of something
untoward creeping in. Instead what it’s taught me is that it’s preferable to
work on smaller units of change (which fits the modern development
process nicely), but also to find an easier way to quickly review changes.
The patch-style diff format presented as a single unified diff pays off

handsomely here for boiler-plate changes as you can very quickly eyeball
the entire set and commit it if turns out to be clean.

Splitting up changes

Even when you are doing continuous integration where you are
committing incremental changes every few minutes or hours, it’s still
possible that a part of your overall change ends up fixing something
tangential to the task at hand. I often try and use different tools or
techniques when I can to exercise the codebase and tools in different ways
to find those less obvious non-functional bugs. For example running a
build or test script via a relative path often shows up poor assumptions
about the relative path to any dependent scripts or tools. Whilst not
essential to the product they are jarring and interrupt your flow.

When these kinds of minor bugs show up, I like to fix them right away as
long as they really are trivial. This means that the entire change set will
probably include two different logical changes – one for the task I’m
doing and the other for the bug I fixed whilst developing it. Logically they
are distinct changes and therefore I’d look to commit them separately.
However, this extends further than per-file changes: it may be two
independent changes within the same source file. Historically you’d either
have to manually split these commits out or commit them together and
make it clear via the commit message that there were two different
motives for the change. Luckily modern tools like Git make it possible to
easily to split a single bunch of edits to one workspace into separate
coherent commits.

Although cherry picking changes across branches is generally frowned
upon (mind you, so is branching itself these days), this has often been
down to commits being overly large and failing to adhere to the
Separation of Concerns. By ensuring unrelated changes are kept
committed separately you make it much easier to surgically insert a fix
from one branch into another should the need ever arise.

Integrating upstream changes
Once I’m happy that the changes I’ve made locally complete the task at
hand I then need to see what’s changed in the world around me. Working
directly on the main integration branch [4] in small increments ensures
that whatever has changed is likely to be quite small and therefore the
chance for conflict is minimal – any unexpected merge should virtually
always be trivial and handled automatically by the VCS tool.

It’s imperative that I pull the latest upstream changes locally first, so that
I can resolve any syntactic and semantic conflicts before pushing back.
The former are fairly easy to spot when working with compiled
languages, whereas the latter are somewhat trickier and rely on failing
tests for the early warning siren. Whilst I could just push my changes and
let a gated build inform me of any problems, I prefer to avoid context
switching and so proactively integrate so that when I eventually manage
to publish I’m pretty certain it won’t come back to me for remediation.

Integration is one area where the centralised and distributed VCS products
differ greatly. When using a centralised VCS, there was always the risk
that pulling the latest changes to your workspace would invoke a complex
merge which, if messed up, could cause you to corrupt your own changes.
This reason alone convinced me to go back to single branch development
and keep my commits small and focused. On the few occasions where the
prospect of losing my work could have been expensive, I would use the
‘private branch on demand’ feature (e.g. branch from working copy in
Subversion) to create a backup in the VCS. Then I’d update to the head
and merge my private branch back in, safe in the knowledge that I could
repeat it as many times as needed to resolve any conflicts. In the
distributed world this kind of behaviour is inherent by the way the tool
works (you commit to your private fork first) and so it’s safer by default.

Handling merges

This in turn means you have more flexibility about how you handle any
merge conflicts directly on an integration branch. In the DVCS world, you
can pull the latest changes and do the bare minimum to commit your

Integration is one area
where the centralised
and distributed VCS
products differ greatly
NOV 2016 | | 7{cvu}

changes on top of it. Then you can resolve any syntactic and semantic
problems in your own time and commit them separately as fixes to the
merge. At this point you then have the choice of whether to leave history
intact and publish separate commits (merge + fixes) or squash them into
a single change and publish it as if nothing went wrong. For me, the
decision of which approach to take depends heavily on whether the break
was significant or not and therefore may have significance in the future
too.

For example, if someone just renamed a method in a refactoring then I
squash as it’s simply a matter of poor timing, whereas if a design change
has caused the rework it means my change was based on a different view
of the world and so may hide further semantic problems. Ideally every
commit to an integration branch should stand on its own two feet (i.e. the
build and tests pass) but when you can publish the fix at the same time as
the break the observable outcome is essentially the same as so it feels
acceptable to break the rules in the rare case that it happens.

In the CVCS world you do not have this luxury as what you publish to an
integration branch is immediately visible, hence I might do a ‘what if?’
merge first to test the water and if it looks dicey spin up a private branch
for safety. This way I can guarantee that I’ll only be publishing a
consistent change and the private branch contains the gory details for
posterity.

Noise reduction

As I mentioned earlier I like to keep my workspace as clean as possible
and therefore before integrating I’ll definitely do a "deep clean’ to ensure
that the subsequent build that follows the integration is as close to the
build machine's as possible. This means that I'll ensure all transient files
in the workspace are removed, e.g. cached NuGet and Node packages, as
I want the best chance possible that any problem is strictly down to the
integration itself and not some stray environmental issue caused by
detritus.

In essence in a Git based project this boils down to the following one-
liner:

call Clean --all && git pull --rebase && call Build

Documenting the changes
With the set of changes reviewed and integrated the last big hurdle is to
document them. When committing, I need to provide a message that tells
my future readers something about the change that will enlighten them to
its purpose. The same is true of any comment, the writer needs to avoid
saying what the code (and diff) already says and to instead focus on the
rationale – the why.

It’s not quite as black & white as that, though, because trawling through
the revisions trying to find related changes is much better with some tools
than others. For example the ‘annotate’ feature (or in its more witch-hunt
friendly guise – blame) makes it easier to walk the history of a single file
using the code itself for navigation. However, if you’re using a lesser tool
or doing some archaeology around a wider change then the commit
message can become more significant in tracking down ‘an interesting set
of changes’.

Hence it helps if the message is broken into (at least) two sections – a short
summary and then a more detailed explanation. The summary should be
short, ideally fitting a single line of text, so that when you are scanning the
list of recent commits that one line tells you in an instant what it’s about.
Curiously there appears to be some disagreement about which tense you
should write your message in but I’ve always found the past tense
perfectly adequate. Fortunately this two-part format has been brought to
prominence by the likes of Git and so it’s becoming the norm.

The start of any commit message I write nearly always contains some kind
of reference to the feature I’m working on. For example if the user stories
are being tracked in an enterprise tool like JIRA then I’ll put the ticket
number in, e.g. #PRJ-1234. Once again, somewhat fortuitously this
practice has been adopted by other tools like GitHub as a way to link an

issue with a commit. Linking the commit in this way means that I
probably have less to document because much of commentary and
rationale will already be in another tool.

Even if the project is not using a formal feature tracking tool, e.g. just a
Trello board with simple task descriptions, I’ll still use the card number
as a message prefix. [5] This is because committing a feature in small
chunks makes the set of related commits harder to find. Sometimes the
team will review a change after it’s already been committed and so the
reference number makes it much easier to find all the related changes for
the feature. If a change doesn’t have a reference then it should be
something so trivial as to be easily discernible from the one-line summary
alone.

Naturally the body of the commit message will contain further details
about why the change was made. If it’s an informal bug fix, it might
contain the basic problem; if a new feature then a bit about what support
was added; and if it’s tidying up then why the code is now redundant.
Sometimes I’ll include other little notes, such as if the commit isn’t
standalone for some reason. Whilst it’s great if you can pick any arbitrary
revision and expect it to be self-consistent, there are occasionally times
when we have to check-in partial changes or changes that may not strictly
work due to some environmental concerns. In these cases, the extra note
helps the reader know that there are dragons lurking and therefore they
should look further afield to find where they were eventually slain.

Once again, I personally find a UI advantageous for this part of the task,
not least because it normally contains a spell checker to ensure that the
basic text has no obvious typos. Whilst it’s not an everyday occurrence
searching the commit messages for a particular word, or phrase, it is
useful and so it helps enormously if you do not have to compensate for
spelling mistakes. A modern commit dialog also tends to be aware of the
folders, files and even the source code that has changed and so can
provide auto-completion of terms that might be relevant, such as the name
of a method that was edited.

One thing I do miss about working with a CVCS is that you can often
still edit a commit message after the fact. With a DVCS the message is
part of the immutable chain of revisions and therefore attempting to fix
it leads you into the kind of murky waters that you really want to avoid.
If the changes only exist as local commits, you still have time to make
the correction, but once it’s published you pretty much just have to live
with it.

Publishing the change-set
Phew! After all those considerations it’s finally time to unleash my
handiwork on the world at large. If I’m on Git then I’ll do the final push,
whereas with Subversion or TFS it will have happened when I hit ‘OK’
on the commit dialog. Either way the change is done, so barring any
unforeseen weirdness shown up by the build pipeline, it’s time pick
another task and go round the development loop once more. 

References
[1] ‘In The Toolbox: Software Archaeology’, C Vu 26-1,

http://www.chrisoldwood.com/articles/in-the-toolbox-software-
archaeology.html

[2] ‘Cleaning the Workspace’, Chris Oldwood,
http://chrisoldwood.blogspot.co.uk/2014/01/cleaning-
workspace.html

[3] ‘In The Toolbox: Pen & Paper’, C Vu 25-4,
http://www.chrisoldwood.com/articles/in-the-toolbox-pen-and-
paper.html

[4] ‘Branching Strategies’, Chris Oldwood, Overload 121,
http://www.chrisoldwood.com/articles/branching-strategies.html

[5] ‘In The Toolbox: Feature Tracking’, C Vu 26-3,
http://www.chrisoldwood.com/articles/in-the-toolbox-feature-
tracking.html
8 | | NOV 2016{cvu}

http://www.chrisoldwood.com/articles/in-the-toolbox-software-archaeology.html
http://chrisoldwood.blogspot.co.uk/2014/01/cleaning-workspace.html
http://www.chrisoldwood.com/articles/in-the-toolbox-pen-and-paper.html
http://www.chrisoldwood.com/articles/branching-strategies.html
http://www.chrisoldwood.com/articles/in-the-toolbox-feature-tracking.html

On High Rollers
A student investigates the Baron’s last puzzle.

n the Baron’s most recent wager, he was to roll a twenty-sided die
marked with the digits zero to nine twice apiece and place it either upon
a space representing tens or upon another representing ones according

to his fancy, after which Sir R----- was to do the same. Then the Baron and
Sir R----- were to roll a second die each and place them upon their empty
spaces. If the number thus made by the Baron was smaller than that made
by Sir R-----, then Sir R----- was to have a prize of twenty nine coins from
the Baron, otherwise the Baron was to have one of thirty coins from Sir
R-----.

The key to figuring the fairness of the wager lies in recognising that there
exists an optimal strategy that the Baron should have followed if he were
at all desirous of victory and another that Sir R----- should have adopted
if he were at all keen to frustrate him.

Indeed, I explained as much to the Baron, but I fear that he may not have
entirely grasped its significance.

Specifically, if the Baron’s first roll was five or greater then he should
have placed the die upon his tens space, with the expectation that he was
more likely than not to roll no greater with his second die, otherwise he
should have placed it upon the ones, with precisely the opposite
expectation.

In the first case, if Sir R----- rolled greater than the Baron then he should
have placed his die upon his tens space for assured victory. If he instead
rolled lower then he should have placed it upon his ones space to stave off
assured defeat. Finally, if he rolled equally then he should have placed it
upon the tens space with the same expectation that he was more likely
than not to roll no better with his second die.

In the second case, Sir R----- should simply have taken the Baron’s
strategy and placed the die upon his ones space if he rolled less than five
and upon his tens space otherwise.

If we label the Baron’s first die b1 and Sir R-----’s r1 then we can express
these contingencies as

where  stands for and.

Now Sir R----- is sure to win in the first case, which occurs with a
probability of

where  is the summation sign. Here we’re exploiting the facts that each
number from zero to nine has one chance in ten of being rolled and that
there are 9b1 numbers between zero and nine that are greater than b1.

In the second case, Sir R----- must roll higher than the Baron with his
second die to secure victory

an eventuality that has a likelihood of

In the third case there are two possible conclusions in which Sir R-----
prevails. Firstly, if his second roll is greater than the Baron’s first

and secondly if it is equal to it and the Baron’s second roll is less than
Sir R-----’s first

The chances of these outcomes are

and

Now the inner sum here is an arithmetic series and so, by the law that
governs them, must satisfy

I

b r b

b r b

b r b

b r

b r

1 1 1

1 1 1

1 1 1

1 1

1 1

5

5

5

5 5

5 5

  
  
  
  
  

Pr()b r b
b

b
1 1 1

1

5

9

5
1

10

9

10

4 3 2 1 0

100
1

10

1

    



   






b r b r b1 1 1 2 25    

Pr()

Pr() Pr()

b r b r b

b r b r b
1 1 1 2 2

1 1 1 2 2

5

5

1

2

1

10

    
     

 





 











 
        

 


 1

10

9

10

1

20

9 8 7 6 5 4 3 2 1 0

100
1

20

45

2

0

9

2

b

b

1100

9

400


b r b r b1 1 1 2 15    

b r b r b b r1 1 1 2 1 2 15      

Pr()b r b r b
b b

b
1 1 1 2 1

5

9
1 15

1

10 10

9

10

5 4 6 3 7 2 8 1
1

       



      



 


  



9 0

1000
20 18 14 8

1000

3

50

Pr()b r b r b b r
r

b r

b

1 1 1 2 1 2 1
5

9

0

1
15

1

10

1

10

1

10 10
1 1

1

          
 



 







 r

r

b

b

1

0

1

5

9

10000
1

1

1

i d n n d
i

n

     



0

1

2
1()

there exists an optimal strategy that
the Baron should have followed if he

were at all desirous of victory
NOV 2016 | | 9{cvu}

and consequently

Similarly, there are two outcomes following from the fourth case in which
Sir R----- takes the prize; if the Baron’s second roll is less than Sir R-----
's first, or if it equals it and Sir R-----'s second roll is greater than the
Baron’s first

We can figure the chances of these with

and

Finally, in the last case Sir R----- wins if his second roll exceeds the
Baron’s or if it is equal and his first roll was greater than the Baron’s

which have likelihoods of

and

Note that, since we’re only considering those circumstances in which the
Baron’s and Sir R-----’s first rolls were less than five, there are but 4b1
chances in ten that r1 was greater than b1.

Having enumerated each and every way in which Sir R----- might have
defeated the Baron, we need simply add their probabilities to figure the
likelihood that he should have done so.

Sir R-----’s expected winnings were therefore

and I should have had no compunction whatsoever in suggesting that he
take on the Baron’s challenge!

But alas, I should have been wrong to do so; the diligent Mister O-- [1]
has deduced that the Baron should have been better served had he first cast
a five if he had placed it upon his ones space!

Now it is still the case that, should the Baron have first rolled five or less
and placed his die upon the ones, Sir R----- should have placed his first
upon the tens if it were a five since he would have won the wager if either

or

which would happen with probabilities

since there are but six such outcomes for the Baron’s first die, totalling
339 chances in 600. In contrast, if Sir R----- had placed his five in the ones
space then he should have triumphed in the eventualities

which have probabilities of

Pr()

() ()

(

b r b r b b r

b b

b

1 1 1 2 1 2 1

1
2 1 1

5

9

5

1 1 1

10000
1

      


    






bb b

b

1 1

5

9 1

20000

4 5 5 6 6 7 7 8 8 9

20000
20 30 42 56

1

 


        


   


)

772

20000
11

1000


b r b r

b r b r r b
1 1 2 1

1 1 2 1 2 1

5 5

5 5

    
      

Pr()b r b r
r

r
1 1 2 1

1

5

9

5 5
1

2

1

10 10

1

2

5 6 7 8 9

100
1

2

3

1

       

 
   

 




55

100

7

40


Pr()b r b r r b
b

b
1 1 2 1 2 1

0

4
15 5

1

10

1

2

1

10

9

10

9 8 7 6
1

          



   



55

2000

7

400


b r r b

b r r b r b
1 1 2 2

1 1 2 2 1 1

5 5

5 5

    
      

Pr()b r r b
b

b
1 1 2 2

2

0

9

5 5
1

2

1

2

1

10

9

10

9 8 7 6 5 4 3 2
2

        



      




 



1 0

400
9

80

Pr()

Pr()

b r r b r b

b r b r r b
1 1 2 2 1 1

1 2 2 1 1 1

5 5

5 5

1

10

1

1

      
       

 
00

4

10

4 3 2 1 0

1000
1

100

1 0

4
1

b

b


 




   



1

10

9

400

3

50

11

1000

7

40

7

400

9

80

1

100
200

2000

45

2000

120

20

      

  
000

22

2000

350

2000

35

2000

225

2000

20

2000
1017

2000

    



1017

2000
29

983

2000
30

29493

2000

29490

2000

3

2000
     

b2 5

b r b2 2 15  

Pr()

Pr()

b

b r b
b

b

2

2 2 1
1

0

5

5
1

2

5
1

10

1

6

9

10

9 8 7 6 5 4

6

1

 

     



    




000

39

600


r b

r b b
2 2

2 2 1 5


  

Pr()r b
b

b
2 2

2

0

9 1

10

9

10

9 8 7 6 5 4 3 2 1 0

100
9

20

270

6

2

  



        

 




000

5
1

10

5

6

1

12

50

6002 2 1Pr()r b b      
10 | | NOV 2016{cvu}

totalling just 320 chances in 600. Sir R----- should therefore have adopted
the former strategy and we must consider the cases

The first of these occurs with probability

and ensures victory for Sir R-----.

Once again, Sir R----- will emerge victorious in the second case only if his
second roll exceeds the Baron’s, which happens with a probability of

In the third case Sir R----- will win if either his second die is greater than
the Baron’s first or if it is equal and the Baron’s second is less than his
first, for which we can figure the probabilities

and

The two winning outcomes for Sir R----- in the fourth case are now

having likelihoods of

and

In the fifth and final case Sir R----- needs his second die to be greater than
the Baron’s second or, if it equals it, his first to be greater than the Baron’s
first, having chances of

in the first eventuality and

in the second since Sir R-----’s first die could not possibly have exceeded
the Baron’s if it were a five.

Adding together these probabilities yields

which unfortunately turns the tide against Sir R----- whose expected
outcome was consequently

and he would have been most ill-served by my advice! 

Acknowledgement
Courtesy of www.thusspakeak.com

[1] With thanks to Roger Orr.

b r b

b r b

b r b

b r

b r

1 1 1

1 1 1

1 1 1

1 1

1 1

5

5

5

5 5

5 5

  
  
  
  
  

Pr()b r b
b

b
1 1 1

6

9
15

1

10

9

10

3 2 1 0

100

3

50
1

    



  





Pr()

Pr() Pr()

b r b r b

b r b r b
1 1 1 2 2

1 1 1 2 2

5

5

4

10

1

10

    
     

 





 











 
        

 


 1

10

9

10

1

25

9 8 7 6 5 4 3 2 1 0

100
1

25

4

2 0

9
2

b

b

55

100

9

500


Pr()b r b r b
b b

b
1 1 1 2 1

6

9
1 15

1

10 10

9

10

6 3 7 2 8 1 9 0
1

       



      



11000
18 14 8

1000

1

25


 


Pr()b r b r b b r

r

b r

b

1 1 1 2 1 2 1

6

9

0

1
1

5

1

10

1

10

1

10 10
1 1

1

      

   
 



 




    
















r

b b

r

b

b

b

1

0

1

6

9

1
2 1 1

6

9

10000

1 1 1

10000

5 6

1

1

1

1

() ()

     


  



6 7 7 8 8 9

20000
30 42 56 72

20000

1

100

b r b r

b r b r r b
1 1 2 1

1 1 2 1 2 1

5 5

5 5

    
      

Pr()b r b r
r

r
1 1 2 1

1

5

9

5 5
6

10

1

10 10

3

5

5 6 7 8 9

100
3

5

1

       

 
   

 




335

100

21

100


Pr()b r b r r b
b

b
1 1 2 1 2 1

0

5
15 5

1

10

1

2

1

10

9

10

9 8 7 6
1

          



   



55 4

2000
39

2000





Pr()b r r b

b

b

1 1 2 2

0

9
2

5 5

3

5

1

2

1

10

9

10

3

10

9 8 7 6 5 4
2

    

   


 
    




   

  

3 2 1 0

100
3

10

45

100

27

200

Pr()

Pr()

b r r b r b

b r b r r b

b

1 1 2 2 1 1

1 2 2 1 1 1

5 5

5 5

1

10
1

      
       


00

4
11

10

4

10

4 3 2 1 0

1000

1

100

  



   



b

3

50

9

500

1

25

1

100

21

100

39

2000

27

200

1

100
120

2000

36

2000

8

      

  
00

2000

20

2000

420

2000

39

2000

270

2000

20

2000
1005

2000

    



1005

2000
29

995

2000
30

29145

2000

29850

2000

705

2000
      
NOV 2016 | | 11{cvu}

www.thusspakeak.com

A Commoner’s Response
Roger Orr offers an analysis of the Baron’s last game.

was intrigued by the description of the game Baron M and Sir R were
playing in the last CVu.

The strategy for each player is obviously to try and maximise their own
score. But the problem is working out how each player should best
approach this – it is more subtle than it seems at first sight!

Let’s start with player one and their first roll of the die.

Since half the numbers are 0–4 and half are 5–9 it seems clear that when
throwing a number from 0 to 4 first it would be best for them to put this
die in the units field and hope that lady luck treats them better on the
second throw!

If the first throw is from 6 to 9 the chances are that the second throw will
be lower, so it is better to place the first die in the tens.

The hard choice comes if they throw a 5 first. Half the time the next
number will be lower, which is bad, but half the time it will be the same
or greater. So what’s the best strategy to employ here? It’s not easy to
decide, as deferring the choice might improve our chances, so let’s come
back to that later.

Player two then faces two different positions depending on whether player
one put his first die in the tens spot or the units spot.

In the tens case, it seems simple: play your coin in the tens if it is bigger,
and in the units if it is less.

But again the harder decision is what is the best strategy if it is the same
– what then?

If the score is from 6 to 9 they’re unlikely to do as well on the second roll,
and should play the tens spot, but if they roll a 5 they’re likely to do no
worse next time – and might do better. So should they match player one
on a 5, or play a 5 in the units and hope to get a higher roll next time? Let’s
come back to that question later as well.

If player one has placed his die in the units spot then player two faces the
same question as player one did, mutatis mutandis.

Again, if they throw from 0 to 4 they should place it in the units spot,
hoping to get a higher score on their second roll, and if they throw from 6
to 9 they should place the die in the tens spot.

Once again, rolling 5 presents them with a more difficult problem.

So we have three questions to answer to decide the best strategy to play
this game.

The juxtaposition in CVu of the Baron’s game with the article on
‘Random confusion’ led me to run a simulation to try and see by
experiment what happens, assuming a set of fair 20-sided dice (creating
these would be no mean feat, I surmise, and would require excellent
engineering skills!)

I anticipate it will take experienced players something like 30 seconds to
play a single game, counting the coins probably being the slowest part.
The gentry may have it differently, but those who work for their living
must restrain their dicing habits to the evening or risk ruin. So assuming
the two players can manage dice playing continuously from 8pm to
midnight we should see what happens after each night’s games, by when
about 480 games will have been completed. (Although what with pouring

more wine and answering any calls of nature that might occur they might
not quite achieve that many games each evening.)

There are three binary choices for strategy options so there are eight
possible combinations to try out.

 Option 1: player one puts a 5 in the tens spot, rather than in the units.

 Option 2: player two puts a matching die in the tens spot if it matches
a 5 in player one’s tens spot, rather than in the units.

 Option 3: player two puts a 5 in the tens spot if player one has played
in the units spot, rather than in the units.

(Although they’re not actually independent choices – if player one always
puts a 5 in the units spot then player two never has the opportunity to
invoke option 2.)

I ran a simulation of eight nights, running through one set of options on
each night.

But one simulation is hardly enough, let us see what a second eight nights
produces.

Oh dear – it doesn’t look very consistent, does it? Perhaps a simulation of
a single night’s playing for each option isn’t long enough to be certain of
our strategy, dice being the unruly objects that they are.

Let’s see what happens at the end of a whole year of playing:

I

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 (822)

1 0 0 476

0 1 0 889

1 1 0 181

0 0 1 (232)

1 0 1 (173)

0 1 1 (114)

1 1 1 (232)

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 (114)

1 0 0 (232)

0 1 0 358

1 1 0 299

0 0 1 (173)

1 0 1 476

0 1 1 (645)

1 1 1 63

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 12,865

1 0 0 2,481

0 1 0 9,207

1 1 0 3,543

0 0 1 17,231

1 0 1 (115)

0 1 1 4,782

1 1 1 (232)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk
12 | | NOV 2016{cvu}

CLINT SWIGART
Clint is a Certified Public Accountant enjoying life in Tampa
FL. He has been hooked on learning more about
programming ever since he was introduced to Ruby and
JavaScript classes online. His number one fear in life is not
public speaking or being contacted at cds8011@gmail.com

ConFoo
ACCU member Clint Swigart speaks at a

multi-discipline conference in Canada.

ConFoo’s Anna Filina provides the following information on the conference’s
history and importance.

he Montreal-based PHP conference ran successfully by the local
community for seven years. After that, the team decided to include
other technologies to transform it into a polyglot conference called

ConFoo. Since 2016, a second Vancouver event was created. The mission
was simple: increase the quality of web applications and the productivity
of the developers who write it. ConFoo achieves that by inviting some of
the top industry experts from around the globe to share their real-world
experience.

Having an international presence is important, because people in close
proximity end up thinking alike. When I travel to conferences around the
world, I discover that people have different priorities and mindsets that I
did not see in two decades of writing software in my own country.
Developers understand this, which is why we get attendees from as far as
Poland and New Zealand.

Our sponsors help us greatly with the promotion of ConFoo abroad, which
is why we get such a diverse audience and speaker lineup. For example,
ACCU gets the word out to software developers in the UK, the rest of

Europe and beyond. Because ConFoo is non-profit, such support enables
us to spend more money and effort on creating a better experience at the
event.

Every programmer should be excited to attend ConFoo. With 100
presentations in Vancouver and more than 150 in Montreal, it is one of the
largest events of its kind. This conference is aimed specifically at software
developers. It is a great place to sharpen those hard tech skills. There is a
great range of topics, including many programming languages, databases,
security, performance, machine learning and management.

We are excited to have ACCU members both in attendance and among
speakers. If you want to be part of this learning adventure, get tickets to
the event of your choice at confoo.ca or follow @confooca on Twitter for
updates.

T

This is looking quite hopeful for player one, but if we run the results for a
second year we again see quite a few changes in the results:

Let’s assume playing this game does amazing things to the players’ life
expectancy and they manage to keep playing for one hundred years.
(They’d better also have a very high boredom threshold, and a very large
supply of coins....)

Let’s stretch our imagination a bit further and imagine they play for
another century (it’s only a simulation, no actual players were harmed
getting these results....):

Now we’re getting somewhere that looks a bit more consistent. We’re still
getting a fair bit of variation, but the picture is becoming clearer.

Player one should not take option 1; if they throw a five first they should
place it in the units spot and hope for a higher roll the second time round.

Given this, player two’s best strategy on option 2 is irrelevant but they
should take option 3 as, although in the long term they still lose money,
their loss is slightly less.

Conclusion
Using a Monte Carlo method to analyse this sort of puzzle is possible, but
you have to run a lot of simulations to get consistent results. However, this
is like real gambling where as this simulation showed, even a year of
nightly gaming doesn’t produce consistent results!

A quick search of the web on random walks will give some idea of the
likely variation after a given number of rounds, and so an indication of the
number of rounds you might need to run to get the desired consistency in
the results. 

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 4,841

1 0 0 3,897

0 1 0 (2,652)

1 1 0 (1,944)

0 0 1 8,027

1 0 1 (3,773)

0 1 1 9,797

1 1 1 1,714

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 10,411,745

1 0 0 1,316,482

0 1 0 10,105,948

1 1 0 1,114,761

0 0 1 7,711,315

1 0 1 (163,061)

0 1 1 8,102,898

1 1 1 (290,737)

Option 1 Option 2 Option 3 Player one’s winnings (losses)

0 0 0 10,052,022

1 0 0 1,558,441

0 1 0 10,105,830

1 1 0 1,407,755

0 0 1 7,739,426

1 0 1 (293,923)

0 1 1 7,865,541

1 1 1 (158,282)

A Commoner’s Response (continued)
NOV 2016 | | 13{cvu}

Code Critique Competition 102
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I’m trying to read a list of test scores and names and print them in order.

I wanted to use exceptions to handle bad input as I don’t want to have
to check after every use of the >> operator.

However, it’s not doing what I expect.

I seem to need to put a trailing /something/ on each line, or I get a
spurious failure logged, and it’s not detecting invalid (non-numeric)
scores properly: I get a random line when I’d expect to see the line
ignored.

The scores I was sorting:

 -- sort scores.txt --
 34 Alison Day
 45 John Smith
 32 Roger Orr
 XX Alex Brown

What I expect:

 $ sort_scores < sort_scores.txt
 Line 4 ignored
 32: Roger Orr
 34: Alison Day
 45: John Smith

What I got:

 $ sort_scores < sort_scores.txt
 Line 2 ignored
 Line 3 ignored
 0:
 32: Roger Orr
 34: Alison Day
 45: John Smith

I tried to test it on another compiler but gcc didn’t like

 iss.exceptions(true)

I tried

 iss.exceptions(~iss.exceptions())

to fix the problem.

Can you help me understand what I’m doing wrong?

Listing 1 contains sort_scores.cpp. Critique

Felix Petriconi <felix@petriconi.net>

The main problem is that iss.exceptions() has a parameter of type
std::ios_base::iostate . The under ly ing va lues a re
implementation defined, as stated here [1]. So it depends on the used
library, if the ~iss.exceptions() or the conversion of "true" works
as expected.

In [2] Howard Hinnant explained that the correct parameter combination
would be:

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

Listing 1 (cont’d)

#include <iostream>
#include <map>
#include <sstream>
#include <string>
using pair = std::pair<std::string,
 std::string>;
void read_line(std::string lbufr,
 std::map<int, pair> & mmap)
{
 std::istringstream iss(lbufr);
 iss.exceptions
#ifdef __GNUC__
 (~iss.exceptions());
#else
 (true); // yes, we want exceptions
#endif
 int score;
 iss >> score;
 auto & name = mmap[score];
 iss >> name.first;
 iss >> name.second;
}
int main()
{
 std::map<int, pair> mmap;
 std::string lbufr;
 int line = 0;
 while (std::getline(std::cin, lbufr))
 try
 {
 ++line;
 read_line(lbufr, mmap);
 }
 catch (...)
 {
 std::cout << "Line " << line
 << " ignored\n";
 }
 for (auto && entry : mmap)
 {
 std::cout << entry.first << ": "
 << entry.second.first << ' '
 << entry.second.second
 << '\n';
 }
}

Listing 1
14 | | NOV 2016{cvu}

iss.exceptions(std::ios::failbit | std::ios::badbit)
and then your program works as expected.

Beside this, here are my further observations:

The type definition of pair as std::pair<std::string,
std::string> is from my point of view not something that I would do,
because on one hand, as soon as one includes std into the current
namespace, one gets a name collision with std::pair. And on the other
hand, a type with the name pair says nothing about its purpose. In this case
I would use a type-name like fullname. The first parameter of the
function read_line is defined as call by value. There is no need to copy
the value for parsing. So a call by const reference would be sufficient and
would spare the copy of the complete line. Since we have today move
semantics (and most compilers implement even longer return value
optimization (RVO)), the readability of the code would be better if the
parsed values would be returned as std::pair<int, fullname>.
Then composing the code in a functional way would be much easier.

The current implementation of the function read_line has the problem
that partly successful parsing of a line leads to incomplete data records.
So if e.g. parsing the score value was successful, but then reading of the
first name fails, the map would contain a probably not usable data set. If
parsing of the line would be separated from storing the values in the map,
one could avoid this kind of error.

The code uses std::map for two purposes as far as I can see: The data
sets are ordered by the score value and in case of double entries the last
entry wins. Here the problem of not separating the parsing from storing
the data becomes more prominent. Think about the situation that a first data
set for score value 42 was read successfully and then later an other data
set with the same score value 42 from the input stream is malformed in a
way that the 2nd string could not be read. The record in the map would
contain information from the 1st successful read action and the first name
of the second read attempt. If only fully read data sets would be inserted
into the map, then this could not occur. The std::map has another
problem: It is a data structure with very bad cache locality which results
in large collections in bad performance. Each insert is a candidate for re-
balancing the underlying tree which is costly. Alex Stepanov goes into
details in his course at A9, that is available under [3]. So I would follow
the general advice, use std::vector with std::pair<int,
fullname> as value type and append all values. If you know that all score
values appear just once, then simply use std::sort with a less predicate
on the score value. If score value may appear multiple times, then I would
use first a std::stable_sort, that keeps the order of equivalent values,
and then remove all duplicate values, either keep the first occurrence or
the last occurrence of equivalent entries.

The catch(...) catches all exceptions. We normally use this ‘wildcard’
only in main() as a fa l lback. In th is case you know tha t
std::ios_base::failure is thrown and so I would just catch this
one. If any other exception is thrown, e.g. std::bad_alloc, I would
either handle it separately, if possible or let it go and let the application
terminate. If std::bad_alloc would be thrown in this example, you
would catch it with ... and then continue parsing, even the probability is
high, that the next parsed line throws the same exception again.

In the last range-based for loop I would not take entry as an auto&&.
auto&& is a forwarding reference, which does not make sense in this
context. I would write the loop as for (const auto& entry : mmap).

For better readability I would indent the try - catch block below the
while loop. At the first glance there is the while loop and after it, the
try-catch block. But the try-catch block actually is inside the loop.

References
[1] http://en.cppreference.com/w/cpp/io/ios_base/iostate
[2] http://stackoverflow.com/a/16473878
[3] https://www.youtube.com/playlist?list=

PLHxtyCq_WDLXryyw91lahwdtpZsmo4BGD

James Holland <James.Holland@babcockinternational.com>

The student was very close to getting the program working. The problem
lies with the function that was causing the student so much trouble, namely
exceptions(). The comment next to the parameter of exceptions()
would suggest that the student thought that the parameter type was of type
bool; we either want exceptions to be thrown, or we do not. This is not
the case. The parameter type is iostate and provides more flexibility in
controlling stream exceptions.

The C++ standard does not define the underlying type of iostate; it is
left to the compiler implementer. This accounts for different behaviours
of the various compilers used by the student when attempting to pass true
to exceptions(). The gcc compiler uses an underlying type to which
the type bool cannot be converted and so an error message is emitted.
Some compilers may, conceivably, use an underlying type that permits a
bool to be used, such as an unsigned int. A value of true, when
converted to an unsigned int, will have a value of 1. This will enable
one of the stream states to throw an exception and it may not be the one
required.

The student also experimented with passing to exceptions() the bit-
inverted value of the currently enabled exceptions. As the default state of
the stream is to throw no exceptions, the effect of the call will be to enable
all exceptions. Although this will compile without error, it is probably not
what the student intended.

An exception can be thrown when the end-of-file is encountered, when a
read or write operation fails, and when something more serious goes wrong
with the file system. A set of constants is provided, of type iostate, that
can be used as parameters of exceptions() to enable or disable the
desired exceptions. The constants are listed below.

It is, perhaps, a little confusing that goodbit is so named as it does not
represent a bit position. It has a value of zero and so can be used to
‘represent’ the absence of the other bits. The constants can be combined,
using the bitwise operators, to enable more than one exception, if required.

The student states that at least one character is required after the second
name for the software to work as required. I suspect this is because the
student’s program has the eof exception enabled. When operator>>()
reads the second name it needs to be sure that it has read all the characters
representing the name. It can only do this by attempting to read one
character beyond the end of the name. If there are no characters beyond
the name, the end of the buffer will be encountered and eofbit set.
Should the eof exception be enabled, as is the case with the student’s code,
an exception will be thrown. If there is a space, for example, after the
second name, operator>>() will read the space and conclude that all
the characters of the second name have been read. There is no need to read
any more characters and so no attempt is made to read beyond the record;
eofbit will not be set and no exceptions will be thrown. The record will
be processed as required.

The student also stated that the program does not correctly handle records
with invalid scores. In such cases, operator>>() attempts to read a
numerical value but fails, setting failbit and writing zero into score.
As a result no exceptions will be thrown because only the eof exception
has been enabled. An entry in the map will then be made with a key of zero.
The program then attempts to read the first and second names from the
stream. As the stream is not in a good state, the read operations will not
have any effect thus leaving the map entry with null value for the two
names.

From this analysis, it can be seen that the program needs to be amended
in two ways; one to prevent exceptions being thrown on encountering the
eof, and the other to handle invalid scores. Both can be achieved by

Constant

std::ios::goodbit
std::ios::eofbit
std::ios::failbit
std::ios::badbit
NOV 2016 | | 15{cvu}

http://en.cppreference.com/w/cpp/io/ios_base/iostate
http://stackoverflow.com/a/16473878
https://www.youtube.com/playlist?list=PLHxtyCq_WDLXryyw91lahwdtpZsmo4BGD
https://www.youtube.com/playlist?list=PLHxtyCq_WDLXryyw91lahwdtpZsmo4BGD

allowing an exception to be thrown only when a formatting error occurs.
This is done by passing std::ios::failbit to exceptions().

Although this modification results in a working program, I suggest, some
areas of the design could be improved. It would be better, for example, to
read the score, first name and last name into their respective variables
before entering them into the map. This will ensure the map does not
contain records that are not properly formed. If the student is concerned
that this will introduce inefficiencies, use could be made of the move
semantics of std::string (since C++11). This is achieved by using
std::move() in the assignments to the map. After the assignments, the
strings first_name and last_name will be in a valid but unknown
state. This is acceptable as the string variables will no longer be used. It
should be noted, however, that some string implementations use what is
called small string optimisation for strings of 15 characters or less. In such
cases, moving short strings will not be any faster than copying them; but
I digress.

It is noticed that the student has used an rvalue reference (&&) in the for
loop that prints the content of the map. This is legal but not necessary for
non-generic code. A simple reference (&) will do.

Placing the incrementing of line within the try block is not required as
incrementing an int will not throw an exception. Simply moving the
incrementing statement outside the try block will alter the program logic
as the while loop does not have separate scope defining braces and,
instead, relies on the fact that the try and catch blocks are, in effect, one
compound statement. I have chosen to add braces to the while statement
and take the incrementing outside the try block. I think this makes things
a little clearer.

It might be worth making variable names a little more descriptive. It is not
absolutely clear what lbufr means, for example. Perhaps something like
line_buffer would be more appropriate. Also, I am not entirely sure
what mmap stands for.

Finally, I include my version of the program.

 #include <iostream>
 #include <map>
 #include <sstream>
 #include <string>
 using pair =
 std::pair<std::string, std::string>;
 void read_line(std::string lbufr,
 std::map<int, pair> & mmap)
 {
 std::istringstream iss(lbufr);
 iss.exceptions(std::ios::failbit);
 int score;
 std::string first_name;
 std::string second_name;
 iss >> score;
 iss >> first_name;
 iss >> second_name;
 auto & name = mmap[score];
 name.first = std::move(first_name);
 name.second = std::move(second_name);
 }
 int main()
 {
 std::map<int, pair> mmap;
 std::string lbufr;
 int line = 0;
 while (std::getline(std::cin, lbufr))
 {
 ++line;
 try
 {
 read_line(lbufr, mmap);
 }
 catch(...)
 {

 std::cout << "Line " << line
 << " ignored\n";
 }
 }
 for (auto & entry : mmap)
 {
 std::cout << entry.first << ": " <<
 entry.second.first << ' ' <<
 entry.second.second << '\n';
 }
 }

Simon Sebright <simonsebright@hotmail.com>

It’s been a while since I had a go at the critique and a longer while since I
have done any C++. The subtleties of the standard and the language will
have to be sacrificed!

I compiled the code using the free Visual Studio edition. I got slightly
different results from the student, but similar in form. My value for the
score of XX was -858993460. This suggests we are in the realms of
undefined behaviour. The first three lines all gave me an exception. Note
that I pasted the scores.txt from the website and tidied up the result
a bit – perhaps there were deliberately some extra characters hanging
around there. I had each line end with the last character of the second name.

There are many levels to critique such a short piece of code; I’ll spew it
out in the order it comes to me...

The first thing that strikes me is the lack of overall algorithm structure. I
would have expected:

instantiate some collection to store results

for(each line in input)

add to the results

Sort Results

Output Results

The bad naming of the read_line function contributes to this – it doesn’t
read a line, it converts a line to a result and adds it to the collection.
add_to_results(...) would be a better option. Using a map keyed
on integer to sort the results automatically is neat, but it is not explicitly
mentioned in the code, that this is sorted. sorted_results would be a
better name than mmap, which says nothing.

So, having dealt with the overall structure, let’s look at some more detail.
First, the catch-all exception handling is a bad idea. The first thing I did
to change the code was to add #include <exception> to the top and
to catch exception& e, then output e.what() in the result:

 Line 1 ignored because of ios_base::eofbit set:
 iostream stream error

So, now we have some more information – it threw because it ran off the
end of the stream whilst reading the second name (I debugged it a bit to
see that, and also we note that the second names were gathered, so it must
have got to the end of them). OK, well that’s not surprising because the
string that was passed to read_line() did indeed end abruptly with the
last character of the second name. Odd behaviour that it sent the result
back, but maybe that’s the standard (out of scope here).

So why did that occur? Well, the student attempted to get the input stream
to throw exceptions when something went wrong – presumably because
they wanted to trap the case where a non-number was passed as the score.
Calling basic_ios::exceptions() is a way to accomplish this, but
what about that parameter – true? If you look at the documentation you
will see that the function is expecting an int which is an ORed set of flags
for the various exceptions to be thrown. But we are passing true, which
isn’t an int, but can be implicitly converted to one. On my compiler, it is
1. This corresponds to the std::ios::eofbit value, so in fact we are
only asking the stream to throw when it runs off the end of the stream,
which is not what we want. The values of this enumeration are: badbit,
eofbit, failbit, goodbit.
16 | | NOV 2016{cvu}

If we change the iss.exceptions() call to take ios::failbit
instead, then we get:

 Line 4 ignored because ofios_base::failbit set:
 iostream stream error
 32: Roger Orr
 34: Alison Day
 45: John Smith

This is the desired result, as it did indeed trap the case of XX not being an
integer.

So what can we learn here? First, structure and naming is important.
Second, make sure you pass suitable parameters to functions avoiding
implicit type conversion (I am out of date with compiler settings – perhaps
this is a warning one can induce and prevent by building with warnings as
errors set). Third, avoid catch-all exception handling.

As an aside, the decision to take a name as two strings – first and second
names – is bad. Firstly, consider Mary Chapin Carpenter or Frank Lloyd
Wright. Secondly, not all cultures have the ‘given name’ first – in China
for example, this comes after the ‘family name’. A lot of work has been
done to establish suitable standards for such concepts. In this case, a single
string comprising the full name would have sufficed, but then of course
the string parsing might have been trickier.

Indeed it should be said that piggy-backing the stream’s string parsing
functionality was a good idea, but perhaps not as plain sailing as one
hoped!

Paul Floyd <paulf@free.fr>

This is a small piece of code, barely over 50 lines long. What can I say
about it? First a minor nit, as a matter of course (or habit) I would pass the
string argument to read_line as a const reference. Clearly the grist of
the matter is the std::istringstream exception specification. I don’t
remember by heart what the parameters to the setter are, but it certainly
looks like the author of the code was guessing at what to use.

When I compiled the code I got:

 CC -std=c++14 +w2 -g -o cc101 cc101.cpp
 "cc101.cpp", line 17: Error: Could not find a
 match for std::ios::exceptions(std::istringstream,
 bool) needed in read_line(std::string,
 std::map<int,std::pair<std::string, std::string>
 >&).
 1 Error(s) detected.

So I hit the context lookup of my IDE and I got the following 3 definitions:

 void
 exceptions(iostate __except)
 {
 _M_exception = __except;
 this->clear(_M_streambuf_state);
 }

 typedef _Ios_Iostate iostate;

 enum _Ios_Iostate
 {
 _S_goodbit = 0,
 _S_badbit = 1L << 0,
 _S_eofbit = 1L << 1,
 _S_failbit = 1L << 2,
 _S_ios_iostate_end = 1L << 16
 };

So it looks like the first compiler accepts a conversion from true (bool)
to iostate, presumably to the value 1 or badbit. And it also looks like
GCC accepts the bitwise not which I expect sets all of the bits to 1.

I guessed that the intention was to turn on all exceptions, so I tried:

 iss.exceptions(std::ios_base::badbit |
 std::ios_base::eofbit |
 std::ios_base::failbit);

This then compiled and gave the behaviour described in the description.
At first I didn’t pay attention to the trailing dot on first line of the input,
so I couldn’t see why the first line wasn’t throwing and the others were.
The moral is to always read carefully.

Then I had a go at debugging. I generally had a hard time after the first
exception was thrown. Either the code would run to completion (dbx) or
would seem to get stuck reading lines (lldb). To try to make things a bit
clearer I decided to make the catch a bit more explicit:

 {
 std::cout << "Exception: " << ex.what()
 << " line:" << line << " ignored\n";
 }
 catch (...)
 {
 std::cout << "Other exception, line:"
 << line << " ignored\n";
 }

This helped a bit, but not as much as I’d hoped:

 Exception: basic_ios::clear line:4 ignored

OK, but I was kind of hoping that it would be more explicit about the cause
of the exception.

I also had a look online at http://en.cppreference.com/w/cpp/io/basic_ios/
exceptions

Though it doesn’t seem to be the case here, the note on how different
implementations set the state was quite interesting.

By now I’d figured out that the problem is that even for the ‘well-formed’
lines, an exception is being thrown when the end of the istringstream
buffer is reached. I don’t consider reading to the end of a buffer to be an
exceptional circumstance, at least not in this case, so I removed eofbit
from the call to set the exceptions flags, and then everything worked as
expected.

As a final check, I tried wrapping the body of read_line in a try/catch
to see the rdstate(), here just the catch clause:

 catch (...)
 {
 std::cout << "iss mask " << iss.rdstate()
 << "\n";
 }

This confirmed that the first two exceptions were eofbit and the third a
failbit.

Commentary
There seem to be few people who use exceptions with iostreams; perhaps
this code critique helps to explain why this is so.

The first problem is with the definition of iostate which the C++
standard defines to be a ‘bitmask type’. These can be implemented as

 an enumerated type that overloads certain operators,

 an integer type, or

 a bitset

It is important to restrict portable code to operations that are valid for all
three types of implementations. In the original code, passing true to
iss.exceptions() only compiles when iostate is an integer type
(as it is for MSVC, but not for g++). It sets the flag corresponding to 1
which will be eofbit.

Secondly there are the semantics. Many people do not consider end of file
to be unexpected (most files have an end!) and so do not want to enable
exceptions with eofbit. While the standard does attempt to specify the
different behaviour of badbit and failbit the distinction seems quite
subtle and the interaction between the two is messy. Typically, as Felix
noted, you would set both these bits together.

Also note that goodbit is not actual a bit value, as James pointed out. It
is zero, so code testing for a ‘good’ state cannot use bitwise and, as the
NOV 2016 | | 17{cvu}

expression (ios.rdstate() & iostate::goodbit) is always
false!

Finally, while four values are defined, the actual implementation of the
bitmask type might contain other values with non-portable sematics, so it
may be important to make sure you don’t accidentally set the extra bits.
The original example did this in the code selected with __GNUC__ as the
expression ~iss.exceptions() may modify bits other than those
defined by the standard values.

As the critique also shows, another problem with using exceptions with
iostreams is that the operations do not provide the strong exception
guarantee: if an exception is thrown when reading into name.second the
string value might already have been modified. In this case though the
original code is already not strongly exception safe (as has already been
observed in the critiques) as the entry is added to the map even if the
streaming operations throw an exception.

One aspect of the code that no-one fixed was that the program is trying to
sort people based on a score but if two people have the same score the
second entry overwrites the first one. I had hoped the opening sentence
implied that all the scores were important and should be retained! The
easiest change to resolve this is to replace std::map with
std::multimap throughout; the variable name mmap was a bit of a hint
(!) (Other than that it’s a poor name for the variable.)

The winner of CC 101
I think the four critiques covered the ground well – both the low level
syntactic and semantic problems and also some discussion about the higher
level design principles involved in this problem.

Felix and James both gave good explanations of the portability problems
with the program’s use of iostate and all the critiques fixed the main
presenting problem.

 Simon’s critique addresses some additional design issues explicitly, such
as the poor naming of both methods and variables, as well as covering some
of the syntactic problems. So, although other critiques may have covered
the low level issues in slightly more detail, I have decided the award the
prize for this critique to Simon.

Code critique 101
(Submissions to scc@accu.org by Dec 1st)

I am trying to parse a simple text document by treating it as a list of
sentences, each of which is a list of words. I'm getting a stray period
when I try to write the document out:

 -- sample.txt --

 This is an example.

 It contains two sentences.

 $ parse < sample.txt
 This is an example.
 It contains two sentences.
 .

Can you help fix this?

Listing 2 contains parse.cpp.

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

Listing 3

#include <iostream>
#include <sstream>
#include <memory>
#include <string>
// pointer type
template<typename t> using ptr =
 std::shared_ptr<t>;

// forward declarations
struct document;
struct sentence;
struct word;
document read_document(std::istream & is);
sentence read_sentence(std::istream & is);
void write_document(std::ostream & os,
 document const & d);
void write_sentence(std::ostream & os,
 sentence const & s);

// A document is a list of sentences
struct document
{
 ptr<sentence> first_sentence;
};
// A sentence is a list of words
struct sentence
{
 ptr<sentence> next_sentence;
 ptr<word> first_word;
};
struct word
{
 ptr<word> next_word;
 std::string contents;
};

// read a document a sentence at a time
document read_document(std::istream & is)
{
 sentence head;
 auto next = &head;
 std::string str;
 while (std::getline(is, str, '.'))
 {
 std::istringstream is(str);
 ptr<sentence> s(new sentence(
 read_sentence(is)));
 next->next_sentence = s;
 next = s.get();
 }
 document d;
 d.first_sentence = head.next_sentence;
 return d;
}
// read a sentence a word at a time
sentence read_sentence(std::istream & is)
{
 word head;
 auto next = &head;
 std::string str;
 while (is >> str)
 {
 ptr<word> w(new word{nullptr,str});
 next->next_word = w;
 next = w.get();
 }
 sentence s;
 s.first_word = head.next_word;
 return s;
}

Listing 2
18 | | NOV 2016{cvu}

http://accu.org/index.php/journal

accu ACCU Information
Membership news and committee reports

Li
st

in
g

2
(c

on
t’d

)

View from the (no longer Acting)
Chair
Bob Schmidt
chair@accu.org

This is my third View, which means we’re
almost halfway through the 2016–2017 term.
You may have noticed that my Views have
concentrated on the people who make ACCU
work. We are a group run by volunteers, and our
volunteers deserve to get full credit for their
efforts. One of the few regular responsibilities I
have is to write this article every two months;
the day-to-day running of ACCU is done by the
other members of the committee, and they do it
well.

Special General Meeting
The Special General Meeting was held
September 28th at St. Aldates Tavern in
Oxford, in combination with the ACCU Oxford
local group. The purpose of the SGM was to
formally elect a Chair and a Secretary, so those
positions would no longer be held by
caretakers. I’m pleased to announce that
Malcolm Noyes was elected Secretary, and I
was elected Chair.

Malcolm reported that he received 133 ballots
out of the 591 sent. Malcolm received 121 votes
for secretary, with 12 abstentions, and I
received 119 votes for chair, with 14
abstentions. Thank you to all who voted.

Twelve members attended the meeting,
including officer Matt Jones and committee
member Ralph McArdell, giving the SGM the
needed quorum. I had planned to attend the
meeting in person – it seemed like a great
excuse to play hooky from work, enjoy an
evening with colleagues, and take another
holiday in Europe. Unfortunately, reality
intruded in the form of the dreaded Jury Duty,
which put an end to those plans. I was able to
‘attend’ via a Google Hangout, and from what I
could see and hear it sounds like a good time
was had by all.

Nigel Lester coordinated the SGM with the
local group meeting in Oxford. He also was able
to arrange sponsorship for the evening,
provided by Oxford Computer Consultants.
Robert Bentall arranged additional sponsorship
for the meeting from Martin-Baker Aircraft
Company, Ltd. In addition to sponsoring the
evening's drinks, Martin-Baker provided an
ejection seat for ‘testing’ by the attendees.

Please join me in thanking the sponsors, Robert,
and Nigel for an enjoyable evening.

Diversity statement
We published the draft Diversity Statement in
the last issue of CVu. For those of you following
along, here it is again:

ACCU is committed to a culture of
diversity and inclusion. We embrace and
encourage our members’ differences –
including, but not limited to age, colour,
ethnicity, ability or disability, gender
identity or expression, sex or sexual
orientation, language, national origin,
religion (or absence thereof), race,
political persuasion, socio-economic
status, and veteran status. ACCU will
not tolerate discrimination, harassment,
or bullying; in any form, for any reason.
Our members deserve to be treated
fairly, equally and with respect, and are
expected to treat others the same way.

Please note that based on a comment received
after the last CVu was published, I have
changed one word in the statement. The clause
‘religion (or lack thereof)’ has been changed to
‘religion (or absence thereof)’. The comment
NOV 2016 | | 19{cvu}

// write document a sentence at a time
void write_document(std::ostream & os,
 document const & d)
{
 for (auto s = d.first_sentence; s;
 s = s->next_sentence)
 {
 write_sentence(os, *s);
 }
}

// write sentence a word at a time
void write_sentence(std::ostream & os, sentence
const & s)
{
 std::string delim;
 for (auto w = s.first_word; w;
 w = w->next_word)
 {
 std::cout << delim << w->contents;
 delim = ' ';
 }
 std::cout << '.' << std::endl;
}

int main()
{
 document d(read_document(std::cin));
 write_document(std::cout, d);
}

Code Critique Competition (continued)

accuACCU Information
Membership news and committee reports
REVIEWS

noted that ‘lack’ could be seen as a pejorative,
and that ‘absence’ is more neutral.

This draft is still open for comments. We will
keep the draft open for comments for another
publishing cycle, and target the end of the year
for approval by the committee.

Website migration
 Jim Hague volunteered to migrate the ACCU
website and associated software to a new
platform. The new site went live in mid-July.

In moving the site, rather than just taking a
backup of the existing host and restore onto the
new host, he took the opportunity to do a little
spring cleaning. The new host is a virtual host
courtesy of Bytemark (www.bytemark.co.uk),
and runs Debian Stable. Jim adapted the
configurations to Debian from the previous
CentOS+Plesk setup, and archived a lot of files
that didn’t seem to be used any more.

One notable change is that the website is now
accessed with HTTPS only, fixing a long-
standing security flaw that user login
credentials were visible on the wire. For the
mailing lists, there has been a very slight minor
version downgrade of the mailing list manager,
Mailman, as Jim moved to the Debian packaged
version. He also moved some lesser known
older functions such as an old wiki to *.accu.org
subdomains, and ensured they too are secure.

The domain registration for accu.org was also
close to expiry, so Jim moved the domain
hosting to Bytemark and renewed it. It’s now
easy to set up new subdomain websites. As an
example, Russel Winder is doing great work
with conference.accu.org, which is hosted on
the same system but uses a completely different
web framework. (More on Russel’s work
below.)

After running the new site under test.accu.org
for a few weeks, on the morning of the IETF 96
Hackathon Jim diverted himself by updating the
database from the old host, copying over any
recently updated files from the website and the
(private) mailing list archives, and changing the
DNS to point to the new host. He was expecting
a torrent of breakage, but thankfully only a few
minor issues came up.

Jim is still working on some minor details, but
the new hosting seems to be running well.
ACCU now has an excellent hosting basis for
further changes.

This is a condensed version of the work Jim
performed on the migration. I have it on good
authority that he is working on a more
complete, first-person version for publication in

the near future. In the interim, please join me
once again in thanking Jim for all his hard work.

Conference web site
improvements
Our conference chair, Russel Winder, has been
busy working on a new web site for the
conference.

The experimental site is located at
https://conference.accu.org. It is intended that
this will be a Python 3/Flask/SQLAlchemy/
SQLite site handling session proposals
submission, review selection, scheduling, and
program publishing. A blog and static pages
will be managed by Nikola. In his words:

We are going to be extraordinarily agile
here: release early, release often. So
whilst the Flask stuff is being developed
the Nikola stuff will be published, indeed
already is. We need volunteers to help
with styling, imagery, and indeed
content. The current display is the
default Bootstrap generated by Nikola,
we need to create a styling that is
obviously the ACCU brand, but is
definitely the conference and not the
main website. I am sure the AYA folk will
chip in, but so should ACCU members.
The conference is a joint venture so
everyone has a vested interested in
making the website as stonkingly
brilliant as possible.
The source for the Nikola managed
static material (yes, blogs are static
material!) is on GitHub at
https://github.com/ACCUConf/
ACCUConfWebsite_Static. The master
branch is all the general material that is
the same for all years. For each year
there is a branch, this year accu2017,
where all the year specific material goes.

I have no idea what stonkingly means (there’s
that whole ‘UK and US are two countries
separated by a common language’ issue
cropping up again) [1], but I’m sure the new
conference web site will, indeed, be brilliant.
Contact Russel if you would like to help.

Committee spotlight
Since Jim Hague volunteered to perform the
website migration, he has been working as a co-
opted member of the committee. Jim first
learned C as a postgrad back in 1984. He bought
edition 1 of The C++ Programming Language
when it was first published, and has followed
the C and C++ world ever since. He has enjoyed
a 25-plus year career as a jobbing programmer,
during which he’s worked on projects from an

embedded JVM to air traffic control systems.
He discovered the ACCU conference in 2002,
was bowled over to be able to learn about C++
(and lots more besides) from the actual people
doing the steering, and gradually got sucked in.
He founded the Oxford local group and ran it
for the first few years, and will tell anyone
interested in setting up a local group that it’s not
that difficult and they should definitely do it.

Call for volunteers
I'm happy to report that Russel Winder has
filled out his conference committee. Thank you
to everyone who volunteered.

We still have several open positions:

 We still need an additional auditor to fill
out my term. This is a low commitment
position that should take only a few hours
of your time in late March or early April.
Please send me an email if you are willing
to join Guy Davidson on the auditing
team.

 Jim Hague reports that the ACCU web site
uses Xaraya, a PHP framework that has
been moribund for the last 4 years at least,
and a replacement is overdue. He regrets
he has neither the time nor the skills
necessary for that, and hopes one or more
volunteers with the appropriate skills will
step forward.

 We are hoping to recruit someone to assist
Martin Moene with the web site sys admin
duties. Please contact me if you are
interested.

Journals
In the past two months CVu and Overload have
published articles by Silas Brown (three!),
Thaddaeus Frogley, Pete Goodliffe, Sergey
Ignatchenko, Baron M (a nom de plume,
perhaps?), Chris Oldwood (two), Adam
Tornhill, Jonathan Wakely (two), and Russel
Winder. In addition, Roger Orr set and
moderated the Code Critique Competition; and
our intrepid editors, Fran and Steve, provided
their editorials and produced top-notch
publications. Please consider joining this august
group of authors by contributing an article.

Note
[1] Yes – I know – Google is my friend: stonk –
to bombard with concentrated artillery fire;
stonking – used to emphasize something
remarkable, exciting, or very large; stonkingly –
something that is exceptionally good. One of
these is not like the others.
20 | | NOV 2016{cvu}

www.bytemark.co.uk
https://conference.accu.org
https://github.com/ACCUConf/ACCUConfWebsite_Static
https://github.com/ACCUConf/ACCUConfWebsite_Static

You’ve developed some great software.

You’ve worked with various stakeholders, and are sure it does what the business
wants and needs... which means your application isn’t going to be exactly like the
one they had before.

Good instructions – whether a manual, online help or training materials – are a
helping hand while people get comfortable with changes, offering time-saving tips
and providing a feeling of support and security.

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

It’s not what we do that’s important...
it’s what we can help your customers do.

Get in touch for an informal discussion on how we can help you:

	CVu28-5_v2.pdf
	Necessary technology
	Delivering Bad News from QA
	Speak Up!
	Commit Checklist
	On High Rollers
	ConFoo
	A Commoner’s Response
	Code Critique Competition 102
	View from the (no longer Acting) Chair

