

Start a free 30-day trial
jb.gg/cpp-accu

A Power Language
Needs Power Tools

ReSharper C++
Visual Studio Extension
for C++ developers

CLion
Cross-platform IDE
for C and C++ developers

AppCode
IDE for iOS
and OS X development

Smart editor
with full language support
Support for C++03/C++11,
Boost and libc++, C++
templates and macros.

Code generation
and navigation
Generate menu,
Find context usages,
Go to Symbol, and more

Reliable
refactorings
Rename, Extract Function
/ Constant / Variable,
Change Signature, & more

Profound
code analysis
On-the-fly analysis
with Quick-fixes & dozens
of smart checks

GET A C++ DEVELOPMENT TOOL
THAT YOU DESERVE

SEP 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

The integrated developer
he activity we call ‘software development’ is a
many-faceted thing, and we have many titles
for ourselves in its pursuit. Whether you’re

a Software Engineer, Architect, Programmer or
(just) Coder, whether you think of it as science,
engineering or craft, there’s a great deal we do
that’s not actually writing code. And some of the
code we do write isn’t necessarily the code we’re
paid to write.

There are scripts to be written and tested to automate
the mundane tasks like building the code, generating
documentation, creating test data, running test suites,
parsing log files and the like. There are small utility
programs and IDE plug-ins that make our working lives a
little easier. On top of this, there’s all the other stuff that
isn’t programming at all.

We need to understand the intricacies of source
control systems, some ancient, some modern. Many
of us will need to get to grips with several different
ones, and try not to get our shoe-laces tied together
too much, so to speak. A vast array of data storage
and retrieval facilities, from file systems to fully
Enterprise class databases is at our disposal, sometimes
all at the same time. We may need to be skilled at
writing documentation in any number of formats, using
any number of different authoring tools. We need to be able to operate the very latest
tools alongside the most archaic, often at short notice. We are Continuously
Integrating, Unit Testing, Bug Tracking, Web Hosting, Machine Learning, Mobile,
Responsive, Agile and On-Line. Oh, I almost forgot Secure...

We may even have to be skilled diplomats in order to prevent our customers,
managers, or fellow programmers from rioting or revolting.

Even for actually writing code, we may have to be familiar with a colony of data
formats, an army of programming languages and, um, a murder of different versions
of platforms, compilers, operating systems, libraries, and so on. Fun, isn’t it?

T
Volume 28 Issue 4
September 2016

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Pete Goodliffe,
Baron M, Chris Oldwood,
Roger Orr, Jonathan Wakely

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
12 Code Critique Competition

Competition 101 and
the answer to 100.

15 Standards Report
Jonathan Wakely
brings the latest
news.

REGULARS
16 Members News

SUBMISSION DATES
C Vu 28.5 1st October 2016
C Vu 28.6: 1st December 2016

Overload 136:1st November 2016
Overload 137:1st January 2017

FEATURES
3 Home-Grown Tools

Chris Oldwood turns to custom tools when
off the shelf won’t do.

5 Why Floats Are Never Equal
Silas S. Brown tries his hand at optimising floating
point equality comparisons.

6 Smarter, Not Harder
Pete Goodliffe tries to solve the right problems
the right way.

8 An Introduction to OpenMP
Silas S. Brown dabbles in multiprocessing to speed
up his calculations.

10 Random Confusion
Silas S. Brown tries to clear up a muddle about
Standard C’s rand().

11 High Rollers
Baron M proposes a new wager over a glass of wine.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

In the Toolbox # 14
Home-Grown Tools
Chris Oldwood turns to custom tools when

off the shelf won’t do.

p until now this column has largely talked about tooling from the
perspective of using 3rd party tools to ‘get stuff done’ but there are
occasions when the one perfect tool we really need doesn’t exist. It’s

often possible that we can cobble something together using the standard
tools like cat, sed, grep, awk, etc. and solve our problem with a little
composition, but if it’s not that sort of problem then perhaps it’s time to
write our own.

Custom tooling spectrum
In the third instalment of this column [1], I covered what is probably the
most lightweight approach to tooling, which is to wrap one or more other
tools inside a simple script. These are very easy to write and are often an
enabler for automating some kind of task. The investment is small and it’s
an easy win to reduce some friction in the development process and
remove another source of human error from the loop. Despite the plethora
of extensions and plug-ins available, there still seems to be an endless
supply of small analysis and integration jobs that need doing to create a
free-flowing development process.

At the opposite end of the spectrum are the kinds of constraints that lead
to a serious investment in your own tooling. When you look at companies
like Netflix and Google and see the tools that they put back into the
development community you realise they are dealing with problems at a
scale which many of us will never have to deal with. The rise of open
source software has meant that companies who have invested in custom
tooling are perhaps much more prominent than they once were as they
often choose to release the fruits of their labour to the wider community.
Clearly companies have had to do this in the past, but historically they
may have seen this diversion as a technical advantage to be leveraged
rather than a problem to be shared.

One of the earliest examples I know of where a company decided to rely
on custom tooling was the Microsoft Excel team, which built its own C
compiler [2]. Instead of having to use separate compilers for each
platform they hedged their bets and created their own which would
compile C code to a platform-independent bytecode called ‘p-code’.
Although the anticipated plethora of platforms never materialised,
keeping the compiler in-house still brought them a number of benefits,
such as stability and consistency, which in turn allowed them to deliver a
better product faster.

Striking a balance
This latter example, along with Google creating its own version control
system or Dropbox deciding to build its own cloud, is well outside the
kinds of bounds I’ve ever experienced. I’m quite certain that if I told my
clients that I needed to spend 6 months writing a continuous delivery
system or web server framework, I’d be given my marching orders right
away. Like all engineering trade-offs there is a balance between trying to
bend and twist a general purpose tool into shape versus building exactly
what you (think you) need. For the kinds of programming I do, the
mainstream general-purpose programming languages available easily
provide enough features, especially when coupled with the dizzying array
of libraries that you now have easy access to.

Back at the very start of my professional career I joined a small software
house which was slowly feeling the pinch from ever tighter margins
through competition. I suspect they didn’t have the kind of budget you

needed for an enterprise scale internet mail gateway but they managed to
adapt Phil Karn’s DOS-based KA9Q suite [3] to send and receive mail to
and from their PMail / Netware based setup. Given the free availability of
the original source they naturally published both the binaries and source
code for their customised version on Cix, Compuserve and Demon.

This was my first real foray into the world of writing and sharing tools.
Whilst I had been a consumer of plenty of free software at University, it
felt good to finally be on the other end – giving rather than receiving.
Luckily the company was already licensed to use the NetWare SDK for
its own licensing library and so I had the opportunity to fill the gaps left
by Novell’s own tools and produce some little utilities on the side. These
were mostly to help with managing the printers but I also wrote a little tool
to map out the network and remotely query the machines to help diagnose
network problems. These, along with my DOS-based text-mode graphics
library that emulated the Netware tools look-and-feel, were all published
in source and binary form on Cix too.

Whilst my day job was supposedly writing desktop graphics software, I
presume my employer (I was permanent back then) was happy to indulge
these minor distractions because I was learning relevant skills and still
contributing something of business value too. Knowing the people there,
I’m sure the second-order effects, such as my resulting extra happiness at
being given at little latitude, was factored in too. Building tools for
pedagogical purposes has remained a theme ever since; however, this has
largely been restricted to my own personal time since I switched from
permanent to freelance status for the reasons cited earlier.

Sadly my desire to build tools to solve reoccurring problems was not
always met with such gratitude. Whilst contracting at a large financial
institute, I found myself being berated for building a simple tool that
would allow me to extract subsets of data from our huge trade data files.
Despite there only being some arcane methods when I joined the team,
and it being a fundamental part of our testing strategy, I was somewhat
surprised when my efforts were questioned rather than applauded.
Perhaps if I had spent weeks writing it when something more pressing was
needed I could understand my poor judgment, but it was developed
piecemeal a few hours at a time. Fortunately its true value was realised
soon after when the BAU and Analysis teams both started using it to
extract data too. However, although I felt partly vindicated, it still seemed
like a shallow victory because it didn’t spark the interest in building and
sharing tooling that I hoped it would.

From test to support
One of the things I’ve discovered from writing tools is that your audience
often extends far wider than perhaps you envisaged. I mostly write them
for my benefit – to make my own life easier – but naturally if it solves a
problem for me then it probably will for someone else too. The area I find
this has happened most in the past is with test tools that grow into
administration or support tools.

U

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in
plush corporate offices. He also commentates on the
Godmanchester duck race andcan be easily
distracted via gort@cix.co.uk or @chrisoldwood
SEP 2016 | | 3{cvu}

With any complex system you often need to be able to get ‘inside it’ to be
able to diagnose a problem that is not apparent from the usual logging and
monitoring tools. This might mean that you need to replay a specific
request, perhaps using a custom tool that you can drive via a debugger in
the comfort of your own chair. Whilst remote debugging of a live system
is possible, it should obviously be reserved for extreme cases due to the
disruption it causes.

This is exactly what happened to the tool I mentioned earlier that I was
chastised for spending time on. It was written initially to solve my own
needs to generate test data sets and to safely and quickly get hold of
production data so that I could replay requests to debug the large,
monolithic service. I added a few extra filters to allow me to create data
sets such as one that could replay the exact sequence of requests that had
caused a grid computing engine to crash. When the BAU team
‘discovered’ it, they used it to answer questions about specific customers
and the Analysis team used it to address regressions and regulatory
questions.

Sometimes it’s obvious how something you write can be used in multiple
contexts and there is a clear path around adding features that bias it for one
use or another. For instance, in production
scenarios I like to ensure that any tool behaves
in a strictly read-only manner, which I naturally
make the default behaviour. On occasion, when
re-purposing someone else’s creation or a tool
that’s already being automated in production, I
might have to add a command line switch (e.g.
--ReadOnly) to allow it to be run in a non-
destructive ‘support mode’. This is one of the
reasons why I prefer for all integration test
environments to be locked down by default as
tight as production because it allows you to
drive out the security and support requirements
by dog-fooding in your non-production
environments.

Even tools that you never thought had any use outside the development
team have a funny way of showing up in support roles. A mock front-end
I once wrote to allow the calculation engine developers to test and debug
without waiting an eternity for the real front-end to load got used by the
test users to work-around problems with the actual UI. Despite its Matrix-
esque visuals, one savvy user was so experienced they could see past the
raw object identifiers and could have a good idea of what the results were
based on the rough shape and patterns of the calculation’s solution.

System testing
By now it should be pretty apparent that the lion’s share of the tools I write
are for automating development tasks or for some form of system testing.
Whilst I rely heavily on automated unit, integration and acceptance tests
for the majority of test coverage, I still prefer to do some form of system
testing when I make changes that sit outside the norm. For example,
changes to 3rd party dependencies such as library upgrades or major
tooling which might throw up something peculiar at deploy or runtime are
good candidates. Also, any change where I know the automated
integration tests might be weak will cause me to give it the once over
locally first before committing and publishing, to avoid unnecessarily
breaking the build or deployment.

Replacing the real-front end with a lightweight alternative for testing,
profiling and debugging is a common theme too. The calculation engines
I’ve been involved in often have an extensive front-end, perhaps written
Visual Basic or another GUI tool that makes getting to the library entry
points I’m concerned with time consuming. In one case the front-end took
4 minutes before it even hit our initial entry point and so building
alternative scaffolding is a big time-saver. Often the library will just be
fronted by a command line interface with various switches for common
options. The command line approach also makes for a great host to use
when profiling the library with specific data sets. Naturally this again
leads towards a path of automation.

Occasionally I’ve built a desktop GUI based front-end too if I think it will
help other developers and testers. When the product has historically been
manually tested through a fat client, it can provide a half-way house that
still helps on the exploratory side without the rawness of a hundred
command line arguments and complex configuration files. When the
interop layer involves a technology like COM, then a proper UI can help
unearth some quirks that only occur in these scenarios.

More recently I’ve been working on web-based APIs, which tend to be
quite dry and boring affairs from a showcasing perspective. Like libraries,
they are quite tricky things to develop without having some bigger picture
to drive them. Hence I favour creating a lightweight UI that can be used
to invoke the API in the same manner as the anticipated clients. Not only
does this help to elevate the discussion around the design of the API to the
client’s perspective, it also provides a useful exploratory testing tool to
complement the suite of automated tests.

Architecture benefits
Trying to isolate portions of a system, whether at the class or function
level for unit testing, or subsystem level to support finer-grained

servicing, generally has beneficial effects on the
overall architecture. The need to be able to
interact with a system through interfaces other
than those which an end user or downstream
system might use, for the purposes of testing or
support, forces the creation of stable internal
interfaces and consequently looser coupling
between components.

By providing a clear separation of concerns
between the layers performing marshalling and
IPC and the logic it encapsulates we can provide
seams that allow us to compose the same
components in different ways to achieve
different ends. For example one system I
worked on had a number of very small focused

‘services’ which were distributed in the production deployment scenario,
hosted in-process in a command line host for debugging and support, and
scripted through PowerShell for administration of the underlying data
stores. Supporting different modes of composability means that any
underlying storage remains encapsulated because all access happens
through the carefully designed interface rather than with ad hoc scripts
and general purpose tools that end up duplicating behaviour or taking
shortcuts. This makes the implementation harder to change due to the
unintended tight coupling, or the tools go stale and become dangerous
because they may no longer account for any quirks that have developed.

Always room for more
You might think that in this day and age most of our tooling problems
have been solved. And yet one only has to look at the continued release of
new text editors, new programming languages and new build systems to
see that we are far from done yet. Even if your ambitions are far more
modest, there are still likely to be many problems specific to your own
domain and system that would benefit from a sprinkling of custom tooling
to reduce the burden of analysis, development, testing, support,
documentation, etc. Whilst we should be mindful of not unnecessarily
reinventing the wheel or blinkering ourselves with a Not Invented Here
(NIH) mentality, that does not mean we should also have to put up with a
half-baked solution just to drink from the Holy Grail of Reusability. Even
the venerable Swiss Army knife can’t be used for every job.

References
[1] In The Toolbox: Wrapper Scripts, C Vu 25-3,

http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-
scripts.html

[2] Joel on Software, ‘In Defense of Not-Invented-Here Syndrome’,
http://www.joelonsoftware.com/articles/fog0000000007.html

[3] Wikipedia, KA9Q, https://en.wikipedia.org/wiki/KA9Q

one only has to look at
the continued release of

new text editors, new
programming languages

and new build systems
to see that we are far

from done yet
4 | | SEP 2016{cvu}

http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-scripts.html
http://www.joelonsoftware.com/articles/fog0000000007.html
https://en.wikipedia.org/wiki/KA9Q

SEP 2016 | | 5{cvu}

Why Floats Are Never Equal
Silas S. Brown tries his hand at optimising

floating point equality comparisons.

Optimiser 1, Silas Brown 0
ou’re probably aware that comparing two floats or doubles for
equality is a bad idea due to rounding error. If two numbers which
you expect to be equal were calculated in two different ways, the two

different calculations will likely have different rounding errors and you
don’t quite end up getting an equal result, so you have to do something
like:

 fabs(b-a) < .0001

where .0001 is a tolerance chosen appropriately for your application
(there are ways of working it out in the general case, but if you know your
application then you probably have a good idea of
what sort of numbers you’re dealing with). Do use
fabs rather than coding it yourself, as many
compilers will convert fabs to a single instruction.

I was doing some voluntary programming for a cancer
research team [1], and it involved a thermodynamics
calculation on fragments of DNA at different
alignments. Once all possible alignments had been
checked and we knew which one gave the lowest
result, I wanted to display information about it. I had
three options:

1. Calculate display information about ALL the
items, store it, and then display only the one we
found to be minimum;

2. Store the loop counter of the minimum item so far so we can go back
to it;

3. Just store the minimum value, then go back through the whole loop
and find it again.

Option 1 would run slower and moreover would be a memory
management hassle to code. Normally I would have picked option 2, but
in this case each loop iteration was making incremental changes to quite
a few variables along the way, and on the other hand there weren’t very
many loop iterations, so I decided on option 3.

Now surely, I thought, this could be the one occasion where it is all right
to save a couple of CPU cycles by comparing two floating-point values
for equality. After all, the second version of the loop is exactly retracing
the steps of the first, with exactly the same formulae and only the addition
of some extra display code in between. The rounding error can’t possibly
be any different this time, can it?

Wrong.

The extra display code was nothing to do with the floating-point
calculation, but it did affect the optimiser’s decisions of which values to
keep in registers and which ones to write back to memory. And it turned
out the x86 CPU had 80-bit floating-point registers, which were being
rounded down to 64-bit (or 32-bit) when writing to memory. So if the

optimiser found enough room to keep an intermediate result in a register,
it would be kept at 80-bit precision, but if it decided to spill that register
to memory to make room for something else, precision would be lost. And
optimisers these days have ways of using floating-point registers as
holding bays for non-floating point data, so just because the extra code
wasn’t doing any floating point itself, didn’t mean it wouldn’t be
compiled to something that ‘wanted’ those registers. The presence of this
display code was causing the floating-point registers to be saved out to
memory, and precision to be lost, making the equality comparison still
wrong even though I was looking at the same C formulae in both cases.

I didn’t spot this bug at first because, when I was developing, I happened
to be using a Mac, which is based on BSD. BSD
defaults to putting the x86 CPU into a mode where it
always rounds its intermediate results, so there is no
difference between a result held in a register and one
written to memory. So I was getting away with it. But
then we tried to run the same code on GNU/Linux,
which doesn’t tell the CPU to round, because it prefers
accuracy to predictability. And it got stuck in an
infinite loop looking for a minimum that didn’t exist.

Of course there are ways to dodge the issue on x86
CPUs. You could find out how to change the CPU’s
rounding mode yourself (it involves assembly). Or you
could make sure to always use 80-bit variables

(usually called ‘long double’ by x86 compilers), although if you don’t
need that much precision then the extra memory operations would
probably slow you down far more than a ‘nearly equal’ comparison would
(and the same goes for GCC’s -ffloat-store option, which prevents
any intermediate floating-point values from being held in registers at all).
But what if someone wants to compile your code on some other kind of
CPU? Can you be sure that there won’t be a similar problem?

Floats are never equal. Well they are sometimes, but you don’t know
when, even if you think you do. Not unless you’re programming in
assembly and you know exactly which intermediate results are held in
which registers at which times, and the chances are your application
doesn’t make it worth your time to go there. Floats are never equal.

Finally, if you really want to save 2 CPU instructions and are looking for
a known minimum, then instead of doing fabs(x-minimum)<.0001,
you can first add .0001 to minimum outside the loop, then simply test for
x < minimum. Do check this tolerance is appropriate to your application
and can be represented by your chosen floating-point precision.

GCC has a warning when you try to compare two floats for equality, but
you have to switch it on with the -Wfloat-equal option, which is sadly
not included in -Wall or -Wextra.

Reference
[1] http://people.ds.cam.ac.uk/ssb22/pooler

Y

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

Floats are never
equal. Well they
are sometimes,

but you don’t know
when, even if you

think you do.

If you read something in C Vu that you
particularly enjoyed, you disagreed with or
that has just made you think, why not put
pen to paper (or finger to keyboard) and
tell us about it?

http://people.ds.cam.ac.uk/ssb22/pooler

Becoming a Better Programmer #100
Smarter, Not Harder
Pete Goodliffe tries to solve the right problems the right way.

Battles are won by slaughter and manoeuvre. The greater the general, the
more he contributes in manoeuvre, the less he demands in slaughter.

~ Winston Churchill

ife in the software factory can be hectic and fast-paced, with many
unreasonable demands. “Make it super-elegant.” “Make it feature-
rich.” “Make it bug-free.” “And make it now!” With the pressures of

unrealistic deadlines and tricky coding tasks looming over your head, it
can be easy to lose focus, and deliver the wrong thing, or fail to deliver at
all.

There’s a trick, or is it an art, or is it simply a learned skill, to doing the
right thing at the right time; to knowing how to solve the right problem;
and to do as much (that is, as little) work as required to get to the right
solution.

The wrong thing, the wrong way
Let me tell you a story. It’s true. A colleague, working on some UI code,
needed to overlay pretty rounded arrows over his display. After he
struggled to do it programmatically using the drawing primitives
provided, I suggested he just overlay a graphic on the screen. That would
be much easier to implement.

So off he went. He fired up Photoshop. And fiddled. And tweaked. And
fiddled some more. In this, the Rolls-Royce of image composition
applications, there is no quick-and-easy way to draw a rounded arrow that
looks halfway decent. Presumably an experienced graphic artist could
knock one up in two minutes. But after almost an hour of drawing, cutting,
compositing, and rearranging, he still didn’t have a convincing rounded
arrow.

He mentioned it to me in frustration as he went to make a cup of tea.

On his return, tea in hand, he found a shiny new rounded arrow image
sitting on his desktop ready for use.

“How did you do that so quickly?” he asked.

“I just used the right tool,” I replied, dodging a flying mug of tea.

Photoshop should have been the right tool. It’s what most image design
work is done in. But I knew that Open Office provides a handy
configurable rounded arrow tool. I had drawn one in 10 seconds and sent
him a screenshot. It wasn’t elegant. But it worked.

The moral?

There is a constant danger of focusing too closely on one tool, or on a
singular approach to solve a problem. It’s tantalisingly easy to lose hours
of effort exploring its blind alleys when there’s a simpler, more direct
route to your goal.

So how can we do better?

Pick your battles
To be a productive programmer, you need to learn to work smarter rather
than harder. One of the hallmarks of experienced programmers is not just
their technical acumen, but how they solve problems and pick their
battles.

Good programmers get things done quickly. Now, they don’t bodge
things like a shoot-from-the-hip cowboy coder. They just work smart.
This is not necessarily because they are more clever; they just know how
to solve problems well. They have an armoury of experience to draw from
that will guide them to use the correct approach. They can see lateral
solutions – the application of an unusual technique that will get the job
done with less hassle. They know how to chart a route around looming
obstacles. They can make informed decisions about where best to invest
effort.

Battle tactics
Here are some simple ideas to help you work smarter.

Reuse wisely

Don’t write a lump of code yourself when you can use an existing library,
or can re-purpose code from elsewhere.

Even if you have to pay for a third-party library, it is often far more cost
effective to take an off-the-shelf implementation than to write your own.
And test your own. And then debug your own.

Use existing code, rather than writing your own from scratch.
Employ your time on more important things.

Overcome ‘not invented here’ syndrome. Many people think that they can
do a much better job themselves, or fashion a more appropriate version for
their specific application. Is that really the case? Even if the other code
isn’t designed exactly how you prefer, just use it. You don’t necessarily
need to rewrite it if it’s working already. Make a facade around it if you
must to integrate into your system.

Make it someone else’s problem

Don’t work out how to do a task yourself if someone already knows how
to do it. You might like to bask in the glory of the accomplishment. You
might like to learn something new. But if someone else can give you a leg
up, or complete the job much faster than you, then it may be better to put
the task in their work queue instead.

Only do what you have to

Consider sacrilege: Do you need to refactor? Do you need to unit test?

I’m a firm advocate of both practices, but sometimes they might not be
appropriate or a worthwhile investment of your time. Yes, yes: refactoring
and unit testing both bring great benefits and should never be tossed aside
thoughtlessly. However, if you’re working on a small prototype, or
exploring a possible functional design with some throwaway code, then
you might be better off saving the theologically correct practices for later.

If you do (laudably) invest time in unit tests, consider exactly which tests
to write. A stubborn ‘test every method’ approach is not sensible. (Often
you’ll think you have better coverage than you expect). For example, you
need not test every single getter and setter in your API. (It’s another issue
whether you should have getters and setters in your APIs in the first
place.) Focus your testing on usage, not methods, and pay particular
attention to the places you would likely expect brittleness.

Pick your testing battles.

L

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
6 | | SEP 2016{cvu}

Put it on a spike

If you’re presented with multiple design options and you’re not sure
which solution to pick, don’t waste hours cogitating about which is best.
A quick spike solution (a throw-away prototype) might generate more
useful answers in minutes.

To make this work well, set a specific Pomodoro-like time window within
which you will perform the spike. Stop when the time elapses. (And in
true Pomodoro style, get yourself a nice hard-to-ignore windup timer to
force you to stop.)

Use tools that will help you backtrack quickly (e.g., an effective version
control system).

Prioritise

Prioritise your work list. Do the most important things first.

Concentrate effort on the most important things first. What is
most urgent, or will produce the most value?

Be rigorous about this. Don’t get caught up on unimportant minutiae; it’s
incredibly easy to do. Especially when one simple job turns out to depend
on another simple job. Which depends on another simple job, which
depends on.... After two hours you’ll surface from a rabbit hole and
wonder why on earth you’re reconfiguring the mail server on your
computer when what you wanted to do was modify a method on a
container class. In computer folklore, this is referred to as yak shaving [1].

Beware of the many small tasks you do that aren’t that important; email,
paperwork, phone calls – the administrivia. Instead of doing those little
things throughout the day, interrupting and distracting you from your flow
on important tasks, batch them together and do them at one (or a few) set
times each day.

You may find it helps to write these tasks down on a small ‘to do’ list, and
at a set time start processing them as quickly as possible. Ticking them off
your list – the sense of accomplishment can be a motivating reward.

What’s really required?

When you are given a new task, check what’s really needed now. What
does the customer actually need you to deliver?

Don’t implement the Rolls-Royce full bells-and-whistles version if it’s
not necessary. Even if the work request asks for it, push back and verify
what is genuinely required. To do this, you need to know the context your
code lives in.

This isn’t just laziness. There is a danger in writing too much code too
early. The Pareto principle [2] implies that 80% of required benefit could
come from just 20% of the intended implementation. Do you really need
to write the remainder of that code, or could your time be better employed
elsewhere?

One thing at a time

Do one thing at a time. It’s hard to focus on more than one job at once
(especially for men with our uni-tasking brains). If you try to work
concurrently, you’ll do both jobs badly. Finish one job then move on to
another. You’ll get both jobs completed in a shorter space of time.

Keep it small (and simple)

Keep your code and design as small and as simple as possible. Otherwise,
you’ll just add a lot more code that will cost you time and effort to
maintain in the future.

Remember KISS: Keep It Simple, Stupid.

You will need to change it; you can never foretell exactly what the future
requirements are. Predicting the future is an incredibly inexact science. It

is easier and smarter to make your code malleable to change now than it
is to build in support for every possible future feature on day one.

A small, focused body of code is far easier to change than a large one.

Don’t defer and store up problems

Some things that are hard (like code integration) should not be avoided
because they are hard. Many people do so; they defer these tasks to try to
minimise the pain. It sounds like picking your battles, doesn’t it?

In reality, the smarter thing is to start sooner and face the pain when it is
smaller. It’s easier to integrate small pieces of code early on, and then to
frequently integrate the subsequent changes, than it is to work on three
major features for a year and then try to stitch them together at the end.

The same goes for unit testing: write tests now, alongside your code (or
before). It’ll be far harder, and less productive, to wait until the code is
‘working’ before you write the tests.

As the saying goes: If it hurts, do it more often.

Automate

Remember the classic advice: if you have to do it more than once, write a
script to do it for you.

If you do something often, make the computer do it for you.
Automate it with a script.

Automating a common, tedious task could save you many hours of effort.
Consider also a single task that has a high degree of repetition. It might be
faster to write a tool and run that once, than to do the repetitive job by
hand yourself.

This automation has an added advantage: it helps others to work smarter,
too. If you can run your build with one command, rather than a series of
15 complex commands and button presses, then your entire team can
build more easily, and newcomers can get up to speed faster.

To aid this automation, experienced programmers will naturally pick
automatable tools, even if they don’t intend to automate anything right
now. Favour workflows that produce plain text, or simple structured (e.g.,
JSON or XML) intermediate files. Select tools that have a command-line
interface as well as (or instead of) an inflexible GUI panel.

It can be hard to know whether it’s worth writing a script for a task.
Obviously, if you are likely to perform a task multiple times then it’s
worth considering. Unless the script is particularly hard to write, you are
unlikely to waste time writing it.

Error prevention

Find errors sooner, so you don’t spend too long doing the wrong thing.

To achieve this:

 Show your product to customers early and often, so you’ll find out
quickly if you’re building them the wrong thing.

 Discuss your code design with others, so you’ll find out if there’s a
better way to structure your solution earlier. Don’t invest effort in
bad code if you can avoid it.

 Code review small, understandable bits of work often, not large
dense bits of code.

 Unit-test code from the outset. Ensure the unit tests are run
frequently to catch errors before they bite you.

Communicate

Learn to communicate better. Learn how to ask the right questions to
understand unambiguously. A misunderstanding now might mean you’ll
end up reworking your code later on. Or suffer delays waiting for more
answers to outstanding questions.

Learn how to run productive meetings so your life is not sucked out by the
demons who sit in the corners of meeting rooms.
SEP 2016 | | 7{cvu}

Smarter, Not Harder (continued)

Avoid burnout

Don’t burn yourself out working silly hours, leading people to expect
unrealistic levels of work from you all the time. Make it clear if you are
moving beyond the call of duty, so people learn not to expect it too often.

Healthy projects do not require reams of overtime.

Power tools

Always look out for new tools that will boost your workflow.

But don’t become a slave to finding new software. Often new software has
sharp edges that could cut you. Favour tried-and-tested tools that many
people have used. You can’t put a price on the collected knowledge of
these tools available via Google.

Conclusion
Pick your battles. (Yeah, yeah.) Work smarter, not harder. (We’ve heard
it all before.)

They are trite maxims. But they are true.

Of course, this doesn’t mean don’t work hard. Unless you want to get
fired. But that’s not smart.

Questions
1. How do you determine the right amount of testing to apply to your

work? Do you rely on experience or guidelines? Look back over
your last month’s work; was it really tested adequately?

2. How good are you at prioritising your workload? How can you
improve?

3. How do you ensure you find issues as soon as possible? How many
errors or re-workings have you had to perform that could have been
avoided?

4. Do you suffer from not invented here syndrome? Is everyone else’s
code rubbish? Could you do better? Can you stomach incorporating
other’s work in your own?

5. If you work in a culture that values the number of hours worked over
the quality of that work, how can work reconcile ‘working smart’
with not looking lazy?

References
[1] http://bit.ly/Y1J0f
[2] For many events, roughly 80% of the effects come from 20% of the

causes. For more on this, see http://en.wikipedia.org/wiki/
Pareto_principle
An Introduction to OpenMP
Silas S. Brown dabbles in multiprocessing to

speed up his calculations.

f you use a CPU that was manufactured during the last few years, then
the chances are it has more than one core, most likely two or four.
Multi-core programming can be difficult (I would certainly

recommend putting in a little effort to make sure you’re using a fast-
enough algorithm on one core first), but it was made easier by GCC’s
adoption of the OpenMP (Open Multi-Processing) standard since version
4.2 (2007). If you use a recent version of GCC, you might have OpenMP
without knowing it. Try:

 gcc my-program.c -fopenmp

and see whether or not it calls it an unknown option. (I do this in a script
to decide what compilation options to use on a deployment machine.)

Adding OpenMP directives to a program can be surprisingly simple.
Consider a for loop:

 for (int i=0; i < nItems; i++)
 process_item(i);

If process_item looks only at item i and nothing else (no memory
conflicts) then all you need to add before the for is:

 #pragma omp parallel for

and, by default, the OpenMP library will find out at runtime how many
cores are available on the CPU, split into that number of threads, divide
nItems by the number of threads, let each thread process its ‘chunk’ of
the items, and wait for them to finish. It will also add code to let the user
override the number of threads at runtime by setting an environment
variable (OMP_NUM_THREADS). This is all rather powerful just for one
#pragma. Of course, if that code is compiled without OpenMP support,
the pragma will be ignored and the code will run sequentially. But some
compilers warn about unknown pragmas, so to suppress this warning you
could wrap the pragma in an ifdef:

 #ifdef _OPENMP
 #pragma omp parallel for
 #endif

which you can even extend to let you use macros to control exactly which
parts of your program are parallelised:

 #define Parallelise_The_XYZ_Loop 1
 ...
 #if defined(_OPENMP) && Parallelise_The_XYZ_Loop
 #pragma omp parallel for
 #endif

Since the extra work of creating and managing the threads has an
overhead, you should only use parallel for if you’re sure the benefits
will be worth the overhead. For very short loops, you might actually slow
the program down. Always measure to check you are actually getting a
speed increase.

By default, the loop counter and any variable you declare inside the loop
will be private to that thread, but other variables will be shared, so if you
want to change them you had better write a critical section to ensure
only one thread at a time can get in:

 #pragma omp critical
 update_a_shared_variable();

critical is not needed if all you’re doing is writing to an array when
the element number you write to is the item number you’re processing, as

I

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
8 | | SEP 2016{cvu}

http://bit.ly/Y1J0f
http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikipedia.org/wiki/Pareto_principle

the other threads won’t be writing to the same element. But it is often
needed in other shared-variable circumstances; you are going to have to
think.

One pattern that is often seen in OpenMP programming is to check if a
shared variable needs updating, then enter a critical section and repeat
the check:

 if (shared_variable_needs_updating())
 #pragma omp critical
 if (shared_variable_needs_updating())
 update_a_shared_variable();

The second check is there in case another thread beats us to it with
updating the shared variable. For example, this might be used if the shared
variable is ‘best solution found so far’: just because we found a better
solution outside the critical section doesn’t mean nobody else posted
an even better one just before we entered it. We could save the extra
comparison by entering the critical section unconditionally and
THEN making the comparison, but that would be inefficient because it
would hold up other threads unnecessarily.

One t r ick that might be useful during debugging is to add
default(none) to the end of the parallel for pragma. That tells
OpenMP to refrain from its default behaviour of making variables within
the loop private to each thread and other variables shared, and forces you
to declare the shared/private status of each variable explicitly. If you
haven’t done so, you get some handy error messages pointing out each
variable referred to from the parallel section. This can be very useful
indeed when retro-fitting OpenMP to existing code and the loop is too
large for you to be sure you’ve noticed everything.

parallel for can take only normal for loops that count items as they
go; trying to be more ‘clever’ with the for statement will not work with
OpenMP. You may use the continue statement in a parallel for,
but not break (unless it’s inside another loop etc that’s nested inside the
parallel one), and not return. This is for obvious reasons: there would
be no way for the OpenMP libraries to make sure that break or return
stops other iterations of the loop if some other thread is already running
away with them.

By default, parallel for assumes that each loop iteration will be
roughly equal, and so it splits the number of required iterations evenly
among the threads. You could instead add schedule(dynamic) to the
pragma to take the alternative approach of sending just one iteration at a
time to each thread (so for example if there are four cores, the first four
iterations will be started on immediately, and as soon as one of the cores
finishes its iteration it will be given the fifth iteration to do), but that tends
to work well only if each iteration is quite long; if iterations are short then
the overheads of managing the dynamic schedule slow things down.
You can however do your own scheduling: instead of using parallel
for, just say:

 #pragma omp parallel
 some_function_or_block()

which will run N identical copies of some_function_or_block();
these copies will then need to work out amongst themselves which one
does which section of work. To help with this, omp.h defines the functions
omp_get_thread_num() and omp_get_num_threads(): the
thread number will be between 0 and threads-1 inclusive. Since I like to
make sure my programs can still compile even if OpenMP is not present,
I do this:

 #ifdef _OPENMP
 #include <omp.h>
 #else
 #define omp_get_num_threads() 1
 #define omp_get_thread_num() 0
 #endif

You have to be careful, when dividing your work units by the number of
threads, to make sure no work is left out due to the division result being
rounded down. If your units are fairly even then it’s probably best just to
use OMP’s own parallel for which does all the work for you.

Signals are usually sent to an arbitrary thread, so the best thing to do in a
signal handler is probably just to set a flag which all threads regularly
check.

OpenMP works in C++ as well, but if you are using a lot of objects then
you might need to be even more careful of where you put your critical
sections.

Besides GCC, other compilers that support OpenMP include Visual C++
(from its 2005 version onward) and the Intel compiler, but I haven’t tried
these. Clang 3.7 supports it, but some older Macs (e.g. OS X 10.7) have
both Clang and GCC installed where the GCC supports OpenMP but the
Clang does not. OpenMP implementations are generally limited to
multicore CPUs with shared memory, as in a modern multicore desktop;
more advanced approaches are needed if you’re running on a
supercomputer or cluster that does not share its memory between all the
cores, or if you want to run your processing on graphics cards (GPUs).

On slightly older Apple computers, there’s some strange bug that means
you can’t call memcpy() from inside a function that uses OpenMP: you
have to wrap that memcpy() into another function of your own and call
that. But the function you wrap it in can be ‘inline’ so you don’t actually
lose anything. If you get other problems on Apple, try:

 #define _FORTIFY_SOURCE 0

as a workaround.

Finally, if you are cross-compiling for Windows using MingW, you might
want to use the -static flag to make sure the .exe file doesn’t depend
on OpenMP and threading DLLs. Windows .exe files are easier to
distribute if they don’t need DLLs.
SEP 2016 | | 9{cvu}

Random Confusion
Silas S. Brown tries to clear up a muddle about

Standard C’s rand().

he Standard C way of obtaining random numbers is to call srand()
and rand(), defined in stdlib.h. Unfortunately, the manual
pages of BSD state categorically that rand() is not very good, and

a function called random() should be used in its place. This includes
Mac OS X (which was derived from BSD), and it would appear that some
poorly-written books have copied this advice without realising that
random() is not actually Standard C. Searching the Web will show quite
a few discussion pages where beginners have read books that told them to
use random() instead of rand(), and others have told them this is not
Standard C and the book is not very good, but they rarely note where the
confusion came from. (I would chime in myself on those threads if it
weren’t so much hassle to sign up for an account on each one.)

So perhaps we should make a little public service announcement: rand()
is Standard C; random() is Standard
POSIX.

True, random()’s being in POSIX means
it’s available on all modern Unix systems
including BSD, Mac OS X and GNU/Linux.
But it’s not there on Windows and the
confusion is (for once) not Microsoft’s fault.
It’s also unlikely to be there on other
platforms (PDAs and so on).

When the BSD manual says rand() is not
very good, what it really means is, BSD’s
implementation of it is not very good. The C
standard gives a sample implementation of
rand but does not mandate that particular
implementation. BSD (at least the version of
it in Apple’s source) essentially just multiplies the previous number by
16807 and leaves it at that. In the early 1980s, 4.2BSD (1983) and 4.3BSD
(1986) introduced random() to be a ‘better rand’, but they didn’t
upgrade the behaviour of their rand(), presumably because they didn’t
want to break any programs which relied on their old implementation-
specific behaviour of this function.

The GNU/Linux C library (at least nowadays) does the sensible thing and
makes rand() equal to random(), so you get the better behaviour no
matter which one you call. In that case I suggest you call rand() because
then you’re writing Standard C. But their manual page suggests you prefer
random() because then your code will work better on BSD.

The Windows implementation of rand() is better than BSD’s: it
multiplies by 214013, adds 2531011 and returns bits 30 to 16 of the result.
Of course, that’s not good enough for cryptography (and you certainly
shouldn’t rely on the standard rand() being good enough for
cryptography on any platform; if you want cryptographically-strong
random numbers, make sure you can find out how to get them properly!),
but it should be fine for most scientific or simulation purposes and you
don’t have to worry about disregarding the low-order bits (which is just
as well, as there are only 15 bits to start with).

(Versions of WINE prior to 2006 just did rand() & 0x7fff, but this was
then replaced with an implementation of what MSVC actually does. So if

you’re on Unix and cross-compiling for Windows, you can run your
program in WINE and get the same random sequence that it would get on
Windows if seeded to the same value.)

So what to do about random()? A first thought might be ‘use rand()
on Windows, random() everywhere else’
but that won’t help with ports to non-
Windows non-Unix systems (yes these do
exist). Since GNU/Linux nowadays gives
you good behaviour no matter which one you
call, it would be better to say ‘use random()
on BSD, rand() everywhere else’. You can
do that by checking for the BSD macro,
which is defined in sys/param.h (a
header file which is also available when
cross-compiling for Windows) – see Listing
1.

If you want to make your program’s
behaviour 100% reproducible no matter
which system it is compiled on, you had

better provide your own random number generator, because you never
know which one you’re going to get from the standard library. Seeding it
to the same value makes the sequence reproducible only on that particular
implementation of the C library (and that particular version of it at that:
most platforms are not as obsessive as BSD is about keeping their old
behaviour from version to version). The code in Listing 2 should
reproduce Microsoft’s behaviour; I’m setting the functions to static so
they won’t be visible outside the current C module, just in case some
library function depends on the library’s implementation of rand(). Feel
free to use this in your code as it seems to be a public-domain method (at
least I hope so; if Microsoft sues you for using two of their numbers,
change them! but do check some good texts for alternatives, as you’re less
likely to end up with a good generator if you just pick them out of thin air
yourself.)

T #include <stdlib.h>
#include <sys/param.h>
#ifdef BSD
/* avoid BSD's bad old rand() implementation */
#define rand random
#define srand srandom
#endif /* BSD */

Listing 1

#ifdef RAND_MAX
#undef RAND_MAX
#endif
#define RAND_MAX 0x7FFF
static unsigned long seed = 1;
static void srand(unsigned int newSeed) {
 seed = newSeed;
}
static int rand() {
 seed = (seed*214013L) + 2531011L;
 return (seed >> 16) & 0x7FFF;
}

Listing 2

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

If you want to make your
program’s behaviour 100%

reproducible no matter
which system it is

compiled on, you had better
provide your own random

number generator
10 | | SEP 2016{cvu}

High Rollers
Baron M proposes a new wager over a glass of wine.

ir R-----, my fine fellow, it does my heart good to see you upon this
summer’s eve! Will you take a glass of muscatel and, perchance, a
wager?

As I should have expected, you have not disappointed me sir!

Might I propose a game native to the Isle of Cockaigne, that land of plenty
where the fountains run with this elixir, where the vintners string up their
vines with sausages and where, whensoever it rains, it rains gravy?

I first visited Cockaigne upon the direction of the Pope, who had
instructed me to do penitence by travelling there. What cause there should
have been I cannot fathom, but I shall never allow it to be said that I have
been derelict in my duties, neither earthly nor heavenly. The journey was
an arduous affair, some twenty-eight months’ sailing, during which we
exhausted our provisions and were forced to make stew of the fo’c’sle.
Needless to say, we were most relieved to find that at our destination no
fellow wanted for aught and we had ourselves a feast that would have put
the Pope’s court to shame!

Having no need to strive for their daily bread, the denizens of that fair
island took to chance to decide who should be the master and who the
servant. Each day they diced for their roles and it is by the rules that they
did so that I suggest we gamble.

Here, I have chalked out upon the table two spaces for each of us, one
marked for tens and the other for ones. I shall cast a twenty-sided die upon
which are struck the digits zero to nine twice over and, once it has settled
upon a number, I shall choose which of my spaces to place it upon. You
shall then do the same with one of these two dice. We shall then each cast
another and place it upon the space that we have yet not chosen and if the
number that you have built exceeds mine then you shall have a prize of
twenty nine coins from me, otherwise I shall have one of thirty coins from
you.

That godforsaken student, whose unrelenting nonsense it seems that I
must unceasingly bear witness to, upon having the rules of this game

painstakingly explained to him, commenced to blathering on and on about
the tragedies that he had suffered at the hands of his opticians. As a
marksman of the first water, I must confess that I have little sympathy for
the trouble that those who bury their noses in books bring upon their eyes,
damn them!

Now that’s more than enough of that wretch! Come, take another glass
and think upon your chances!

Courtesy of www.thusspakeak.com

S

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Random Confusion (continued)

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines.
We need articles at all levels of software development experience; you don’t have to write about rocket science or
brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
The XorShift generator discovered by George Marsaglia in 2003 gives
generally better random numbers and is usually faster. It can be
implemented thus:

 #include <stdint.h>
 int XS_rand() {
 static uint64_t s=1;
 s^=s>>12; s^=s<<25; s^=s>>27;
 return s & 0x7FFFFFFF;
 }

On x86 processors, bit shifts and XORs can be done in one cycle each,
whereas multiplications can take 3 or 4 cycles depending on the processor
(although pipelining and other types of instruction-level parallelism can
hide that latency in some circumstances). Even additions can take
multiple cycles on some CPUs. Thus Xorshift (which takes three XORs
and three shifts) is almost certainly going to be at least as fast, and likely
faster, than a common linear congruential generator which uses
multiplication and addition.
SEP 2016 | | 11{cvu}

www.thusspakeak.com

Code Critique Competition 100
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for
the competition (in any common programming language) to
scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

Last issue’s code
I wanted to do something slightly different for the 100th code critique
column, so I based this critique on the ‘left-pad’ function that was part
of npm but was withdrawn by the author, breaking a large number of
components on the Internet.

See http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm for
some more o f f i c ia l in format ion about the issue and th is
blog:http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-
to-program/ for some discussion about some of the issues it raises.

Please feel free to comment on the Javascript code itself, or on the wider
issues raised by the story.

Listing 1 contains leftpad.js, and a trivial test page is provided in
Listing 2 if you want to play with the function in a browser.

Critique

Juan Zaratiegui <yozara@outlook.com>

I am not a Javascript fan or expert, but languages have similar foundations,
so let’s give it a try.

For a start, let’s look at the function as a whole: we are trying to pad the
left of a string with some char until we fill a specified length.

This length comes from the parameter len, and it is never checked against
the natural limits: it should be a positive integer, and greater than the
original string length to be meaningful.

If the length desired is less or equal to the original string length, no
operation should be performed and the original string would be returned.

Now that we have corrected length treatment, let’s look at the fill char.
We want 1 fill char, but there is no precaution taken about it. Instead, we
have a strange condition that replaces a string that is simultaneously empty
and '0' with a space. That will never happen.

Instead we will make three tests: empty string, string of length not 1 and
string = Char(NULL). If any of these tests are true, we will use the
default string ' ' to fill.

And finally, as a question of cleanness, I will use local variables with
names different from the parameters, thus giving the following listing:

 function leftpad (str, len, ch) {
 result = String(str);
 var i = -1;
 if (!ch || ch.length != 1 ||
 ch.charCodeAt(0) == 0) ch = ' ';

 if (len > str.length) {
 missing = len - str.length;
 while (++i < missing) {
 result = ch + result;
 }
 }
 return result;
}

Commentary
There are a number of issues that could be covered with this story. The
original one was that the code as written appears to have a number of
problems (or potential problems) but there are some rather wider questions
that I might touch on too.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

Listing 1 (cont’d)

<!DOCTYPE html>
<html>
<head><title>CC100</title></head>
<body>
<h1>Code Critique 100</h1>
<script src="leftpad.js"></script>
<script>
function testLeftpad() {
 result.innerHTML = '"' +
 leftpad(text.value, len.value, pad.value) +
 '"';
}
</script>
<table>
<tr><td>Text to pad</td><td>
 <input type="text" id="text" value="1234">
</td></tr>
<tr><td>Length</td><td>
 <input type="text" id="len" value="10">
</td></tr>
<tr><td>Pad char</td><td>
 <input type="text" id="pad" value="0">
</td></tr>
</table>

<button onclick="testLeftpad()">
Try out leftpad
</button>
<pre id="result"></pre>
</body>
</html>

Listing 2

function leftpad (str, len, ch) {
 str = String(str);
 var i = -1;
 if (!ch && ch !== 0) ch = ' ';
 len = len - str.length;
 while (++i < len) {
 str = ch + str;
 }
 return str;
}

Listing 1
12 | | SEP 2016{cvu}

The requirements on the input types and values for leftpad are unclear.
Javascript is a dynamically typed language so the three parameters can be
filled by a variety of different types at runtime; which ones are expected?

The first argument is converted to a String so can be (almost) any type –
although passing it an arbitrary Object, for instance, is unlikely to produce
useful output. The likely data types are String and Number and either of
these will ‘do the right thing’ but this has to be inferred.

The second argument is the desired output string length. As Juan noted,
it’s not clear what the effect of providing an out of range value ought to
be. However, the code as written will make no change to str if len is
less than the string length or negative. It’s not clear whether the behaviour
if the value is non-integral is expected (eg. len = 10.01 pads to 11).

The third argument, ch, is the fill character. Except when it isn’t. The
complication is the line that ‘sanitises’ the fill character:

 if (!ch && ch !== 0) ch = ' ';

The first expression, !ch, will be true if ch is undefined, null, false,
+0, -0 or NaN, or an empty string. The second expression, ch !== 0,
will be true if ch is either not a number or is a non-zero number. So the
overall effect of the line is to set the fill character to a space if the argument
was undefined, null, false, NaN or an empty string. Note that ch will
be undefined when the argument is omitted, hence ‘by default’ the function
pads with spaces.

However, as Juan also noted, there is no check that the string representation
of ch (used later when actually padding the string) is of length 1. If the
length is greater than 1 the code will prepend n copies of the string to
result, leading to a wider string than expected being returned. We could
use ch.charAt(0) to create a single-character fill. However, if ch is
supplied as a number, not as a string, the call to charAt(0) will fail. It
might be better to explicitly convert ch into a string first.

This is obviously not the only design option; another option is to prepend
enough copies of the string so the new length is a least that desired:
leftpad("+-", "test", 7) would then produce as output "+-+-
test".

Finally, the performance of the padding itself is non-optimal: the loop
creates a new string each time which is one character longer with the new
character at the front. For modern (ECMAScript 6) browsers the repeat
function can be used to create a string of the right length and remove the
loop completely:

 if (len > 0)
 str = ch.repeat(len) + str;

If the code has to run on slightly older browsers which do not implement
repeat() then it might be worth supplying a function with similar
semantics.

The current version of npm’s leftPad function builds up the padding
using a double-and-add algorithm based on the binary decomposition of
the length required.

From https://github.com/stevemao/left-pad:

 var cache = [
 '',
 ' ',
 ' ',
 ' ',
 ' ',
 ' ',
 ' ',
 ' ',
 ' ',
 ' '
];

 function leftPad (str, len, ch) {
 // convert `str` to `string`
 str = str + '';
 // `len` is the `pad`'s length now
 len = len - str.length;

 // doesn't need to pad
 if (len <= 0) return str;
 // `ch` defaults to `' '`
 if (!ch && ch !== 0) ch = ' ';
 // convert `ch` to `string`
 ch = ch + '';
 // cache common use cases
 if (ch === ' ' && len < 10)
 return cache[len] + str;
 // `pad` starts with an empty string
 var pad = '';
 // loop
 while (true) {
 // add `ch` to `pad` if `len` is odd
 if (len & 1) pad += ch;
 // devide `len` by 2, ditch the fraction
 len >>= 1;
 // "double" the `ch` so this operation
 // count grows logarithmically on `len`
 // each time `ch` is "doubled", the `len`
 // would need to be "doubled" too
 // similar to finding a value in binary
 // search tree, hence O(log(n))
 if (len) ch += ch;
 // `len` is 0, exit the loop
 else break;
 }
 // pad `str`!
 return pad + str;
 }

This is a degree of cleverness that may only be required for some uses of
the left pad function; but given how widespread use of the original function
was I suspect it is worth doing. I think though that I’d have possibly made
the creation of the fill string into a separate function as this can be useful
on its own.

The replacement code comes with a simple test program, which is good,
but it doesn’t cover some of the troublesome cases for input arguments of
unexpected types or ranges. mentioned earlier.

The bigger questions that this raises are at least partly covered in the two
links I gave in the critique preamble.

I think for me a couple of the major concerns are:

 the number of hits the website took in a a very small time implies
that an outage of the website (which could be caused by a number
of things) would have a wide ripple effect.

 relying on code that relies on other code. A lot of people were hit by
the removal of left-pad although they didn’t use it directly but used
something that did.

Taken together this means a number of people had a hard-to-diagnose
failure because of a tangle of dependencies outside their direct control.

This seems to me quite a large ‘business’ risk and I’m not sure whether
those using this sort of ‘live’ dependency on the Internet are aware of the
potential problems.

There is then a security risk of relying on unexamined code; in this day
and age I think you have to be careful about the possibility of both code
with accidental security holes and of malicious code being injected into a
website.

The winner of CC 100
I was a little disappointed that the discussions on accu-general didn’t result
in more entries, but thank you to Juan for providing his critique.

He appears to have been led a little astray by the slightly unusual
comparison modes supported by Javascript (so the proposed solution no
longer handles using a literal 0 as a fill value) but I think he still deserves
the prize for this critique.
SEP 2016 | | 13{cvu}

https://github.com/stevemao/left-pad

Code critique 101
(Submissions to scc@accu.org by Oct 1st)

I’m trying to read a list of test scores and names and print them in order.

I wanted to use exceptions to handle bad input as I don’t want to have
to check after every use of the >> operator.

However, it’s not doing what I expect.

I seem to need to put a trailing /something/ on each line, or I get a
spurious failure logged, and it’s not detecting invalid (non-numeric)
scores properly: I get a random line when I’d expect to see the line
ignored.

The scores I was sorting:

 -- sort scores.txt --
 34 Alison Day
 45 John Smith
 32 Roger Orr
 XX Alex Brown

What I expect:

 $ sort_scores < sort_scores.txt
 Line 4 ignored
 32: Roger Orr
 34: Alison Day
 45: John Smith

What I got:

 $ sort_scores < sort_scores.txt
 Line 2 ignored
 Line 3 ignored
 0:
 32: Roger Orr
 34: Alison Day
 45: John Smith

I tried to test it on another compiler but gcc didn’t like

 iss.exceptions(true)

I tried

 iss.exceptions(~iss.exceptions())

to fix the problem.

Can you help me understand what I’m doing wrong?

Listing 3 contains sort_scores.cpp.

You can also get the current problem from the accu-general mail list
(next entry is posted around the last issue’s deadline) or from the ACCU
website (http://accu.org/index.php/journal). This particularly helps
overseas members who typically get the magazine much later than
members in the UK and Europe.

#include <iostream>
#include <map>
#include <sstream>
#include <string>
using pair = std::pair<std::string,
 std::string>;
void read_line(std::string lbufr,
 std::map<int, pair> & mmap)
{
 std::istringstream iss(lbufr);
 iss.exceptions
#ifdef __GNUC__
 (~iss.exceptions());
#else
 (true); // yes, we want exceptions
#endif
 int score;
 iss >> score;
 auto & name = mmap[score];
 iss >> name.first;
 iss >> name.second;
}
int main()
{
 std::map<int, pair> mmap;
 std::string lbufr;
 int line = 0;
 while (std::getline(std::cin, lbufr))
 try
 {
 ++line;
 read_line(lbufr, mmap);
 }
 catch (...)
 {
 std::cout << "Line " << line
 << " ignored\n";
 }
 for (auto && entry : mmap)
 {
 std::cout << entry.first << ": "
 << entry.second.first << ' '
 << entry.second.second
 << '\n';
 }
}

Listing 3
14 | | SEP 2016{cvu}

http://accu.org/index.php/journal

SEP 2016 | | 15{cvu}

Standards Report
Jonathan Wakely brings the latest news.

n June the C++ committee met in Oulu, Finland, and voted out the
C++17 Committee Draft (CD). The CD represents what the committee
think C++17 should be and is sent out to the ISO National Bodies for

review and balloting. The National Bodies will respond with a Yes or No
vote (with comments saying what they think should be changed) and the
committee will spend the next couple of meetings addressing those
comments, before sending the final document to Geneva for
standardisation.

At the Oulu meeting a number of new features were approved, as well as
a huge number of defect reports resolved. Some of the highlights include
constexpr if; inline variables; allocation of over-aligned data;
guaranteeing expression evaluation order (but not function argument
evaluation order); template argument deduction for class templates;
guaranteed copy elision; and std::variant. A last minute surprise that
wasn’t expected to make it into C++17 was the ‘structured bindings’
proposal, which allows variables to be declared and initialized from tuple-
like types, for example:

 auto [position, inserted] = set.insert(val);

will declare the variables position and inserted and initialize them
to the ‘first’ and ‘second’ members of the pair returned by the insert
function.

If you would like to help review the CD you can download N4604 [1] and
send comments via your National Body (or contact someone on a National
Body and persuade them to do so for you). The ballot for the CD ends in
October, and the next C++ committee meeting will be in Issaquah, WA,
in November. At that meeting we’ll be starting to respond to NB ballot
comments, and (I hope) voting out a Draft Technical Specification (DTS)
of the Networking library extensions.

Reference
[1] N4606 is available from http://open-std.org/JTC1/SC22/WG21/

docs/papers/2016/n4604.pdf

I

JONATHAN WAKELY
Jonathan’s interest in C++ and free software began at university and
led to working in the tools team at Red Hat, via the market research and
financial sectors. He works on GCC’s C++ Standard Library and
participates in the C++ standards committee. He can be reached at
accu@kayari.org

T 0115 8492271 E info@clearly-stated.co.uk W www.clearly-stated.co.uk

 � User guides

 � Online help

 � Training materials

 � FAQs

 � Demos/simulations

Helping your customers help themselves

http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4604.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4604.pdf

16 | | SEP 2016

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the (Acting) Chair
Bob Schmidt
chair@accu.org

I’m starting this month’s ‘View’ in mid-July. By
the time it is published, September will have
arrived and summer will be almost over. The
time lag between writing and publishing is
something I’m going to have to get used to.
Let’s tuck in to this month’s subjects.

Special General Meeting As I mentioned in
the last issue, the positions of Chair and
Secretary are being held by caretakers; a Special
General Meeting needs to occur to vote on the
positions. Malcolm Noyes has been performing
the Secretary’s duties, and I have been acting as
Chair; we both are standing for election. As
announced on accu-members at the end of June,
the SGM will be held on Wednesday 28th
September in Oxford in combination with the
ACCU Oxford local group. The SGM is
scheduled for 7:00 PM at St. Aldates Tavern,
108 St. Aldate’s, Oxford, Oxfordshire. If you
plan to attend in person, you will need to sign up
on ACCU Oxford’s Meetup site – watch for the
announcements.

The last date for nominations for a position was
July 30th, 2016 (the ‘proposal deadline’, section
5.3.3 of the constitution). As of the writing of
this View, no other persons have volunteered or
been nominated to stand for election, so,
according to section 5.3.4 the nominations stand
at Malcolm and me.

Diversity statement Last issue I put out a
call to anyone interested in participating in the
drafting of a diversity statement for ACCU. I
received feedback from both persons to whom I
sent targeted requests; unfortunately, I haven’t
heard from anyone else. With the committee’s
agreement, I’m going to leave the process open
to comments for another two-month magazine
cycle, with the goal of finalizing the statement
before the end of the calendar year.

Here is the draft Diversity Statement I shared
with the committee at the May committee
meeting:

ACCU is committed to a culture of
diversity and inclusion. We embrace and
encourage our members’ differences –
including, but not limited to age, colour,
ethnicity, ability or disability, gender
identity or expression, sex or sexual
orientation, language, national origin,
religion or lack thereof, race, political
persuasion, socio-economic status, and
veteran status. ACCU will not tolerate
discrimination, harassment, or bullying; in
any form, for any reason. Our members
deserve to be treated fairly, equally and
with respect, and are expected to treat
others the same way.

ACCU already has a Code of Conduct (CoC) for
our conference. The Diversity Statement (DS)

complements the CoC. Together they represent
the values of our organization. Our next step
will be to develop and publish a procedure to be
followed if and when someone violates either
the CoC or the DS, so that our response as an
organization is appropriate and consistent.

Website migration Jim Hague volunteered
to migrate the ACCU website and associated
software to a new platform. The new site went
live in mid-July. I’ll have more to report in the
next issue of C Vu, but this month I want to
convey to Jim the thanks of the committee for all
his hard work, and hope that you will join us in
doing so. I expect that it was a bigger effort than
Jim thought when he volunteered.

Also, please join the committee in thanking Tim
Pushman for hosting the web site for more than
10 years.

Call for volunteers We still have several
positions in search of volunteers:

 We need an additional auditor to fill out
my term. Please send me an email if you
are willing to join Guy Davidson on the
auditing team.

 We are still looking for volunteers to
make improvements to the web site. In
particular, Russel Winder, our Conference
Chair, has some ideas for improving the
conference section of the site, and has
asked for volunteers. I’ll let him describe
his ideas for the upgrade:
Say ACCU was rearranging its Web
resources. Say the ACCU Conference
website was going to be separated from
the main ACCU site in terms of the
infrastructure used, but not the harmony
and integration, clearly the ACCU
Conference pages are an integral part of
the ACCU website. Say we wanted to do
the ACCU Conference bit sooner rather
than later, not least because we want to set
up the 2017 conference session
submission system, and possibly the
session reviewing system.
I am thinking of using a Nikola/Python/
Flask/MongoDB/Django/SQLite-type tool
chain to achieve the goal, though I can
easily entertain alternatives if there are any
that are likely to be good and work solely
with Debian packaged software.
Given all this, is there anyone out there
who might be interested in volunteering to
assist in getting something together over
the summer?

Please contact Russel directly at
conference@accu.org if you are interested
in helping.

 We also have a more general request for
anyone interested in serving on the
conference committee. You would be
working with Russel and Roger Orr on
putting together the program for the April
2017 conference in Bristol.

 In addition to help with web site
improvements, we are hoping to recruit
someone to assist with the web site sys
admin duties. Please contact me if you are
interested.

In keeping with our commitment to value
diversity, we encourage all members, including
but not limited to members of under-represented
groups, to volunteer for all positions.

Committee spotlight Our Treasurer is Rob
Pauer, back for another year of keeping our
books. Rob has been treasurer since 2011, when
he took over from Stewart Brodie. He has been
a member of ACCU since 1987, shortly after its
foundation. He joined so that he could learn
about C programming (it seemed more useful
than Fortran) but never took it up as a profession
so he remains an interested amateur and if he
can understand a solution to ‘Code Critique’
he’s quite happy.

Retirement from a career in insurance and
pensions gave him an opportunity to help the
Association in financial matters and he intends
to continue in that role until someone else
volunteers!

Rob put together the 2015 financials that were
presented to the membership in the AGM
packet. For those of you who didn’t read
through the details, here’s an overview of our
finances for the year ending 31 December 2015
(all numbers in British Pounds, rounded):

Income

Membership 28,160.00
Advertising 3,625.00
Local Group Sponsorship 270.00
Interest 6.00
Conference 5,952.00
Total Income 38,013.00

Expenses

Journal Design 8,400.00
Printing & Postage 21,744.00
Accountancy, Legal, Professional 743.00
Direct Costs, Office Expenses 774.00
Depreciation 175.00
Total Expenses 31,836.00

Net Income 6,177.00

As you can see, the association once again has
run a surplus for fiscal year 2015. (The surplus
is approximately the same as for 2014, which
was £6,239.00). In general, membership and
advertising income cover our expenses, and the
conference supplies our surplus. The committee
does not foresee a significant change to this
situation for 2016.

Journals Finally, please consider writing
something for C Vu or Overload. Steve and Fran
would love to hear from you. The content of our
magazines is mostly member-generated –
without you, there wouldn’t be an Overload or
C Vu.

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

	CVu28-4.pdf
	The integrated developer
	Home-Grown Tools
	Why Floats Are Never Equal
	Smarter, Not Harder
	An Introduction to OpenMP
	Random Confusion
	High Rollers
	Code Critique Competition 100
	Standards Report
	Special General Meeting
	Diversity statement
	Website migration
	Call for volunteers
	Committee spotlight
	Journals

