

MMM YYYY | | 6{cvu}

Placeholder page for an advertisement

Series Title #

AUTHOR NAME
Bio

JUL 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Fixed fixation
’ve recently been frustrated on a few occasions
trying to install software for Microsoft
Windows. I have a PC with an adequately

sized SSD as a system disk for improved boot
time, and a much larger ordinary hard disk.
Most application installers give you the
opportunity to choose a location for the installed
software, and I routinely install to the larger disk.
Some installers don’t. This is frustrating enough,
but some installers give you the option to choose
your own directory, and then still install huge amounts
of files to the system disk anyway. Yes, Microsoft
Visual Studio, I’m looking at you.

The accepted fix for this seems to be to use Junction
Points, a facility introduced for NTFS in Windows 2000.
These behave in much the same way as Un*x’s file
system links (which have been around for much
longer), and are a great improvement over Windows
shortcuts. The trouble is, Junction points aren’t as
nicely integrated into the Windows environment;
you cannot manage them by default in UI tools like
Explorer, and the command line interface is
seemingly deliberately different to the Un*x equivalent
– ln.

It’s not just a drive-letter issue, although this is clearly so
out-dated that tools such as Junction Points and logical drive assignment have arisen
to escape the origins of being a way of managing physical devices on – let’s be honest
– less than capable file systems. Despite the well-publicized limitations on the length
of the PATH environment variable in Windows, the default installation directory for
Windows is 13 characters long (19 for 32 bit apps). This, coupled with installers that
don’t give you the option to choose an installation location that has a shorter name
(bin, for instance, is a common choice), or software that insists on residing in a
specific location, leads to frustration and annoyance.

There is a wider issue of sensible defaults, especially for user-interface design, which
will have to wait for another time. Until then, thank you for listening.

I
Volume 28 Issue 3
July2016

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Pete Goodliffe,
Paul Grenyer, Neil Horlock,
Chris Oldwood, Roger Orr

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JUL 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
12 Code Critique Competition

Competition 100 and
the answer to 99.

REGULARS
16 Members News

SUBMISSION DATES
C Vu 28.4 1st August 2016
C Vu 28.5: 1st October 2016

Overload 135:1st September 2016
Overload 136:1st November 2016

FEATURES
3 Testing Private

Paul Grenyer shows that testing doesn’t need
public access.

5 The Codealow
Pete Goodliffe presents a new software soliloquy.

7 Whiteboards
Chris Oldwood makes a case for collaboration
over technology.

9 How to Block Russia From Your Website (and why you might
want to)
Silas S. Brown takes a stand against indiscriminate
legislation.

10 Debugging – What Has Changed in the Last Decade?
Neil Horlock travels through time in search of bugs.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Testing Private
Paul Grenyer shows that testing doesn’t need public access.

friend and former colleague of mine, Chris ‘Frankie’ Salt, recently
popped up on Facebook messenger and asked me a question:

I wonder if you’d mind answering a Java question for me? It’s more of
a best practices thing. So, encapsulation vs availability of methods for
testing. Splitting your code into functions makes it a lot more readable
and it makes sense to make these private as they will only ever be used
once. However unit testing demands access to these private methods,
I know there are ways around this but I was interested in your opinion.

Me? Have an opinion about unit testing? Many stranger things have
happened!

Encapsulation is all about hiding code away so that you can change it with
minimal or no impact on other parts of the code base which use it
indirectly. You shouldn’t (ever) compromise encapsulation for the sake of
testing. Every private method you write must be callable from at least one
public method or via a chain of other private methods which is ultimately
called from a public method. Otherwise, reflection shenanigans aside, it
would never get called at all.

Does that mean reflection is the solution to testing private methods? No.
It’s a great tool for poking values into objects which are initialised using
reflection at runtime, so that you don’t have to add a public non-default
constructor or public setters, but beyond that it should be avoided for
testing.

Two solutions sprang to mind, triangulation and sprout classes.

Triangulation
I first encountered the term triangulation in Kent Beck’s TDD [1] book,
although it was a practice I had been using for some time. Triangulation
is the practice of passing different values into the public methods of a
class in order to test the non-public parts of the class. This is probably best
demonstrated with a (contrived) example. Take a look at the Invoice
class in Listing 1.

It has two private methods, addVat and vatMultiplier. addVat is
used to add VAT to the total value of all of the line items. It uses
vatMulitplyer to convert the VAT rate, which is passed into the
invoice as a percentage, into value which can be multiplied by the gross
total to get the net total.

As a conscientious developer you would want to write tests which test
how addVat and vatMultiplier work in general cases, such as 20%
and corner cases such as 0%. This can be achieved using triangulation and
passing different VAT percentages to an invoice, adding some line items
and asserting the result of calling netTotal, for example as in Listing 2.

In a simple example like the Invoice class, testing using triangulation is
probably sufficient. However, it leaves me with an uncomfortable feeling
that the calculation of VAT probably isn’t really the responsibility of the
Invoice class and any more than two test methods for VAT in the
Invoice test class feels wrong. Of course you can write another test
class which just tests the VAT parts of the Invoice class, but that
doesn’t feel right either.

Sprout classes
I first encountered sprout classes in Michael Feathers’ Working
Effectively with Legacy Code [2] book, although it was a practice I had
been using for some time. A similar technique, called Extract Class, is
described by Martin Fowler in his Refactoring [3] book. The basic idea is
that you extract parts of one class and put them into a new class which is

instantiated and used from the first class. Let’s take a look at this in the
context of the Invoice class (see Listing 3).

addVat and vatMultiplier have been removed and replaced with the
instantiation of the Vat class and a call to its add method. The Vat class
looks like Listing 4.

The responsibility for calculating VAT has been moved away from the
Invoice class and into the Vat class. Having a separate Vat sprout class
with a public add method also means that it can be tested in isolation
away from the Invoice class. What was previously the private addVat
method on the Invoice class is now a public method on the Vat class
which can be tested directly. The Vat class still has a private method,
multiplier, but it can be easily tested using triangulation. Writing
more tests also feels more comfortable (see Listing 5).

 A public class Invoice
{
 private final List<LineItem> lineItems
 = new ArrayList<LineItem>();
 private final double vatPc;

 public Invoice(double vatPc)
 {
 this.vatPc = vatPc;
 }

 public void add(LineItem lineItem)
 {
 lineItems.add(lineItem);
 }

 public double grossTotal()
 {
 double total = 0;
 for(LineItem lineItem : lineItems)
 total += lineItem.getValue();
 return total;
 }

 public double netTotal()
 {
 return addVat(grossTotal());
 }

 private double addVat(double value)
 {
 return vatMultiplier() * value;
 }

 private double vatMultiplier()
 {
 return (100 + vatPc) / 100;
 }
}

Listing 1

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com
JUL 2016 | | 3{cvu}

@Test
public void totalNetWithLineItems()
{
 Invoice invoice = new Invoice(20);
 invoice.add(new LineItem(50));
 invoice.add(new LineItem(20));
 invoice.add(new LineItem(20));
 invoice.add(new LineItem(10));
 assertEquals(120, invoice.netTotal(), 0.01);
}

@Test
public void totalNetWithLineItemsAndZeroVat()
{
 Invoice invoice = new Invoice(0);
 invoice.add(new LineItem(50));
 invoice.add(new LineItem(20));
 invoice.add(new LineItem(20));
 invoice.add(new LineItem(10));
 assertEquals(100, invoice.netTotal(), 0.01);
}

Li
st

in
g

2 public class Vat
{
 private final double rate;

 public Vat(double rate)
 {
 this.rate = rate;
 }

 public double add(double value)
 {
 return multiplier() * value;
 }

 private double multiplier()
 {
 return (100 + rate) / 100;
 }
}

Listing 4
Finally
By using triangulation or sprout classes or a combination of the two you
can fully and easily test private methods without the need to compromise
encapsulation or the design of public interfaces. Which to use depends on
the complexity of the private methods being tested and/or the number of
different tests that need to be written. When you have simple private
methods which require few test cases, triangulation can be sufficient. As
the complexity and number of test cases increases, sprout classes become
a better solution.

Regardless of how you decide to test private methods, keep your
interfaces clean, don’t change them for the sake of testing and measure
your test coverage.

The example code is available here: https://bitbucket.org/pjgrenyer/
testing-private

References
[1] Test Driven Development by Kent Beck. ISBN-13: 978-0321146533
[2] Working Effectively with Legacy Code by Michael Feathers.

ISBN-13: 978-0131177055
[3] Refactoring: Improving the Design of Existing Code by Martin

Fowler. ISBN-13: 978-0201485677

public class Invoice
{
 private final List<LineItem> lineItems
 = new ArrayList<LineItem>();
 private final double vatPc;

 public Invoice(double vatPc)
 {
 this.vatPc = vatPc;
 }

 public void add(LineItem lineItem)
 {
 lineItems.add(lineItem);
 }

 public double grossTotal()
 {
 double total = 0;
 for(LineItem lineItem : lineItems)
 total += lineItem.getValue();
 return total;
 }

 public double netTotal()
 {
 return new Vat(vatPc).add(grossTotal());
 }
}

Li
st

in
g

3 @Test
public void vatAt20pc()
{
 assertEquals(120, new Vat(20).add(100), 1);
}

@Test
public void vatAt15pc()
{
 assertEquals(115, new Vat(15).add(100), 1);
}

@Test
public void vatAt17_5pc()
{
 assertEquals(117.5, new Vat(17.5).add(100), 1);
}

@Test
public void vatAt0pc()
{
 assertEquals(100, new Vat(0).add(100), 1);
}

@Test
public void vatAt100pc()
{
 assertEquals(200, new Vat(100).add(100), 1);
}

Listing 5
4 | | JUL 2016{cvu}

https://bitbucket.org/pjgrenyer/testing-private
https://bitbucket.org/pjgrenyer/testing-private

JUL 2016 | | 5{cvu}

The Codealow
Pete Goodliffe presents a new software soliloquy.

he parents among the C Vu readership will no doubt be aware of The
Gruffalo [1]. Many of us have read this book over and over (and
over) again to excited children who enjoy the meter of the writing,

the humour, and the cunning triumph of the humble protagonist in the face
of larger aggressors.

If only life was like that. Especially the life of the humble jobbing
programmer.

Who says life can’t imitate art? To prove this, here is a short code parable,
presented for your enjoyment, with apologies to Julia Donaldson. I first
presented this at the ACCU 2016 conference in Bristol.

The Codealow
A DEVELOPER’S BEDTIME STORY

A dev started work on some deep, dark code.
A bug saw the Dev, and the Dev looked good.
Come and waste time in my erroneous ways;
With the fun I can give, You’ll be stuck here for days.

That’s terribly kind of you, bug, but no;
I’m off to fix a codealow.

A codealow? What’s a codealow?
A codealow! Why didn’t you know?
It has terrible branches, executed at will
And disastrous uses of do/while/until.

I’d not heard of that, and it sounds very scary.
I’d best run and hide or I’ll look ordinary!
And, saying that, the bug turned and resigned,
Leaving code behind that worked just as designed.

Silly old bug, doesn’t he know
There's no such thing as codealow?

B

On worked the Dev, with a satisfied smirk.
A team lead saw our Dev, thought he needed more work.
Put down that editor, don’t write to that log!
Come take some tasks from my growing backlog.

I’d love more to do. I’d gladly help, though
I’ve plenty of work with this huge codealow.

A codealow? What’s a codealow?
A codealow! Why didn’t you know?
It has multi-thread access prone to data race,
And foul unused methods all over the place.

“No time to refactor!” The team lead then cursed
And went to find other devs’ lives to make worse.
As he scuttled off our dev chortled with glee;
The cunning ruse worked, he was management-free.

Silly old manager, doesn’t he know
There's no such thing as codealow?

I

On worked the Dev, having fun with his code
As an ominous feeling appeared and then growed.
Things that seemed perfect had gradually soured.
Strange bits of logic made our hero turn coward.

What is this weird code... how now to keep coping?
Who wrote this drivel, and what were they smoking?

It has functions so lengthy you’d get lost for days,
And logic that weaves in remarkable ways.
It has surprising behaviour that no one predicts,
And dense, turgid code, that no one tries to fix.

It has legacy parts that are old as the hills,
Whose evil required both malice and skill.
The cohesion and coupling have become a disaster;
There’s no way to get at the clean code I’m after.

The sad thing the source control points out quite clearly:
There’s only one person who spent time in here, and he
Ought feel shame-faced, he ought to feel guilty.
The nefarious culprit who made this mess is: me!

Oh help! Oh no! I wrote a codealow!

h

At this monstrous mistake the dev ran in despair
And learnt that next time he must code with more care.

k

A dev started work on some brand new code.
The dev wrote a test, and the test was good.

Reference
[1] The Gruffalo. Julia Donaldson, Axel Scheffler

ISBN: 9781509804757

 T

Becoming a Better Programmer #99

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

Providing the signs for the
forks in the road...

User guides and manuals
Online help
Training materials
Software simulations and videos

In The Toolbox # 13
Whiteboards
Chris Oldwood makes a case for collaboration over technology.

hey say a picture is worth a thousand words and in software
development there are plenty of words to be said about a great many
things from what we’re building to how we’re building it. The old

adage ‘a stitch in time saves nine’ is a cornerstone of the agile
methodology as we struggle to ensure that the team (customer,
developers, testers, etc.) are all on the same page before we start laying
down code.

In the modern world of software development where there is a bias
towards ‘working software over comprehensive documentation’ the
written word is starting to give way to higher bandwidth conversations,
most notably just talking to each other face-to-face when the need arises.
But words alone are not enough as not everyone can understand a concept
just through verbal communication, you can’t just talk slower, and louder,
and hope that the other people will just ‘get it’. The moment a
conversation begins to deteriorate is (if you’ve not already done so)
probably a great time to double the lines of communication and open a
channel to the visual senses.

In an earlier instalment of this column [1] I touched briefly on drawing
diagrams, but from the perspective of using my notebook as the canvas.
Whilst it has some benefits, for example the permanency, I’ve found that
I would much prefer the larger, more transitory nature of the whiteboard
if it was on offer. What I’ve come to discover is that I was resorting to
using my notebook due to the absence of a better tool (the whiteboard),
and because it was a much better tool than the alternative (Visio &
SharePoint) for the nature of the message I wanted to convey.

Digital optimisation
One of downsides of working in The Enterprise is that large organisations
are obsessed with exploiting economies of scale and this is very
noticeable when you look at the workspace allocated to teams. Open plan
offices with banks of desks ensure the maximum density of people and
can feel somewhat like a battery farming approach to software delivery.
In a continued drive to replace anything physical with its virtual
equivalent there is no longer any room for luxuries like whiteboards or
Kanban boards. Presumably information persisted as ‘electronic bits’ are
so much more versatile than physical media, so why would you want to
accept anything less?

The rationale for digitising everything in the office is I suspect predicated
on a false assumption that doing anything more than once is waste and
must therefore be eliminated. The fact that you have not understood what
it is that needs doing, and will therefore build the wrong thing, is
secondary to the needs of appearing to make progress. By removing the
physical tools we use to collaborate we remove the impetus to do so and
the whiteboard is one of the largest and most accessible reminders we
have available. I can think of no other tool that draws (no pun intended)
us in quite like a whiteboard covered in ad hoc sketches and notes.

Whilst the notion of hot-desking might be great in theory, in practice a
team that is going to spend any considerable amount of time together
needs a place to call home. This spot needs a certain amount of
permanence, ideally closely located to its dependencies, with some
surfaces on which the team can draw and attach its information radiators.
If you’re unlucky enough to be sitting in one of the rat runs that develop
when you have a naïve desk layout then you can use the board as a barrier
at one end to dissuade through traffic. If you have noisy neighbours you
might be able to use it as a baffle too. Just be mindful that any physical
barrier you put up radiates information outwards to ensure you don’t
appear sectioned off and hostile towards collaboration with outsiders.

Dumb and smart boards
Like most things these days, even the humble whiteboard comes in every
form from the simplest to the all-singing, all-dancing, Internet Enabled tm
version. Your basic large board on wheels is probably the most common
breed sighted in the wild as it’s easily moveable, and therefore shareable
and large enough to be usable, i.e. hold more than one scribble at a time.
Some offices have re-discovered the benefits of such a medium and gone
all out and turned every wall into a writeable surface. At one company I
worked up you could never find anyone at their desk because they were
always at a break-out room or huddled around some random patch of wall
chatting and drawing pictures.

For those offices that prefer zero-clutter (which usually means a clean
desk policy and nothing on the walls except art or a picture of the CEO)
there is the temporary solution – drive-by whiteboards. These are rolls of
white plastic film which are statically charged and can therefore be hung
on most surfaces, e.g. painted walls and windows. They can stay up for a
surprisingly long time and also easily be taken down and re-hung
elsewhere. Rather than capture their content in another form they are so
cheap that you could just keep the original sketches, at least until you
know for sure it’s worth transcribing them formally elsewhere. Apart
from a few surprising surfaces where they don’t work the main thing to
watch out for is ensuring that you don’t disturb some other team’s peace
and tranquillity by pitching up on some free window space near them for
an ad hoc design meeting. Whilst you might enjoy attempting to subvert
the organisation by getting stuff done, the complaints from the wrong
neighbours may perversely strengthen the argument for virtual
collaboration.

One of the earliest electronic whiteboards I got to use was essentially a
whiteboard with a scanner and printer welded on the side. You wrote on
the board as normal and then when you were done you pushed a button
and the white plastic sheet rotated under the scanner/printer combo like a
giant roll of fax paper to produce your ‘hard copy’. Since then the humble
board has gotten much smarter, so much so that it’s no longer a physical
canvas but a virtual one. Now you draw fake lines, boxes, circles and
arrows with (coloured) fake pens and create your sketch in the alternate
reality. As if that wasn’t enough your scribble can be added to your
SharePoint archive under the guise of a OneNote document where you can
relive this masterpiece time and time again.

Only no one does. In the same way that JIRA brings your product
development into the electronic age with a promise of taking away all the
fuss and nonsense of shuffling around post-it notes, so the electronic
whiteboard comes with similar dreams and aspirations. And yet there is
still so much friction to working with computer-based tooling that it’s
easier to just do it the old fashioned way. Just as the daily stand-up
becomes dominated by the time it takes to access the electronic task board
on a shared screen, so a quick design meeting becomes bogged down in
bizarre networking problems and pens that feel unresponsive.

Don’t get me wrong they are very clever pieces of kit and they can do
some pretty neat tricks around transcribing text and recognising shapes.
For example where you might previously have had to rub out and redraw

 T

CHRIS OLDWOOD
Chris is a freelance programmer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in
plush corporate offices. He can be easily distracted
via gort@cix.co.uk or @chrisoldwood
JUL 2016 | | 7{cvu}

parts of a diagram on a physical board to make room you can just select
an area and shrink or move it about. If you think your database should
have been on the left, or drawn in red ink just change it. And if you think
your sketch is destined for a greater part in the world then it has tools to
clean it up and allow you to pretend that you drew it in Visio all along.

Of course, in the meantime whilst some companies have been developing
smarter boards, others have been developing smarter apps to help give
your physical doodles some permanence. For some, just using the camera
software on your phone will be more than enough, whilst others might
want to clean it up slightly (e.g. fix the white balance) before emailing or
uploading to their team’s Slack channel or wiki. As you might expect
there are a number of free apps for modern phones that are optimised for
taking photos of whiteboards which helps reduce the friction a little more,
e.g. Office Lens. Just bear in mind that it might be quicker to draw it again
when the need arises than shave the yak.

Notation
It’s easy to get hung up on notation, but don’t. Back
in the early ’90s during The Notation Wars the three
amigos (Booch, Jackobson & Rumbaugh) called a
truce and worked together to product the one
notation to rule them all – the Unified Modelling
Language (UML). Whilst this caters for a whole
slew of different diagram types each with its own
sets of symbols, you’ll rarely need this in practice to
sketch out a concept; in fact most of the time you
can get away with nothing more than some badly
drawn squares and a few arrows.

Being a graphic artist is not a prerequisite for being able to communicate
with simple sketches, yes you might have to redraw bits if they go really
wonky, but that’s the beauty of a whiteboard – rub it off and try again. If
you’re drawing some kind of rough architecture diagram and you want to
be more adventurous you still only really need three symbols: a rectangle,
a tall cylinder (for a database) and a rotated cylinder (for a message
queue). You could even throw in a dotted line if you have a need to
distinguish more than one relationship. The one thing I do think is
important is that every arrow means the same thing – don’t mix-and-
match dependencies with data flows as it’s confusing (the arrows usually
just point in opposite directions).

A couple of different coloured pens will naturally allow you a little more
freedom too, such as when you have namespaces and containers to group
things, but as a rule if you find yourself needing lots of different colours
(or trying to add hatching to a diagram) you’ve probably gone over the
top. The main thing to watch out for though is to keep your pens well
segregated! When you’re working with both a whiteboard and post-it
notes, it’s all too easy for a permanent marker to infiltrate the whiteboard
pen drawer and then you’ve got a problem. I think it’s worth sticking with
well-known brands, e.g. buy Sharpies for your stickies and Staedtler pens
for your whiteboard, as you’ll instantly know if it’s in the wrong pile. Also
once whiteboards become popular again make sure you have a drawer
with a seriously heavy-duty lock to keep them and your board rubber safe
from those less well stocked in the stationery department.

As with any technical diagram you should really stick to the same level of
abstraction throughout, e.g. don’t try and mix classes into a high-level
architecture sketch. Simon Brown [2] has a really nice concept that he
calls C4 which stands for Context, Container, Component and Class. I’ve
found this is a useful aide memoire when thinking about what it is I want
to draw. The static structure of a system is fairly easy to draw using only
rudimentary skills and basic shapes, but when it comes to something like
sequence diagramming the swim-lanes approach of UML is as good a
notation as any. UML may be much derided for leading many down the

rabbit hole of Big Design Up Front, but the U in UML (unified) does at
least mean that should you choose to embrace a richer notation, it’s one
most people should be likely to know.

Words and pictures
Although I’ve focused heavily on the more pictorial uses for whiteboards
we shouldn’t forget that they are more useful than that – you can write
words on them too. Okay so they’re not necessarily the best thing for
writing lengthy prose, not least due to the unsightly stain you’ll probably
acquire on the edge of your palm, but there’s nothing wrong with using
the board to help you create lists of stuff. Or you could use the top corner
to write up a point of focus (aka sprint goal) for the next few days to
continuously remind the team about what over-arching business event or
theme they should be collectively working towards.

Even though you might be decomposing your work into epics, stories and
tasks, there is still a need to flesh out details at the
point of implementation. For instance you may have
defined some loose conditions of satisfaction [3] at
an earlier planning stage, but now that you’re ready
to work on the story in earnest it would be useful to
lay down a more formal set of acceptance criteria,
perhaps with the other 3 amigos (BA, developer and
tester). Naturally the board is a good place to work
out a list of happy and sad paths that need to be
catered for. Or maybe you need to sketch out
something around the UI, perhaps the developer and
tester need to factor some kind of test API into the
design, or someone from ops needs to see how this

new feature affects the monitoring of the system. A story is just a
placeholder for this conversation.

Whilst index cards are nice for arranging on a desk, they don’t stick very
well to walls, unlike Post-it notes. I’ve known places though where you
aren’t allowed to stick Post-it notes on windows and their walls are
painted with some kind of anti-sticky-note paint, so the board may have
to double up as both a task board and design tool. Personally I’ve always
been fonder of arranging things on a vertical surface than horizontal, but
I’m sure mileage varies greatly here.

The one thing I never use the board for is writing code. Apart from an
interview where I’m being specifically asked to write code on a board, I’d
always do it at a terminal using a tool custom built for the job – the text
editor.

Write on / wipe off
The humble whiteboard is becoming an endangered species in the
corporate world. It’s a sad moment seeing one sat in the corner of an office
with an architecture diagram from years ago almost burnt into it because
the pen ink has had so long to dry out. Almost every day for a board
should be different as people come and go, stopping only briefly to chat,
sketch, write, arrange, sip coffee and reflect before moving on. These
bursts of activity will be interspersed with periods of serenity, before once
again the slate is swiped clean and the hullabaloo of collaboration
punctuates the air once again. Whiteboards are for living.

References
[1] C Vu 25-4, http://www.chrisoldwood.com/articles/in-the-toolbox-

pen-and-paper.html
[2] http://www.codingthearchitecture.com/2014/08/24/

c4_model_poster.html
[3] http://stackoverflow.com/questions/3697466/can-you-clarify-the-

differences-between-conditions-of-satisfaction-cos-and-acc

there are a number of
free apps for modern

phones that are
optimised for taking

photos of
whiteboards
8 | | JUL 2016{cvu}

http://www.chrisoldwood.com/articles/in-the-toolbox-pen-and-paper.html
http://www.chrisoldwood.com/articles/in-the-toolbox-pen-and-paper.html
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html
http://stackoverflow.com/questions/3697466/can-you-clarify-the-differences-between-conditions-of-satisfaction-cos-and-acc
http://stackoverflow.com/questions/3697466/can-you-clarify-the-differences-between-conditions-of-satisfaction-cos-and-acc

How to Block Russia From Your Website
(and why you might want to)

Silas S. Brown takes a stand against indiscriminate legislation.

t’s 2025. ACCU publishes a negative review of a poor-quality
programming book, a book that happens to be popular in Russia. The
book’s publishers are big and powerful; they say the review is

unlawful, because it is criticising popular opinion, thus causing disunity.
That now counts as ‘extremism’. C Vu and Overload are added to the
Federal List of Extremist Materials, ACCU is banned as an extremist
organisation, and all ACCU members in Russia are imprisoned for 20
years due to their affiliation with this supposed terrorist threat.

That sounds ridiculous, but it’s legally possible. According to the
Parliamentary Assembly of the Council of Europe (2012), Russia’s 2006
amendment to its 2002 Federal Law on Counteracting Extremist Activity
(originally enacted in response to the 9-11 attack) removed the need for a
group to be involved in ‘violence or calls to violence’ before it can be
counted as extremist. It’s now extremist simply to promote any kind of
‘discord’, which is vaguely defined.

By the time this issue of C Vu goes to press, Russia will likely have
finished banning a couple of minority Christian groups whose literature
includes negative reviews of the Russian Orthodox Church. But there’s
nothing in the legislation that restricts such bans to religious differences.
Russia has basically outlawed the bad review, and anybody who
recommends any journal that publishes bad reviews about anything
popular will, according to the vague wording of the law, be subject to
criminal conviction as a terrorist.

I’m reminded of Niemoller’s ‘First They Came’ poem [1]. The most
prominent group they’re going for at the moment seems to be Jehovah’s
Witnesses [2], but if you feel smug because you don’t like JWs anyway,
how are you going to feel when the big software companies start talking
to the Prosecutor’s Office in the same way that the Russian Orthodox
Church talks to them today?

But Russia is a lot bigger than I am, and there doesn’t seem to be much I
can do about it, especially as I don’t want to become a politician or
anything like that. But I do have a website with free software on it – it may
be a very small thing, but I decided to block Russia and display a message
saying I won’t share my software with them because of this.

Now, when I say ‘block’, I don’t really mean it in the sense they do. I
don’t really want to stop ordinary Russian citizens from using my
software. I just wanted to make them have to jump through hoops to get
it, in order to raise a little awareness. So I implemented the block as a
piece of Javascript that plonks a big black box over the page. You can
remove it by disabling Javascript, or by using browser developer tools to
edit the DOM and delete that node, or by using a proxy, or by disabling
its display in a user stylesheet, or any number of other ways. Furthermore
the text underneath is still findable on Russian search engines (I’m hoping
they won’t figure out how to interpret the box as a kind of ‘cloaking’ and
down-rank the page for it).

The basic change is a surprisingly simple addition to an Apache htaccess
file, requiring no support for server-side scripting:

<Files typography.js>
 ErrorDocument 403 http:// <url-of-russia-version>
 .js
 Order allow,deny
 Allow from all
 Deny from ru
</Files>

where typography.js [3] is a piece of Javascript that gets included at
the bottom of all my pages, basically to replace straight ASCII quotes and
dashes with their nicer typographical equivalents if and only if the
browser is known to support such (some old mobile and terminal-mode
browsers still don’t, and my site still ‘gracefully degrades’ to ASCII, at
least on its English pages; I wasn’t so worried on my Chinese pages
because I’ve never seen a system that displays Chinese but not curly
quotes).

The htaccess rule works by telling Apache to deny access to this one file
for any domain ending .ru, and instead send the browser to another URL,
which hosts a different version of the script that also includes the big black
box (a div e l emen t wi th s ty le "position:fixed" and
"height:100%; margin:5em; left:0px; top:0px;
z-index:9"; colour as you see fit). The easiest way to ‘hack’ it is:

 if(document.createElement) {
 d=document.createElement('span');
 d.innerHTML='<div style="..."> ... </div>';
 document.body.appendChild(d)
 }

It’s important that the ErrorDocument line specify an absolute URL
(even if it’s served from the same place); if instead it just specifies a file,
Apache will return that file with HTTP status code 403, and browsers like
Chrome won’t execute the Javascript body if the HTTP status code
indicates an error. Since I’m not in Russia, I had to test this by temporarily
placing my own address on the Deny line.

For this to work, Apache has to do a reverse DNS lookup on the IP address
of anybody trying to retrieve that typography.js file, and this must
complete before the page is served. It could take some time if the user’s
ISP is one of the increasingly rare beasts that doesn’t set reverse DNS
entries for its IP addresses. That’s not a major issue for the user if the only
consequence is your straight quotes don’t become curved quotes for a
while (just make sure that script is the last thing to load, in case they’re
using HTTP pipelining). But it will hold up one of the Apache server
threads, which could become an administrative issue if many such
requests are received at the same time. (This won’t be a consideration if
your web pages are served from an institution that uses a modern
lightweight single-threaded server such as nginx instead of Apache,
although its configuration would of course be different.)

Also it’s entirely possible that some ISPs in Russia have IP addresses that
don’t resolve to .ru domains. I wasn’t worried about that; if you want to
do a more thorough job, it’s possible to get a list of known Russian IP
address blocks, but your Apache configuration will end up being quite
large and probably slow things down for everybody, plus you’d have to
periodically update that list.

Of course not every bad review is correct, and many reviews published by
minority groups are biased to say the least. But intelligent readers should
be able to decide for themselves about such things; outlawing non-violent
negative reviews as ‘extremist’, and prosecuting anyone who mentions
them, could have far too many unintended consequences. Besides raising

 I

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
JUL 2016 | | 9{cvu}

How to Block Russia From Your Website ... (continued)
awareness of this, I hope this article is also useful for any programmer
who needs to place a temporary message for a particular region on a
webserver without needing server-side scripting (which not all
administrators enable).

References
[1] http://en.wikipedia.org/wiki/First_they_came_...
[2] http://www.jw.org/en/news/legal/by-region/russia/jw-religious-

freedom-threatened/
[3] http://people.ds.cam.ac.uk/ssb22/typography.js
Debugging – What Has Changed
in the Last Decade?

Neil Horlock travels through time in search of bugs.

en years ago I read an interesting article in CVu entitled ‘A review of
debugging tools’. It introduced me to the concept of reversible
debugging, and to a company called Undo Software, whose founders

Greg Law and Julian Smith co-authored the piece. The idea of reversible
debugging was understood well enough but the tooling was not where it
needed to be. But my interest had been piqued and I kept track of the
technology’s progress.

Obviously, a lot has happened in the last decade when it comes to
software development. Therefore I thought it would be a good time to
review what has changed in debugging, particularly reversible debugging,
over that time, and how it relates to people developing and deploying
large systems in the real world.

To start with, let’s look at what software life was like ten years ago. I was
working for the same international bank as I am now, and I had similar
issues to many other people in my position. The software my team
developed was mission-critical and highly complex. Therefore, stability
was and remains a key tenet of our production platforms and as such
having good tools and strong practices is part of our bank culture. Then,
standard operational practice in case of any issues was of course to review
the ubiquitous Log files. These gave a glimpse of what was happening,
hopefully the right glimpse, but certainly not the full picture, making it
difficult to see exactly what had been happening before a crash occurred.

Again, like a lot of my peers, the sheer size and complexity of the
environment made finding bugs more difficult. As an international bank
we had a highly dispersed team, with development taking place in various
centres around the globe and often being remote from the actual
deployment of the product. Everyone would be using different machines
with varying specifications, adding another challenge when trying to
recreate bugs from machine to machine in order to track them down.
Anyone who has debugged code will fully understand that a lot of time
and resource can be spent running code that has crashed once, waiting for
it to repeat itself to get a better understanding of what had caused the
issue.

This is what first got me interested in reversible debugging. For those that
haven’t come across it, the concept is simple. Reversible debuggers
enable developers to record all program activities (every memory access,
every computation, and every call to the operating system) and then
rewind and replay to inspect the program state. This colossal amount of
data is presented via a powerful metaphor: the ability to travel backward
in time (and forward again) and inspect the program state. This makes it
much simpler to pinpoint what was happening in the run up to a bug
striking, and hence fix problems faster.

Fast forward to 2016
So what has changed in the last decade? The issues of complexity, time
zones, and different machines for development/deployment remain, and
have been joined (and exacerbated) by five others.

1 Greater requirements

Back in 2006, a European bank would be typically trading with 10–15
different markets across the continent. That figure has grown to 80 or
more in the intervening decade. The roughly eight fold increase in the
number of systems we have to interface with has led to a growth in the
resources we have at our disposal – however, it has increased pressure on
productivity and introduced a need to automate many more activities to
make the best use of our resources. Everyone one will no doubt recognise
the need to find ways to do much more with similar or lower headcounts
and budgets.

2 Higher staff turnover

Software developers are highly prized, and competition to recruit and
retain them is fierce. Inevitably this means that these days team turnover
is higher than it might have been in the past. The knock-on effect of this
is that a person debugging the code may be less familiar with the software
itself and its place in the scheme of things. Therefore they can’t rely on
innate knowledge to understand ‘how something happened’ – this is much
harder without the deeper experience that comes with time spent working
with particular systems.

3 Software development has become more mature

Ten years ago concepts such as agile and unit testing were buzzwords that
were beginning to gain traction. They are now a core part of what we do,
with all our processes built around standard practice. This is obviously a
major step forward for the industry, as we now rely on more mature
engineering practices. However, it also puts the spotlight even more
firmly on debugging across the whole build. Software is much more
complex, meaning that a series of interactions can trigger a bug. You
therefore need to have a record of the complete chain of events if you want
to speed up solving the issue.

 T

NEIL HORLOCK
Neil Horlock is a C++ programmer with an interest in high-performance
computing. He is a member of the BSI panel for C++ and member of
the SG14 low latency study group for ISO C++.
10 | | JUL 2016{cvu}

http://en.wikipedia.org/wiki/First_they_came_...
http://www.jw.org/en/news/legal/by-region/russia/jw-religious-freedom-threatened/
http://www.jw.org/en/news/legal/by-region/russia/jw-religious-freedom-threatened/
http://people.ds.cam.ac.uk/ssb22/typography.js

4 Moore’s Law – for good and bad

Thanks to Moore’s Law, our hardware has changed out of all recognition.
Whereas before our development and deployment systems ran on top spec
Solaris servers with 64 CPUs, we can now get similar compute power on
a $5k Xeon machine. However, we still potentially have differences
between machines – with a production or user test machine being higher
specification and larger scale than one used by developers. This makes
recreating bugs more difficult, but on the flipside the increase in
performance also makes using powerful debugging tools much more
practical, as any overheads are dramatically reduced.

5 Regulatory change

The banking industry has seen significant regulatory change since 2007,
so not only are we dealing with many more trading markets, but there is
also a need to demonstrate compliance in new ways for each of them,
leading to even more complexity. We therefore have a greater duty of care
about how we carry out engineering and ensure releases are problem-free.
This means we have to be able to trace all code changes as part of our
compliance efforts.

Where reversible debugging helps
As I’ve said a significant part of any debugging exercise is recreating the
problem in a repeatable fashion. Reversible debugging eliminates many
of these needs, at least from the perspective of observing the bug, though
the scenario still needs to be reproduced to adequately test the fix.

In the same way that software development has moved on in the last
decade, so has reversible debugging, meaning there are many more
products now in the space, each providing their own way of solving
problems. These include solutions from Record and Replay (rr), Chronon
and Time Machine for .NET, as well as Undo. There are also many
improved ways of instrumenting live running code, from detailed tracing
tools to products that can record live running processes without a
debugger attached. In these cases, once the recording is saved, it can be
shared with your development team for offline analysis. To illustrate this
it would mean that if we found bugs when testing code in London we
could simply send the recording back to the developers for them to run.
No matter where they are, or what machines they have available, they can
precisely reconstruct the program’s original behaviour and step
backwards as well as forwards in the code to find the root cause of the bug.
This overcomes one of the main issues of first generation reversible
debuggers – the difficulties of recreating bugs on the often different
machines used in development, QA testing and production.

Using reversible debugging helps in four main ways:

 The ability to record and rewind gives much deeper insight into what
caused a crash.

 The ability to collect evidence on one machine and replay an exact
copy of it on another helps overcome the different machines/
configurations used in development/testing/deployment. This
allows faster tracking of small issues.

 It also works well in more structured testing, ensuring larger bugs
are found.

 In User Acceptance Testing (UAT) systems. These are one step
away from production, so are much more complex, with multiple
connections to other systems. However, we’re looking at how
reversible debugging can help us in the future as the technology
develops and performance further improves.

Looking to the future
While the potential of reversible debugging and the use of live recordings
offers great potential productivity gains today I expect the technology to

improve greatly in the coming years. Looking forward, I expect the
technology to further improve in two key areas:

1. Performance

Since first trying reversible debugging ten years ago, we’ve seen a
better than tenfold reduction in the performance overhead. This is
through a combination of development of the software and the
greater processing power we now possess. If this trend continues to
move significantly downwards, it opens up new possibilities in
terms of the types of systems and software where we can use
reversible debugging. The holy grail here would be to have
recording always on.

2. Multi-language

The days when organisations developed in a mandated, single
language are increasingly in the past. This is particularly true as we
move to a mobile-first world and developers adopt the best language
for individual applications or needs. For example, currently Undo
supports C++ on Linux and Android, and I expect this range to
expand, driven by customer and market demand.

As I said, it is now ten years since I read that article in CVu, and came
across reversible debugging and Undo. Since then I’ve watched the
market change as reversible debugging has really gained momentum.
There are now more entrants in the market, new ideas appearing and more
importantly the innovation has been recognised by a number of other
people.

For example my bank is a strong supporter of Accenture’s FinTech
Innovation Lab programme, a twelve week initiative that facilitates
introductions for tech companies to stakeholders in leading financial
institutions. Demonstrating the importance of software quality to the
world’s leading banks, Undo beat hundreds of other entrants to win the
programme, giving it the chance to showcase its technology to more than
300 industry leaders. To me this shows the value of disruptive
technologies such as reversible debugging in an era where code quality
and security have never been more important. It endorses my original
interest, and shows how banks such as mine can support and help
innovation to grow and flourish.

Ten years is a long time in software development, so I won’t risk
predicting what things will look like in 2026. However, it is fair to say that
we’ll be developing and deploying in ever-more complex environments,
with software central to the operations of all organisations, whatever
sector they are in. Bugs will still be with us – and are likely to be more
difficult to track down than ever. Expect more innovation from the likes
of Undo to make debugging easier and to increase productivity – here’s to
the next 10 years.

reversible debugging has really
gained momentum
JUL 2016 | | 11{cvu}

Code Critique Competition 100
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (Email addresses are not publicly visible.)

The 100th critique
This issue contains the 100th in the code critique series which was started
by Francis Glassborow (and a regular feature by the time I joined ACCU)
and then continued under the oversight of David A. Caabeiro.

The code critique comes under the heading of ‘Dialogue’ and has attracted
entries from a wide range of members over the years. It’s a relatively easy
place for people to contribute to the magazine, to learn something from
the act of critiquing the code, and perhaps be inspired to try their hand at
an article in the future.

I continue to enjoy setting them – but I’m still no nearer understanding why
some issues attract many critiques and others attract only one! C/C++
example code generally is the most popular, but I do occasional produce
problems written in other languages. I’m always keen to hear from people
who have written (or come across) code that might form the basis of a
critique – anonymity is provided if desired (!)

Last issue’s code
I wanted to learn a bit about C++ threading so I tried writing a thread
pool example. But it sometimes crashes – I’ve managed to get it down
to a small example.

Sometimes I get what I expected as output, for example:

 Worker done
 Worker done
 Ending thread #2
 Ending thread #0
 Worker done
 Ending thread #1
 Worker done
 Ending thread #3
 Worker done
 All done

But other times I get a failure, for example:

 Worker done
 Ending thread #0
 Worker done
 Awaiting thread #1
 Worker done
 W
 <crash>

I’m not sure what to do next – can you help?

The program is in Listing 1 (right and overleaf).

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

Listing 1 (cont’d)

#include <algorithm>
using namespace std;
#include <array>
#include <chrono>
using namespace chrono;
#include <cstdlib>
#include <iostream>
#include <thread>

static const int POOL_SIZE = 4;

// Allow up to 4 active threads
array<thread, POOL_SIZE> pool;

// Example 'worker' -- would in practice
// perform some, potentially slow, calculation
void worker()
{
 this_thread::sleep_for(
 milliseconds(rand() % 1000));

 cout << "Worker done\n";
}

// Launch the thread functoid 't' in a new
// thread, if there's room for one
template <typename T>
bool launch(T t)
{
 auto it = find_if(pool.begin(), pool.end(),
 [](thread const &thr)
 { return thr.get_id() == thread::id(); }
);
 if (it == pool.end())
 {
 // everyone is busy
 return false;
 }

 *it = thread([=]()
 {
 t();
 thread self;
 swap(*it, self);
 self.detach();
 cout << "Ending thread #"
 << (it - pool.begin()) << "\n";
 });
 return true;
}

int main()
{
 while (launch(worker))
 {}
 // And finally run one in this thread as an
 // example of what we do when the pool is full
 worker();

Listing 1
12 | | JUL 2016{cvu}

Critiques

Felix Petriconi <felix@petriconi.net>

I personally would first include all necessary headers and then add a global
using namespace std.

Since chrono is only used in the worker() function, I personally
wouldn’t use a namespace inclusion for a single occurrence. Alternatively
one could simply add using std::chrono::milliseconds at the
beginning of the worker function.

Instead of a fixed size of threads I would go for the native number of
available cores of the used platform with:

 std::thread::hardware_concurrency()

There is also no need to make POOL_SIZE a static variable. A simple
constant would be fine for such a purpose.

Good that std::array is used here, but hardware_concurrency()
is not a constant value during compile-time so one should probably use a
vector.

For this example the usage of rand() is probably OK. But in general one
should avoid using it, because the distribution is bad. See Stephan T.
Lavavej’s talk at the Going Native 2013 conference.

Using std::cout itself is thread safe, but the output is not synchronized.
So I recommend creating a log function that synchronizes the output to
std::cout.

Inside launch(), I would never pass an iterator into a thread. It is very
dangerous in general to pass an iterator to something other than an
algorithm-like function. I only use iterators locally within the scope of the
current function or method. In this example the access to the thread objects
happens without synchronization between the main thread and the
spawned thread which results in undefined behaviour. So in the main
thread a free slot is searched and in the spawn thread a) swapping the
objects and b) detaching it happens. This must be done synchronized, e.g.
with a mutex. As well there is again the problem with using std::cout.
Please see above.

In the main function the loop variable is named it. This is misleading for
a reader, because it is not an iterator, but a reference to the array objects.
One sees the problem at the statement

 &it -&*pool.begin()

From my point of view this looks somehow strange. Either I would
encapsulate a std::thread object into some struct, that has an
additional thread number attribute, or I would have let the pool be:

 vector<std::pair<int, std::thread>>
 pool(thread::hardware_concurrency());

so that the thread number is stored in the first element of the pair, or more
simply I would use a classic for loop with an index like

 for (size_t i = 0; i < pool.size(); ++i)

and then use the operator[] to access the individually thread elements.
Again there is a race condition, because the thread function detaches the
thread potentially at the same time as the main thread tries to do it.

In the code the array variable is named pool. But there is no pooling of
threads. Here they are started with each new function and then it finishes.
Normally one tries to reuse a thread for all the tasks, because spawning a
new thread is very expensive.

I know that the code was written for getting to know threading. I
experienced myself that threading is not easy and that are there are many
traps that one can step into. So if I would need a thread pool for production
code I would always try to look for a ready tested solution, before I try to
build something by myself.

John Roden <john.roden@iol.ie>

Besides the main routine, the program starts four other threads whose
administrative information is stored in an array of thread objects (the pool).
This array is manipulated in both the main routine and each thread (by
swap() functions). The result is that the main routine is not seeing the
original thread objects when it awaits on threads to complete. The swap()
functions aren’t necessary in this case.

The program also detaches each thread with the result that the thread is no
longer joinable. Tests reveal that the wait loop at the end sometimes sees
a thread as joinable but by the time it tries to join it, the thread has detached
and is no longer joinable – the program hangs in my test (it could
legitimately crash!). There is no reason to detach the threads in this case.

My solution to the program’s problems is to remove the swap() and
detach() lines and access the original thread objects in every case.

These are the lines (commented-out) which need to be disabled in the code:

 40 t();
 41 //thread self;
 42 //swap(*it, self);
 43 //it->detach();
 44 cout << "Ending thread #"
 45 << (it - pool.begin()) << "\n";

 60 //thread thread;
 61 //swap(thread, it);
 62 if (it.joinable())

In this example the threads do not need to change any shared information;
if they did, a mutex of some sort would be needed but that complexity can
be avoided here. The cout function is guaranteed to remain uncorrupted
when used by multiple threads (C++11) but it is possible to get the output
from different threads interleaved. When this is a problem, a mutex lock
guard would be needed for each cout.

James Holland <James.Holland@babcockinternational.com>

Compiling and running the program revealed the crashing problems the
student was complaining about. If the program contains threads and
crashes intermittently, the problem stands a good chance of being caused
by race conditions.

An inspection of the student’s code reveals plenty of opportunities for race
conditions. For example, the main thread calls launch(), that creates a
thread object in one of the elements of the thread pool array, and starts to
execute the worker function via a lambda. At more or less the same time,
the lambda function calls the detach() function of the object just stored
in the thread pool. I said more or less, because it is not possible to know
which event will happen first; creating the thread object in the pool or
calling the detach function. If the detach function is called first, the object
will be the original default constructed thread. Calling detach() on a
default constructed thread results in std::system_error being
thrown. This is probably not what was intended. There is also a potential
race condition with swap() within the lambda function.

Incidentally, I am not quite sure what the student had in mind when
creating a default constructed thread and swapping it with the one in the
pool. Perhaps it is something leftover from the student’s main project. In
any case it is a potential source of trouble. In fact any harmful race
condition should be removed from the code.

 for (auto & it : pool)
 {
 thread thread;
 swap(thread, it);
 if (thread.joinable())
 {
 cout << "Awaiting thread #"
 << (&it - &*pool.begin()) << "\n";
 thread.join();
 }
 }
 cout << "All done\n";
}

Li
st

in
g

1 (
co

nt
’d

)

JUL 2016 | | 13{cvu}

It should be noted that the last line of the lambda uses the iterator (it) that
refers to the thread object in the pool. This use of it does not cause a race
condition because the code refers directly to the iterator and not what the
iterator is pointing at (namely, the thread object). This just goes to show
that making sure multi-threaded code is free of harmful race conditions is
a tricky business. Because of this, it is best to keep the program design as
simple as possible.

The code below runs the worker function in four threads (stored in the
thread pool) and then waits for all the threads to finish executing before
exiting. I believe it to be free of harmful race conditions but it still may
not execute reliably. If thread() is unable to start a new thread, it will
throw an exception of type std::system_error. To guard against this,
n o m o r e t h re a d s s h o u l d b e c re a t e d t h a n g i ve n b y
std::thread::hardware_concurrency(). This function returns
the number of hardware threads available. Unfortunately, the number
returned is not guaranteed to be accurate, it is just an estimate. Because of
this, the call of the std::thread constructor should be enclosed within
a try-catch block.

Finally, I have made use of a mutex to ensure that a thread writes a
complete line of text on the console without interruption from another
thread. This simply improves the display formatting.

I have been able to describe only a few features of std::threads. For
a comprehensive treatment, I would recommend the book C++
Concurrency in Action by Anthony Williams, ISBN 9781933988771. Also
recommended is Scott Meyers’ book, Effective Modern C++, ISBN
9871491903995. Scott has a chapter devoted to concurrency and gives
many useful hints and tips.

Finally, although not perfect, I provided an amended version of the
student’s code with race conditions removed.

 #include <algorithm>
 #include <array>
 #include <chrono>
 #include <cstdlib>
 #include <iostream>

 using namespace std;
 static const int POOL_SIZE = 4;
 array<std::thread, POOL_SIZE> pool;
 std::mutex m;
 void worker()
 {
 std::this_thread::sleep_for(
 std::chrono::milliseconds(rand() % 1000));
 std::lock_guard<std::mutex> guard(m);
 cout << "Worker done\n";
 }
 template <typename T>
 bool launch(T t)
 {
 auto it = find_if(pool.begin(), pool.end(),
 [](std::thread const & thr)
 {
 return thr.get_id() ==
 std::thread::id();
 });
 if (it == pool.end())
 {
 return false;
 }
 *it = std::thread([=]()
 {
 t();
 std::lock_guard<std::mutex> guard(m);
 cout << "Ending thread #" <<
 (it - pool.begin()) << "\n";
 });
 return true;
 }

 int main()
 {
 while (launch(worker))
 {}
 worker();
 for (auto & it : pool)
 {
 it.join();
 }
 std::lock_guard<std::mutex> guard(m);
 cout << "All done\n";
 }

Commentary
There has been a fair bit of discussion over the years since C++11 was
completed about the pros and cons of exposing direct access to threads in
the C++ library. The original plan had been to get the basic mechanism
into the standard and the to introduce higher level abstractions,
implemented using the basic functionality, in subsequent versions of C++.

Unfortunately the higher level abstractions have been somewhat slower to
appear than hoped, although there should be some parallel algorithms
coming in C++17, with the result that much code is still being written using
‘raw’ std::thread. (While outside the scope of this critique, there are
various libraries, not in the C++ standard, that do provide some higher level
building blocks.)

One difficulty with writing threaded code is that it can be hard to prove
the code is correct and any bugs often only appear intermittently. It is, as
Felix and James variously pointed out, good to have a clear program design
and to make use of existing, debugged, libraries or idioms for threading.

This example is purporting to demonstrate a thread pool but, as Felix said
“there is no pooling of threads”. The programmer might have done better
to have taken some examples from, for instance, Anthony’s book and to
work through those rather than designing their own ‘pool’-like system.

Multi-threaded code involves two levels of correctness (at least). The first
level is that of thread-safety, i.e. that the various threads in the program
manipulate data structures in a way that avoids undefined behaviour or
crashes. The second level is ensuring that the behaviour of the program is
meaningful and consistent, with whatever execution order the various
threads involved end up using.

In this program, as each critique mentioned, the use of cout is thread-safe
(because the standard guarantees there will be no data races when used like
it is here) but the output can be interleaved and therefore inconsistent.
However, the use of pool is not even thread-safe as multiple threads
modify the array using swap() and iteration without any mechanism to
make the access correct.

There are two main directions for making the use of pool correct. One
way is to use explicit synchronisation (probably using a mutex) and the
other way is to ensure clear ownership of the object so that only one thread
accesses the object (John’s solution takes this route).

The Winner of CC 99
The three critiques seemed to cover the main problems with the code
between them. I’m not sure I’d want to go quite as far as Felix and never
allow an iterator to be passed to a thread, but it is definitely a bit of a ‘code
smell’ and would need to be designed carefully to ensure the access
remains valid whatever the subsequent execution pattern.

There was some discussion in the critiques about the best way to size the
number of threads to use for the machine executing the program rather than
us i ng a f i xe d va lu e (POOL_SIZE) – po s s i b l y i n vo l v i n g
std::thread::hardware_concurrency(). This function returns
the ‘number of hardware thread contexts’ (but this should only be
considered as a hint.) You can normally create many more threads than
this, but only this number of threads can actually execute simultaneously.
(This is additionally subject to other platform-specific constraints, such as
thread affinity masks.)
14 | | JUL 2016{cvu}

Overall I think Felix provided the fullest critique so I have awarded him
this issue’s prize.

Code critique 100
(Submissions to scc@accu.org by Aug 1st)

I wanted to do something slightly different for this, the 100th code critique
column, so I have based this issue’s critique on the ‘left-pad’ function that
was part of npm but was withdrawn by the author, breaking a large number
of components on the Internet. See

http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm

for some more official information about the issue and this blog:

http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-
to-program/

for some discussion about some of the issues it raises.

(The left-pad story was briefly discussed on accu-general during the ‘NIH
syndrome’ thread.)

Please feel free to comment on the Javascript code itself, or on the wider
issues raised by the story.

Listing 2 contains leftpad.js, and a trivial test page is provided in
Listing 3 if you want to play with the function in a browser.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website

(http://accu.org/index.php/journal). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

<!DOCTYPE html>
<html>
<head><title>CC100</title></head>
<body>

<h1>Code Critique 100</h1>

<script src="leftpad.js"></script>

<script>
function testLeftpad() {
 result.innerHTML = '"' +
 leftpad(text.value, len.value, pad.value) +
 '"';
}
</script>

<table>
<tr><td>Text to pad</td><td>
 <input type="text" id="text" value="1234">
</td></tr>
<tr><td>Length</td><td>
 <input type="text" id="len" value="10">
</td></tr>
<tr><td>Pad char</td><td>
 <input type="text" id="pad" value="0">
</td></tr>
</table>

<button onclick="testLeftpad()">
Try out leftpad
</button>

<pre id="result"></pre>

</body>
</html>

Listing 3

function leftpad (str, len, ch) {
 str = String(str);

 var i = -1;

 if (!ch && ch !== 0) ch = ' ';

 len = len - str.length;

 while (++i < len) {
 str = ch + str;
 }

 return str;
}

Li
st

in
g

2

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
JUL 2016 | | 15{cvu}

http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
http://accu.org/index.php/journal
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/

16 | | JUL 2016

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the (Acting) Chair
Bob Schmidt
chair@accu.org

Please allow me to introduce myself. I am Bob
Schmidt, and I have volunteered to be the
ACCU Chair for the 2016–2017 term. I am
based in Albuquerque, New Mexico, USA,
making me the first non-UK based Chair of the
organization (but please don’t hold that against
me). I am president of Sandia Control Systems,
Inc. and have been a consultant and contractor
since 1994. I am a licensed Professional
Engineer in the U.S. state of Texas. I’ve been a
member of ACCU since 2011.

Currently I’m acting chair – I decided to
volunteer after the AGM in April, when the
position remained vacant. I wanted to ask a past
holder of the position about the duties and time
commitment before volunteering, and I wasn’t
able to do that until after the meeting. I’d like to
express my personal thanks to past Chairs Ewan
Milne and Alan Griffiths for answering my
questions about the role. They were
instrumental in helping me decide to volunteer.

Anna-Jayne Metcalfe presented a thought-
provoking keynote on Comfort Zones, shortly
after I volunteered. As she was talking about
stepping outside of one’s comfort zone, I
thought to myself that I hadn’t so much stepped
out of mine, but rather had jumped from a fourth
floor without benefit of a net. I spent a
considerable amount of time that evening trying
to get my logical brain to convince my lizard
brain I had done the right thing. (My wife just
laughed when I told her.)

My main goal for ACCU in the coming year is
to keep the organization ticking along. Based on
what I heard during the AGM and the following
ACCU conference session, we have just one
pressing issue – our web site and web hosting.
Tim Pushman, who has been hosting the web
site for a number of years, had informed the

committee he was no longer able to continue in
the role. Our immediate need is to find a new
hosting platform, probably one that will allow us
to run the existing platform. Our longer term
need is to replace that older platform with a
current one. That platform will need to support
the existing site functionality.

By the time this gets published we should have
a new host platform, and hopefully our existing
software will be transferred to it. We are still
looking for one or more volunteers who would
like to help upgrade our platforms and improve
the site. This will not be a long-term
commitment. If you are interested please let me
know.

ACCU will need an additional auditor for 2017,
as I will be unable to continue in that role.
(Auditors are independent of the committee.)
The role of auditor is not an onerous one,
requiring only a few hours of effort in the month
prior to the AGM. Qualifications include being
able to balance a cheque-book and a minimum
familiarity with Microsoft Excel. Rob Pauer,
our treasurer, was very helpful answering the
questions I had this year. Guy Davidson is
starting his two year term as auditor. If you are
willing to join Guy and accept the role for the
one year remaining on my term, please send me
an email.

The 2016 ACCU Conference was a great
success, and a tribute to the hard work of our
Conference Chair, Russell Winder. It was a
shame that Russell was unable to attend in
person to see the fruits of his labour, but I’m told
he was following some of the sessions as they
were posted on YouTube. Russell is continuing
in the role as Conference Chair for 2017. Please
join me in thanking Russell for a job well done,
and wishing him a continued and speedy
recovery. Thanks also to Jon Jagger for stepping
in as master of ceremonies.

During the ACCU conference session we heard
reports from Fran Buontempo and Steve Love
on the challenges they face as editors of
Overload and C Vu (respectively). Their main
concern is a lack of a backlog of articles waiting
to be published. I’m sure you have seen their
requests for material on the accu-general
mailing list. Currently they are operating in
‘just-in-time’ mode, and are considering
reprinting articles to help with content.

I had not worked with Steve prior to this report,
but I have written several articles for Fran.
Overload is a peer-reviewed journal; I can tell
you from experience that Fran and her fine
group of reviewers are excellent at bringing out
the best in you and your material. It may not be
true that everyone has a book in them (and if so
it should probably stay there), but we all have
something to share. Please consider working
with Steve or Fran and sharing your experiences
and expertise with all of us.

One of the action items I inherited with the
position is to develop a Diversity Statement for
the organization. I have a draft that I have shared
with the committee, whose consensus was that
we need more input from a more diverse group
of members. If you have strong feelings about
what a diversity statement should say (or not
say), please contact me and I will add you to our
(hopefully) growing list of participants in the
process.

As I stated in the opening paragraph, currently
I’m just the acting chair. In addition, Malcolm
Noyes also volunteered to stay in the role of
Secretary after the AGM. We need to hold a
special general meeting in order to vote on
Malcolm’s and my formal nominations for these
roles. Due to the steps and timeline required by
the constitution the vote probably will be held
sometime in September. Watch this space and
accu-general for more information as it becomes
available.

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	CVu28-3.pdf
	Fixed fixation
	Testing Private
	The Codealow
	Whiteboards
	Debugging – What Has Changed in the Last Decade?
	How to Block Russia From Your Website (and why you might want to)
	Code Critique Competition 100

