

MAR 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Cross Pollinated
don’t think it’s controversial to say that we, as
computer programmers, work in a young industry.
By most estimates, it all kicked off in the 1940s,

mostly in response to the need for a way of reading
encrypted messages faster than doing it with a pencil
and paper. The theoretical basis and history of the first
attempts at programmable computers is probably
familiar to most of us, with Alan Turing publishing a
paper about a ‘Universal Turing Machine’ in 1937,
Tommy Flowers’ Colossus clattering to life at Bletchley
Park in 1943, all making way for IBM to stamp out most
commercial competition in the 1950s.

Many illustrious names litter this history of programming.
Charles Babbage’s mechanical Difference Engine in the
1820s was a precursor to the Analytical Engine, which
gives us the first programmer – the Countess Ada
Lovelace. The design of the Engine is significant by
itself, too, given the striking similarities to the
architecture proposed by John von Neumann for general
purpose computers in the 1940s, and used in most (all?)
computers until the 1980s, and beyond. Countess Lovelace
herself was depending on 9th century work by the Persian
mathematician Muhammad ibn Musa al-Khwarizmi, who gives his name to the term
‘algorithm’.

Despite being uncomfortably aware that the names I have already mentioned contain
that of but one woman, I will press on with my story of another man. In 1866, the first
single cable was laid across the Atlantic Ocean between the UK and the US. It marks,
arguably, the beginning of the modern Internet. There was only one ship capable of
carrying the enormous weight of cable required: the SS Great Eastern, the largest ship
ever built (a record held until 1901), was designed by Isambard Kingdom Brunel.
Computer programming itself is certainly a young industry, at a commercial level, but
it depends a great deal on the progress made by some unlikely people. I would
naturally love to hear about your favourites, at the usual address.

I
Volume 28 Issue 1
March 2016

Editor
Steve Love
cvu@accu.org

Contributors
Omar Bashir, Pete Goodliffe,
Baron M, Ralph McArdell,
Malcolm Noyes, Roger Orr,
Jonathan Wakely

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAR 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Standards Report

Jonathan Wakely
reports from the
latest C and C++
meetings.

19 Code Critique Competition
Competition 98 and
the answer to 97.

REGULARS
23 Books

From the bookshelf.

24 ACCU Members Zone
Membership news.

24 Regional Meeting Report
A report from the
January 2016
London meeting.

SUBMISSION DATES
C Vu 28.2 1st April 2016
C Vu 28.3: 1st June 2016

Overload 133:1st May 2016
Overload 134:1st July 2016

FEATURES
3 Sliding Window Filters: A Set-based Implementation

Omar Bashir presents an implementation using
pre-sorted data to reduce CPU load.

7 An Open Question (or How I Learned to Stop Worrying and Love
Public Wi-Fi
Vertices examines some of the dangers of using
other people’s networks.

10 Groovy and Grails eXchange 2015
Ralph McArdell reports on his conference
experiences.

12 Fifteen Love
Baron M sets a new puzzle for students of
curious conundrums.

13 Using Clara to Parse Command Lines in C++
Malcolm Noyes demonstrates how to get up and
running.

15 Software Development Is...
Pete Goodliffe defines the art, science, craft (and
child’s play) of software development.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Sliding Window Filters : A Set-based
Implementation

Omar Bashir presents an implementation using
pre-sorted data to reduce CPU load.

liding window filters are commonly used for noise reduction and
data smoothing in applications ranging from algorithmic trading in
financial systems to signal processing in digital media systems.

Efficient implementations of these filters optimise overall performance of
systems in which they operate.

A set-based implementation of a sliding window filter is discussed which
optimises the performance of the most common of sliding window filters,
the median filter. This implementation can easily be extended to use
measures other then median for filtering.

Motivation
A median filter operates on a window over the data stream. This window
is implemented using a queue of a specified size. When the queue is full,
an input causes the earliest value in the queue to be ejected and discarded.
The output of the filter is the median of the values in the queue (see
figure 1).

An obvious implementation of the Median Calculator in figure 1 sorts the
data in the queue and then calculates the median from the sorted
collection. An alternative and efficient implementation maintains a sorted
collection which is updated with every new insert. If the queue is full, this
update involves removing the earliest value from both the queue and the
sorted collection and then adding the new value into both. Updating a
sorted collection is generally a computationally less expensive operation
than sorting the complete list (i.e., ln(n) vs. n ln(n)). If the sorted
collection is index based, calculation of median from it is a constant
complexity operation. Figure 2 (overleaf) shows operation of a median
filter using a sorted collection.

Sorted collections
Bashir [1] demonstrated the versatility of sorted collections of numerical
data in the context of performance monitoring of computer networks.
Analysis of network latencies and investigation of related incidents
requires iterative derivation and analysis of several summaries at different
levels of temporal granularities. Processing these statistical summaries
from raw data in every iteration can be computationally intensive.

Bashir proposes preprocessing raw data to intermediate information at the
lowest level of granularity. This intermediate information should have
properties of richness, efficiency and mergeability. Richness is the ability
to derive most statistical summaries from intermediate information
without accessing the raw data. Efficiency requires calculation of
statistical summaries to be equally or less computationally complex than
deriving them from raw data. Finally mergeability is the ability to
combine appropriate intermediate information at finer granularities to
provide intermediate information at coarser granularities. These can then
be processed efficiently to derive required summaries at those
granularities.

Sorted numerical data exhibit all these properties. In the context of
filtering based on measures of central tendency, richness and efficiency
are desired properties while mergeability is less relevant as these filters
generally operate at fixed granularities.

Using sorted numerical data also allows decomposing such filters into a
preprocessor and a summary calculator. The preprocessor queues the
input and maintains a sorted copy of the queued data. The summary
calculator produces the desired measure of central tendency from the
sorted collection. Thus, the output of the summary calculator is the
filtered value. Decoupling the two allows developing filters based on
different measures of central tendency using the same preprocessor
implementation.

However, such preprocessors need to maintain a sorted copy of the
window in addition to the window itself. This can be an issue for larger
window sizes in applications that need to have a smaller memory
footprint.

A sliding window preprocessor implementation
A Java implementation of a sliding window preprocessor is described
here. This preprocessor uses an instance of the ArrayBlockingQueue,
an implementation of the Queue interface, as the sliding window. A
TreeSet instance is used as the sorted collection of elements in the
sliding window.

A TreeSet does not allow recurring values while a sliding window
algorithm accepts recurring values. To allow recurring values in a
TreeSet, each value is encapsulated with a monotonically increasing
integer that is incremented for every new value. OrderedElement class

 S

7 3 5 1 3

Median
Calculator

4 2 5

3

Input

Output

Median Filter

3 5 1 3 4

Median
Calculator

2 5 3

3

Input

Output

Median Filter

3

5 1 3 4

Median
Calculator

2
5 3

3

Input

Output

Median Filter

3

7

3

7 5 5 4

7 5 5 4

7 5 5 4

7

3

Fi
gu

re
 1

OMAR BASHIR
Omar has developed software for domains ranging
from defence and telecommunications to financial
services. He is passionate about developing technology
that is useful, usable and simple. He may be contacted
at obashir@yahoo.com
MAR 2016 | | 3{cvu}

3

Input

Output

Median Filter

7 3 5 1

Median Selector

54 2

7
3

Input

Output

Median Filter

3 5 1

Median Selector

54 2

7
7

7 3
3

Input

Output

Median Filter

5 1

Median Selector

54 2

7
7

3
5

7 3 5
3

Input

Output

Median Filter

1

Median Selector

54 2

7
7

3
5

5
5

7 3 5 1
3

Input

Output

Median Filter

Median Selector

54 2

7
7

1
5

5
5

3
4

7 3 5 1 3
Input

Output

Median Filter

Median Selector

54 2

7
7

1
5

5
5

3
4

3
3

3 5 1 3 4
Input

Output

Median Filter

Median Selector

52

5
7

1
5

4
5

3
4

3
3 3

5 1 3 4 2
Input

Output

Median Filter

Median Selector

5

5
7

1
5

4
5

2
4

3
3 33

7

3

51 3 4 2
Input

Output

Median Filter

Median Selector

5
7

1
5

4
5

2
4

3
3 3 33

5

(Listing 1) encapsulates the order of arrival with the arriving value.
OrderedElement’s implementation of the Comparable interface
compares the order of arrival for recurring values. This allows recurring

 public T getValue() {
 return value;
 }

 @Override
 public int compareTo(OrderedElement<T> o) {
 int valueComp = value.compareTo(o.value);
 return (valueComp != 0) ? valueComp
 : order.compareTo(o.order);
 }
 @Override
 public boolean equals(Object o) {
 return (null != o) &&
 (o instanceof OrderedElement<?>) &&
 ((this == o) ||
 (this.compareTo((OrderedElement<T>) o)
 == 0));
 }
 ...
}

public class OrderedElement<T extends
Comparable<T>> implements
Comparable<OrderedElement<T>>{

 private Integer order;
 private T value;

 public OrderedElement(Integer order, T value) {
 this.order = order;
 this.value = value;
 }

 public Integer getOrder() {
 return order;
 }

Li
st

in
g

1
Listing 1 (cont’d)

Fi
gu

re
 2
4 | | MAR 2016{cvu}

values encapsulated in an OrderedElement instance to exist in a
TreeSet in sorted order.

Listing 2 shows the preprocessor, SetOrderedWindow. An instance of
this class uses queue, an ArrayBlockingQueue instance, and
sorter, a TreeSet instance. SetOrderedWindow maintains an
integer, sequence, which is incremented every time the insert
method is called to insert a value into the window. If there is still capacity
in the window, the input value is encapsulated with the sequence number
in an instance of OrderedElement and inserted into both queue and
sorter. If there is no capacity in the window, SetOrderedWindow
removes the element at the head of the queue and also removes the same
element from sorter before inserting the new element to both queue
and sorter (Figure 3).

The SetOrderedWindow class contains two methods to retrieve the
data its instance contains. The getElements method returns a List of
a l l the values conta ined in queue in the order of ar r iva l .
getElementsSorted method returns the values contained in sorter
in sorted order in an array which allows efficient index based access to the
values. getElementsSorted is the most commonly used method for

data access as the array it returns can be used efficiently to derive any
measure of central tendency for filtering.

Performance measurements
The performance of the SetOrderedWindow class has been measured
for different window sizes from 500 to 2500 elements.

The performance of SetOrderedWindow is compared with the
performance of sorting the data in queue using an ArrayList for every
summary query. These test applications were compiled using JDK 8 and
executed over Lubuntu 14.04 on a 1.6 GHz Intel Atom N270 processor
with 1 GB RAM.

Figure 4 compares the performance when the windows are being filled
from the beginning and they are not yet full. This means the elements are
only being inserted in the queue objects. In the SetOrderedWindow,
these elements are also being inserted in sorter to keep the data in
sorted order. For each window size, the time measured is the time required
to fill the entire window and for each entry calculating the median of the
data in the window.

Figure 5 compares the performance when the windows are already full.
Inserting an element in the windows requires removing the element at the
head of queue objects before inserting the new element at the tail of
queue objects. In the SetOrderedWindow, the element at the queue
head is also removed from sorter and the element being inserted at the
tail of queue is also inserted into sorter. For each window size, the
time measured is the time required to replace the contents of the entire
window and for each new entry calculating the median of the data in the
window.

These results show that the sliding window filter using a set based sorter
performs better than the filter that sorts window data for every query.
Moreover, relative performance of the set based sliding window filter
improves for larger window sizes.

Start

Input

Window
Full ?

Remove from
queue head

Remove earliest
from sorter

Insert input
to queue

Insert input
to sorter

Compute summary
from sorter

Yes No

Figure 3

public class
 SetOrderedWindow<T extends Comparable<T>> {
 private
 ArrayBlockingQueue<OrderedElement<T>> queue;
 private Set<OrderedElement<T>> sorter;
 private int sequence;
 public SetOrderedWindow(int size) {
 this.sequence = 0;
 this.queue = new
 ArrayBlockingQueue<OrderedElement<T>>(size);
 this.sorter = new
 TreeSet<OrderedElement<T>>();
 }
 public int getCurrentSize() {
 return queue.size();
 }
 public int getCapacity() {
 return queue.size() +
 queue.remainingCapacity();
 }
 public void insert(T value)
 throws InterruptedException {
 OrderedElement<T> element =
 new OrderedElement<>(sequence, value);
 sequence++;
 if (queue.remainingCapacity() == 0) {
 OrderedElement<T> elementToRemove
 = queue.poll();
 sorter.remove(elementToRemove);
 }
 queue.put(element);
 sorter.add(element);
 }
 public ArrayList<T> getElementsSorted() {
 ArrayList<T> reply = new ArrayList<T>();
 for (OrderedElement<T> element : sorter) {
 reply.add(element.getValue());
 }
 return reply;
 }
 public List<T> getElements() {
 List<T> reply = new ArrayList<T>();
 for (OrderedElement<T> element : queue) {
 reply.add(element.getValue());
 }
 return reply;
 }
}

Li
st

in
g

2

MAR 2016 | | 5{cvu}

Most applications will have window sizes less than 100 elements. The
performance difference between the two approaches may not be
significant for an individual insert and summary calculation. But as these
applications are long running, any additional performance impact reduces
the overall throughput. However, a sliding window implementation using
a set based sorter consumes more memory to maintain the data it needs to
process. Depending upon the specifics of the implementation, it can be
twice as much memory. As long as this overhead is acceptable, such an
implementation can improve overall application throughput.

Conclusions
Sliding window filters summarise data captured in a window sliding over
the input data stream and the summarised value at the output is the filtered
value. These filters are used for noise reduction and data smoothing in
applications from diverse domains such as financial computations, signal
processing and automatic systems control.

A common sliding window filter is the median filter where the filter
calculates median over the window and uses that as the filtered output.
Conventional median filter implementations sort the data in the window
for each insert. As sorting is computationally expensive, this can reduce
throughput of host systems.

An alternative implementation discussed here uses a set to keep a copy of
the data in the sliding window in sorted order. It is shown here that
maintenance of this set is computationally less expensive than resorting
the window as it slides over the input data. This, however, can have the
cost of doubling the memory footprint of the filter because the filter needs
to maintain the values in the window in arrival and in sorted order.

Maintaining sorted data in the filter allows calculating a range of
summaries efficiently. Furthermore, actual summary calculation can be
decoupled from maintaining the window in arrival and sorted orders
inside a preprocessor. Thus, the same preprocessor can then be used with
filters that use measures of central tendency other than the median.

While this article discusses implementing a 1-D sliding window filter, an
adaptation can be used to implement 2-D sliding window filters. These
can be used to optimise image processing applications. 

References
[1] Bashir, O. (1998), Management and Processing of Network

Performance Information, PhD Thesis, Loughborough University

Fi
gu

re
 4

Fi
gu

re
 5
6 | | MAR 2016{cvu}

An Open Question (or How I Learned To Stop
Worrying And Love Public Wi-Fi)

Vertices examines some of the dangers of
using other people’s networks.

A paranoid is someone who knows a little of what’s going on.
~ William S. Burroughs

Just because you’re paranoid doesn’t mean they aren’t after you.
~ origin unknown

he term ‘computer virus’ was coined over 30 years ago [1] to describe
self-replicating computer programs, and since then, we’ve become
very well acquainted with the threats posed by computer malware of

many different kinds. It’s a brave personal computer owner who has no
anti-virus protection, and more general anti-malware programs are
becoming popular too. Many people, however, believe that this protection
is both necessary and sufficient.

It’s becoming increasingly apparent that Identity Theft is a burgeoning
problem (see [2] for some data from early 2015), and in an age when
wireless Internet connectivity is considered essential, as is being able to
have it whilst out-and-about, it is here that we are the most vulnerable.

These vulnerabilities present challenges to the developers of mobile
applications and connected devices, too, since they have a responsibility
to protect their customers’ information. In this article I want to consider
some of the risks with this continuous connectivity, on the basis that fore-
warned is fore-armed. To finish off, I’ll suggest some simple things you
can do to mitigate or eliminate those risks.

Threat landscape
The Age of Mobile Communications is in full swing, no doubt about it.
Mobile phones have been with us for a good while, but much more
recently, those phones have become ‘smart’, which essentially means
‘connected to the Internet’. Although the take-up of technology such as 4G
has been good (by the look of it), the coverage in the UK is still very patchy,
and so many people take advantage of cafés, hotels, coffee shops and pubs
providing customer Wi-Fi – often for free. Naturally enough, this has led
to an increase in the use of these establishments as temporary offices,
establishing a kind of barter trade of connectivity for beer/coffee/snacks
which seems to be largely tolerated on both sides.

Many of us routinely allow our telephones, tablets, laptops, etc., to just
connect to any wireless signal going, and use that channel to catch up on
email, social media of various types, The News, whatever. With all of this
wireless communications traffic saturating (in some cases, literally) the
air-waves, it’s no wonder, then, that folk with less than entirely honourable
intentions have taken advantage.

Public Wi-Fi is only one part of the problem. The Internet of Things is a
much less visible network of connected devices, and demonstrably
vulnerable to attack (for some fun examples, see [3], and [4]). At least part
of the reason that so many security flaws are found in such devices is that
they are designed to be small, and have low power requirements, which
translates to having insufficient processing power and/or resources to
spare for things like encryption.

The home front
You might think that being able to crack your home router would be the
crown jewels for most miscreants (and you shouldn’t underestimate how
bad that would be), but it’s sufficiently difficult, if the security is good

enough, that if an attacker can’t get in with ‘password’, they’ll probably
give up. The norm these days is for home routers to use WPA2 with a pre-
shared key – which is good enough as long as the password is sufficiently
strong. (WEP security for routers is known to be deeply flawed. [5])

The primary goal of an attacker is usually financial: if they cannot gain
direct access to your bank account (and they almost certainly cannot do
that), then the aim is to obtain enough information about you to be able to
impersonate you well enough to transfer your money by convincing your
bank that it is you authorising it, or spend your money by clocking up
online transactions using your credit card or other means.

Of course, there are the obvious bits of information that are of direct
interest – credit card numbers and security codes, your father’s middle
name, and so on – but any information is valuable, and can be obtained in
a variety of ways. Your online presence in social networking, online
petitions, mailing lists, just about anything, could provide someone with
at least part of the means to pretend to be you, but hijacking your home
router probably isn’t the most effective way to obtain it. If I were an
attacker, I wouldn’t bother with targeting a single individual unless I knew
it was going to be worth it. I’d much rather cast a wide net, and see what
I could find.

By which I mean sitting in a public place when it’s busy, and letting all
that traffic come to me.

Hackers’ delight
My mate Norm is a reasonably tech-savvy fellow. He lives in a fashionable
part of town near to his work where he does ‘something in IT’, which is
mostly keeping a small company email and web server in good order, and
making sure the backups get run. It’s not unusual on a Friday early evening
to see him join some friends in one of the many bars that litter the route
between the office and home, and tonight is the turn of a pub called The
Queen’s Head. He orders his round of drinks at the bar, and while he’s

 T

VERTICES
Vertices likes joining the dots between programs and
devices, believes we're all being watched, and can
be contacted at vertices@perfectcobalt.com

It can be done with some inexpensive hardware, some open-source
software, and a decent knowledge of networking at a low level. The
hardware is a Wi-Fi receiver that can be put into what’s known as
‘monitor mode’, which listens to all traffic on a channel even before
an association is made with an access point. A packet sniffer can
capture this traffic, including the handshake between a device and
the access point. This handshake contains a hash of the
passphrase used to protect the channel. Weak passphrases are
susceptible to dictionary attacks – essentially a lookup table of pre-
computed hashes to plaintext passwords. While this is extremely
processor intensive, there are open-source tools available to
automate it. In the end, good length (more than 12 characters), non-
word passwords will probably defeat it.

Cracking WPA2 protected Wi-Fi
MAR 2016 | | 7{cvu}

waiting, he takes out his phone and checks to see if there’s a wireless
network in range so he can try and round up a few more people to make a
night of it.

Sure enough, he finds a nice strong signal from an access point (AP)
broadcasting its name as ‘QueensHead Customer Wifi’. It’s an open
network, so he doesn’t have to go to the bother of asking for the Wi-Fi
password, or seeing if it’s written up anywhere, so he connects and is away
on the Internet.

Is Norm taking unnecessary risks by doing this?

This being an open network, the traffic is unencrypted, and could – in
theory – be ‘sniffed’ by anyone. This only matters, of course, for sensitive
information being transmitted or received, e.g. login credentials,
passwords, the stuff that Norm knows he wants to keep private. In practice,
most or all of this traffic will be encrypted before it reaches the network,
most commonly with a HTTPS connection from a browser or mobile-app
versions of his social networking sites.

So, while an eavesdropper on the network can inspect the traffic, it’ll still
be encrypted. The security isn’t perfect (there really is no such thing), but
it’s sufficiently difficult to crack the channel encryption that it will defeat
anyone but the most determined and skilled attacker, who probably doesn’t
care about Norm’s friends’ updates on social networks, to be honest. (And
if you think you are the target of such people, you already know how to
protect yourself better than I do.)

Is it enough for Norm to depend on that level of security? What are the
risks?

No, I’m Brian
Anyone can set up a wireless base station as an
access point. Most modern mobile phones have
the ability to do it, and even to ‘tether’ that AP
to the mobile data connection out to the Internet. To continue the prior
example, what do you think would be the effect of me doing that on my
own phone in the same pub, and renaming my portable Wi-Fi hotspot to
be the same as the open network – ‘QueensHead Customer Wifi’?

Well, to be honest, in practice, not much effect at all. Firstly, most mobile
phone hotspot facilities are deliberately WPA2 protected, so
impersonating an open network wouldn’t have much point, since anyone
connecting would have to provide a password. Secondly, when devices
such as your phone look for a network to connect to, they will inspect
certain metrics about any in range. The most obvious of those metrics will
be signal strength, and the pub’s router providing ‘real’ Wi-Fi will be much
stronger than my phone.

Still, it’s a possibility, and in theory at least, if someone managed to
connect to my wireless hotspot, I could intercept and inspect their traffic.
And there is certainly no difficulty in having two devices broadcasting the
same network SSID – there are perfectly reasonable reasons to do that.
However, anyone who did connect would be using my bandwidth, and a
mobile phone is not a great platform for packet sniffing.

A laptop of reasonable spec, however, is a different matter. It’s fairly
straightforward in Windows or Linux to advertise yourself as an access
point with SSID, if your wireless hardware supports it. Inexpensive
wireless cards and USB dongles are available which support the ‘Master’
mode required to do it, in any case, and having one of these also gets around
the problem that you can’t operate a wireless network device in Master
mode and as a client to the Internet at the same time. Having two wireless
interfaces means you can use one as an access point and the other to
connect to the Internet. That’s important, because not many people who
connect to your access point will stay connected long if they can’t
themselves connect to the Internet!

What I’ve just described is what’s known as a Rogue AP, and is a classic
Man-in-the-Middle (MitM) attack using wireless networking. If you have
connected your device to my AP, there are a few things I can now do to
try and collect more interesting data than the possibly encrypted packets
you’re sending and receiving.

Before we go on, I must make clear at this point that doing any of these
things is illegal in most countries. Specifically, intercepting somebody
else’s network connection without their permission, for any purpose, can
land you in real trouble with the authorities. I describe them here for
educational purposes. In short, don’t do any of these things. YHBW.

Thought police

I can set up my own DNS server, and respond to any DNS requests by you
with an address of my choosing – and therefore, with content of my
choosing. That content could even be a look-alike page for the request
you’ve made, requesting that you log in. I’m sure I don’t need to spell out
the consequences of that.

This attack is called a DNS Hijack, and it’s made possible with a small
handful of open-source tools and some networking know-how. [6] There’s
a good chance you’ve seen one in action, if you’ve ever used a public (open
or not) Wi-Fi and been redirected to a ‘Captive Portal’ that requires a login,
payment, or just acceptance of T&Cs. It’s usually done the same way, by
intercepting DNS requests and forwarding to the IP address of the portal.
You might think this usage is benign, but of course it can itself be spoofed,
and used to phish for credit card details, or other information.

Bait and switch

I have already mentioned that HTTPS is secure enough to deflect most
attackers, but with a bit of ingenuity it’s possible to subvert it under some

circumstances. First, I can intercept your
request for a secure (HTTPS) connection, and
act as a proxy to your requested site, providing
you with a regular HTTP connection, and
maintaining the HTTPS connection myself,
forwarding al l requests and responses
appropriately. As far as the remote site is

concerned, you are connected securely, but you might notice that your own
connection was HTTP only – if you happened to look, for example, at the
browser address bar. This method might be used to obtain your credentials
over an insecure line (between you and my router).

In a more sophisticated variant of this attack, my proxy could provide you
with an SSL certificate, which would most likely cause a warning on your
device that the connection might not be secure, but if you ignored that
warning, you’d think you had a secure connection.

This attack is called SSL-stripping, and is described in detail on the website
run by the man who developed it [7].

The coders’ challenge
If you are writing code for mobile applications or IoT devices that process
user information in any way, then you have a responsibility, and probably
a legal requirement, to protect that information. As a developer, you need
to be aware of actual and potential threats to make your product(s) secure.
There is more to this than hardening code against buffer over-runs and SQL
injection, although those things are still important.

Identifying those vulnerabilities, and crafting a viable attack to exploit
them, actually requires a significant amount of effort, and won’t even be
considered if you’re sending your admin password – or worse, your
customer’s password – in plaintext back to ‘Mother’.

One of the simplest ways to be less insecure is to gather less data: if you
don’t need it, don’t ask for it. However, I am aware that useful tools often
require a revenue stream. The increasing appetite of marketing
departments for our most personal data is unnerving at best (to me,
anyway), but if you must have it, at least use it and transmit it securely. If
your app talks over the Internet, make it always use HTTPS or other secure
channel, and warn the user very loudly if an encrypted connection is
unavailable.

Fortifying applications and devices with certificate authenticated security
is not a trivial exercise, certainly it’s harder than statically identifying
buffer over-runs, but there it is. Fruit that hangs low on one side of the fence
isn’t necessarily easy to reach from the other.

warn the user very loudly if
an encrypted connection is

unavailable
8 | | MAR 2016{cvu}

Whoever you want me to be
You might at this point still regard these attacks as pretty unlikely. After
all, they depend on you connecting to the Internet through an open access
point that happens to be under my control, and conducting your business
over that connection. I still have a couple of tricks in my bag of goodies
to share. First, let’s have a quick tour of how most devices associate with
Wi-Fi routers.

Beacon and probe

When you turn on Wi-Fi on your phone (for example), you will often see
a list of available wireless network names (SSIDs). This list is obtained
by listening for Beacon Frames, which are part of the IEEE 802.11
management protocol. The beacon is sent by a wireless access point, and
includes its name, MAC address and what (if any) security protocols it
supports, amongst other things.

Conversely, your phone will send probe frames to listening APs. Broadcast
probes are just a request for the list of networks in range, a direct
counterpart of the beacon frame above. However, many devices remember
the networks to which they have previously connected in a preferred
network list. The device will probe directly for those networks (usually
only when there is no active wireless connection). If the phone receives a
response to such a probe, it will probably attempt to automatically connect
(this is the default behaviour for most wireless device drivers).

If the phone is connected to a wireless network, and that connection is
dropped, the preferred network list will be probed again. The response to
a probe contains information about signal strength and data rates, and most
devices will use this data to choose the ‘best’ connection.

I am Spartacus

I’ve already mentioned about wireless equipment and monitor mode,
which allows me to listen to all and any wireless traffic including the
management frames such as beacons and probes. If I receive a probe for
a network called ‘Spartacus’, I can arrange to respond with the equivalent
of ‘I am Spartacus’, and if I am broadcasting a strong signal, there is every
chance the probing device will try to connect to my rogue access point.

One last thing to note: most devices will stop probing for new networks
once they have associated and connected with an access point. However,
with the right equipment – it’s that inexpensive wireless hardware again
– I can even arrange to impersonate the network to which you’re currently
connected, force you to drop that connection (this is called a de-auth, AKA
‘get off my LAN’), at the same time as listening for the resulting probes
and impersonating those networks too.

Moreover, my access point can impersonate dozens of networks
simultaneously, capturing the traffic from anyone who allows their device
to connect.

Are you paranoid yet?
Back to my question about Norm. Now do you think he was being reckless
to depend just on HTTPS encryption over an open network? There are
other attacks made possible (or easier) with the rogue access point,
including session side-jacking, cross-site scripting and cross-site request
forgery. If you think this is cause for concern, so you should – it definitely
is! See [8], [9], [10], [11] and [12].

The real question now is this: is there anything you can do about it, to either
detect the attacks, or render them useless to an attacker?

The answer to that is simple: yes there is. First, use a modern browser that
implements HSTS [13]. This will defeat SSL stripping and protocol
hijacking, and was in fact developed as a direct response to the original
SSLStrip demo by Moxie Marlinspike (see [7]). Second, use a browser
plugin such as HTTPSEverywhere [14] or one of its variants. This tool
attempts to enforce a secure connection if one is available, and tries to
make sure that your whole experience is as secure as it can be.

Lastly, invest in a Virtual Private Network, and use it anytime you’re using
a connection you cannot guarantee is safe. Doing all your Internet activity

over the VPN (in addition to using HTTPS and everything else) renders
most of the attacks I’ve described here toothless. DNS hijacking is easily
defeated by knowing the IP address of your VPN server and not connecting
by name, but a fake captive portal might be harder to bypass.

Using a VPN that you trust means that it doesn’t matter if you’re
unwittingly connecting to the Internet via a rogue access point. The VPN
server itself will usually provide its own end-points for DNS and gateways
to the Internet, and most VPN software also encrypts the data transmitted
and received, affording you an extra level of security.

Detecting the presence of a Rogue AP isn’t necessarily easy, and in a
corporate environment warrants expensive internal routing equipment and
an army of vigilant network supervisors. However, on a personal level, if
you notice that your phone is connected to a network with the same name
as your home Wi-Fi, and you’re in a cafe miles from your house, then
unless your home Wi-Fi is named something common, it’s probably a fake
network. Similarly, if you find yourself connected to an open network that
you were expecting to be protected, there’s a good chance it’s a rogue. Be
wary of captive portals, and always be vigilant about personal information
you provide to anyone.

Socially speaking
If I can get enough information on you, such as, say, your date of birth,
post code and mother’s maiden name, along with details of your bank
account, I might be able to persuade your bankers to transfer money into
an account I control. In fairness to most banks these days, they’re more
aware of the need for better security over the phone, and so this may not
be enough – but if I am an attacker and can get even some of this data on
you, it’s a start.

If I can’t use that information directly to get your money, I may be able to
sell it on to someone else who can. Identity fraud is big business, attracting
serious money, and correspondingly scary people. If I can (theoretically)
do all this, then someone else with a real intent to rob you can actually do it.

If you ever use a Wi-Fi connection in a coffee shop, pub, hotel, airport,
someone else’s house, and especially if you ever use public open Wi-Fi,
you need to be aware of the risks, and know how to protect yourself.
Absolute security is a myth, of course, but you can do some things for little
or no cost to make life much more difficult for any attacker. Not doing the
simple things described here just make life unnecessarily easy for people
who want to scam you or steal your identity.

If you are a company making mobile apps, or devices that use the Internet,
whether it’s a router, smart TV, home-automation IoT widget, or a toy, or
you’re a programmer writing the code for such things, if you make use of
customer details then this stuff matters. If I am your customer, then it’s
not your data. It’s my data. And it’s just possible that in the future, I won’t
just have to take your word that you’re secure, I’ll be able to look for
myself. [15] 

References
[1] Fred Cohen, Wikipedia, https://en.wikipedia.org/wiki/Fred_Cohen
[2] Cifas, ‘Identity Fraud up by 27%...’, https://www.cifas.org.uk/

id_fraud_first_quarter
[3] Nick Feamster, ‘Who will secure the Internet of Things?’, Jan 2016,

https://freedom-to-tinker.com/blog/feamster/who-will-secure-the-
internet-of-things/

[4] John Leyden, The Register, ‘Hopelessly insecure Motorola
CCTV...’, Feb 2016, http://www.theregister.co.uk/2016/02/03/
motorola_cctv_iot_insecure/

[5] Lee Barken, ‘WEP Vulnerabilities’, Dec 2003,
http://www.informit.com/articles/
article.aspx?p=102230&seqNum=12

[6] Chris Sanders, Windows Security, ‘Understanding Man in the Middle
Attacks’, Apr 2010, http://www.windowsecurity.com/articles-
tutorials/authentication_and_encryption/Understanding-Man-in-the-
Middle-Attacks-ARP-Part2.html
MAR 2016 | | 9{cvu}

https://en.wikipedia.org/wiki/Fred_Cohen
https://www.cifas.org.uk/id_fraud_first_quarter
https://www.cifas.org.uk/id_fraud_first_quarter
https://freedom-to-tinker.com/blog/feamster/who-will-secure-the-internet-of-things/
http://www.theregister.co.uk/2016/02/03/motorola_cctv_iot_insecure/
http://www.theregister.co.uk/2016/02/03/motorola_cctv_iot_insecure/
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Understanding-Man-in-the-Middle-Attacks-ARP-Part2.html
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Understanding-Man-in-the-Middle-Attacks-ARP-Part2.html
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Understanding-Man-in-the-Middle-Attacks-ARP-Part2.html
http://www.informit.com/articles/article.aspx?p=102230&seqNum=12

An Open Question (continued)
[7] Moxie Marlinspike, SSLStrip, http://www.thoughtcrime.org/
software/sslstrip/

[8] Shaun Nichols, The Register, ‘How to hijack MILLIONS of
Samsung Mobes...’, Jun 2015, http://www.theregister.co.uk/2015/
06/17/samsung_flaw_keyboard/

 [9] Chris Sanders, Windows Security, ‘Understanding Man in the Middle
Attacks’, May 2010, http://www.windowsecurity.com/articles-
tutorials/authentication_and_encryption/Understanding-Man-in-the-
Middle-Attacks-ARP-Part3.html

[10] Scott Helme, ‘Advanced Session Hijacking’, Aug 2013,
https://scotthelme.co.uk/advanced-session-hijacking/

[11] Wikipedia, https://en.wikipedia.org/wiki/Cross-site_scripting
[12] OWASP, Oct 2015, https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)
[13] Wikipedia, HTTP Strict Transport Security, https://en.wikipedia.org/

wiki/HTTP_Strict_Transport_Security
[14] HTTPSEverywhere, Electronic Frontier Foundation,

https://www.eff.org/https-everywhere
[15] Kieren McCarthy, The Register, ‘Show us the code...’, Jan 2016,

http://www.theregister.co.uk/2016/01/25/
source_code_ftc_commissioner/
Groovy and Grails eXchange 2015
Ralph McArdell reports on his conference experiences.

week or two before Christmas 2015 I attended the 2015 Groovy and
Grails eXchange conference thanks to the generosity of one of the
speakers, ACCU member and occasional speaker at ACCU London

meetings, Schalk Cronjé, who donated his complimentary conference
ticket to me. The conference [1] was held over two days at the Skills Matter
CodeNode building in central London on Monday and Tuesday the 14th
and 15th of December 2015.

As I knew very little of Groovy and less of Grails my focus was on finding
out a bit about Groovy, Grails and related topics. I did find out a quite bit
but of course still have a long way to go so please accept my apologies for
any errors and mistakes I may have made in what follows.

Monday
The conference registration opened a bit early at 08:00 so the keynote,
titled ‘Call me Apache Groovy’ and given by Cédric Champeau, could
commence at 09:00. The keynote was a mostly non-technical look at the
history of Groovy and the community around it from its inception in 2003/
2004 by James Strachan up to the ‘present’ of 2015 when Groovy became
an Apache hosted project – hence ‘Apache Groovy’ – and one Russell
Winder, a name some may recognize, is listed as a project committer. The
talk ended with some speculation for Groovy in 2016 and beyond.

Following a quick break I went to a talk on SDKMAN [2] given by its
creator Marco Vermeulen. SDKMAN was previously known as GVM
(Groovy enVironment Manager) and manages Groovy installations, a task
complicated by the combinations of available versions of Java related
software development kits (SDKs). It seems SDKMAN can manage
parallel installations of primarily Java related SDKs, has a command line
interface and uses tools such as Bash, curl and unzip and PowerShell on
Windows. SDKs are made available on the SDKMAN server by ‘vendors’
and once an SDK release is published on the server it is available to the
SDKMAN client to download and install.

The second session of the morning I attended was given by Schalk who
talked about idiomatic Gradle and recipes for Gradle plugin authors. I
learned that there are over 600 Gradle plugins in the repository. Schalk
noted that some are not that well written and proceeded to present a set of
points to consider, and preferably follow, when writing plugins for Gradle.

I rounded off the morning with a talk given by Tony Davidson and Fergal
Dearle on AST (Abstract Syntax Tree) transforms which used the building
of a simple game engine DSL (Domain Specific Language) for kids as an
example. They noted that even Hello World is not easy when trying to
teach kids Java and how much easier children found Groovy – so much so

they thought of the game engine DSL as a way to take the children further.
I learned that Groovy supports AST transforms allowing modification of
a Groovy compilation AST.

The first session I attended after lunch was on Groovy DevOps in the cloud
given by Andrey Adamovich. Andrey noted that automating the
provisioning of containers and servers is needed but doing so with Java is
difficult. He then went on to describe various server provisioning
automation scenarios involving, variously, ant, Gradle, Puppet and the like
and ending up with a plethora of tools he has written using Groovy to
automate such tasks including Gramazon [3] for controlling Amazon EC2
resources, sshoogr [4] for working with remote servers via SSH and
p-unit [5] for verifying the results of provisioning scripts used with the
likes of Puppet et al. He concluded that Groovy with Gradle makes the
ultimate automation glue.

Thinking that it is always good to know how people go about testing the
second talk of the afternoon I went to was given by Jeff Brown on testing
in Grails 3. It turns out Grails 3 testing is performed using some Grails
specific extensions to the Spock framework [6]. Being outside the
community Spock was new to me but the examples that were presented
looked to be quite elegant.

The final session of the day was a ‘Park Bench Discussion’ in which a
bunch of the speakers sat up front and answered questions from the floor.
Following the discussion there was a ‘party’ involving pizza and some free
beer.

Tuesday
The second and final day of the conference started later than the first at
10:00 with a keynote given by Graeme Rocher on Grails 3.1 and the road
ahead. Graeme started by running through the state of current Grails
releases: that the 2.x series is in maintenance mode, version 3.0.10 was the
then latest release and Grails plugins continue to be ported to the new 3.x
architecture. Next came a recap of some salient points of Grails 3.0
particularly that a new architecture is used which is not a drop in
replacement for Grails 2.x. Graeme then got to the meat of the matter and
went over some of the goodies in Grails 3.1 which were mostly to do with

 A

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect
to stop learning or improving his skills.
10 | | MAR 2016{cvu}

http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslstrip/
http://www.theregister.co.uk/2015/06/17/samsung_flaw_keyboard/
http://www.theregister.co.uk/2015/06/17/samsung_flaw_keyboard/
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Understanding-Man-in-the-Middle-Attacks-ARP-Part3.html
http://www.windowsecurity.com/articles-tutorials/authentication_and_encryption/Understanding-Man-in-the-Middle-Attacks-ARP-Part3.html
https://scotthelme.co.uk/advanced-session-hijacking/
https://en.wikipedia.org/wiki/Cross-site_scripting
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.eff.org/https-everywhere
http://www.theregister.co.uk/2016/01/25/source_code_ftc_commissioner/

improvements to application profiles introduced with Grails 3.0 and to
GORM 5, the data access toolkit used by Grails – including getting it's own
website [7]. The keynote ended with Graeme mentioning a few
possibilities for Grails 3.2 such as a Netty [8] application profile and non-
blocking GORM support.

Following the keynote I went to talk about Gradle’s new model given by
Peter Ledbrook. The desire for the new model stems from wanting to move
from having to declare build tasks before use, where configuration order
is important, to a declarative style in which declaration order is not
important. Peter noted that all configuration is executed whether used or
not which can lead to slow builds on large or complex build configurations.
The idea is to do something similar to the build execution phase where
tasks are only performed if required to complete a particular build. This is
achieved by moving from a build tasks description to a build model
description and along with it a scary new vocabulary with terms like
‘model space’ and ‘rule sources’. Peter spent most of the talk explaining
with examples how all these changes fit together.

For the final session of morning I attended ‘Deep dive into the Groovy
Compiler’ given by Cédric Champeau. Cédric started by re-enforcing the
fact that Groovy is a compiled dynamic language that compiles down to
Java byte code and went on to point out that even though a simple Groovy
program may not contain the keyword class under the hood the compiler
will generate a class as the JVM works with classes. Because Groovy can
also compile Groovy source code at run time – meaning Groovy byte code
executables have access to a Groovy compiler – making Groovy
executables larger. Cédric listed the 9 Groovy compilation phases and
noted that the Groovy console [9] allows viewing the result of each
compile phase. The rest of the session was devoted to going into greater
depth on many of the compilation phases.

Following lunch I went to a talk given by Jeff Brown on polyglot web
development with Grails 3. Polyglot here means using multiple
programming languages to write an application, specifically in this case
those that target or are callable from the JVM (Java Virtual Machine). Jeff
started by re-iterating what Grails is and then moved on to the polyglot
programming aspects. The first point noted was that Groovy inter-operates
well with many JVM languages, such as Java, directly. However some are
different enough that they require some help and Jeff took Clojure as an
example of such a beast. A Grails plugin is used to help out and takes care
of two main aspects of inter-operability. First it detects when either Clojure
code called from Groovy or the calling Groovy code changes and performs
the required actions to ensure synchronicity. Secondly it intercedes
between Groovy and Clojure to ensure calling Clojure functions looks like
calling Groovy class methods.

Another quick break and it was into a mid-afternoon session on serverless
microservers using AWS Lambda and Groovy presented by Beniot
Hédiard. Beniot started by discussing going serverless on AWS (Amazon
Web Services) using AWS Lambda [10] which takes cloud deployment
beyond infrastructure and platform as a service to the level of uploading
and running functions. Code written in Javascript, JVM based languages
– including Groovy of course, and Python – are supported. Beniot then
went over moving from a monolithic architecture to one based on
microservices which are good for rapid scaling. The idea is to split the the
architecture on data and service boundaries and then wire services to react
to events, possibly triggered by other services.

For the final presentation of the day, and the conference, I went to ‘Custom
Tags – The unsung heroes of the Grails framework’ given by Dave Klein.
Custom tags it turns out are custom HTML tags that allow code to be
executed to handle them and aid the rendering of GSP (Groovy Server
Pages) [11] documents. I was reminded of the PHP based Smarty template
engine [12] I came across a while ago. Custom tags I discovered are
presented as tag libraries [13], which are simply classes that have names
ending in ‘TagLib’ and provide a closure property (a named property that
has an anonymous function assigned to it) for each custom tag in the tag
library.

To round off the conference there was a hack session until 22:00 in the
communal CodeNode space for people to split into groups to work on one

of the suggested items that required some work. As I knew nothing, as it
were, I sat with Schalk and and observed while showed some code to
someone. After a while, and well before 22:00, we left.

Postscript
My conferences budget usually only stretches to the ACCU conference in
April each year [14] so I very much appreciated the opportunity to be able
to attend Groovy and Grails eXchange 2015 and learn a bit about things
that I had tagged as interesting and should find out more about at some
point, one day, maybe...So thank you Schalk!

Coming from a little or no knowledge position I found all the presentations
useful and now have information on a range of technologies and tools I
can follow up on. However, I suspect that in some cases the information
I took away differed from the main message of the presentation. If pushed
I might list the following as things I found particularly interesting:

 Grails as a candidate for a framework I could like using.

 Gradle as a modern build tool, especially using Groovy/Gradle for
automation glue.

 Groovy AST transforms as they sound intriguing.

 AWS Lambda and microservices as an interesting way to divide up
large applications.

I would certainly consider putting the likes of Groovy, Grails and Gradle
to use and maybe some of the other technologies mentioned along the way
as well. 

References
[1] Groovy & Grails eXchange 2015: https://skillsmatter.com/

conferences/6863-groovy-grails-exchange-2015
[2] SDKMAN: http://sdkman.io/
[3] Gramazon: https://github.com/aestasit/gramazon
[4] sshoogr: https://github.com/aestasit/sshoogr
[5] p-unit: https://github.com/aestasit/p-unit
[6] Spock framework: http://spockframework.org
[7] GORM 5: http://grails.github.io/grails-data-mapping/latest/
[8] Netty: http://netty.io/
[9] groovyConsole: http://www.groovy-lang.org/groovyconsole.html
[10] AWS Lambda: http://aws.amazon.com/documentation/lambda/
[11] Groovy Server Pages: https://grails.org/single-page-

documentation.html section 8.2, Groovy Server Pages
[12] Smarty Template Engine: http://www.smarty.net/
[13] Grails custom tags: https://grails.org/single-page-

documentation.html section 8.3, Tag Libraries
[14] ACCU Conferences: http://accu.org/index.php/conferences
MAR 2016 | | 11{cvu}

An Open Question (or How I Learned To Stop Worrying And Love Public Wi-Fi)
An Open Question (or How I Learned To Stop Worrying And Love Public Wi-Fi)
http://sdkman.io/
https://github.com/aestasit/gramazon
https://github.com/aestasit/sshoogr
https://github.com/aestasit/p-unit
http://spockframework.org
http://grails.github.io/grails-data-mapping/latest/
http://netty.io/
http://www.groovy-lang.org/groovyconsole.html
http://aws.amazon.com/documentation/lambda/
https://grails.org/single-page-documentation.html
https://grails.org/single-page-documentation.html
http://www.smarty.net/
https://grails.org/single-page-documentation.html
https://grails.org/single-page-documentation.html
http://accu.org/index.php/conferences

12 | | MAR 2016{cvu}

Fifteen Love
Baron M sets a new puzzle for students of curious conundrums.

reetings Sir R-----, come warm your bones at my table by the hearth
and join me in a glass of brandy! I trust that winter’s chill has not
cooled your ardour for wager?

Good fellow! Splendid fellow!

I have in mind a game much played by the short-statured, excessively hairy
and nature-obsessed folk of the Wimbledon commune, whose
encampment I chanced upon whilst taking a morning constitutional some
several years ago. I was drawn to it by a rather odd smell in the air, which
I subsequently discovered to emanate from a peculiar blend of tobacco that
they were especially fond of; a blend quite inferior to the Russian I can
tell you!

When not dreamily pontificating on the virtues of love and natural living,
they would gather up discarded periodicals with a view to beautifying their
surroundings, and by a curious process make of them building materials
for their accommodations, such as they were. Observing them at their
labour, I suggested that rather than stoop to collect them they might make
easier work of it by spearing some several of them at a time with a rapier.

That they eventually came to set upon folk peaceably going about their
perambulations and confiscating their periodicals before they might have
discarded them was a consequence that I contend no soul could possibly
have foreseen!

But I digress!

Here, I have laid out the ace to nine of hearts upon the table (figure 1) which
we shall take turns adding to our hands, with your picking first. With the
ace counting as a one, if you can play a trick of three cards that add up to
fifteen before either I can (figure 2) or we run out of cards then you shall
have a coin from my purse. If not, then I shall have one from yours.

When I described this game to that weasel of a student with whom I am
most regrettably acquainted, he made the truly bizarre claim that with the
aid of wizardry the outcome of the game might be made certain. Now, as
you well know, I have travelled widely and witnessed many truly
astonishing events, but I cannot accept that that wretch has the slightest
inkling of the magical arts! Although I suppose that one so bereft of wit
might exaggerate his own skill, even to himself!

But let us talk of him no further. Here, take another glass and consider your
strategy! 

Courtesy of www.thusspakeak.com

 G

BARON M
In the service of the Russian military the Baron has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

Figure 2
Figure 1

www.thusspakeak.com

Using Clara to Parse Command Lines in C++
Malcolm Noyes demonstrates how to get up and running.

ecently I needed a command line parser. Previously I have used
Boost.ProgramOptions which has some nice features but this wasn’t
available in the build of Boost libraries I was using. I needed

something simple and preferably header only. Some of you may know that
I’m a bit of fan of Phil Nash’s Catch as a C++ unit testing framework; Catch
uses Clara internally to do the command line parsing, so I thought I’d give
that a try...what follows is a brief description of the basic features, which
hopefully will fill a few holes in the documentation!

Help!
Listing 1 shows a simple program that I’ll use to demonstrate some features
of Clara.

This example has three options. The first is to output help text and is
introduced with cli["-?"]["-h"]["--help"]. This tells Clara that

there are three ways to request help, two short options (-? and -h) and
one long one (--help). If we run that we get something like this:

 c:\Projects\ClaraExample\Debug>ClaraExample -h
 usage:
 ClaraExample [options]
 where options are:
 -?, -h, --help describes how to use the program
 -s, --send should the article be sent?
 -r, --reviewer <who to send to>
 who should review it?

The help text gives us the options defined, along with the description that
we supply to the describe clause. For an option with no additional
arguments (-s) this is all we get, but for an option that requires input, we
get the option together with the ‘placeholder’ text that we specified in the
bind clause.

For the option with no arguments, I have ‘bound’ this option to the
ArticleOptions bool member variable send. If I set this option, Clara
will set the member variable...nice and simple.

The option that requires an argument I have bound to a string. If the
argument is set then the member variable will take the value of the input.
Let’s see how that works:

 c:\Projects\ClaraExample\Debug>ClaraExample -sr
 "Phil Nash"
 Send article for review by...Phil Nash

There are several ways to specify the input to an option that requires one;
all these achieve the same result:

 ClaraExample -s -r="Phil Nash"
 ClaraExample -s -r:"Phil Nash"
 ClaraExample -s --reviewer "Phil Nash"

Did I ask for that?
Often I found that I wanted to know if a particular option was set and take
some action based on that. Also, I wanted some default value to be set if
the option wasn’t set. It seems the best way to do that is to bind the option
to a function (for example, see Listing 2).

This tells Clara to call the function if the option is set; the called function
can do what it likes so in this case I can set both the flag and the value. If
the flag is not set, then I use the default initialisation of the member
variable. So now we have:

 c:\Projects\ClaraExample\Debug>ClaraExample
 Option not set...review by...Steve Love

 c:\Projects\ClaraExample\Debug>ClaraExample
 --reviewer "Phil Nash"
 Send article for review by...Phil Nash

Positional arguments

If your program requires more than one argument, you can do that too.
First, you can bind the option to a specific position, as in Listing 3.

 R

MALCOLM NOYES
Malcolm Noyes has worked as a software developer/
author for several years, and wrote several string
classes before discovering the STL. He has never
written a Unit Test framework but probably would have
done if Phil Nash hadn’t got there first.

#define CLARA_CONFIG_MAIN
#include <clara.h>
#include <iostream>

struct ArticleOptions {
 ArticleOptions() : showHelp(false),
 send(false) {}
 std::string processName;
 bool showHelp;
 bool send;
 std::string reviewer;
};
int main(int argc, char* argv[])
{
 using namespace Clara;
 CommandLine<ArticleOptions> cli;
 cli.bindProcessName
 (&ArticleOptions::processName);
 cli["-?"]["-h"]["--help"]
 .describe("describes how to use the program")
 .bind(&ArticleOptions::showHelp);
 cli["-s"]["--send"]
 .describe("should the article be sent?")
 .bind(&ArticleOptions::send);
 cli["-r"]["--reviewer"]
 .describe("who should review it?")
 .bind(&ArticleOptions::reviewer,
 "who to send to");
 ArticleOptions opt;
 cli.parseInto(argc,
 const_cast<const char**>(argv), opt);
 if (opt.showHelp) {
 cli.usage(std::cout, opt.processName);
 }
 else {
 if (opt.send) {
 std::cout
 << "Send article for review by..."
 << opt.reviewer
 << std::endl;
 }
 }
 return 0;
}

Li
st

in
g

1

MAR 2016 | | 13{cvu}

 c:\Projects\ClaraExample\Debug>ClaraExample
 "Phil Nash"
 Option not set...review by...Steve Love,
 Phil Nash,

 c:\Projects\ClaraExample\Debug>ClaraExample
 "Phil Nash" "Roger Orr"
 Option not set...review by...Steve Love, Phil
 Nash, Roger Orr

Note that these are not bound to a specific named option, so we still specify
an option if we want to:

 c:\Projects\ClaraExample\Debug>ClaraExample
 "Phil Nash" -r "You know who" "Roger Orr"
 Send article for review by...You know who,
 Phil Nash, Roger Orr

On the other hand, if you don’t care where an option should appear, the
option can be bound to an ‘unpositional’ variable, as in Listing 4.

 c:\Projects\ClaraExample\Debug>ClaraExample
 "Phil Nash" "Roger Orr" -r "You know who" God
 If that fails, review by...God

Bah humbug...but I’m lazy...can’t Clara figure that out?

One thing I would like to see is that Clara could do the test for whether an
option was set; after all, Clara ‘knows’ whether the option was set since it
either parse it or it didn’t. That would save me having to have a flag for
each option and possibly could be tested with something like:

 if(cli['-r'].wasSet()) {
 ...
 }

That would mean I wouldn’t need to bind to a function that sets a flag and
a value; instead I could just bind to the member. The lookup for the option
would take longer than just testing the flag but I doubt if testing command
line options is a time killer for most applications.

The other thing that I’d like is for the ‘placeholder’ text to be the default
value, even if the option is not set. Then I wouldn’t need to initialise the
member in the struct, I can do it in the bind, which would improve the
locality of the information associated with the option, something like
Listing 5, which would be used like this:

 c:\Projects\ClaraExample\Debug>ClaraExample
 -v "Option overide"
 Value set: Option override

 c:\Projects\ClaraExample\Debug>ClaraExample
 Not set: this is the default value

I’ll have to ask Phil if he thinks either of those is a good idea...

Summary
Clara is very simple to get going; just download the header (1). It is header
only, so there’s no linking to incompatible libraries. What it does, it does
very well and what it does less well can be worked around very easily. In
short, it solved my problem, so I’m (mostly) happy! 

struct ArticleOptions {
 ArticleOptions() : showHelp(false)
 , send(false)
 , reviewer("Steve Love")
 {}
 // ... as before ...
 bool send;
 std::string reviewer;

 void reviewerOptionSet(const std::string& v){
 send = true;
 reviewer = v;
 }
};

int main(int argc, char* argv[])
{
 //... as before ...
 cli["-r"]["--reviewer"]
 .describe("who should review it?")
 .bind(&ArticleOptions::reviewerOptionSet
 , "who to send to");

 //... as before ...
 if (opt.send) {
 std::cout << "Send article for review by..."
 << opt.reviewer << std::endl;
 }
 else {
 std::cout << "Option not set...review by..."
 << opt.reviewer << std::endl;
 }
}

Li
st

in
g

2

//...
cli[1]
 .describe("other reviewer")
 .bind(&ArticleOptions::other,
 "other reviewer");
cli[2]
 .describe("another reviewer")
 .bind(&ArticleOptions::another,
 "another reviewer");

//...
 std::cout << "Option not set...review by..."
 << opt.reviewer << ", " << opt.other << ", "
 << opt.another << std::endl;

Li
st

in
g

3

struct ArticleOptions {
 //...
 std::string omnificent;
};

 //...
 cli[_]
 .describe("if all else fails")
 .bind(&ArticleOptions::omnificent,
 "seek help from above");

 // ...
 std::cout << "If that fails, review by..."
 << opt.omnificent << std::endl;

Listing 4

struct Opt
{
 std::string value;
};
//...
cli["-v"]
 .bind(&Opt::value,
 "this is the default value");
//...
if(opt.wasSet("-v")) {
 std::cout << "Value set: " << opt.value
 << std::endl;
} else {
 std::cout << "Not set: " << opt.value
 << std::endl;
}

Listing 5
14 | | MAR 2016{cvu}

Becoming a Better Programmer # 97
Software Development Is...
Pete Goodliffe defines the art, science, craft (and

child’s play) of software development.

And this, our life, exempt from public haunt, finds
tongues in trees, books in the running brooks, sermons

in stones, and good in everything.
William Shakespeare, As You Like It

t’s a sad fact that I won’t be able to rely on my sharply honed intellect
forever. Some time in the future my wits will fade, and I’ll no longer
be the sharp, erudite, humble genius I am now. So I need a pension

plan, a way to make my millions so that I can live in luxury in my old age.

My original plan for world domination seemed so simple it couldn’t fail:
fizzy milk! However, before I got a chance to work out the finer details of
the recipe, I received devastating news: fizzy milk had already been
invented. Gutted, and with the patent rights slipping through my fingers,
I went back to the drawing board to come up with a new pension plan. And
this time it was a good one.

This piece of genius goes back to the classic foods of my youth: custard
and Alphabetti Spaghetti. I’m sure you can see where I’m going:
Alphabetti custard! My initial experiments have proved promising. And
almost palatable: it’s a bit like rice pudding, but wheatier. Admittedly, it’s
an acquired taste, but I think it could catch on.

This software (food)stuff
Too much modern software is like my Alphabetti custard: it’s the wrong
thing, written the wrong way.

To make Alphabetti custard the ‘right’ way you’d make the pasta first by
hand, and hand-mix a custard. The cheating, wrong way would be to buy
tins of pasta, wash the sauce off, and then pour instant custard over the
top.

One is a recipe, a method for reliable construction. The other is, at best,
an adequate way to prototype, but not a large-scale fabrication technique.

As conscientious software developers, we should all aspire to write the
right thing in the right way. One of the key characteristics of truly
excellent programmers is actually caring about the software that we write,
and how we write it. We need more lovingly baked artisanal code, no
more of this tinned spaghetti nonsense.

So let’s peer into the saucepan to investigate the nature of the software we
write, and how we can avoid writing alphanumeric spaghetti ourselves.
I’ll pose a series of questions along the way to apply the lessons we learn.
The first being: Do you want to improve as a programmer? Do you actually
want to write the right thing in the right way?

If your answer is “No” then give up and stop reading now.

So, what is software development? To be sure, it’s complex, with many
interweaving aspects. It is part science, part art, part game, part sport, part
chore, and more.

Software development is...an art
A great programmer needs to be, in part, a great artist. But is
programming really an art? This is a debate that has long been held in
software development circles. Some people think that programming is an
engineering discipline, some an art form, some sit in-between,
considering it a craft (I did call my first book Code Craft, after all).

Knuth is probably the most famous proponent of software as art, naming
his famous series of books The Art of Computer Programming. He said

this: Some programs are elegant, some are exquisite, some are sparkling.
My claim is that is it possible to write grand programs, noble programs, truly
magnificent ones! Stirring stuff.

There’s more to code than bits and bytes, more than brackets and braces.
There’s structure and elegance. There’s poise and balance. There is a
sense of taste and aesthetics.

A programmer needs good taste and a sense of aesthetics to
write exceptional code.

There are many parts of the software development process akin to the
creation of a work of art. The process is:

Creative

It requires imagination. The software must be skilfully constructed
and precisely designed. Programmers must have a vision for the
code they are about to create, and a plan of how they will make it.
Sometimes that involves a great deal of ingenuity.

Aesthetic

Good code is hallmarked by elegance, beauty, and balance. It stands
within the framework of certain cultural idioms. We consider the
code’s form alongside its function.

Mechanical

As any artist, we work in our particular medium with our particular
tools, processes, and techniques. We work under commission for
generous benefactors.

Team-based

Many forms of art are not single-person endeavours. Not every art
form sees an artist sitting alone in their studio slaving day and night
until their masterpiece is complete. Consider master sculptors with
their apprentices. Consider the orchestra, each member held
together by the conductor. Consider a musical composer, writing a
piece which will then be interpreted by the performer(s). Or the
architect designing a building that will be erected by a team of
builders.

In many respects, the skill set of an artist is similar to that of a
programmer.

Michelangelo was the archetypal renaissance man: a painter, sculptor,
architect, poet, and engineer. Perhaps he would have made an incredible
programmer. When asked about how he created one of his most famous
works, the statue of David, he said: I looked into the stone and saw him
there, and just chipped away everything else.

Is that what you do? Do you reduce and remove the complexities of the
problem space, chipping them all away until you reach the beautiful code
you were aiming for?

Here are a few questions to ask yourself on the theme of software as art:

 Do I consider the creative aspects of software development, or do I
treat it as a mechanistic activity?

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
MAR 2016 | | 15{cvu}

 Should I develop a keener sense of elegance and aesthetics in my
code? Should I look beyond what’s functional and solves the
immediate problem?

 Do I think that my idea of ‘beautiful’ code is the One True Opinion?
Should I consider artistry as a team pursuit?

Software development is...a science
We talk about computer science. So there must be something vaguely
scientific going on somewhere, mustn’t there? It’s probably fair to say
that in most development organisations there is much less science and far
more plumbing happening.

The archetypal scientist is, of course, Albert Einstein. He was not only a
genius, but also one of the most quotable people there has ever been
(which helps authors considerably). He said this:

Any intelligent fool can make things bigger, more complex, and more
violent. It takes a touch of genius – and a lot of courage – to move in
the opposite direction.

That is really profound; inappropriate complexity is a real killer in most
software projects.

Einstein was also an aesthete. He appreciated elegance and beauty in his
theories, and aimed to reduce things to a coherent whole. He said:

I am enough of an artist to draw freely upon my imagination. Imagination
is more important than knowledge. Knowledge is limited. Imagination
encircles the world.

See, I told you he was quotable.

So if software development is like a science, what does that mean? It is
(or, rather, should be):

Rigorous

We look for bug-free code that works, all the time, every time. It
must work with all sets of valid input, and respond appropriately to
invalid input. Good software must be accurate, proven, measured,
tested, and verified.

How do we achieve this? Good testing is key. We look for unit tests,
integration tests, and system tests. Preferably automated to remove
the risk of human error. We also look for experiential testing.

Systematic

Software development is not a hit-and-miss affair. You can’t aim to
create a well-structured large computer system by randomly
accreting blobs of code until it appears to work. You need to plan,
design, budget, and systematically construct.

It is an intellectual, logical, rational process; bringing order and
understanding out of the chaos of the problem space and the design
alternatives.

Insightful

Software development requires intellectual effort and astute
analytical powers. This is especially apparent when tracking down
tricky bugs. Like scientists, we form hypotheses, and apply
something akin to scientific method (form a hypothesis, work out
experiments, run experiments, and validate the theory).

Good software development is not cowboy coding, throwing
down the first code you can think of. It is a deliberate,
considered, accurate endeavour.

Based on that, ask yourself:

 Is my software always totally correct and completely accurate? How
do I prove this? How can I make this explicit, now and in the future?

 Do I strive to bring order out of chaos? Do I collapse complexity in
my code until there are a few, small, unified parts?

 Do I approach problems methodically and thoughtfully, or do I rush
headlong into them in an unstructured way?

Software development is...a sport
Most sports require great skill and effort: tenacity, training, discipline,
teamwork, coaching, and self-consciousness. Likewise, software
development involves:

Teamwork

It requires the concert of many people, with different skills, working
in harmony.

Discipline

Each team member must be committed to the team, and willing to
give their best. This requires dedication, hard work, and a lot of
training.

You can’t get good at soccer by sitting on a couch and watching
soccer training videos. In fact, if you do it with a few beers and a tub
of popcorn, you’re likely to get worse at soccer! You have to
actually do it, get out there on the pitch with people, practise your
skills, and then you’ll improve. You must train – have someone tell
you how to improve.

The team must practise together, and work out how to function as a
whole.

Rules

We’re playing to (developing to) a set of rules, and a particular team
culture. This is embodied in our development processes and
procedures, as well as the rites and rituals of the software team and
their tool workflows (consider how you collaborate around things
like the source control system).

The teamwork analogy is clearest with a sport like soccer. You work in a
group of closely functioning people, playing a game by a set of well-
defined rules.

Have you seen a team of seven-year-olds playing soccer? There’s one
small guy left back standing in the goal mouth, and every other kid is
running around the pitch maniacally chasing the ball. There’s no passing.
There’s no communication. There’s no awareness of the other team
members. Just a pack of children converging on a small moving sphere.

Contrast that to a high-quality premier league team. They operate in a
much more cohesive way. Everyone knows their responsibility, and the
team works cohesively together. There is a shared vision that they work
towards, and they form a high-functioning, well-coordinated whole:

 Do I have all of these skills? Do I work well in a team, or could I
improve in some areas?

 Am I committed to my team, willing to work for the good of
everyone?

 Am I still learning about software development? Do I learn from
others, and am I perfecting my team skills?

Software development is...child’s play
For me, this observation seems particularly appropriate; I’m really just a
child at heart. Aren’t we all?

It’s fascinating to see how children grow and learn, how their world view
changes and is shaped by each new experience. We can glean a lot from
the way a child learns and reacts to the world.

Consider how this applies to our software development:

Learning

A child is aware that they are learning, that they don’t know
everything. This requires a simple characteristic: humility. Some of
the programmers I have found hardest to work with think that they
know it all. If there’s something new they need to know, they read a
book and then presume that they’re an expert. A total humility
bypass.

A child is constantly assimilating new knowledge. We must
recognise that if we want to improve, we must learn. And we must
be realistic about what we do, and do not, know.
16 | | MAR 2016{cvu}

Enjoy learning, savour finding out new things. Practise and improve
your craft.

Good programmers work with humility. They admit that
they don’t know it all.

Simplicity

Do you write the simplest code possible? Do you reduce everything
to the least complex form to make it easier to understand and easier
to code?

I love the way kids try to get to the bottom of things, to understand
things from their own limited perspective. They’re always asking
why. Take, for example, a conversation I had with my daughter
when she was six: Daddy, why is Millie my sister? Because you’re in
the same family as her, Alice. Why? Well, because you have the
same mummy and daddy. Why? Because, well, you see, there are the
birds and the bees... Oh go and get a book! ... (thinking) ... Why?...

We should be constantly asking why – questioning what we are
doing and the reasons for it. Seeking a better understanding of the
problem and the best solution. And we should strive for simplicity
in our handiwork. That is not the most simplistic ‘dumb’ code
possible, but the appropriately non-complex code.

Having fun

If all else fails, there’s nothing wrong with this. All good developers
enjoy a little playtime. My office currently houses a unicycle and a
makeshift cricket pitch.

With that in mind, we can ask ourselves:

 Do I strive to write the simplest code possible? Or do I type what
comes to mind, and not think about commonality, refactoring, or
code design?

 Am I still learning? What can I learn about? What do I need to learn
about?

 Am I a humble programmer?

Software development is...a chore
A lot of our software development work is not pleasant. It’s not
glamorous. It’s not plain sailing. It’s just donkey work that has to be done
to get a project completed.

To be an effective programmer, you mustn’t be afraid of the chores.
Recognise that programming is hard work. Yes, it’s great to do a cool
design on the newest product version, but sometimes you need to do the

tedious bug fixing and grubbing around the old awful messy code to get a
product shipping and make some money.

From time to time we must become software janitors. This requires us to:

Clean up

We must spot problems and address them; work out where
breakages are and what the appropriate fixes are. These fixes must
be made in a timely and non-disruptive manner. A janitor does not
leave the unpleasant tasks to someone else, but takes responsibility
for them.

Work in the background

Janitors do not work in the limelight. They probably receive little
recognition for their heroic efforts. This is very much a supporting,
not a lead role.

Maintenance

A software janitor will remove dead code, fix broken code, refactor
and rebuild inappropriate workmanship, and tidy and clean the code
to ensure that it doesn’t fall into disrepair.

Ask yourself:

 Am I happy to do code ‘chores’? Or do I only want the glamorous
work?

 Do I take responsibility for messy code and clean it up?

Metaphor overload
We often construct metaphors for the act of software development. Many
of the insights we glean can be informative. However, no metaphor is
perfect. Software development is its own special thing, and the act of
creating it is not entirely like any other discipline. It’s still a field we’re
exploring and refining. Beware of making wonky deductions from bad
comparisons.

Good code and good coders are born from a desire to write the right thing
in the right way, not from the software equivalent of Alphabetti custard. 

Questions
1. Which of the metaphors outlined here do you relate most clearly

with? Which most accurately reflects your work at the moment?

2. What other metaphors can you construct for the software pursuit?
(Perhaps gardening or shepherding.) What new insights do these
reveal?

3. How would you make Alphabetti custard?

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines.
We need articles at all levels of software development experience; you don’t have to write about rocket science or
brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
MAR 2016 | | 17{cvu}

18 | | MAR 2016{cvu}

Standards Report
Jonathan Wakely reports from the latest C and C++ meetings.

hortly after I wrote my last report [1], the C and C++ committees both
met, back to back, in Kona, Hawaii. This report covers both, but as
I only attended the C++ meeting the C news is based on notes from

my colleague Martin Sebor. Any misrepresentation of that meeting will be
my mistake.

Hawaii seemed nice, although I barely left the hotel where the meeting
happened and would have liked to spend some more time there. The views
of the ocean were very pleasant, and I did go for a walk in the midday sun
to find a post office one day, but I’m sure Hawaii has more to offer!

The full minutes of the C++ meeting are on the WG21 website in the
document N4558 [2] but this report will cover what I thought were some
of the highlights. Much to my surprise, we got a variant compromise!
Before the meeting I thought the different expectations of a variant type
(similar to Boost.Variant) would cause endless debate, but following a
very productive evening session in Kona everyone agreed on a design that
still allows variants to enter an invalid state, but that state is not toxic and
doesn’t lead to undefined behaviour if you so much as glance at it.

If you’ve been following C++ standards work recently you’ll know that
much of the committee’s output is in the form of Technical Specifications
(TS), where more experimental features are being specified, without the
full formality (and finality) of an ISO standard. Following Kona the second
version of the Library Fundamentals TS was finished and sent out for
national body ballot. That includes everything in the first version plus two
new wrapper types (propagate_const and observer_ptr), a functor
for negating the result of other functions (not_fn), a simple API for the
C++ random number facilities (randint), algorithms for erasing from
containers (erase and erase_if), numerical functions for calculating
GCD and LCM (gcd and lcm), a helper for writing values to a stream with
a delimiter, solving the ‘fencepost problem’ (ostream_joiner) and
metaprogramming traits for logical operations (conjunction, disjunction,
negation). A second version of the Parallelism TS has been started, which
adds Task Blocks to the first version. The Ranges and Networking
proposals have progressed from proposals to working drafts, which
basically means we think they’re in pretty good shape and can now be
polished and start the process of becoming a TS. The Evolution Working
Group (EWG) decided to go ahead with a TS on Modules, one of the most
eagerly anticipated features for C++. There are already some prototype
implementations in the Microsoft and Clang compilers, but following
different designs. A TS will mean we get a single direction that all
compilers can implement, and users will be able to use modules in cross-
platform code.

EWG also made progress on unifying the unified call syntax proposals, and
approved proposals on inline variables (allowing variables to be defined
in headers without getting multiple definition errors [3]); making
exception specifications part of a function’s type [4]; and preprocessor
predicates for feature-testing (Clang’s __has_include macro for
testing whether a header file exists [5]). That means you can expect those
features to make it into some future C++ standard. There are discussions
happening about specifying the order of evaluation in some expressions
but that work will resume in Jacksonville.

The Core WG spent a long time thinking about what an object is, when a
region of memory becomes a live object, when an object’s lifetime ends
and the memory region returns to raw bytes. A new function called
std::launder was proposed, which is a no-op but informs the compiler
that whatever it knew about an object at an address should be forgotten
about, which can be used after using placement new to create a new object
where another one used to be. After the meeting it was pointed out that
some industries might have trouble convincing regulators that ‘launder’ is
an appropriate identifier to have in their code. (A similar objection was
raised to the function corrupted_by_exception used to check
whether a variant has entered its invalid state, which I think is a shame as
I was hoping someone would form a C++-themed death metal band with
that name).

The week after the C++ meeting the C committee, WG14, met at the same
location. The C meeting was 4 days long and attended by 20 people, with
a much narrower focus than the many streams and wide-ranging topics at
the C++ meeting. The minutes are in N1978 on the WG14 website [6].

WG14 are working on a fifth part of TS 18661, which aligns C with the
latest IEEE 754 / ISO 60559 standards, work that has been taking place in
a sub-group for some years. The new part of the TS might include support
for floating point exceptions, something that WG14 has resisted doing for
some time due to it being very different to traditional C error handling.

Michael Wong of IBM did a presentation on transactional memory, which
is already the subject of a C++ TS. That was received positively, so C might
get TM support as well. The CPLEX group presented their proposal for
parallel programming extensions to C [7] which was also positively
received, but needs more work before it would be ready to become a TS.

There was also discussion of a new C standard. ISO rules require renewing
a standard every 10 years, so there are four years left to decide what should
be included. It looks like there will be a "C1y" standard in a year or two,
which will be C11 plus technical corrigenda (fixes for bugs in the
standard). That will be followed by a "C2x" standard with more major
changes. Possible changes being considered include: transactional
memory; removing or restricting some sources of undefined behaviour
(including some preprocessor changes that have already been approved for
the C++ preprocessor, which in practice is almost always a single tool that
serves as both the C and C++ preprocessor); improving the <threads.h>
specification; and some clean up regarding volatile. There is also a
suggestion to drop Annex K, which defines the bounds-checking interfaces
such as strcpy_s. These are not widely implemented, and it's not even
agreed that they are actually any safer or less error-prone than the original
functions.

At the time of writing, the next WG21 meeting is the first week of March
2016 in Jacksonville, Florida, and the next WG14 meeting is mid-April in
London.

References
[1] CVu 27-5, November 2015
[2] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

n4558.html
[3] http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4424.pdf
[4] http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/

p0012r0.html
[5] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

p0061r0.html
[6] http://open-std.org/jtc1/sc22/wg14/www/docs/n1978.pdf
[7] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1966.pdf

 S

JONATHAN WAKELY
Jonathan’s interest in C++ and free software began at university and
led to working in the tools team at Red Hat, via the market research and
financial sectors. He works on GCC’s C++ Standard Library and
participates in the C++ standards committee. He can be reached at
accu@kayari.org

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4558.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4558.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4424.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0012r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0012r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0061r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0061r0.html
http://open-std.org/jtc1/sc22/wg14/www/docs/n1978.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1966.pdf

Code Critique Competition 98
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I have a simple template class that holds a collection of values but
sometimes code using the class crashes. I’ve written a simple test for
the class, which works, but I do get a warning about a signed/unsigned
mismatch on the for loop. I thought using auto would stop that. Is that
anything to do with the crash? I’ve commented out all the other methods
apart from add and remove.

The code is in Listing 1 (values.h) and Listing 2 (test.cpp).

Critiques

Mathias Gaunard <mathias@gaunard.com>

The answer is simple: pop_back() reduces the size by 1, so if i is already
on the last element, when it enters the next iteration it is past the new size.

Two ways to solve this:

 return early once pop_back is done

 change != to <

The test should also be amended to test removing the last element (it does
remove 9, but by the time it does so it’s not the last element anymore, since
remove reorders).

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <utility>
#include <vector>

#pragma once

// An unordered collection of values
template <typename T>
class Values
{
public:
 void add(T t);
 bool remove(T t);
 std::vector<T> const & values() const
 { return v; }
private:
 std::vector<T> v;
};

// Add a new item
template <typename T>
void Values<T>::add(T t)
{
 v.push_back(t);
}

// Remove an item
// Returns true if removed, false if not present
template <typename T>
bool Values<T>::remove(T t)
{
 bool found(false);
 for (auto i = 0; i != v.size(); ++i)
 {
 if (v[i] == t)
 {
 v[i] = std::move(v.back());
 v.pop_back();
 found = true;
 }
 }
 return found;
}

Li
st

in
g

1

#include <iostream>
#include "values.h"

void test()
{
 Values<int> vi;
 for (int i = 0; i != 10; ++i)
 {
 vi.add(i);
 }

 if (!vi.remove(1))
 {
 std::cout << "Can't remove 1\n";
 }

 if (vi.remove(1))
 {
 std::cout << "Can remove 1 twice\n";
 }

 if (!vi.remove(9))
 {
 std::cout << "Can't remove 9\n";
 }

 std::cout << "size: " << vi.values().size()
 << std::endl;
}

int main()
{
 test();
}

Listing 2
MAR 2016 | | 19{cvu}

Paul Floyd <paulf@free.fr>

To paraphrase Douglas Adams, we can get an answer to the problem, but
we don’t really know what the question is.

We have the comment telling us that Values contains an unordered
collection, but are the items unique or not? If it is a multi-collection, should
remove take out just the first instance or all instances? Furthermore, what
are the complexity requirements for values::remove()?

I played around with the code a bit, and then read it a bit more carefully.
There were three issues with remove that struck me:

1. If the item to be removed is the last in the vector, pop_back() will
reduce the size by 1 whilst i will increment to the old size(),
which is now the new size() plus one, missing the loop
termination condition. The loop will continue reading from the end
of the vector, doing bad things. Probably this is the cause of the
crash described. This could be fixed by changing the for loop
termination condition to be i < v.size().

2. If the condition is true, then the item at back() jumps the queue to
a position that won’t be tested by the loop. So if the collection
contains {0,1,2,1} and remove(1) is called, then when the first 1
is detected, the second 1 is moved to replace it and the next loop
iteration continues with the 2. The second 1 thus evades detection.
This could be fixed by decrementing i when an element is being
removed so that the next iteration will test the moved value.

3. In the case where t (and thus v[i]) matches v.back()

 v[i] = std::move(v.back());

is potentially performing self move assignment. This isn’t a problem
for the int type used in this example, but I believe that it is
undefined behaviour for complex types.

This could be fixed by adding a self assignment detection check.

Putting all that together, we have:

 template <typename T>
 bool Values<T>::remove(T t)
 {
 bool found(false);

 for (auto i = 0; i < v.size(); ++i)
 {
 if (v[i] == t)
 {
 // avoid self move assignment
 if (i != v.size()-1)
 {
 v[i] = std::move(v.back());
 // ensure that the value at v.back()
 // that just got moved
 // is checked next time round
 --i;
 }
 v.pop_back();
 found = true;
 }
 }
 return found;
 }

In practice, however, I would use the standard algorithms, for instance:

 size_t oldSize(v.size());
 v.erase(std::remove(v.begin(), v.end(), t),
 v.end());
 return oldSize != v.size();

The complexity of the erase/std::remove solution may be quite
different to the hand-rolled remove function. Since it preserves the order
of the container, the worst case of removing 1 element from the front of
the vector is that it has to move n-1 elements, which could be expensive.
The hand rolled remove does not preserve order and may need to do fewer
moves.

Robert Jones <robertgbjones@gmail.com>

My first thought on reading this Code Critique is that if at all possible I’d
be inclined to try to avoid writing container classes. Users tend to have an
expectation that any container will conform to the same style, and offer
the same facilities, as the standard containers, which would make any
container class a non-trivial exercise. If you’re performing non-standard
manipulations on a collection it may well be better to do it explicitly inline,
so readers can see what's going on, rather than hide it behind the facade of
a container class.

Coming to the code in detail, the first point is the signed/unsigned
mismatch in

 for (auto i = 0; i != v.size(); ++i)

which the author expected would have been eliminated by the use of auto.
The mismatch occurs because the type of i is inferred from the initial
assignment, which is with a literal '0', a signed value, which then doesn’t
match the type of v.size(), an unsigned value.

The smallest minimal change to correct this would be

 for (auto i = 0u; i != v.size(); ++i)

In modern C++ this would really be better expressed directly using
iterators, when the spurious signed type problem disappears

 for (auto i = v.begin(); i != v.end(); ++i)

and subsequently all occurrences of v[i] become *i

Rather more succinctly in C++11 we can just write

 for (auto & i : v)

and avoid the need to dereference at each usage. Notice that this syntax
requires the introduction of the '&' l-value reference qualifier, otherwise 'i'
would always be a copy of the container value, not a reference to it.

Next we come to the question of the unexplained crashes.

All of the methods of iterating over the range implicitly or explicitly
depend on the value of end() or size(), which is invalidated or changed
from within the iteration loop by the use of pop_back() when the
element is found, so the loop termination condition, based on equality, may
never be met. One solution to this would be to break out of the loop when
a matching element is found, however this would mean that only the first
matching element is removed. Generally a better solution is the erase-
remove idiom:

https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom

Finally, the use of std::move() is creating more uncertainty. Thomas
Becker covers this rather well in

http://thbecker.net/articles/rvalue_references/section_04.html

when he writes:

Now consider the line

 a = std::move(b);

If move semantics are implemented as a simple swap, then the effect
of this is that the objects held by a and b are being exchanged between
a and b. Nothing is being destructed yet. The object formerly held by a
will of course be destructed eventually, namely, when b goes out of
scope. Unless, of course, b becomes the target of a move, in which case
the object formerly held by a gets passed on again. Therefore, as far
as the implementer of the copy assignment operator is concerned, it is
not known when the object formerly held by a will be destructed.

So the line in code v[i] = std::move(v.back()); is potentially
introducing an indeterminacy about when the value of v[i] will
ultimately be destructed.

Generally the use of std::move() can be confined to constructors and
assignment operators, so if you find yourself tempted to use it outside that
context you want to think very carefully about the semantics of what you’re
writing.

James Holland <James.Holland@babcockinternational.com>

First, let’s get the more obvious issues out of the way. The signed/unsigned
mismatch warning can be resolved in several ways. As the student says,
20 | | MAR 2016{cvu}

auto has been used in an attempt to solve this problem. Unfortunately, it
has not worked as the student had hoped. The problem is that auto, in this
case, makes i the same type as 0 and 0’s type is int. The type of such
numeric literals can be changed to unsigned by adding the suffix U or u.
Doing this will make i of type unsigned int (the same type of size())
and thus remove any mismatch. Another way to remove the type mismatch
is to declare i of type size_t. size_t is unsigned, which is what is
required, and makes the type of i clear.

Unfortunately the type mismatch has nothing to do with the crashing
problem. It is also unfortunate that the student’s test code does not
highlight the problem with the code. What the test code fails to do is to
attempt to remove a value from the (back) end of the collection. It is this
that causes the crash as described by the following scenario.

Assume there are eight elements in the container and remove() is about
to inspect the last element to discover whether it should be removed. In
this situation the index i has the value 7 and size() returns 8. Further
assume the last element is to be removed. The function remove() now
moves the contents of the last element of the container to the element
having index i. As i is an index to the last element, the last element is
moved to itself. This is not necessarily a problem but what happens next
is. The function remove() then removes the last element, making the size
of the container 7, and increments i, making its value 8. When remove()
determines whether there are any more elements to process, by means of
the for loop, it discovers that i is not equal to size() (because 8 is not
equal to 7) and so executes the body of the for loop again with disastrous
consequences. Specifically, it attempts to access an element beyond the
bounds of the container. The problem is that i has increased in value and
the size of the container has decreased in value within one iteration. The
for loop never saw their values being equal and so did not stop processing
the container when required.

It may be tempting to change the for loop to execute when i is less than
v.size(). This would stop the program crashing, but making this change
would not correct another problem with remove(); it does not necessarily
remove all the required elements. This can happen when more than one
element is to be removed and one of them is at the back of the container.
The function moves the element at the back of the container to one of the
other elements being removed and then moves on, not realising that the
moved-to element still needs to be removed. To cure this problem, the
index i should not be incremented when a move is made. This will give
remove() the opportunity to process the moved element appropriately.

A revised version of remove() that does not suffer from the crashing
problem and removes all required elements is shown below.

 template <typename T>
 bool Values<T>::remove(T t)
 {
 bool found(false);
 for (size_t i = 0; i != v.size();)
 {
 if (v[i] == t)
 {
 v[i] = std::move(v.back());
 v.pop_back();
 found = true;
 }
 else
 {
 ++i;
 }
 }
 return found;
 }

As can be seen, the for loop is not now responsible for incrementing the
index i. The index is now incremented only if the current element is not
to be removed from the container.

The student has made Values a class template. This implies that the type
of object that Values contains is not necessarily known. Such a type must

be well behaved when copied to itself as this could occur during the
execution of remove(). A type that uses heap based memory, for
example, must not allow the heap to become corrupted. The easiest way
to prevent this is for its copy assignment operator to check for self-
assignment as shown below.

 U & operator=(const U & rhs) noexcept
 {
 if (this != &lhs)
 {
 ...
 }
 return *this;
 }

A similar check should be made in its move assignment operator
(operator=(U && rhs)).

One final point; #pragma once is not part of the C++ standard and so
may not be supported on all platforms. The alternative is to use the standard
include guard as follows.

 #ifndef HEADER_H
 #define HEADER_H
 …
 #endif

Commentary
There were a number of problems with the supplied code including the
warning which was troubling the user. The warning was in this case a bit
of a red herring as in this example the possible values over which i might
range are small enough to fit exactly into the (signed) int. However, this
is not always the case, and so avoiding the warning is good practice. As
the critiques that tried to address this showed though, it is not as easy as
you might like.

Changing i from int to unsigned int will typically double the
maximum value i can reach – but the type of v.size() may well be
larger than either of these (for example, it might be a 64-bit integer on a
platform where int is only 32 bits) so removing the warning here actually
hides a potential problem.

There was a long discussion on Herb Sutter’s blog early last year – see
http://herbsutter.com/2015/01/14/reader-qa-auto-and-for-loop-index-
variables/ – which includes many different ways of trying to solve this
particular problem!

The crashing, caused by iterating past the end of the collection if the last
element is removed, is a specific instance of a general problem – it is easy
to make mistakes when modifying a collection while iterating over it. In
this example, if remove() needs only remove the first occurrence found,
a safe solution is to return as soon as pop_back() has been called. In
general though care must be taken or maybe the modification can deferred
until after the iteration has completed.

There is some worrying code in the example when self-assignment occurs:
v[i] = std::move(v.back()); when both refer to the same
element. While copy-assignment should be normally be designed to be
safe under self-assignment – and to leave the item unchanged – there is no
such requirement for self move assignment. The following simple program
demonstrates the problem:

 #include <iostream>
 #include <vector>

 int main()
 {
 std::vector<int> v;
 v.push_back(1);
 v = std::move(v);
 std::cout << "size: " << v.size() << '\n';
 }

Some compilers may print 0, others may print 1. It is also possible some
might do other things... such as crash.
MAR 2016 | | 21{cvu}

In this particular case it doesn’t matter, as long as self move-assignment
leaves the object in a valid state and does not invoke the dreaded ‘undefined
behaviour’, as the very next thing the code does is to pop this item off the
back of the vector and so destroy it. However, not all classes are necessarily
going to produce defined behaviour so it is important, when using
std::move, to ensure that the target is safe to treat as the unique reference
to the object in this context.

Finally, as a couple of people pointed out, the program demonstrates the
importance of checking that tests do actually test what is expected – the
remove(9) appears to check removal of the last item but doesn’t as by
that point 9 is no longer the last item!

The winner of CC 97
There were four critiques which between them did a pretty good job of
covering the various issues in the code.

I am aware that the problem was inadequately specified and Paul in
particular explicitly raises this concern. In my professional experience, I
find all too often that I am dealing with a bug (for example, as in this case,
a crashing program) but the right solution is unclear as the specification
of the function is incomplete. The missing ingredient with a code critique
is being able to talk to the original author – but often that is a problem in
a commercial environment too as the original author may have moved on.

Suggesting that the user look at standard solutions first is a good idea. Even
if the complexity constraints are important, having a working simple
solution can be a very useful first step in the right direction. I share Robert’s
concern that writing a container class can give people expectations about
its behaviour that may not be the same as those of the author of the class.

Overall I think Paul asked good questions and covered the points well so
he wins the prize for this issue’s critique.

Code critique 98
(Submissions to scc@accu.org by February 1st)

I am writing a simple program to index written text but it doesn’t quite
work. I want to print out every word in the document with a list of each
line it appears on. I’m only getting the first occurrence listed but can’t
work out why.

Please explain why they have this problem... and suggest some other
possible improvements to the program. The program is in Listing 3.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <iostream>
#include <map>
#include <sstream>
#include <vector>

int main()
{
 using namespace std;

 map<string, vector<int>> index;

 // read and index standard input
 string line;
 int lineno{};
 while (getline(cin, line))
 {
 ++lineno;
 istringstream iss(line);
 string word;
 while (iss >> word)
 {
 auto start =
 word.find_first_not_of(":;.,'\"?!-");
 auto end =
 word.find_last_not_of(":;.,'\"?!-");
 if (start != end)
 word.replace(end + 1, end, "");
 word.replace(0, start, "");

 if (word.empty()) continue;

 auto iter = index.find(word);
 if (iter == index.end())
 {
 index[word].push_back(lineno);
 }
 else
 {
 auto lines = iter->second;
 if (lines.back() == lineno)
 ; // ignore dups
 else
 lines.push_back(lineno);
 }
 }
 }
 // print the index
 for (auto entry : index)
 {
 cout << entry.first << ": ";
 string delim;
 for (auto line : entry.second)
 {
 cout << delim << line;
 delim = ", ";
 }
 cout << '\n';
 }
}

Listing 3
22 | | MAR 2016{cvu}

http://www.accu.org/journals/

MAR 2016 | | 23{cvu}

Make Games With
Python
By Sean M. Tracey, published
by MagPi Essentials,
raspberrypi.org/magpi,
Version 1

Free to download, hard-copy
price to be announced

Reviewed by Silas S. Brown

I noticed this book on the Raspberry Pi blog at
about the time I met a 9-year-old who is
struggling with Pygame, and I was really hoping
I’d be able to recommend it to him, especially as
it’s an official publication of the charitable
Raspberry Pi Foundation, which I’m keen to
help. Unfortunately, while I applaud the effort,
the cause, and the price, I feel duty-bound to
report I was not impressed enough to
recommend giving this book to a child.

My worst gripe is how the book treats classes.
After having made do with struct-like
dictionaries for so long, classes are finally
introduced in Chapter 8 with what appears to be
a half-hearted attempt to explain why they’re
better (is a child who needs the word ‘nemesis’
to be defined really expected to understand ‘it’s
not very semantic’ without clarification?) and
then the terminology gets more confusing:
‘instantiation’ is mentioned, but it’s not made
clear what an ‘instance’ is, and at one point we
are told the player ‘is a class’ (not the sole
instance of one) and, most confusingly, the
player has an __init__ method while the
enemies do not: they have a factory function
instead, and there’s no explanation for this. But
then we are told classes have ‘functions’: it
doesn’t even call them ‘member functions’, let
alone ‘methods’, so how are we to tell which are
inside the class and which are merely associated
with it? Some of the design decisions are
questionable too: in a shoot-’em-up, each enemy
ship tracks its own bullets, then we are told that’s
inadequate because we want bullets to persist
after ships are destroyed, and the ‘fix’ is to
introduce a separate list of ‘left-over bullets’ and
write code to transfer ownership of bullets upon
a ship’s destruction, but didn’t anyone think of
directly placing all bullets onto that list to begin

with and doing away with the now-redundant
per-ship lists? Or are we teaching children never
to replace their earlier code?

In other news, a football held three feet off the
ground gets only 1/9th the gravity it has at one
foot. That’s not what the physics chapter
actually says, but its wording is vague enough to
allow that interpretation. It could be fixed by
explicitly stating that the distance which matters
is that from the earth’s centre, not its surface, but
nobody seems to have thought of that. And then
there’s this clanger: `alien\'s are gonna kill me'.
Yes, that apostrophe is wrong; no, there’s no
explanation of the escaping backslash or why
we’re putting this in a single-quoted string when
all strings around it are double quoted, and no it
doesn’t help that quotes to the left of strings are
printed as back-quotes without any note saying
that’s not what you’re supposed to type (this is
supposed to be a beginner’s book).

On the subject of typing-in the listings, why is
there so much dependence on sound and
graphics files that you have to download
separately? Not every child’s Raspberry Pi will
have Internet access. Showing how to load an
image or play a sound from a file might be good,
but, once that’s done, I’d have transitioned
swiftly to the kind of
simple graphics and
sound that children
can type in
themselves (and
customise it as they
go) rather than
learning that they
need to hire
artists and
professional
musicians to do
it – which may
be true once
you become a
professional games
coder, but why not let children have
more fun doing it themselves? Back
in the BBC Micro days, making my
own sound effects and tunes was
half the point!

Finally, there seem to be a fair few unexplained
numbers in the middle of the code. I wouldn’t go
to the other extreme of creating a variable for
everything, but in a book like this I’d expect a
few more numbers to be given meaningful
names, and perhaps even a little discussion (or
at least a mention) of the design issue. The boy
I met might just be trying to make a game, but
I’m trying to sneak in a lesson or two about good
programming practice while he’s at it, and I’m
not always sure the book’s on my side.

The book’s filename ends with _v1.pdf,
implying this is version 1 and there will be future
versions. Let’s hope these address some of the
issues. Meanwhile, for this particular boy, I
wrote my own ‘chapter’ at http://
people.ds.cam.ac.uk/ssb22/game.html for
which I welcome criticism, although my
decision to write all prose in Chinese as well as
English did limit what I could say. (The book I
mentioned on that page was not this one, but one
he’d brought from China, and, although his
parents are trying to make him go English-only,
I felt OOP might be put at a severe disadvantage
in that house if it doesn’t get at least one
explanation in Chinese to compete with the
seductively-Chinese book that doesn’t help.
Francis Glassborow’s You Can Do It has been
translated into Chinese but might not be
accepted by a Pygame enthusiast, and if I’m

resorting to writing him something myself
then it might as well be bilingual off the bat
even if that does result in it getting shortened

by my limited
Chinese skills.)

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

24 | | MAR 2016

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the without a Chair
ACCU Committee
accu-committee@accu.org

Sadly, at the beginning of January Alan Lenton
informed us that he was unable to continue as
Chair of the ACCU and was standing down with
immediate effect. The committee would like to
thank Alan for stepping into the office of Chair
in 2014 when the previous chair stood down:
thanks Alan!

This unexpected development does however
leave the association once again without a chair.
Consequently this column represents some
thoughts from a subset of the remainder of the
committee. It also means that, with apologies,
we do not have any details of issues for
discussion at the AGM that Alan promised in
what turned out to be his final View from the
Chair column.

As well as Alan standing down our Secretary,
Malcolm Noyes, has informed the committee
that he will be standing down at the AGM in
April. It is possibly not appreciated that any
member can stand for any post and your
association needs you! So please consider
standing for the office of Chair or Secretary or

any of the other offices or just as a committee
member – and get in touch today [1]. By the time
you get to read this all the proposals for the
AGM will most likely have been published.
Unfortunately this also means it will probably
also be too late to accept nominations for
officers or committee members before the AGM
but due to recent changes in the rules you will be
able to be proposed and nominated on the day of
the AGM.

The AGM will as usual be held over lunchtime
on the final day of the ACCU conference –
although of course you do not need to attend the
conference to attend the AGM. Should you have
missed the various announcements about the
conference, it is once again being held at the
Bristol Marriot Hotel from Wednesday 20th to
Saturday 23rd April with the usual pre-
conference tutorial and workshop day on
Tuesday 19th April with keynotes from Andrei
Alexandrescu and Jim Coplien, as well as Anna-
Jayne Metcalfe who you may recognise from her
posts to accu-general and elsewhere. There are
as usual too many interesting and intriguing
looking sessions to be able to attend them all. Of
particular note for this column is the session on
Saturday morning devoted to ACCU issues –

please come along and let us know your
thoughts.

Links to details and registration can be found on
the home page of the ACCU website [2].

As the saying goes it never rains but it pours and
our long standing web master, Tim Pushman,
has informed us that he is going to be retiring
from web hosting and that we will need at the
very least to move the ACCU website and its
associated bits and pieces – such as the mailing
lists – elsewhere.

While Tim, being a nice, professional and
responsible person, is not pulling the plug
immediately we do need to move relatively
quickly on this and could really do with some
help from any members who have web and
hosting experience as those on the committee
only have limited experience in these areas.

So if you have at least thought – if not expressed
out loud – that the ACCU web site and services
could be better here's your chance to make it so.

References
[1] ACCU Committee contact:

accu-committee@accu.org
[2] ACCU website: http://accu.org

ACCU London: Dietmar Khül
A (clueless) review of the Jan 16th ACCU

London Meeting.

Dear NHS Direct,

recently attended ACCU London’s talk about ‘Quicker Sorting’ by
Dietmar Kühl, hoping to get my plumbing sorted or pick up some DIY
tips. The evening started with a huge pile of burritos, which I was not

expecting, though they were most welcome. The 30 or more of us then sat
in the room and Dietmar proceeded to tell us how he had tried to beat
std::sort starting with the undergraduate computer science exercise of
writing quick sort. Having never been a computer science undergraduate,
I was unclear how this exercise could possibly be good for anyone. I do
prefer gardening, though my knees sometimes give me trouble.

Quick sort takes a pivot point, which is handy since I have recently had a
pivot gate installed. I digress. Back to the plumbing. It then puts the smaller
numbers on one side and the larger numbers on the other. And does the
same for each side. This is apparently brilliant provided the numbers
weren’t already in order. I must wonder why you’d want to sort numbers
that were already sorted, but people make all kinds of strange requests.
Dietmar reassured us that it can sort all kinds of things whether they are
numbers or not, and whether they are already sorted or not. I wonder if it
can sort NaNs? I presume you could add a pre-condition check to see if
the inputs were already sorted in order to avoid slowing things down by
re-sorting them. But checking the precondition that might slow things
down further.

So, quick sort isn’t always that quick. Dietmar then showed how just
comparing three or fewer items using ifs and elses rather than recursing
further speeds things up. He went on to show further refinements many of
which got a few extra speedups, initially catching up with a standard
implementation, and then beating it slightly.

The take home message was that std::sort is not a single algorithm and
what they tell you in a computer science undergraduate degree might not
be the whole story. He then took us to a German bar round the corner and
we had a long discussion about climbing roses. Well I did, but I may have
joined the wrong group in the pub.

Yours sincerely,

Mrs Trellis.

North Wales.

 I

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?

http://accu.org

	CVu28-1_final2.pdf
	Cross Pollinated
	Sliding Window Filters : A Set-based Implementation
	Groovy and Grails eXchange 2015
	An Open Question (or How I Learned To Stop Worrying And Love Public Wi-Fi)
	Fifteen Love
	Using Clara to Parse Command Lines in C++
	Software Development Is...
	Standards Report
	Code Critique Competition 98
	ACCU London: Dietmar Khül
	View from the without a Chair

