

http://www.cvent.com/d/8fqmyb
Alison
Typewritten Text

JAN 2016 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Choose your mask
ow much are we defined by the tools we use? I’ve
written about this a little before, and if you’ve
been a CVu reader for a while you’ll be familiar

with much of Chris Oldwood’s Toolbox. And it is a
rich vein for examination. For those of us closely
aligned with software development (and I guess that’s
probably most of you reading this), there is a huge
variety of tools, and purposes to which they can be put.
Partly that’s because there are so many purposes that
have tools, but also a great deal of choice among tools for
one particular task.

The vastness of this choice can appear overwhelming
sometimes, and for some things it seems there’s a new tool
every few minutes: new compiler version, new version
control system, new editor, new bug tracking system, new
web-server platform, new library to do /X/, new /X/...it’s
a full-time task just staying aware of all the new tools,
never mind evaluating them and learning enough to be
able to use them properly. Which is why we choose a
small set of things, and concentrate our efforts there.

This runs the obvious risk of not being able to take advantage
of some new tool (or /X/) because we don’t even know it
exists (which is why columns like Chris’s are so valuable), or unaware of wider
changes in technology or practice that might make our jobs or lives easier, or perhaps
we might just find interesting. One of the fundamental things that I think many of us
(I’m thinking of ‘us’ as software developers, but really it’s more than that) have in
common is a desire to learn new things. Whether we’re pushing some existing tool or
technology beyond the bounds we know, or pushing ourselves into new arenas and
different technology altogether, we are a curious bunch (deliberately ambiguous
phrasing alert!).

The tools we choose to use, which to learn, which to ignore, which to create,
definitely define us in some way or another, but the ease with which we can re-define
those tools, and thereby ourselves, means we are more than a stereotype. So, learn a
new thing today. Then write an article on it, and send it to me!

H
Volume 27 Issue 6
January 2015

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Ian Bruntlett,
Pete Goodliffe, Chris Oldwood,
Roger Orr

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JAN 2016

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
9 Code Critique Competition

Competition 97 and
the answer to 96.

REGULARS
12 Books

From the bookshelf

12 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 28.1 1st February 2016
C Vu 28.2: 1st April 2016

Overload 132:1st March 2016
Overload 133:1st May 2016

FEATURES
3 Bug Hunting

Pete Goodliffe continues the hunt for software faults.

5 Finding Text
Chris Oldwood hunts for the right tool to search
text files.

7 In Vivo, In Vitro, In Silico
Frances Buontempo examines the idea of software
vivisection.

8 “HTTPS Everywhere” considered harmful
Silas S. Brown considers an unintended
cost of security.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 96
Bug Hunting
Pete Goodliffe continues the hunt for software faults.

You can see a lot by just looking.
~ Yogi Berra

n the previous article we looked at the (somewhat obvious) reasons that
an effective programmer has to be an effective debugger (or is that
debuggist?) (or debugorisator?). And we began to look at strategies and

tools that help us perform this task.

In this concluding part, we'll continue our journey though the useful
strategies and tools that help us to find, and remove, those pesky varmints.

Invest in sharp tools
The are many tools that are worth getting accustomed to, including
memory checkers like Electric Fence, and Swiss Army knife tools like
Valgrind. These are worth learning about now rather than reaching for
them at the last minute. If you know how to use a tool before you have a
problem that demands it, you’ll be far more effective.

Learning a range of tools will prevent you from cracking a nut with a
pneumatic drill.

Of course, the tool of debugging champions is the debugger. This is the
king of tools that allows you to break into the execution of a running
program, step forward by a single instruction, or step in and out of
functions. Other very handy facilities include the ability to watch variables
for changes, set conditional breakpoints (e.g., "break if x > y"), and
change variable values on the fly to quickly experiment with different code
paths. Some advanced debuggers even allow you to step backward (now
that’s real voodoo).

Most IDEs come with a debugger built in, so you’re never far from
deploying a breakpoint. But you may find it worth investing in a higher
quality alternative, don’t rely on the first tool that falls to hand.

In some circles there is a real disdain for the debugger. Real programmers
don’t need a debugger. To some extent this is true; being overly reliant on
the debugger is a bad thing. Single-stepping through code mindlessly can
trick you into focusing on the micro level, rather than thinking about the
macro, overall shape of the code.

But it’s not a sign of weakness. Sometimes it’s just far easier and quicker
to pull out the big guns. Don’t be afraid to use the right tool for the job.

Learn how to use your debugger well. Then use it at the right
times.

Remove code to exclude it from cause analysis
When you can reproduce a fault, consider removing everything that
doesn’t appear to contribute to the problem to help focus in on the
offending lines of code. Disable other threads that shouldn’t be involved.
Remove subsections of code that do not look like they’re related.

It’s common to discover objects indirectly attached to the ‘problem area’
– for example, via a message bus or a notifier-listener mechanism.
Physically disconnect this coupling (even if you’re convinced it’s benign).
If you still reproduce the fault, you have proven your hunch about isolation,
and have reduced the problem space.

Then consider removing, or skipping over, sections of code leading up to
the error (as much as makes practical sense). Delete, or comment out
blocks that don’t appear to be involved.

Cleanliness prevents infection
Don’t allow bugs to stay in your software for longer than necessary. Don’t
let them linger.

Don’t dismiss niggling problems as known issues. This is a dangerous
practice. It can lead to broken window syndrome [1], making it gradually
feel normal and acceptable to have buggy behaviour. This lingering bad
behaviour can mask the causes of other bugs you’re hunting.

Fix bugs as soon as you can. Don’t let them pile up until you’re
stuck in a code cesspit.

One project I worked on was demoralisingly bad in this respect. When
given a bug report to fix, before managing to reproduce the initial bug
you’d encounter 10 different issues that all also needed to be fixed, and
may (or may not) have contributed to the bug in question.

Oblique strategies
Sometimes you can bash your head against a gnarly problem for hours and
get nowhere. Try an oblique strategy to avoid getting stuck in a debugging
rut.

 Take a break

It’s important to learn when you should simply stop and walk away.
A break can give you fresh perspective.

This can help you to think more carefully. Rather than running
headlong back into the code, take a break to consider the problem
description and code structure.

Go for a walk to force you to step away from the keyboard. (How
many times have you had those ‘eureka’ moments in the shower? Or
in the bathroom?! It happens to me all the time.)

 Explain it to someone else

Describe the problem to someone else. Often when describing any
problem (including a bug hunt) to another person, you instantly
explain it to yourself and solve it.

Failing another actual, live person, you can follow the rubber duck
strategy described by Andrew Hunt and David Thomas [2].

Talk to an inanimate object on your desk to explain the problem to
yourself. It’s only a problem if the rubber duck starts to talk back.

Don’t rush away
Once you find and fix a bug, don’t rush mindlessly on. Stop for a moment
and consider if there are other related problems lurking in that section of
code. Perhaps the problem you’ve fixed is a pattern that repeats in other
sections of the code. Is there further work that you could do to shore up
the system with the knowledge you just gained?

Keep notes on which parts of the code harbour more faults. There are
always hotspots. These hotspots are either the 20% of the code that 80%
of users actually run, or a sign of ropey, badly written software.

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
JAN 2016 | | 3{cvu}

When you have spent
enough time gathering
notes, it may be worth
devoting time to those
problem areas: perhaps a
rewrite, a deep code
review, or an extra unit
test harness.

Non-reproducible
bugs
Sometimes you discover
a bug for which you can't
easi ly form a se t of
reproduction steps. The
bug defies logic and
reason; it’s not possible
to determine the cause-
and-effect. These nasty,
intermittent bugs seem
to be caused by cosmic
rays rather than any
d i r ec t u se r
interaction. They take ages to track down, often because we never get a
chance to see them on a development machine, or when running in a
debugger.

How do we go about finding, and fixing, these fiends?

 Keep records of the factors that contribute to the fault. Over time
you may spot a pattern that will help you identify the common
causes.

 As you get more information, start to draw conclusions. Perhaps you
can identify more data points to keep in the record.

 Consider adding more logging and assertions in beta or release
builds to help gather information from the field.

 If it’s a really pressing problem, set up a test farm to run long-
running soak tests. If you can automate driving the system in a
representative manner, then you can accelerate the hunting season.

There are a few things that are known to contribute to such unreliable bugs.
You may find they provide hints for where to start investigating:

 Threaded code

As threads entwine and interact in non-deterministic and hard-to-
reproduce ways, they often contribute to freaky intermittent failure.

Often this behaviour is very different when you pause the code in a
debugger, so it is hard to observe forensically. Logging can also
change the interaction of the threads and mask the problem. And
non-optimised ‘debug’ builds of your software can perform rather
differently from the ‘release’ builds.

These are affectionately known as Heisenbugs, after the physicist
Werner Heisenberg’s ‘observer effect’ in quantum mechanics. The
act of observing a system can alter its state.

 Network interaction

Networks are, by definition, laggy and may drop or stall at any point
in time. Most code presumes that all access to local storage works
(because, most often, it does). This is careless, and will not scale to
storage over a network, where failures and intermittent long load
times are common.

 The variable speed of storage

It’s not just network latency that can cause this. Slow spinny disks,
or database operations, may change the behaviour of your program,

especially if you are balanced precariously on the edge of timeout
thresholds.

 Memory corruption

Oh, the humanity! When your aberrant code overwrites part of the
stack or the heap, you can see a myriad of unreproducible
strangenesses that are very hard to detect. Software archaeology is
often the easiest route to diagnose these errors.

 Global variables/singletons

Hardcoded communication points can be a clearing house for
unpredictable behaviour. It can be impossible to reason about the
correctness of your code, or predict what will happen, when anyone
at any time can reach into a piece of global state and adjust it under
your feet.

Conclusion
Debugging isn’t easy. But it’s our own fault. We wrote the bugs. Effective
debugging is an essential skill for any programmer.

Questions
1. What tools or techniques do you fall back on when hunting a bug?

2. Are there other techniques you should try?

3. What was the trickiest bug you’ve ever had to find? What was the
key thing that helped you find the cause?

4. Do you know other programmers who are better at finding and
fixing bugs? What makes them more capable? How can you learn
from them?

5. How can you close the gap between the introduction of a bug into a
software system and the point at which it is observed, and the point
at which it is fixed?

Notes and references
[1] Broken windows theory implies that keeping neighbourhoods in

good condition prevents vandalism and crime.
See http://en.wikipedia.org/wiki/Brokenwindowstheory

[2] Andrew Hunt and David Thomas, The Pragmatic Programmer
(Boston: Addison Wesley, 1999).
4 | | JAN 2016{cvu}

http://en.wikipedia.org/wiki/Brokenwindowstheory

In the Toolbox #12
Finding Text
Chris Oldwood hunts for the right tool to search text files.

t started with a fairly simple question: “Do you know of anything that
can open a 400 MB text file?” Whilst being new to the team, I’ve been
programming professionally long enough to know that this isn’t the real

question. I have my suspicions about what my fellow programmer really
wants to do but I need to ask them what this huge text file is and, more
importantly, why are they trying to open this file in the first place?

My hunch is correct – it was a log file. And the reason they are trying to
open it is because they are on support and what to understand why
something is failing or misbehaving. Hence the real problem is about how
to efficiently view and manipulate large text-based log files. On Windows
the lowest common denominator for this is more, if using the command
line, and Notepad for the GUI-oriented. The latter is essentially just a
wrapper around the Windows edit-box control and was never designed for
handling large chunks of text.

After quickly reeling off close to a dozen tools that I could use to view and
process log files it got me thinking about the wider question: what tools
might I use to solve the more general problem of ‘finding text’, and what
conditions or constraints would cause me to choose one over another?
After all, this task is one that we programmers probably perform many,
many times a day for different reasons.

The criteria for this list are pedagogically loose and cover the need to match
prose and structured text, both programmatically and also manually. When
diagnosing a problem we often don’t know what the pattern is at that point
and so we have to rely on our built-in pattern recognition system to seek
out some semblance of order from the chaos. At which point we may
switch or combine approaches to delve in further. In some cases we may
not even be consciously looking for it, but the tool makes it apparent and
leads us to go looking for more anomalies.

This list of tools is not, and cannot be comprehensive because the very
problem itself is being solved again and again. It is also not presented it
any particular order because the tool might be used in a variety of contexts
depending on the conditions and constraints in play. Many of these tools
do have very similar variations though and are pretty much
interchangeable so are discussed together.

FIND / FINDSTR
Windows comes with not one, but two command line tools for finding text
within files (or the standard input). If you want to know why there are two
similar tools you can read Raymond Chen’s blog post [1], but in short they
come from the two different Windows lineages – 9x and NT.

I rarely use FIND, except by accident, as it has the same name as one of
the classic UNIX command line tools which does something different.
Luckily the more recent Gnu on Windows (GoW) distributions [2] have
taken the pragmatic approach of renaming its FIND tool to GFIND to avoid
surprises when running scripts where the PATH order differs.

Even without this wrinkle there is little reason to use FIND over FINDSTR
as the latter has some support for regular expressions. Sadly it also has this
weird behaviour of treating a string with spaces as a list of words to match
instead of treating the entire string literally.

Given its general non-standard behaviour, with respect to GREP (and its
cousins), it might seem somewhat useless. But it has two things going for
it – it’s installed by default and is fast in comparison to some other similar
command line tools I’ve used.

There was a time when production servers where tightly locked down and
so this was your only option. Operations teams seem to be a little more

open these days to a wider variety of tools, no doubt in part due to the use
of VMs to isolate applications, and therefore teams, from each other.

GREP / EGREP / FGREP
The natural alternative to the Windows FIND/FINDSTR combination is the
UNIX equivalent GREP. It has two counterparts EGREP and FGREP which
are really just short-hands for GREP -E and GREP -F respectively. In fact
the --help switch for the short-hands warns you they are deprecated
forms. Sadly my muscle memory keeps kicking in as I’ve been using ports
of them since my days working on DOS.

For the record the difference is that EGREP (GREP -E) enables an extended
regular expression syntax whilst FGREP (GREP -F) treats the strings
literally and so (I guess) is faster. I haven’t timed them recently and suspect
that there is little in it these days.

For a long time I used the Win32 ports distributed as UnxUtils, but that
went stale years ago and GoW (Gnu on Windows) has replaced it as my
port of choice as it has no extra dependencies, such as Cygwin. As such it
makes it easy to include these in a diagnostics package or just XCOPY them
about. What makes Operations feel uneasy is software that needs
‘installing’ whereas being able to run something directly from a remote
file share usually won’t raise their ire.

With the introduction of the Chocolately package manager [3] on
Windows, this toolset is pretty much one of the first things I install, and
the renaming of FIND to GFIND now makes it safer to install on a server
too without fear of silently breaking something else.

Like many others this is the tool I probably reach for first, command-line
wise.

AWK & SED
If the task is to simply find some text then GREP pretty much does the trick,
but often I’m looking to do a little bit more. I might need to do a little
parsing, such as summing numbers contained within it or transforming it
slightly to reduce the noise. In these cases I’m once again looking to the
UNIX toolset classics, this time AWK and SED.

I had forgotten about them for many years whilst I was heavily into doing
front-end work, but as I switched to the back-end again I found myself
doing a lot more text processing. In fact I wrote about my rediscovery in
these very pages a few years ago [4].

Whilst I could use SED more often as a replacement for GREP I keep
forgetting the differences in the regular expression syntax (there are many
things it doesn’t support) and so I find myself wasting time trying to debug
the regex only to discover I’m using an EGREP supported construct. Hence
I usually carry around a copy of the O’Reilly pocket reference books on
regular expressions and SED & AWK, mostly for the tables comparing
support across SED, GREP and AWK.

I could use AWK far more than I do for basic text matching because it’s
pretty quick, but I forget and only remember when I suddenly realize I need
the power of its formatting options, not its matching ones.

 I

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
JAN 2016 | | 5{cvu}

One particularly useful feature of SED and AWK is their support for address
ranges. If you have some pretty-printed XML or JSON (i.e. one tag or key/
value pair per line) then you can match parts of the document using address
ranges. For example, before I discovered JQ for querying JSON [5], I
generated some simple release notes by extracting the card number and
title from a Trello board exported as JSON via a script I wrote that invoked
SED and AWK.

MORE / HEAD
Earlier I mentioned that I often rely heavily on my own human pattern
matching skills to home in something hopefully buried within the chaos.
If I’m already in the process of building a pipeline to do some matching I
might just want to pass my eye over the content by paging through it and
seeing if any patterns emerge in the flicker. Hence
MORE (or HEAD if I remember it’s there) are useful
ways to page text for manual scanning.

I generally shy away from using HEAD though as the
versions in the UnxUtils and GoW distributions
often go bonkers complaining about a broken pipe
and it quickly floods the screen with an error. I’m
sure I’m just doing something wrong but it hasn’t
bothered me enough to discover what it is. That’s the
great thing about have so many choices, you just
work around the limitations in one tool by picking
another similar one.

PowerShell
In more recent years as I’ve started to use PowerShell more and more for
scripting, I naturally find myself becoming more comfortable using the
built-in features of the language to create even simple text processing
pipelines as well as its more powerful object base ones.

In particular the language comes with some useful cmdlets out-of-the-box
for handling XML and CSV files in a more structured way. For example
you can import a CSV file and name the columns (if it’s not already done
via a header row) which then allows you to query the data using the more
natural column names instead of, say, using CUT and having to refer to
them numerically. This really aids readability in wrapper scripts too [6].

Whilst PowerShell comes with great flexibility by using .Net for its
underpinnings, this also comes at a cost. The performance of parsing
textual log files is considerably worse than with native code, such as AWK.
I once needed to do some analysis that involved parsing many multi-
megabyte log files on a remote share. I started out using PowerShell but
eventually discovered it was taking a couple of minutes just to read a file.
So I switched to AWK instead which managed to read and parse the same
file in only 8 seconds. This was on PowerShell v2 and so more recent
versions of .Net and PowerShell may well have closed the gap.

LogParser
Another very old, free tool that I’ve found useful for parsing log files
because of its performance is Microsoft’s LogParser [7]. Originally written
to parse IIS log files it grew the ability to read various other text and binary
format files which, like the Import-Csv cmdlet in PowerShell, can give the
data columns names. These can then be used within LogParser’s SQL-like
language to create some pretty powerful queries.

BareTail
One of the ways I’ve found to help the mind unearth patterns in text, again
especially when dealing with analysing log files, is to apply a dash of
colour to certain lines and words. Just as I use syntax highlighting to make
source code a little easier to read, I apply the same principle to other kinds
of files. For example I’ll highlight error messages in red and warnings in
yellow. If there are regular lines that are usually of little interest, such as
a server heartbeat message, I’ll colour it in light grey so that it blends into
the white background to make the more significant behaviour (in black)
stand-out.

The first decent Windows tool I found that did this was a commercial tool
(with a free cut-down version) called BareTail. Naturally others have
sprung up in the meantime, like LogExpert, which are free.

What really attracted me to shell out for the full version was its ability to
tail a file and at the bottom have a real-time GREP running over the same
file to filter out interesting events. This was a feature my previous team
had built into its own custom log viewer years before and so was a most
welcome discovery.

BareGrep
The sister tool to BareTail is called BareGrep, which is a GUI based
version of the old classic described earlier. It too has the same highlighting

support and also has a TAIL like view at the bottom
which provides additional context around the lines
you match with the pattern in the main view.

The two other features that made it a worthy addition
to my toolbox were its ability to use regular
expressions on the filename matching (rather than
the usual simpler file globbing provided by the
Windows FindFirstFile API), and its support for
naming and saving patterns. On support I often find
myself using the same regex patterns again and
again to pick out certain interesting events at the
start of an investigation.

Notepad
This article began by explaining what the alternatives are on Windows to
the simplistic Notepad, but that doesn’t mean it’s not still useful. Aside
from WordPad, it’s the only GUI-based viewer installed by default which
might be significant in a locked down environment. Even so it can still be
handy for smaller stuff, like looking at .config files.

In a way its naivety is also one of its few useful traits. By only handling
Windows line endings and having an insane tab width setting of 8 means
that any screwy formatting shows up pretty quickly and acts as a gentle
reminder to check everyone’s on the same page editor-configuration wise.

Notepad++
The original Notepad is very much a tool of last resort and so I’ll try to
install something a little more powerful as a replacement for day-to-day,
non-IDE based text editing jobs, such as writing mark-up. It’s quick to
open and provides all the usual features you’d expect from a plug-in
enhanced text editor. It could easily be Atom, Sublime Text or any one of
a number of decent editors out there.

For me the decision to use the command line or a GUI based tool when
searching for text depends on how much context I need when I find what
I’m looking for and also whether I’m going to edit it afterwards. When
searching log files, it’s ultimately a read-only affair with perhaps some
statistical output. In contrast a document probably means I’m going to
select some text and paste it elsewhere or even edit the prose in-situ which
demands at least a spell checker.

The other factor is often whether I’ve navigated to the data via a command
prompt or the Windows Explorer in which case a right-click is easier than
opening a prompt at the folder and typing a command. That said if the file
type association is already registered it’s just as easy to go the other route
and open it in a GUI tool from the command line. And sometimes the
choice of tool is totally arbitrary and depends on whatever I’ve not used
in a while and feel I need to remind myself about.

Visual Studio
Anyone who has ever double-clicked the Visual Studio icon by accident
or forgotten to register a more lightweight choice of editor for the file
association will curse their mistake as it takes an eternity to start. But if
it’s already running, and being an IDE means it’s quite likely for that to
be the case, it’s just as easy to reuse it as spawn another text editor.

to help the mind
unearth patterns in

text, again especially
when dealing with
analysing log files,

apply a dash of colour
6 | | JAN 2016{cvu}

In Vivo, In Vitro, In Silico
Frances Buontempo examines the idea of software vivisection.

ome people get unit testing and some people don’t. The reasons vary,
usually based on a mixture of previous experience, lack of
experience, fear of the unknown or joy at a safer quicker way of

developing. One specific doubt crops up from time to time. It comes in the
form of “If I test small bits, i.e. units, whatever that means, it proves nothing.
I need to test the whole thing or small parts of the whole thing live.”

My PhD was in toxicity prediction, which involves testing if something
will be toxic or not. You can test a chemical in vivo – administer it to several
animals in varying doses. You sit back and wait till half of them die or show
toxicity symptoms and record the doses. This gives you the Lx50 – for
example the LD50 is the lethal dose that kills 50% of the animals. Notice
I said you can do this. You can also test the chemical on a set of cells in a
test tube or petri dish – in vitro (in glass). Again you can find the dose which
affects 50% of the specimens. I personally find this less upsetting, but I
want to focus on parallels with testing code here. Finally, given all this data
the previous tests have generated, you can analyse the data, probably on a
computer, perhaps finding chemical structure to activity relationships –
SAR, or quantitative SARS i.e. QSARs. These are referred to as in silico
– for obvious reasons. Some in silico experiments will just find clusters of
similar chemicals, which can either alert you to groups that might need
more detailed toxicity testing, or even guide drug discovery by steering
clear of molecules, say containing benzene rings which can be
carcinogenic, saving time and money if you are trying to invent a drug that
cures cancer. The value of testing on a computer outside a live organism
should be clear. It can save time, money and even lives.

If we keep this in mind while considering testing a software system, rather
than a biological system, we should be able to see some parallels. It is
possible to test a live system – maybe on beta rather than ‘TIP’ (Test in

production). This can be a good thing. However, it might save time and
money, and though maybe not lives, certainly headaches, to test parts of
the live system in a sandboxed environment, analogous to in vitro. Running
an end-to-end test against a test database instance with data in a specific
state might count. Pushing the analogy further, you could even test small
parts of the system, say units, whatever they are, in silico. Just try this small
part away from the live system in a computer. This is worthwhile. It will
be quicker, as toxicity-in-silico experiments are quicker – they tend to take
hours rather than days. This is a good thing. Of course, you won’t know
exactly what will happen in a full live system, but you can catch problems
earlier, before killing something. This is a Good Thing.

Other industries also test things in units – I could put together a car or a
computer hit the on switch and see if it works. However, I am given to
believe that the components are tested thoroughly before the full system
is built. If I build a PC and it doesn’t work I will then have to go through
one part at a time and check. If someone tests the parts first, this will ensure
I haven’t put a dodgy power block in the whole thing. Testing small parts,
preferably before testing the whole system, is a Good Thing.

I don’t believe this short observation will change anyone’s minds. But I
hope it will give pause for thought to those who think only testing from
end to end matters, and testing in silico is a waste of time.

 S

Finding Text (continued)

FRANCES BUONTEMPO
Frances Buontempo has been a programmer since the
90s, and learnt to program by reading the manual for
her Dad’s BBC model B machine. She can be contacted
at frances.buontempo@gmail.com.
As of Visual Studio 2013, they have also replaced the byzantine regular
expression syntax with the more standard .Net one which makes finding
text with regexes way more palatable. And the new, cross platform Visual
Studio Code editor is looking like this mistake will be far less costly in
future.

Vendor specific tools
Although most content is becoming more available in simpler text formats
so that the choice of tooling is much wider and freer there is still plenty of
it stored in custom binary formats like old MS Word documents. The rise
of wikis and the various flavours of mark-up have certainly gained in
popularity but the enterprise is often locked into vendors through these
bespoke formats and so for completeness these need to be accounted for,
but are on the decline.

Google
The discussion thus far has largely been about finding text in files on my
machine or the intranet. But every day like so many other people I spend
plenty of time looking things up on the Internet and for that, naturally, I’ll
use one of the major search engines.

Despite them selling appliances though for well over a decade that
promises to bring the power of an Internet search to the enterprise this still

does not appear to have happened and finding anything on an intranet still
appears to be a fruitless exercise.

Summary
Searching text, whether it be source code, prose, log or data files is a bread-
and-butter activity for programmers. What we do with it when we’ve found
it adds another dimension to the type of tools we use because it may not
just be plain text we’re lifting but we might want the formatting too. Throw
performance and differing query languages into the mix and it’s no wonder
that we have to keep our hands on such a varied array of tools.

References
[1] https://blogs.msdn.microsoft.com/oldnewthing/20121128-00/

?p=5963
[2] https://github.com/bmatzelle/gow/wiki
[3] https://chocolatey.org/
[4] http://www.chrisoldwood.com/articles/reacquainting-myself-with-

sed-and-awk.html
[5] https://stedolan.github.io/jq/
[6] http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-

scripts.html
[7] https://technet.microsoft.com/en-gb/scriptcenter/dd919274.aspx
JAN 2016 | | 7{cvu}

https://technet.microsoft.com/en-gb/scriptcenter/dd919274.aspx
http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-scripts.html
http://www.chrisoldwood.com/articles/in-the-toolbox-wrapper-scripts.html
https://stedolan.github.io/jq/
http://www.chrisoldwood.com/articles/reacquainting-myself-with-sed-and-awk.html
http://www.chrisoldwood.com/articles/reacquainting-myself-with-sed-and-awk.html
https://chocolatey.org/
https://github.com/bmatzelle/gow/wiki
https://blogs.msdn.microsoft.com/oldnewthing/20121128-00/?p=5963
https://blogs.msdn.microsoft.com/oldnewthing/20121128-00/?p=5963

8 | | JAN 2016{cvu}

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

“HTTPS Everywhere” considered harmful
Silas S. Brown considers an unintended cost of security.

ou’re not rich enough to look at the Internet. Google has banned you.
That's an exaggeration (well I had to catch your attention somehow,
didn't I?) but it may reflect what some feel as they cope with the

collateral damage caused by Google’s ‘HTTPS everywhere’ drive.

With the overheads of certificate validation, loading a Web page over
‘secure’ HTTPS can cost the best part of a megabyte in data transfers, even
if the underlying page size is only a few dozen kilobytes. Extra data
transfers slow things down, and if your Internet connection is in any way
‘wobbly’ (such as if you’re using mobile data, especially if it’s 2G-only
which runs at a lower priority than voice traffic, or if you’re stuck with a
particularly poor-quality ADSL service) then it might make the difference
between being able to load the site and not being able to load the site. (With
HTTPS you can’t continue where you left off when your link comes back
up.) Add to this the cost considerations if you have a limited data plan, not
to mention the battery life and environmental considerations associated
with the extra processing needed, and you can see why it makes sense not
to use HTTPS except for pages that really need to be ‘secure’, such as a
logged-in session after a user has provided a password or other credentials.

I agree it is a mistake to use HTTPS for the login itself but then issue an
insecure cookie to identify the user to HTTP pages, as this can be stolen
by anyone sharing the same IP address, as demonstrated by FireCrack and
other ‘profile-grabbing’ attacks over shared WiFi. HTTPS should be used
for the whole session after login. But that doesn’t automatically mean
HTTPS should be used for normal public web pages that you don’t even
log in to see.

You might have noticed an increasing number of websites such as news
sites using HTTPS only. Before I realised the more likely explanation, I
thought they were merely echoing WikiMedia’s decision to go all-HTTPS
in the light of Edward Snowden’s publicity about NSA data monitoring,
so that it’s harder for authorities to determine which of their pages are being
accessed (which in practice might mean an authority bans an entire site
rather than specific pages of it, but I won’t go into that). However, it did
strike me as a bit odd that an average news site would go out of their way
to protect their readers’ choice of articles from being monitored,
particularly given the added costs to them of running HTTPS servers.

And then I saw Google’s 2014 announcement [1] that the use of HTTPS
is now going to be used as a ranking signal. Because Google engineers like
the idea of having HTTPS everywhere, they are ‘encouraging’ other
websites to move to it by rewarding them with higher rankings in Google
search results. Ah, so that’s why everyone seems to be jumping on the
bandwagon.

Some have tried to make business decisions like ‘the extra cost of hosting
HTTPS is worth a 1% increase in ranking’. But how can you be so sure?
What exactly is a 1% increase anyway? Few people understand the exact
relationship between a given amount of change in one component of the
ranking algorithm and the actual effect on one’s listing position, let alone
on how much resulting traffic one gets. And let’s not even try to go into
considerations of how much of that traffic is actually profitable to a business,
or how much of it is from people who are interested enough to stay and read
what you have to say instead of deciding within seconds that they’ve been
misdirected by the search engine and surfing off somewhere else.

As the situation is so ill-understood, it seems to me that people are jumping
to the whims of Google engineers in at best a semi-rational fear due to
Google’s vague threats of reprisals. (It’s even more vague when they say
the weight of the HTTPS ranking signal might be increased by an
unspecified amount at an unspecified time in the future.) That reminds me
of the way things are supposed to work in certain countries of this world
whom I daren’t name here or they might ban ACCU in retaliation. (Perhaps
we’d better not make the full text of this article visible to Google: they
might find a way to down-rank us for saying something negative about
them. See the similarity?)

HTTPS when you have to log in might be good, and even for public pages
it might be arguably a good thing to offer the user a chance of accessing
the site over either HTTPS or HTTP according to their wishes, but forcing
users to use HTTPS everywhere for public read-only pages (without even
giving them an HTTP fall-back option) just slows things down for
everybody, consumes more resources, and might lose visitors (like me
when I’m on my mobile in a patchy-signal area).

If Google rewards HTTPS too much then they will essentially be giving a
boost to corporate sites that are well-heeled enough to afford it, at the
expense of academic and non-profit organisations that often aren’t, not to
mention hobbyists and staff who do not have their own domains but are at
the mercy of whatever server their user pages are stored on. While a reward
of HTTPS might help to down-rank some (but not all) ‘spammy’ search
results, it’s almost certainly a case of ‘throwing the baby out with the bath-
water’, since a lot of good-quality online information is not provided by
well-heeled corporations.

If Google really does end up boosting HTTPS so much that sites which
don’t have it end up being seriously down-ranked for no good reason, even
though they have better information, then I hope that causes the population
at large to realise that Google search is not as good as it used to be and to
try some other search company instead. That’s what Google would
arguably deserve if they tweak this knob too much. So I wouldn’t be too
worried about this in the long term: if Google goes crazy then it will no
longer be cause for concern.

Meanwhile, perhaps the best way to make Google engineers realise the
error of their ways is for as many people as possible who have good
worthwhile information online to stand firm with the HTTP protocol and
do not kowtow to Google’s whim of having it on HTTPS. We might be
able to make it obvious to them that too much of a boost to HTTPS would
down-rank good stuff. Since Google’s engineers are particularly interested
in technical material, I would highly recommend anyone who has good
technical material online to stand firm for HTTP so as to show Google they
can’t get away with writing that off too much. Each of our sites may be
small, but if enough of us do it then they might see us. That is, as long as
Google engineers don’t end up ignoring all information that’s not on the
likes of Stack Overflow.

As for me, I have tweaked my Web Adjuster [2] so it can proxy HTTPS
onto plain HTTP. With suitably frightening ‘you do realise this trashes
your security’ warnings, this could be a ‘lifesaver’ in some mobile
situations when a site is using HTTPS unnecessarily. And if anybody ends
up not finding my code just because I don’t have an HTTPS site, I refuse
to make that my problem: they should be better at finding things. I’m not
giving in to vague threats about HTTPS just yet!

References
[1] https://googleonlinesecurity.blogspot.co.uk/2014/08/https-as-

ranking-signal_6.html
[2] http://people.ds.cam.ac.uk/ssb22/adjuster

 Y

https://googleonlinesecurity.blogspot.co.uk/2014/08/https-as-ranking-signal_6.html
https://googleonlinesecurity.blogspot.co.uk/2014/08/https-as-ranking-signal_6.html
http://people.ds.cam.ac.uk/ssb22/adjuster

Code Critique Competition 97
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I have written some code to read in a CSV file and handle quoted strings
but I seem to get an extra row read at the end, not sure why.

If I make a file consisting of one line:

--- Book1.csv ---

word,a simple phrase,"we can, if we want, embed commas"

--- ends ---

I get this output from processing the file:

 Rows: 2
 Cells: 3
 word
 a simple phrase
 "we can, if we want, embed commas"
 Cells: 1

What have I done wrong?

The code is in Listing 1.

Critiques

James Holland <James.Holland@babcockinternational.com>

When I compiled the student’s code I received three warnings and no
errors. It is always a good idea to produce code that compiles with no
warnings and so I set about seeing what the compiler was complaining
about. A brief investigation showed the cause of the problems. There is a
redundant declaration of ch at the start of readTable(). The declaration
should be deleted. (The ch that is used by the program is the one declared
at the start of the while loop within readTable().)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

// Reading CSV with quoted strings.
#include <iostream>
#include <string>
#include <vector>

typedef std::string cell;
typedef std::vector<cell> row;
typedef std::vector<row> table;

table readTable()
{
 char ch;
 table table; // the table
 row *row = 0; // the row
 cell *cell = 0; // the cell
 char quoting = '\0';
 while (!std::cin.eof())
 {
 char ch = std::cin.get();
 switch (ch)
 {
 case '\n':
 case ',':
 if (!quoting) {
 cell = 0;
 if (ch == '\n') {
 row = 0;
 }
 break;
 case '\'':

Li
st

in
g

1

 case '"':
 if (quoting == ch) {
 quoting = '\0';
 }
 else if (!cell) {
 quoting = ch;
 }
 }
 default:
 if (!row) {
 table.push_back({});
 row = &table.back();
 }
 if (!cell) {
 row->push_back({});
 cell = &row->back();
 }
 cell->push_back(ch);
 break;
 }
 }
 return table;
}

int main()
{
 table t = readTable();

 std::cout << "Rows: " << t.size() << "\n";
 for (int r = 0; r != t.size(); ++r) {
 std::cout << "Cells: "
 << t[r].size() << "\n";
 for (int c = 0; c != t[r].size(); ++c)
 {
 std::cout << " " << t[r][c] << "\n";
 }
 }
}

Listing 1 (cont’d)
JAN 2016 | | 9{cvu}

The other warnings concern the nested for loops within main(). The
problem is that size() returns an unsigned type that is being compared
with a signed type. Mixing types in this way can produce unexpected
results and so is best avoided. Changing the type of variables r and c to
size_t will keep the compiler happy.

I see the student talks about a file named ‘Book1.csv’ and yet the supplied
program receives input from the console. I assume the student was
experimenting in an attempt to debug the code. [Ed: Apologies that I failed
to make that clear – the student was using command-line redirection from
the file.] I found it more convenient to input data from the file and so I
modified the code accordingly but keeping the student’s use of the eof()
function. Running the amended code did not result in an extra blank line
reported by the student. I suspect the student’s Book1.csv file consisted of
a carriage return on the end of the first line and it is this that caused of the
extra blank row in table. In any case, the student’s use of eof() is
incorrect.

The student used a while loop to read characters from the file. The body
of the loop will repeatedly execute until the end of file marker is set. The
marker is set only when an attempt has been made to read a character from
beyond the end of the file. The student’s code reads characters at the start
of the loop body and this is where the problem lies. Within the loop,
characters are read up to and including the last character of the file. At this
point the end of file marker has not been set and so the loop is executed
one more time. An attempt is made to read another character and the end
of file marker is set. Unfortunately it is set too late, the loop body has
already started to execute. Instead of returning a character from the file,
get() returns EOF. The program then processes this value (-1 on my
machine) in the same way it would a character from the file. This is clearly
not what the student intended. To cure this problem, the body of the loop
must not be allowed to execute after an attempt has been made to read
beyond the last character of the file. Fortunately this is easy to arrange.

What is required is for the while loop to attempt to read a character from
the file and then check for the end of file marker being set all within the
predicate of the loop. The code shown below achieves the required result.

 char ch;
 while (file.get(ch))
 {
 …
 }

In fact, the file.get() returns the file stream and so the predicate tests,
with an implicit conversion to bool, whether the stream is in a good state.
Attempting to read one character beyond the end of the file renders the
stream not in a good state and so the body of the loop will not be executed,
as required.

The program will now work as expected. However, one cannot help but
notice that the function readTable() is quite involved. It consists of
switch statement where one case falls through to the next, there are case
labels within if statements. In fact, there are a total of six if statements
within the switch statement. All of this wrapped up in a while loop. As
far as I can determine, the code works correctly. It is, however, very
difficult to reason about. It is just far too complicated. There has to be
another way. Fortunately there is.

The function readTable() is mostly concerned with searching for
patterns within text strings. Whenever searching for patterns is mentioned,
regular expressions should come to mind. C++11 has a regular expression
library that is based on the Boost library. Using regular expressions greatly
simplifies readTable() as is shown below.

 table readTable()
 {
 boost::regex regular_expression(
 "('.*')|(\".*\")|[^,]+(*[^,]+)*");
 boost::sregex_iterator end;

 table table;
 std::ifstream file("Book1.csv");
 for (std::string record;

 getline(file, record);)
 {
 boost::sregex_iterator position(
 record.cbegin(), record.cend(),
 regular_expression);
 row row;
 for (; position != end; ++position)
 {
 row.push_back(position->str());
 }
 table.push_back(row);
 }
 return table;
 }

The first statements of the replacement readTable() contains the
regular expression that defines what is being searched for and consists of
three parts that are separated by the ‘or’ symbol |. The first part, ('.*'),
defines a search for any number of characters starting with a single quote
mark and ending with a single quote mark. The next part of the expression
defines a search of any number of characters starting with a double quote
mark and ending with a double quote mark. The third part of the expression
is a little more complicated. It defines a search for a string starting with
any character that is not a comma and is not a space. The string may then
contain any number of spaces and any number of characters that are not a
comma and not a space. This, in effect, defines a word of a phrase. The
expression then goes on to define that a phrase can contain any number of
words.

It has to be said that using the regular expression grammar effectively
requires a little practice. Once mastered, however, regular expressions are
a concise way of defining search patterns that do not require the
programmer to construct complicated and hard to fathom state machines.

The rest of readTable() is fairly conventional. It reads the file a line at
a time and then, using the regular expression, searches for the words and
phrases within the line. readTable() then assembles the words and
phrases ready to be pushed onto table.

Commentary
There were a number of problems with the supplied code including the
‘presenting problem’ of the extra empty row. As James correctly points
out, this one is caused by the erroneous use of the eof() method in the
program. In my experience, code that uses an explicit call to eof() is often
incorrect. It is generally easier to use the implicit conversion to bool as
this seems to naturally help to create better handling of end of input.

I do not recommend the naming convention used for table, row and
cell in this program where the variables have the same name as their type
as this can lead to hard-to-understand code. Additionally, since the
meaning of the symbol depends on the scope, moving code around during
maintenance or refactoring can lead to obscure breakages.

People are often surprised to come across the interactions between
switch and if demonstrated in this program. Again, I would not
recommend this style unless there are some overwhelming reasons why it
needs to be used (such as a hard performance requirement if this technique
can be shown to be measurably faster than a more structured alternative).
The reason is the additional complexity that intermingling case
statements and if statements leads to. It becomes hard to reason correctly
about the code as most programmers in C or C++ have a natural tendency
to unconsciously treat each case statement separately and so fail to fully
take into consideration the ‘dangling’ portion of the earlier if statements.

While I was expecting to receive critiques of the code that attempted to
make the structure of the state machine clearer, I think that James’
approach of using a pre-written standard solution has a lot to recommend
it. There may be an initial conceptual barrier of understanding the syntax
of the regular expression being used – but since this is using a standard
regular expression grammar this will be a transferable skill! Once the
regular expression is checked, the rest of the code is simple enough to be
clearly correct.
10 | | JAN 2016{cvu}

The main downside of using regular expression matching is likely to be a
performance one since it is likely to be slower than a tailored state machine
solution. As always though, even when performance is relevant, it is
important to measure rather than rely on a guess. I did a naive measurement
comparing the original code and James’ solution; the regular expression
code only took 4.4 seconds to read a quarter of a million rows which, while
slower than the original code at 1.2 seconds, is likely to be fast enough in
many cases.

The winner of CC 96
There was only one critique this time – perhaps the unstructured use of
control flow put people off!

As I mentioned in my commentary, I liked James’ approach of raising the
abstraction level of the problem and using the power of the regular
expressions handling in the standard C++ library to solve the problem.

His solution is written in terms of boost, but you can simply replace boost
with std for compilers supporting C++11 or above.

So, despite being the only entrant, I consider that James deserves the award
of the prize for this issue’s critique.

Code critique 97
(Submissions to scc@accu.org by February 1st)

I have a simple template class that holds a collection of values but
sometimes code using the class crashes. I’ve written a simple test for
the class, which works, but I do get a warning about a signed/unsigned
mismatch on the for loop. I thought using auto would stop that. Is that
anything to do with the crash? I’ve commented out all the other methods
apart from add and remove.

The code is in Listing 2 (values.h) and Listing 3 (test.cpp).

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <utility>
#include <vector>

#pragma once

// An unordered collection of values
template <typename T>
class Values
{
public:
 void add(T t);
 bool remove(T t);
 std::vector<T> const & values() const
 { return v; }
private:
 std::vector<T> v;
};

// Add a new item
template <typename T>
void Values<T>::add(T t)
{
 v.push_back(t);
}

// Remove an item
// Returns true if removed, false if not present
template <typename T>
bool Values<T>::remove(T t)
{
 bool found(false);
 for (auto i = 0; i != v.size(); ++i)
 {
 if (v[i] == t)
 {
 v[i] = std::move(v.back());
 v.pop_back();
 found = true;
 }
 }
 return found;
}

Li
st

in
g

2

#include <iostream>
#include "values.h"

void test()
{
 Values<int> vi;
 for (int i = 0; i != 10; ++i)
 {
 vi.add(i);
 }

 if (!vi.remove(1))
 {
 std::cout << "Can't remove 1\n";
 }

 if (vi.remove(1))
 {
 std::cout << "Can remove 1 twice\n";
 }

 if (!vi.remove(9))
 {
 std::cout << "Can't remove 9\n";
 }

 std::cout << "size: " << vi.values().size()
 << std::endl;
}

int main()
{
 test();
}

Listing 3
JAN 2016 | | 11{cvu}

http://www.accu.org/journals/

12 | | JAN 2016

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

If you haven’t got the dates,
Wednesday 20th April to Saturday 23 April in
your diary, then put them in now. They’re the
dates of the 2016 ACCU Conference, a must for
all serious programmers. This year, the
conference is again in Bristol, so that’s also the
venue of the AGM – on the Saturday lunchtime
of the Conference. In a way it’s an interesting
reversal of what originally happened. When we
first started, we used to have a couple of short
talks before the AGM, Now the talks have
blossomed out into a full blown conference and

we wedge the AGM into the Saturday
lunchtime!

Our existing local groups are, as usual,
organising regular meetings, but we are still
finding it difficult to get new groups off the
ground and boost the smaller groups. It’s
perhaps significant that our most successful
local groups – London, Oxford, and Bristol
(travelling east to west – no other significance!)
are where our biggest concentrations of
members are. The question is, of course, do they
organise more meetings because they are larger
and have a larger pool of people to draw from,
or are they larger because they hold more
meeting and attract more people?

Houston – we have a chicken and egg problem!

If anyone has any bright ideas about how to
solve this problem, preferably without having to
cough up enormous sums of money, then please
let me (or any other member of the committee)
know – alan@ibgames.com, or at conference, in
the bar in the evenings, or the ACCU session on
Saturday morning.

Because of the publication lead times, I’m
writing this just before Christmas, but by the
time you read this, the full details of the
conference talks and keynotes should be
available on the ACCU web site. In the next
issue of CVu I should have some details of the
issues for discussion at the AGM, so until then
I’ll wish you a rather belated prosperous 2016,
and I look forward to seeing you all at the ACCU
Conference.

Object-Oriented
Analysis and Design
with Applications (2nd
Edition)
By Grady Booch. 589 Pages.
Published by Addison-Wesley.
ISBN 0-8053-5340-2

Reviewed by Ian Bruntlett

I decided to study this book to improve my OO
skills. It is reasonably well-written and, as a
hardback, is sturdy enough to see a lot of use. It
is sufficiently in-depth enough to require deep
study and multiple readings.

The inside front and back covers act as a
convenient quick reference regarding the
process of Object-Oriented Development
process and Booch’s notation (probably
superseded by the UML notation).

The preface discusses the evolution of this book,
its goals, audience and structure. I am reviewing
this book from the perspective of a Software
Developer wanting to refurbish my OOA, OOD
and OOP skills.

This book is divided into three main sections –
Concepts, the Method, Applications/Case
studies. Also, there is an appendix covering
different OOP languages as well as Notes,
Glossary and a classified Bibliography and Index.

Section One – Concepts – has 4 chapters:
Complexity, The Object Model, Classes and
Objects and Classification. Indeed, I was so

determined to master this section that I spent a
lot of time reading it, re-reading it, making notes
by summarising the text and re-reading the
notes. I made these notes in a Journal and there
were 161 pages of notes. In addition, I used
marker pens in the book itself.

Chapter 1: Complexity (covers Inherent
complexity of software, Structure of Complex
Systems, Bringing Order to Chaos and On
Designing Complex Systems). This discusses the
inevitability of complexity in I.T. systems and
the role of OO in dealing with that complexity.

Chapter 2: The Object model discusses the
evolution of the object model in software
systems. From early programmes that dealt with
mathematical things through to current day OO
languages. It discusses OOA (Object Oriented
Analysis), OOD (Object Oriented Design) and
OOP (Object Oriented Programming). It
discusses four major elements of the Object
Model (Abstraction, Encapsulation, Modularity
and Hierarchy) and three minor elements (Type
system, Concurrency, Persistence).

Chapter 3: Classes and Objects (The Nature of an
Object – an object has State, Behaviour and
Identity, Relationships among Objects, The
Nature of a Class, Relationships Among Classes,
The Interplay of Classes and Objects and On
Building Quality Classes and Objects). By the
time you finish this chapter you should be
confident when dealing with Data Abstraction.

Chapter 4: Classification (The Importance of
Proper Classification, Identifying Classes and
Objects, Key Abstractions and Mechanisms)
builds on the previous 3 chapters to produce
confidence with inheritance (generalisation-
specialisation mechanisms).

Section Two – The Method – has 3 chapters. The
first two (The Notation, The Process) are largely
superseded by UML).

The third chapter, Pragmatics covers
considerations beyond programming – in
particular Management and Planning, Staffing,
Release Management, Reuse, Quality
Assurance and Metrics, Documentation, Tools,
Benefits and Risks of OOD. This chapter is
easier to read than most and is likely to be
relevant for a very long time.

Section Three – Applications – has five
chapters, each of which is a case study of an
application of the OO process. Most of its
pseudo-code is in C++ and some of the examples
are (currently) difficult to understand. However,
I’ll be improving my C++ and revisiting this
section sometime in the future. The case studies
involved are Weather Monitoring Station,
Frameworks (Foundation Class Library),
Inventory Tracking, A.I. (Cryptanalysis) and
Traffic Management.

Conclusion. I really liked this book and find it
difficult to review because there are so many
things I find interesting in this book that I'd like
to share in this review.

Bookcase
The latest book review.

If you want to review a book, your first port of call should be the members section of the ACCU website, which contains
a list of all of the books currently available. If there is something that you want to review, but can’t find on there,
just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it. I will instruct
you from there. Remember though, if the book review is such a stinker as to be awarded the most un-glamorous
‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)

	CVu27-6.pdf
	Choose your mask
	Bug Hunting
	In Vivo, In Vitro, In Silico
	Finding Text
	“HTTPS Everywhere” considered harmful
	Code Critique Competition 97
	Bookcase
	View from the Chair

	CVu27-6.pdf
	Choose your mask
	Bug Hunting
	In Vivo, In Vitro, In Silico
	Finding Text
	“HTTPS Everywhere” considered harmful
	Code Critique Competition 97
	Bookcase
	View from the Chair

