

NOV 2015 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Selective ignorance
was reading the blog of one of the lead developers of
an open-source library recently, and it was
interesting to note some of the remarks made

about code quality and user friendliness. The user
friendliness of an API is about how other developers
perceive it, and of course it’s a subjective thing – to a
point. Code quality is one of the factors in any attempt
to improve user friendliness, so if the quality is low, it
can be very hard to change in order to improve it.
Nothing remarkable about that, it’s an issue experienced by
lots of programmers every day, and is certainly nothing new!
And that’s the problem, right there – it’s nothing new, there
are loads of libraries and programs that are needlessly hard to
use.

Very often the problem arises because the developers are so
fixated on the underlying structure of the technology
they’re exposing – be it some hardware interface with
lots of registers, a security protocol, a database system or
whatever – that they forget about what the user might
actually want to do. How many times have you used a
library that required you to invoke several functions or
methods to initialize something, and pass arcane-looking
parameters that had to be in the right combinations for anything to work? Of course,
you can write your own wrapper to do the right thing, but ALL users of the API have
to do it, and they’ll all do it slightly differently, and not be able to take advantage of
the commonality.

Scott Meyers made the point about making things (he was talking about class
interfaces, but it applies here) easy to use correctly, and hard or impossible to use
incorrectly. This requires a little bit of thought on the part of the API developer, in
making sensible defaults, preventing incorrect combinations of flags and/or
parameters, naming the public API artefacts sensibly, and so on. Some programming
languages help more than others in this regard, in the support they provide for
abstraction. And that’s what this is really about – a higher level of abstraction. If the
API doesn’t operate at a high enough abstraction, it becomes a distraction.

</rant>

I
Volume 27 Issue 5
November 2015

Editor
Steve Love
cvu@accu.org

Contributors
Richard Falconer, Pete
Goodliffe, Ralph McArdell,
Roger Orr, Jonathan Wakely,
Emyr Williams, Matthew Wilson

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | NOV 2015

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
19 Functional Programming

in C++
Richard Falconer
reports on an ACCU
talk by Kevlin
Henney.

21 Code Critique Competition
Competition 96 and
the answer to 95.

27 Robert Martin: An Interview
Emyr Williams
continues the series
of interviews with
people from the
world of
programming

28 Standards Report
Jonathan Wakely
reports the latest on
C++17 and beyond.

REGULARS
28 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 27.6 1st December 2015
C Vu 28.1: 1st February 2016

Overload 131:1st January 2016
Overload 131:1st March 2016

FEATURES
3 Bug Hunting

Pete Goodliffe looks for software faults.

5 Building C & C++ CLI Programs with the libCLImate
Mini-framework
Matthew Wilson presents a framework for
simplifying CLI programs.

11 Raspberry Pi Linux User Mode GPIO in C++ (Part 3)
Ralph McArdell demonstrates the library with two
peripherals on the Pi.

16 One Definition Rule
Roger Orr explains an often misunderstood
aspect of C++.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 95
Bug Hunting
Pete Goodliffe looks for software faults.

If debugging is the process of removing software bugs,
then programming must be the process of putting them in.

~ Edsger Dijkstra

t’s open season; a season that lasts all year round. There are no permits
required, no restrictions levied. Grab yourself a shotgun and head out
into the open software fields to root out those pesky varmints, the elusive

bugs, and squash them, dead.

OK, reality is not as saccharin as that. But sometimes you end up working
on code in which you swear the bugs are multiplying and ganging up on
you. A shotgun is the only response.

The story is an old one, and it goes like this: Programmers write code.
Programmers aren’t perfect. The programmer’s code isn’t perfect. It
therefore doesn’t work perfectly the first time. So we have bugs.

If we bred better programmers, we’d clearly breed better bugs.

Some bugs are simple mistakes that are obvious to spot and easy to fix.
When we encounter these, we are lucky.

The majority of bugs – the ones we invest hours of effort tracking down,
losing our follicles and/or hair pigment in the search – are the nasty, subtle
issues. These are the odd, surprising interactions; the unexpected
consequences of our algorithms; the seemingly non-deterministic
behaviour of software that looked so very simple. It can only have been
infected by gremlins.

This isn’t a problem limited to newbie programmers who don’t know any
better. Experts are just as prone. The pioneers of our craft suffered; the
eminent computer scientist Maurice Wilkes [1] wrote:

I well remember [...] on one of my journeys between the EDSAC room
and the punching equipment that ‘hesitating at the angles of stairs’ the
realisation came over me with full force that a good part of the remainder
of my life was going to be spent in finding errors in my own programs.

So face it. You’ll be doing a lot of debugging. You’d better get used to it.
And you better get good at it. (At least you can console yourself that you’ll
have plenty of chances to practice.)

An economic concern
How much time do you think is spent debugging? Add up the effort of all
of the programmers in every country around the world. Go on, guess.

A staggering $312 billion per year is spent on the wage bills for
programmers debugging their software. To put that in perspective, that’s
two times all Eurozone bailouts since 2008! This huge, but realistic, figure
comes from research carried out by Cambridge University’s Judge
Business School. [2]

You have a responsibility to fix bugs faster: to save the global economy.
The state of the world is in your hands.

It’s not just the wage bill, though. Consider all the other implications of
buggy software: shipping delays, cancelled projects, the reputation
damage from unreliable software, and the cost of bugs fixed in shipping
software.

An ounce of prevention
It would be remiss of an article about debugging to not stress how much
better it is to actively prevent bugs manifesting in the first place, rather than
attempt a post-bug fix. An ounce of prevention is worth a pound of cure.
If the cost of debugging is astronomical, we should primarily aim to
mitigate this by not creating bugs in the first place.

This, in a classic editorial sleight of hand, is material for a different article,
and so we won’t investigate the theme exhaustively here. Do remember
how important it is to expect the unexpected and to always work with your
brain fully engaged!

Suffice to say, we should always employ sound engineering techniques
that minimise the likelihood of unpleasant surprises. Thoughtful design,
code review, pair programming, and a considered test strategy (including
TDD practices and fully automated unit test suites) are all of the utmost
importance. Techniques like assertions, defensive programming, and code
coverage tools will all help minimise the likelihood of errors sneaking past.

We all know these mantras. Don’t we? But how diligent are we in
employing such tactics?

Avoid injecting bugs into your code by employing sound
engineering practices. Don’t expect quickly hacked-out code to
be of high quality.

The best bug-avoidance advice is to not write incredibly ‘clever’ (which
often equates to complex) code. Brian Kernighan states: “Debugging is
twice as hard as writing the code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by definition, not smart enough
to debug it.” Martin Fowler reminds us: “Any fool can write code that a
computer can understand. Good programmers write code that humans can
understand.”

Bug hunting
Being realistic, no matter how sound your code-writing regimen, some of
those pernicious bugs will always manage to squeeze through the defences.
Donald Knuth once wrote: “Beware of bugs in the above code; I have only
proved it correct, not tried it.”

The programmer will always be required to don their hunting cap and an
anti-bug shotgun.

How should we go about finding and eliminating bugs? This can be a
Herculean task, akin to finding a needle in a haystack. Or, more accurately,
a needle in a needle stack.

Finding and fixing a bug is like solving a logic puzzle. Generally the
problem isn’t too hard when approached methodically; the majority of
bugs are easily found and fixed in minutes. However, some are nasty and
take longer. Those hard bugs are few in number, but given their nature,
that’s where we will spend most of our time.

Two factors usually determine how hard a bug is to fix:

 How reproducible it is.

 The time between the cause of the bug entering the code, the
‘software fault’ itself – the bad line of code, or faulty integration
assumption – and you actually noticing.

When a bug scores highly on both counts, it’s almost impossible to track
down without sharp tools and a keen intellect. There are a number of
practical techniques and strategies we can employ to solve the puzzle and
locate the fault.

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
NOV 2015 | | 3{cvu}

The first, and most important thing, is to methodically investigate and
characterise the bug. Give yourself the best raw material to work with:

 Reduce it to the simplest set of reproduction steps possible. This is
vital. Sift out all the extraneous fluff that isn’t contributing to the
problem, and only serves to distract.

 Ensure that you are focusing on a single problem. It can be very easy
to get into a tangle when you don’t realise you’re conflating two
separate – but related – faults into one.

 Determine how repeatable the problem is. How frequently do your
repro steps demonstrate the problem? Is it reliant on a simple series
of actions? Does it depend on software configuration or the type of
machine you’re running on? Do peripheral devices attached make
any difference? These are all crucial data points in the investigation
work that is to come.

In reality, when you’ve constructed a single set of reproduction steps, you
really have won most of the battle.

So let’s look at some of the most useful debugging strategies...

Lay traps
You have errant behaviour. You know a point when the system seems
correct; maybe it’s at start-up, but hopefully a lot later through the
reproduction steps. You can get it to a point where its state is invalid. Find
places in the code path between these two points, and set traps to catch the
fault.

Add assertions or tests to verify the system invariants – the facts that must
hold for the state to be correct.

Add diagnostic printouts to see the state of the code so you can work out
what’s going on.

As you do this, you’ll gain a greater understanding of the code, reasoning
more about its structure, and will likely add many more assertions to the
mix to prove your assumptions hold. Some of these will be genuine
assertions about invariant conditions in the code, others will be assertions
relevant to this particular run. Both are valid tools to help you pinpoint the
bug. Eventually a trap will snap, and you’ll have the bug cornered.

Assertions and logging (even the humble printf) are potent
debugging tools. Use them often.

Diagnostic logs and assertions may be valid to leave in the code after
you’ve found and fixed the problem. But be careful you don’t litter the code
with useless logging that hides what’s really going on, making unnecessary
debug noise.

Learn to binary chop
Aim for a binary chop strategy, to focus in on bugs as quickly as possible.

Rather than single-stepping through code paths, work out the start of a
chain of events, and the end. Then partition the problem space into two,
and work out if the middle point is good or bad. Based on this information,
you’ve narrowed the problem space to something half the size. Repeat this
a few times, and you’ll soon have honed in on the problem.

This is a very powerful approach – allowing you to get to a solution in order
O(log n) time, rather than O(n). That is significantly faster.

Binary chop problem spaces to get results faster.

Employ this technique with trap laying. Or with the other techniques
described next.

Employ software archaeology
Software archaeology describes the art of mining through the historical
records in your version control system. This can provide an excellent route
into the problem; it’s often a surprisingly simple way to hunt a bug.

Determine a point in the near past of the codebase when this bug didn’t
exist. Armed with your reproducible test case, step forward in time to
determine which code changeset caused the breakage. Again, a binary
chop strategy is the best bet here. (The git bisect tool automates this
binary chop for you, and is worth keeping in your toolbox if you’re a Git
user.)

Once you find the breaking code change, the cause of the fault is usually
obvious, and the fix is self-evident. (This is another compelling reason to
make series of small, frequent, atomic check-ins, rather than massive
commits covering a range of things at once.)

Test, test, test
As you develop your software, invest time to write a suite of unit tests. This
will not only help shape how you develop and verify the code you’ve
initially written. It acts as a great early warning device for changes you
make later; much like the miner’s canary, the test fails long before the
problem becomes complex to find and expensive to fix.

These tests can also act as great points from which to begin debugging
sessions. A simple, reproducible unit test case is a far simpler scaffold to
debug than a fully running program that has to spin up and have a series
of manual actions run to reproduce the fault. For this reason, it’s advisable
to write a unit test to demonstrate a bug, rather than start to hunt it from a
running ‘full system’.

Once you have a suite of tests, consider employing a code coverage tool
to inspect how much of your code is actually covered by the tests. You may
be surprised. A simple rule of thumb is: if your test suite does not exercise
it, then you can’t believe it works. Even if it looks like it’s OK now, without
a test harness then it’ll be very likely to get broken later.

Untested code is a breeding ground for bugs. Tests are your
bleach.

When you finally determine the cause of a bug, consider writing a simple
test that clearly illustrates the problem, and add it to the test suite before
you really fix the code. This takes genuine discipline, as once you find the
code culprit, you’ll naturally want to fix it ASAP and publish the fix.
Instead, first write a test harness to demonstrate the problem, and use this
harness to prove that you’ve fixed it. The test will serve to prevent the bug
coming back in the future.

Next time
These are by no means no the only debug strategies. In the next article we’ll
cover some other useful debugging strategies. Until then, may all your
bugs be easy to find...

Questions
1. Assess how much of your time you think you spend debugging.

Consider every activity that isn’t writing a fresh line of code in a
system.

2. Do you spend more time debugging new lines of code you have
written, or on adjustments to existing code?

3. Does the existence of a suite of unit tests for existent code change
the amount of time you spend debugging, or the way you debug?

4. What other bug-hunting strategies do you find valuable?

5. Is it realistic to aim for bug-free software? Is this achievable? When
is it appropriate to genuinely aim for bug-free software? What
determines the optimal amount of ‘bugginess’ in a product?

Reference
[1] Maurice Wilkes, Memoirs of a Computer Pioneer (Cambridge, MA:

The MIT Press, 1985)
[2] ‘Cambridge University Study States Software Bugs Cost Economy

$312 Billion per Year’ – http://undo-software.com/company/press/
press-release-8
4 | | NOV 2015{cvu}

Building C & C++ CLI Programs with the
libCLImate Mini-framework

Matthew Wilson presents a framework
for simplifying CLI programs.

his article, the third in a series looking at software anatomy, builds
on the material discussed in the first two instalments by discussing
libCLImate, a mini-framework for command line interface (CLI)

programming that encapsulates as much of the boilerplate as possible, and
how it may be used in combination with program suite-specific libraries
that encapsulate the rest, leaving the CLI application programmer to
concentrate only on the interesting parts of the application development.

Introduction
In the first instalment of this series, ‘Anatomy of a CLI Program written
in C’ [1], I considered in some depth the different aspects of CLI program
construction, and expressed my desire to find a way to stop spending so
much time thinking about and working on the fundamental aspects of
program construction and focus instead on the interesting parts of the
different problems programs need to solve. In the second instalment,
‘Anatomy of a CLI Program written in C++’ [2], I considered how to apply
disparate utility libraries in the design and implementation of CLI
programs, with the intention of separating out the boring boilerplate from
the program-specific code, to promote flexibility, reuse, and testability.

In this, the third instalment, I discuss the reification of these previous
intentions and considerations in the form of the libCLImate mini-
framework, and its use in combination with program suite-specific
libraries to drastically simplify the effort in creating CLI programs in C
and C++.

libCLImate requirements
The requirements for the framework included:

 Require of the application programmer only a single entry-point
function and declarative specification of command-line arguments;

 Support C and C++ without compromise to either;

 Handle (un)initialisation of all dependency libraries;

 Hide away as much boring boilerplate as possible (without
detracting too much from discoverability);

 Make as much of the non-hideable boring boilerplate as possible be
declarative;

 Facilitate strict separation of the action logic from the decision
logic, support logic, and declarative logic to support the principle of
program design is library design [1].

In essence: make the job of the CLI programmer less boring, so they can
do it faster and better.

Tour of the code
Because the libCLImate library comprises just a few small source files,
it might be most illuminating to learn about the library by walking through
the code.

Interface

There are six header files of interest to a user of the library (under the
include directory):

 libclimate/main.h

 libclimate/main.hpp

 libclimate/main/api.h

 libclimate/main/api.hpp

 libclimate/implicit_link/common_implicit_link.i

 libclimate/implicit_link/core.h

libclimate/main.h

If you’re writing a C program you would probably include libclimate/
main.h (an elided form of which is shown in Listing 1).

As is strikingly obvious, including this file defines for you the main()
entry point for the program, in terms of

 libCLImate_main_entry_point_Cpp (if C++), or

 libCLImate_main_entry_point_C (if C)

both of which we’ll discuss shortly. Naturally, you can only include this
file into one compilation unit of your program.

libclimate/main.hpp

If you’re writing a C++ program you would probably include
libclimate/main.hpp:

 #include <libclimate/main.h>
 #include <libclimate/main/api.hpp>

Note that I’ve said ‘probably’ in both cases. If you’re using a framework
that itself provides main() – I recall that ACE [3] does that, and there are
doubtless others – then you would instead eschew these two files and go
to the underlying API files libclimate/main/api.h and
libclimate/main/api.hpp.

 T

Li
st

in
g

1 #include <libclimate/main/api.h>
int
main(
 int argc
, char** argv
)
{
 void* reserved = NULL;
 int (*pfn)(int, char**, void*);
#ifdef __cplusplus
 pfn = libCLImate_main_entry_point_Cpp;
#else /* ? __cplusplus */
 pfn = libCLImate_main_entry_point_C;
#endif /* __cplusplus */
 return (*pfn)(argc, argv, reserved);
}

MATTHEW WILSON
Matthew is a software development consultant and trainer for
Synesis Software who helps clients to build high-performance
software that does not break, and an author of articles and
books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.
NOV 2015 | | 5{cvu}

libclimate/main/api.h

The first of these, libclimate/main/api.h, is the primary header file
for the library. The abridged contents are shown in Listing 2.

This breaks down as follows:

 application-defined constructs; and

 API functions:

 the framework entry point(s);

 early exit functions; and

 usage helpers.

A bit grandiose, perhaps, but the libCLImate (mini-)framework can be
considered a powerful and semi-intelligent ExecuteAroundMethod
[4]. As such, the application programmer is required to provide the

Li
st

in
g

2 #include <libclimate/common.h>
#include <libclimate/internal/clasp.clasp.h>
#include <stdio.h>

/* API globals */
/* The application-defined CLASP aliases array */
#ifdef __cplusplus
extern "C"
#else /* ? __cplusplus */
extern
#endif /* __cplusplus */
clasp_alias_t const libCLImate_aliases[];

/* API callbacks */
/* Application-defined program entry point
 (for C) */
#ifdef __cplusplus
extern "C"
#else /* ? __cplusplus */
extern
#endif /* __cplusplus */
int
libCLImate_program_main_C(
 clasp_arguments_t const* args
);

/* Application-defined program entry point
 (for C++) */
#ifdef __cplusplus
extern "C++"
int
libCLImate_program_main_Cpp(
 clasp_arguments_t const* args
);
define libCLImate_program_main
libCLImate_program_main_Cpp
#else /* ? __cplusplus */
define libCLImate_program_main
libCLImate_program_main_C
#endif /* __cplusplus */

/* API functions */
#ifdef __cplusplus
extern "C"
{
#endif

/* main */
#ifdef __cplusplus
int
libCLImate_main_entry_point_Cpp(
 int argc
, char** argv
, void* reserved
);
#endif /* __cplusplus */

#ifndef __cplusplus
int
libCLImate_main_entry_point_C(
 int argc
, char** argv
, void* reserved
);
#endif /* !__cplusplus */

/* exit */
void
libCLImate_exit_immediately(
 int exitCode
, void (*pfn)(int exitCode, void* param)
, void* param
) /* noexcept */
;
#ifdef __cplusplus
extern "C++"
void
libCLImate_unwind_and_exit(
 int exitCode
);
#endif /* __cplusplus */
/* usage */
int
libCLImate_show_usage(
 clasp_arguments_t const* args
, clasp_alias_t const* aliases
, FILE* stm
, int verMajor
, int verMinor
, int verRevision
, int buildNumber
, char const* programName
, char const* summary
, char const* copyright
, char const* description
, char const* usage
, int
showBlanksBetweenItems
);
int
libCLImate_show_usage_header(
 clasp_arguments_t const* args
. . . // as libCLImate_show_usage()
);
int
libCLImate_show_usage_body(
 clasp_arguments_t const* args
. . . // as libCLImate_show_usage()
);
int
libCLImate_show_version(
 clasp_arguments_t const* args
, clasp_alias_t const* aliases
, FILE* stm
, int verMajor
, int verMinor
, int verRevision
, int buildNumber
, char const* programName
);

#ifdef __cplusplus
} /* extern "C" */
#endif

Listing 2 (cont’d)
6 | | NOV 2015{cvu}

effective entry point and, so that command-line arguments can be
processed on the application programmer’s behalf (by the CLASP library
[5]), the CLASP aliases array. Hence, there are three application-defined
constructs, two of which must be defined (depending on whether you're
writing a C or C++ program). The aliases array is familiar from both
previous instalments in this series ([1, 2]) and for libCLImate it must have
the name libCLImate_aliases. The effective entry point must be
ca l l ed libCLImate_program_main_C() (f o r C) o r
libCLImate_program_main_Cpp() (for C++), as in Listing 3.

There is a preprocessor macro libCLImate_program_main that
r e s o l v e s t o libCLImate_program_main_Cpp o r
libCLImate_program_main_C as appropriate. You may wonder why
not simply declare a single function of that name; this is explained later in
this article.

The remainder of the contents of the main header file are API functions.
The first pair are the framework entry points, as discussed earlier. If you
are handling the definition of main() separate to libCLImate and so are
not including libclimate/main.h or libclimate/main.hpp, then
you will invoke one of these (libCLImate_main_entry_point_C()
for C; libCLImate_main_entry_point_Cpp() for C++) once in
your program’s execution.

The early exit functions are next, and are discussed separately shortly.

The usage helpers are thin wrappers over the CLASP [5] facilities that have
been discussed in previous instalments [1, 2], so I won’t discuss them
further here. Note, however, that they still involve many parameters – this
will be addressed satisfactorily when I show how libCLImate may be used
with CLI program suites.

libclimate/main/api.hpp

As you may have guessed from the earlier definition of libclimate/
main.hpp, the contents of libclimate/main/api.hpp are defined
largely in terms of libclimate/main/api.h:

 #include <libclimate/main.h>
 #include <libclimate/main/api.hpp>

libclimate/implicit_link/core.h

This is a standard-fare implicit link header file, for use with those compiler
suites (such as Visual C++) that support that technique, to link implicitly
to the requisite (to the compilation conditions, e.g. release, multithreaded,
multibyte-string, ...) libCLImate static library.

libclimate/implicit_link/common_implicit_link.i

Since libCLImate is implemented in terms of several other libraries –
CLASP, Pantheios [6], recls [7] (Windows-only), this file includes some
common, always-used libraries’ implicit-link headers (see Listing 4).

Pantheios aficionados will likely pick up that only the core and util
libraries are specified, and why: front-end and back-end libraries are not
specified, precisely because it is not the business of a general purpose mini-
framework such as libCLImate to prescribe the specifics of the diagnostic
logging control and output used by its users. Thus, if you’re using implicit-
linking with libCLImate you will need to specify additionally which front/

back-end libraries you require; specifying linking of core and util will not
be necessary (but is harmless if you do).

Implementation

I’m not going to show much of the implementation, as a lot of it is simply
a gathering together of notions previously espoused (in this forum), and
you’re all welcome to simply browse it in (and fork it from!) the GitHub
repo (http://github.com/synesissoftware/libCLImate).

There are five implementation files and one internal header file (in the src
directory):

 main_entry_point.c

 main_entry_point.cpp

 exit_immediately.c

 unwind_and_exit.cpp

 quiet_program_termination_exception.hpp

 usage_etc.c

The first five of these are discussed in the next two sections.
usage_etc.c does little more than provide the implementations for the
helper functions mentioned earlier, including invoking the requisite
CLASP API functions (using C Streams, aka FILE*) and determining the
console width (if not piped).

Supporting C and C++
We all know that there can be only a single definition of main() in a link-
unit. You are likely to know also that calling a C++ function that may throw
exceptions from a C function yields undefined behaviour.

So, in order to support both C and C++ from the same library, we have to
make sure that main() is not defined in the library. As you’ve already
seen, main() is defined within the program’s object code by including
libclimate/main.h(pp) in one compilation unit in the project. It is
then implemented in terms of either:

 libCLImate_main_entry_point_C() for C, which is defined
in main_entry_point.c; or

 libCLImate_main_entry_point_Cpp() for C++, which is
defined in main_entry_point.cpp.

These two files have the same logical structure:

 (un)initialise Pantheios with Pantheios.Extras.Main [8];

 trace outer-scope memory leaks with Pantheios.Extras.DiagUtil
[9];

 (un)initialise CLASP.

However, the libraries used – Pantheios.Extras.*, CLASP – have very
different behaviours depending on whether they are compiled in C or C++.
Most importantly, in C++: Pantheios.Extras.Main performs outermost-
scope exception handling, issuing contingent reports (to standard error
stream) and diagnostic log statements; and CLASP handles command
line-related exceptions along the lines of “MyProgram: unrecognised flag
'--stranger'; use --help for usage”.

Thus, the separation is necessitated by the rules of the language as they
pertain to main()’s uniqueness, by the need to support exceptions in order
to provide rich handling of common non-normative conditions (such as a
user specifying an unrecognised flag/option). That it also facilitates the

Li
st

in
g

3 /* example.c */
#include <libclimate/main.h>
#include <stdlib.h>
clasp_alias_t const libCLImate_aliases[] =
{
 CLASP_ALIAS_ARRAY_TERMINATOR
};
int
libCLImate_program_main_C(
 clasp_arguments_t const* args
)
{
 return EXIT_SUCCESS;
}

#include <libclimate/implicit_link/core.h>

#include <systemtools/clasp/implicit_link.h>

#include <pantheios/implicit_link/util.h>
#include <pantheios/implicit_link/core.h>

#ifdef _WIN32
include <recls/implicit_link.h>
#endif

Listing 4
NOV 2015 | | 7{cvu}

ability of the user to provide his/her own main() and call into
libCLImate explicitly may be thought a bonus.

Exceptions and early exit
The necessary handling of exceptions just mentioned also affords us the
ability to take away another common (at least to me) but non-standard bit
of repetitive work.

As you may know, gentle reader, when (std::)exit() is invoked, the
implementation does not cause the destruction of any automatic variables.
Hence, the output of Listing 5 is ‘in and out’ when run without arguments,
but only ‘in’ when given one or more arguments.

What this means for sophisticated CLI programs is that calling
(std::)exit() can be a bad idea, because things won’t get cleaned up
by the C++ runtime. For sure, many things, such as file handles, will be
cleaned up by the operating system (and some things by the C runtime),
but it may be unwise to rely on that, because none of it will be done with
an understanding of what those objects were doing from a ‘C++ point of
view’. (I know that’s a horribly woolly description, but I can’t think of a
good example right now, and I trust, gentle readers, that you can go with
me regardless...)

Anyway, we do want to be able to perform an early exit to the program,
and we don’t (always) want to achieve this by N returns (where N can
be a very large number). Well, in C++, there’s a well-known control-
transfer mechanism [10]: exceptions. Why not throw an exception?

Two problems. First, which exception do we throw? There’s no standard
exception to indicate a request to exit a program (or thread). I’ve written
many such things over the years: some within general-purpose C++
libraries; others within program suites. The problem with the former is that
it’s more coupling for something totally fundamental and uninteresting.
The problem with the latter is that one ends up in copy-paste hell. Coupling
or copying – yuck!

The second problem is more subtle, but much more significant. It is
received wisdom (which I too espouse [11]) that all exception types should
be derived from std::exception. But really this rubric is too simplistic.
What I think it should actually mean is that all exceptions types whose
i n s ta n ces w e m ay i n t e r a c t w i t h sh ou ld be d er i ved f rom
std::exception. The reason is that one should only catch what is one’s
business to catch. Or, put more powerfully, one should not catch what it
is not one’s business to catch.

If we define our putative end-program-exception to derive (by whatever
depth) from std::exception, then it is possible that application code
(or library code that is at a higher level of abstraction and dependency than
our end-program-exception) may intercept and quench it. Of course, any
code that does such a thing is (overwhelmingly likely) in error, but
practical experience (in C++, and in many other languages – C# being the
standout worst) tells me that this will happen.

So, there’s a strong argument to be made to have an end-program-
exception that is not part of the std::exception hierarchy. (Note: there
are some arguments against, such as subversion of a std::exception-
derivation assumption in the implementation of a C-API boundary, but I’m
running out of space to discuss here. Pepper me with email on the accu-
general mailing list if you wish.)

Going with this argument, however, means we risk exposing our exception
to good practice – pun intended! – to the wider world, giving a bad
example. That’s where quiet_program_termination_exception
comes in: it carries an exit code from the throw point, which is in
libCLImate_unwind_and_exit() (in unwind_and_exit.cpp)
to a handler in the ExecuteAroundMethod layered function stack in
main_entry_point_Cpp.cpp. No user of libCLImate is exposed to
this class, not even polymorphically.

Being practical, however, we must recognise that there may be some
circumstances in which this isolation from std::exception is not
desired. So, there are a bunch of pre-processor symbols that may be defined
during the building of libCLImate that allow the exception to:

 have no inheritance (the default);

 inherit from std::exception;

 inherit from std::runtime_error; or

 inherit from stlsoft::unrecoverable, an STLSoft [12]
exception type that may not be quenched, and if it is causes the
program to exit.

The name

I asked the friendly fellows at ACCU-general for assistance in naming the
library. There were several apposite suggestions (along with the odd
inevitable ‘wheel already invented’ carp), but one stood out. Jonathan
Wakeley offered libCLImate, ostensibly because it’s a supporting (mate)
library for CLI, but really so that Phil Nash could pun that ‘every pull
request will result in CLI-mate change’. In the face of such wit I was
powerless to resist.

Program suites
Applying libCLImate results in a substantial reduction in size and
simplification of the implementation of standalone CLI programs.
However, there are still some aspects that involve too much work:

 Since (almost) all CLI programs support the UNIX-standard flags
--help and --version, having to detect and act on these flags,
and in the same way, in every program is tiresome;

 Defining (and using) all 13 program identity attributes – version
(major, minor, revision, build); strings (name, copyright, summary,
description, usage) – is a drag, and leads to cluttered code (reducing
transparency and increasing the likelihood of mistakes);

 libCLImate’s usage helpers are necessarily verbose, taking
between 8 and 13 parameters;

 libCLImate does not select diagnostics transport (in the form of
Pantheios back-ends) or control (in the form of Pantheios front-end),
because it can’t know what’s appropriate for arbitrary CLI
programs. Since (in my experience) program suites use the same
diagnostics facilities in each program, having to do the same
specifications and customisations of such facilities repeatedly is
tiresome and duplicative, and may lead to copy-paste errors and/or
divergence;

 Some program suites have common, but suite-specific, exceptions
that may be caught and handled in a suite-common manner. Having
to write this same code in each program is tiresome and duplicative,
and may lead to copy-paste errors and/or divergence.

By combining libCLImate with a program suite-specific library, the
implementation of each program in the suite can be distilled down so much
as to achieve the primary expressed aim of the library: Require of the
application programmer only a single entry-point function and declarative

Li
st

in
g

5 #include <stdio.h>
#include <stdlib.h>
class inout
{
public:
 inout() { fputs("in", stdout); }
 ~inout() { fputs(" & out\n", stdout); }
};
int main(int argc, char* argv[])
{
 inout io;
 if(1 != argc)
 {
 exit(1);
 }
 return 0;
}

8 | | NOV 2015{cvu}

specification of command-line arguments. In the remainder of this
instalment I will demonstrate how that’s been achieved for the Synesis
Software Source Tools program suite via the proprietary library
libSrcToolMain.

libSrcToolMain consists of three groups of source files:

 CLI framework files;

 CRT extension files; and

 Common utilities files.

We’re interested in the CLI framework files, of which there are nine worth
exploring:

 include/SynesisSoftware/SourceTools/
implicit_link/core.h

 src/common/common_implicit_link.i

 src/CLI/diagnostics.c

 include/SynesisSoftware/SourceTools/
program_identity_globals.h

 include/SynesisSoftware/SourceTools/
standard_argument_helpers.h

 src/CLI/show_usage.c

 src/CLI/standard_argument_helpers.cpp

 src/CLI/main.cpp

 src/CLI/tool_main_outer.cpp

The files core.h and common_implicit_link.i serve the same
functions as their libCLImate analogues. But because all programs in the
program suite have common diagnostics, the latter file also includes
implicit link inclusions for Pantheios’ fe.simple front-end and be.N
multiplexing back-end (in conjunction with the console, file and
WindowsDebugger concrete back-ends).

The file diagnostics.c contains the program suite-specific back-end
customisations, a small part of which is shown in Listing 6.

The file program_identity_globals.h declares a bunch of global
constants that collectively define the identity and version of the given
program (see Listing 7). The definitions of these constants are provided in
each program’s identity.cpp file (defined as described in [2]).

The file standard_argument_helpers.h declares a number of
helper functions that are useful when processing the command-line
(Listing 8).

As can be seen plainly, these functions do not have a list of parameters as
long as your arm: that’s because each one is defined (in show_usage.c
and standard_argument_helpers.cpp) in terms of the requisite
libCLImate API functions passing the identity globals as appropriate.
This leads to much more transparent (and maintainable) application code.

But the real gain is in the two files not yet mentioned: main.cpp and
tool_main_outer.cpp . main.cpp (L is t ing 9 inc ludes
libclimate/main.hpp and defines the (libCLImate-perspective)
effective entry point libCLImate_program_main() in terms of the

declared function tool_main_outer(), which it calls after first
checking for, and reacting to, the --help and --version UNIX-
standard flags.

The func t i on tool_main_outer() i s de f i ned i n
tool_main_outer.cpp (Listing 10) in terms of the declared
(l ibSrc Too lMain -pe r s pec t i ve) e f f ec t i ve en t ry po i n t
tool_main_inner() which it invokes within a try-catch whose catch
clauses handle program suite-specific exceptions in a suite-common
manner.

While that might seem a lot of code to present in an article, it’s pretty small
in terms of a library, and it allows all programs within the program suite
to substantially reduce the amount of boilerplate, such that each program’s
entry.cpp (defined as described in [2]) consists solely of the
libCLImate_aliases array definition and the effective program entry
point tool_main_inner(), as shown in Listing 11 (extracted from
the fsrtax source tool’s entry.cpp). The result is maximised
application-specific code : boilerplate ratio in each program’s

Li
st

in
g

6 /* application-defined callbacks */
PANTHEIOS_CALL(void)
pantheios_be_WindowsDebugger_getAppInit(
 int backEndId
, pan_be_WindowsDebugger_init_t* init
) /* throw() */
{
 STLSOFT_SUPPRESS_UNUSED(backEndId);

 init->flags |=
 PANTHEIOS_BE_INIT_F_NO_PROCESS_ID;
 init->flags |= PANTHEIOS_BE_INIT_F_HIDE_DATE;
 init->flags |=
 PANTHEIOS_BE_INIT_F_HIGH_RESOLUTION;
}
. . .

#include <SynesisSoftware/SourceTools/common.h>

/* application-defined globals */
#ifdef __cplusplus

extern "C" const int sourcetoolVerMajor;
extern "C" const int sourcetoolVerMinor;
extern "C" const int
sourcetoolVerRevision;
extern "C" const int
sourcetoolBuildNumber;

extern "C" char const* const sourcetoolToolName;
extern "C" char const* const sourcetoolSummary;
extern "C" char const*
 const sourcetoolCopyright;
extern "C" char const* const
 sourcetoolDescription;
extern "C" char const* const sourcetoolUsage;

#else /* ? __cplusplus */
extern const int sourcetoolVerMajor;
. . .

#endif /* __cplusplus */

Listing 7

int SS_SrcTools_show_usage(
 clasp_arguments_t const* args
, clasp_alias_t const* aliases
, FILE* stm
);
int SS_SrcTools_show_version(
 clasp_arguments_t const* args
, clasp_alias_t const* aliases
, FILE* stm
);
void SS_SrcTools_display_usage_and_ \
 rewind_if_requested(
 clasp_arguments_t const* args
, char const* flagLongForm
, FILE* stm
);
void SS_SrcTools_display_version_and_ \
 rewind_if_requested(
 clasp_arguments_t const* args
, char const* flagLongForm
, FILE* stm
);

Listing 8
NOV 2015 | | 9{cvu}

entry.cpp; all the program suite-specific boilerplate is in the program
suite library, and all the CLI boilerplate is in libCLImate.

Summary
For all that frameworks are loathsome things, restricting freedom and
constraining choice, they are often a necessary evil in programming,
because sometimes the advantages outweigh the disadvantages. I believe
libCLImate represents just such a net-positive balance, and have been
using it for some time now to focus mostly on the interesting parts of my
CLI projects.

Next time

In the next instalment (which may be a while because I’m starting a new
job next week!), I want to move away from C and C++ for a bit, perhaps
to something a bit more modern such as Go, or maybe flesh out the
structure I’ve adapted for writing Ruby CLI programs of late.

Acknowledgements
Thanks to Garth Lancaster for review pointers, and to Steve Love for
editorial patience.

References
[1] Anatomy of a CLI Program written in C, Matthew Wilson, CVu

September 2012.
[2] Anatomy of a CLI Program written in C++, Matthew Wilson, CVu

September 2015.
[3] https://en.wikipedia.org/wiki/

Adaptive_Communication_Environment
[4] http://c2.com/cgi/wiki?ExecuteAroundMethod
[5] An Introduction to CLASP, part 1: C, Matthew Wilson, CVu, January

2012
[6] http://pantheios.org/; http://github.com/synesissoftware/Pantheios
[7] http://recls.org/; http://github.com/synesissoftware/recls
[8] http://pantheios.org/; http://github.com/synesissoftware/

Pantheios.Extras.Main
[9] http://pantheios.org/; http://github.com/synesissoftware/

Pantheios.Extras.DiagUtil
[10] Quality Matters 5: Exceptions: The Worst Form of Exception

Handling, Apart From All the Others, Matthew Wilson, Overload,
#98, August 2010

[11] Quality Matters 6: Exceptions For Practically-Unrecoverable
Conditions, Matthew Wilson, Overload, #99, October 2010

[12] http://stlsoft.org/; http://github.com/synesissoftware/STLSoft-1.9

Li
st

in
g

9 #include <SynesisSoftware/SourceTools/
 program_identity_globals.h>
#include <SynesisSoftware/SourceTools/
 standard_argument_helpers.h>
#include <libclimate/main.hpp>

extern "C++"
int
tool_main_outer(
 clasp::arguments_t const* args
);
int
libCLImate_program_main(
 clasp::arguments_t const* args
)
{
 namespace ssst = SynesisSoftware::SourceTools;

 /* process standard flags */
 ssst::display_usage_and_unwind_if_requested(
 args, "--help", stdout);
 ssst::display_version_and_unwind_if_requested(
 args, "--version", stdout);

 /* process command-line */
 return tool_main_outer(args);
}

#include "fsrtax.hpp"
#include "identity.h"
#include <SynesisSoftware/SourceTools/
program_identity_globals.h>
. . .
extern "C"
clasp::alias_t const libCLImate_aliases[] =
{
 // standard flags
 SS_SRCTOOLS_STD_FLAG_help(),
 SS_SRCTOOLS_STD_FLAG_version(),

 // program logic
 CLASP_BIT_FLAG("-D", "--details",
 FSRTAX_F_SHOW_DETAILS,
 "displays all details"),
 . . .
 CLASP_ALIAS_ARRAY_TERMINATOR
};
extern "C++"
int
tool_main_inner(
 clasp::arguments_t const* args
)
{
 int flags = clasp::check_all_flags(args,
 libCLImate_aliases);
 . . .
 clasp::verify_all_options_used(args);
 . . .
 return process(flags, . . .);
}

Listing 11
Li

st
in

g
10 extern "C++"

int
tool_main_inner(
 clasp::arguments_t const* args
);

int
tool_main_outer(
 clasp::arguments_t const* args
)
{
 try
 {
 return tool_main_inner(args);
 }
 catch(<ps-specific-exc1>& x)
 {
 . . .
 }
 . . .
}

10 | | NOV 2015{cvu}

https://en.wikipedia.org/wiki/Adaptive_Communication_Environment
https://en.wikipedia.org/wiki/Adaptive_Communication_Environment
http://c2.com/cgi/wiki?ExecuteAroundMethod
http://pantheios.org/; http://github.com/synesissoftware/Pantheios
http://recls.org/; http://github.com/synesissoftware/recls
http://pantheios.org/; http://github.com/synesissoftware/Pantheios.Extras.Main
http://pantheios.org/; http://github.com/synesissoftware/Pantheios.Extras.Main
http://pantheios.org/; http://github.com/synesissoftware/Pantheios.Extras.DiagUtil
http://pantheios.org/; http://github.com/synesissoftware/Pantheios.Extras.DiagUtil
http://stlsoft.org/; http://github.com/synesissoftware/STLSoft-1.9

Raspberry Pi Linux User Mode
GPIO in C++ (Part 3)

Ralph McArdell demonstrates the library
with two peripherals on the Pi.

he previous instalments [1, 2] have described creating the rpi-
peripherals [3] library to access general purpose input output
(GPIO) on a Raspberry Pi running Raspbian Linux in C++ from user

space. They covered creating the phymem_ptr class template that utilises
RAII (resource acquisition is initialisation [4]) to manage mapped areas
of physical memory, setting up the library project and the implementation
of support for basic general purpose input and output of single bit Boolean
values, clocks and pulse with modulation (PWM).

This final instalment describes the two serial interface peripheral types the
library supports and closes with some concluding remarks.

SPI game
Having added PWM support to the library and played with the Gertboard’s
[5] motor controller I turned to the digital to analogue converter (DAC)
and analogue to digital converter (ADC) chips. The ADC handles 10-bit
samples while the DAC handles 8-bit samples – other Gertboards may
have similar DAC chips that handle 10 or 12 bit samples. Both chips use
the serial peripheral interface (SPI) [6] to transfer data making the addition
of SPI support the next task.

The Raspberry Pi’s Broadcom BCM2835 processor has several
peripherals that support SPI. For the older Raspberry Pi models I was
targeting the GPIO pins provided for interfacing only allow using the SPI0
peripheral – referred to as ‘SPI’ or ‘SPI Master’ in the documentation [7].
As there are also two instances of a ‘Universal SPI Master’ or ‘mini SPI
interface’ peripheral type named SPI1 and SPI2 I decided to
unambiguously use ‘spi0’ to refer to SPI0 peripheral related entities.

SPI uses the common master/slave model [8] where a single master device
has control over one or more slave devices. In this case SPI0 on the
Raspberry Pi is the master device and the ADC and DAC chips are slave
devices. As an aside the BCM2835 also supports an SPI slave peripheral,
unavailable on the earlier Raspberry Pi models. The standard
communication mode is a ‘3-wire’ protocol, allowing master and slave to
send data simultaneously. Two of the three ‘wires’ are for the master to
send data to a slave – MOSI (master output, slave input), and for the slave
to send data to the master – MISO (master input, slave output). SPI is a
synchronous serial interface so the third ‘wire’, SCLK, is the clock signal
which is provided by the master. The master only communicates with one
slave device at a time, which device being determined by a number of chip
enable (or chip select) lines. The SPI0 peripheral provides two such lines
– CE0 and CE1.

For added fun SPI0 supports two 2-wire modes which only use SCLK and
MOSI for communication: bidirectional mode which calls MOSI MOMI
(master output, master input) and LoSSI (low speed serial interface) mode
which names MOSI SDA (serial data) and SCLK SCL (serial clock).

The data transferred between SPI0 and a slave device are a pair of FIFO
(first in first out) buffers, one for data to be sent to the slave and the other
for data received from the slave. They are 16 32-bit words deep, allowing
64 8-bit bytes to be buffered. The FIFOs are a case where peripheral
registers do not behave like regular memory. Both FIFOs are accessed via
the same register with reads returning the next available value from the
receive FIFO and writes writing to the next available slot in the transmit
FIFO.

As with other peripherals I only considered support for SPI0 polled use.
On the other hand I did want to support all three communication modes
along with various parameters that may need tweaking depending on the
specifics of various slave devices.

A plurality of pins
Implementing SPI0 support initially followed the pattern discussed in part
2: I started with the spi0_registers class that matched the layout of
the SPI0 peripheral’s control registers and allows querying and setting the
various fields. I created the spi0_ctrl singleton class which as per the
pa t t e rn c on t a in s t he phymem_ptr spe c i a l i s a t i on
phymem_ptr<volatile spi0_registers> member that maps a
spi0_registers instance over the SPI0 control registers. As SPI0 only
supports a single item the type for the spi0_ctrl is-in-use tracking
member is simply a bool.

The pattern dictates there should be a spi0_pin class. SPI0 requires the
use of 5 pins, or 4 for the 2-wire modes. Hence the name spi0_pins –
plural, was chosen.

It seemed cumbersome to pass in four or five pin value parameters to the
spi0_pins constructor, especially considering that for the Raspberry Pi
models I was targeting there could only be two possible valid sets of values:
either all five of the available pins for SPI0 functions or the four pin subset
required for 2 wire bidirectional mode operation. On the other hand I did
not want to hard code the pin values as the SPI0 functions are available on
a second group of pins and it was possible other BCM2835 based systems
could access them.

So the constructor of spi0_pins takes a spi0_pin_set class template
specialisation. spi0_pin_set has five integer non-type template
parameters – one for each SPI0 pin. The fifth parameter has a default value
representing pin-not-used to allow four pin sets to be defined. The class
contains no values and only has five member functions – one for each SPI0
pin function – that return the value of the associated template parameter.
Two instances are defined: rpi_p1_spi0_full_pin_set that
specifies all 5 pins and rpi_p1_spi0_2_wire_only_pin_set that
specifies the 4 pin subset required for 2-wire mode operation.

Chip chat
I soon realised that having just a spi0_pins class was not sufficient.
Adding functionality to spi0_pins to allow checking the various states
the FIFOs could be in was not a problem. It was when I came to implement
the read and write functionality that I ran into a problem.

SPI0 can directly select one of two devices to converse with and switch
conversations between devices. Each device can use different sets of
communication parameters, so one spi0_pins instance has be able to
support multiple sets of conversation parameters.

 T

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect
to stop learning or improving his skills.
NOV 2015 | | 11{cvu}

My initial solution was to create a spi0_conversation class, instances
of which represented conversations with specific devices with the relevant
parameters being passed as constructor arguments. To hold a conversation
an instance was opened by passing a reference to a spi0_pins object to
the open member function. Once successfully opened the conversation
could proceed by calling the read and write member functions. When
done the close member function was called. Attempting to have more
than one open conversation at a time caused an exception to be thrown.
Opening a conversation would set the required SPI0 communication
parameters, then activate SPI0 data transfers – which were deactivated on
conversation close.

This scheme worked but I did not like the low level twiddling with SPI0
registers being split across two classes. Worse, in order to keep track of
open conversations the spi0_pins instance had to keep a pointer to the
current open spi0_conversation which was set to nullptr on
conversation close meaning the spi0_conversation object had to hold
a pointer to the spi0_pins object. So instances of each type referenced
each other whenever there was an open conversation which seemed
somewhat inelegant.

Moving the read and write functionality to spi0_pins solved my first
gripe. To address the second gripe I applied conversation contexts to a
spi0_pins instance, with member functions spi0_pins::start_
conversing and spi0_pins::stop_conversing in place of open
and close operations.

This left spi0_conversation with very little to do so I renamed it
spi0_slave_context. Instances of spi0_slave_context hold the
subset of SPI0 peripheral registers needed to define the context of each
conversation. To create the required register values the construction
parameters are used to set the relevant field values of a local automatic
spi0_registers object from which the required complete register
values are copied to instance data members.

To start a conversation a spi0_slave_context instance is passed to
spi0_pins::start_conversing which, after stopping any
conversation and performing some validation, copies over most of the
spi0_slave_context object’s register value members to their live
counterparts. Some fields of the control and status register should not be
overwritten so a mask is used to apply only the relevant bits.

Read and write à la mode
The read and write operations provided by spi0_pins cater for
transferring single and multiple byte values. Single byte operations return
a bool indicating whether or not a value was transferred to or from a FIFO.
Multi-byte operations return a std::size_t indicating how many bytes
were transferred. A transfer may not complete for several reasons:
conversing may be stopped or the transmit FIFO is full or the receive FIFO
empty.

Which of the three SPI communication modes is used is part of a
conversation’s associated spi0_slave_context. The specifics of the
protocols used by each mode are mostly hidden behind the read and
write member functions, although some modes require extra information
for some operations. Luckily these could be supported by appending an
additional parameter with a default value to the operations concerned.

The easiest mode to implement, and the only one I could fully test due to
the available hardware, was standard 3-wire mode. In standard mode data
is written to the transmit FIFO while it is not full and read from the receive
FIFO while it is not empty. The only oddity is that in order to read some
data you must first write something – anything. So to read two bytes you
first write two bytes. As these are transmitted to the slave device its reply
is received, appearing in the receive FIFO. Of course serially transferring
data takes time so there will be delays involved.

Listing 1 shows an example where a conversation expects two bytes to be
received after the slave device has been sent a single byte that sets up the
conversation. In the read function, while only one byte is required to be
written to setup the conversation the same value is sent twice as we expect
to read two bytes. Each byte is then read by calling the read_byte

function which waits until data arrives in the receive FIFO, wrapping a call
to the single byte overload of spi0_pins::read in a loop with a delay.

In main the spi0_pins and spi0_slave_context objects are
created and ten sets of data obtained from the slave device selected by
asserting CE0, specified by passing spi0_slave::chip0 to the
context object’s constructor. The device requires that each value read
i s a s e pa ra t e conve r sa t i on so t he c a l l t o
spi0_pins::start_conversing is inside the loop. The only other
value explicitly specified for the slave context is the frequency of the clock,
given in terms of the frequency types initially created for the clock

#include "spi0_pins.h"
#include <array>
#include <thread>
#include <chrono>
#include <iostream>
#include <iomanip>

using namespace dibase::rpi::peripherals;
unsigned char read_byte(spi0_pins & spi0)
{
 constexpr auto a_short_while
 (std::chrono::microseconds{100});
 unsigned char byte{0U};
 while (!spi0.read(byte))
 std::this_thread::sleep_for(a_short_while);
 return byte;
}
bool read(spi0_pins & spi0,std::array<int,2> &
result)
{
 constexpr unsigned char mode{0xd0};
 if (spi0.write(mode) && spi0.write(mode))
 {
 result[0] = read_byte(spi0);
 result[1] = read_byte(spi0);
 return true;
 }
 return false;
}

int main()
{
 try
 {
 constexpr auto f_sclk(megahertz{1});
 spi0_slave_context chip0_context{
 spi0_slave::chip0, f_sclk};
 spi0_pins spi0{rpi_p1_spi0_full_pin_set};
 for (unsigned i=0; i<10; ++i)
 {
 spi0.start_conversing(chip0_context);
 std::array<int,2> data;
 if (read(spi0,data))
 std::cout << std::hex
 << std::setfill('0')
 << std::setw(2) << data[0]
 << ' ' << std::setw(2)
 << data[1] << '\n';
 else
 std::cout << "## ##\n";
 }
 }
 catch (std::exception & e)
 {
 std::cerr << "Failed because: "
 << e.what() << '\n';
 }
}

Listing 1
12 | | NOV 2015{cvu}

peripherals’ library support described in part 2. To ensure that resources
are released should an exception be thrown the whole lot is wrapped in a
try-block. The single catch clause for std::exception by reference
suffices as the library throws standard library exception types or types
derived from them.

SPI standard mode reading and writing is tested using a loop-back
configuration connecting the MOSI pin to the MISO pin so each written
byte is immediately received back again. The support for reading and
writing using the 2-wire modes can at best be termed ‘provisional’ as I have
not been able to test them. I did not see how I could use a loopback setup
with these modes and had no devices to hand that supported them – nor
had I come across any in my very limited search for devices.

I2C – a serial interface by many other names
Having implemented SPI support allowing me to use the DAC and ADC
chips on the Gertboard the only remaining device to look at was an Atmel
AVR ATmega 8-bit microcontroller which houses a variety of useful
interfaces and peripherals. ATmega application programs are stored in
non-volatile flash memory and are sent via a supported interface with the
microcontroller in a programming mode. On the Gertboard the ATmega
microcontroller is programmed over SPI, using SPI0 at the Raspberry Pi
end. I contemplated using the microcontroller as a peripheral extender but
did not want to dedicate SPI0 permanently to the microcontroller. A
browse through the relevant ATmega data sheet [9] revealed a two wire
serial interface (TWI) compatible with the Inter-Integrated Circuit (IIC or
I2C) interface [10] is supported. Thinking this could be used for Raspberry
Pi and microcontroller communication I decided to add I2C support to the
peripherals library.

The peripheral documentation for the BCM2835 calls its I2C-like serial
interface ‘Broadcom Serial Controller’ (BSC). Three BSC master
controller peripherals – BSC0, BSC1 and BSC2 are supported but only
BSC0 and BSC1 are available for use via appropriately configured GPIO
pins, BSC2 being reserved for use with the HDMI interface.

As you may have inferred I2C/BSC/TWI uses the master/slave model with
each BSC controller acting as an I2C master (I2C slave mode is supported
by the same peripheral that supports SPI slave mode). I2C only uses two
wires – or pins – referred to as serial data (SDA) and serial clock (SCL).
Slave devices have an address which is generally in a 7-bit range, but a
cunning scheme can allow 10-bit addressing to be used. This scheme is
outlined later. All transfers consist of serialised 8-bit bytes with the master
sending an initial start byte containing the 7-bit address of the slave device
the master wishes to converse with and a single bit indicating whether the
master is reading or writing. Standard I2C can communicate at up to
100,000 bits per second (100 Kbps). The BSC controllers support I2C fast-
mode allowing speeds of up to 400Kbps. Like SPI0 there are various
parameters that can be adjusted to ensure master and slaves can
communicate – the serial clock frequency value for example. All of these
parameters I found could have useful default values but unlike SPI0 they
apply to a controller as a whole and not on a per slave device basis.

BSC masters use a single 16 entry 8-bit wide FIFO that is shared by read
and write operations as the I2C bus cannot be doing both simultaneously.
Primarily only polled usage is supported by the BSC masters although
interrupts can be generated for some interesting conditions. As with other
peripherals the library only supports polled usage.

As there are only the two pins…
Once again, support for the BSC masters broadly follows the pattern
discussed in part 2 with the i2c_registers class matching the layout
of the BSC masters’ control registers and allowing querying and setting
the various fields. However, the i2c_ctrl singleton class deviated from
the pattern because the BSC masters’ register blocks are located
suff ic ient ly dis tant f rom each other that an array of three
phymem_ptr<volatile i2c_registers> was required to map
three i2c_registers instances over three distinct BSC master register

address blocks. As with SPI0, because I2C requires more than one pin there
is the i2c_pins (plural) class.

I thought two pins were few enough that they could be passed directly to
i2c_pins constructors as individual parameters. Annoyingly there is a
case where the same two pins support two BSC masters on different
alternate pin functions. Although the target Raspberry Pi models do not
provide access to these pins I wanted to support this case so provided two
constructors. One identifies a BSC master from just two passed pin_id
values while the other is additionally passed a disambiguating 0 or 1 value
to indicate BSC0 or BSC1 directly. The remaining parameters, common
to both constructors, define a bunch of communication parameters and all
have defaults.

Conversation starter
As I2C communications parameters apply to the whole peripheral the
conversation state complexity of SPI0 does not apply. The only thing
required to talk to a slave device is its 7-bit address, which is sent by the
master at the start of a transaction along with a read/write bit. To cater for
these transaction start requirements I added start_write and
start_read member functions in addition to write and read member
functions.

BSC masters require the data (byte) length – in the range [0, 65535] – to
be specified at the start of each transaction. The transaction completes
when data-length bytes have been transferred. So the BSC master
peripherals require a slave device address and a transaction data length to
start a transaction. When starting a write transaction it is useful to pass an
initial chunk of data to transfer, however immediately after starting a read
transaction there is nothing yet to receive.

Only multi-byte transfers are supported by the read and write operations
of i2c_pins which return a std::size_t indicating how many bytes
were transferred. A transfer may not complete because either the FIFO is
full so no more data can be written to it or it is empty and no more data
can be read from it. The pattern is to call start_write or start_read
followed by repeated calls to write or read until the transaction
completes, preferably with a delay between calls to allow time for data to
transfer.

The BSC master peripherals support a variety of status information. The
transfer active condition indicates when a transfer is in process and is
presented by the i2c_pins::is_busy member function which returns
true while data transfer is ongoing. For finer grained control there are
various FIFO states that can be queried.

There are a couple of potential communication errors. A slave device may
fail to acknowledge an address and the SCL clock line may timeout. Slaves
can stretch clock ticks on SCL within limits – set as one of those
communications parameters passed to i2c_pins constructors. A slave
does this if it cannot respond quickly enough and needs to slow the master’s
outpourings. The error states can be queried with the no_acknowledge
and clock_timeout member functions. Plagiarising the C++ standard
library IOStreams states I also provided a good state query member
function along with two state clear member functions – one clearing both
error states, the other clearing specific error states.

Listing 2 shows an example of using i2c_pins to write data to a memory
device [11], read the values back and display the written and read values
and whether they differ. The memory device’s write operation starts with
the initial address to write to. The device has a 512 byte capacity, a 9-bit
range, but the initial address is only 8-bits. The device uses two 256 byte
pages to access the whole 512 bytes with page 0 having an even slave
address and page 1 the following odd address. The first byte of the
transferred data is written to the specified address with following bytes
written to subsequent addresses. As the device read operation used does
not specify a start address it is handy that addresses wrap round to zero
after reaching 511. Reads start at the current address and then from each
following address. So writing 512 bytes will return the current address to
the initial location – address zero in this case, which if followed by a read
will read the previously written data starting with the first byte written.
NOV 2015 | | 13{cvu}

In main an i2c_pins instance is created using GPIO pins 2 and 3 for
SDA and SCL respectively (see pin_id and friends [12, 1]). This
translates to using BSC1 – hence the object’s name.

Using direct GPIO pin numbers in this case means knowing the Raspberry
Pi revision as the original model B presents GPIO pins 0 and 1 on their P1

connector’s pins 3 and 5 – which support BSC0, while later model B
revisions and subsequent models (excepting the compute module) connect
GPIO pins 2 and 3 to this pair of pins, supporting BSC1. The problem could
be solved by specifying p1_pin(3) and p1_pin(5) or use the pre-
defined objects sda and scl.

A std::array type, under the alias buffer_t, is used as the type for
buffers. The write buffer is created and filled with values matching the
index of each byte. The program’s write function performs the write
operation. It is passed the bsc1 i2c_pins object by reference along with
the memory device’s page 0 address, the memory address to start writing
to and the write buffer by reference. The write function initiates a write
transaction by calling i2c_pins::write_start on the passed
i2c_pins object – specifying the passed-in device address, one more
than the write buffer length as the number of bytes to transfer to account
for the initial memory page start address and passes the address of the
memory page start address argument object as the single byte ‘buffer’ to
initially transfer.

The following loop writes values from the write buffer to the FIFO. If there
i s space i n t he F IFO, de t e rmi ned by a ca l l t o
i2c_pins::write_fifo_has_space, data is written to it from the
write buffer otherwise the thread waits for space to become available by
taking a short sleep – as implemented by the quick_doze function. The
loop terminates when all the data has been written to the FIFO but the
transaction only completes shortly after the FIFO empties. We could call
i2c_pins::write_fifo_is_empty but that ‘completes shortly
after’ can cause the peripheral to still be busy when the next transaction is
attempted so it is best to wait for i2c_pins::is_busy to return false.

The values are then retrieved by calling the program’s read function
which takes the same parameters as write except there is no starting
memory address value as the read operation used starts reading from the
current memory address. A separate read buffer is passed to read so that
both written and read values are available for comparison. The workings
mirror those of write . The transaction is initiated by calling
i2c_pins::start_read passing the memory device’s address and the
size of the passed data buffer to read into. Data is read into the buffer in
chunks a s t hey appe a r i n t he F IFO. Ca l l s t o
i2c_pins::read_fifo_has_data check there is data to collect

Li
st

in
g

2 #include "i2c_pins.h"
#include <array>
#include <thread>
#include <chrono>
#include <iostream>
#include <iomanip>

using namespace dibase::rpi::peripherals;

constexpr int wrap_length{512}; // bytes
constexpr unsigned char memdev_addrs{0x50};
 // page 0
typedef std::array<unsigned char,wrap_length>
 buffer_t;
void quick_doze()
{
 std::this_thread::sleep_for
 (std::chrono::microseconds{100});
}
void write(i2c_pins & bsc,unsigned char dev_addrs
 , unsigned char start_addrs
 , buffer_t & data)
{
 bsc.start_write(dev_addrs,data.size()+1
 , &start_addrs,1);
 unsigned char * write_ptr{&data[0]};
 std::size_t remaining{data.size()};
 while (remaining)
 {
 if (bsc.write_fifo_has_space())
 {
 std::size_t transferred
 = bsc.write(write_ptr, remaining);
 remaining -= transferred;
 write_ptr += transferred;
 }
 else
 quick_doze();
 }
 while (bsc.is_busy())
 quick_doze();
}
void read(i2c_pins & bsc
 ,unsigned char dev_addrs,buffer_t & data)
{
 bsc.start_read(dev_addrs,data.size());
 unsigned char * read_ptr{&data[0]};
 std::size_t remaining{data.size()};
 while (remaining)
 {
 if (bsc.read_fifo_has_data())
 {
 std::size_t transferred
 = bsc.read(read_ptr, remaining);
 remaining -= transferred;
 read_ptr += transferred;
 }
 else
 quick_doze();
 }
 while (bsc.is_busy())
 quick_doze();
}

int main()
{
 try
 {
 i2c_pins bsc1{pin_id{2},pin_id{3}};
 buffer_t wb;
 for (int v=0; v!=wrap_length; ++v)
 wb[v] = v;
 write(bsc1,memdev_addrs, 0,wb);
 buffer_t rb = {{}};
 read(bsc1,memdev_addrs, rb);
 std::cout << std::boolalpha
 << std::setfill('0')
 << std::hex
 << "Wrote Read Same?\n";
 for (int v=0; v!=wrap_length; ++v)
 std::cout << " " << std::setw(2)
 << int(wb[v])
 << " " << std::setw(2)
 << int(rb[v])
 << " " << (rb[v]==wb[v])
 << '\n';
 }
 catch (std::exception & e)
 {
 std::cerr << "Failed because: "
 << e.what() << '\n';
 }
}

Listing 2 (cont’d)
14 | | NOV 2015{cvu}

otherwise the thread takes a short doze. Finally read waits for
i2c_pins::is_busy to return false indicating transaction
completion.

The final action of main is to write out the bytes in the write and read
buffers and whether each pair of values match.

You might be wondering why, as BSC masters do not have separate read
and write FIFOs, why the FIFO checking member functions specify read
and write in their names. The same conditions apply to spi0_pins, and
SPI0 does have separate read and write FIFOs. Thinking some consistency
might be nice I re-used the names.

I’ve not finished so I’ll start
The BSC masters support the I2C repeated start feature allowing a master
and slave to conduct multiple transactions without asserting the stop
condition and releasing the bus. Repeated start is only practically relevant
to read operations where the master has to send some information to the
slave device first – a value identifying a device register to be read for
example. In such cases the master sends the information on what is
requested then enters a start condition, without first going through a stop
condition, specifying the same slave address but changing the read/write
bit to read.

To support repeated start read operations I added an overload of
i2c_pins::read that takes the data to write as an additional
std::uint8_t parameter. Repeated starts are normal (read) transactions
issued before the preceding (write) transaction has completed. The
documentation is not very clear but it seems repeated starts must be issued
after the last byte has started transfer but not completed which is difficult
if not impossible to detect for multi-byte transactions. So the initially
written data is restricted to a single byte allowing the start of the last and
only byte’s transfer to be detected by waiting briefly and busily for
i2c_pins::is_busy to return true. When it does the repeated start
can be initiated – but has to be setup in the short time before the write
transfer completes. The i2c_pins::read overload only returns after
the byte-write has completed, counter-intuitively by waiting for
i2c_pins::read_fifo_has_data to return false, otherwise the
byte transfer may be incompletely and falsely reported as read data.

Because the code runs on a pre-emptively scheduled system there is a
chance the processor wanders off to do something else while waiting for
the single byte write transaction to start and the whole transaction could
have completed by the time the thread is scheduled to run again. This
means the window in which i2c_pins::is_busy returns true is
missed and the wait loop will never exit. To prevent this a maximum
number of iterations is defined and an iteration count kept. If the count
exceeds the maximum, false is returned immediately indicating a missed
repeated start and the caller should retry. Other error conditions are
signalled by throwing an exception.

Listing 3 shows a read function that uses repeated starts with a random
read operation of the memory device. It differs from the read function in
listing 2 by having an additional mem_addrs parameter which is passed
to the repeated-start supporting i2c_pins::start_read member
function in a loop which permits a number of retries to account for the
possibility of failure due to context-switches as discussed above.

The ten-bit cunning scheme
One use of repeated starts is to support I2C 10-bit addressing. The
additional address bits are provided by a byte written before the rest of the
transaction, which for write transactions just adds an additional byte to the
transaction similar to the listing 2 write function. Read transactions from
10-bit addressed slave devices require the extra address byte to be written
followed by a repeated read-transaction start as per the listing 3 read
function. You would think the extra 8-bits would give a 15 bit address but
the upper 5 bits of the usual 7-bit part of the address use a fixed pattern
specifying a reserved range of addresses, leaving only the lower 2 bits to
be available for use as the most significant bits of the extended 10 bit
address.

Wrapping up
So that’s about it. I think C++, and C++11, features proved useful in
providing simple interfaces to GPIO and other peripherals. The resultant
overall structure of the library appears to allow easily adding support for
other peripherals or even other modes of peripherals having existing
support – such as the serialiser mode of the PWM controller.

There are some parts that have not worked out quite as well as they could.
The pin and peripheral allocation support is I think the part with the most
problems. While tracking which pins and peripherals are in use is a good
thing in theory as there is no system wide way of achieving this the partial
solutions currently implemented by the library leave quite a lot to be
desired.

While developing the initial implementation I intentionally ignored
concurrency and synchronisation issues. While the library can with care
be used in a multithreaded environment there should be a review of
concurrency concerns at the very least – especially as the latest Raspberry
Pi 2 model B has a 4 core chip.

Which leads on to supporting the growing list of Raspberry Pi models. The
main concern is that the new BCM2836 based Raspberry Pi 2 model B
maps peripheral registers to a different base address. Other concerns are
supporting the additional GPIO pins on the larger 40 pin connector and
detecting which model code is running on. I have added some preliminary
support for these things to the pin_id family of classes and for use by
the rpi_info type to determine the board revision details.

But before rushing into too much new functionality it is probably a good
point to review the interfaces provided for each peripheral as well as the
code in general and of course those 2-wire modes of spi0_pins still need
to be tested.

References
[1] Raspberry Pi Linux User Mode GPIO in C++ (Part 1), CVu, Volume

27 Issue 2, May 2015
[2] Raspberry Pi Linux User Mode GPIO in C++ (Part 2), CVu, Volume

27 Issue 4, September 2015

bool read(i2c_pins & bsc,std::uint8_t dev_addrs
 ,std::uint8_t mem_addrs, buffer_t &
data)
{
 int remaining_tries{3};
 bool started{false};
 while (!started)
 {
 started = bsc.start_read(dev_addrs
 ,mem_addrs,data.size());
 if (!started && --remaining_tries==0)
 return false;
 }
 std::uint8_t * read_ptr{&data[0]};
 std::uint32_t remaining{data.size()};
 while (remaining)
 {
 if (bsc.read_fifo_has_data())
 {
 std::uint32_t transferred
 = bsc.read(read_ptr, remaining);
 remaining -= transferred;
 read_ptr += transferred;
 }
 else
 quick_doze();
 }
 while (bsc.is_busy())
 quick_doze();
 return true;
}

Listing 3
NOV 2015 | | 15{cvu}

Raspberry Pi Linux User Mode GPIO in C++ (Part 3) (continued)

[3] dibase-rpi-peripherals library project:

https://github.com/ralph-mcardell/dibase-rpi-peripherals
[4] Resource acquisition is initialization (RAII), see for example:

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
[5] Gertboard Raspberry Pi IO expansion board:

http://www.raspberrypi.org/archives/411
[6] Serial peripheral interface (SPI), see for example:

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
[7] BCM2835 ARM Peripherals: http://www.raspberrypi.org/wp-

content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
[8] Master/slave model, see for example:

https://en.wikipedia.org/wiki/Master/slave_(technology)

[9] ATmega48A/PA/88A/PA/168A/PA/328/P 8-bit microcontroller
datasheet: http://www.atmel.com/images/Atmel-8271-8-bit-AVR-
Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-
328P_datasheet_Complete.pdf

[10] Inter-Integrated Circuit (I2C):
http://www.nxp.com/documents/user_manual/UM10204.pdf

[11] Cypress FM24CL04B 4-Kbit (512 x 8) Serial (I2C) F-RAM
http://www.cypress.com/file/136466/download

[12] The pin_id class et al in pin_id.h: https://github.com/ralph-
mcardell/dibase-rpi-peripherals/blob/master/include/pin_id.h
One Definition Rule
Roger Orr explains an often misunderstood aspect of C++.

allows a lot of flexibility over the physical arrangement of
source code. Almost all C++ programmers have a concept
of ‘source file’ and ‘header file’ and some views about

what should be placed into each file. What does this mean in practice?

There is no single simple answer in modern C++.

Traditionally people have put function declarations, class definitions, and
constants into header files and placed function and member function
implementations into source files. However, the use of templates and the
presence of inline functions, where the full definitions are normally
required whenever they are referenced, has blurred the distinction between
headers and source files.

Conversely, many tool chains now offer some sort of ‘whole program’
optimisation which means that the linker has an overview of all the source
code in the program and again this reduces the clear distinction between
separate source files since cross-source optimization is now possible.

The ‘One Definition Rule’ (ODR) is attempting to ensure that there is at
most one definition of the various entities (classes, functions, etc.) in each
source file and also ensure that there is a single unambiguous definition
in the resulting whole program. While both of these are covered by the
ODR the first case is much easier for the compiler (and the programmer)
to detect than the other. It’s the second case, that of the same entity being
defined differently in two different components of the same program, that
can cause very hard-to-diagnose problems.

The language standard itself speaks in terms of ‘translation units’ by which
it means a source file, together with all the lines of code in headers and
other source files #included by it, excluding any lines skipped by any
of the conditional inclusion preprocessing symbols. This textual inclusion
model means that the same lines of text from the same (‘header’) file can
be included in multiple translation units (TUs) but each is compiled
separately and the context for compilation will be provided by the previous
lines of text, the preprocessing symbols defined, and any additional
switches provided to the compiler.

This is a very different model from many languages where inclusion is a
reference to the compiled output from another source file. In these cases
there is no ambiguity about where things are defined nor about what the
context was for their compilation. While it is still possible to cause
problems, for example by using a different version of the included file
during compilation from that used at runtime, the problems are greatly
reduced.

The ODR refers to the ‘same sequence of tokens’ which is not necessarily
equivalent to ‘from the same (header) file’ and there are additional

constraints basically trying to ensure that if the same thing is defined in
two different translation units the two different compilation contexts have
not affected the meaning of the entity being defined.

Demonstration of the problem
Here we can see the same named structure, Data, is used in both source
files but with a different number of fields in the two cases. The behaviour

C++

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

struct Data
{
 int id;
 std::string first;
 std::string second;
 std::string last;
};
extern Data getData(int employeeId)
{
 // Implementation details omitted...
}

Listing 1

struct Data
{
 int id;
 std::string first;
 std::string last;
};
extern Data getData(int employeeId);
int main()
{
 int id;
 std::cout << "Enter employee Id: ";
 std::cin >> id;
 Data const details(getData(id));
 std::cout << "employee " << id << " is "
 << details.first << std::endl;
}

Listing 2
16 | | NOV 2015{cvu}

https://github.com/ralph-mcardell/dibase-rpi-peripherals
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://www.raspberrypi.org/archives/411
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/Master/slave_(technology)
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.cypress.com/file/136466/download
https://github.com/ralph-mcardell/dibase-rpi-peripherals/blob/master/include/pin_id.h
https://github.com/ralph-mcardell/dibase-rpi-peripherals/blob/master/include/pin_id.h

of the resultant program if source file 1 and 2 are linked together will be
undefined.

I tried two different compilers and in both cases I got output something
like this:

 Enter employee Id: 1
 employee 17370356 is Roger

While the actual number printed varied, in neither case did I get any
warnings nor any crashes, but the employee Id printed out wasn’t the value
that was supplied.

With a third compiler I got this:

 Enter employee Id: 1
 employee 1 is Roger

followed by a crash of the program.

What has occurred in the first two cases is that the call to getData
corrupted the value held in id. This is because the data structure
details has enough space for two strings, but the function in source file
1 is populating the structure with three strings, and this is overwriting the
id value as it just happens to be the next address in memory beyond the
end of the details structure.

In the last case it seems that the corruption is still occurring, but the
memory layout in this case is different and the corrupted value is not id
but something else, such as the return address, causing the crash when
main ends.

In this example it is easy to see what the problem is; in a real-world
example it can be extremely hard to detect the problem.

How can we prevent this happening?
The problem above was two different definitions of the same data type.
While ODR violations affect many different entities in C++ one of the most
troublesome is when the layout of a class changes as the consequences of
this can be quite unexpected and hard to isolate. ODR violations with other
entities still result in undefined behaviour, but in my experience the actual
consequences at runtime tend to be easier to understand.

We can reduce the likelihood of the definitions for the data type differing
by placing one definition inside a single file and including this header file
in both the source files.

That is fairly obvious; but it is hard to enforce. It is quite common to have
multiple copies of the same header file in the source tree for a large project
– perhaps caused by laziness or short-term desire for ‘simplicity’.
Unfortunately, as we all know, once you have multiple copies they tend
to diverge and then you have different definitions in the various files.

One common cause of this problem is when two different versions of a 3rd
party library are used in the same project – perhaps the project includes a
library that was implemented with one version of Boost and the project
code accidentally uses a different version.

It is also common for people to create various helper classes and functions
for use in the implementation of a class. These entities are defined in the
source file itself and are not visible outside it. However, if another source
file happens to define the an entity with the same name then we have an
ODR violation. While many of these are benign (as the code is localised
and often gets completely inlined) the other cases can cause nasty bugs.

Placing helper classes and functions into the anonymous namespace
avoids ODR violations like these and should be encouraged. In my
experience people are becoming fairly good at putting helper functions into
an anonymous namespace but for some reason less commonly place helper
classes into a namespace.

However, even with a class defined in a single header file in one location
there are still a number of ways that differences can creep in.

In my experience the commonest problems are caused by:

1. preprocessor symbols

2. packing

3. compiler flags

Different preprocessor symbols
It is common to see header files set up to support a number of different
compilation modes. For example, some data structures may need locking
with a mutex in a multi-threaded program but do not need this protection
in a single-threaded one. One common implementation technique is to
conditionally define the mutex, and the associated code using it, based on
a preprocessor symbol that the user of the header file defines if required.

A sample data structure might look like Listing 3.

The danger here is that if some of the source files in the program that
include this header file have MULTI_THREADED defined and some do not
then we have an ODR violation because of the different number of fields
and the resulting program may not behave as we would like.

However, as in the example I started with, the actual consequences of the
undefined behaviour are very hard to predict and are likely to vary between
compilers.

Different packing
Compilers align fields on a ‘natural’ address to fit in with the addressing
modes of the underlying architecture. So for example, on a 64-bit platform
the first couple of fields in the data structure above might be laid out as:

 int id; // offset 0, length 4
 std::string first; // offset 8, length 32

However, many compilers allow the programmer to use a pragma or
attribute to override this natural alignment and to pack the fields as close
together as possible. This typically results in a reduction in memory and
may also result in a reduction in performance, depending on a number of
factors. Packing is also used when ensuring a C++ data structure matches
some externally defined data structure, perhaps from a serialisation format
or network protocol.

The way to do this in Microsoft Visual C++ is to use the #pragma pack
directive, for example:

 #pragma pack(2) // 2 byte aligned
 #include "data.h"
 #pragma pack() // back to the default

with these packing instructions the fields might now be laid out as:

 int id; // offset 0, length 4
 std::string first; // offset 4, length 32

However, mostly to provide compatibility with MSVC, other compilers
such as gcc also support the same pragma and it is quite common to see
the pragma used even in code used cross-platform.

Once again, as long as every source file in the program uses the same
packing value we are fine, but if just one file does not set the same packing
then we cause an ODR violation.

This problem is much less likely to occur with the idiomatic style provided
by gcc which uses attributes attached to the specific data structure(s) they
are applied to.

 class Data {
 // ...
 } __attribute__ ((packed));

class Data
{
public:
 // Methods ...
private:
 int id;
 std::string first;
 std::string second;
 std::string last;
#ifdef MULTI_THREADED
 std::mutex mutex;
#endif;
};

Listing 3
NOV 2015 | | 17{cvu}

One further trouble with the example shown above using #pragma pack
is that we don’t know what other header files might be included by the line
#include "data.h". If, as is quite likely, data.h in turn #includes
<string> then by setting the packing while including data.h we may
have inadvertently caused the standard string class to be packed too.

I would recommended if at all possible that you ensure that #pragma
pack directives are very carefully scoped to ensure that no header files
are #included within the scope of the directive.

Different compiler flags
Depending on the compiler being used there may be various flags which
can be set during compilation which change the layout of the class. Often
these flags are simply another way of generating a different set of
preprocessor symbols, or different packing, but there are some other cases
too – for example specifying the size of the long double type or whether
the char type is signed or unsigned.

It is important to ensure the set of flags used in building a single program
are consistent where the use of different settings could result in ODR
violations.

This relates to build system discipline where it is advisable to set program-
wide settings at the top level of the build system rather than individually
specifying them for each component or even for each file.

And more...
An additional problem is when the meaning of types change between
source files.

Fo r example , a s t r uc tu r e i s d e f i n e d w i t h a f i e l d char
buffer[BUFSIZE]; but the value of BUFSIZE varies between source
files.

More subtle problems can occur when, for instance, a type defined in one
namespace masks a type defined in an outer namespace so a different type
is used for the field in two different files.

Can the compiler help?
If the ODR violation occurs inside a single translation unit then we do
expect, rightly, that the compiler will error on ODR violations. The
standard is quite clear: “No translation unit shall contain more than one
definition of any variable, function, class type, enumeration type, or
template.”

In the cases of ODR violation between TUs it is much harder to see how
the compiler – which compiles each TU independently – can assist us.
However, in some cases the use of name mangling can help, for example
to avoid linking functions with mismatched calling conventions together.

-Wodr to the rescue
Recent versions of gcc support link-time optimisation (lto) with the -flto
flag which allows the linker access to the internal bytecode generated by
the separate compilations. This allows the linker to perform additional
optimisations, such as inlining a function call from one source file to
another.

The mechanism has been slightly extended in gcc 5.x to include support
for checking for some of the ODR violations covered above for data types;
the byte code generated by each source file compiled with lto support will
contain additional information about the data structures involved and this
can be checked at link time for consistency.

If I compile the example I started with using gcc 5.2 and -flto, I get the
error in Figure 1at link time.

(Note that for -Wodr to work, both the .o files with the differing type
definitions must be compiled with -flto.)

This is extremely useful and has helped me to locate several places in a
large code base where there were previously unidentified ODR violations,
at least one of which had led to large memory leaks in the past which had
been worked round without actually finding the root cause of the problem.

Modules
As many of the readers may already know, there is active work towards a
‘modules’ system for C++, which among other things should make it easier
to avoid ODR violations, especially with internal ‘implementation only’
entities used purely inside the library. However, a lot will depend both on
the final form of the proposals and also on the details of the implementation
strategies adopted by the compiler or compilers you use.

Summary
ODR violations can be very hard to spot. Good programming discipline in:

 naming things

 avoiding copy-paste (see the DRY principle)

 using namespaces

 using anonymous namespaces in implementation files

 build system settings

all help to reduce the likelihood of experiencing ODR violations.

The gcc -Wodr detection included in link-time optimisation is highly
recommended (at least in gcc 5.2 and above – there did appear to be some
occasional problems in 5.1) and it might be worth using this as a static
analysis tool even if the primary build doesn’t use link time optimisation
(or even uses a different compiler).
18 | | NOV 2015{cvu}

$ g++ -Wall -Wextra -flto -o SourceFile1.o SourceFile1.cpp -c
$ g++ -Wall -Wextra -flto -o SourceFile2.o SourceFile2.cpp -c
$ g++ -o Program SourceFile1.o SourceFile2.o
SourceFile1.cpp:2:8: warning: type 'struct Data' violates one definition rule [-Wodr]
 struct Data
 ^
SourceFile2.cpp:4:8: note: a different type is defined in another translation unit
 struct Data
 ^
SourceFile1.cpp:5:17: note: the first difference of corresponding definitions is field 'second'
 std::string second;
 ^
SourceFile2.cpp:7:16: note: a field with different name is defined in another translation unit
 std::string last;
 ^

Fi
gu

re
 1

Functional Programming in C++
Richard Falconer reports on an ACCU talk by Kevlin Henney.

common belief is that functional programming is constrained to the
realm of Haskell and Lisp. On 14th September, Oxford Asset
Management hosted a talk by Kevlin Henney showing that this is not

the case, and that you can in fact follow functional programming
paradigms in C++.

If we had a time machine the first thing any of us would do is go back in
time and make const the default modifier. Well, maybe not the first thing.
After all one must spare a thought to how the C++11 committee would deal
with re-purposing the original auto as a result of such temporal meddling.
The point, Kevlin explains, is pure functional programming has no side-
effects.

When it is not necessary to change, it is necessary not to change
~ Lucius Cary

To move towards functional programming is to move towards a stateless
world, a world where moving parts of a system should be isolated and data
flows in one direction through classes. ‘Values’ are a core concept of
functional programming; rather than objects with a stateful identity these
are objects with unchanging values. Kevlin gives the canonical example
of a poorly-written Date class (see Listing 1, based on slides 37 and 39).

Here it’s clear that by calling the set methods you can leave the object in
an invalid state; 30th Feb never occurs unless you’re PHP (which thinks
Feb 30th is basically the same as March 2nd [1]).

Instead, Kevlin points out, you should rebind state via the assignment
operator rather than permuting the existing object (see Listing 2, based on
slide 40).

Now this is a value-semantic class whose instances can be passed around
and referenced without worrying about race conditions or other threads
modifying our object through C++’s many aliasing mechanisms.

This isn’t to say that we should do away with all state, but minimising it
allows you to reason about the interaction between functions more easily;
there’s no need to keep your mental buffer busy tracking side-effects and
then lose 20 minutes work when someone comes to your desk to ask you
if you received the email they just sent.

Now that we have stateless classes (or at least, classes whose state does
not change from the perception of the class API boundary) we can start to
build by composition. A core requirement for functional programming is
to have functions as first-class citizens; that is, functions as things you can
return and accept as arguments. This function-passing allows complex
behaviour to be composed by expressing ideas in terms of combinations
of other functions. This composition is made syntactically easier through

the use of lambdas, which are now available in C++11. (C# has boasted
true lambda support since v3.0 2007, but everyone is too polite to mention
they’ve been around as a concept since Alonzo Church’s 1932 journal [2]
in Annals of Mathematics).

Evaluation of our functions objects does not depend on mutable state.
Expressions created by composing such objects are said to be referentially-
transparent; the expression could be replaced by its value without changing
the behaviour of the program [3].

Asking a question should not change the answer
(Nobody tell Heisenberg.)

This is all very well for simple value types like Date, but what about
something less trivial?

Persistent Data Structures [4] (not to be confused with a persistent storage)
are effectively immutable (see Listing 3, based on slide 56).

Note popped_front/back are const. They return the view of the data
with those operations applied: “what would you look like with the front
popped”. The underlying data is unpermuted, and any aliases to the
original full vector can still resolve. You can then have many views on the

A

RICHARD FALCONER
Richard Falconer is a C#/C++ developer with interests
in Security, UI design, and Juggling. He can be
contacted at richard@rjfalconer.com or @rjfalconer.

Li
st

in
g

1 class date
{
public:
 date(int year, int month, int day);
 int get_year() const;
 int get_month() const;
 int get_day() const;
 int set_year(int);
 int set_month(int);
 int set_day(int);
void set(int year, int month, int day);
private:
 ...
};
auto today = date(2015, 9, 15);
today.set_day(16);

class date
{
public:
 date(int year, int month, int day);
 int year() const;
 int month() const;
 int day() const;
};
auto today = date(2015, 9, 15);
today = date(2015, 9, 16);

Listing 2

template<typename T>
class vector
{
public:
 typedef const T * iterator;
 ...
 bool empty() const;
 std::size_t size() const;
 iterator begin() const;
 iterator end() const;
 const T & operator[](std::size_t) const;
 const T & front() const;
 const T & back() const;
 const T * data() const;
 vector popped_front() const;
 vector popped_back() const;
private:
 ...
 iterator from, until;
};

Listing 3
NOV 2015 | | 19{cvu}

same data, with no need to copy the full vector. (The vector returned from
popped_front is just the original vector with the internal iterator
modified to point to the 2nd element).

This all greatly simplifies the addition of threads. When people think
‘Threads’, they think ‘Locks’, yet locks just make your thread wait, and
all computers wait at the same speed. Even shared_ptr introduces
interlocked increments/decrements for all its reference counting
operations, but letting threads lose on a code base without sufficient const-
correctness is tantamount to releasing a pack of rabid dogs through your
code. Or has results similar to the times when you introduce a void* and
tell the compiler “hold my beer and watch this”.

 Some people, when confronted with a problem, think “I know, I’ll use
threads”, and then havthey e two prbolems.

With our immutable value-types and generous use of const this is all a
lot easier.

The solution is to compose from scratch without thinking about locks, and
thus be in a situation where your data is immutable or unshared, or both.
Kevlin recalls a consultancy job where introduction of one-way data-flow
and proper composition reduced the total number of locks used by the
system from 30,000 to 6.

Kevlin closes with some thoughts on memory management, which was a
problem apparently plaguing England even in the time of Shakespeare’s
plays:

Hamlet: From the table of my memory I'll wipe away all trivial fond
records.

Clearly Hamlet is a garbage-collection fan.

Ophelia: ’Tis in my memory locked, and you yourself shall keep the key
of it.

Whereas Ophelia prefers reference counting.

Memory management is especially significant here because of the
different consumers sharing the same state. Consider a referentially-
transparent list class such as Listing 4 (from slide 63).

This is much the same concept as the vector example but with all the
operations on front instead. Multiple lists are built up to form an inverted
tree structure, with the root node in the tree being the last element of all
lists (see Figure 1).

Kevlin demonstrated this with some entertaining audience participation,
with Nigel doing a good job of representing the dangling pointer.

The problems start when a list’s destructor runs on the leaf node of a long
chain. If the reference count of all nodes in that chain are just 1 they too
must run their own destructors:

 {
 list<anything> chain;
 std::fill_n(std::front_inserter(chain),
 how_many, something);
 } // What happens when we reach this brace?

So the destructors now run recursively, blowing up the stack very quickly
(even with small lists in the order of thousands of elements). As a result
we have to fallback to garbage-collection when working with these
referentially-transparent structures. Notably the Standard allows for
garbage collection, but that is a subject for another day.

Our thanks goes out to Oxford Asset Management (especially Charlie,
Charlotte, and Tom) for hosting us at their great venue and for providing
the buffet. Around 50 people attended; a new ACCU Oxford record.

More information
Kevlin’s slides: http://www.slideshare.net/Kevlin/functional-c

ACCU Oxford Meetup page: http://www.meetup.com/ACCU-Oxford/
events/223715720/

Any marks referenced herein are property of their respective owners and
used without permission but on a good faith basis that such use herein is
Fair Use. No claim of ownership or licensure of said marks is made herein.
Please see the respective owners for more information regarding said
marks.

References
[1] <?php echo date("M-d-Y", strtotime('2015-02-

30'));, although checkdate(2015,02,30) does at least return
false.

[2] A. Church, ‘A set of postulates for the foundation of logic’, Annals
of Mathematics, Series 2, 33:346–366 (1932).

[3] Referential transparency – https://en.wikipedia.org/wiki/
Referential_transparency_%28computer_science%29

[4] Persistent Data Structures – https://en.wikipedia.org/wiki/
Persistent_data_structure

template<typename T>
class list
{
public:
 class iterator;
...
std::size_t size() const;
 iterator begin() const;
 iterator end() const;
 const T & front() const;
 list popped_front() const;
 list pushed_front() const;
private:
 struct link
 {
 link(const T & value,
 std::shared_ptr<link> next);
 T value;
 std::shared_ptr<link> next;
 };
 std::shared_ptr<link> head;
 std::size_t length;
};

Listing 4
Fi

gu
re

 1
20 | | NOV 2015{cvu}

http://www.slideshare.net/Kevlin/functional-c
http://www.meetup.com/ACCU-Oxford/events/223715720/
http://www.meetup.com/ACCU-Oxford/events/223715720/
https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
https://en.wikipedia.org/wiki/Persistent_data_structure
https://en.wikipedia.org/wiki/Persistent_data_structure

Code Critique Competition 96
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I have some C code that tries to build up a character array using printf
calls but I’m not getting the output I expect. I’ve extracted a simpler
program from my real program to show the problem.

With one compiler I get "Rog" and with another I get "lburp@".

I’m expecting to see:

 "Roger: 10

 Bill: 5

 Wilbur: 12"

What have I done wrong?

Can you give some advice to help this programmer?

The code is in Listing 1.

Critiques

Mathias Gaunard < mathias@gaunard.com>

The main problem of this snippet is the ARRAY_SZ macro, meant to
compute the size of an array. This macro will accept pointers as input but
p rov i de t he wrong answer , i n t h i s c a se
sizeof(char*)/sizeof(char), which is the word size, 4 bytes for
32-bit systems. This explains why the result is "Rog" on some systems;
only 4 bytes were written, 3 characters plus the null byte.

With C++, it is possible to write a function that provides the same
functionality but that will lead to errors whenever pointers are passed, by
passing the array by reference and using templates to deduce its size:

 template<class T, size_t N>
 size_t array_sz(T(&)[N]) { return N; }

By using this function instead of ARRAY_SZ, we can easily isolate the
errors. One way to fix this is to modify process to also take the array by
reference.

 template<size_t N>
 void process(char (&buffer)[N]);

This will make the code work and display the expected result, however, it
still has an issue with how it handles the case where the buffer is not large
enough to hold all score listings. As we saw earlier, the code incorrectly
claimed that the buffer was word-size-sized, but it should still have always
given "Rog" as a result, and never "lburp@". snprintf can return a
negative value on failure, and returns the number of characters it would
have written if the buffer is not big enough. It is easy to trigger erroneous
output like "lbur" simply by hardcoding printed to (size_t)-1.

It is therefore necessary to do

 printed = min(printed, len)

to avoid writing past the end or before the start of the buffer. Alternatively,
one could use dynamically-sized buffers to not impose arbitrary limits,
which can be done easily by using C++ iostreams.

Other miscellaneous issues:

 _Score is a name reserved for the implementation, and should not
be used. All names starting with an underscore followed by an
uppercase letters are reserved. By using C++, the typedef/struct
becomes redundant anyway, so one should just use struct
Score.

 The type of the name member in Score should be const char*
rather than char*, since it is initialized from string literals, which
are const in C++, and shouldn’t be modified regardless since it is
undefined behaviour to do so.

 The first argument to printf should be a format, it is therefore
potentially dangerous to call printf(buffer) directly in case we
ever chose to put special characters in the score entries. Instead, one
should write printf("%s", buffer);.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <stdio.h>
#define ARRAY_SZ(x) sizeof(x)/sizeof(x[0])
typedef struct _Score
{
 char *name;
 int score;
} Score;

void to_string(Score *scores, size_t n,
 char *buffer, size_t len)
{
 for (size_t i = 0; i < n; i++)
 {
 size_t printed = snprintf(buffer, len,
 "%s:\t%u\n",
 scores[i].name, scores[i].score);
 buffer += printed;
 len -= printed;
 }
}
void process(char buffer[])
{
 Score sc[] = {
 { "Roger", 10 },
 { "Bill", 5 },
 { "Wilbur", 12 },
 };
 to_string(sc, ARRAY_SZ(sc),
 buffer, ARRAY_SZ(buffer));
}
int main()
{
 char buffer[100];
 process(buffer);
 printf(buffer);
}

Li
st

in
g

1

NOV 2015 | | 21{cvu}

Peter Sommerlad <psommerl@hsr.ch>

First of all, if a C program misbehaves, I suggest compiling it with a C++
compiler.

Sidenote: Well, that is what I would do and also I would highly recommend
to no longer use C at all. With the exception of very, very small targets in
the embedded area (8 bit controllers), decent C++ implementations should
be available and C should no longer be taught to students. It just lacks any
means of abstraction and is too hard to use correctly and even if it is, it is
too easy to break things by ‘maintenance’.

Now to the problem at hand. Our IDE Cevelop and my C++ compiler tells
me several problematic points, including the culprit of the underlying
issue.

Let us start our journey in main():

 int main()
 {
 char buffer[100];

The array line is something I wouldn’t have done in C++ at all and I was
recommending of not allocating arrays on the stack in C at all, if you can
not control the size written. Code like that is behind most security
vulnerabilities in the past decades. Cevelop (set to parse as C++14) will
claim

 Found C-Array: {0}

 Un- or ill-initialized variable found

The first note is that we try to rewrite code using plain arrays to use the
better and copyable alternative std::array instead (or std::string).
The second comes from our C++11 checker that looks for variables not
initialized with the initializer list syntax and transforms them. Even in C
code this might be a good idea, since the memory of buffer can contain
arbitrary values (only by luck some bytes are 0 if we use C-style string
handling in the general case).

Before we apply the quick fixes let us go further to the code of main().

 process(buffer);

Here an array is passed as a function argument and our student should know
that any array passed as such degenerates to a pointer to the first element
and the dimension of the array is lost. This is still true in C++ and therefore
I recommend to never use a plain array as a function parameter or as an
argument. It just works without any safeguards and having a programmer
deal with array bounds checking explicitly is very error prone and again
leads to another big share of software vulnerabilities.

 printf(buffer);

Even the innocent looking last line is problematic. The printf function
takes at least one char pointer argument, but interprets its content. Since
we will not know what content our process function is storing in the buffer
array, we do not know if printf would be expecting more arguments,
because buffer contains any special printf formatting symbols, such as
"%s", for example. This could lead to leaking unintended information or
in the better case to program crashes, because of illegal memory addresses
accessed. I t is a s imilar problem as with the XKCD comic
(https://xkcd.com/327/) with printf syntax instead of SQL.

A better C function to output a plain C string would be

 puts(buffer);

instead, which at least just expects buffer to be NUL terminated.

Wow, a full screen full of text with just 3 lines of code. Roger selected a
good example this time!

Now let us look one step down in the call chain to process:

 void process(char buffer[])

as said above, this array parameter is equivalent to writing it as a pointer
parameter

 void process(char *buffer)

and that will make the real error below (stay tuned) much more evident.

{
 Score sc[] = {
 { "Roger", 10 },
 { "Bill", 5 },
 { "Wilbur", 12 },
 };

The lines above again triggers two messages, one from our plug-in and one
from the C++ compiler:

 Found C-Array: {0}

 ISO C++ forbids converting a string constant to 'char*'

The first one tells us again that plain arrays should be verboten. We can
automatically change that to use std::array<Score,3> instead, but that
would be C++ already. The second warning tells us something about the
differences between C and C++, where C++ makes string literal const char
arrays, whereas classic C made those char pointers (even without const,
which wasn't invented then). So in theory, one could overwrite the literal
values for the names given here. This also tells something about the type
Score that keeps plain char pointers and no size information. In production
code, this is a no-no, because you can not make any safe memory
management around such a string representation.

And now to the definitive culprit.

 to_string(sc, ARRAY_SZ(sc),
 buffer, ARRAY_SZ(buffer));
 }

ARRAY_SZ(buffer) expands to

 sizeof(buffer)/sizeof(buffer[0])

and this generates the compiler warning:

'sizeof' on array function parameter 'buffer' will return size of 'char*'
[-Wsizeof-array-argument]

which we can compute on a 64 bit computer to become 8 instead of the
100 our student expected and the equivalent of the array with the pointer
makes it obvious. to_string is by the way a bad name for new code,
because it is now a function overload in C++’s std namespace and could
make problems, when this code is naively ported to C++ with a using
namespace std in scope (BTW, Cevelop provides a refactoring away from
such practice). Cevelop also suggest to change the macro for ARRAY to a
C++ inline (template) function and can do so. In addition this will avoid
the potential bug, since the macro is not having parenthesis around its
expansion and not around the second use of the parameter. This can cause
parsing havoc if used with non-literals as arguments.

So a more correct version of

 #define ARRAY_SZ(x) sizeof(x)/sizeof(x[0])

would be

 #define ARRAY_SZ(x) (sizeof(x)/sizeof((x)[0]))

but even better in C++11:

 template<typename T1>
 inline constexpr auto ARRAY_SZ(T1&& x) ->
 decltype(sizeof (x) / sizeof (x[0]))
 {
 return (sizeof (x) / sizeof (x[0]));
 }

But again that is to no avail in the correct working of process. There are
several problems to be resolved with its design. First, passing the buffer
from the outside, requires cautions use of its memory resource, so we need
to pass the size of the available space. But there is still a problem, we do
not know, if the size was sufficient or not. In such a case, it might be better
to return an indication if the size was sufficient. This could be a bool,
denoting success (not very helpful), the size actually used and an error
code, if insufficient (i.e., -1) or best, the size required for the output, if it
was too small, which could be a burden to implement and to use. In any
case, passing in memory (buffer) to be used as function output is a hassle.
In C++ I would recommend to use an ostringstream which will
22 | | NOV 2015{cvu}

https://xkcd.com/327/

automatically expand an underlying string object and return that by value.
This is one area where C is really a burden vs. C++.

It is also unrealistic, that the Score array sc is local to the function, so
this must be passed as well, again explicitly passing its size, meaning we
need define 4 parameters and pass 4 interdependent arguments. Using a
std::vector<Score> in C++ would simplify that again.

Now to the last function in the code where the student actually shows, that
she/he understands a bit about passing arrays as pointers with an explicit
size. But again, such an API (inherent in C) is easy to use wrongly (as we
have seen) by passing inconsistent sizes. Also a return type of void signals
side effects, the code can have quite unintended ones.

 void to_string(Score *scores, size_t n,
 char *buffer, size_t len)
 {
 for (size_t i = 0; i < n; i++)
 {
 size_t printed = snprintf(buffer, len,
 "%s:\t%u\n",
 scores[i].name, scores[i].score);
 buffer += printed;
 len -= printed;
 }
 }

Again, here C gets in the way of safe usage of memory. First snprintf’s
return type is int, and there are obscure cases, where it might return a
negative number. Second, if the space allowed is too small, it still returns
the number of characters that would be needed, so the code will
miscalculate the value of len, which might underflow. While underflow
and overflow does not trigger undefined behaviour with unsigned types,
such as size_t, the resulting value is still well beyond the capacity of the
buffer and thus can easily lead to overwriting memory far away from the
allotted memory, resulting in another severe security issue or potential
crashes from overwriting return addresses.

A quick fix, would be to at least check if printed is smaller than len and
only then proceed and otherwise return from the function.

 if(printed >= len) return;

I think I covered most of the problems by now. So how would a refactored
C++ version look?

Here is one, that uses the recommendation I put above and getting rid of
most of the bad C habits. Its overall design is still not what I consider
splendid, but without more context it would be hard to judge if Score
should have a constructor, be const or have member functions/related
functions, such as an overloaded output operator<<.

 #include <cstdio>
 #include <sstream>
 #include <vector>
 struct Score
 {
 std::string name;
 int score;
 };
 using ScoreList=std::vector<Score>;
 std::string to_string(ScoreList const &scores)
 {
 std::ostringstream out{};
 for (auto const &score:scores)
 {
 out << score.name << '\t'
 << score.score << '\n';
 }
 return out.str();
 }
 std::string process()
 {
 ScoreList sc {
 { "Roger", 10 },
 { "Bill", 5 },

 { "Wilbur", 12 },
 };
 return to_string(sc);
 }
 int main()
 {
 std::puts(process().c_str());
 }

Hope that helps some programmers to become better programmers and
write less code.

Gareth Ansell <gareth.ansell@sky.com>

While trying to solve this puzzle I was initially tempted to dive straight
for the compiler and start hacking away at the code. However, I managed
to resist this urge and engaged brain instead. After which the solution was
quite easy to spot. I then modified the code to test my hypothesis, which
was proved correct.

The initial problem is in the process() function, where the buffer array
is passed as an argument. Since this is decomposed to a pointer, it is not
possible for the subsequent call to the to_string() function to
determine the size of buffer[] by using sizeof (in the ARRAY_SZ
macro).

In C the solution to this is to add a length parameter to the process()
function, and use this in the call to to_string(). In C++, a templated
solution could be used.

Apart from this there are a few minor niggles:

1. In _Score score is an int, but in the call to snprintf it is
referenced as an unsigned.

2. The last element of the sc[] array in process[] has a trailing
comma

3. The for loop in to_string() compares a signed to unsigned
int.

My working solution is shown below:

 #include <stdio.h>
 #define ARRAY_SZ(x) sizeof(x)/sizeof(x[0])
 typedef struct _Score
 {
 char *name;
 unsigned int score;
 } Score;
 void to_string(Score *scores, size_t n,
 char *buffer, size_t len)
 {
 for(unsigned int i = 0; i < n; i++)
 {
 size_t printed = snprintf(buffer, len,
 "%s:\t%u\n",
 scores[i].name, scores[i].score);
 buffer += printed;
 len -= printed;
 }
 }
 void process(char buffer[], size_t len)
 {
 Score sc[] = {
 { "Roger", 10 },
 { "Bill", 5 },
 { "Wilbur", 12 }
 };
 to_string(sc, ARRAY_SZ(sc), buffer, len);
 }

Matthew Wilson <stlsoft@gmail.com>

This one is rather simple, I think: it’s an issue of array->pointer decay.

The ARRAY_SZ() macro follows a familiar pattern in many codebases,
used to fill the obvious missing dimensionof() operator that should
NOV 2015 | | 23{cvu}

exist in C (and C++). It works by creating a compile-time constant
representing the number of elements in an array by dividing the total size
of the array by the size of an element. Works fine for arrays.

The problem is, it also works for pointers and, in C++, for types defining
the subscript operator. And in such cases the sizes obtained is almost never
correct (and sometimes not compile-time constant). This is all discussed
at length in chapter 14 – Arrays and Pointers – of my book Imperfect C++
[1], so I won’t belabour the point here.

Also discussed in the same chapter of IC++ is the phenomenon of array-
pointer decay. Briefly, it allows an array to be used in circumstances where
a pointer is required. Also, a function declaration involving an array is
interpreted, in a similar vein, as a pointer. Hence, the declaration of
process() as

 void process(char buffer[])

is exactly equivalent to the declaration

 void process(char* buffer)

Expressed in this form, the problem is all too easy to see. The size of
ARRAY_SZ(buffer) is going to be 4 (32-bit) or 8 (64-bit), and certainly
not the 100 of the actual buffer buffer declared in main().

The obvious fix is to change process() to have the signature

 void process(char* buffer, size_t len)

which is hinted at strongly in the earlier defined to_string().

When so amended – along with some const-correction, VC++
compatibility, and use of STLSoft’s STLSOFT_NUM_ELEMENTS()
(which makes application of ARRAY_SZ() to a pointer a compile-time,
rather than runtime, error) – the code looks like:

 #include <stlsoft/stlsoft.h>
 #include <stdio.h>

 #if defined(_MSC_VER)
 # define snprintf _snprintf
 #endif
 #define ARRAY_SZ(x) STLSOFT_NUM_ELEMENTS(x)
 typedef struct _Score
 {
 char const* name;
 int score;
 } Score;
 void to_string(Score const* scores, size_t n,
 char *buffer, size_t len)
 {
 for (size_t i = 0; i < n; i++)
 {
 size_t printed = snprintf(buffer, len,
 "%s:\t%u\n",
 scores[i].name, scores[i].score);
 buffer += printed;
 len -= printed;
 }
 }
 void process(char* buffer, size_t len)
 {
 Score const sc[] = {
 { "Roger", 10 },
 { "Bill", 5 },
 { "Wilbur", 12 },
 };
 to_string(sc, ARRAY_SZ(sc),
 buffer, len);
 }
 int main()
 {
 char buffer[100];
 process(buffer, ARRAY_SZ(buffer));
 printf(buffer);
 }

Reference
[1] Imperfect C++, Matthew Wilson, Addison-Wesley, 2004.

James Holland <James.Holland@babcockinternational.com>

My compiler did not provide any helpful hints as the student’s program
compiles without any errors or warnings. When I ran the program, "Rog"
was displayed as the student observed. After a little investigation, I find
that the problem is in the parameter of process. I suspect than the student
is under the impression that an array is being passed to process, after all
the type of the parameter, char buffer[], looks like an array
declaration. Unfortunately, despite its looks, the parameter type is
equivalent to char * buffer. When the latter declaration is used, it
becomes clear that a pointer to buffer is being passed to process and
not buffer itself. From within process, it is the size of the pointer that
is passed to to_string and not the size of buffer. On my machine,
pointers are 4 bytes in length and so the value 4 is being passed to
to_string. This explains why the program outputs "Rog". The function
to_string, and ultimately snprintf, thinks that buffer is only 4
characters long, enough for three characters and the null terminator.

Unfortunately, it is not possible to pass to a function an array by value.
Only a pointer to an array can be passed. This presents no great difficulty,
however. If in addition to passing a pointer to the array, the length of the
array is passed, process will have all the information it needs about
buffer. Within process, the length of the output buffer can be passed
straight to to_string as shown below.

 void process(char * buffer, size_t length)
 {
 Score sc[] = {{"Roger", 10}, {"Bill", 5},
 {"Wilbur", 12},};
 to_string(sc, ARRAY_SZ(sc), buffer, length);
 }

When this modification is made, things look a lot better and the program
produces the desired result. There are, however, some unresolved
problems than could manifest themselves in the student’s real program.

It is assumed that the student is using snprintf (as opposed to sprintf)
because he/she does not want data to be written beyond the limits of
buffer. This is a laudable desire but unfortunately the code, as it stands,
does not provide that protection in general. There is still a potential
problem when the size of the data to be written exceeds the size of buffer.
This is demonstrated more conveniently if the size of buffer is reduced
instead of increasing the size of the data.

Suppose, for example, that instead of buffer being declared 100
characters long, it had been declared 17 characters long. The program
would correctly write to buffer the string representing the data for Roger.
snprintf returns the length of the string (not including the null
terminator) that it attempts to write, in this case, 10 characters. This value
is assigned to the variable printed. This value is then subtracted from
len (that currently has a value of 17) leaving 7. The program then attempts
to write the data for Bill. This string is 8 characters long. The program (or
more specifically snprintf) writes as much of the data to buffer as it
can without overflowing buffer. Although the output string has been
truncated, nothing disastrous (as far as program execution is concerned)
has occurred. Next, the length of string for Bill is subtracted from len.
The value of len is currently 7 and the length of the string for Bill is 8
characters. The subtraction to be performed is, therefore, 7 minus 8. This
is where problems start. The variables printed and len are both of type
size_t (an unsigned type). The result of the subtraction is not -1, as
expected, but a very large positive number. On my machine the value of
len at this point is 4294967295. The program then goes around the loop
once more to write the data for Wilbur and, thinking there is plenty of space
in buffer (because len is a large number), writes Wilbur’s string beyond
the end of buffer, probably with disastrous consequences.

This behaviour can easily be prevented by inserting the following code just
after the snprintf statement. It will prevent the program going around
the loop again when buffer is full and will also print a message explaining
the problem.
24 | | NOV 2015{cvu}

 if (printed >= len)
 {
 printf("Buffer exhausted. Results may be "
 "incorrect.\n");
 break;
 }

While on the subject of buffer length, there is another problem that occurs
if buffer is declared as having zero size. I admit this is unlikely to occur
in an otherwise fully debugged program but there is, at least, a theoretical
point to be made here. An array of zero bytes will have an address, so it
can be referenced. Such an array will, in all probability and not
unreasonably, occupy zero bytes of memory. Given this, printf (as used
in the last statement of main) will start printing at a memory location that
has nothing to do with buffer. It could print anything of any length,
depending on what data it stumbles across. This behaviour must be
prevented if there is any possibility of buffer being of zero length. A
simple if statement around printf would suffice. I leave the details to
the student.

There is another problem with the printf statement; it is being used in
a potentially unsafe way. printf is declared (in stdio.h) as having one
or more parameters. The first parameter is a format control string. The
student’s printf statement has one parameter only and so the parameter
must be the control string. It can be seen from an inspection of the printf
statement that the control string is the contents of buffer. The contents
of buffer came originally from the array sc. If one of the names in sc
were to be changed, say, from "Roger" to "%sRoger", the program will
probably crash in spectacular fashion. This is because printf’s format
control string now says there is a string parameter to be printed despite
there not actually being one. The result is undefined behaviour. To prevent
this, a literal string should be supplied as the format control string and the
string to be printed (in this case buffer) supplied as the second parameter
as shown below.

 printf("%s", buffer);

printf will now simply print the contents of buffer without
interpreting any characters sequence as format control characters, as
required.

Although it does not show itself in the student’s test program, there is
another potential problem lurking in the wings. It is the definition of the
macro ARRAY_SZ. Suppose the student decides to make use of this macro
somewhere else in his or her code. The student may write something like
the following statement, for whatever reason.

 size_t x = 25 % ARRAY_SZ(sc);

Let us assume that sc is the same array as defined in the student’s test
program. ARRAY_SZ(sc) should, therefore, produce the value 3. The
expression becomes 25 % 3 which is equal to 1. The variable x should,
therefore, be initialised with the value of 1. In fact x is assigned a value of
0, contrary to all expectation. How can this be? All becomes clear if the
macro is expanded to produce the expression seen by the compiler, as
illustrated below.

 size_t x = 25 % sizeof(sc) / sizeof(sc[0]);

The expression will be evaluated from left to right. So the first term that
is evaluated is 25 % sizeof(sc) or 25 % 24 which equals 1. Next, the
term sizeof(sc[0]) is evaluated, this equals 8. Finally, 8 is divided into
1 giving zero. It can now be seen that brackets are required around
sizeof(sc) / sizeof(sc[0]) so that this part of the expression is
evaluated first. This is achieved by enclosing the definition of
ARRAY_SZ(x) in parentheses.

 #define ARRAY_SZ(x) (sizeof(x)/sizeof(x[0]))

In fact it is good practice to enclose the definition of all but the simplest
macros in parentheses to prevent this type of error.

There are a couple of inconsistencies in the program. Score::score is
of type int and yet it is being printed by snprintf as if it were unsigned.

Assuming Score::score is meant to be signed, then snprintf’s
format control string should be "%s:\t%d\n".

Also, quoted text strings are considered constant and yet Score::name
is declared as a pointer that can modify what it is pointing to. The
declaration const char * name provides the remedy. This will prevent
accidentally attempting to write to a constant string as a compile-time error
will result.

I noticed that the student provided a tag name when defining the Scores
structure by use of a typedef statement. A structure need only have a tag
name when the structure makes reference to pointers of the same type. This
is not the case in the student’s program and so the tag name is not required.
Incidentally, it looks as if the student has made an attempt to prevent the
tag name from clashing with the type name by use of a leading underscore
character. This is not necessary as the two names are in different ‘name
spaces’. The tag and the type could both be named Score.

There is a redundant comma at the end of SC’s initialiser list. The compiler
is perfectly happy with this and it does not affect the meaning of the
program. It is allowed, at least in part, to make the job of automatic code
generators a little easier. However, as it is not required, I prefer not to see
a trailing comma in hand-written code.

Finally, it might be constructive to discuss the choice of variable names.
To some degree this is a matter of personal style but there are some
guidelines that should be observed. The names of variables (and other
identifiers) should reflect their meaning and should not be excessively
abbreviated. I would prefer to see length_of_buffer rather than len
and expected_print_length rather than printed, for example.
Selecting suitable names can be quite tricky and I am not suggesting my
examples are ideal but I do think they help in understanding how the
program works.

I have made quite a few corrections and suggestions in reviewing the
student’s code. This should not be seen as a damning criticism designed
to dishearten the student. On the contrary, it is designed to encourage the
student to complete his or her project in particular and to continue to learn
about the fascinating topic of computer programming and software
development in general.

Commentary
With five pretty comprehensive entries I’m not sure there’s much for me
to add. About the only thing no-one remarked on was the inconsistent brace
positioning!

It seems a shame that snprintf() doesn’t provide a foolproof safe
replacement for sprintf() – examples like this code show how easy it
is, given the variety of return values and the dangers of implicit conversion
between signed and unsigned integer values, to use snprintf() in an
unsafe way.

One additional point that might be worth making is that Visual Studio 2015
does provide snprintf() in <stdio.h> (although I haven’t yet found
where this is documented on MSDN.) This function seems to follow the
behaviour required by the C11 standard. However, the Microsoft specific
function _snprintf() is subtly different; in particular it does not ensure
the target buffer is null terminated. This is an additional source of
potentially dangerous confusion around this function call. Even beyond
that, the implementation of snprintf() in the mingw implementation
of g++ 4.9.2 on Windows also fails to ensure the buffer is null terminated.

The moral of this critique is to be extremely careful if you use
snprintf() in C code – or in C++.

The Winner of CC 95
There were five good critiques and I think each one would have helped the
person with the original problem to understand what was wrong and to fix
it. However, I think Peter’s critique covered the most ground and I have
awarded him the prize for this issue’s critique.
NOV 2015 | | 25{cvu}

Code Critique 96
(Submissions to scc@accu.org by Oct 1st)

Thanks are due to Hubert Matthews for the idea that inspired this critique.

I have written some code to read in a CSV file and handle quoted strings
but I seem to get an extra row read at the end, not sure why.

If I make a file consisting of one line:

--- Book1.csv ---

word,a simple phrase,"we can, if we want, embed commas"

--- ends ---

I get this output from processing the file:

 Rows: 2
 Cells: 3
 word
 a simple phrase
 "we can, if we want, embed commas"
 Cells: 1

What have I done wrong?

The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

// Reading CSV with quoted strings.
#include <iostream>
#include <string>
#include <vector>

typedef std::string cell;
typedef std::vector<cell> row;
typedef std::vector<row> table;

table readTable()
{
 char ch;
 table table; // the table
 row *row = 0; // the row
 cell *cell = 0; // the cell
 char quoting = '\0';
 while (!std::cin.eof())
 {
 char ch = std::cin.get();
 switch (ch)
 {
 case '\n':
 case ',':
 if (!quoting) {
 cell = 0;
 if (ch == '\n') {
 row = 0;
 }
 break;
 case '\'':

Li
st

in
g

2

 case '"':
 if (quoting == ch) {
 quoting = '\0';
 }
 else if (!cell) {
 quoting = ch;
 }
 }
 default:
 if (!row) {
 table.push_back({});
 row = &table.back();
 }
 if (!cell) {
 row->push_back({});
 cell = &row->back();
 }
 cell->push_back(ch);
 break;
 }
 }
 return table;
}

int main()
{
 table t = readTable();

 std::cout << "Rows: " << t.size() << "\n";
 for (int r = 0; r != t.size(); ++r) {
 std::cout << "Cells: "
 << t[r].size() << "\n";
 for (int c = 0; c != t[r].size(); ++c)
 {
 std::cout << " " << t[r][c] << "\n";
 }
 }
}

Listing 2 (cont’d)
26 | | NOV 2015{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://www.accu.org/journals/

NOV 2015 | | 27{cvu}

Robert Martin: An Interview
Emyr Williams continues the series of interviews with people

from the world of programming.

obert Martin (known as Uncle Bob) is a household name in
computing. He’s one of the original signatories of the Agile
Manifesto (www.agilemanifesto.org) and also has a video blog that

can be found here (link). He’s been developing software for over forty
years, and regularly speaks at international conferences. I happened to
bump in to him at the ACCU conference last year, and he was kind enough
to agree to be interviewed.

When did your interest in computing first start? Was it a sudden interest, or
did it grow over time?

It was very sudden. My mother bought a plastic computer for my
12th birthday. Digi-Comp-I. It was a mechanical three-bit finite
state machine with three flip-flops and six and gates. The machine
fascinated me. It was the first machine I ever programmed.

I was at the ACCU conference this year in April, and you started your
lightning talk with a quick discourse on water, and what made it and so on.
I am curious as to why you started your talk like that? Is it something you’ve
always done?

Twenty years ago, or so, I was teaching C++ quite frequently.
Getting people to sit down and stop talking after breaks was
difficult. So I started talking about science for 5 minutes. I found
everyone stopped talking immediately and listened. Since then it’s
become a trade-mark of mine.

What was the first computer program that you ever wrote? Which language
did you use to write it in?

The program was called: “Mr. Patterson’s Computerized gate.” It
was an instance of a three bit finite state machine that ran on my
Digi-Comp-I computer. I was very proud of it at age 12.

Programming has come such a long way over the last few decades;
programming languages and techniques have changed along with it - what
would you say are the best things that have happened to programming; and
conversely, what do you think are the worst?

Actually, I disagree with the premise. Very little has happened in
software over the last 40 years. The code written today is roughly
the same as the code written 40 years ago. If statements, while
loops, and assignment statements.

All the major paradigms of software, Structured, OO, and
Functional, were invented between the years 1957 and 1968. There
has been very little new added since then.

Our hardware has advanced miraculously. But our software has
changed very little. A programmer from 1970 could read and write
the code of today without much help. And if you took a modern
programmer and transported him back to 1970, he’d be able to write
the code without a lot of coaching.

I follow you on Twitter; fairly recently, there was talk of Test Driven
Development being dead and that there seems to be a shift towards

behaviour driven development. Would you say that TDD’s days are
numbered?

I do not. I think TDD is still a growing practice. More and more
people are adopting it, in spite of the “dead” meme. I believe TDD
will eventually become a practice as important and universal to
software developers and hand washing is to surgeons.

What would you say is the best piece of advice you’ve ever been given as
a programmer?

I wish I’d had someone to advise me in my earlier years. I had to
learn what not to do by myself. If I could give advice to those who
follow me, it would be: “The only way to go fast, is to go well. Go
well in small steps.”

Have you ever had a Eureka moment when you’re coding or debugging?
Could you tell us a little bit more about it?

Eureka moments are more common in the shower, or driving home
from work. There have been many, over the years. There have been
times that I was half-way home from work and had to turn around to
try my “Eureka” idea.

Did you have a mentor when you started programming? How did they make
a difference to how you wrote your computer programs?

I wish I’d had a mentor. What I had were books. Lots of books. At
first they were the programming language manuals like Daniel D.
McCracken’s Fortran IV manual, and Kernighan and Ritchie’s “The
C Programming Language”. Later I read books by Yourdon,
Constantine, Demarco, Plauger, Booch, etc. Then, of course, came
the books by Beck, Fowler, et. al.

Based on your experience, what would you say divides the truly great
programmers from the average programmers?

Great programmers take their time, and do much with little.
Average programmers rush and do little with much.

A lot is said about elegant code today, and indeed you wrote a book on clean
coding - what would you regard as the most elegant code you’ve seen?

JUnit would be a candidate. So would the malloc/free
implementation in Kernighan and Ritchie. But, above all those is
the code in “The Structure and Interpretation of Computer
Programs” by Abelson and Sussman. That stuff blew my mind.

If you could go back in time and meet yourself when you started, what would
you tell yourself?

Slow down. Don’t rush. Get help often.

Finally, what advice would you give to anyone whether adult or kid, who’s
looking to start computer programming?

It’s a passion. Don’t do it unless you love it. When I was a young
programmer my friends and I would say to each other: “It’s a good
thing they pay us to write code; otherwise we’d have to pay them.”
And we would have. That’s the kind of love of the art you need.

 R

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?

28 | | NOV 2015

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

The CVu publication date comes
round again. It seems like only yesterday that I
was writing the piece for the last issue.

In that piece I mentioned that the Call for Papers
for the 2016 ACCU Conference would be out in
October. Well it’s out now and you can find it at
http://accu.org/index.php/conferences/
accu_conference_2016/
accu2016_call_for_sessions.

I really would encourage readers to consider
presenting a paper at the conference. I know for
sure that there is a wealth of experience in the
membership, it’s just struggling to get out and be
shared. Both 90 minute and 15 minute slots are
available, and, of course, there are also the
highly entertaining and enlightening five minute
‘lightning talks’. The deadline for the
submission of proposals is Friday 13th
November – an auspicious date, perhaps!

Confirmed keynote speakers are Andrei
Alexandrescu and Jim Coplien (aka ‘Cope’).
The remaining two keynote speakers will

probably have been announced by time your
copy of CVu arrives. The conference runs from
Wednesday 20th April to Saturday 23rd April,
inclusive, and there are pre-conference tutorials
and workshops the day before Conference starts,
Tuesday 19th April. Get those dates into your
diary for next year now, before you forget...

On a different note, we are starting to get
occasional requests from recruiters for
confirmation of candidates’ ACCU
membership. Now, we are, of course, happy that
members put down their membership of ACCU
on their CVs. However, whether we are
authorised to confirm it, and possibly give
information about how long you’ve been a
member, to a third party, is something of a grey
area.

So, to clarify things, if you do know that a
confirmation is going to be required, please drop
a line to the membership secretary, Matthew
Jones, email: accumembership@accu.org,
confirming that we have your permission to
provide the information. If we haven’t already
got your permission, we will try to drop you a
line requesting it. Your email info is up to date,
of course. Isn’t it?

Oh! And incidentally, do make sure your
membership hasn’t expired, and won’t be
expiring during lifetime of your CV. It’s really
embarrassing to have to tell the recruiter that the
candidate is, in fact, no longer a member...

Finally, something that might be of interest to
members. August 13th this year was the
bicentenary of the birth of Ada Lovelace, and to
celebrate it, the Science Museum has a free
exhibition about her. The exhibition brings
together portraits, letters and notes, as well as
Babbage’s Difference and Analytic Engines. If
you live in London, or you’re visiting, it looks
like it might well be worth seeing (see http://
www.sciencemuseum.org.uk/visitmuseum/
Plan_your_visit/exhibitions/ada-lovelace). I
certainly intend to take a look, so perhaps I’ll see
you there. The exhibition runs until 31st March
2016.

Well, that’s about all there is to tell you about for
this issue, since it’s fairly quiet at the moment...
In the meantime, I look forward to seeing the
proposals for conference sessions flooding in!

Enjoy your programming,

Standards Report
Jonathan Wakeley reports on developments in C++.

’m writing this report at Heathrow airport, about to fly out to
Kona, Hawaii, for the C++ standards meeting. By the time you
read this the C++ committee and the C committee will both have

finished their Kona meetings (which run back to back) so expect to see
news from those meetings in my next report. Although going to Kona
sounds exciting, the C++ committee have well over 100 papers to discuss
during the week and I don’t expect to see much outside the meeting rooms.
I wonder if the C committee have a more relaxed schedule and can enjoy
the nice location, and if I’m on the wrong committee!

Since my last report for CVu there haven’t been any face-to-face meetings,
but the pre-meeting mailing [1] for the C++ meeting has lots of papers.
The sharp-eyed will notice a change in the naming scheme for papers.
From now on N-numbers will only be used for official ISO documents such
as meeting notices, agendas and minutes, and working drafts and project
editors’ reports. The informal proposals and position papers will get a P-
number, with a suffix indicating whether it is a revision of an earlier paper.

The mailing includes a new working draft for ‘Ranges’ [2], which I
mentioned in my last report [3]. The lengthy email discussions on the
std::experimental::variant design have abated, but there are
several papers in the mailing about variant and it will be a hot topic during
the Kona meeting. At the end of the Kona meeting the Networking
proposal [4] should be in good shape to turn it into a working draft, which
is the next step towards publishing a TS. There is a proposal to add the
content of the Parallelism TS to C++17, which will no doubt be discussed
in Kona too.

Apart from the upcoming meeting, the other big C++ news is the
announcement at CppCon of the ‘C++ Core Guidelines’ [5] which are a

set of (still evolving) coding guidelines intended to encourage people to
use the modern, safe features of the language. Part of that also requires
discouraging people from using the dark corners of the language which are
still part of the standard but have no place in most code. Accompanying
the guidelines will be an open-source library providing a set of useful
vocabulary types and utilities to help follow the guidelines, and a static
analysis tool to check that code conforms to the guidelines. Keep your eyes
peeled for these soon.

References
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

#mailing2015-09
[2] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

p0021r0.pdf
[3] CVu 27-4, September 2015
[4] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/

p0112r0.html
[5] https://isocpp.org/blog/2015/09/bjarne-stroustrup-announces-cpp-

core-guidelines

 I

JONATHAN WAKELY
Jonathan’s interest in C++ and free software began at university and
led to working in the tools team at Red Hat, via the market research and
financial sectors. He works on GCC’s C++ Standard Library and
participates in the C++ standards committee. He can be reached at
accu@kayari.org

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/#mailing2015-09
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/#mailing2015-09
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0021r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0021r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0112r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0112r0.html
https://isocpp.org/blog/2015/09/bjarne-stroustrup-announces-cpp-core-guidelines
https://isocpp.org/blog/2015/09/bjarne-stroustrup-announces-cpp-core-guidelines
http://accu.org/index.php/conferences/accu_conference_2016/accu2016_call_for_sessions
http://accu.org/index.php/conferences/accu_conference_2016/accu2016_call_for_sessions
http://www.sciencemuseum.org.uk/visitmuseum/Plan_your_visit/exhibitions/ada-lovelace
http://www.sciencemuseum.org.uk/visitmuseum/Plan_your_visit/exhibitions/ada-lovelace
http://www.sciencemuseum.org.uk/visitmuseum/Plan_your_visit/exhibitions/ada-lovelace

	CVu_27-5.pdf
	Selective ignorance
	Bug Hunting
	Building C & C++ CLI Programs with the libCLImate Mini-framework
	Raspberry Pi Linux User Mode GPIO in C++ (Part 3)
	One Definition Rule
	Functional Programming in C++
	Code Critique Competition 96
	Robert Martin: An Interview
	View from the Chair

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

