

SEP 2015 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Developing programs
started thinking about how the act of writing software
became known as ‘development’. It turns out that
the etymology of the word develop comes from

the old French desveloper, meaning to unwrap or
reveal (etymonline.com is a good resource for this
sort of thing). I like the connotations associated with
‘reveal’. I’ve also heard people compare software
development with the art of sculpture, with particular
reference to the idea attributed to Michelangelo: “Every
block of stone has a statue inside it and it is the task of the
sculptor to discover it.”

I’m fond of (sarcastically) remarking that writing code is the
art of adding defects to an empty text file, but even that
captures a similar concept of revelation. Of course an empty
text file has no bugs in it – and it may even compile
successfully! – but it’s unlikely to satisfy a requirement,
or pass a test.

It’s this latter sentiment that really captures my
imagination: that writing tests can reveal requirements,
and these are then ‘carved out’ by the implementing code.
This holds only if the code is being written test-first of
course, and so if the real code is being written up front, then
it too is being used as the tool to reveal the real requirements. The arguments used by
the TDD community strikes a real chord here: driving the design with tests is more
than just a way of having the tests in place; it also allows us to explore the design, and
‘reveal’ the underlying statue in the stone.

Perhaps in the end the TDD approach is more like the old-school development of
photographs, which again is a process concerned with revealing the picture on the
paper. The skill of the photographer in properly framing and exposing a picture might
be likened to analysis of a given problem. The skill of the developer then is like that
of the, er, developer in applying the right chemicals under very specific conditions to
correctly reveal the photographer’s original vision. Like the modern analyst and
programmer, photographer and developer might very well be the same person. But I
mustn’t stretch this one too far, since these techniques are becoming out-dated by
modern digital photography. Which leads finally to the question: will our skills as
programmers be one day superseded in a similar way?

I
Volume 27 Issue 4
September 2015

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Thaddaeus
Frogley, Christopher Gilbert,
Pete Goodliffe, Ralph McArdell,
Gail Ollis, Roger Orr, Jonathan
Wakely, Matthew Wilson

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2015

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Standards Report

Jonathan Wakely
reports the latest on
C++17 and beyond.

20 Code Critique Competition
Competition 95 and
the answer to 94.

21 Inspirational (P)articles:
Use the DOM Inspector
Silas Brown shares
a tip for debugging
web pages.

22 What do people do all day?
Christopher Gilbert
shares his routine in
a software house.

REGULARS
24 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 27.5 1st October 2015
C Vu 27.6: 1st December 2015

Overload 130:1st November 2015
Overload 131:1st January 2016

FEATURES
3 The Very Model of a Model Modern Programmer

Pete Goodliffe asks what defines you as a
programmer.

4 Refactoring Guided by Duplo
Thaddaeus Frogley gets to grips with duplicated
code.

5 Ode to the BBDB
Silas S. Brown remembers different ways of
managing email contacts.

6 Anatomy of a CLI Program written in C++
Matthew Wilson dissects a small program to examine
its gory details.

11 The Cat’s Meow
Gail Ollis reports from the App-a-thon World Record
attempt.

13 WattOS R9 Worth Knowing About
Silas S. Brown recycles some old hardware with a
new OS.

14 Raspberry Pi Linux User Mode GPIO in C++ (Part 2)
Ralph McArdell continues developing a C++ library
for Raspberry Pi expansions.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

SEP 2015 | | 3{cvu}

The Very Model of a Model Modern Programmer
Pete Goodliffe asks what defines you as a programmer.

rogrammers deal in the concrete, defining unambiguous definitions,
interfaces, and recipes. Our stock and trade is to make the abstract
explicit, to tease a functional specification out of ambiguous

requirements, and to then implement it faithfully and transparently. Even
when crafting abstract interfaces we’re making that abstraction explicit by
defining them.

Programmers define things. So then, how do programmers define
themselves? There’s got to be more to it than:

 Programmer (n) /'prǝʊgramǝ/ one who writes programs.

I was considering just this question when I read an article describing how
your spending habits define who you are. You can look at how a person,
or a family unit, spends money to see how they set their priorities, find
fulfilment, the activities they enjoy and how they accomplish their day-to-
day tasks.

Spend a thought
Someone who doesn’t know you can look at your bank account, or credit
card statement, and will very quickly build a picture of what motivates you,
where your heart and interests lie.

With a little intuition it would become clear what quality of life you enjoy:
whether you’re comfortable and have resources to spare, or are struggling,
only just getting by. They’d build a picture of your interests and hobbies,
and learn what you value by the things purchased. Do you tend to buy for
yourself, your family, or for others? Do you buy into certain styles, cliques,
or feel the need to confirm to certain stereotypes? Are luxuries important
to you? They’d clearly see how often you treat yourself, or whether you’re
frugal and don’t splash out. They’d gain a picture of your patterns of
giving, and whether this altruism is directed towards a close circle of
people, or further afield.

All of these things reveal you as a person. In many ways, where you invest
your money is how you define yourself. So, back to my question...

What defines you as a programmer? Why do you program? What is your
primary motivator for doing it? Like looking at your spending habits, if
someone looked at your coding habits, what picture would they build of
you?

What motivates you to write code?
Is it money? You’re working in a dull job, but it pays well.

Is it passion? You relish working on something you love, with money not
a major motivator.

Is it the desire to do good work? To write the best software possible no
matter what the problem area.

Is it the desire to give something back to humanity? To work on a project
than benefits mankind using the skills you have.

Is it the desire to learn? You manoeuvre yourself into new, perhaps
uncomfortable, situations to gain fresh experiences. Your work isn’t
necessarily perfect but you’re constantly practising, and perfecting, skills
that you’ll find valuable later on.

Is it the desire to delight users? You enjoy the buzz of watching customers
enjoy using your products.

Are you in the game to climb the corporate ladder? You’re aiming for
architect, manager, business owner, entrepreneur.

Is programming something you do now simply because it’s the career you
fell into? No better or worse than any other job, it’s easier to carry on here
rather than jump into a new career path.

Is your motivator something else entirely?

Or is it a combination of these things?

Looking from the other side
Can you say what drives you, what defines you as a programmer?

How does this affect the code you write and the way your work with others?

The quality and style of your work will be determined directly by
your motivation for working on the project.

It’s not hard to see that many possible different code outcomes could result
from programmers with different motivations.

For example, if you desire to delight users then you may care less about
the internal structure of the code and eschew spending time cleaning and
refactoring, instead striving to add delightful new features. You’d
prioritise different activities than someone who cares about creating the
neatest and most elegant codebase possible.

Look back at the list of potential programmer motivations above. How
would each affect the way you might write code? Would they affect how
you’d solve problems or prioritise your time?

Looking at it from the outside
Finally, consider this: could an outsider look at your code or product and
work out what drives your work?

Does your code clearly reveal why you program? Does it show what you
value in good code? Does it reflect your priorities?

Is it really possible for code to reveal this?

Which speaks louder about you: your money out your code?!

Conclusion
It’s interesting to reflect on how the quality and style of your code will lead
naturally from how you define yourself as a programmer, the things you
value in good code, and from what motivates you to program.

It may be possible to tell a lot about you, as a programmer, by looking at
the code you write.

Questions
1. What answers do you have to all the questions above?

2. Do you think that it is genuinely possible to tell the quality and
properties of a programmer just by looking at their code?

3. How do different motivations affect the code you write, for good or
ill?

4. What other things affect the qualities of the code you write?

5. Can you tell different programmers apart by looking at their code?
How would someone recognise your work?

6. Do you need to review your motivation for writing code? Why? Is
that even possible?

 P

Becoming a Better Programmer #94

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

Refactoring Guided by Duplo
Thaddaeus Frogley gets to grips with duplicated code.

educing the amount of duplication within a code base can be a good
proxy metric for improving the code base. Reducing duplication
reduces total amount of code, in turn reducing executable size, and

compile time, as well as making the code base easier to understand, and
easier to modify. Smaller code bases have been shown to have less bugs
than larger code bases. Defect counts go up in direct proportion to the
number of lines of code.

Duplo is an open source implementation of the technique described in the
paper ‘A Language Independent Approach for Detecting Duplicated
Code’ [1]. It can be used to quickly identify code duplication, which can
lead to refactoring opportunities that improve quality and reduce code size,
resulting in an easier to maintain, and more efficient code base.

Getting Duplo
Duplo can be found on SourceForge:
 http://duplo.sourceforge.net

And Daniel Lidstrom maintains a version on github:
 https://github.com/dlidstrom/Duplo.git

For the purposes of this article, we will be using my fork:
 https://github.com/codemonkey-uk/Duplo.git

To download & build (on a unix-like machine):

 git clone https://github.com/codemonkey-uk/
 Duplo.git
 cd Duplo/
 make

A project file for Microsoft Visual Studio is also included in the repository.

Generating a report
Duplo works from an explicit list of source files. For C++, on a unix-like
system that could be generated like so:

 find . | grep -e \.h$ -e \.cpp$ > filelist.txt

For C# you might do it like this:

 find . -iname "*.cs" > filelist.txt

Or on a Windows based machine you could do it like so:

 dir /s /b /a-d *.cpp *.h > files.lst

Unless you have a codebase measured in millions of lines, you probably
want to start by analysing your whole codebase. The algorithm used by
Duplo scales fairly well (see Table 1).

Once you have a list of source files, however you generate it, you can run
Duplo from the command line. Duplo produces two sets of output. It writes
a report to a file, containing all the duplicate blocks found. It also produces
a summary list of files with a count of duplicate blocks in each. The
duplicates report is written to a file, named via the command line. The
summary is written to stdout. This can be seen by using the tool:

 ./duplo files.txt report.txt

Since files with no duplication are listed in the summary as ‘nothing
found’, and files containing duplications are listed as having ‘found N
block(s), the summary can be easily filtered:

 ./duplo files.txt report.txt | grep “\\d*\\sblock"

And sorted:

 ./duplo files.txt report.txt | grep “\\d*\\sblock"
 | sort -rnk3

But hold on! This sort falls over on file names with spaces. To get around

that problem I introduced a colon following the ‘found’ in my fork of the
project, so sorting the results of project that has spaces in its file names or
paths still works:

 ./duplo files.txt report.txt | sort -t':' -rnk2

Examining the summary for files with a lot of duplication can provide
some quick and easy wins. Files with high internal duplication can be less
difficult to reason about refactoring, but be warned some algorithms, such
as those found in lexer/parser code can contain high levels of local
duplication that is actually very hard to remove. Feel free to remove files
from the source list that produce false positives and re-run the tool to
update the reports.

Another source of false positives (arguably) is the block of preprocessor
include, or import directives found at the top of source files. Duplo
supports filtering them out automatically with the -ip command line:

 ./duplo -ip files.txt report.txt

Duplo also supports reducing the amount of duplication reported by
increasing the minimum number of lines of similarity (-ml), and minimum
number of characters on a line (-mc) for a line to be counted. Both can be
useful in helping target the worst offending sections of the codebase.

The default minimum lines of similarity is 4. This can be generate a lot of
false positives on code bases where function arguments in both body and
declaration are written out one per line.

 ./duplo -ml 8 files.txt report.txt

Refactoring
One of the simplest forms of duplication to eliminate is whole unit
duplication: When there are multiple copies of the same method or type
existing in the codebase under different names. These can usually be safely
eliminated by simply removing all but one, and updating the references to
the others in dependant code.

As with any code change, take care especially of any static or global state
the code being refactored touches – either directly or indirectly. Having
the codebase under test is good advice here, but should be considered as

Performance Measurements

SYSTEM FILES LOCs TIME HARDWARE

3D Game Engine 275 12211 4sec 3.4GHZ P4

Quake2 266 102740 58sec 3.4GHZ P4

Computer Game 5639 754320 34min 3.4GHZ P4

Linux Kernel 2.6.11.10 17034 4184356 16h 3.4GHZ P4

 R

Ta
bl

e
1

THADDAEUS FROGLEY
Thaddaeus started programming on the ZX81 when he
was 7 years old, and has been hooked ever since. He
has been working in the games industry for over 20
years. On Twitter he is @codemonkey_uk or reach him
by email: thad@bossalien.com

take care especially of any static or
global state the code being refactored

touches – either directly or indirectly
4 | | SEP 2015{cvu}

http://duplo.sourceforge.net
https://github.com/dlidstrom/Duplo.git
https://github.com/codemonkey-uk/Duplo.git

Refactoring Guided by Duplo (continued)

Ode to the BBDB
Silas S. Brown remembers different ways

of managing email contacts.

hris Oldwood outlined one way of using mail folders in CVu 26.5
(‘Taming the Inbox’). Generally I always archive rather than delete
any email that might one day be needed again (however unlikely),

and rely on search to find it on those rare occasions (if I ever find myself
dragged before some kind of tribunal because somebody got upset about
something I mistyped last year or whatever, then it might be useful to have
my own record of the events in question), although I do sometimes delete
things altogether especially if I believe they are already being archived
elsewhere (list emails etc) and I don’t usually keep large attachments
especially if these are easily reproducible. Besides being useful on odd
occasions, email archives can also be useful for training Bayesian spam
filters such as SpamProbe, which generally need example collections of
‘good’ and ‘bad’ mail (I prefer to train my own filters instead of relying
on an institution's, since the keywords in my email tend to be different
especially now I have Chinese connections).

But I’d like to talk about something else (but related): the BBDB. BBDB
stands for Big Brother DataBase, a reference to the ‘Big Brother’ persona
adopted by the surveillance organisation in George Orwell’s novel
Nineteen Eighty Four. BBDB is a Lisp program that runs in Emacs and
‘infiltrates’ Emacs-based mail programs like VM, ‘noticing’ the names
and addresses of people you correspond with and keeping dated records
of these which can then be consulted when new messages arrive. You can
add arbitrary notes to your contacts which will then pop up when their
messages arrive, which might be useful for people with whom you don’t
correspond very often (as in, ‘who WAS this person again?’ infrequency);
perhaps it’s particularly useful for small businesses dealing with
(potential) customers.

I no longer use BBDB itself, because I no longer use Emacs for email. This
is firstly because I discovered that Mutt tends to be much faster at dealing
with large mailboxes (especially if using maildir format), and Alpine tends
to be better at minimising traffic when connecting over a slow mobile link
(although it doesn’t always handle mid-session disconnects very
gracefully), and secondly because I wrote ImapFix [1], a script to do my
email processing in-place using the university-provided IMAP server,
which means I can connect to the fully-processed version from mobile
devices without having to run my own server (previously my email
processing happened only after the messages were fetched to my own
machine, meaning I could not then access the post-processed mailboxes
without logging in to that machine, which became impractical after I lost

my always-on Internet connection; IMapFix on the other hand can run
from just about any shell account without needing additional serving
privileges).

Despite no longer using Emacs for email and therefore no longer using
BBDB itself, I still support the concept of having personal folders that
collect historical ‘probably won’t need this but keeping it just in case’ notes
and searching these when necessary, and for the sake of brevity I usually
call these BBDB (after all B and D are right next to each other on my
Dvorak keyboard). If I write myself a To-Do item that says ‘bbdb the XYZ
code’, it means put the XYZ code into a BBDB folder and forget about it
(but don’t actually delete it, just in case). Of course if it’s under version
control then the version control system should take care of keeping track
of the old version anyway and I can just go ahead and delete code. But it’s
not just code I’m talking about: it’s also notes and other things. Having a
‘BBDB’ means I don’t have to worry about totally losing something when
I ‘almost delete’ it, but I can still clear it out of the way of my ‘working
set’. I feel that this, together with my ‘postpone’ system (a set of scripts
that lets me dump a load of text into a file which then disappears from my
view until a certain date I’ve set on it, at which point it pops up in a Web
browser on my desktop, and I know I won’t have to worry about it until
then but can still find it via search if necessary), generally improves
productivity, especially for a compulsive note-taker like me. I sometimes
use ‘dead time’ while travelling etc to go through some old notes and figure
out what needs BBDB’ing; this exercise usually also pulls up a few things
I should have actioned ages ago but which somehow got lost in the great
pile of notes. So yes, I recommend having a BBDB and from time to time
going through your notes and other working-set with a view to deciding
what to transfer to the BBDB. It might help productivity in the long run.

Reference
[1] ImapFix http://people.ds.cam.ac.uk/setup/imapfix.html

 C

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
an extra layer of security, not a replacement for actually thinking about the
problem and fully understanding what the code does, and how it’s used.

When duplication is found within the body of multiple methods of the same
class: Extract Method, or Extract Class can be used. Where the
duplicated functionality is pure (lacking in side effects, not modifying
external state) this is trivial, but be careful of extracting methods that
appear to do the same thing, are logically the same, but do have side effects,
modifying different state.

When duplication like this is found across multiple classes, extracting the
method to a common base class, or introducing a new class to the hierarchy,
can be effective. But again, be wary of state modification.

Ultimately, however, each piece of duplication identified in a duplo report
has to be considered on a case by case basis, and refactoring considered
on their individual merits. Reducing duplication is a good rule of thumb,
but is always a proxy for some other metric of improvement. Be it making
the code easier to work with, or reducing the size of the resulting
executable – always keep the end goal in mind: the creation of working
software.

Reference
[1] http://www.iam.unibe.ch/~scg/Archive/Papers/

Duca99bCodeDuplication.pdf
SEP 2015 | | 5{cvu}

http://www.iam.unibe.ch/~scg/Archive/Papers/Duca99bCodeDuplication.pdf
http://www.iam.unibe.ch/~scg/Archive/Papers/Duca99bCodeDuplication.pdf
http://people.ds.cam.ac.uk/setup/imapfix.html

Anatomy of a CLI Program written in C++
Matthew Wilson dissects a small program

to examine its gory details.

his article, the second in a series looking at software anatomy,
examines the structure of a small C++ command-line interface (CLI)
program in order to highlight what is boilerplate and what is

application-specific logic. Based on that analysis, a physical and logical
delineation of program contents will be suggested, which represent the
basis of the design principles of a new library for assisting in the
development of CLI programs in C and C++ to be discussed in detail in
the next instalment.

In the first instalment of this series, ‘Anatomy of a CLI Program written
in C’ [1], I considered in some depth the different aspects of structure and
coupling of a simple but serious C program. The issues examined included:
reading from/writing to input/output streams; failure handling; command-
line arguments parsing (including standard flags --help and
--version and application-specific flags); cross-platform compatibility.

The larger issues comprised:

 application of the EXECUTEAROUNDMETHOD pattern [2] to simplify
and make more robust the initialisation of dependency libraries;

 specification of process identity according to DRY SPOT principles
[3, 4];

 application of the principle of separation of concerns in the
identification and classification of programmer-written CLI code
into decision logic, action logic, and support logic. It is the
simplification of the first two in, and the elimination of the third
from, the task of the programmer that is the aim of this series; and

 decoupling of the action logic from the rest of the application code
to facilitate the design philosophy of ‘program design is library
design’.

In this second instalment I will consider further these issues, in the context
of a small but serious C++ program, with the aim of defining a general CLI
application structure that can be applied for all sizes of CLI programs.

Strictly speaking, some of the differences in sophistication and scope
between the first instalment and this do not directly reflect the differences
between the language C and C++. Rather, they reflect the different levels
of complexity that it’s worth considering when deciding in which language
to implement a CLI application. I’ll come back to this, and point out some
rather important differences, in the third instalment.

DADS separation
Before we start working on the example program, I want to revisit the
classification issue. In the first instalment I argued that CLI program code
written (or wizard-generated) by the programmer is one of:

 Decision logic – the code that works out what needs to be done and
which component(s) will do it;

 Action logic – the code that does the work deemed necessary by the
decision-logic; and

 Support logic – all the other stuff, including command-line parsing,
diagnostic logging, and so forth.

To this list I now add a fourth:

 Declarative logic – declarations that influence the nature and
behaviour of the program, including specifying its identity and the
commands to which it responds.

In the examples of both instalments, the clearest example of declarative
logic is the ‘aliases’ array that defines what command-line flags and
options are understood by the program.

Example program: pown
To avoid destroying too many trees in the production of this month’s issue,
I’m going to try and keep the code listings as short as possible by focusing
on a small program, albeit one with most real-world concerns; in the
printed magazine, these are truncated dramatically, but they’ll be available
in full online [5]. For the purposes of pedagogy, I ask you to imagine that
we need to write a program to show the owner of one or more files on
Windows; in reality this is a feature (/Q) of the built-in dir command.

The features/behaviours of such a program include:

1. parse the command-line, either for the standard --help or
--version flags, or for the path(s) of the file(s) whose owner(s)
should be listed;

2. properly handle -- special flag. It’s very easy to simulate the
problem with naïve command-line argument handling: just create a
file called --help or --version (or the name of any other flags/
options), and then run the program in that directory with * (or *.*
on Windows);

3. expand wildcards on Windows, since its shell does not provide
wildcard-expansion before program invocation;

4. for each value specified on the command-line, attempt to determine
owner and write to standard output stream; if none specified, fail and
prompt user;

5. provide contingent reports on all failures, including program
identity as prefix (according to UNIX de facto standard);

Non-functional behaviour includes:

 use diagnostic logging;

 initialise diagnostic logging library before all other sub-systems
(other than language runtime);

 initialise command-line parsing library before all other sub-systems
(except diagnostic logging library and language runtime);

 include program identity and version information and include as
required in output;

 do not violate DRY SPOT in program identity and version
information.

pown.monolith
The first version of this program is done all in one file. Even such a simple
program is remarkably large – over 230 non-blank lines – and a big part
of its size is boilerplate. The program source has the following sections
(parts of which are shown in much truncated form in Listing 1; the full
version of this and all are available online):

 includes (18 lines): all required includes, including those required
purely for boilerplate aspects, are present in their imposing glory;

 T

MATTHEW WILSON
Matthew is a software development consultant and trainer for
Synesis Software who helps clients to build high-performance
software that does not break, and an author of articles and
books that attempt to do the same. He can be contacted at
matthew@synesis.com.au.
6 | | SEP 2015{cvu}

Li
st

in
g

1

 aliases (7 lines): as discussed in the previous instalment, the
command-line parsing is handled by the CLASP library [6], and it
uses a global alias array constant to specify declaratively which
flags and options the program recognises. In the first case, this is
--help and --version;

 identity (11 lines): this section includes pre-processor
(TOOL_NAME) and C/C++ global constants (incl. toolVerMajor,
toolVerMajor, …, toolToolName, …) specifying identity and
version as used by the handlers of the --help and --version
flags. It also includes a constant required by some of the simple
stock front-ends provided with the Pantheios [7] diagnostic logging
API library: PANTHEIOS_FE_PROCESS_IDENTITY;

 pown (94 lines): the file owner elicitation & printing logic, in the
form of the pown() function;

 main/program entry (56 lines): this is the application-specific
program main entry point, program_main(), including checks for

the --help and --version flags and, if not, processing the given
values or, if none specified, informing the user of his/her oversight;

 main/boilerplate (51 lines): truly the most boring of the lot, this is
just the application of the EXECUTEAROUNDMETHOD pattern [2]
(actually, it should be EXECUTEAROUNDFUNCTION, since these are
all free-functions) as follows:

 main() executes Pantheios.Extras.Main’s invoke(), to
initialise the Pantheios diagnostic logging library (and provide
last-gasp outer-scope exception catching with contingent
reporting and diagnostic logging [8]) around
main_memory_leak_trace_(),

 which executes Pantheios.Extras.DiagUtil’s invoke(), to
trace memory leaks, around main_cmdline_(),

 which executes CLASP.Main’s invoke() around
program_main() to initialise the CLASP command-line
parsing library.

It’s pretty clear that boilerplate is eating space, not to mention effort.
Furthermore, structuring source in such a manner is an imposition on
programmer visibility (and, I would suggest, happiness).

Note the inclusion of the MBldHdr.h header and use of the symbols
__SYV_MAJOR, __SYV_MINOR, etc. (whose names violate the standard’s
reservation of symbols, as they contain runs of two or more underscores).
These are aspects of an extremely old, but still used, mechanism for
controlling module version by an external tool, and I include them only to
show how such schemes can be used with the proposed anatomical
delineation discussed herein.

Separation of concerns – pown.alone
The first obvious thing is to partition the file. This can be done, at least in
part, by identifying what parts confirm to the DADS classification. Let’s
tackle all the identified sections (apart from includes, which is a necessary
evil of C and C++ programming):

 The aliases section is a declarative, and it is entirely about the
behaviour of the (command-line) program; it has nothing (direct) to
do with the owner-printing logic of pown().

 The identity section is a declarative, and it is entirely about the
identity of the (command-line) program; it has nothing to do with
the owner-printing logic of pown().

 The pown section is action logic, and is the entirety of the program-
as-library part of the application, in the form of the function
pown().

 The main/program entry section is a mixture of decision logic, in
the form of the tests of the presence of the flags and the presence of
(one or more) values, and action logic, in the form of the loop over
all present values and execution of pown() with each.

 The main/boilerplate section is support logic, pure and simple.

Given these designations, the parts may now be separated physically
according to the scheme I have been evolving over the last few years, as
follows:

 The files pown.hpp and pown.cpp contain, respectively, the
declaration and definition of the pown() function. pown.hpp is a
self-contained header file [9].

 The file entry.cpp contains the aliases, main/program entry,
and main/boilerplate sections, and (only) their requisite includes.

 The files identity.hpp and identity.cpp contain,
respectively, the declarations and definitions of the global constants
identifying the program (and the anachronistic MBldHdr.h +
symbols).

 The file diagnostics.cpp contains the definition of the global
constant PANTHEIOS_FE_PROCESS_IDENTITY only; in more
complex programs / program suites, additional diagnostic constructs
would reside within such a file. In this way, the actual kinds of
diagnostic logging (and other facilities) are separate from all code,

// includes
#include <pantheios/pan.hpp>
#include <systemtools/clasp/main.hpp>
// . . . + Pantheios.Extras, STLSoft, etc.
#include <systemtools/clasp/implicit_link.h>
// . . . + 4 more impl-link
#include "MBldHdr.h"

// aliases
static clasp::alias_t const Aliases[] =
{
 . . . initialisers same as in Listing 4

// identity
#define TOOL_NAME "pown"
int const toolVerMajor = __SYV_MAJOR;
// . . . + Minor, Revision, BuildNum
char const* const toolToolName = TOOL_NAME;
// . . . + summary, copyright, description
char const* const toolUsage = "USAGE: " TOOL_NAME
" { --help | --version | <path-1> [... <path-N>
] }";
extern "C" char const
PANTHEIOS_FE_PROCESS_IDENTITY[] = "pown";

// pown
int pown(char const* path)
{
 . . . 87 lines, retrieve owner (domain
 . . . & acct), result->stdout; diagnostic
 . . . logging to trace flow & log failures.

// main/program entry
int program_main(clasp::arguments_t const* args)
{
 // process flags and options
 if(clasp::flag_specified(args, "--help")){
 . . . 17 lines to initialise CLASP
 . . . usage structure, invoke usage
 . . . and return EXIT_SUCCESS
 if(clasp::flag_specified(args, "--version")){
 . . . 9 lines similar to "--help"
 clasp::verify_all_flags_and_options_used(args);

 // process values
 . . . rest of main() same as in Listing 4
}

// main/boilerplate
. . . 3 x ExecuteAround (see text)
SEP 2015 | | 7{cvu}

allowing for link-time decisions as to what kinds of facilities, and in
what configurations, are employed. (Note that Pantheios is a
diagnostic logging API library: its high-performance and 100%
type-safe interface is designed and intended to be bolted atop the
much richer logging libraries out there, which bolting in this
compilation unit would be kept nicely separate from the rest of the
program.)

 In the file implicit_link.cpp all the implicit-link includes are
made. This keeps this useful but non-portable compiler-specific
facility separate to every other part of the program.

Salient fragments of all the above are presented in Listing 2. Note that, for
now:

 pown.hpp is included in entry.cpp, and pown.cpp; and

 identity.hpp is included in diagnostics.cpp, entry.cpp,
identity.cpp, and pown.cpp.

‘Program Design is Library Design’ –
pown.alone.decoupled
In the first instalment, I mentioned the importance I attach to being able,
as much as is reasonable, to subject the guts of CLI programs to automated
testing. As such, separating out the action logic into pown.[ch]pp is an
important step. However, there’s still a problem. Consider the current
definition of pown() (which is that from Listing 1 transplanted into its
own source file, with requisite includes): it has three areas of undue
coupling:

 it writes its output to stdout;

 it issues its contingent reports to stderr;

 it #includes identity.hpp because it used the (preprocessor)
symbol TOOL_NAME in its contingent reporting and diagnostic
logging statements.

You may offer a fourth area of undue coupling – use of Pantheios C++ API
diagnostic statements. The rejoinder I would offer to that is an article in
itself, so in this context I will simply observe that diagnostic logging is
important, it must reliably be available at all points during the lifetime of
a program, it must be very efficient when enabled and have negligible
runtime cost when not, it should be near impossible to write defective code
using it, any non-standard (and they are all non-standard) diagnostic
logging API will incur some coupling however far one might wish to
abstract it, and that there is no (possibility of a) perfect solution. (Though
I couldn’t be more biased) I believe that Pantheios offers the best mix of
features and, since it may be stubbed readily at both compile and link-time,
I think it’s as less bad as coupling can get.

To our three areas of undue coupling. The first two are basically the same
thing: the output streams are hard-coded into the function, which restricts
potential uses of the function. Even if we would always want those output
streams in the wild, hard-coding makes automated testing more difficult.
The answer is simple – to pass in the stream pointers as parameters to
pown() – though the rationale may be less clear cut (see sidebar).

That just leaves coupling to identity. Fairly obviously, coupling to any
preprocessor symbol is not a great idea. (The main reason why
TOOL_NAME is even a preprocessor symbol is to facilitate widestring
builds, which I'm not dealing with in this instalment; the other, minor one,
is that it can be used in composing string fragments, as seen in the
definition of the literal string initialiser for toolUsage in Listing 1.) The
fix here is just as simple as with the streams: a parameter to the function,
as shown in Listing 3.

Finally, though it’s not shown in this example, I believe it’s appropriate
to place the action logic library components in a namespace, since it’s
conceivable that the names may clash with those in an automated
framework (less likely) or with those of other components when used in
other program contexts (more likely). I’ll illustrate this clearly in the next
instalment.

Summary
In these two articles I have considered some of the fundamental –
important, but not very exiting – aspects of program structure in C and C++
CLI programs, and have outlined in this instalment a delineation scheme

Li
st

in
g

2
Li

st
in

g
2 // pown.hpp:

extern "C"
int pown(char const* path);

// pown.cpp:
. . .
#include "pown.hpp"
#include "identity.hpp"
. . .
int pown(char const* path)
{
 . . .

// entry.cpp:
. . .
#include "pown.hpp"
#include "identity.hpp"
. . .
static
clasp::alias_t const Aliases[] =
{
 . . .
int program_main(clasp::arguments_t const* args)
{
 . . .
. . . // other "main"s, including main()

// identity.hpp:
#define TOOL_NAME "pown"

extern int const toolVerMajor;
extern int const toolVerMinor;
. . .

// identity.cpp:
#include "identity.hpp"
#include "MBldHdr.h"

int const toolVerMajor = __SYV_MAJOR;
int const toolVerMinor = __SYV_MINOR;
. . .
char const* const toolToolName = TOOL_NAME;
char const* const toolSummary = "Example project
for Anatomies article series in CVu";
. . .

// diagnostics.cpp:
#include "identity.hpp"

extern "C" char const
PANTHEIOS_FE_PROCESS_IDENTITY[] = TOOL_NAME;

// implicit_link.cpp:
#include <systemtools/clasp/implicit_link.h>
// . . . + 4 more

#include <stdio.h>
int
pown(
 char const* path
, char const* program_name
, FILE* stm_output
, FILE* stm_cr
);

Listing 3
8 | | SEP 2015{cvu}

that is now sufficient for all CLI programs, even large ones for which
multiple (implementation and/or header) files for action logic are required,
and may be encapsulated into a framework and/or generated by a wizard.
Program generating wizards can follow the separation defined previously,
and can, in the same operation, generate automated test client programs
that include the action logic header and implementation files.

There’s nothing inherent in the scheme that requires use of CLASP for
command-line parsing and Pantheios for diagnostic logging (and
Pantheios.Extras.Main and Pantheios.Extras.DiagUtil for handling
initialisation, outer-scope exception-handling, and memory-leak tracing);
you may substitute your own preferences to suit, and a well-written wizard
would be able to allow you to select whatever base libraries you require.

In the next instalment I will introduce a new library, libCLImate, which
is a flexible mini-framework for assisting with the boilerplate of any
command-line programs and which may be used alone or in concert with
program suite-specific libraries to almost completely eliminate all the
boring parts of CLI programming in C or C++. Listing 4 is a version of

the exemplar pown project’s entry.cpp using libCLImate alone;
Listing 5 is the entry.cpp for the pown program in Synesis’ system tools
program suite: as you can see, almost every line pertains to the specific
program, rather than any common boilerplate. (Having written this tool as

Li
st

in
g

4 // includes
#include "pown.hpp"
#include "identity.hpp"
#include <libclimate/libclimate/main.hpp>
// . . . + 3 more

// aliases
extern "C"
clasp::alias_t const CLImate_Aliases[] =
{
 CLASP_FLAG(NULL, "--help",
 "shows this help and terminates"),
 CLASP_FLAG(NULL, "--version",
 "shows version information and terminates"),
 CLASP_ALIAS_ARRAY_TERMINATOR
};

// main / program entry
extern "C++"
int CLImate_program_main(clasp::arguments_t
 const* args)
{
 namespace sscli =
 ::SynesisSoftware::CommandLineInterface;
 if(clasp::flag_specified(args, "--help")) {
 return sscli::show_usage(args,
 CLImate_Aliases, stdout, toolVerMajor,
 //... + 9 params
 }
 if(clasp::flag_specified(args, "--version")) {
 return sscli::show_version(args,
 CLImate_Aliases, stdout, //. . . + 5 params
 }
 clasp::verify_all_flags_and_options_used(args);
 // process values
 if(0 == args->numValues)
 {
 fprintf(stderr
 , "%s: no paths specified; use --help for
 usage\n"
 , TOOL_NAME
);
 return EXIT_FAILURE;
 }
 for(size_t i = 0; i != args->numValues; ++i) {
 pown(args->values[i].value.ptr, TOOL_NAME,
 stdout, stderr);
 }
 return EXIT_SUCCESS;
}

// includes
#include "pown.hpp"
#include "identity.h"
#include <SynesisSoftware/SystemTools/
program_identity_globals.h>
#include <SynesisSoftware/SystemTools/
standard_argument_helpers.h>
#include <stlsoft/util/bits/count_functions.h>

using namespace
 ::SynesisSoftware::SystemTools::tools::pown;

// aliases
extern "C"
clasp::alias_t const CLImate_Aliases[] =
{
 // stock
 SS_SYSTOOLS_STD_FLAG_help(),
 SS_SYSTOOLS_STD_FLAG_version(),
 // logic (HELP => elided help-string)
 CLASP_BIT_FLAG("-a", "--show-account",
 POWN_F_SHOW_ACCOUNT, . . . HELP),
 CLASP_BIT_FLAG("-d", "--show-domain",
 POWN_F_SHOW_DOMAIN, . . . HELP),
 CLASP_BIT_FLAG("-r", "--show-file-rel-path",
 POWN_F_SHOW_FILE_REL_PATH, . . . HELP),
 CLASP_BIT_FLAG("-s", "--show-file-stem",
 POWN_F_SHOW_FILE_STEM,), . . . HELP),
 CLASP_BIT_FLAG("-p", "--show-file-path",
 POWN_F_SHOW_FILE_PATH, . . . HELP),
 CLASP_ALIAS_ARRAY_TERMINATOR
};

// main
int tool_main_inner(clasp::arguments_t
 const* args)
{
 // process flags & options
 int flags = 0;
 clasp_checkAllFlags(args, SSCLI_aliases,
 &flags);
 clasp::verify_all_options_used(args);
 // can specify at most one file-path flag
 if(stlsoft::count_bits(flags &
 POWN_F_SHOW_FILE_MASK_) > 1) {
 fprintf(stderr
 , "%s: cannot specify more than one file-path
 flag; use --help for usage\n"
 , systemtoolToolName
);
 return EXIT_FAILURE;
 }
 // process values
 switch(args->numValues)
 {
 case 0:
 fprintf(stderr
 , "%s: no paths specified; use --help for
 usage\n"
 , systemtoolToolName
);
 return EXIT_FAILURE;
 case 1:
 break;

Listing 5
SEP 2015 | | 9{cvu}

a

n exemplar for this article I realised a few enhancements – adding some
 behaviour options, splitting into functions eliciting ownership (as strings),
and output to streams – would make pown()’s functionality a useful
library in several tools, including a new, more powerful standalone pown.)

In the meantime, I plan to release wizards that generate CLI programs,
starting with Visual Studio (2010–15), and possibly moving on to Xcode
if I get time. Look out on the Synesis Software website in September for
these resources, and feel free to make requests or lend a hand.

Acknowledgements
Many thanks to the members of accu-general who volunteered suggestions
for the name of libCLImate, and to Jonathan Wakeley in particular, whose
ghastly pun I will explain next time. Thanks too to the long-suffering editor
whose patience with my lateness is never taken for granted.

Li
st

in
g

5
(c

on
t’d

) default:
 if(0 == (POWN_F_SHOW_FILE_MASK_ & flags)) {
 flags |= POWN_F_SHOW_FILE_REL_PATH;
 }
 break;
 }
 for(size_t i = 0; i != args->numValues; ++i) {
 char const* const path =
 args->values[i].value.ptr;
 pown(path, flags, systemtoolToolName, stdout,
 stderr);
 }
 return EXIT_SUCCESS;
}

Use of FILE* vs ...
Throughout the refactoring and repackaging work undertaken to a
swathe of CLI programs, one issue stands out, and it’s the one
remaining substantive issue of debate/equivocation:

A: Should the program logic (as library) issue contingent
reports? [8]

There are three corollary issues if so:

1. How should the program logic be provided the process identity?

2. To where should contingent reports be written?

3. In what form should contingent reports be written?

If the answer to A is ‘no’, then the library has to return to its caller
sufficient information as is required to provide a suitable contingent
report. If we consider the pown() function, there are four substantive
actions (for a Windows implementation): get the file’s security
descriptor; get the security descriptor’s owner SID; lookup the owner
SID’s information (specifically account-name and domain-name);
and, finally, print out the results in the desired format. Any of these
four operations can fail, raising the question of how the caller might
wish to represent such failures, and with what detail. Given that we
would rarely (if ever) be satisfied with a mere Boolean success/fail in
such circumstances, is it useful, to an end-user (of the command-line
tool), to know why and what/where the failure occurred, as well as
simply that it did? Is this usefulness greater or less when such code
is being used (in the nature of one library amongst many) in a larger
program?

Assuming we want to know what/where, in addition to why, the means
of communicating this to a caller has to be considered (briefly): Is it a
more complex return code (perhaps a composite of why and where)?
Is it an exception? All such approaches are fraught with leaked
coupling and/or loss of information. I’m not going to explore further
this aspect, because this is trespassing into the territory I was last
exploring in Quality Matters some time ago (and intend to get back to
very soon), and because in this context I’m interest in the affirmative
option.

One further thing worth considering in the ‘no’ alternative is how to
handling warnings, by which I mean contingent reports provided to a/
the user but not associated with failing conditions. One example
might be in the case of a program’s action logic library that acts on
multiple targets (e.g. by specifying a directory and search patterns),
and is unable to act on one (or several) matches while still being able
to perform its work on the rest of the targets. In such a case, one
might expect the program to continue to determine and output (to the
standard output stream) the owners for other files, while emitting (to
the standard error stream), but if the called library function does not
have the ability to issue contingent reports, how is this to be
expressed? Perhaps by populating a caller-supplied failed-target list?
Whatever the case, such behaviour cannot be handled either by a
return code or an exception: the former can't provide enough
information; the latter will cause the callee to terminate with its work
part-done. In many cases, therefore, I feel that allowing action logic to
issue contingent reports can be the pragmatic choice, however much

it may sniff of coupling (my personal least liked thing in programming,
fwiw).

So, in the cases where the answer to A is ‘yes’, then we must
consider the corollary questions outlined above. Again, coupling
comes into it. The answer to question 1 is simple and, I think,
uncontentious: simply pass in the process identity as a parameter (or
as part of a chunk of information passed in a single parameter).

Question 2, concerning where contingent reports should be written, is
a little more tricky. In the wild, the action logic is running inside CLI
programs, which interact with their three streams – input, output, error
–whether they be the streams of the console/terminal, or, via piping/
redirection, files and the inputs/outputs of other programs. Whatever
the case, the program (and its action logic therein) works with what it
believes to be its three standard streams, and I believe it is a valid
choice to

What remains to decide is Which?, and In what form? Both decisions
are informed by the ‘program design is library design’ philosophy.
The answer to Which? is simple: I believe that in order to support
testability, the caller should supply separate output-stream (in the
case where there is any output by the action logic) and contingent
report-stream, as shown in Listing 3. Similarly, if there is a warning
stream, that too should be separately specified. The answer to In
what form? is a bit more involved.

In C, the three standard streams are represented and used most
commonly in the form of the C Streams library globals stdin,
stdout, and stderr, each of which is of type FILE*. In C++, the
received wisdom is that we should use the C++’s IOStreams library
global instances std::cin, std::cout, and std::cerr, each of
which is of type std::ostream, and should be used as
std::ostream&.

Having documented previously [10, 11, 12] my legion reservations
about the IOStreams, I won’t bother to repeat its many flaws here.
The main reason I choose to use FILE* forms of the streams in these
circumstances is, again, in support of ‘program design is library
design’: I believe it’s clear to use NULL (or nullptr, if you prefer) to
specify no-stream as a caller, and equally easy to test against NULL
in the callee. Secondarily, it results in lower coupling, and allows the
callee to be implemented in C (or another language providing a C
API) without changing the caller.

Finally, to question 3. This is really a horses-for-courses issue, for
which I have no broad answer at this time. In the case of CLI
programs that (follow established UNIX behaviour to) issue a
contingent report in the fashion of <process-identity>:
<problem-details>, it is a simple matter, given that we’ve already
accepted the caller-supply of process identity. In the next instalment
I’ll look at a more sophisticated means of handling all this, in the form
of a program suite-specific contingent reporting mechanism, which
simplifies and improves the programming of each program’s action
logic at the cost of coupling to the mechanism’s constructs.
10 | | SEP 2015{cvu}

Anatomy of a CLI Program written in C++ (continued)
References
[1] ‘Anatomy of a CLI Program written in C’, Matthew Wilson, CVu

September 2012.
[2] http://c2.com/cgi/wiki?ExecuteAroundMethod
[3] The Pragmatic Programmer, Dave Thomas and Andy Hunt,

Addison-Wesley, 2000
[4] Art of UNIX Programming, Eric Raymond, Addison-Wesley, 2003
[5] http://synesis.com.au/publishing/anatomies
[6] An Introduction to CLASP, part 1: C, Matthew Wilson, CVu January

2012; also http://sourceforge.net/projects/systemtools
[7] http://pantheios.org/

[8] Quality Matters #6: Exceptions for Practically-Unrecoverable
Conditions, Matthew Wilson, Overload 98, August 2010

[9] C++ Coding Standards, Herb Sutter and Andrei Alexandrescu,
Addison-Wesley, 2004

[10] An Introduction to FastFormat, part 1: The State of the Art, Matthew
Wilson, Overload #89, February 2009

[11] An Introduction to FastFormat, part 2: Custom Argument and Sink
Types, Matthew Wilson, Overload #90, April 2009

[12] An Introduction to FastFormat, part 3: Solving Real Problems,
Quickly, Matthew Wilson, Overload #91, June 2009
The Cat’s Meow
Gail Ollis reports from the App-a-thon World Record attempt.

n attempt to set a new world record for the largest number of people
learning to write an Android application at the same time.

“Buzzing! I have had an absolute blast today helping adults & children
alike write their first apps.” This was the Facebook status I posted one
Saturday evening in June after having as much fun as I’ve ever had helping
people to program.

The event
That day I was one of the team at Bournemouth University helping out with
the BCS App-a-thon Guinness World Records Challenge [1], an event
organised nationally by BCSWomen [2] with the voluntary support of
organisations around the country. At 10:30 on Saturday, 13th June, I blew
the timekeeper’s whistle in a computer laboratory in Bournemouth.
Something similar happened at 29 other locations (though I suspect mine
was the only duck-design whistle) as 1093 interested adults and children
in England, Scotland and Wales all started a world record attempt.

We had one hour to teach them all to write an Android app. This followed
a common pattern across all the venues: people learning how to build a
simple program that would play a meow sound when tapping on the image
of a cat, and then extending it to ‘purr’ by vibrating. Because not all tablets
can vibrate, smartphone owners tended to have more contented cats.

By the end of the hour, everyone had a working cat program on their
device. Listen to the cat chorus from Aberystwyth University [3] and you’ll
have a good idea of how our lab sounded. Many people had moved on to
adding extra animals, leading to some interesting bugs such as chickens
responding with owl hoots. When time was called at 11:30 (the duck
whistle again) the record attempt was complete, but the learners were
clearly still having fun. Most took up the invitation to stay on and play
some more; we provided printouts of some tutorials [6] to help give them
ideas. Until mid afternoon, when we sent the last of them home, the lab
continued in the same busy, productive and cheerful buzz as people tried
out whichever idea appealed to them.

The tech
There were temporary accounts ready for all 41 of the Bournemouth
learners on the lab computers and wifi network. This worked smoothly
apart from the one phone that had evidently been deprived of a wifi
connection for so long that for quite some time it was too busy getting its
fix of updates to respond to anything else. Eventually it got its fill and was
ready to download App Inventor Companion, an app which provides the
easiest way to test the programs its owner would be writing.

AI Companion allows testing in real time and on the actual Android device,
provided that the device is on the same network as the computer where the
program is written. This is the recommended method, but does depend on
every programmer having their own device. If they don’t, another option
is to use the emulator, but in preparing for the event we had not found this
very easy or reliable. In any case it’s just not the same as seeing, touching
and feeling the fruits of your programming on an actual tablet or
smartphone. The third testing option is to download to the device with a
USB cable, which we didn’t need because our network arrangements
allowed us to stick with the preferred wifi method. Apart from a couple of
minor hiccups, which went away upon restarting the AI Companion app,
this worked very well.

The programs were written using a web-based tool, MIT App Inventor 2
[4]. For me, a programmer in text since 1982, trying to program with visual
blocks was by far the hardest part of the whole thing. This may explain
why my own very first app, a speech-to-text program written while
preparing for the Appathon, said something that was Not Suitable For
Work. Once I got used to filling in the blanks in the drag-and-drop blocks
and clicking the blocks together it was easy to use but I’m not sure I will
ever adjust to the fact that chunks of program logic lay scattered across a
page. Even now I’ve found out how to collapse blocks I’d still be happier
to have my code marshalled into neatly-labelled files; I’ve yet to find any
way to impose meaningful order.

Several of the children had used Scratch [5] at school and found App
Inventor similar and pretty easy to use. The adults got on fine with it too.

 A

GAIL OLLIS
After years of professional programming, Gail is now
a postgraduate student at Bournemouth University,
researching ways to help software developers make
life easier for each other. Contact her at
gollis@bournemouth.ac.uk or @GailOllis
SEP 2015 | | 11{cvu}

http://c2.com/cgi/wiki?ExecuteAroundMethod
http://synesis.com.au/publishing/anatomies
http://sourceforge.net/projects/systemtools
http://pantheios.org/

The most subtle problem was with blocks that looked connected but hadn’t
properly clicked together. There’s an audible ‘click’, but it’s not always
audible in a busy lab and the visual cue is rather subtle too, so for some
situations the tool could benefit from giving more noticeable feedback as
components link up.

When they had created a program in App Inventor, learners were able to
connect it to the AI Companion app installed on their phone or tablet just
by scanning a QR code. Thereafter AI Companion (mostly) stayed in sync
with any changes so that they could seamlessly test on their Android device
as they went along. Once they had something they wanted to install
permanently or share with others we showed them how to build it in App
Inventor. With a couple of simple clicks the program is ready to install via
another QR code or to save as a file. The disappointment that it would cost
money to put an app in the Google Play store instantly evaporated when
they learned that there were other ways to install and share it. The
programming projects in App Inventor remain available for them to
experiment with another day, linked to their Google account.

The outcome
The tutorials [6] helped people to learn to control the effect of a whole
range of familiar actions: flicking a pirate ship towards gold coins to collect

them; shaking a magic 8-ball to make it respond to questions with a random
pick from answers you wrote yourself; hitting the creatures that pop up in
a classic whack-a-mole style game where you decided to make it whack-
a-wabbit instead. The joy of making things happen was evident even when
people followed a tutorial verbatim, but still more so when they gained the
confidence to explore, tweak and customise and unleashed their creativity
with a twinkle in their eye.

Our learners in Bournemouth – children, adults and whole families – all
got stuck in. Adults at other locations included a white haired grandma in
Huddersfield, who was thrilled to get an owl to hoot on her phone. Children
in our lab and no doubt elsewhere were showing and sharing with others
with friendly ease. It was a memorable atmosphere that combined focus
and excitement into a very productive buzz. The moments that moved me
most, though, were the ones where parents of the current generation of
schoolchildren discovered that they could do it too – the wonder in the
voice of the mother who announced “I’ve just written my first program, in
my forties!”

The point
So did we manage to set a record? We had the numbers – we needed over
a thousand – so it’s possible. At the time of writing Guinness World
Records are in the process of checking the evidence: statements from all
the independent witnesses and stewards about what they saw, and photos
and videos taken on the day.

But even if we don’t get the record, we achieved something more valuable.
The sessions were led by women, with a team of women and men helping
out. All those children and all those parents had the chance to see that
women can and do ‘do IT’, and to discover that it can be fun, and that they
could do it too.

That was the goal, and the inclusive approach appeals to me. According
to the App-a-thon press release women represent just 16% of IT
professionals. I have no figure for the percentage I’d like it to be, simply
be the number who would choose to do it if every child were given
sufficient opportunity to find out if it appeals to them and to consider it as
a realistic career option. It would be rash to assume that now having
computing on the school curriculum can achieve this; being a mainstream
subject rather than just a club activity may help, but there are subjects of
much longer standing that are still perceived as “boys’ subjects” and “girls’
subjects”.

I can’t help feeling that activities targeted specifically at girls risk
reinforcing this stereotype; organising something for girls rather than kids
in general flags girls as ‘special’ in computing. I worry that at the same
time as telling them that girls CAN do computing, it carries the implicit
message that nonetheless right now girls, on the whole, DON’T.

Singling out role models runs a similar risk; highlighting exceptional
women doesn’t necessarily lead others to think they could join them on
the pedestal. Role projects, however, are great. I don’t know the job title
of anyone I saw on the broadcasts from the control room of the Philae
lander, but my cheers at the news it had landed were even louder for seeing
a woman there, front and centre just doing her job without individual
fanfare on an inspirational technical project. Teaching people to make their

phones meow doesn’t compare! But similarly, we were just there, doing
the stuff we know how to do. Normal. No big deal. But visible.

References
[1] http://www.bcs.org/content/ConWebDoc/54172
[2] http://www.bcs.org/category/8630
[3] https://www.youtube.com/watch?v=EdZPsRYHJ7o
[4] http://appinventor.mit.edu/
[5] https://scratch.mit.edu/
[6] http://appinventor.mit.edu/explore/ai2/tutorials.html

This is a personal account of the event. Opinions are my own and not the
views of Bournemouth University or BCSWomen.
12 | | SEP 2015{cvu}

http://www.bcs.org/content/ConWebDoc/54172
http://www.bcs.org/category/8630
https://www.youtube.com/watch?v=EdZPsRYHJ7o
http://appinventor.mit.edu/
https://scratch.mit.edu/
http://appinventor.mit.edu/explore/ai2/tutorials.html

SEP 2015 | | 13{cvu}

WattOS R9 Worth Knowing About
Silas S. Brown recycles some old hardware with a new OS.

f your life as a developer is anything like mine, from time to time you’re
called on by friends and friends of friends to sort out misbehaving
computers, usually Windows systems on which someone has carelessly

downloaded a bunch of unwanted software they don’t know how to
uninstall. As I speak Chinese, I’m usually asked to sort out laptops that
are running the Chinese-localised version of Windows, which, unlike most
other multilingual operating systems, has no way of temporarily switching
the interface back to English for technical
support, and it doesn’t help that my ability to
READ Chinese is less good than my ability to
speak it: the user is typically unwilling to read the
screen to me because it is ‘too technical’, and it’s
not usually possible to copy and paste the
characters into dictionary software, so I
sometimes have to make a few guesses. The
strangest case I had recently was a laptop whose
user was complaining about the Web browser not
working despite her running a few anti-virus
programs. “Just install Firefox” I thought, but it
turned out most HTTPS certificates would fail to authenticate in any
browser, although at least Firefox gave me a more verbose error message
that led me to the root cause: the system clock was set to last year. The
TLS library was refusing to accept certificates that seemed to be date-
stamped to the future, and Windows’ built-in NTP client refuses to
automatically synchronize a clock if it’s that far out.

Most of these users are naturally extremely reluctant to have their
operating system changed, but there comes a point when you can go no
further. Recently I was faced with a Vista laptop that wouldn’t boot, and
after trying and failing to recover this I said “either let me put Linux on it
or buy a new computer”, adding “preferably a Mac” in selfish hope of
having less support to do in future. They opted for Linux, and so for the
first time in a long time I was actually asked by a family of computer
novices to set up GNU/Linux for them.

When setting up GNU/Linux on an old piece of hardware, the first problem
is ‘which distro will install’. Most modern Linux distros require a DVD
to install, but not every old laptop will boot from DVD. Some DVD distros
can also install from a USB stick, but this is not always the case. For
example, Mint 17, which is a version of Ubuntu’s 2014 long-term support
release which is supported until 2019 and adds some out-of-the-box
features that might appeal to ex-Windows users, has an installer bug that
causes it to fail if you install from USB. It is of course possible to patch
around this bug, but as there are so many other distributions out there I’d
rather just pick one that works cleanly to start with so that I have a simpler
recommendation to make when asked (I’d rather be able to say ‘install X’
than ‘install Y and do this bunch of patching’). I could have gone back to
the last long-term support release of Mint: Mint 13, based on Ubuntu 2012
and supported until 2017, but I’d really rather give them the 2014 version
because they wanted Chinese handwriting input and this has not developed
much on the Linux platform until quite recently.

Then I found that the R9 version of WattOS was based on Ubuntu’s 2014
long-term support release and still fits on a CD-ROM (no DVD required).
It also installs successfully from USB stick if you don’t have a CD, and
the ‘LXDE’ version is quite novice-friendly (the ‘Microwatt’ edition
perhaps less so, as it launches you into a window manager that will be most
unfamiliar to the average Windows user, so I didn’t give that version to
this family). I had to download additional drivers for their Wi-Fi card,
which I had to install via USB stick as we couldn’t plug it in to Ethernet,
but at least the provided tools told me which packages were required.

I also had to copy over their Windows files, including many unlabelled
high-resolution photographs: it was necessary to go into the settings of the
PCmanFM file manager and increase the maximum size of files that it will
generate a preview for, as they were used to navigating their pictures by
preview rather than by filename. Then it needed LibreOffice (for opening
various .doc files they had), Chinese fonts (‘apt-get install fonts-wqy-
microhei’ did the trick), WINE 1.7 (just in case) and some sort of Chinese

handwriting input system. This particular family
did not know how to use Pinyin or one of the other
standard methods of inputting Chinese from the
keyboard, and they had a proprietary trackpad-
like device that plugged into the USB port and
provided a handwriting input system, but of
course there was no way I could find a Linux
driver for this device so I just installed the
package ‘tegaki-recognize’ (along with its data in
‘tegaki-zinnia-simplified-chinese’ etc) and set it
up with an icon on the application launcher: it will
let you write one character at a time with the

mouse, and paste it into whichever window was foreground before it was
launched; I explained this was not quite as usable as their previous tablet,
but it’s the best we can do and at least it’s running on a nice fast operating
system that works.

The other thing I did was to copy over their browser bookmarks. They had
been using Chrome with automatic translation (I think it was me that
suggested this circa 2009: automatic translation is not very good, but at
least it gives them some vague idea of what they’re looking at, and means
they didn’t have to call me every 5 minutes with ‘what does this website
say’), and it was no problem to save the Chrome bookmarks file and load
it on another operating system, but it was more difficult to set the Linux
version of Chrome to automatically translate into Chinese (for some
unknown reason it kept on insisting that your first language must be
English if you’re on Linux) so I imported the bookmarks into Firefox and
found an add-on to do the translation. I hadn’t saved the passwords and
cookies from Windows, which turned out to be a mistake because the lady
didn’t know her Hotmail password and had been relying on the computer
to remember it for her for the last few years. All attempts at password
retrieval failed, so she had to get a new email account. (Never ever assume
a browser will always remember passwords for you: there are any number
of events that could interfere with this. If it matters and you can’t remember
it yourself, keep a backup copy in a safe place. I’m glad my email is still
provided by the local university: in the unlikely event that there’s a
problem with my account, I can walk into Reception with my passport or
something and ask for help. You can’t do that with the likes of Hotmail.)

But generally I was pleasantly surprised how smoothly it all went, and how
readily they accepted the result. I was expecting to be screamed at because
the desktop looked different or the icons were in all the wrong places or
their favourite calendar widget was missing or something, but none of this
happened: the only ‘hiccup’ was the missing Hotmail password.

 I

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

for the first time in a
long time I was actually

asked by a family of
computer novices to set

up GNU/Linux for them

Raspberry Pi Linux User Mode
GPIO in C++ (Part 2)

Ralph McArdell continues developing a C++ library for
Raspberry Pi expansions.

reviously [1] I described the initial stage of developing a library called
rpi-peripherals [2] to access general purpose input output
(GPIO) on a Raspberry Pi running Raspbian Linux in C++ from user

land – that is there are no kernel mode parts to the library. The library was
built on memory mapping the physical memory locations of the Raspberry
Pi’s BCM2835 processor’s peripherals’ control registers using the dev/
mem device accessed via an RAII (resource acquisition is initialisation [3])
resource managing class template called phymem_ptr.

Part 1 ended having described support for reading and writing single bit
Boolean values representing the high/low voltage state of an associated
GPIO pin in the forms of the ipin and opin types. Along the way we
met various other entities such as the pin_id type representing the value
of a BCM2835 GPIO pin, and the aforementioned phymem_ptr template.

This second instalment continues by describing adding support for some
other IO functions and the challenges they presented.

But first…
One thing the ipin type does not support is waiting for a change of state
to its associated GPIO pin before returning from a get operation. I really
needed to address this as it was the very thing that started me on the road
to writing my original Python Raspberry Pi GPIO library [4] [5].

In the Python GPIO library the need for a blocking read was specified in
the call to an open function and a suitable object would be returned that
had a read operation that would wait until the specified edge event (rising,
falling or either) occurred.

As mentioned the rpi-peripherals library directly accesses
peripherals’ registers by memory mapping them curtesy of the
phymem_ptr class template. The only readily available way to receive
GPIO pin edge event notifications in user space is via the /sys/
classes/gpio pseudo file system – as used by my Python library.

 I did not like the idea of mixing GPIO access methods in ipin or some
related class so I took a different approach. Instead a totally separate class
called pin_edge_event encapsulates handling pin edge events via /
sys/classes/gpio. In order to work with /sys/classes/gpio the
GPIO pin’s number is required and the pin should be exported [4] [6] and,
of course, set up for input. As it happens an ipin instance, using the
pin_export_allocator type to control access to GPIO pins between
processes, just happens to fulf i l al l these cri ter ia . Hence a
pin_edge_event is constructed from an existing ipin instance
together with an indication of which edge events are of interest:

 ipin in_pin{pin_id{23}};
 pin_edge_event pin_evt{in_pin,
 pin_edge_event::rising};

On construction the pin’s associated /sys/classes/gpio edge event
f i le i s opened. The pin is marked as having an associa ted
pin_edge_event object as I thought it too confusing to allow more than

one per ipin at a time. On destruction the pin is effectively closed for edge
events by passing the file descriptor obtained during the open process to
the Linux close function and the pin marked as not having an associated
pin_edge_event object.

The implementation of pin_edge_event revolves around a call to
pselect [7] – chosen over select for the fairly flimsy reason that it
allows timeout resolution in nanoseconds rather than microseconds. The
pin_edge_event interface allows waiting in various ways for an event
to be signalled, from waiting indefinitely for an event to just checking to
see if an event has been signalled:

 pin_evt.wait();
 assert(pin_evt.signalled());

In between, in the style of certain C++11 library APIs, there are wait_for
and wait_until member function templates to wait for a specific
amount of time or wait until a specific absolute time for an event to be
signalled. They are templates as they use std::chrono::duration
and std::chrono::time_point specialisations for their time
parameters:

 auto wait_duration(std::chrono::milliseconds{
 100U});
 bool edge_event_signalled{
 pin_evt.wait_for(wait_duration)};
 ...
 auto now(std::chrono::system_clock::now());
 auto wait_time(now+wait_duration);
 edge_event_signalled =
 pin_evt.wait_until(wait_time);

As can be seen from the example usage the signalled, wait_for and
wait_until operations return a bool value which is true if an event
was signalled. The wait operation does not return a value as it waits
indefinitely for an event: if it returns then there was an event.

The final operation supported by pin_edge_event is the clear
operation which needs to be performed after an edge event has been
signalled. This has to do with how /sys/classes/gpio edge event
handling works in that the value of the input pin the event occurred on
needs to be read from the relevant file before another event can be waited
on. Another /sys/classes/gpio edge event handling quirk is that a
pin_edge_event object is initially in the signalled state:

 ipin in_pin{pin_id{23}};
 pin_edge_event pin_evt{
 in_pin,pin_edge_event::rising};
 assert(pin_evt.signalled());
 pin_evt.clear();
 assert(!pin_evt.signalled());

The time has come
Having sorted out single pin GPIO support the time had finally arrived to
look at some of the other peripheral functions available. I thought that
adding support for pulse width modulation (PWM) allowing me to make
use of the motor controller on the Gertboard would be an interesting next
step. But as ‘pulse width modulation’ hints at, regular pulses are required
which implies the use of a clock. In the case of the BCM2835 the PWM

 P

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect
to stop learning or improving his skills.
14 | | SEP 2015{cvu}

controller uses a separate but dedicated clock that has the same
programming interface as the general purpose clocks that can be connected
to GPIO pins. So in order to support PWM I would first have to provide
support for clocks.

Like GPIO, clocks are controlled by a set of registers based at a specific
physical address. Each clock is controlled by the clock manager peripheral
and has its own set of two registers at an offset from this base address.
Frustratingly the BCM2835 ARM Peripherals document [8] only gives the
base address for the clock manager and the offsets from it for the three
general purpose clocks’ register sets, not for clocks associated with other
peripherals such as the PWM clock – although mention is made that the
PWM clock is designated clk_pwm. I had to refer back to the provided
Gertboard C code to locate the required offset value.

As with GPIO I started with the clock registers layout. Each clock controlled
by the clock manager has the same register structure so I split the
implementation into two structures: one describing a single clock, which I
called a clock_record and the main clock_registers structure
which contained a clock_record member for each supported clock
carefully placed so that it was at the correct offset from the start of a structure
instance – and yes there is a test to check they are at the expected offsets.

Like gpio_registers I provided member functions to get or set the
individual f ie lds within a c lock’s registers . In the case of
clock_registers which clock to operate on needs to be specified
implying passing some sort of identifier. The easiest solution turned out
to be to define the clock_id as a type alias for a pointer to
clock_record member of clock_registers:

 typedef clock_record clock_registers::* clock_id;

Each member function of clock_registers takes a clock_id as a
parameter and uses it to pass on the call to the identified clock_record
member:

 clock_registers
 {
 ...
 clock_src get_source(clock_id clk)
 volatile const
 {
 return (this->*clk).get_source();
 }
 ...
 };

The specific clock ids were then defined as global constexpr
clock_id instances initialised to the relevant clock_record
member’s ‘address’ value, for example:

 constexpr clock_id pwm_clk_id
 {&clock_registers::pwm_clk};

Frequent division diversions
You would think the interface to a clock would be simple: specify the
required frequency and provide operations to start, stop and possibly query
the frequency and the running state. This is the sort of interface I wanted
the public library clock support to provide.

However, at the lower levels it turns out to be not so simple. First you have
to supply the clock with a source of oscillation at a fixed frequency – the
Raspberry Pi has a 19.2 MHz oscillator that can be used as an external (to
the BCM2835) clock source which seems the easiest to use. Next it needs
to be divided down to the required frequency.

Dividing down the clock source is more complex than just supplying an
integer divider. Most required frequencies will have no integer divisor that
produces an exact match. For example if the clock source oscillates at 1
MHz and we require a 134 KHz clock then the best we can do is divide by
8, yielding a frequency of 125 KHz, or by 7, yielding a frequency of around
143 KHz. So in addition to integer division the clocks provide something
called MASH filtering (MASH it appears stands for Multi-stAge noise
Shaping) – about which I know very little other than the information
provided in the BCM2835 clock peripheral documentation. When using

one of the three MASH filtering modes a fractional division value is used
in addition to the integer division value. The result is that the actual clock
frequency varies slightly between a minimum and maximum value, but the
average frequency should be very close to that requested. The down side
is that the MASH filtering modes introduce a bunch of constraints on
maximum frequency and minimum integer divider value.

I wanted to work in terms of frequency rather than modes and divisor
values. Providing a frequency type would allow the use of frequency units
such hertz, kilohertz and megahertz. Thinking about this I noted that the
inverse of frequency – or cycles per second – is a duration value – seconds
per cycle. The standard library has the std::chrono::duration class
template along with type aliases for specialisations representing various
common time units such as microseconds and hours. I felt there should be
some way to use std::chrono::duration to represent frequency.
However, a solution was not immediate forthcoming so to keep moving
forward and not get distracted further I effectively copied the required parts
of the std::chrono::duration class template as my library’s
frequency class template. The implementation was so similar that, in a
somewhat hacked manner, when I produced a frequency_cast
function template to cast between different frequency specialisation types,
it was implemented in terms of std::chrono::duration_cast and
std::chrono::duration – I had reached the end of my patience on
these diversions! Completing the support for frequency I added a bunch
of frequency specialisation type aliases for common frequency units:
hertz, kilohertz and megahertz.

In addition to the frequency support I also added enumeration and simple
class types and constant definitions to help with specifying a clock
including a constant definition for the Raspberry Pi’s 19.2 MHz oscillator.
These all live in the clockdefs.h library public header.

I created the clock_parameters class to aid bridging between
frequencies and clock modes and divisors. Instances are created from a
clock source and frequency (external clock source at 19,200,000 Hz for
the Raspberry Pi’s 19.2 MHz external clock for example) along with the
desired clock frequency specification combining the desired (average)
frequency and an enumeration value specifying the level of MASH
filtering required: maximum, medium, minimum or none – where none
means use only an integer divisor.

During construction, after some basic parameter value checks, possibly
repeated attempts are made to try to obtain a valid frequency value starting
with the filter mode requested in the constructor parameters and falling
back to lower levels if the maximum frequency produced is too high. If
the frequency value exceeds even the substantially higher value allowed
the finally attempted integer only division mode a std::range_error
is thrown. A std::range_error will also be thrown if the integer
divisor is too small for the selected filter mode.

If no exception is thrown during construction then the various parameters
can be queried via non-modifying accessor member functions.

Now there are two
The purpose of the clock_registers class is for a volatile instance to
be mapped to the clock peripherals’ register block using a
phymem_ptr<volatile clock_registers> instance. Some ability
to detect trying to use the same clock peripheral multiple times would also
be useful. So, as with the ipin and opin types and the gpio_ctrl
s i n g l e t o n , a s i n g l e t on t yp e w as c re a t ed c om bi n i ng a
phymem_ptr<volatile clock_registers> instance with simple
in-process clock-in-use allocation provided by the simple_allocator
class template, specialised on the number of things available to allocate
(in this case the 4 clocks: pwm_clk and gpclk 0, 1 and 2) and based around
a std::bitset. Only in-process allocation management was provided
because I could not see any straight forward way to provide an open inter-
process allocation management scheme for clocks or other peripherals.

Setting up a GPIO pin for use as one of the three general purpose clocks
not only requires access to the clock_ctrl instance but also to the
gpio_ctrl instance so as to allocate the pin and set the correct alternate
SEP 2015 | | 15{cvu}

function for it. This would of course apply to any other peripherals
supported by the library. When the only thing that needed to access the
main GPIO registers were the ipin and opin types then gpio_ctrl
could be left internal to the pin.cpp implementation file. But now there
were two – the ipin/opin code in pin.cpp and the clock_pin code
in clock_pin.cpp – some changes would be required.

As a bout of refactoring was inevitable it seemed prudent to decide on some
conventions. First the library facilities were divided into the public API
parts and library internal parts with the internal parts being placed in a
nested internal namespace. Next, those headers required for using the
public API were moved from the project src directory to the project
include directory. This was always going to happen – it was just a matter
of what and when. Finally, the gpio_ctrl code was moved out of
pin.cpp and into its own library internal files gpio_ctrl.h and
gpio_ctrl.cpp. A similarly named type and implementation file-pair
were created for the clock peripherals: clock_ctrl in files
clock_ctrl.h and clock_ctrl.cpp.

This leads to a basic pattern: for a peripheral p there would be a
p_registers.h header file containing a p_registers class usually
together with supporting entities that mapped p’s register structure and
associated values to C++ entities. This would be used, qualified
volatile, to specialise a phymem_ptr mapped to the peripheral’s
registers’ physical memory block start address along with some sort of in-
use tracking in a p_ctrl singleton type implemented in p_ctrl.h and
p_ctrl.cpp. The p_registers and p_ctrl types (and source files)
are internal to the library. The public API would be presented by a type
p_pin with p_pin.h being placed in the project include directory.
Along the way there may be ancillary items which would often be internal
to the library (such as phymem_ptr or the /sys/classes/gpio
support in sysfs.h and sysfs.cpp) but sometimes – as with pin_id
and those entities placed in the clockdefs.h header – would be part of
the public API. Figure 1 shows the pattern as a UML class diagram; ipin
and opin are included to show they only access gpio_ctrl while other
peripherals additionally access their own p_ctrl type.

Can you do this?
The clock_pin class provides the library’s public support for general
purpose clock functions on GPIO pins and unsurprisingly requires a
pin_id specifying which GPIO pin to use. Wherein lies a problem.
Unlike general input and output which all GPIO pins can perform,
alternative functions – such as a general purpose clock (gpclk) function –
can only be performed by a few, sometimes only one, pin. Which alternate
functions a pin can perform is given in a table in the BCM2835 ARM
Peripherals document.

On the other hand no pin supports more than one clock peripheral so if a
pin supports one of the general purpose clocks then the pin number
uniquely defines which general purpose clock (0, 1 or 2).

To help check if a pin supports a given peripheral function and which of
the six alternate pin functions it is supported by I created the
gpio_alt_fns module that provides a set of overloaded select query

functions that select data from a statically initialised 2 dimensional array
that defines the alternate functions each pin supports. The values are
enumeration values taken from another table in the BCM2835 ARM
Peripherals document that names the peripheral functions.

This allows questions such as which alternate function for pin p supports
peripheral function f or which, if any, of a set of peripheral functions fs
does pin p support? The select functions return a result_set object
that has a partial STL container like interface allowing access via iterators,
operator[] and at and can be queried for size and being empty. The
items in the result set are of a simple descriptor type specifying the pin,
the special peripheral function and the alternative pin function it is
supported on.

During the development of the gpio_alt_fns module I found that I had
prefixed almost all identifiers with pin_alt_fn_. This seemed silly so I
gave in and placed the whole lot in its own pin_alt_fn nested namespace.

Easy time?
So how easy is it to use a GPIO pin as a general purpose clock?

Like ipin and opin, clock_pin uses RAII to manage the GPIO pin and
general purpose clock resources. The most complicated operation is
creating a clock_pin instance. Once successfully created the object can
be used to easily start, stop and query whether the clock is running as well
as obtain the values for the minimum, maximum and average frequencies
the clock is using.

To create a clock the clock_pin constructor needs to be passed three
things: the pin_id of the GPIO pin to use as a clock – which should
support such a funct ion of course, a clock source (passing
rpi_oscillator defined in clockdefs.h is the easiest option), and
finally a clock_frequency object specifying the desired clock
frequency and the filter mode to apply. The clock_frequency type is
defined in clockdefs.h.

For example we could create a 600 KHz clock with no MASH filtering
(that is, using only integer division) like so:

 clock_pin clk{
 gpio_gclk, rpi_oscillator,
 clock_frequency{kilohertz{600},
 clock_filter::none}
 };

Note that gpio_gclk is defined in pin_id.h and yields a pin_id for
GPIO pin 4, which supports gpclk0 as alternate function 0 and is available
on pin 7 of the Raspberry Pi P1 connector. During construction all values
are checked, with exceptions thrown in case of problems, and the GPIO
pin and clock allocated and setup. The clock and pin are of course released
during destruction, after ensuring the clock is stopped.

To check what frequencies are being used the frequency_avg,
frequency_min and frequency_max member functions can be
called. In this case we would expect a 600 KHz value for all three frequency
values as only integer division of the clock source was applied and, as it
happens, 600 KHz divides wholly into 19.2 MHz:

 assert(clk.frequency_min()==hertz{600000U});
 assert(clk.frequency_avg()==hertz{600000U});
 assert(clk.frequency_max()==hertz{600000U});

We can check if the clock is running – which just after construction it
should not be:

 assert(!clk.is_running());

And of course we can start and stop the clock:

 clk.start();
 ...
 clk.stop();

The output of gpclk0 running at 600 KHz can be observed by connecting
GPIO pin 4 to the input of an oscilloscope as shown in Figure 2 – in which
the time-base used is 1 µS per division.

Fi
gu

re
 1
16 | | SEP 2015{cvu}

After clocking up all those distractions…
Having provided support for clk_pwm and the general purpose clocks and
refactored the library, I could return to pulse width modulation. PWM [9]
allows control of power to devices such as motors by varying the ratio of
high to low time per clock cycle (the duty cycle). You will notice in the
clock trace shown in Figure 2 that these are equal, a ratio of 0.5: during
each cycle the clock pulse is high for half the time and low for the other
half of the time. PWM allows this ratio to be varied dynamically.

The BCM2835 has a single PWM controller that supports two channels
that are referred to as PWM0 and PWM1 (as denoted by pin alternate
functions) or channels 1 and 2 (as denoted by the PWM controller’s
register descriptions), where channel 1 maps onto PWM0 and channel 2
to PWM1. Each channel can be used in either PWM mode or serialiser
mode in which buffered data is written serially to the PWM channel’s
GPIO pin. I included support for serialiser mode in the pwm_registers
class implementation for completeness but do not provide support in the
pwm_pin class. There are two PWM channels associated with the PWM
controller but only one clock – clk_pwm – thus the clock settings used for
clk_pwm apply to both PWM channels.

As it happens both PWM channels are used by the Raspberry Pi for stereo
audio – using one PWM channel per audio channel. PWM0 can also be
accessed for other purposes on GPIO pin 18 via pin 12 of the P1 connector.
Of course using PWM for other things will most likely mess up the
Raspberry Pi’s audio output.

The PWM peripheral has modes of usage I decided not to support:
serialiser mode for a start. Other were DMA (direct memory access – an
intriguing possibility – maybe one day) and FIFO buffering. I also decided
to set certain other options to fixed values such as not to use inverted
polarity and to only use the standard PWM sub-mode (the alternative so-
called MS mode seemed like a half-way house between serialiser mode and
standard PWM mode). Again, support was available in pwm_registers
but not used by pwm_pin – other than to set the fixed feature values –
generally to off (false).

Like the clock peripherals there are multiple (well, two) PWM channels
so the member functions of pwm_registers mostly require a parameter
to specify the channel (the exception being those functions relating shared
resources such as DMA or the FIFO buffer). Unlike the clock peripherals
there is no repeated register structure: some registers contain sections for
each channel while others relate to one channel or the other. Hence a
pwm_registers auxiliary enumerated type pwm_channel is used as a
channel identifier and the enumerated values used to select either the
required register or the required part of a register.

The two attributes that did need to be user-set for each channel were the
range and the data. Together these are used to define the duty cycle ratio
of the PWM output. The range value defines the number of bits over which
the duty cycle high/low ratio waveform is spread and repeated. The data
value defines how many of the bits of the range will be high and the
algorithm used by the PWM controller will try to spread these out as evenly
as possible. Taking the example from the BCM2835 ARM Peripherals

document’s PWM section, if 4 bits of a range of 8 (a ratio of 4/8 or 0.5)
are to be high then the pattern would be:

 1 0 1 0 1 0 1 0

Rather than:

 1 1 1 1 0 0 0 0

Or:

 1 1 0 0 1 1 0 0

Each bit of the range would be used to set the high/low state of the
associated GPIO pin changing from one bit’s state to the next on each clock
‘tick’, as provided by clk_pwm which should run at a reasonably high
frequency – it is set to a default of 100 MHz by the hardware.

The handling of clk_pwm is split between pwm_pin and pwm_ctrl. The
pwm_pin class provides static member functions to work with clk_pwm
with the pwm_pin::set_clock member function performing a similar
function to the constructor of clock_pin, but does not require a pin_id
value as clk_pwm is never mapped to a GPIO pin. The other three functions
provided are:

 pwm_pin::clock_frequency_min

 pwm_pin::clock_frequency_avg

 pwm_pin::clock_frequency_max

They return the values for the frequencies used by pwm_clk in the same
fashion as:

 clock_pin::frequency_min

 clock_pin::frequency_avg

 clock_pin::frequency_max

The low level details of setting up the clock that require access to
clock_ctrl are delegated to pwm_ctrl::set_clock – an additional
piece of functionality for the pwm_ctrl singleton type in addition to the
phymem_ptr<volatile pwm_registers> and
simple_allocator specialisation for the two PWM channels.

Setting pwm_clk up in the same fashion as the clock_pin usage example
would look like so:

 pwm_pin::set_clock(rpi_oscillator,
 clock_frequency{kilohertz{600},
 clock_filter::none });

which has the same parameters as the clock_pin object construction
example less the initial pin_id parameter.

Where a pin_id is required – unsurprisingly – is in the construction of
pwm_pin instances to specify which pin we want PWM output on. Details
of which PWM channel (if any) and which alternate function of the GPIO
pi n i s u s e d f o r t h e P W M fu n c t i on b e i ng a s k e d o f a
pin_alt_fn::select function. The other pwm_pin constructor
parameter is an unsigned integer range value, defaulting to a value of 2400
– a fairly long range value which is divisible by quite a few values. Hence
the only value needed to construct a pwm_pin object is a pin_id:

 pwm_pin pwm{gpio_gen1};

where gpio_gen1 yields a pin_id value for GPIO pin 18 available on
pin 12 of the Raspberry Pi P1 connector.

Now we have a pwm_pin object we can start and stop the PWM output,
check whether it is running or not and set the ratio. The first three are simple
to use and to implement:

 assert(!pwm.is_running());
 pwm.start();
 ...
 assert(pwm.is_running());
 ...
 pwm.stop();
 ...
 assert(!pwm.is_running());

The set_ratio operation, although easy to use is more interesting in its
implementation. There are two forms, one that takes a double floating
point value and another that takes a pwm_ratio value.

Fi
gu

re
 2
SEP 2015 | | 17{cvu}

Raspberry Pi Linux User Mode GPIO in C++ (Part 2) (continued)

Before getting into pwm_ratio let’s first look at the overload taking a
double. The value should be in the range [0.0, 1.0], with values outside
this range throwing a std::out_of_range exception. The value is
used to calculate the proportion of the range value to set for the PWM
channel’s data register value with a value of 0.0 producing low values for
the whole range, and a value of 1.0 all high values. For example the output
could be set to be high for a quarter of the time like so:

 pwm.set_ratio(0.25);

I thought it would be nice to be able to express setting the ratio as a ratio.
So pwm_pin.h includes a pwm_ratio class template, specialised by an
integer type and a std::ratio specialisation (or similar type). Instances
of specialisations of pwm_ratio hold a count value of the template integer
parameter type, and define static constexpr values num (numerator)
and den (denominator) equal to those values of the std::ratio
specialisation template parameter type. For example for 0.3 count could
be 3 with num and den set from a std::ratio with num 1 and den 10
as per std::deci, or maybe count is 30 with num and den from a
std::ratio with num 1 and den 100 as per std::centi. I also defined

a set of type aliases for pwm_ratio specialisations for ratios as numbers
of tenths (pwm_tenths), hundredths (pwm_hundredths), thousandths
(pwm_thousandths) and millionths (pwm_millionths).

The other form of the set_ratio operation is a member function
template that takes a pwm_ratio specialisation, and hence requires the
same template parameters as pwm_ratio. Using a ratio to set the PWM
output to be high 25% of the time would look like this:

 pwm.set_ratio(pwm_hundredths(25));

Figure 3 shows the output of PWM0 using a 600 KHz clock, range of 2400
and a high ratio of 25% as observed by connecting GPIO pin 18 to the input
of an oscilloscope this time using a time-base of is 2 µS per division.

References
[1] Raspberry Pi Linux User Mode GPIO in C++ – Part 1, CVu, Volume

27 Issue 2, May 2015
[2] dibase-rpi-peripherals library project:

https://github.com/ralph-mcardell/dibase-rpi-peripherals
[3] See for example:

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
[4] Raspberry Pi Linux User Mode GPIO in Python, CVu, Volume 27

Issue 1, March 2015
[5] dibase-rpi-python library project:

https://github.com/ralph-mcardell/dibase-rpi-python
[6] Documentation/gpio.txt in the Linux kernel tree, as located at:

https://github.com/raspberrypi/linux/blob/rpi-3.2.27/
Documentation/gpio.txt

[7] pselect man page, for example at:
http://linux.die.net/man/2/pselect

[8] BCM2835 ARM Peripherals:
http://www.raspberrypi.org/wp-content/uploads/2012/02/
BCM2835-ARM-Peripherals.pdf

[9] Pulse width modulation:
https://en.wikipedia.org/wiki/Pulse-width_modulation

Fi
gu

re
 3
Standards Report
Jonathan Wakely reports the latest on C++17 and beyond.

’d like to start my first CVu standards report by thanking Mark Radford
for writing the reports for many years, keeping them interesting and
insightful. I hope I can do the same.

Just after Mark’s last report in May’s CVu the C++ committee met in
Lenexa, Kansas for another six long days with several groups meeting
every day, working on the main standard and a number of Technical
Specifications (TS). With a new standard due in 2017 time is running out
to decide on the features that will be included, as we will need some time
to iron out the bugs and (we hope) get some early implementation
experience before it goes to publication. We also need to send the final
standard to ISO in plenty of time so they don’t end up publishing it the
following year, as nearly happened with the 2014 standard.

Bjarne Stroustrup gave a talk in Lenexa about what he hopes to see in the
next standard, his main aims are to:

 Improve support for large-scale dependable software

 Provide support for higher-level concurrency models

 Simplify core language use, especially as it relates to the STL and
concurrency, and address major sources of errors.

In his words, these are ‘motherhood and apple pie’, but there are specific
proposals being discussed which work towards these goals, which I will
cover below. Of course there are also many other proposals that work
towards those goals less directly, or towards totally different goals, but I'm
not going to focus on those for this report.

Large-scale dependable software
There are two groups working on proposals for C++ modules (N4465,
N4466) and several discussions took place during the Lenexa meeting,
which I hope will result in some common ground and a unified proposal
in time for C++17. Modules will help replace the preprocessor and the
simplistic header file model for using libraries, something which appeals
to many people.

 I

JONATHAN WAKELY
Jonathan’s interest in C++ and free software began at university and
led to working in the tools team at Red Hat, via the market research and
financial sectors. He works on GCC’s C++ Standard Library and
participates in the C++ standards committee. He can be reached at
accu@kayari.org
18 | | SEP 2015{cvu}

https://github.com/ralph-mcardell/dibase-rpi-peripherals
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://github.com/ralph-mcardell/dibase-rpi-python
https://github.com/raspberrypi/linux/blob/rpi-3.2.27/Documentation/gpio.txt
http://linux.die.net/man/2/pselect
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/Pulse-width_modulation

There are also two competing proposals for contract-based programming
(N4378, N4415). These contracts allow preconditions and postconditions
of functions to be stated in code, so that they can be verified automatically
by the compiler. There seems to be a lot of disagreement about the basic
direction that contract checking in C++ should take.

The last active proposal in the large-scale dependable software category
is a type-safe union, along the lines of boost::variant. There is only
one proposal for a variant type, but the latest revision of it (N4542) is the
fourth version, having gone through review sessions at previous meetings,
and then changes in response to those previous discussions. There are a
number of design decisions that need to be made for a variant type and there
is no consensus on the right choices. There have been long discussions at
the meetings and even longer ones afterwards by email. Anthony Williams
wrote an excellent blog post [1] which covers the main controversial areas,
and the comments on the post describe some of the opposing views.

Two of the hottest topics are what should happen if changing the type
stored in a variant causes an exception to be thrown and what it should
mean to declare a variant using the same type more than once, e.g.
variant<string, int, int>. The discussions have gone round and
round, apparently without changing anyone’s views or getting any closer
to consensus, as different people consider different aspects of the design
to be higher priority and don’t want to compromise on whichever part
matters to them. Personally I’ve seen enough discussion and don’t feel
strongly enough to fight for any particular design. I’d rather have (almost)
any kind of variant rather than debating it forever and not getting a variant
in the standard at all. The discussions are expected to continue at the next
meeting, probably in a larger group than previous discussions. Now that
the proposal has graduated from Library Evolution Working Group
(LEWG) sessions a wider audience from the full committee will be
involved.

Higher-level concurrency models
C++11 gave us some low-level concurrency primitives such as mutexes,
atomic operations and thread creation, but nothing higher-level than
td::future and std::async. The low-level pieces are considered too
difficult for many programmers to use correctly, or just the wrong level of
abstraction. It’s important to provide better abstractions that allow
programmers to think about the work they want to perform, not about how
many threads to create and how to do the error-prone synchronisation
needed to communicate between threads.

The Parallelism and Concurrency study group (SG1) have been busy as
ever, with the content of the Concurrency TS being completed and ready
for a final draft to be considered by the national bodies. Mark previously
discussed the Concurrency TS in this column, so I’ll just say that it includes
support for running continuations when the result of a future becomes
ready, so that operations can be chained together. There are also competing
proposals for some form of coroutines (N4402, N4403, N4398).
Discussions are ongoing for some form of executor that would allow
programmers to pass a unit of work to an executor. The executor would
do the tricky job of scheduling work to run in some execution context
without the programmer needing to create and manage a thread for every
unit of work. Like variant, everyone wants executors, but don’t agree what
form they should take.

The Transactional Memory study group (SG5) have been working on the
Transactional Memory TS, offering a simpler programming model than
explicit atomic operations on individual atomic objects. That TS has now
been sent to ISO for publication.

The Networking TS, based on Boost.Asio, also offers a higher-level
concurrency model. Although the main purpose of the TS is to add support
for working with network sockets and related things like IP addresses and
name resolution, much of the Asio library’s strength is the model used for
doing I/O, name resolution etc. as asynchronous operations. That means
the Networking TS will provide its own high-level concurrency model
(there is clear overlap with the more general executor work being done by
SG1, but that redundancy will have to be dealt with at a later date). There

was an intensive week-long review session of the Networking proposal at
the unofficial Cologne meeting in the spring, and LEWG had a couple of
sessions in Lenexa to review Chris Kohlhoff’s changes in response to the
Cologne review. In most cases LEWG simply agreed with Chris’s
suggested changes. As the author of Asio and the proposal he knows the
design, implementation and use cases better than anyone, but I think there
were some very useful suggestions made in Lenexa which simplify some
of the hairier parts of the specification. There will be more work on the
Networking TS at the next meeting and I hope to produce an initial draft
TS based on Chris’s latest proposal.

Simplify core language use
The biggest news in this area is that reviewing the Concepts TS was
finished in Lenexa, so following a final review done by teleconference
shortly after the meeting, the TS has been sent to ISO for publication. More
recently a complete implementation of the TS was merged into the GCC
Subversion trunk. This means there is a working implementation of C++
Concepts available in a major compiler today (if you check out the
development sources and build GCC yourself). It’s too early to say whether
Concepts will also be part of C++17, but even if it isn’t we’ll have the TS
and support in at least one compiler.

Updating the standard library to use concepts is currently being done as
part of Eric Niebler’s work on Ranges. His proposal is being reviewed
between meetings by teleconference, so there should be more news on that
following the next meeting.

The Evolution Working Group are looking at several proposals for
simplifying the use of advanced features, including uniform call syntax.
This would add core language support for something that the library
currently tries to do, but arguably doesn’t do very consistently.

Finally, it would make sense to incorporate some of the utilities in the
Library Fundamentals TS into C++17, particularly string_view and
optional.

Other news from Lenexa
One of the other hot topics at the Lenexa meeting was a proposal to add
several mathematical functions to the C++17 standard library. These
functions were part of TR1 back in 2005, but unlike the rest of TR1 were
not incorporated into the C++11 standard, due to the reported difficulty of
writing good quality implementations. The functions were instead moved
into a separate ISO standard, so a standard C++ implementation doesn’t
need to include them. That standard has now come up for a periodic review
where we have to decide whether to renew it, re-confirm it or retire it.
N4437 proposed to add these functions to C++17, as ‘conditionally
supported’, so that implementations are still not obliged to provide them,
but the committee would not need to maintain a separate ISO standard
specifying them. In Lenexa, representatives of the target audiences for
these functions argued that they need to be unconditionally supported, so
the committee discussed that which proved even more controversial! This
will be debated again in Kona.

Finally, a new study group, SG14, covering ‘Games and Low Latency’ was
started. They plan to look at subjects related to those topics and try to get
members of the game development community to participate in C++
standards work, to ensure their needs are met. It’s not entirely clear
whether this is really just about game development, or also relevant to other
low latency environments such as electronic trading and some embedded
systems, time will tell.

Future meetings
The committee will be meeting in Kona, Hawaii, in October, and then in
Jacksonville, Florida in February, and then Oulu, Finland in June. After
the Kona meeting we might have a better idea of what will and won’t be
included in C++17.
SEP 2015 | | 19{cvu}

Code Critique Competition 95
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I had some code that used an anonymous structure within an
anonymous union to easily refer to the high and low 32-bit parts of a 64-
bit pointer. However, I get a warning that this is non-portable (I'm not
quite sure why - MSVC and g++ both accept it) but after googling around
for a solution I found one that uses #define. It all compiles without
warnings now so I think it's fixed.

Can you give some advice to help this programmer?

The code is in Listing 1.

Critiques

James Holland <James.Holland@babcockinternational.com>

The student says that warnings are issued but not when using MSVS or
G++. It would appear that the student’s compiler is trying to warn of
something that the other compilers are keeping quiet about. It is a pity that
the student does not tell us what the warnings are. In their absence, it is
worth thinking about what the warnings could be. This may provide some
clues as to why the code may not be portable.

It may be the case that the compiler is generating pointers of length other
than 64 bits. Without instructing the compiler otherwise, it might well
produce 32-bit pointers. This would have the effect that when the address
of var is assigned to a.pointer, offsetHi would not get assigned a
value. This is because a.pointer is only of sufficient size to cover
offsetLo. The result is that offsetHi would be left with an undefined
value. So, if the compiler is generating 32-bit pointers, it would be
appropriate for a warning to be issued to the effect that offsetHi is never
initialised. We need to find a way to guard against this scenario.

Probably the most direct way is to check at compile-time that the pointer
is 64 bits in length. This can be achieved using the following
static_assert statement.

 static_assert(sizeof address::pointer == 8,
 "Pointers are not 64-bit!");

If the compiler is not generating 64-bit pointers, the error message will be
issued when the program is compiled thus preventing executable code
from being produced.

What else could go wrong? Well, for the output of the program to be
interpreted correctly, it is essential that offsetLo is located on the least
significant half of a.pointer and that offsetHi is located on the most
significant half. There are two ways in which machines store multi-byte
values; least significant bytes first followed by the more significant bytes

or most significant bytes first followed by the lesser significant bytes. The
former method is known as little endian, the latter is known as big endian.
As an example, the table below shows the two types of endian for the value
0x12345678.

From the supplied code, it can be seen that the student is expecting the
software to be run on a little endian machine as offsetLo has been
declared before offsetHo and so offsetLo will be located at the lower
memory address. The following code could be used to determine the
endian of a particular machine.

 a.address = reinterpret_cast<int *>(1);
 if (a.offsetLo == 1)
 {
 // Little endian
 ...
 }
 else
 {
 // Big endian
 ...
 }

I leave it to the student as to how the code is used in a practical program.

Endian Big Little

Byte value 12 34 56 78 78 56 34 12

Byte offset 0 1 2 3 0 1 2 3

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

--- address.h ---
#pragma once
typedef struct {
 union {
 struct {
 int32_t offsetLo;
 int32_t offsetHi;
 } s;
 void *pointer;
 };
} address;
// simulate anonymous structs with #define
#define offsetLo s.offsetLo
#define offsetHi s.offsetHi

--- test program ---
#include <cstdint>
#include <iostream>
#include "address.h"
int main()
{
 int var = 12;
 address a;
 a.pointer = &var;
 std::cout << "Address = " << std::hex
 << a.offsetHi << "/" << a.offsetLo
 << std::endl;
}

Listing 1
20 | | SEP 2015{cvu}

It is conceivable that the compiler will place some padding bytes between
offsetLo and offsetHi. This will depend on the settings of the
compiler and on machine for which the software is designed to run. For
the program to work correctly there must be no padding. It is possible to
test for the presence of padding by use of the following code.

 const auto x =
 reinterpret_cast<size_t>(&a.offsetLo);
 const auto y = sizeof address::offsetLo;
 const auto z
 = reinterpret_cast<size_t>(&a.offsetHi);
 if (x + y != z)
 {
 std::cout <<
 "offsetLo and offsetHi not contiguous!" <<
 std::endl;
 }

All of these problems occur because the program is relying on language
features that are implementation dependant. It would be nice if the
compiler would give warnings if such features are used but the standard
does not mandate it and not many compilers do. If implementation
dependant features must be used, it is up to the programmer to make checks
to ensure the program is valid.

The student implies that when the inner structure is given a name and the
#defines that simulate anonymous structures are used, the warnings
disappear. This is very strange. #defines are little more than a text
substitution mechanism and so I would not have thought they would have
any effect on warning message issued. Also, I would not have thought
giving the inner structure a name would have any affect either, so this
remains a mystery. Irrespective of whether a warning is issued, any
underlying problem would remain the same. There is still implementation
dependant behaviour that must be considered.

As the student simply wishes to refer to the high and low order bytes of a
64-bit address, the supplied program could be simplified somewhat. The
outer struct could be removed and the inner struct returned to being
anonymous. There would then be no need for the #defines.

From these observations it can be seen that the student’s code is not without
its problems. Perhaps there is another method that can achieve the same
result in a simpler way. It is always worth reflecting on the code one writes
to see if there is a more elegant solution. I now describe one such method
that is worth considering.

The method consists of two stages. Firstly, the high order bytes of the
variables address are set to zero and the result stored for later display.
Secondly, the high order bytes are shifted into the position occupied by
the low order bytes. The result is also stored for later display. From a
practical point of view, there is one slight complication. The address of the
variable var has to be cast to an integer type before any zeroing or shifting
can take place. This is no great hardship and has the advantage of making
it clear to anyone reading the code that the address of var is being handled
in somewhat unconventional way. Code using this method is shown below.

 const auto address =
 reinterpret_cast<int64_t>(&var);
 const auto offsetLo = address & 0xffffffff;
 const auto offsetHi = address >> 32;
 std::cout << "Address = " << std::hex <<
 offsetHi << "/" <<offsetLo << std::endl;

To conclude, it is preferable to write simple code that does not rely on
features of the implementation. If this is not possible, include checks to
ensure such features are consistent with the operation of the program.
Ideally, such checks should take place at compile-time. If this is
inconvenient or impossible, run-time checks should be performed.

Commentary
This problem revolves around trying to treat a pointer value as an integral
value. This is inherently non-portable as C++ makes few guarantees about
the sizes of fundamental types and the relationship between pointer values

and integral ones. While this enables C++ to be efficient on a wide range
of platforms with different address ranges and register sizes (since the
compiler can use a ‘natural’ word size) it does make it harder to write code
targeting specific platforms.

The types provided by the C header <stdint.h> (and available to C++
using the <cstdint> header) provide a way to access various sized
integer types if such types are available on the target implementation. If
the intN_t type is available it ‘designates a signed integer type with width
N, no padding bits, and a two’s complement representation’.

I do not think however that a signed type is a good choice for breaking an
address into two parts – it would be better to use the unsigned type
uint32_t. The use of signed integers to represent address values is a
common source of errors for 32 bit programs, typically when addresses are
compared. It seems to be less of a problem for 64 bit programs since the
top bit of the 64bit address is clear (at least for user-mode programs) on
both Windows and Linux, so treating the address as a signed value does
not change the meaning of any pointer comparisons. If provided, the type
uintptr_t is a typedef for an integral type large enough to round-trip
any pointer to void. (There is a signed equivalent too, but I personally don’t
recommend using that for the reasons above.)

The original code that used an anonymous structure and an anonymous
union gets a warning when used in C++ programs since although
anonymous structs are allowed by the ISO C standard (since C11) they are
not part of ISO C++. (MSVC gives a warning in C mode that a non-
standard extension is being used – but this refers to the superseded C
standard.) I apologise for the lack of clarity in the code critique about the
exact form of the code using the anonymous struct.

The technique of breaking a pointer into two parts by writing into one
element of a union and reading back from another one normally works in
practice, but care must be taken to avoid subtle bugs.

As James points out, the student’s example assumes a little-endian
machine so that the layout of the 32 bit integers results in the low 32 bits
of the pointer value overlaying offsetLo and the high 32 bits overlaying
offsetHi.

It would be well worth while adding some checks (some are possible at
compile time using static_assert) to both verify that these
assumptions hold now and to avoid unpleasant surprises when the code is
recompiled with a different compiler or for a different target platform. It
is unfortunately all too easy when writing these checks to accidentally
invoke undefined behaviour.

The use of a #define to simulate the anonymous struct is worrying
mostly because of the normal problems of preprocessor definitions – they
are a textual substitution done without full integration with the syntax of
the language.

In this example, suppose another piece of code uses the symbol offsetLo
and includes the address.h header file?

Adding the following variable declaration to main:

 int offsetLo = 0;

caused an error message, from one compiler, stating: "'->': trailing
return type is not allowed after a non-function
declarator". It is not entirely clear to me why! gcc was more helpful
and provided a note referring to the macro definition of offsetLo, but
this ‘poisoning’ of the identifiers offsetLo and offsetHi is still a
nuisance. One possible approach might be to provide inline member
functions offsetLo() and offsetHi() and encapsulate the union
‘hack’ inside the implementation of the ‘address’ structure.

One last minor usability problem with the header file is that it uses data
types defined in <cstdint> but relies on this header being already
included. This makes code using the header fragile as an unrelated removal
of a header file can cause compilation errors in this one.

The Winner of CC 94
There was only one entrant this time, but James covered most of the
problems with the code and provided a helpful diagram of the difference
SEP 2015 | | 21{cvu}

Inspirational (P)articles:
Use the DOM Inspector

Silas S. Brown shares a tip for debugging web pages.

his may seem obvious to some, but not every developer knows about
it so it might be worth a mention. A while ago I was trying to help a
Web designer who was struggling with a complex layout problem,

and I complained that her laptop’s touchpad was difficult to use. She went
off to get a real mouse, but as she walked in with the mouse I said, “Got
it: it’s a spurious right-margin on line 66 of main.css”. But how did you...?

All of the major graphical browsers have some variation on the DOM
(Document Object Model) inspector, usually accessed from the context
menu (the right-click menu in the page). These allow you to inspect the
document, not just by looking at the source code of the HTML, CSS and

Javascript files, nor even a pretty-printed, formatted version of these: the
usefulness of that is limited by the fact that modern websites can be
changed on-the-fly by scripts, so the static source code before the scripts
run might be a far cry from what actually ends up on the screen. Rather,
the DOM inspector lets you inspect the current state of the document, after
scripts have run (or while they are still running), and often helps to locate
which stylesheet rules are doing what, and so on. In short, if you’re doing
anything that involves a complex Web front-end then you might want to
be aware of this facility.

 T

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

Code Critique Competition 95 (continued)

Have you experienced something which has changed
your perspective, had a positive effect on you, or just given
you a buzz? Let us know at cvu@accu.org.
between little and big endian layout so I think he deserves the prize despite
the lack of competition! Perhaps the next critique will attract a little more
interest?

Code Critique 95
(Submissions to scc@accu.org by Oct 1st)

I have some C code that tries to build up a character array using printf
calls but I’m not getting the output I expect. I’ve extracted a simpler
program from my real program to show the problem.

With one compiler I get: "Rog" and with another I get "lburp@".

I’m expecting to see:

 "Roger: 10
 Bill: 5
 Wilbur: 12"

What have I done wrong?

The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

#include <stdio.h>
#define ARRAY_SZ(x) sizeof(x)/sizeof(x[0])
typedef struct _Score
{
 char *name;
 int score;
} Score;

void to_string(Score *scores, size_t n,
 char *buffer, size_t len)
{
 for (size_t i = 0; i < n; i++)
 {
 size_t printed = snprintf(buffer, len,
 "%s:\t%u\n",
 scores[i].name, scores[i].score);
 buffer += printed;
 len -= printed;
 }
}

void process(char buffer[])
{
 Score sc[] = {
 { "Roger", 10 },

Li
st

in
g

2

22 | | SEP 2015{cvu}

 { "Bill", 5 },
 { "Wilbur", 12 },
 };
 to_string(sc, ARRAY_SZ(sc),
 buffer, ARRAY_SZ(buffer));
}

int main()
{
 char buffer[100];
 process(buffer);
 printf(buffer);
}

http://www.accu.org/journals/

SEP 2015 | | 23{cvu}

What do people do all day?
Christopher Gilbert shares his routine in a software house.

work as a Senior Software Engineer for DataSift, the world’s leading
social data provider, inventor of the Twitter ‘retweet’ button, and fastest
growing SaaS start-up in Europe. In my previous life I worked as a

software engineer in the video games industry, working for award winning
independent studios across the UK. These days I spend most of my time
working on real problems in imaginary fields of buzzwords.

I recently finished working on one of the most exciting projects of my
career, a project known as Facebook Topic Data. We (DataSift) are the first
company to partner with Facebook to deliver real-time insights into
brands, topics and audiences for Facebook customers. I am currently
working on a top secret project, the details of which will be revealed in
the not-too-distant future.

The team
DataSift currently employs over 140 people, distributed across San
Francisco, New York, Reading and London. When I joined, the core
engineering team consisted of just 10 developers, but has since swelled to
over 50. Many of the developers are begrizzled veterans, with hard
experience working at the coalface in related fields; ex-contractors and
others of that ilk who are attracted to the particular brand of autonomy a
startup company breeds.

The main office in Reading is single floor, mostly open plan, with a few
meetings rooms which we have been spilling into as the team grows. There
is a kitchen where lunch is served daily, and is otherwise fully stocked with
free drinks and snacks, a chillout area with arcade machines, a table-tennis
table and a pool table, and a quiet room for interruption free working,
which makes for a pleasant retreat from the numerous – and increasingly
elaborate – nerf wars. Lego and office toys are littered everywhere,
sometimes bought from a store, sometimes homespun out of odd parts and
a Raspberry Pi or Arduino by one of our hardware hackers.

Amongst other perks already mentioned, developers get to choose their
own kit, attend conferences of their choosing – which I have been
exploiting to attend ACCU, the best conference of the year – and work on
their own projects in company sponsored hackathons and Innovation time
(aka 20% time). I recently used my 20% time to research and develop a
slew of algorithms that would accelerate our bespoke filtering and
classification system, though other proposals have ranged from innovative
new product features all the way through to obscure programming
language concepts.

The software
The main product consists of around 400 or so components written in one
of several languages including C++11, Python, Ruby, Node, PHP, Java,
Scala and Go. Because of the range of languages in use, polyglot
developers are highly sought after by our hiring team, though seemingly
increasingly rare jewels to find. The freedom of language choice can be
quite liberating, allowing us to draw upon the relative strengths of each
language to solve any given use-case.

Our infrastructure consists of around 300 or so commodity servers running
CentOS Linux and managed using Chef and colocated at our datacentre.
Internally we have a self-serve provisioning system based on OpenStack
and a cluster of dedicated servers, plus dedicated staging hardware.
Metrics are provided via Graphite and Riemann, log aggregation via
Logstash and Kibana. A custom written intranet portal provides a full range
of dashboards for convenience.

Our main product can be thought of as a distributed information retrieval
system built using a microservice style architecture, before microservice
was a buzzword. In many ways the DataSift platform is like several
products in one: generic data ingestion and normalisation, filtering and
classification, generic data storage and delivery, historic (‘big data’) data
access, aggregation and reporting, and more coming soon!

I primarily work on the real-time pipeline, which is mostly all C++11 code
written within the last 5 years, and makes extended use of the Boost library.
An in-house compiler and virtual machine runs filters that customers write
in a DSL called CSDL, which is a bespoke filtering and classification
language intended for our customers, and is also used internally by our data
science team. Besides Boost we make use of third party open source
software including Riemann, Kafka, Redis, MySQL, Zookeeper, ZeroMQ,
memcached and many more. We package and maintain over 40 open-
source projects besides the default packages provided by the OS, several
of which were written in-house by our developers. Performance is always
a primary concern, as C++ is chosen specifically as the implementation
language for high-performance components.

The kit
Most Sifters are self-confessed hackers, so in DataSift, ‘Windows’ is a
dirty word. Almost everyone works on custom desktops with an additional
laptop running Ubuntu Linux or some other flavour of Linux and a
minimalist tiling window manager like i3 or xmonad with emacs or Vim.
Some developers prefer to develop on Mac, so MacBook Pro’s and 4k
monitors adorn the desks of the hipsters (myself included).

Development tools are not mandated, so there’s complete freedom to
choose what you want to work with. Some prefer Vim, others Sublime
Text, some even use JetBrains IDE’s. We license the best-in-class tools,
and for everything else we draw upon FOSS to fill our needs. Although
there are quite a few tools that just don’t work well (if at all) under Linux,
it still amazes me how large the open source community is, and the quality
of the software available.

Every room has a monitor kitted with a Chromecast and Apple TV, and
each meeting room is equipped with video conferencing gear. Many
developers opted for standing desks that are height adjustable, and there
are bean bags and comfy looking sofas around the place for anyone who
wants to use them.

The process
We work in an agile way, but in the true spirit of agile we have customised
our tools to fit the team, rather than fitting the team to the tools. It can take
an enormous amount of effort to write custom tools, but in the case of ticket
tracking we chose to instead spend a (relatively enormous) amount of
money on Jira, which can be customised in every way imaginable. Tools
are usually adopted by team consensus rather than mandate by
management.

We implemented a continuous delivery pipeline using the recentlyopen-
sourced Thoughtworks go.cd, and an elaborate system of levers
and pulleys to automate testing and packaging of every component. The

 I

CHRISTOPHER GILBERT
Chris is a C++ specialist, agile advocate, and open
sourcerer who drinks from the firehose, wallows in data
pools, and surfs waves of buzzwords. Follow him at
@bigdatadev.

24 | | SEP 2015

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

Well it’s mid-August as I write this,
and I guess that, as is traditional, the summer
rains are due to end immediately after the bank
holiday weekend. The next Committee meeting
is due in September – just in time for the autumn
rains to have set in...

The traditional summer dead-news period has, at
least on a tech level, been somewhat enlivened
this year by the arrival of Windows 10. A
number of people have asked me why I’m so
ambivalent about it, given that I’ve been using
and programming Windows since Windows 3.1
(the first usable version). There isn’t the space to
go into that issue in depth here, but here is the
crux of my worries about the direction of
Windows 10:

There are a number of issues, but for me the
killer issue is the compulsory updates issue.
Why? Obviously I suspect that sooner or later
Microsoft will brick my computer, and everyone
has concentrated on that in the tech press. But for
me that is only a side issue, though an important
one. It is the somewhat longer term implications
of compulsory updates that worry me much
more. You need to understand that although you
may be able to accept, reluctantly perhaps,
Windows 10 as it stands, you will have
absolutely no choice about what it looks like,
and what it does, in the future.

Even now, the more perceptive of the tech press
are murmuring about this being ‘the last’ release
of Windows. They are probably correct, but not
one of them has understood the implications.
Microsoft can use compulsory update for
whatever it wants and you have no choice about.
How about adverts for instance? Imagine having

adverts displayed by the operating system? You
think Ad-Blocker will be able to handle that?
Impossible, do I hear you say? Sorry, but
Microsoft has already done it – a few months
back they used the older version of update to put
an advert for Windows 10 into everyone’s
system tray!

Obviously, I could go on at length, but I won’t.
Do I think Microsoft are malicious? No, quite to
the contrary. They are a business whose business
model has been seriously undermined by
technical innovations and societal developments
outside the scope of their model. They are trying
to develop a new business model which will
restore their fortunes, and I would point out that
they are doing so without resorting to the
morally bankrupt methods of the big media
companies.

Good luck to them, I say. I don’t have to like it,
and if they succeed I will probably take my day-
to-day usage (i.e. my custom) over to Linux or
BSD with an Xfce desktop. But that’s my option
as a customer, and if enough people do it, they’ll
probably have to re-think things.

And as a last thought on the subject, I’ll just
point out that if compulsory updates had been in
Windows 7, we would all have ended up running
Windows 8...

Moving on to a happier topic – ACCU
Conference 2016 – I’d like to remind people that
sometime between this issue of CVu being
published, and the next one in November, the
call for conference papers usually comes out. So,
I thought I’d remind everyone to start thinking
now about presenting at the conference. If
you’ve never done it before, now is always a
good time to start. Take it from me – even if you
thought you knew the topic you wanted to
present, building up the presentation will
improve your understanding of it. And, if you

want to be purely selfish about it, it definitely
looks good on your CV!

If you’ve not done it before, help is available,
and the local groups are always open to people
trying out their putative conference
presentations at a local meetings. Go on, give it
a try.

I mentioned in the last edition the question of
what we should set as the quorum for the on-line
voting we now have. If anyone reading this
knows of other organizations that have adopted
this and what their decisions were, perhaps you
could drop me a line with the details. For the
record I’m moving towards the idea that the
quorum for online should be twice that of the
quorum for physical events, but I’m prepared to
be persuaded otherwise, if the reasons are good.

I think that’s about all for now, so, I’ll sign off
while keeping my fingers crossed that there
won’t be another power cut at the next
committee meeting. There shouldn’t be; the
power people had a large hole dug in the middle
of the street for several days after the last one!

Have fun programming.

Alan

cluster, which then use Docker to run integration tests using an open-
source testing framework developed in-house.

We use git for source control. We used git flow for a time, but as we
transitioned to ever more sophisticated automation it became increasingly
difficult to handle multiple release branches, so we have been moving
towards a simplified workflow. For practical purposes we still make use
of feature branches, but we are tending towards a branch by ticket model,
which allows us to track work all the way from jira through the entire
delivery pipeline.

The future
Like any team we have challenges to overcome. Perhaps counter-
intuitively, it’s much harder to scale a team quickly than it is to scale
software, and we’re still learning the most effective ways of doing that.
Other trends that seem to be emerging right now are increasing
sophistication in how we trap and respond to errors, improving our agile

process with new techniques, growing our team with other like-minded s/
crazies/developers/, adding even more languages to our bulging repertoire
(my money is on Rust being next), and building increasingly ambitious
features to augment our core product offering.

However, if working for a start-up has taught me one thing, it’s that what
happens next is impossible to predict, but that’s what excites me about this
work. Working for a start-up is often chaotic, and sometimes a bit crazy,
but always challenging and ultimately deeply rewarding. You are forced
to innovate or die trying, and if you lose momentum you will be left in the
ruins of wasted effort. For some this environment would be a terrible
nightmare, but for those who thrive in the chaos, and maybe have just that
tiny bit of crazy in them, it’s the best job in the world.

If you’d like to find out more about DataSift please visit our website at
http://www.datasift.com/. Check out my open source contributions on
Github at http://www.github.com/bigdatadev or follow me on Twitter
@bigdatadev

What do people do all day? (continued)

	CVu-27_4-final.pdf
	Developing programs
	The Very Model of a Model Modern Programmer
	Refactoring Guided by Duplo
	Ode to the BBDB
	Anatomy of a CLI Program written in C++
	The Cat’s Meow
	WattOS R9 Worth Knowing About
	Raspberry Pi Linux User Mode GPIO in C++ (Part 2)
	Standards Report
	Code Critique Competition 95
	Inspirational (P)articles: Use the DOM Inspector
	What do people do all day?
	View from the Chair

