

JUL 2015 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

What is a user interface?
recently bought a new amplifier for my guitar. It’s
great! Modern technology means it comes with a
variety of different ways to disturb the peace of

the neighbourhood. The three channels built-in to
the box – clean, dirty, and solo which can be
‘programmed’ independently of the other two – all
sound fantastic, but having to take your hands off of the
guitar to switch between them is very inconvenient
when you’ve been overcome by the urge to improvise
wildly. So I bought a foot-switch.

It has two pedals – ideal, you’d think, for choosing between
three channels. My instinct on how to use it seems to match
the expectations of other players I’ve rant^H^H^H^H asked:
one pedal to switch between the clean and dirty channels, the
other switch to toggle the solo channel. My pedal has one
switch which alternates between clean and dirty (tick),
and the second switch to turn on the solo channel.
Pressing it when the solo channel is already
selected...does nothing at all. To switch away from the
solo channel, I must press the other switch, which also has
the effect of changing the main channel selection. It does
have the facility to set the polarity for each pedal, and for
each switch to be latched or not...but I’ll never make use of those features.

In days of yore and valve amplifiers, the foot switch was often a mechanical one
which enabled a boost in the power amp, making solos a little louder. All that’s really
different in my pedal is the extra complexity of also having clean and dirty channels
as options. I was a little surprised that the foot switch requires a battery (perhaps to
power the LED?), but I’m left with the nagging suspicion that the manufacturer has
taken a simple requirement, and come up with something much more complicated
than it needs to be, and doesn’t behave in quite the way I expect.

There is something familiar about that, but I can’t quite put my finger on it...

I
Volume 27 Issue 3
July 2015

Editor
Steve Love
cvu@accu.org

Contributors
Silas S. Brown, Steve Folly,
Pete Goodliffe, Alan Griffiths,
Vassili Kaplan, Ralph McArdell,
Roger Orr, Emyr Williams

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JUL 2015

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
15 An Interview

Emyr Williams
interviews Anthony
Williams.

16 Regional Meeting
A report from the
London meeting.

17 Code Critique Competition
Competition 94 and
the answers to 93.

21 Letter to the Editor
Silas Brown provides
feedback to Vassili
Kaplan.

22 From the bookcase
The latest roundup
of book reviews.

REGULARS
24 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 27.4 1st August 2015
C Vu 27.5: 1st October 2015

Overload 129:1st September 2015
Overload 130:1st November 2015

FEATURES
3 Dictionary and Thesaurus

Chris Oldwood finds surprising similarities in prose
and code.

4 Coding Dinosaurs
Pete Goodliffe aims to outlive the jurassic coding age.

5 Are we nearly there yet? Refactoring C++
Alan Griffiths evaluates two tools for developers with
some simple use-cases.

8 Golang programming on AppEngine
Silas S. Brown tries his hand at writing native code for
the Cloud.

9 EuroLLVM Conference 2015
Ralph McArdell reports on his experience of the
LLVM Conference.

11 Code Club
Steve Folly shares his experiences with volunteering
and teaching children coding.

13 Split and Merge Revisited
Vassili Kaplan makes improvements to the
Expression Parser.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

In the Toolbox # 11
Dictionary and Thesaurus
Chris Oldwood finds surprising similarities in prose and code.

ne of the reasons I reckon I got into computer programming was to
avoid having to write – not code, but actual English prose. I hated it.
At school, when I was 16, I had to take exams in both English

Language and English Literature and I did phenomenally bad – I got a ‘U’
in both. For those unfamiliar with the English education system circa 1986
a ‘U’ means Unclassified. It means I did so badly that they can’t even give
me a grade – even an ‘F’, the lowest grade, would be too good for me. Of
course, I had to take it again as a ‘C’ grade was mandatory to get anywhere,
such as University, and I got it, eventually.

Computer programming on the other hand was great. Back in the ’80s, I
was a bedroom coder bashing out nuggets of assembler on various 8-bit
micros. The best thing about assembler was that there weren’t many
mnemonics to learn and they weren’t spelled properly anyway (e.g. MOV,
SUB, JP, etc.) or they were acronyms (e.g. LEA – Load Effective Address).
If you did misspell anything the assembler would probably pick you up on
it right away as the code wouldn’t compile (should that be “assemble”?).
Transposition-style errors were possible but it was more likely that you got
the logic wrong than the ‘spelling’ of the code.

The writing’s on the wall
Wind the clock forward another 10 years and we’re into the realms of
Object-Oriented languages and silly limits like 8-character long identifiers
have become a relic of the past. The idea of Design Patterns has sprung up
to give us a common vocabulary with which to discuss recurring design
problems. Also we’re now talking about domain modelling so that we can
represent both abstract and concrete forms of business concepts in our code
as classes and functions to solve much bigger problems. The world I was
residing in at that moment in time was still in the territory of ‘office
automation’, but the problems we were solving were more abstract as we
tried to make sense of how the Internet was adding a technical spin around
historically mechanical processes. Suddenly I discover that real language
is everywhere in my job.

The wake-up call for me that my weak natural language skills were a
genuine problem was seeing how others had started to work around my
limitations. In a number of cases, one developer had created typedefs
(aliases, for non-C++ programmers) as a way of correcting the spelling of
some of my class names. Back then there was no decent IntelliSense to
guide you, and on a large codebase hitting the compiler only to find that
you’d not misspelled a type consistently costs you a non-trivial amount of
time. And these classes were in the core library. Another stand-out moment
was around my confused use of the words ‘license’ and ‘licence’ such that
the noun and the verb were misused badly enough to create configuration
and code hell for those that knew the difference.

If that wasn’t bad enough, working with a colleague who was using Whole
Tomato’s Visual Assist product, which not only spell checks your
comments and string literals, but also your class and method names
(including compound words!), was a real eye opener. What I selfishly
thought was me just being a bit quirky, perhaps even slightly endearing,
was fast becoming an embarrassment. Everywhere I looked now there
were little red squiggly lines under what I was writing – be it code or prose.

Turning the tables
In what could probably be viewed as a poacher-turned-gamekeeper
reversal of roles I now find myself on the other side of that fence. And the
situation is more unpleasant than I ever suspected. In an even more ironic
twist of fate, I find myself writing more documentation now that I’m ‘doing
agile’ than I ever did before.

It was over 10 years before I even saw a technical or functional spec. and
I only added a single paragraph to the one I did come across. No, the way
I focused my efforts (initially) on writing was to put together lengthy
diatribes about the state of the codebase and the lack of good engineering
practices being used, i.e. go all passive-aggressive. Whilst this ended up
having little-to-no impact on changing the attitudes within the team, it did
give me an outlet with which to practise writing proper prose. I coupled
this with putting together a developer (rather than support) focused wiki
to document some of the more common gotchas, such as how to merge
integration branches efficiently in ClearCase, or diff for all changes
between two labels. I also started to follow the advice of Record Your
Rationale from the book 97 Things Every Software Architect Should Know
[1]. My desire to write short, but more importantly clear, documentation
was also largely prompted by working in a multi-cultural team for the first
time.

Naturally when you start paying closer attention to such matters in your
own code you also begin to notice those deficiencies in other people’s
output too. I’ve had to fix ‘eclipsing’ issues in ClearCase due to random
capitalization, e.g. Counterparty vs. CounterParty, missed diagnostic clues
due to misspelled words not matching log file greps, and hunting longer
in source code repos when doing some software archaeology [2] due to
badly written commit messages. Having non-native English speakers
working on the codebase too was also an eye opener as I struggled to
explain why some of the code they wrote just didn’t read particularly well.
Up to that point I hadn’t realised it was even possible to write
‘grammatically incorrect’ code and I felt more than a little churlish about
bringing it up.

And so finally we come to two very old fashioned ‘tools’ that I’ve since
grown to depend on...

The dictionary
Once upon a time a dictionary was a cutting-edge feature, even for a word
processor or desktop publisher, and a stand-alone dictionary application
would cost serious money. These days they are often built into FOSS tools
like Notepad++, and the commit dialog for the TortoiseXxx VCS
extensions has one too so there is no excuse for misspelling a commit
message unless your language is unsupported. Chrome was the first
browser I used which had dictionary support for text boxes that made
writing blobs of text like blog post comments easier as you no longer had
to paste the text into Notepad++ or Word just run the spell checker over it.

I mentioned earlier that spell checking wasn’t restricted to just prose either,
it could also be performed on code. And not just comments and string
literals, but also on class, method and variable names too by tools like
Visual Assist. In the intervening years I’ve seen a few free plug-ins to the
popular IDEs that will handle comments and string literals, but sadly they
won’t have a stab at identifiers which I think is a shame. Perhaps too many
developers still write code with overly terse names? For code running on
the .Net platform the FxCop tool is one of the few exceptions, it also allows
you to add your own domain-specific acronyms and terms to a custom
dictionary to minimise the false positives.

 O

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
JUL 2015 | | 3{cvu}

Dictionary and Thesaurus (continued)

Becoming a Better Programmer # 93
As for spell checking files using a command-line based tool, there is Ispell,
Aspell and more recently Hunspell. Whilst these are suitable for checking
prose, I’m only aware of Aspell as having support for checking code (and
even then only C/C++ comments and literals).

When it comes to checking the spelling of a word on my smartphone,
which has a reasonable but not extensive dictionary, I end up reaching for
Google. By default just searching for a single word will suggest an
alternative if spelled incorrectly and the first hit is usually the definition,
although you can Google “define <word>” to ensure the first hit is the
definition. However, that always feels like the proverbial ‘sledgehammer
to crack a nut’ but I’m too much of a cheapskate to cough up for a decent
dictionary app (assuming I can find room on the device for it, but that’s
another story).

The thesaurus
My wife’s English teacher once told her never to use the words get, put or
nice. In his opinion there are so many better synonyms in the English
language that a writer should never feel the need to use them. From a
software development perspective, I can’t say the word ‘nice’ has been
much of a problem but the other two seem to crop up with alarming
regularity.

When it comes to naming properties of a class (in programming languages
where properties are not a first class concept) you could be forgiven for
thinking that the getValue/setValue pair is mandatory. As a
consequence of this there is also a school of thought that any method which
is prefixed with get is therefore a property and so likely comes with a
similar performance guarantee too.

In the online thesaurus I looked at, there were pages and pages of synonyms
and related words for ‘get’. Off the top of my head I can think of a number
of really common alternatives that I use regularly, such as: create, make,
build, acquire, fetch, locate, find, retrieve, request, derive and calculate.
You can probably already see a few patterns here as the initial ones revolve
around the creation of objects, the middle few with looking up things and
the final couple for doing some form of processing.

Although there are no formal guidelines about what semantics any of these
words might suggest (despite at least one attempt by yours truly [3]) I

would hope that they provide at least a little more insight than the weaker
‘get’. For example the words fetch, request and retrieve all hint at some
form of more complex operation than simply returning the value of a
member variable. Hopefully the level of complexity hinted also suggests
that failure is probably on the cards and so may need to be factored in.

Whilst code may not be prose, little variation in the verbs used in method
names makes code read very monotonously. Test names that follow a
classic given/when/then format will often also end up being very
mechanical in nature. You may have a bit more leeway with test names,
but that doesn’t absolve you of being economical with the language to
succinctly convey the behaviour under test.

These days a thesaurus is always within easy reach if you have an internet
connection and it only takes a few moments to search and find something
appropriate for the task in hand. However, sadly they are far less accessible
than a dictionary within text editors and browsers. Hence I often have a
copy of Word lying around in the background so that I can switch to it,
type the word I’m looking to replace and hit shift-F7 to get a bunch of
alternatives within seconds. Being a native application it also takes up far
less resources than another Chrome tab.

Epilogue
My journey as a programmer took an unexpected turn just over a decade
ago as I finally found myself unable to avoid the similarities between
writing readable code and prose. Instead of being a chore, I have actually
found the experience of ‘raising my game’ quite liberating. In fact where
once I found the idea of learning about natural languages quite
unappealing, I now find the subject far more attractive exactly because
there are many parallels with programming. And whilst I may not write
code, tests or documentation to rival a best-selling novel, I hope that the
extra attention to detail adds precision and clarity that ultimately benefits
the reader.

References
[1] http://97things.oreilly.com/wiki/index.php/Record_your_rationale
[2] ‘In The Toolbox: Software Archaeology’, C Vu 26-1
[3] http://chrisoldwood.blogspot.co.uk/2009/11/standard-method-

name-verb-semantics.html
Coding Dinosaurs
Pete Goodliffe aims to outlive the jurassic coding age.

n a recent interview for a well-known website, I was asked a number of
practical questions about the art and craft of programming. One of the
questions struck a chord with me, and seems particularly interesting for

the programmer who cares about ‘becoming better’.

The technologies we work with are constantly changing and it’s all too
easy to find yourself becoming something of a ‘coding dinosaur’. What
can programmers do to ensure that they keep learning and developing
their skills?

I found this a particularly interesting question, since right now I’m learning
new stuff that isn’t necessarily strictly about coding. I’m learning how to
manage teams and projects, and make sound higher-level technical
decisions. This, like learning the gritty details of code, is fun. But it’s a
different type of fun.

More akin to the type of fun you can have herding stubborn cats.

My current focus very specifically takes me away from the learning of new
code techniques, the stuff I love. I can still wield my familiar coding tools

well, and I use them regularly. But I don’t have the same time to invest in
learning about them.

Am I in danger of becoming that dinosaur?

As a programmer, as in any other field, in order to avoid stagnation you
have to take conscious, deliberate action. You will not avoid stagnation
by doing nothing. Doing nothing is the very act of stagnating.

In order to improve, you must make a conscious effort. you
won’t learn by accident.

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
4 | | JUL 2015{cvu}

http://97things.oreilly.com/wiki/index.php/Record_your_rationale
http://chrisoldwood.blogspot.co.uk/2009/11/standard-method-name-verb-semantics.html
http://chrisoldwood.blogspot.co.uk/2009/11/standard-method-name-verb-semantics.html

Coding Dinosaurs (continued)

If you care about improving your skills, if you care about becoming better,
then you must specifically set aside time to learn, and time to perform
deliberate practice, the kind of directed, specific learning that is more
thoughtful and more productive than mere ‘playing with stuff’. Good
examples are to invest time learning new technologies, and trying them
out, and to performing code katas that reinforce your existing knowledge
and help you build up your skills.

If you do not have a specific plan of action to do this, you may very well
never get around to learning! If you don’t intend to invest time, you may
quickly find yourself swept up in the details of what you already know,
working your day job, whilst the techie world moves on around you.

For me personally, I currently have a plan in place to:

 Read a couple of new techie books I’ve purchased, one on software
archaeology, and one on learning new languages. I chose these two
topics specifically as things that will focus me on learning important
new ideas. (I love carrying a physical book around with me to dip
into when I’m on a train.)

 Subscribe to a podcast about C++, to keep abreast of new ideas in
the language I am most familiar with.

 Spend an hour or two at least one evening a week playing with an
entirely new language, just to begin to learn the way it works. This
isn’t reading about it, this is physically writing some code. Of
course, in such a time I’ll never learn the intricacies of the language.
I’ll barely even scratch the surface. But it will inevitably expose me
to new ideas that will teach me.

That’s my specific plan. It’s not too taxing, but it’s also enough to
encourage me to keep learning.

What’s your plan?

Do you have a specific plan for learning new coding skills? How
do you ensure that you stick to this plan? If you don’t have a
learning plan, consider creating one right now!

Ultimately, the very desire to avoid becoming a ‘coding dinosaur’ is the
key thing. You must stoke your passion for coding. As soon as you feel
it’s boring or old-hat, you’ll have no desire to improve, and no motivation
to learn more.

That’s where stagnation happens.

I find that my passion wanes when I am no longer learning, and operate
out of what I already know.

The techie world doesn’t move so fast that your skills will lose relevance
overnight. However, if you don’t pay attention to continuously learning,
and invest directed effort, you can easily begin to slide out of usefulness.

Questions
1. How much attention do you pay to directed, specific learning?

2. Are you particularly worried about becoming a coding dinosaur?

3. Does your daily programming job require you to learn new stuff
constantly? If not, why not? And how might you weave more
learning into your tasks?

Pete’s new book – Becoming a Better Programmer –
has just been released. Carefully inscribed on dead
trees, and in arrangements of electrons, it's published
by O'Reilly. Find out more from http://oreil.ly/1xVp8rw
Are we nearly there yet? Refactoring C++
Alan Griffiths evaluates two tools for developers

with some simple use-cases.

Refactoring
he idea of invariance under transformation is ancient and the
fundamental concept behind the mathematical representation of
symmetry. It has applications in many disciplines: physics employs

the symmetries of eleven dimensions for ‘string theory’; music employs
various temporal and tonal symmetries; even politics references the
symmetry of ‘right’ and ‘left’.

In software development there are various symmetries, but one important
class of transformations are the refactorings of code. I’ve used these over
many years but hadn’t recognised their significance until I encountered
Martin Fowler’s book of that name [1] around the turn of the millennium.

Shortly after that I was working in Java and encountered the first attempts
at providing automation of refactoring transformations of code in
development tools: first in Eclipse and then in JetBrain’s IntelliJ IDEA.
The experience was a revelation to me about how I’d been avoiding
making transformations to the sourcecode simply because it was too much
effort to keep track of things.

To take a simple example: extracting a piece of a function into a new, more
focussed, function. I’m sure you’ve been there too: a function starts out
with a clear purpose but gradually grows over time until the first part of it
does one thing and the rest something that follows. Then some code doesn’t
need the first part done that way and a conditional branch is added.

If we were starting from scratch, the two parts belong in separate functions
but it requires work to split them out: one needs to work out the parameters
that need passing, track the scope of local variables, create function
prototypes, and move the code. None of that is hard, but the ‘housekeeping’
takes headspace and the effort can interrupt the more urgent task at hand.

The important thing to know about refactorings is the invariant: they don’t
change the meaning of code. It behaves exactly the same before and after
the refactoring – only the design changes. I mentioned the ‘Extract
Method’ refactoring above – there’s a corresponding refactoring ‘Inline
Method’ that replaces each call of a method with the method body.
Refactoring isn’t a goal in itself: you use a refactoring to reliably change
the code in a way that makes it more useful for something the code doesn’t
currently support.

What refactoring tools gave me when working in Java (and later in C# and
Python) was the ability to select the transformation I needed and let the

T

ALAN GRIFFITHS
Alan Griffiths has been developing software through many fashions in
development processes, technologies and programming languages.
During that time, he’s delivered working software and development
processes to a range of organizations, written for a number of
magazines, spoken at several conferences, and made many friends.
He can be contacted at alan@octopull.co.uk
JUL 2015 | | 5{cvu}

editor/IDE to do the job. When you can do
that with the same assurance that you can use
automated indentation or ‘auto complete’
you don’t have to worry about breaking the
code or interrupt your thinking about the
code.

But what about C++?
With C++ being the lingua franca of ACCU
I shouldn’t need mention that C++ is hard –
not just for developers, but also for the
writers of development tools. There’s a
reason that C++ compilers are orders of
magnitude slower than Java compilers at
processing lines of sourcecode: the language
is more complex. (I don’t think anyone has
even dreamt of implementing Eratosthenes
Sieve at compile time in Java.) And the
preprocessor provides lots of opportunity for
confusing tools.

So, although over a decade has passed since
I used refactoring tools in Java, whenever I
start a C++ job I have to revert to making
these transformations the hard way.

Eclipse CDT and Cevelop
Of course, C++ hasn’t been ignored
completely for a decade and a half and work
(notably that led by a well known ACCUer:
Peter Somerland) has cont inued on
implementing C++ support as Eclipse
plugins. CDT [2] is the original project and
Cevelop [3] is based on CDT as packaged by
Peter’s group at the Institute for Software.

I’ll give some examples below, but while the
support this gives is better than nothing it
isn’t the reliable refactoring support needed
to avoid breaking the flow. In practice I find
that I need to commit the state of the code
before any refactoring to avoid losing work
and build and run the test suite afterwards.
Some very strange things can happen and, if
problems occur during the refactoring, the
editor can revert the code to an old (or even
broken) state losing recent changes.

In spite of these problems I have made a lot
of use of Eclipse CDT and Cevelop over the
last few years. (Not that it has entirely
separated me from vim – I use different tools
for different tasks.)

JetBrains CLion
I mentioned JetBrains above: they are the
company behind some popular refactoring
IDEs and plugins for Java, C# and Python.
Last year they announced a beta program for
their C++ refactoring tool – and based on my
past good experience with their tools I signed up. However, I didn’t use
their IDE much during the beta program mostly because it was very slow
– at one point taking tens of seconds to respond to each key-press.

But CLion was recently released and I downloaded the evaluation version.
I still had some problems getting it to work but as they were exhibiting at
the ACCU conference and took an interest in the problems I was seeing:
I got to a point where I could evaluate it. There are still some performance

problems (mostly a 5 minute start-up time on my current project) but it
proved usable.

As with Cevelop the automated refactoring can go badly wrong (again I’ll
give some examples), but so far I’ve always been able to fix or just revert
the refactoring without problems.

$ bzr diff
=== modified file 'playground/demo-shell/window_manager.cpp'
--- playground/demo-shell/window_manager.cpp 2015-05-13 07:23:52 +0000
+++ playground/demo-shell/window_manager.cpp 2015-05-17 14:55:49 +0000
@@ -196,6 +196,12 @@
 surf.resize({right-left, bottom-top});
 }

+void select_next_session() {
+ focus_controller->focus_next_session();
+ if (const auto surface = focus_controller->focused_surface())
+ focus_controller->raise({ surface });
+}
+
 bool me::WindowManager::handle_key_event(MirKeyboardEvent const* kev)
 {
 // TODO: Fix android configuration and remove static hack ~racarr
@@ -210,9 +216,7 @@
 if (modifiers & mir_input_event_modifier_alt &&
 scan_code == KEY_TAB) // TODO: Use keycode once we support
 // keymapping on the server side
 {
- focus_controller->focus_next_session();
- if (auto const surface = focus_controller->focused_surface())
- focus_controller->raise({surface});
+ select_next_session();
 return true;
 }
 else if (modifiers & mir_input_event_modifier_alt &&

Listing 1

$ bzr diff
=== modified file 'playground/demo-shell/window_manager.cpp'
--- playground/demo-shell/window_manager.cpp2015-05-13 07:23:52 +0000
+++ playground/demo-shell/window_manager.cpp2015-05-17 15:11:15 +0000
@@ -196,7 +196,11 @@
 surf.resize({right-left, bottom-top});
 }

-bool me::WindowManager::handle_key_event(MirKeyboardEvent const* kev)
+bool void WindowManager::select_next_session() const {
+ focus_controller->focus_next_session();
+ if (auto const surface = focus_controller->focused_surface())
+ focus_controller->raise({surface});
+} me::WindowManager::handle_key_event(MirKeyboardEvent const* kev)
 {
 // TODO: Fix android configuration and remove static hack ~racarr
 static bool display_off = false;
@@ -210,9 +214,7 @@
 if (modifiers & mir_input_event_modifier_alt &&
 scan_code == KEY_TAB) // TODO: Use keycode once we support
 // keymapping on the server side
 {
- focus_controller->focus_next_session();
- if (auto const surface = focus_controller->focused_surface())
- focus_controller->raise({surface});
+ select_next_session();
 return true;
 }
 else if (modifiers & mir_input_event_modifier_alt &&

Listing 2
6 | | JUL 2015{cvu}

I’m going to concentrate on
Cevelop in what follows, but
a lot of what I say about it
will also apply to Eclipse-
CDT.

My current project:
Mir
I’m currently working on an
open-source C++ project –
which means that you can
download the code [4] and
experiment for yourself. It is
part of Canonical’s ‘Ubuntu
Touch’ phone operating
system and intended to form
part of a future ‘converged’
desktop and phone version of
Linux.

The Mir code is mostly
C++11 with some of the
more recent code using bits
of C++14. There are also a
few C99 files around as we
provide a C API. It isn’t an
enormous project, but larger
than many: about 250KLOC.

Starting off
There ’ s an i mmed ia t e
difference between the
s t a r tu p o f CL io n an d
Ceve lop a s CL ion
recognises the project’s
build system (CMake) and
sets up an out-of-tree build
environment. That’s nice,
but it is a happy coincidence
for me: if I needed to work on
a p ro j ec t u s ing a n
unsupported build system
then I’d have to look elsewhere.

Cevelop in contrast gives the user the freedom to specify the build
commands and the responsibility to set up the build environment.

Both then start scanning the codebase for symbols and until that finishes
a lot of features are unavailable. There is a difference if the IDE is closed
down and reopened as Cevelop appears to cache its ‘index’ whereas there
is the same delay every time CLion is started.

Refactoring
I tried a bit of ‘Extract Method’ in one of the messier functions in the
codebase and both IDEs failed horribly.

Listing 1 shows it in Cevelop. For reasons that are not obvious to me the
new function isn’t a member function. (Even though it references the
focus_controller member variable!)

Listing 2 shows the same in CLion. Not impressive either!

In neither case does the ‘refactored’ code even compile. In one sense that
is good, as it flags up the problem; in another sense it is bad as for
automated refactoring to be useful it is essential that it preserves the
existing functionality. I tried a number of other examples with equally odd
results.

I had better luck with ‘Extract Variable’, first CLion (Listing 3).

While I’d rather see auto const title_bar_delta that’s not bad
– a l t hough I s e l e c t e d t he s e cond i n s t ance o f DeltaY{
title_bar_height} it replaced all three correctly. Not so good with
Cevelop (Listing 4).

This only replaced the selected use of the expression and offers up some
eccentric formatting.

I won’t show any more excerpts, the story is that sometimes the
‘refactoring’ truly preserves the meaning of the code and sometimes it
breaks it. It can be used in both tools but you need to think about it and
check what the tool has done.

I started with a question: ‘Are we nearly there yet?’ the answer is a
disappointing ‘nearly’.

References
[1] Fowler, Martin (1999) Refactoring: Improving the Design of

Existing Code, Addison Wesley
[2] http://eclipse.org/cdt/
[3] https://www.cevelop.com/
[4] http://unity.ubuntu.com/mir/

$ bzr diff
=== modified file 'examples/server_example_canonical_window_manager.cpp'
--- examples/server_example_canonical_window_manager.cpp 2015-05-14 12:29:13 +0000
+++ examples/server_example_canonical_window_manager.cpp 2015-05-17 15:51:29 +0000
@@ -113,7 +113,8 @@
 -> ms::SurfaceCreationParameters
 {
 auto parameters = request_parameters;
- parameters.size.height = parameters.size.height + DeltaY{title_bar_height};
+ auto title_bar_delta = DeltaY{title_bar_height};
+ parameters.size.height = parameters.size.height + title_bar_delta;

 auto const active_display = tools->active_display();

@@ -198,8 +199,8 @@
 parameters.top_left.y = display_area.top_left.y;
 }

- parameters.top_left.y = parameters.top_left.y + DeltaY{title_bar_height};
- parameters.size.height = parameters.size.height - DeltaY{title_bar_height};
+ parameters.top_left.y = parameters.top_left.y + title_bar_delta;
+ parameters.size.height = parameters.size.height - title_bar_delta;
 return parameters;
 }

Listing 3

$ bzr diff
=== modified file 'examples/server_example_canonical_window_manager.cpp'
--- examples/server_example_canonical_window_manager.cpp 2015-05-14 12:29:13 +0000
+++ examples/server_example_canonical_window_manager.cpp 2015-05-17 16:01:41 +0000
@@ -197,8 +197,9 @@
 if (parameters.top_left.y < display_area.top_left.y)
 parameters.top_left.y = display_area.top_left.y;
 }
-
- parameters.top_left.y = parameters.top_left.y + DeltaY{title_bar_height};
+ mir::geometry::DeltaY title_bar_delta = DeltaY
+ { title_bar_height };
+ parameters.top_left.y = parameters.top_left.y + title_bar_delta;
 parameters.size.height = parameters.size.height - DeltaY{title_bar_height};
 return parameters;
 }

Listing 4
JUL 2015 | | 7{cvu}

http://eclipse.org/cdt/
https://www.cevelop.com/
http://unity.ubuntu.com/mir/

8 | | JUL 2015{cvu}

Golang programming on AppEngine
Silas S. Brown tries his hand at writing

native code for the Cloud.

o [1] is Google’s new C-like programming language which compiles
to machine code but with various built-in safety mechanisms. Their
‘AppEngine’ public cloud servers currently support Python, Java,

PHP and Go, so Go is the only option if you want the speed of machine
code (albeit with some added safety checks) and don’t want to set up a full
virtual machine. (Google will let you set up a full virtual machine but at
an extra cost, and RedHat’s OpenShift offering allows you to run arbitrary
binaries, but of course the rules could change at any time.)

If using AppEngine, you can write code with different modules in different
programming languages, which is useful if you already have most of it in
Python or Java and just want to optimise a small part of it into Go. But
different modules have different .yaml files and handle different URL
patterns, so the communication between modules will likely involve URL
fetching, which might contribute to your quota use depending on how
exactly they calculate it (which could change).

Go’s syntax is very much like C, the most immediately obvious differences
being:

1. Type names are put after variables and functions, not before as in C.
So the C code: int myFunc(int a, int b) would be written
in Go as: func myFunc(a int, b int) int and the C++11
statement: auto c = my_expression(); would be written in
Go as simply: c := my_expression()

2. Semicolons are automatically added at the end of lines. This means
you have to be careful where you do and don’t put newlines. For
example, if writing } else { it must be all on one line, which is
contrary to the C styles of some, although I for one tend to write that
all on one line anyway.

3. Braces are compulsory, even when there is only one statement in the
block. You can’t write if (a) b(); – you have to put braces
around b(). On the other hand, the parentheses around the a are
optional.

4. There is no while keyword, but writing for with one argument
effectively turns it into a while.

5. Unsurprisingly for a ‘safe’ language, there is no pointer arithmetic.
Most things you did in C with pointer arithmetic have to be done in
Go with arrays, but thankfully there is much added support for array
operations. ‘Slices’ in Go can expand as needed, but I/O functions
tend to take their current size as a cue for how much data you want
to read, so one caveat is not to accidentally pass an empty array to a
read function and expect it to read anything! If you need to read a
string as an array of bytes, you probably have to copy it like this
(unless there’s a better way I don’t know about):

 myBytes := make([]byte, len(myString))
 copy (myBytes, myString)

6. ++ and -- are statements, not expressions, so (unlike in C) you can’t
write them in the middle of a longer expression. You can still write
myVar++, but this now has to be a statement on its own.

Go’s ‘packaging’ system works as follows: Every .go source file provides
a package (the main package is main), and can ‘import’ other packages
from other .go files. One package can be split across more than one .go
file. The compiler automatically searches the current directory for all .go
files (you don’t have to tell it which ones to look at). You’re not allowed
to mix files from different packages in the same directory, so non-standard
packages you wish to import must be placed in subdirectories. There are
also facilities to automatically download packages from various public
source-control systems, but versioning can be an issue so you might prefer
to make local copies. At any rate the resulting binary will always be
statically linked (Go doesn’t ‘do’ shared libraries), which, while making
for larger binaries, might at least mean you don’t have to worry so much
about installing different versions of shared libraries on other people’s
systems.

Go’s standard library is strong on Internet data processing and includes
support for concurrency and synchronization. Mark Summerfield wrote a
more in-depth article about concurrent programming in Go in Overload 3
years ago [2], but if you’re just writing a simple server for AppEngine then
perhaps all you really need to know is that multiple threads of control might
be running through your code so it’s best to avoid mutable shared resources
(or use locking as a last resort).

If you are writing for AppEngine then I’d suggest you download
AppEngine’s version of Go, which has the AppEngine-related packages
already included, but you could also install the ‘golang’ packages in your
GNU/Linux package manager, and there are versions for the Raspberry Pi.
The golang-doc package provides a web server for offline browsing of the
documentation; this is also included in AppEngine’s Go download.

Compilation speed is quite fast, but you do need enough RAM: while
experimenting with a Go back-end for my Annotator Generator [3], I found
the compiler can take between 400 and 500 times the size of its input
program in RAM. Because Go is a garbage-collected language, it’s
possible to manage on less RAM at the expense of more CPU by running
the GC more frequently, but the problem is most operating systems don’t
have a standard way of asking ‘are we running out of RAM yet’: if you
allocate too much, then typically you will either take the huge speed
penalty of being extensively swapped out to virtual memory without being
told (unless VM has been disabled), or else the OS would sooner kill your
process entirely than tell you about the memory shortage. The standard
‘fix’ for this (which is also used by the GCC compiler) is to query the
system’s specification for total physical RAM size, and set your internal
limits accordingly. This can go wrong if too much of that physical RAM
is in active use by other programs or is otherwise unavailable, and in this
case it can be necessary to manually trick the compiler or other program
into reading an artificially reduced value, otherwise it will sprawl itself out
into swap space without knowing.

References and notes
[1] www.golang.org. Some prefer to call it Golang (Go Language), as I

have done in the title of this article because ‘go programming’ seems
more open to misunderstanding.

[2] Mark Summerfield: Concurrent Programming with Go. Overload
#106 (December 2011)

[3] ‘Web Annotation with Modified-Yarowsky and Other Algorithms’,
Overload #112 (December 2012); code is at
http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html

G

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

http://people.ds.cam.ac.uk/ssb22/adjuster/annogen.html
www.golang.org

EuroLLVM Conference 2015
Ralph McArdell reports on his experience

of the LLVM Conference.

week or so before the 2015 ACCU conference, I attended the 2015
EuroLLVM conference. LLVM [1] and associated projects such as
Clang [2] are all about computer language translation infrastructure

with LLVM itself and many of the associated projects being open source.
The conference was held over two days in the Hall Building of Goldsmith
College in New Cross, London, UK on Monday and Tuesday the 13th and
14th April 2015. This was my first time at an LLVM conference and I
attended because I am interested in LLVM and Clang and wanted to know
more. The conference was reasonably priced at £60+VAT for the two days,
and it was held conveniently close to me. As someone wanting to know
more about LLVM, Clang, et al. my main interests were in overview and
tutorial sessions rather than the hard technical sessions.

Monday
Conference registration started at 09:00, with refreshments provided from
09:30. The morning was taken up by what was called a ‘Hackers Lab’ –
which presumably was for hard core LLVM, Clang and related projects’
developers. Not being such a developer and having registered, attached my
name badge and grabbed a coffee and a pastry snack, I joined many other
delegates in hanging around in the common area. There were a number of
posters detailing LLVM related endeavours by various organisations
which had been put up in the common area. I started reading one titled
‘LLVM for Deeply Embedded Systems’ by people from Embecosm [3]
and Myre Laboratories [4]. I knew the name Embecosm and recognised
one of the authors – Jeremy Bennett – from the Open Source Hardware
User Group (OSHUG) [5] and the Parallella [6] SDK forums. I made a
comment to a guy standing next to me and we got chatting – he was from
Germany and was interested in the static analysis tools Clang provides as
he had an unfamiliar large ball-of-mud code base to maintain.

After lunch the conference proper started with a keynote given by
Francesco Zappa Nardelli on the trickiness of concurrency in C and C++
even post C11 and C++11. Having revised the memory model, atomic
operations and memory orderings that came in with C11 and C++11, we
were reminded that certain sorts of compiler optimisations can produce
incorrect code in concurrent contexts and told that these sorts of compiler
bugs cannot be caught with the current state of compiler testing. Francesco
then went on to assert that the problem can be reduced to searching for
transforms of sequential code that are not sound for concurrent code and
checking for changes to runtime events. A tool has been produced –
CppMem [7] (I think) – that can check for these sorts of problems. The
talk closed with the take-away that the formalisation of the C and C++
memory model has enabled compiler concurrency testing, and correctness
of memory order mapping. However, there is a need to find out what
compilers implement and programmers rely on – and please would we take
the survey (I did not remember to).

Following right on from the key note were the first of the sessions – with
three parallel streams. I ran up stairs to the room where Eric Christopher
and David Blaikie were giving a debug info tutorial where I discovered
that DWARF [8] is the primary debug information format used by Clang
– the C languages front end that uses LLVM as a compilation back end,
and as it is a permissive standard – meaning there are many variants –
applications that consume DWARF information such as debuggers are not
generalised but tend to be tied to the tool that generated the DWARF
information. The main point of the tutorial was to introduce us to the
LLVM DIBuilder class that eases the pain of adding debug information
to a program’s compilation output, with useful hints such as build source

location information into the design from the get go as it is difficult to
retrofit.

None of the sessions following the mid-afternoon refreshment break
seemed to be introductory or tutorial in nature, so I went to a talk given by
Mattias Holm on T-EMU 2 [9] – billed as the next generation of LLVM
based microprocessor emulator. T-EMU 2 uses C++11 and,
unsurprisingly, the LLVM toolchain throughout. Currently T-EMU 2 only
supports SPARC processors and like many tools and projects based on
LLVM, is library based and provides a command line interface. While the
interpreted instruction implementation only yields around 10 MIPS
performance this can be raised to around 90 MIPS by using a threaded and
optimised approach. It is hoped to raise performance to an estimated 300
MIPS by moving to binary translation.

The main points we were supposed to take on board were that using the
LLVM TableGen tool to emulate cores coupled with the use of LLVM
intermediate representation (IR) led to rapid emulator development. As a
LLVM neophyte I also took away the notion that TableGen – which I had
seen used during LLVM builds – seemed like something worth looking
into further [10]. Mattias ended by noting that TableGen is not fully
documented causing people to resort to reading the code, and that LLVM
IR assembler is hard to debug.

For the final session of the day I chose Zoltan Porkolab’s talk on Templight
[11] (in fact Templight 2) – a Clang extension for debugging and profiling
C++ template metaprograms – which sounded pretty much my sort of talk!
The Templight developers have patched Clang to add options for
Templight. Compiling C++ code with the Templight options active causes
a trace file in XML format to be produced that can be used as input to front
end analysis tools. The current tools have been developed using Graphviz
and Qt and allow template instantiations to be displayed and analysed in
a step by step fashion or instantiation timings and memory usage to be
analysed. The Metashell project [12] uses Templight to provide an
interactive template meta programming REP and there is a Templight
rewrite by Mikael Persson available on GitHub [13].

In the evening there were drinks and dinner at the London Bridge Hilton
hotel. As there were a couple of hours to spend before the drinks I
adjourned to a local pub with a couple of people I had met for a chat and
a drink. At dinner I sat next to Andrew Ayers from Microsoft’s .NET team
– who was giving a talk the following day on CoreCLR garbage collection
support in the LLVM MSIL compiler – a talk I would have liked to go to
if it did not clash with another talk I wanted to catch. I remember chatting
a bit about C++ templates and C# / .NET generics.

Tuesday
The second and final day of the conference got off to a start at 09:00 with
a keynote given by Ivan Goddard from Mill Computing [14] on using the
Clang and LLVM toolchain for their ‘truly alien’ Mill CPU architecture
and the problems they have encountered. Ivan started by asking how many
people had heard of the Mill CPU and on finding most people had not,
spent the first part of the talk on a quick tour of the Mill CPU architecture
(for those interested check out the documentation section on

A

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect
to stop learning or improving his skills.
JUL 2015 | | 9{cvu}

the Mill Computing web site [15]). Next Ivan went through how
their compiler team were using LLVM and Clang and the problems
they had encountered – including LLVM not liking the Mill’s large,
very regular instruction set; that LLVM and Clang lose
‘pointerhood’ as pointers tend to devolve to integers which is not
good for the Mill as it uses a specific 64-bit pointer type; that LLVM
cannot cope with the high level of function call support the Mill provides;
and refactoring LLVM code on the trunk breaks other targets. The Mill
macro assembler is interesting in that assembler instructions are C++
functions and C++ is the assembler macro language. First you compile the
assembler C++ program, and then run the resultant executable which
generates the assembler code. To end, Ivan offered some code they use to
automatically produce specific Mill family member instruction sets from
specifications as an example of an alternative to the LLVM TableGen tool,
which, it appears, is in need of having something done about it – but no
one knows what. Finally, Ivan appealed to the LLVM and Clang
community for help fixing the problems Mill Computing had experienced.

The first of Tuesday’s sessions I attended was given by Liam Fitzpatrick
and Marco Roodzant about LLVM-TURBO [16] which turned out to be
a commercial product aimed at those needing to create code generators for
their embedded processors and who do not wish to get their hands dirty
with Clang and LLVM directly. The selling point is that LLVM-TURBO
requires less time and people with the example of using vanilla LLVM
requiring 10 people over 2 years while using LLVM-TURBO required 3
people over 4 months. LLVM-TURBO uses what appears to be their own
CoSy compiler development system and bridges between LLVM and
CoSy formats.

To take us up to lunch were a set of short 5 minute lightning talks – a
familiar concept to those who have attended an ACCU conference in recent
years. Arnaud de Grandmaison started the proceedings by informing us
that using vectorisation to speed up computations such as colour space
conversion and matrix multiplication can give a two times speed increase.
Dmitry Borisenkov reported on an LLVM based ahead of time Javascript
compiler that although in an alpha state can be up to two times faster than
the Google V8 engine. Tilmann Scheller gave us some tips on building
Clang and LLVM as quickly as possible and also spoke about the new 2.0
version of the OpenCL SPIR intermediate representation [17] saying that
unlike the original it is no longer a subset of LLVM IR but can easily be
mapped to LLVM using a small decoder. Next Frej Drejhammar and Lars
Rasmusson presented their proposal for LLVM extensions allowing the
generation of patch points while Jiangning Liu, Pablo Barrio and Kevin
Qin explained their patch that uses heuristics to improve the LLVM
inliner’s performance. Alberto Magni introduced Symengine that analyses
CPU↔GPU transactions in order to optimise data transfers between CPU
and GPU. Edward Jones explained how a patch to DejaGnu [18], used for
regression testing of GCC, allows it to be used to regression test Clang
which is especially useful for embedded systems as they can use the remote
execution feature. Hao Liu, James Molloy and Jiangning Liu presented a
method of vectorising interleaved memory accesses. Pablo Barrio.
Chandler Carruth and James Molloy meanwhile returned to inlining with
a description of their attempts to allow inlining of recursive functions, and
how the final attempt using a stack to remove recursion in fact ended up
producing slower code for a pathological Fibonacci series test case.
Russell Gallop presented a method of verifying that code generation is
unaffected by compiler options such as -g (generate debug information)
and -S (preprocess and compile but do not assemble or link) by compiling
with and without the option(s) of interest and comparing the generated
output – doing so can help locate subtle bugs across the compiler code
base. Kevin Funk explained how moving the KDevelop IDE’s C and C++
editor language support to libclang provided full C and C++ language
parsing and they got ObjectiveC parsing for free! Finally, Alexander
Richardson and David Chisnall introduced a Clang extension that

optimised memory allocation for objects using the C++ PImpl idiom [19]
by combining allocation in a similar way to std::make_shared. If I
understood correctly the extension, through the use of a custom attribute,
would also create the wrapper class that wraps the implementation class
instance pointer.

After lunch I decided to go to Deepak Panickal and Ewan Crawford’s
session on why one might want to use LLDB [20], the LLVM debugger.
It is designed with a clean and maintainable plugin architecture, works on
all major platforms – with the caveat that there is more work to do on MS
Windows support, maintains up to date language support by using libclang,
has both C++ and Python APIs to add LLDB support to applications and
automate repetitive tasks, has an internal Python interpreter, allowing
scripts to be run from breakpoints, has a GDB compatible machine
interface and that it should be easy to switch to from GDB. Got that? Good.

Following the LLDB session I went straight into Daniel Krupp, Gyorgy
Orban, Gabor Horvath and Bence Babati’s talk on their industrial
experiences of using the Clang static analysis tool. It seems that while
Clang and its associated tools can form an impressive checker framework
they do have their usability problems which makes their use quite fiddly.
To mitigate these problems the authors’ team at Ericsson created a project
build workflow together with viewer tools to smooth over the rough edges.
There are plans to open source the tools and submit the code to the
community, providing their employer has no objections.

After the mid afternoon refreshment break I went to JF Bastien’s talk on
using C++ on the web without getting users pwned. It seems JF works for
Google and the talk concerned the Chrome Native Client (NaCl) [21] and
Portable Native Client (PNaCl) and the security measures they use. As I
had never seen (P)NaCl in action the most impressive thing about this talk
were the demonstrations of things like bash shells running in Chrome along
with applications like Emacs and Vim. It seems that the native client built
in to recent Chrome browsers, and I think Chromebooks, provides native
code – currently written in C and/or C++ – to execute in a sandboxed
Linux like OS environment. PNaCl executables use the LLVM toolchain
to compile down to LLVM IR that is then compiled to native code when
downloaded as part of a web page load. Of course you have to be paranoid
about running native code so other than the sandboxed pseudo-OS
environment they use other techniques such as random instruction and
register selection when compiling and using fuzzing to help check for bugs.

Next I went straight to my final session of the conference given by Siva
Chandra Reddy on using LLDB for debugging. Siva started by giving a
report on the LLDB project status. Encouragingly the project now has 11
developers, has support for Linux and Android, with Windows support
under active development. Remote debugging support has recently been
checked in, is documented and now uses a remote debug server. X86 and
X86-64 support is available now, with ARM and ARM64 support under
development. On Windows Win32 support is mostly complete with Win64
coming along. Next some details on using remote debugging were given
first when both debugger and debuggee are the same platform and then the
more complex case where they are different as is common in the embedded
world. Finally Siva covered debugging and testing the debugger,
mentioning that LLDB has very good logging facilities as well as special
command line arguments and environment variables. As for testing,
because LLDB is very interactive and platform dependent they use a
Python test framework in which each Python test case has an
accompanying C/C++/ObjectiveC file that is used as the thing that is to be
debugged.

There was only the conference close session left and while
waiting for it to start in the lecture theater it was to be held in I
caught the end of the previous session on a Fortran front end for
LLVM and my ears picked up the name ‘Flang’.

we were reminded that certain sorts of
compiler optimisations can produce

incorrect code in concurrent contexts

using a stack to remove recursion in fact
ended up producing slower code

10 | | JUL 2015{cvu}

EuroLLVM Conference 2015 (continued)
References
[1] LLVM, http://llvm.org/
[2] Clang, http://clang.llvm.org/
[3] Embecosm, http://www.embecosm.com/
[4] Myre Laboritories, http://myrelabs.com/Myre
[5] Open Source Hardware User Group, http://oshug.org/
[6] Parallella, http://www.parallella.org/
[7] CppMem, http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/

help.html
[8] DWARF standard, http://www.dwarfstd.org/
[9] T-EMU 2, http://t-emu.terma.com/
[10] TableGen documentation, http://llvm.org/docs/TableGen/
[11] Templight, http://plc.inf.elte.hu/templight/

[12] Metashell, https://github.com/sabel83/metashell
[13] Mikael Persson’s Templight re-write

https://github.com/mikael-s-persson/templight
[14] Mill Computing Inc., http://millcomputing.com/
[15] Mill Computing documentation, http://millcomputing.com/docs/
[16] LLVM-TURBO, http://www.ace.nl/LLVM-TURBO
[17] SPIR, https://www.khronos.org/spir
[18] DejaGnu project, http://www.gnu.org/software/dejagnu/
[19] Pointer To Implementation (pImpl)

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Idioms
[20] LLDB project, http://lldb.llvm.org/
[21] Google Chrome Native Client

https://developer.chrome.com/native-client
Code Club
Steve Folly shares his experiences with volunteering and

teaching children coding.

here has recently been a proliferation of organisations set up to get
children and young people interested in ‘coding’. And not just in the
UK – throughout the world as well, including Coder Dojo [1], Hour

of Code [2], and many others.

There are most likely good reasons for this. In the UK, the number of
students taking computer science subject in universities fell by about 29%
between 2003 and 2012 [3]. This is not surprising when you understand
that teaching IT in schools used to be all about learning how to use
applications like Word and Excel; not how to write software.

I’m happy in my job as a software developer, I’m
getting paid, why should these figures concern
me? Well, I am concerned and I do care. Who’s
going to be there in the future to continue our good
work?

Over the past few years I found I’ve been helping
and mentoring colleagues, and I always had this
feeling that I wanted to do more. I have in the past
volunteered with a local community centre; giving
my time to help with IT related topics. It was very fulfilling and I was really
pleased that I could help others with my knowledge.

If any readers were at the ACCU Conference in 2014 they will remember
Bill Liao’s keynote talk about Coder Dojo [1]. I was there and it really hit
home with me: inspiring children – that’s it.

So, there’s the idea. How do I implement it? The thought of just
approaching a school and asking “Hey, I’d like to set up a computer club
for the children, how about it?” was a bit daunting. I already had in my mind
the kinds of responses I might get, and that put me off a bit!

I was in conversation with a friend one day and he mentioned an
organisation called Code Club Pro [4]. His brother is a teacher and Code
Club Pro have an amazing group of volunteers to teach computing skills
to teachers. Code Club Pro is a part of the Code Club family; there is also
Code Club [5] which is aimed at teaching coding skills to 9 to 11 year old
children.

The reason this has all kicked off in the UK is that the National Curriculum
was changed a couple of years ago to put more emphasis on the
fundamentals of coding skills (including understanding algorithms,
decomposition, debugging).

This seemed to be the perfect opportunity right there: a UK-wide
organisation where volunteers can register an interest to run a club, and
schools and organisations can also register an interest to want to run a club.
Having the backing of an organisation like this will make things much
easier especially as you won’t be contacting the school out of the blue.
Code Club’s website is really easy to use. It took me just 10 minutes to
sign up and they have a checklist of the important things to do to help you
get your club up and running.

If you can’t find an organisation at a suitable location for you, they also
have a full list of all schools so you are able to
contact a school even if they’re not actively
looking to start a club. It’s up to you then to
convince the school they need to start a club!

There are a few important – and legal – things to
do before you are able to start your club. The most
important one is to apply for a DBS (Disclosure
and Barring Service) certificate. This is what used
to be called the CRB (Criminal Records Bureau).

Basically, is it safe for you to work with children? Each organisation you
work with may require you to apply for a DBS certificate. As I found out,
you can’t just forward a copy of your certificate to the next organisation.
The non-optimal route is to apply for a DBS certificate for every
organisation you are working with. I have two now, and then I found out
about the Update Service. I highly recommend you opt-in to this when you
get your first certificate. This is the official route that allows other
organisations to officially confirm that you have a valid DBS certificate.

You will also need public liability insurance. If you’re setting up a club
on your own this can be rather expensive.

The school or organisation may be happy to help you get your DBS
certificate, but some may not want to get involved with insurance. There

 T

STEVE FOLLY
Steve has been a software developer since the early
1990s, working on defence projects such as radars, and
on ticketing systems for public transport. Steve was a
Sinclair child, starting out on a ZX81. He can be
contacted at steve@spfweb.co.uk

I believe passionately
it’s up to us to get the

next generation
inspired by technology
JUL 2015 | | 11{cvu}

http://llvm.org/
http://clang.llvm.org/
http://www.embecosm.com/
http://myrelabs.com/Myre
http://oshug.org/
http://www.parallella.org/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/help.html
http://www.ace.nl/LLVM-TURBO
https://www.khronos.org/spir
http://www.gnu.org/software/dejagnu/
http://en.wikibooks.org/wiki/C%2B%2B_Programming/Idioms
http://lldb.llvm.org/
https://developer.chrome.com/native-client
http://millcomputing.com/docs/
http://millcomputing.com/
https://github.com/mikael-s-persson/templight
https://github.com/sabel83/metashell
http://plc.inf.elte.hu/templight/
http://llvm.org/docs/TableGen/
http://t-emu.terma.com/
http://www.dwarfstd.org/

is an alternative – and Code Club recommend that you arrange your DBS
certificate and insurance via STEMNet.

STEMNet is a UK wide independent charity which receives funding from
the UK government, the Scottish Government and the Gatsby Charitable
Foundation and relies on thousands of volunteers to inspire young people
in STEM subjects: Science, Technology, Engineering and Maths. And
thanks to a change in the national curriculum a few years ago, there is now
more than ever a high demand for volunteers for computing.

So if you sign up to become a STEMNet Ambassador, they will organise
a DBS check for you and cover you for public liability insurance as well.
You will need to attend an induction session where you will learn about
how to work with children – e.g. what to do if they tell you something they
want to be kept private, etc.

As well as this very useful induction session, Code Club also have a
number of training videos to help you get settled in to your club. If you’ve
never worked with children before they are very useful and cover topics
such as keeping children safe, helping children learn and volunteering in
schools.

One of the conditions of STEMNet’s insurance is that a teacher must be
present when you run your club. This is certainly a good thing, because in
my experience they will be there for crowd control!

I was lucky enough to discover that Dormansland Primary School were
looking for a volunteer to help run a club. The school is just a couple of
miles from the office where I work. Communication with school was
simple, a few email exchanges, initiated via Code Club, and an
introductory meeting at the school was arranged. The teacher was really
enthusiastic about the club and was pleased to have found a volunteer. The
timing was just spot on – the meeting was at the end of November, and the
school was planning to start the Code Club in January for the spring term.

I was really looking forward to it, albeit with a little apprehension. I had
a naïve preconception about how the club would be run – calmly and
orderly. It wasn’t like that at all, and in hindsight, that’s not a bad thing.
That’s not to say it was wildly chaotic either! The thing that pleased me
most was to see that the children were helping each other when they got
stuck or had questions.

Code Club have a wide range of pre-prepared projects that you can use in
your club – teaching coding in Scratch, Python and learning about HTML
and CSS. The projects are also on Github and they are open to
contributions.

Scratch [6] is a fantastic environment to teach young children about
coding. It’s very visual and colourful, and code can be created by simple
dragging and dropping of code blocks that snap to together.

I chose to teach the children Scratch as I found out from the initial
discussions with the school that the children were starting to use Scratch
in their lessons, and their computers have Scratch already installed.

Which brings me on to a few hints and tips – when you’re planning your
sessions, it would help to find out exactly what facilities the school or
organisation have. In particular, which versions of software do they have?
The Scratch lessons on the Code Club web site are written for Scratch
version 2.0. My club started using version 1.4. It’s not a show-stopper,
since I managed to adapt the lessons for 1.4. Also, I found out that some
of the computers didn’t have audio configured properly – that was a bit
unfortunate to discover half way through a lesson writing a project called
‘Rock Band’! We switched to Scratch 2.0 online half way through the term.

Are the computer facilities networked? Do they have an internet
connection? If you are using Scratch 2.0 you might want to consider
whether the children could use the online version and create online
accounts so they can show off their work outside of school. Obviously, you
will need to discuss this with the school first, permission would have to
be sought. In my case, some of the children already had an online account
so when we switched to Scratch 2.0 they were able to save their stuff
online.

Does the school have a projector? My school does have a projector, so I
took the approach to work through the lessons on a projector so we could

all work at the same pace. Perhaps one disadvantage is that you’ll be
working at the slowest pace, so some of the more able children may get
bored. An alternative is to print exercise packs for each child to work
through at their own pace. Each method has its advantages and
disadvantages; there is no right way so you’ll have to see what works for
you. I think I’ll try a mixed approach next time.

I overestimated how much work we could do in a one hour lesson. We did
tend to rush a bit towards the end of each session. I’m getting better at that
now, but I’m still very pleased with how much we managed to get through.

On the last day of the club just before Easter I gave the children free rein
to create whatever project they wanted to do and was pleased to see them
come up with creations that I would never have expected. It’s all about
igniting that spark of creativity and imagination in the children.

My second club is now running over the summer term. Initially, there
wasn’t enough interest in the club to warrant running it. That was
disappointing considering the good feedback I had from the first club.
However, I was assured this was typical of all after-school clubs during
the summer term. But after I suggested coming to the school to give a 5-
minute pitch during an assembly about what Code Club is – including
making a piano out of fruit (using the MaKey MaKey kit) – the looks of
confusion on the children’s faces was just what I was after – and,
disappointingly, not being able to launch rockets from the school
playground – I was informed the club was now oversubscribed so
unfortunately a few children had to be turned down. It’s slightly different
to the spring term club – we have a wider age group this time, so I had to
deal with a wider range of abilities. Still, I managed to keep them all
engaged and interested and enthusiastic about coding which is the most
important thing.

I haven’t mentioned yet that, being an after-school club means that it runs
between 3.15pm and 4.15pm. It certainly helps to have an understanding
employer who is willing to let you have the time away from the office. This
was most definitely not a problem in my case; Dave, the owner of the
company I work at is also passionate about ‘giving back to the community’
so he didn’t need much convincing.

I briefly mentioned earlier about Code Club Pro. If volunteering with
children is not for you but still want to help in some way, consider Code
Club Pro. With the change in the national curriculum, there is a big learning
curve for teachers as well. Code Club Pro and other similar organisations,
such as Computing At School [7], part of the BCS, exist to help teachers
get up to speed with the technology they are expected to teach to children.

I believe passionately it’s up to us to get the next generation inspired by
technology. For so long, education in the UK has neglected the importance
of technology.

I hope you saw my Lightning Talk at the ACCU 2015 conference and that
it’s motivated you to do something. I’m not sure which was more nerve-
racking for me – giving a 5-minute talk to my peers about Code Club, or
actually running a club for children. The lightning talk went well, and
thank you to everyone who gave me feedback – especially Frances
Buontempo who suggested I write this article.

And it’s not just the children that are gaining out of this – it’s been a great
learning experience for me as well.

It’s up to us to inspire the next generation for our profession. Do something
about it!

References
[1] http://www.infoq.com/presentations/coderdojo
[2] https://hourofcode.com/
[3] http://www.universitiesuk.ac.uk/highereducation/Documents/2013/

PatternsAndTrendsinUKHigherEducation2013.pdf
[4] http://codeclubpro.org/
[5] http://codeclub.org.uk/
[6] http://scratch.mit.edu/
[7] http://www.computingatschool.org.uk/
12 | | JUL 2015{cvu}

http://www.infoq.com/presentations/coderdojo
https://hourofcode.com/
http://www.universitiesuk.ac.uk/highereducation/Documents/2013/PatternsAndTrendsinUKHigherEducation2013.pdf
http://www.universitiesuk.ac.uk/highereducation/Documents/2013/PatternsAndTrendsinUKHigherEducation2013.pdf
http://codeclubpro.org/
http://codeclub.org.uk/
http://scratch.mit.edu/
http://www.computingatschool.org.uk/

Split and Merge Revisited
Vassili Kaplan makes improvements to the Expression Parser.

ilas S. Brown (ssb22@cam.ac.uk) spotted a defect in the Merge part
of the Split and Merge algorithm published in CVu [1] – you can see
Silas’s letter on page 21. We fix this defect here and also provide a

slightly different C++ implementation of the Split and Merge algorithm,
using the ‘Virtual Constructor’ idiom [2].

Right associativity defect
As Silas Brown pointed out, “the Split and Merge algorithm, as described
in the article, does not consistently treat operators as right-associative
either. If the operator is preceded by another of the same or lower
precedence level, then it will be left-associative: 3-12-1 would get -10. But
if the operator is preceded by one of a higher precedence level, it will become
right-associative with the operators before that: 3-2*6-1 would get -8.”

To fix this, we need to break out of the merge loop and go back to where
we were after any successful merge.

Split and Merge revisited
The split part remains the same: the result of the first step of our algorithm
is a list of structures. Each structure consists of two elements – a real
number and an action, e.g.

Splitting (“3 - 2 * 6 - 1”) [3, ‘-’], [2, ‘*’], [6, ‘-’], [1, ‘)’]

In the merge step the actual calculation is done by merging the elements
of the list of structures created in the first step. We attempt to merge each
structure in the list with the next, taking into account the priority of actions.

Merging can be done if and only if the priority of the action in the first
structure is not lower than the priority of the second structure. If this is the
case merging consists in applying the action of the first structure to the
numbers of both structures, thus creating a new structure, e.g. merging
[5, ‘-’] and [4, ‘+’] will produce [5 - 4, ‘+’] = [1, ‘+’].

What if the second structure priority is higher than the first one?

Then we merge the next (second) structure with the structure next to it, and
so on, recursively. We break out of the merge loop and go back where we
were after any successful merge.

Continuing with our example of “3 - 2 * 6 - 1”:

Merging ([3, ‘-’], [2, ‘*’], [6, ‘-’], [1, ‘)’])

Merging ([3, ‘-’], Merging ([2, ‘*’], [6, ‘-’]), [1, ‘)’])

Merging ([3, ‘-’], [12, ‘-’], [1, ‘)’])

Merging ([-9, ‘-’], [1, ‘)’]) [-9 - 1, ‘)’] = [-10, ‘)’].

Therefore, 3 - 2 * 6 - 1 = -10, which is now correct.

Listing 1 contains the implementation of the fixed Merge part in C++ (the
parts different from the earlier version [1] are in bold).

Implementation using the ‘Virtual Constructor’ idiom
The implementation of the Split and Merge algorithm in [1] was using
pointers to functions. As James Coplien points out, a better, more object-
oriented way, would be using the ‘Virtual Constructor’ idiom [2]:

“The virtual constructor idiom is used when the type of an object needs
to be determined from the context in which the object is constructed.”

In our case these objects are actual functions to be called (e.g. sine, cosine,
logarithm, etc.). They are determined only at run time. The advantage of
this idiom is that a new function can be added easily to the framework
without modifying the main algorithm implementation code.

Listing 2 is how the base class of such functions would look.

 S double EZParser::merge(Cell& current,
 size_t& index, vector<Cell>& listToMerge,
 bool mergeOneOnly)
{
 if (index >= listToMerge.size())
 {
 return current.value;
 }

 while (index < listToMerge.size())
 {
 Cell& next = listToMerge.at(index++);
 while (!canMergeCells(current, next))
 { // If we cannot merge cells yet, go to the
 // next cell and merge next cells first.
 // E.g. if we have 1+2*3, we first merge
 // next cells, i.e. 2*3, getting 6, and
 // then we can merge 1+6.
 merge(next, index, listToMerge, true
 /* mergeOneOnly */);
 }

 mergeCells(current, next);
 if (mergeOneOnly) {
 return current.value;
 }
 }

 return current.value;
}

Listing 1

class EZParserFunction
{
public:
 static double calculate(const string& data,
 size_t& from, const string& item, char ch)
{
 EZParserFunction func(data, from, item, ch);
 return func.getValue(data, from);
 }
 static void addFunction(const string& name,
 EZParserFunction* function) {
 m_functions_[name] = function;
 }

protected:
 EZParserFunction() : impl_(0) {}
 virtual ~EZParserFunction() {}
 virtual double getValue(const string& data,
 size_t& from) {
 return impl_->getValue(data, from);
 }

Listing 2

VASSILI KAPLAN
Vassili Kaplan has been a Software Developer for
almost 15 years, working in different countries and
different languages (including C++, C#, and Python).
He currently resides in Switzerland and can be
contacted at vassilik@gmail.com.
JUL 2015 | | 13{cvu}

Here is what a derived class for a sine function would look like:

 class SinFunction : public EZParserFunction
 {
 public:
 double getValue(const string& data,
 size_t& from)
 {
 return ::sin(loadArg(data, from));
 }
 }

The functions derived from the EZParserFunction class are used in the
first, splitting process. The split process itself will remain the same, just
the call to process the last extracted token will be now

 double value = EZParserFunction::calculate(data,
 from, item, ch);

instead of

 double value = m_allFunctions.getValue(data,
 from, item, ch);

Listing 3 is the (virtual) constructor of the base class.

As we can see the two func t ions , StrtodFunction and
IdentityFunction, have a special meaning and must be implemented
(see Listing 4).

The rest of the functions do not have to be implemented for the algorithm
to work and can be added ad hoc (e.g. log, exp, pi, etc.)

Listing 5 is how the user can add functions that she implemented
somewhere in her program initialization code.

References
[1] Vassili Kaplan, ‘Split and Merge – another Algorithm for Parsing

Mathematical Expressions’, CVu, Volume 27, Issue 2, May 2015.
[2] James Coplien, Advanced C++ Programming Styles and Idioms

(p. 140), Addison-Wesley, 1992.

EZParserFunction::addFunction("exp",
 new ExpFunction());
EZParserFunction::addFunction("log",
 new LogFunction());
EZParserFunction::addFunction("sin",
 new SinFunction());
EZParserFunction::addFunction("cos",
 new CosFunction());
EZParserFunction::addFunction("fabs",
 new FabsFunction());
EZParserFunction::addFunction("pi",
 new ExpFunction());
EZParserFunction::addFunction("sqrt",
 new SqrtFunction());

Listing 5

class StrtodFunction : public EZParserFunction
{
public:
 double getValue(const string& data,
 size_t& from)
 {
 char* x;
 double num = ::strtod(item_.c_str(), &x);
 if (::strlen(x) > 0)
 {
 throw CalculationException("Could not parse
 token [" + item_ + "]");
 }
 return num;
 }
 void setItem(const string& item) {
 item_ = item; }

private:
 string item_;
};

class IdentityFunction : public EZParserFunction
{
public:
 double getValue(const string& data,
 size_t& from)
 {
 return loadArg(data, from);
 }
};

static StrtodFunction*
 strtodFunction = new StrtodFunction();

static IdentityFunction*
 identityFunction = new IdentityFunction();

Listing 4

 double loadArg(const string& data,
 size_t& from)
 {
 return EZParser::loadAndCalculate(data,
 from, ')');
 }

private:
 EZParserFunction(const string& data,
 size_t& from, const string& item, char ch);

 EZParserFunction* impl_;
 static map<string,
 EZParserFunction*> m_functions_;
};

EZParserFunction::EZParserFunction
 (const string& data, size_t& from,
 const string& item, char ch)
{
 if (item.empty() && ch == '(')
 {
 impl_ = identityFunction;
 return;
 }
 map<string, EZParserFunction*>::
 const_iterator it
 = m_functions_.find(item);

 if (it == m_functions_.end())
 {
 strtodFunction->setItem(item);
 impl_ = strtodFunction;
 return;
 }

 impl_ = it->second;
}

Li
st

in
g

3
Li

st
in

g
2

(c
on

t’d
)

14 | | JUL 2015{cvu}

Anthony Williams: An Interview
Emyr Williams continues the series of interviews with

people from the world of programming.

nthony Williams is the author of C++ Concurrency in Action, and
Director of Just Software Solutions Ltd. He has extensive experience
developing a wide variety of applications for a wide range of

systems, including embedded systems, Windows applications and web-
based applications, which he draws on when advising clients or developing
bespoke software for them. A strong believer in the benefits of TDD and
agile methodologies, Anthony is always striving to find ways to minimize
the code that cannot be tested.

How did you get started in computer programming? Was it a sudden interest
in computing? Or was it a gradual process?

I started when I was about 7. We had a ZX81 at home, and BBC
Micros at school. I used to program them in BASIC. I became
hooked rather quickly. Often I would write programs on pieces of
paper for typing in later because I didn’t have access to the
computers as much as I’d like. Later on we had an Amstrad
CPC6128 at home, and I used to program that in BASIC and
assembly language (hand-assembled on paper). What really got me
interested was the idea that I could make the computer do anything
I wanted, if only I took the time to work out how. Seeing software
others had written I would want to know how they did it.

What was the first program you ever wrote? And what language did you write
it in?

The very first program I ever wrote was something along the lines of

 10 PRINT "Hello"

in BASIC. It’s amazing the feeling that such a simple thing can give
you: I can type instructions and the computer will do what I say! I
then wrote other simple BASIC programs, such as the classic
animal-vegetable-mineral game.

What would you say is the best piece of advice you’ve ever been given as
a programmer?

“Write copious unit tests”. It’s simple advice, but I didn’t really get
it for a long time. Of course you have to test your code, but the
importance of unit tests didn’t really sink in until I started reading
about TDD and refactoring. With a decent set of unit tests you can
be sure that your code is working now, and when you change
something you can immediately see if you unintentionally changed
the behaviour of something else. Combined with source control so
you can easily get back to previous versions that’s incredibly
powerful.

If you were to start your career again now, what would you do differently?
Or if you could go back in time and meet yourself when you were starting
out as a programmer, what would you tell yourself to focus on?

I could probably have done with a book on algorithms and data
structures when I was starting out. Though it’s fun working things
out for yourself, it can get in the way of achieving the end goal.

What was the biggest “ah ha” moment or surprise you’ve experienced when
chasing down a bug?

I don’t recall any particularly momentous “ah ha” moments or
surprises when chasing bugs. Often enough it’s more of a “D’Oh!”
moment when you realise that you used the wrong variable in an
expression.

A lot is said about elegant code these days. What would you say is the most
elegant code you’ve seen? And how do you define what elegant code is?

Elegant code is clear, simple and concise. You can read it and easily
understand what it does without needing any comments, but there’s
nothing extraneous. Sadly, it’s often really hard to write elegant
code! To a large extent, it’s the use of suitable abstractions that
enables elegant code. Code written using the jss::actor class
from Just::Thread Pro can be remarkably elegant, as can code
written using just the STL, especially when combined with the
C++11 range for loops, and lambda functions.

With technology moving so fast these days, where do you think the next big
shift in computer programming is going to be?

I think Functional Programming is going to become increasingly
mainstream, especially as parallelism grows, since it greatly
simplifies parallel programming if you have side-effect-free
functions. However, I don’t think it’s going to supplant imperative
programming; it’s just going to be another tool that good
programmers reach for when appropriate.

One of the things you were involved with was writing the threading library
that was included in Boost, which has now become a part of the C++
standard from C++ 11 onwards. How did that come about?

Bill Kempf wrote the original version of Boost.Thread. In 2005,
there was a drive to get the whole of Boost covered under a single
license – the new Boost Software License. Unfortunately, at the time
Bill could not be contacted to change the license, so a couple of us
began a rewrite project, and rebuilt the whole library from the
ground up. As the work on the new C++ standard was underway, I
then got involved with the proposals for the thread library portion of
the new standard, and the ‘new’ Boost implementation and the draft
standard then evolved together. I’ve since handed over maintenance
of Boost.Thread to Vicente Botet, as my work on concurrency
libraries has been focused on my own Just::Thread and Just::Thread
Pro libraries.

What advice would you give a programmer who’d like to get involved in an
open source project or contribute to something like Boost?

Become an active contributor on the project mailing list, so people
know who you are when you submit patches. Ask the active
developers which areas they need help with, or just submit patches
that fix bugs in the bug tracker. Most developers will be glad of the
help.

Contributing a whole library to Boost is a lot of work. Getting it
reviewed and accepted can take years, though they are trying to
address that, and once your library has been accepted then you need
to handle bug reports and fixes, often for platforms you have no
access to.

Do you mentor other developers? Or did you ever have a mentor when you
started programming?

I am not currently mentoring anyone, though I have done in the past,
and I enjoyed the responsibility of helping someone else expand
their skills. I didn’t have a ‘mentor’ when I started, though you could
probably say that my Dad took on that role.

 A

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
JUL 2015 | | 15{cvu}

ACCU London Review
One of the attendees at a recent meet shares their experience.

aving been quiet for a while, due to people moving away, we have
finally managed to get a few regular meetings going again. In May
we just had a social, and in June we had some mini-talks. Instead of

insisting on a time capped 5 minute lightning slot, people were allowed to
talk for a little longer if they wanted. The talks varied between about 5
minutes and nearer half an hour. This format allows people who may not
be brave another to give a presentation for an hour to do something slightly
less scary. One thing the ACCU has consistently managed is allowing
people to step outside their comfort zone and thereby getting better, be that
at coding, talking, writing or whatever.

We had five speakers:

 Jaimen lathia – ‘Computer Science vs Software Engineering’

Jaimen said this was the first time he’d spoken outside of work, and
took a look at some of the terms we use to talk about ourselves.

 Frances Buontempo – ‘ABC your way out of a paper bag’

Frances swarmed her way out of a paper bag, using an abstract bee
colony.

 Guilherme Candido Hartmann – ‘New developments on Neural
Networks and Deep Learning’

Guildherme shared some really powerful neural network techniques
for computer vision.

 Schalk Cronjé – ‘Asciidoctor’

Schalk showed us how easy Asciidoctor is to use and the various
formats it can automatically generate.

 Patrick M Martin – ‘schadenfreude security “adjustment”’

Patrick showed us how to do evil things with Windows dlls.

We then retired to a local tavern and caused a porter draught after a little
effort.

Most of speakers have kindly shared links to techniques and tools they
mentioned on the meetup page: http://www.meetup.com/ACCULondon/
events/222888479/

 H

Anthony Williams: An Interview (continued)

Write for us!
C Vu and Overload rely on article contributions from members. That’s you!
Without articles there are no magazines.

We need articles at all levels of software development experience; you don’t have
to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
What inspired you to start your own business? And how did you find the
experience? And any advice for anyone thinking of going it alone?

I started my own business because I wanted to move to Cornwall,
and I couldn’t find a decent programming job in Cornwall at the
time. From a practical point of view it’s straightforward – fill in
some forms, pay a bit of money. The scary part is ensuring that you
have enough jobs coming in or product sales to pay your bills.
Thankfully, I had existing contacts who were more than happy to
subcontract development to my company, whilst I made new
contacts and built up the sales of Just::Thread.

For anyone thinking of setting up their own business, my advice is
to sound out existing contacts for work before you make the leap.
It’s also worth reading the advice of people like Andy Brice (http://
successfulsoftware.net) and Patrick McKenzie (http://

www.kalzumeus.com/), especially if you want to sell a product
rather than take on development work for other companies.

Finally, do you have any advice for any kids or adults who are looking to
start out as a programmer?

There’s a lot of options for someone starting out today, with many
books and tutorials available, as well as sites like http://
www.codecademy.com/ which provides interactive lessons, and
http://www.codewars.com/ which provides exercises of various
levels to help you practice what you’ve learnt. When I was learning,
I greatly appreciated the immediacy of BASIC: there was no
compile step, and you could just type BASIC commands at the
prompt. To get that today you need something with a REPL, like
Python, or node.js for Javascript. My son got on well with ‘Invent
your own computer games with Python’. Once you’ve learnt enough
from the tutorials, pick a simple project and work through it.
16 | | JUL 2015{cvu}

http://www.meetup.com/ACCULondon/events/222888479/
http://www.meetup.com/ACCULondon/events/222888479/

Code Critique Competition 94
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I’m trying to write a simple program to demonstrate the Mandelbrot set
and I’m hoping to get example output like this Figure 1, but I just get 6
lines of stars and the rest blank. Can you help me get this program
working?

Can you find out what is wrong and help this programmer to fix (and
improve) their simple test program? The code is in Listing 1.

Critiques

Paul Floyd <paulf@free.fr>

It took some debugging to get to the causes of the errors.

First impressions. I didn’t like the uncommented use of indexing a string
literal in the row operator<<. I understood it, but not all developers
would. As it’s a relatively rare idiom, it needs an explanatory comment.
Just to make sure that there was no problem with the output, I changed the
literal to *. so that the ‘true’ values printed something more visible. And
indeed there was no problem there. I had a quick check that the unqualified
call to abs was indeed calling the complex version rather than the int
one. Lastly I didn’t like the gratuitous use of operator(), defined in the
class body to boot. I’d prefer a named function like calculate. If
calculate is always called after construction, then I’d call it from the
constructor instead.

Next, compiling the code. I tried with

 Solaris Studio 12.4 – no warnings

 clang++ 3.2 – complained about sign comparison in the x and y for
loops

 g++ 4.8.2 – same x and y for loop sign comparison, and also about
missing field initializers for Mandelbrot::data.

So I started adding some debug traces. I noticed fairly quickly that the
values of complex c and z always had zero imaginary parts. I looked at
initializer expression for c

 std::complex<double> c = (xcoord(x), ycoord(y));

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

 }
 }
 }
 return data;
 }
private:
 double xcoord(int xpos)
 {
 return origin.real() + (xpos -
 data[0].size()/2) / scale;
 }
 double ycoord(int ypos)
 {
 return origin.imag() + (data.size()/2 -
 ypos) / scale;
 }
};
int main()
{
 Mandelbrot set;
 std::cout << set() << std::endl;
}

Listing 1 (cont’d)

#include <array>
#include <complex>
#include <iostream>
using row = std::array<bool, 60>;
using matrix = std::array<row, 40>;
std::ostream& operator<<(std::ostream &os,
 row const &rhs)
{
 for (auto const &v : rhs)
 os << "* "[v];
 return os;
}
std::ostream& operator<<(std::ostream &os,
 matrix const &rhs)
{
 for (auto const &v : rhs)
 os << v << '\n';
 return os;
}

class Mandelbrot
{
 matrix data = {};
 std::complex<double> origin = (-0.5);
 double scale = 20.0;
public:
 matrix const & operator()()
 {
 for (int y(0); y != data.size(); ++y)
 {
 for (int x(0); x != data[y].size(); ++x)
 {
 std::complex<double>
 c = (xcoord(x), ycoord(y)), z = c;
 int k = 0;
 for (; k < 200; ++k)
 {
 z = z*z + c;
 if (abs(z) >= 2)
 {
 data[y][x] = true;
 break;
 }

Li
st

in
g

1

JUL 2015 | | 17{cvu}

and saw the first light. That doesn’t initialize a std::complex with two
fields. It’s an operator, expression in parentheses. The result of the
expression is a double, and there’s a std::complex constructor overload
that takes just a double, so it can be converted to std::complex.

In C++11 uniform initialization style, this should be

 std::complex<double> c = {xcoord(x), ycoord(y)};

The next thing that I noticed were some excessively high values coming
from xcoord(x). These looked suspiciously like INT_MAX. I added
traces for all of the values used in xcoord(), and they all looked
reasonable.

Then I looked a bit more closely at the expression:

 return origin.real() + (xpos -
 data[0].size()/2) / scale;

In terms of types, that is

 double + (int - size_t/int) / double

If it were the case that the size_t in the middle were converted to int,
then all would be well. But it isn’t. If I look at the typeid of
data[0].size()/2 (and even demangle it, then it is unsigned int
on a 32bit build and unsigned long on a 64bit build. The same is true
for xpos - data[0].size()/2. What this leads to is that it isn’t the
size_t that is converted to int, it is the int that is converted to
size_t. xpos ranges from 0 to 59, and data[0].size()/2 is 30. So
when xpos is less than 30, the result is negative. Or it would be if the
expression type were not size_t, which has no negative values. Instead
it wraps around to a very high positive number.

The fix for this is quite simple. Instead of using literal 2 in the expression,
use 2.0, thus

 return origin.real() + (xpos -
 data[0].size()/2.0) / scale;

the types this time are

 double + (int - size_t/double) / double

This time, in the subexpression size_t/double, the size_t gets
converted to double, which again happens for (int - double). Since
double has no problem representing negative numbers, this works as
intended. The same change needs to be made in ycoord.

This is one of my pet peeves, people using literals of the wrong type in
expressions. I’ve even seen stuff like (double)2) rather than the more
obvious 2.0.

Lastly, how could these have been avoided? Well, both mistakes were well
formed C++, so the compiler was of no help. The huge numbers produced
by xcoord could have been detected fairly easily with a bit of analysis of
what the expected upper and lower bounds are, and a suitable assert.

Finally, the initialization expression for c. As 0.0 is perfectly valid for
c.imag(), an assert won’t help.

A unit test could be used, but that would require considerable changes to
break up Mandelbrot::operator(), which I think would be
excessive, so that leaves good old fashioned functional testing and
debugging.

Jim Segrave <jes@j-e-s.net>

Problems with this code:

The member functions xcoord and ycoord don’t work as intended. The
sub-expressions involved will be evaluated as integers and conversion to
double comes too late, their fractional part will have been truncated. A
simple fix is to change the divisor from 2 (an integral value) to 2.0L, a
double value. Then the parenthesised sub-expressions will evaluate as
doubles and the results are what is expected.

The second major problem is in the statement:

 std::complex<double> c =
 (xcoord(x), ycoord(y)), z = c;

This does not call the constructor for a complex double with a real and
an imaginary part. Instead, the parenthesised expression is treated as a pair
of expressions separated by a comma – the ycoord() result is discarded
and the complex double is constructed using the single argument
constructor which sets the imaginary component to 0 and only initialises
the real component. Changing the declaration to use a braced initialiser
fixes this problem.

The compiler, with sufficient warnings enabled, should complain about
mixing signed and unsigned values in the comparisons in the two for
statements which iterate over x and y. Changing the types for x and y to
size_ts (and similarly changing the xcoord() and ycoord()
functions to expect size_t arguments, clears this warning.

Finally, the compiler may complain about the initialisation of the variable
data. This variable is an C++ array of C-arrays of rows, where a row is
a C++ array of a C array of bools. To initialise this, data needs to initialise
the C++ array of rows, so it needs a pair of curly braces. Within that pair,
you need an initialiser for a C array of rows, hence another pair of curly
braces within the first one, which should contain an initialiser for a row.
That calls for a third set of curly braces, which should contain an initialiser
for a C array of bools. That needs a fourth set of curly braces around a false
value:

 matrix data{ { { { 0 }} }}
 1 2 3 4

1 is the initialiser list for data

2 is the initialiser list for a C array of rows

3 is the initialiser list for a row

4 is the initialiser list for a C array of bools

It’s ugly, but that’s what g++ 4.8 and clang 3.5.1 want to see.

With those corrections, the program compiles without warnings or errors
and produces the expected output. However, it can be improved:

A Mandelbrot set is symmetric around the X axis, so it seems the program
should produce a symmetric pattern. It also seems reasonable to expect that

 *

 * **********

 * ** **********************
 ******* **********************
 ********* **********************
 ********* **********************
 * ********* *********************

 * ********* *********************
 ********* **********************
 ********* **********************
 ******* **********************
 * ** **********************

 * **********

 *

Fi
gu

re
 1
18 | | JUL 2015{cvu}

the origin point (-0.5, 0) should be plotted. But with an even number of
output lines (40 in this case), there are 20 lines printed above the X axis
and 19 below the X axis. For the same reasons, there are 30 points plotted
to the left of the Y axis and 29 to the right. I changed the number of rows
and columns to 41 and 61, which makes the output symmetrical around
the origin point, but the origin point itself is no longer plotted. I altered
xcoord and ycoord so that they will plot an equal number of rows above
and below the origin and an equal number of columns left and right of the
origin, while still plotting the X row and Y column passing through the
origin.

A final change is one of my pet obsessions – there are if statements in
this code which control a single statement and omit any braces to make
the controlled statement a compound one. Omitting the braces is a recipe
for introducing bugs into code in the future. It is my firm belief that no if,
for, do or while statement should ever omit the braces to make any
controlled code (even an empty statement) be a compound statement.

Then anyone adding statements later will be forced to notice and respect
the statement blocks.

The updated code is:

 #include <array>
 #include <complex>
 #include <iostream>
 using row = std::array<bool, 61>;
 using matrix = std::array<row, 41>;
 std::ostream& operator<<(std::ostream &os,
 row const &rhs)
 {
 for (auto const &v : rhs) {
 os << "* "[v];
 }
 return os;
 }
 std::ostream& operator<<(std::ostream &os,
 matrix const &rhs)
 {
 for (auto const &v : rhs) {
 os << v << '\n';
 }
 return os;
 }
 class Mandelbrot
 {
 matrix data = {{ {{ 0 }} }};
 std::complex<double> origin = (-0.5);
 double scale = 20.0;
 public:
 matrix const & operator()()
 {
 for (size_t y(0); y != data.size(); ++y)
 {
 for (size_t x(0); x != data[y].size();
 ++x)
 {
 // use braced initialiser list for c
 std::complex<double>
 c{xcoord(x), ycoord(y)}, z = c;
 int k = 0;
 for (; k < 200; ++k)
 {
 z = z*z + c;
 if (abs(z) >= 2)
 {
 data[y][x] = true;
 break;
 }
 }
 }
 }

 return data;
 }
 private:
 double xcoord(size_t xpos)
 {
 return origin.real() +
 (xpos - (data[0].size() - 1)/2.0L)
 / scale;
 }
 double ycoord(size_t ypos)
 {
 return origin.imag() +
 ((data.size() - 1)/2.0L - ypos)
 / scale;
 }
 };
 int main()
 {
 Mandelbrot set;
 std::cout << set() << std::endl;
 }

James Holland <james.holland@babcockinternational.com>

The first thing to do is to clear the decks by getting rid of any compiler
warnings. My compiler issues warnings about the comparisons between
signed and unsigned integer expressions that occur in the two outer for
statements of operator()(); The problem is that data[y].size()
and data.size() return unsigned types while the variables used in the
comparison, x and y, are signed types. It would be convenient to ask the
std::array what type it uses for representing sizes and to use that. This
is achieved by referring to the std::array’s public definition of
size_type as shown below.

 for (row::size_type y(0);
 y != data.size(); ++y)
 for (matrix::size_type x(0);
 x != data[y].size(); ++x)

Unfortunately, the software still behaves in the same unexpected way.
After quite a bit of effort it was discovered that xcoord() and ycoord()
are not returning correct values. Investigations revealed that using both
signed and unsigned types in the return expression are to blame. As noted
above, data[0].size() and data.size() return unsigned types
while xpos and ypos are of type unsigned int. C++ has set of rules
it uses to determine how to handle situations like this. It turns out that, in
this case, signed values are converted to unsigned types. The result of the
expression is also unsigned. This has the consequence that what was
thought to be small negative numbers are manipulated as if they were large
positive numbers. This accounts for xcoord() and ycoord() returning
unexpected values.

In our situation, there are two ways in which the problem of signed values
can be resolved. Probably the most direct way is to cast the unsigned value
to signed values as shown below.

 double xcoord(int xpos)
 {
 return origin.real() +
 (xpos - static_cast<signed int>
 (data[0].size())/2) / scale;
 }
 double ycoord(int ypos)
 {
 return origin.imag() +
 (static_cast<signed int>(data.size())/2 -
 ypos) / scale;
 }

This works well where the sizes of the dimensions of data are even
numbers. Dividing such numbers by 2 (as is done in xcoord() and
ycoord()) results in no loss of information. Had the sizes been
represented by odd numbers, dividing by 2 would lose the fractional part
JUL 2015 | | 19{cvu}

of the result. In such cases it would, perhaps, be simpler to make the divisor
a double instead of a signed int. This can be achieved by simply
replacing the 2 in xcoord() and ycoord() with 2.0. Dividing an
unsigned type by a double will result in a double which is inherently
signed and will preserve any remainder. For the problem at hand, I have
chosen the casting method as it makes clear the intentions of the
programmer and, as the size() value is even, dividing by a double is
not necessary.

Having corrected xcoord() and ycoord() it is disappointing to
discover that the program still does not produce the expected result. Further
investigation is required. It turns out that the initialisation of c is at fault.
C++ allows variables to be correctly initialised in a variety of ways but
there are a few cases where what seems obvious are inappropriate. This is
one of them. In this case, the values within the parenthesise of the
initialisation of c are being interpreted as arguments of a comma operator.
The result is that the first value (xcoord(x)) is ignored and the second
value (ycoord(y)) is copied to the real part of c. The imaginary part is
automatically set to zero. This is not what is required. Correct initialisation
of c is achieved by any of the following statements.

 std::complex<double> c{xcoord(x), ycoord(y)};
 std::complex<double> c
 = {xcoord(x), ycoord(y)};
 std::complex<double> c(xcoord(x), ycoord(y));

The use of parentheses ((and)) and braces ({ and }) both have their
advantages and disadvantages so it is largely a matter of choice as to which
is used. It is probably best to be consistent throughout the program,
however.

Having resolved the initialisation problem, the program should work as
expected with the display of the Mandelbrot set. There are, however, a
couple of amendments that could be made to improve the appearance of
the source code. As mentioned above, a consistent initialisation approach
would be beneficial. The initialisation of data, origin and scale uses three
different syntaxes. The initialisation of x and y uses yet another. I suggest,
for no particularly strong reason, that brace initialisation is used
throughout. Another slightly curious feature is the declaration of k just
before the for loop. k would be better declared as part of the for loop as
it is not required outside the scope of the loop.

For completeness, I provide the corrected program.

 #include <array>
 #include <complex>
 #include <iostream>
 using row = std::array<bool, 60>;
 using matrix = std::array<row, 40>;
 std::ostream & operator<<(std::ostream &os,
 row const &rhs)
 {
 for (auto const &v : rhs)
 os << "* "[v];
 return os;
 }
 std::ostream & operator<<(std::ostream &os,
 matrix const &rhs)
 {
 for (auto const &v : rhs)
 os << v << '\n';
 return os;
 }
 class Mandelbrot
 {
 matrix data{};
 std::complex<double> origin{-0.5};
 double scale{20.0};
 public:
 matrix const & operator()()
 {
 for (row::size_type y{0};
 y != data.size(); ++y)

 {
 for (matrix::size_type x{0};
 x != data[y].size(); ++x)
 {
 std::complex<double>
 c{xcoord(x), ycoord(y)}, z = c;
 for (int k{0}; k < 200; ++k)
 {
 z = z * z + c;
 if (abs(z) >= 2)
 {
 data[y][x] = true;
 break;
 }
 }
 }
 }
 return data;
 }
 private:
 double xcoord(int xpos)
 {
 return origin.real() + (xpos -
 static_cast<signed int>(data[0].size())
 /2) / scale;
 }
 double ycoord(int ypos)
 {
 return origin.imag() +
 (static_cast<signed int>(data.size())/2 -
 ypos) / scale;
 }
 };
 int main()
 {
 Mandelbrot set;
 std::cout << set() << std::endl;
 }

Commentary
This problem was, it seems, a little frustrating to analyse. This is partly
because there were two unrelated bugs and finding and fixing just one of
them was not enough to produce sensible output.

Fortunately many of our debugging tasks involve a single root cause of the
problem, but it is worth remembering that this is not always the case, even
in short code fragments like this one.

I think between them the critiques covered most of the issues. One issue
no-one covered is that the operator<< defined for row and matrix are
in the default namespace and use types from the std namespace so there
is potential for a violation of the One Definition Rule if another source file
in the final executable were to define the same operator on one of the types.

The odd placement of k outside the for loop was historical – the original
program used the final value of k to produce a more flexible output than
just a simple boolean value.

The winner of CC93
There were good points made by all entrants. I also note that all three
entries referred to removing compiler warnings: I take this as a good sign
that warnings are getting better and/or programmers are learning to use the
inbuilt static detection provided by the compiler. Paul did not actually
remove the warnings though – it might have been useful for a critique to
have explained why they weren’t directly relevant in this case.

There are many problems that can be caused by mixing types, particularly
signed and unsigned integers. In this case dividing by 2.0 rather than 2
fixed the problem, but primarily because double is signed rather than
because of truncation as Jim suggested – but doing this does avoid
problems if the program changes in the future.
20 | | JUL 2015{cvu}

Code Critique Competition (continued)

Letter to the Editor
Dear Editor,

I liked the idea of Vassili Kaplan’s easy-to-code parser (‘Split and Merge
– Another Algorithm for Parsing Mathematical Expressions’, C Vu 27.2,
May 2015).

One small thing I think we should point out, though, is that the algorithm
as described in that article treats the associativity of operators in a way we
probably don’t want.

With the commutative, transitive operators + and *, associativity doesn’t
matter: A*(B*C) = (A*B)*C and same goes with +. But things can be more
subtle with - and /.

To take the example of 3+2*6-1 becoming 3+12-1 and then 3+11, what if
that first + were changed into a -, so we have 3-2*6-1 becoming 3-12-1
and 3-11? That would give a result of -8, instead of the -10 you’d get if
you did it as (3-2*6)-1 as we’d normally understand it.

Moreover, the Split and Merge algorithm, as described in the article, does
not consistently treat operators as right-associative either. If the operator
is preceded by another of the same or lower precedence level, then it will
be left-associative: 3-12-1 would get -10. But if the operator is preceded
by one of a higher precedence level, it will become right-associative with
the operators before that: 3-2*6-1 would get -8. This is a bit inconsistent
and I can’t think of a language where we’d actually want this behaviour,
although there might perhaps be one out there somewhere.

To make the algorithm consistently left-associative, we’d have to change
the parser by having it break out of the merge loop and going back to the
beginning after any successful merge, although it doesn’t have to do this
if it’s already dealing with the first thing in the expression, or if the next
operator is + or * and therefore can be evaluated with either associativity.

Having to break out of the loop will
o f c ou r se i nc re a se t h e t ime
complexity a little, and let’s hope
we’re not coding a language in
which some operators are left-associative whereas others are right-
associative.

When inventing a new way of parsing expressions, it might be a good idea
to test the code with as many expressions as possible. Perhaps write a
random expression generator and feed the resulting expressions both to
your code and to an established parser (such as Python’s eval function)
and have it alert you about any differences in the result, or at least any
difference in the first 3 significant digits (as you can’t count on both
floating point systems to be using the same precision).

Of course, a lot would depend on how thorough your random expression
generator is, so perhaps test its thoroughness first by making sure it flags
up the problem with the existing version of the code. That’s what Richard
Feynmann would call an ‘A-1’ experiment: first check our observation
methods by verifying we can observe what we have already, before
changing things.

While such ‘fuzz testing’ does not provide a 100% solid guarantee of
catching all cases (you’d have to use formal code-proving methods for that,
preferably checked by automatic proof-checking tools and it’s still
possible to slip up by using them incorrectly), at least ‘fuzz testing’ should
catch most things: I hope a decent fuzz-tester would have drawn our
attention to the inconsistent associativity.

Silas

Silas S Brown http://people.ds.cam.ac.uk/ssb22

Have a reputation for being reasonable
~ Philippians 4:5, Phillip’s
--- address.h ---
#pragma once
typedef struct {
 union {
 struct {
 int32_t offsetLo;
 int32_t offsetHi;
 } s;
 void *pointer;
 };
} address;
// simulate anonymous structs with #define
#define offsetLo s.offsetLo
#define offsetHi s.offsetHi

--- test program ---
#include <cstdint>
#include <iostream>
#include "address.h"
int main()
{
 int var = 12;
 address a;
 a.pointer = &var;
 std::cout << "Address = " << std::hex
 << a.offsetHi << "/" << a.offsetLo
 << std::endl;
}

Listing 2

There are now many different ways to initialise variables in C++ and
James’ preference for use of a consistent initialisation style in a single
source file is a good idea and one likely to reduce errors. (Scott Meyers’
recommendation in Item 7 of Effective Modern C++ is to use brace
initialisation where possible.)

I liked Paul’s final reflective question “Lastly, how could these have been
avoided” – even though in this case there are few quick answers – and
overall his critique wins the prize by a short head.

Code Critique 94
(Submissions to scc@accu.org by August 1st)

I had some code that used an anonymous structure within an
anonymous union to easily refer to the high and low 32-bit parts of a 64-
bit pointer. However, I get a warning that this is non-portable (I'm not
quite sure why - MSVC and g++ both accept it) but after googling around
for a solution I found one that uses #define. It all compiles without
warnings now so I think it's fixed.

Can you give some advice to help this programmer? The code is in
Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.
JUL 2015 | | 21{cvu}

http://www.accu.org/journals/
http://people.ds.cam.ac.uk/ssb22

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Astrid Byro (astrid.byro@gmail.com)
More Fearless Change
By Mary Lynn Manns & Linda
Rising, published by Addison
Wesley, ISBN 978-0133966442

Reviewed by Ewan Milne

More Fearless Change is an
update to Fearless Change,
ten years on from the
publication of this catalogue
of patterns for introducing organisational
change (reviewed in C Vu 17.1). The original is
a title that I have often seen recommended or
referenced, but never actually read. It consists of
48 patterns covering strategies to kick-start and
sustain change in a wide range of situations. The
new book is neither a new edition nor a straight
follow-up, instead it is more akin to the deluxe
edition of a classic album, repackaged with
bonus material.

The patterns from the first book are presented in
their original form, and in most cases
accompanied by new sections with additional
insights – these range from brief comments to
more in-depth sections covering a full page or
two. The patterns themselves are typically three
or four pages long, following a well-structured
format which allows the narrative to be
presented clearly and concisely.

In addition to the original set, there are 15 new
patterns. These patterns have been refined in
PLoP conferences – I’m not sure if this was the
case for the originals – and as a first time reader
the old and new fit together well.

The book has three parts, with the main part
containing the patterns preceded by two
introductory sections. A overview of five short
chapters summarises the new patterns in a
logical grouping: strategize, share information
and seek help, inspire others, and target
resistance. This is a useful way of introducing
the patterns and how they relate to each other,
which would have been nice to see extended to
cover the full catalogue. This is followed by two
brief stories intended to give the reader some
ideas for using the patterns. This section doesn’t
work so well: the stories are too short to be of
much value, and while the first is a real case
study, the second is fictitious.

No matter, the bulk of the text is devoted to the
patterns themselves, which are a truly valuable
resource for anyone attempting to pursue change
or translate their ideas into real action.

On occasion there is an issue of cultural
translation, with the writing sounding quite
American – there are patterns named BROWN
BAG and TOWN HALL MEETING, and a general
optimism comes through which is easy to be
cynical about. But such quibbles aside, this is a
great book which I can imagine dipping into
regularly for advice in getting things done
effectively. Recommended.

Agile Project
Management with
Kanban
By Eric Brechner, published
by Microsoft Press, ISBN 0-
7356-9895-3

Reviewed by Ewan Milne

With a title that echoes
Ken Schwaber’s Agile Project Management
with Scrum – also from the same publisher – you
might expect this to be an authoritative guide to
Kanban. Rather than a thorough analysis of
theory and practice, however, instead what you
get is a lightweight introduction to the topic
which is focused on the practical application of
Kanban as an approach to managing
development teams.

Once I got over my expectation for a rather more
in-depth treatment of the subject, perhaps
leading with some coverage of reasons why you
would want to apply Kanban, the book did make
a little more sense with its launch straight into
how to get the approach up and running. Indeed,
this sleeves-rolled-up approach starts right from
the first chapter, devoted to getting management
consent. I was unconvinced by the open letter to
your manager included not only in this chapter,
but also as a downloadable file on the book’s
website, which seemed rather contrived. It
provides a superficial overview of problems that
Kanban can solve, plus risks and mitigations to
be considered, and is clearly far too trite to be
effective in the real world.

This shallow approach continues in the
following chapters, which cover a 5 step quick-
start guide, guidance for adapting from waterfall
or evolving from Scrum, and coverage of
upstream and downstream processes. Much of
the advice given is sound but lacking in depth,
and there is no feel for Kanban as an
evolutionary change method.

The book is pitched as ‘Kanban in a box’: read
the quick-start guide and you’re up and running
fast. It will help you get started, but I doubt how
far along your journey it will take you. For
further support, the pointers provided in the final
chapter (which finally has a section on why
Kanban works) will be of more use in the long
term.

‘Quality Code’
Software Testing
Principles, Practices,
and Patterns
By Stephen Vance, published
by Addison-Wesley, 2013,
ISBN 978-0321832986

Reviewed by Matthew Jones

This book is quite high level and manages to
cover most aspects of a very broad subject in a
bit over 200 pages. The focus is on traditional
unit testing, i.e. the tests we write as we code, or
to test existing code at low level. There is
nothing specific about system, security,
acceptance testing etc, although many of the
techniques and ideas can be applied to all
flavours of testing. Example code is mainly
Java. As a C++ programmer with only a passing
knowledge of Java I found this language bias
largely irrelevant because the examples are short
and the code self documenting.

The book starts with a section on ‘Principles and
Practices’, introducing the current ideas, best
practice and terminology. As you would hope,
there’s lots of good stuff here, and it ensures
readers of all levels are prepared for the rest of
the book. For a complete novice it might be a
little brief but all the concepts and terms can be
found on the web if more detail is required.

The majority of the book is taken up by part II:
‘Testing and Testability Patterns’. This is a
22 | | JUL 2015{cvu}

catalogue of patterns and techniques grouped
thematically into chapters. The final chapter in
the section stood out to me as it tackles
something usually completely avoided when
discussing testing, namely ‘Parallelism’. This
relatively lengthy chapter introduces some
clever tricks and techniques for finding seams in
concurrent code, giving you way to control your
code to make testing reliable, or at least more
predictable. It gave me hope that I might just
consider tackling this subject systematically
next time I have a problem, rather than just
giving up or trying black magic.

The final part of the book is a couple of short
worked examples, one in Java and one in
Javascript. The languages are secondary, since
the chapters are mainly prose, with plenty of
discussion around a limited number of listings,
ending with a useful
retrospective discussion.

My only real complaint was
that there was very little
mention of TDD, and the
‘Design and Testability’
chapter was one of the
shortest. It might have been a
conscious choice to skim
over this since its a large
subject, and not for the
faint hearted (or,
realistically, a
beginner).

I started out not liking
this book because it
didn’t contain any
bold assertions or
novel ideas. But that’s
because I was hoping for something ground
breaking like the GOOS book, and I think this
is really a ‘software testing primer’. As a text
book, it is comprehensive, detailed without
waffling, and backed up with good references
to take you further should you wish. The
discussion often places the subject in a wider
software engineering context, considering other
factors such as compromises and pitfalls. This
makes it clear that testing and quality can not be
considered in isolation.

Overall I would recommend this book to junior
programmers, or anyone coming to the subject
for the first time. It would also serve well as a
companion text to a training course. If your
bookshelf already contains a few up to date
coding and testing bibles then I don’t think you
will find much novelty in this book, although it
might fill a few knowledge gaps.

Apache HadoopTM

YARN: Moving beyond
MapReduce and Batch
Processing with
Apache HadoopTM 2
By Arun C. Murthy Vinod Kumar
Vavilapalli, Doug Eadline,
Joseph Niemiec, Jeff Markham,
ISBN-10: 0321934504, ISBN-13: 978-0-321-93450-5,
published by Addison-Wesley

Reviewed by Stefan Turalski

With the advent of Hadoop 2.x we were
promised YARN, a cluster resource manager
that will reassure Hadoop position as a go-to big-
data solution, taking it beyond MapReduce into
a role of a multi-purpose platform. Therefore, I
was really eager to pick up this title and learn

how to utilise capabilities of YARN. It
seemed like a perfect fit, as
according to the authors’

intention Apache HadoopTM
YARN should allow the reader
to master details of Apache
Hadoop YARN design,

architecture and its place

in the Hadoop ecosystem. Beyond that, the
reader should learn how to install, configure and
administer a cluster and write both YARN
applications and frameworks that would run on
top of YARN. Have they succeeded?

Sadly, I think that the answer is not quite, and I
would not recommend this particular book to
anyone other than to a hardcore YARN fan. In
fact, if you have read the introductory YARN
material on either Apache’s or Hortonworks’
web pages, you are probably after details,
administration tips, insight on YARN
architecture. You would find these, and first-
hand too; however, you might be in for a bit of
disappointment.

First of all, by the time I received the book for
review (October 2014), its content had become
partially obsolete, which seems to be a common
fate of publications closely covering features of
fast moving open source products. Putting
inevitable aside, I have few other things to point
out. I was a bit surprised that the authors:
Murthy, Vavilapalli, Markham, and Niemiec,
who work for the Hadoop’s mothership –
Hortonworks Inc – decided to cover Hadoop
version 2.2.0 at a time when a subsequent
version was almost ready. (The 2.2.0 version
was a generally available version of Hadoop 2.x
that introduced YARN in October 2013, version
2.3.0 shipped in February, to be followed by
2.4.0 in April). Such a decision might have led
to my second issue with the book – to put it
bluntly, it feels rushed. It might be the side effect
of the co-operation of 5 authors on a text just
over 300 pages long. This could explain why a
few basic concepts are covered multiple times,
whilst we cannot find an outline for the direction
in which YARN is going in the future. However,
I would not expect authors of this calibre to
release a book scripts that do not work without
minor fixes, and with a companion webpage

(http://yarn-book.com/) that has not been
updated for the last few months!

On the other hand, this is still the only book
that covers YARN in detail. Holmes’ 2nd
edition of Hadoop in Practice focuses on
YARN and I would recommend that

option (especially as the 2nd chapter
is available free online)
for now. However, in its
defence Apache

HadoopTM YARN
definitely gives us
better understanding
why things evolved
into what we got in
2.x (if a reader is
interested in such
historical
digressions).

Actually, I think it might be best
to wait for Lam & Davis 2nd edition of Hadoop
in Action or one of the best Hadoop books ever
– Tom White’s 4th edition of Hadoop: The
Definitive Guide, in which the YARN chapter
will hopefully get updated before it is shipped
(the latest Hadoop releases (especially 2.6.0)
pushed YARN capabilities quite a bit further).

Of course, we could wish for the 2nd edition of
Apache HadoopTM YARN as well; however, I
would rather see the authors focusing on coding,
as Hadoop hardcore users are definitely
interested in ironing out these few remaining
YARN issues at the cost of a concise, well-
rounded position offering a bigger picture. After
all we have the source code, right?
JUL 2015 | | 23{cvu}

http://yarn-book.com/

24 | | JUL 2015

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

As April’s 2015 ACCU Conference
recedes into memory I’d like to thank all those
who helped make it yet another successful one –
organisers, speakers and attendees. Well done!

Thanks also to those who attended the AGM on
the Saturday lunchtime. A couple of interesting
items came up. The first was that we took an
indicative vote on whether people preferred to
keep the magazines printed rather than solely
digital. The result was overwhelmingly in
favour of dead trees rather than recycled
electrons, something which reflects my own
personal view. It also confirmed my view that no
change to digital should be made without the
passing of a specific vote to do so by the
membership.

The other interesting thing that emerged was that
we need to codify the status of decisions made
via electronic voting. This is particularly
important in cases where the following meeting
is not quorate. There is also the matter of what
constitutes a quorum for electronic votes. I
suspect we are not the first organisation to have
to tackle this issue, and we certainly won’t be the
last. The committee will need to bring forward
amendments on this issue to the Annual General
Meeting next year to clarify the matter.

And here’s an interesting conundrum – do we
allow electronic voting on the rules for
electronic voting? Answers on a postcard...

At our last committee meeting I discovered one
of the disadvantages of electronic meetings. My
street had a power cut just at the wrong time!
Normally I could have just grabbed my laptop,
gone down to a cafe and at least joined in the
discussion with text only – Chiswick High Road

has more cafés per foot of frontage that
anywhere else in London. Unfortunately, I just
happened to be in the middle of installing a new
version of Linux onto the laptop when the cut
happened, so it was unusable.

Power cuts like these make one very aware of
just how dependent we are on power in our
society.

	CVu-27_3.pdf
	What is a user interface?
	Dictionary and Thesaurus
	Coding Dinosaurs
	Are we nearly there yet? Refactoring C++
	Golang programming on AppEngine
	EuroLLVM Conference 2015
	Code Club
	Split and Merge Revisited
	Anthony Williams: An Interview
	ACCU London Review
	Code Critique Competition 94
	Letter to the Editor
	Bookcase
	View from the Chair

