

MAY 2015 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

In Between
he congruence of a variety of events means that I am
writing this whilst attending the ACCU 2015
conference. This is simultaneously a good thing

and a bad thing: I am surrounded by interesting
people, and immersed in an atmosphere that is
intensely geeky (and not just about programming,
either!). There are almost 400 people here in Bristol,
representing 24 countries from Sweden to Brazil and
Russia to Saudi Arabia. This is my 14th conference, and I
keep coming because I know the talks will be entertaining
and educational, the people will be fascinating, and I will
learn plenty of new things every single day. And therein lies
the problem...there is so much to do, see and learn, there’s
precious little time in which to concentrate on writing the 300
or so words for the magazine!

The truth is that the conference schedule is punishing. It’s
rare to find a session slot having only one talk I wish to
attend, but the difficulty of choosing doesn’t end there.
There are always interesting conversations happening in
the corridors, bar corners, over breakfast and lunch,
excursions in the evenings to find dinner and perhaps a drink
or two (ahem!) and then even after all that, the hotel bar is
frequently teeming with delegates until the early hours. It’s not even limited to actual
conversation, either. Twitter and other similar virtual cafes are alive with chatter and
anecdotes – which sometimes mean you can get a gist of some of the things you've
missed, and sometimes mean you feel you’ve missed out on something important!

After all that, it’s still necessary to catch at least a few hours’ sleep ‘in between’. By
the end of the week, I know I shall be a near-wreck: the effects of a head full of
exciting ideas, inspired by whole talks or just snippets of conversation, combined
with too much alcohol and insufficient sleep will leave me exhausted. But happy.
Because whilst it’s inevitable that I missed some things (you can’t do everything!), I
will have done some of it – and profited hugely by it. If you were at the conference, I
hope you enjoyed it at least as much as I always do. If you’ve never been, I cannot
recommend it enough.

T
Volume 27 Issue 2
May 2015

Editor
Steve Love
cvu@accu.org

Contributors
Tom Björkholm, Pete Goodliffe,
Vassili Kaplan, Ralph McArdell,
Roger Orr, Mark Radford, Adam
Tornhill

ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAY 2015

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
21 Standards Report

Mark Radford
reports on the latest
C++ Standardisation
proceedings.

23 Code Critique Competition
Competition 93 and
the answers to 92.

30 From the bookcase
The latest roundup
of book reviews.

REGULARS
32 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 27.3 1st June 2015
C Vu 27.4: 1st August 2015

Overload 128:1st July 2015
Overload 129:1st September 2015

FEATURES
3 Wallowing in Filth

Pete Goodliffe wades into the dreaded cesspit of ‘low-
quality code’.

5 Writing Good C++ APIs
Tom Björkholm examines some common pitfalls that
make code hard to use.

8 Writing a Technical Book
Adam Tornhill discusses motivation, publishing and
how to stay focused without ruining your life.

12 Split and Merge – Another Algorithm for Parsing Mathematical
Expressions
Vassili Kaplan presents an alternative to Dijkstra’s
algorithm.

15 Using 32-bit COM Objects from 64-bit Programs
Roger Orr explains how to cross the platform
boundary in COM libraries.

17 Raspberry Pi Linux User Mode GPIO in C++ – Part 1
Ralph McArdell expands the Raspberry Pi with a C++
library.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer #92
Wallowing in Filth
Pete Goodliffe wades into the dreaded

cesspit of ‘low-quality code’.

As a dog returns to its vomit, so fools repeat their folly.
Psalms 26:11

e've all encountered it: quicksand code. You wade into it
unawares, and pretty soon you get that sinking feeling. The code
is dense, not malleable, and resists any effort made to move it.

The more effort you put in, the deeper you get sucked in. It’s the man-trap
of the digital age.

How does the effective programmer approach code that is, to be polite, not
so great? What are our strategies for coping with crap?

Don’t panic, don your sand-proof trousers, and we’ll wade in...

Smell the signs
Some code is great, like fine art, or well-crafted poetry. It has discernible
structure, recognisable cadences, well-paced meter, and a coherence and
beauty that make it enjoyable to read and a pleasure to work with.

But, sadly, that is not always the case.

Some code is messy and unstructured: a slalom of gotos that hide any
semblance of algorithm. Some is hard to read: with poor layout and shabby
naming. Some code is cursed with an unnecessarily rigid structure: nasty
coupling and poor cohesion. Some code has poor factoring: entwining UI
code with low-level logic. Some code is riddled with duplication: making
the project larger and more complex than it need be, whilst harbouring the
exact same bug many times over. Some code commits ‘OO abuse’:
inheriting, for all the wrong reasons, tightly associating parts of code that
have no real need to be bound. Some code sits like a pernicious cuckoo in
the nest: C# written in the style of JavaScript.

Some code has even more insidious badness: brittle behaviour where a
change in one place causes a seemingly unconnected module to fail – the
very definition of code chaos theory. Some code suffers from poor
threading behaviour: employing inappropriate thread primitives or
exercising a total lack of understanding of the safe concurrent use of
resources. This problem can be very hard to spot, reproduce, and diagnose,
as it manifests so intermittently.

(I know I shouldn’t moan, but sometimes I swear that programmers
shouldn’t be allowed to type the word thread without first obtaining a
licence to wield such a dangerous weapon.)

Be prepared to encounter bad code. Fill your toolbox with sharp
tools to deal with it.

To work effectively with alien code, you need to able to quickly spot these
kinds of problems, and understand how to respond.

Wading into the cesspit
The first step is to take a realistic survey of the coding crime scene. You
arrive at the shores of new code. What are you wading into?

The code may have been given to you with a pre-attached stigma. No one
wants to touch it because they know it’s foul. Some quicksand code you
discover yourself when you feel yourself sinking.

It’s all too easy to pick up new code and dismiss it because it’s not written
in the style you’d prefer. Is it really dire work? Is it truly quicksand code,
or is it merely unfamiliar? Don’t make snap judgments about the code, or
the authors who produced it, until you’ve spent some time investigating.

Take care not to make this personal.

Understand that few people set out to write shoddy code. Some filthy code
was simply written by a less capable programmer. Or by a capable
programmer on a bad day. Once you learn a new technique or pick up a
team’s preferred idiom, code that seemed perfectly fine a month ago is an
embarrassing mess now and requires refactoring.

You can’t expect any code, even your own, to be perfect.

Silence the feeling of revulsion when you encounter ‘bad’ code.
Instead, look for ways to practically improve it.

The survey says...
There are many techniques you might employ to navigate a path into an
unfamiliar codebase. Consuming the documentation (or noting the lack
thereof), understanding the build/test/deploy process, spelunking the
version control information, and code visualisation tools are all useful
headstarts. But the only true way to start learning a piece of code is to start
physically working with it.

As you do so, you build a mental model of the new piece of code. And
then you can truly begin to gauge its quality using benchmarks like:

 Are the external APIs clean and sensible?

 Are the types used well chosen, and well named?

 Is the code layout neat and consistent? (Whilst this is certainly not a
guarantee of underlying code quality, I do find that inconsistent,
messy code tends also to be poorly structured and hard to work with.
Programmers who aim for high-quality, malleable code also tend to
care about clean, clear presentation. But don’t base your judgment
on presentation alone.)

 Is the structure of cooperating objects simple and clear to see? Or
does control flow unpredictably around the codebase?

 Can you easily determine where to find the code that produces a
certain effect?

It can be hard to perform this initial survey. Maybe you don’t know the
technology involved, or the problem domain. You may not be familiar with
coding style.

Consider employing software archaeology in your survey: mine your
revision control system logs for hints about the quality. Determine: how
old is this code? How old is it in relation to the entire project? How many
people have worked on it over time? When was it last changed? Are any
recent contributors still working on the project? Can you ask them for
information about the code? How many bugs have been found and fixed
in this area? Many bugfixes centred here indicates that the code is poor.

Working in the sandpit
You’ve identified quicksand code, and you are now on the alert. You need
a sound strategy to work with it.

 W

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
MAY 2015 | | 3{cvu}

What is the appropriate plan of attack?

 Should you repair the bad code?

 Should you perform the minimal adjustment necessary to solve your
current problem, and then run away?

 Should you cut out the necrotic code and replace it with new, better
work?

Gaze into your crystal ball. Often the right answer will be informed by your
future plans. How long will you be working with this section of code?
Knowing that you will be pitching camp and working here for a while
influences the amount of investment you’ll put in. Don’t attempt a
sweeping rewrite if you haven’t the time.

Also, consider how frequently this code has been modified up to now.
Financial advisors will tell you that past performance is not an indicator
of future results. But often it is. Invest your time wisely. This code might
be unpleasant, but if it has been working adequately for years without
tinkering, it is probably inappropriate to ‘tidy it up’ now, especially if
you’re unlikely to need to make many more changes in the future.

Pick your battles. Consider carefully whether you should invest
time and effort in ‘tidying up’ bad code. It may be pragmatic to
leave it alone right now.

If you determine that it is not appropriate to embark on a massive code
rework right now, that doesn’t mean you are necessarily left to drift in a
sea of sewage. You can wrestle back some control of the code by cleaning
progressively.

Cleaning up messes
Whether you’re digging in for the long haul, or just making a simple fix-
and-run, heed Robert Martin’s advice and follow ‘the Boy Scout Rule’:
Always leave the campground cleaner than you found it. It might not be
appropriate to make a sweeping improvement today, but that doesn’t mean
you can’t make the world a slightly less awful place.

Follow the Boy Scout Rule. Whenever you touch some code
leave it better than you found it.

This can be a simple change: address inconstant layout, correct a
misleading variable name, simplify a complex conditional clause, or split
a long method into smaller, well-named sub-functions.

If you regularly visit a section of code, and each time leave it slightly better
than it was, then before long you’ll wind up with something that might be
classified as good.

Making adjustments
The single most important advice when working with messy code is this:

Make code changes slowly, and carefully. Make one change at
a time.

This is so important that I’d like you to stop, go back, and read it again.

There are many practical ways to follow this advice. Specifically:

 Do not change code layout whilst adjusting functionality. Tidy up
the layout, if you must. Then commit your code. Only then make
functional changes. (However, it’s preferable to preserve the
existing layout unless it’s so bad that it gets in the way.)

 Do everything you can to ensure that your ‘tidying’ preserves
existing behaviour. Use trusted automated tools, or (if they are not
available) review and inspect your changes carefully; get extra sets
of eyeballs on it. This is the prime directive of refactoring: the well-
known set of techniques for improving code structure.

This goal can only be reached effectively if the code is wrapped in a
sound set of unit tests. It is likely that messy code will not have any
tests in place, so consider whether you should first write some tests
to capture important code behaviour.

 Adjust the APIs that wrap the code without directly modifying the
internal logic. Correct naming, parameter types, and ordering;
generally introduce consistency. Perhaps introduce a new outer
interface – the interface you wish that code had. Implement it in
terms of the existing API. Then at a later date you can rework the
code behind that interface.

Have courage in your ability to change the code. You have a safety net:
source control. If you make a mistake, you can always go back in time and
try again. It’s probably not wasted effort, as you will have learnt about the
code and its adaptability in doing so.

Sometimes it is worth boldly ripping out code in order to replace it. Badly
maintained code that has seen no tidying or refactoring can be too painful
and hard to correct piecemeal. There is an inherent danger in replacing
code wholesale, though: the unreadable mess of special cases might be like
that for a reason. Each bodge and code hack encodes an important piece
of functionality that has been uncovered through bitter experience. Ignore
these subtle behaviours at your peril.

An excellent book that deals with making appropriate changes in
quicksand code is Michael Feathers’ Working Effectively with Legacy
Code. [1] In it, he describes sound techniques to introduce seams into the
code – places where you can introduce test points and most safely
introduce sanity.

Bad code? Bad programmers?
Yes, it’s frustrating to be slowed down by bad code. The effective
programmer does not only deal well with the bad code, but also with the
people that wrote it. It is not helpful to apportion blame for code problems.
People don’t tend to purposefully write drivel.

There is no need to apportion blame for ‘bad’ code.

Perhaps the original author didn’t understand the utility of code
refactoring, or see a way to express the logic neatly. It’s just as likely there

There was a container class. It was central to our project. Internally,
it was foul. The API stank, too. The original coder had worked hard
to wreak code mischief. The bugs in it were hidden by the already
confusing behaviour. Indeed, the confusing behaviour was a bug
itself.

One of our programmers, a highly skilled developer, tried to refactor
and repair this container. He kept the external interface intact, and
improved many internal qualities: the correctness of the methods,
the buggy object lifetime behaviour, performance, and code
elegance.

He took out nasty, ugly, simplistic, stupid code and replaced it with
the polar opposite. But in his effort to maintain the old API, this new
version was internally far too contrived, more like a science project
than useful code. It was hard to work with. Although it succinctly
expressed the old (bizarre) behaviour, there was no room for
extension.

We struggled to work with this new version, too. It had been a
wasted effort.

Later on, another developer simplified the way we used the
container: removing the weirder requirements, therefore simplifying
the API. This was a relatively simple adjustment to the project.
Inside the container, we removed swaths of code. The class was
simpler, smaller, and easier to verify.

Sometimes you have to think laterally to see the right improvement.

The Curious Case of the Container Code
4 | | MAY 2015{cvu}

Wallowing in Filth (continued)

are other similar things you do not yet understand. Perhaps they felt under
pressure to work fast and had to cut corners (believing the lie that it helps
you get there faster; it rarely does).

But of course, you know better.

If you can, enjoy the chance to tidy. It can be very rewarding to bring
structure and sanity to a mess. Rather than see it as a tedious exercise, look
at it as a chance to introduce higher quality.

Treat it as a lesson. Learn. How will you avoid repeating these same coding
mistakes yourself?

Check your attitude as you make improvements. You might think that you
know better than the original author. But do you always know better?

I’ve seen this story play out many times: a junior programmer ‘fixed’ a
more experienced programmer’s work, with the commit message
‘refactored the code to look neater’. The code indeed looked neater. But
he had removed important functionality. The original author later reverted
the change with the commit message: ‘refactored code back to working’.

Conclusion
You can do nothing but expect to be presented with ‘bad’ code at some
point. You have to learn good, mature, ways to deal with it. That is the lot
of the professional programmer.

Ultimately, we must heed the valuable advice mentioned earlier: employ
the Boy Scout Rule. Leave every piece of code you touch better, if even
only fractionally.

Questions
 Why does code frequently get so messy?

 How can we prevent this from happening in the first place? Can we?

 What are the advantages of making layout changes separately from
code changes?

 How many times have you been confronted with distasteful code?
How often was this code really dire, rather than ‘not to your taste’?

References
[1] Michael Feathers, Working Effectively with Legacy Code, Upper

Saddle River, NJ: Prentice Hall, 2004

Pete’s new book – Becoming a Better Programmer –
has just been released. Carefully inscribed on dead
trees, and in arrangements of electrons, it's published
by O'Reilly. Find out more from http://oreil.ly/1xVp8rw
Writing Good C++ APIs
Tom Björkholm examines some common pitfalls

that make code hard to use.

n my view (although every programmer may have a different view on
this subject) a good C++ API is an API that guides the user into writing
good application code. In particular, it should be:

 easy to understand and use correctly,

 impossible, or at least hard, to misunderstand,

 impossible, or at least hard, to use incorrectly,

 const correct,

 context neutral.

Over the years a fair number of programmers have appreciated my APIs,
so I guess there is some merit to my view of what constitutes a good API.

One question I have asked myself is if the Standard C++ library serves as
a good example for API design. Admittedly the Standard C++ library APIs
are clever and offer a very effective programming interface. However, it
is often designed in a way that is possible to misunderstand. That is OK
for the Standard C++ library as there are lots of books out there to explain
the correct usage of the API. Also, as it is the Standard C++ library every
serious programmer will spend time learning the correct way to use it. That
is a luxury that we mortal API developers do not have. Nobody is going
to write a book about how to use our APIs, and even if someone wrote such
a book, no programmer would find time to read it. We need to define our
APIs with more focus on ease of use and making it ‘impossible’ to use
incorrectly.

Naturally, the Standard C++ library has introduced a number of concepts,
that are now familiar to programmers. Concepts like iterators going from
begin() to end(), where end() is past the last valid element, are
familiar concepts. Building our APIs on familiar concepts like that makes
it easier for programmers to learn our APIs.

Stating what constitutes a good API like this is the easy part. Writing code
to create a good API is a lot harder. Naturally, we can keep the view of
what constitutes a good API in our mind when creating APIs, but this is
still kind of abstract. For this article I will take another route and have a
look at some common pitfalls, and try to suggest ways to improve the APIs.

SQL API example and RAII
As the first example we will take a look at a piece of simple code that uses
the Oracle C++ database access library OCCI. Such code might look like
Listing 1.

I guess that you immediately spotted the problems with this code: If
doSomeThing() throws an exception, this code will leak a ResultSet,
a Statement, a Connection and an Environment. The functions
executeQuery() , createStatement() and
createConnection() calls may also throw exceptions leading to
resource leaks. You could argue that the programmer who wrote this code
was criminally incompetent to ignore RAII (Resource Acquisition Is
Initialization), but I claim that it is the design of the API that has tricked
the programmer into ignoring RAII. The code is written in the style that
naturally fits the design of the API. Unfortunately many other database
APIs are just as bad as the Oracle OCCI API. I ended up writing a wrapper
library for OCCI just to make it ‘RAII compatible’. Using this wrapper
library the code for the same operation would look like Listing 2.

 I

TOM BJÖRKHOLM
Tom Björkholm has been using C++ professionally since 1994,
programming control systems for industrial robots and telecom
systems. Currently the most familiar compilers and operating systems
are gcc 4.9.2 on Linux and Solaris, and clang on Mac OS X.
MAY 2015 | | 5{cvu}

Please ignore log for a moment, I will get back to it. Here you can see
that the API clearly guides the application programmer into writing code
that uses RAII. Connection, Statement and ResultSet are all
created using the constructor and destroyed using the destructor. (If you
wonder what happened to the Environment, it has now become a
member of the Connection.)

This API is still not perfect. I am not happy with the fact that the newly
created ResultSet is positioned before the first row in the result. This
seems a bit odd in C++. On the other hand this is the way most SQL APIs
distinguish between an empty ResultSet and one with rows in it, so if
the application programmer is used to other SQL APIs this seems natural.
I am playing with the idea of modelling the result set as an input iterator,
but that idea has not yet moulded into a final design. Also I am not happy
with the way getSomething(1) is used to get the first column. C++ uses
the convention to let index 0 denote the first element, whereas SQL uses
index 1 for the first element. Either scheme of indexing is likely to fool
some users, because we are mixing C++ and SQL. I am playing with the
idea of using the input operator >> to get the next column of the
ResultSet, which would circumvent any confusion about indexing
altogether.

Context neutral
A good API should be context neutral. We want to be able to use the same
API in many different contexts. The context dependent parts should be
factored out. I will use the previous database API example to illustrate this.

If we write an API for database access we should not limit its usage to only
a specific context, like a daemon (server/service) program, a command line
utility, a graphical user interface application, or a library that will be
wrapped in JNI, or...whatever. We want our API to be usable in all
foreseeable contexts. For some of these contexts we might want to do some
things in different ways.

One thing that is present in almost all bigger software products is logging.
This is sometimes called trace logging, sometimes debug logging, and on
some UNIX daemons it might be referred to as ‘syslogging’. The idea is
to output information about the internal state and the decisions taken in the
program flow, to enable the support technician to understand what went
wrong when the customer complaints arrive. It is easy to see the
generalized functionality: the programmer prints information and when
printing it mentions what type of information it is. The log class (or
framework) will then look at runtime configuration to determine if the log
printout shall be carried out or if the output shall be suppressed. Logging
an error shall not be confused with handling the error. The logging is only
done to help technicians locate the fault.

Logging is something that is typically handled differently in different
contexts. For instance a database problem might cause an error message
to be written to the standard error stream if it is a command line utility,
but it should be logged to a log file when the API is used in a daemon and
result in a status pane update if it is used in GUI. By defining a log base
class that has pure virtual methods for logging, and by accepting a
reference to such a log base class the API has been decoupled from the
decision of where the log ends up. The user of the API might choose one
of a number of predefined derived log classes, or the user of the API might
derive her own log class. This is the log argument in the database API
example. In that example there is an additional twist to it. The problem that
should be reported might actually happen in the destructor. To have a
derived log class object accessible in the destructor, it is actually passed
in to the constructor as a std::shared_ptr and stored in the object for
later use.

Finding context dependent parts to be factored out is not limited to logging.
The challenge here is to imagine all the possible contexts where the API
might be used, and to recognize and factor out the parts that are specific
to some contexts. Still we need to keep the API small and tidy, so that it
is easy to understand.

Ways to pass arguments and return values
Let’s look at a function declaration as it might appear in some API.

 XY_Receipt * XY_sendData(XY_Data * datap,
 ? XY_Flags * flagsp);

Although APIs like this are quite common, I think that it is a scary example
of a bad API. The problem is that the usage remains unclear to the
application programmer:

 A pointer to a receipt is returned. Shall the caller delete the receipt,
or is it a pointer to some statically allocated data?

 Does this function modify the pointed to data and flags? (For a
function called send, it appears strange to modify passed data and
flags. However, passing the arguments as non-const pointers
indicate that they will be modified – or is missing const just caused
by sloppy programming?)

 Does the function take ownership of the pointed to data and flags?

 Must data and flags be allocated with new to allow the function to
deallocate them with delete?

With a function declared like this, the user has to rely on documentation
and comments to try to understand how to use it. Relying on something
that is not in the code itself is not good. Too often the code deviates from
the comments and documentation. They might match when the code is
initially written, but then there will be a number of bug fixes and change
requests in hectic ‘survival of the company’ projects and the code just starts
to deviate from the comments.

It is much better if as much as possible can be communicated from the API
programmer to the application programmer in the code itself. Let’s fix the
obvious flaws in the above function API. We will then get:

 XY_Receipt XY_sendData(const XY_Data & data,
 const XY_Flags & flags);?

This function declaration makes it much clearer how to use it:

void occiUse(const LoginInfo & loginInfo)
{
 oracle::occi::Environment * envP =
 ::oracle::occi::Environment
 ::createEnvironment();
 oracle::occi::Connection * conP =
 envP->createConnection(loginInfo.username,
 loginInfo.password(), loginInfo.alias);
 const std::string query =
 "select count(*) from user_tables";
 oracle::occi::Statement * stmtP =
 conP->createStatement(query);
 oracle::occi::ResultSet * resP =
 stmtP->executeQuery();
 if (resP->next()) {
 doSomeThing("occiUse", resP->getInt(1)); }
 stmtP->closeResultSet(resP);
 conP->terminateStatement(stmtP);
 envP->terminateConnection(conP);
::oracle::occi::Environment
 ::terminateEnvironment(envP);
}

Li
st

in
g

1 void myDbUse(const LoginInfo & loginInfo,
 std::shared_ptr<MyLib::LogBase> log)
{
 MyDb::Connection con(log, loginInfo);
 const std::string query =
 "select count(*) from user_tables";
 MyDb::Statement stmt(con, query);
 MyDb::ResultSet res(stmt);
 if (res.next()) { doSomeThing("myDbUse",
 res.getInt(1)); }
}

Listing 2
6 | | MAY 2015{cvu}

 The receipt is returned by value. Now there is no need to worry
about if or how it should be deallocated.

 The arguments are passed by const reference. As they are const
it is clear that data and flags will not be modified by the function.

 As the arguments are passed by const reference instead of pointers,
there is no longer any issue about ownership, allocation and
deallocation of the data and flags.

I prefer to use the return values to pass values from a function to the caller.
This is much cleaner and easier to communicate than to modify non-
const reference arguments. In C++11 (and C++14) we have move
constructors, and decent compilers use RVO (return value optimization).
The result is that it is usually cheap to return even large values (like
conglomerates of std::map, std::vector and std::string). In my
view there is no longer any good case to use non-const reference (or
pointer) arguments for passing out values from a function.

When it comes to arguments I favour const references. Admittedly some
objects (like ints) might be faster to copy than to pass by const
reference. Still I feel that consistent use of const reference communicates
with the user of the API (the application programmer) in an easy to
understand way. (Especially as the compiler does not differentiate between
const A a and A a in function declarations. I found that many users of
my APIs get confused if they see func(const A a) in the header file,
but get a compiler error message about func(A a).)

When modifying data we have the option of modifying the argument, or
keeping the argument unchanged and returning the changed data. Let’s
take a function that capitalizes all words in a string as an example

 void capitalizeAllWords(std::string & s);
 std::string capitalizeAllWords
 (const std::string & s);

Here you can argue that there is a performance cost of using a return value
instead of modifying the argument. Still in most cases I prefer the version
with return value. The code using it becomes much easier to read. (And
please, never provide both the above versions as overloads. That would
definitely be confusing for the user.)

I guess the readers of this magazine already know everything about const
correctness. I will not dwell on it now. If there is enough interest that might
be the scope of another article.

Unintended API consequences
As my next example I will use a class that stores a parsed C++ source file.
(It might be part of a C++ IDE or it might be part of a tool like Doxygen.)
With some designers this class might have an interface that includes:

 class CppFile {
 public:
 // ...
 unsigned int & numberOfFunctions();
 };

The interface actually allows the class to be used like this:

 void g(CppFile & cpp) {
 cpp.numberOfFunctions() = 0;
 // remove all functions

 cpp.numberOfFunctions() = 5000;
 // create some other functions
 //...
 }

Unless you consider this to be legitimate usage, the member function
should not return a non-const reference. Here I cannot see how the class
implementation could know what code to create as the source code of these
created functions, so I think the interface should not return a non-const
reference. Having access methods that return non-const references is
useful for container classes where we have well-defined semantics for
accessing and changing the contained elements. If the class is a wrapper
around another class (like MyDb::Connection wrapping

oracle::occi::Connection) there is also a legitimate case for
having a member function that returns a non-const reference to the
wrapped object. In most other cases I feel that returning a non-const
reference just creates trouble.

Call-backs – when action is needed from the
application
Sometimes an interface wants to allow the calling code to react to some
events. I prefer to use call-backs for this. Call-backs are also useful if the
interface implementation would like to let the calling code make decisions
about how to handle some situations.

Call-backs can be of three different styles:

 C-style function pointers

 C++ standard library style callable objects (like the predicate in
std::find_if or the callable object used in std::for_each)

 Abstract base classes with pure virtual member functions.

Often I prefer to use the abstract base class style call-backs. I find that these
allow the API designer to impose structure and communicate to the
application designer what events the application code is supposed to (or
allowed to) handle. To make this more concrete and easier to understand,
I will demonstrate it using a small example (see Listing 3) with a simplified
SMS sending API. (SMS is another name the short text messages sent over
the mobile telephony network. SMSC is the telephony network server you

class SMS_Data { /* ... */ };
class SMS_Address { /* ... */ };
class SMS_Channel {
public:
 class Cb;
 class SendCb;
 SMS_Channel() = delete;
 explicit SMS_Channel(Cb & cb);
 enum class SendError {
 OK,
 NoSmscConnection,
 sizeLimitExceeded
 };
 struct SendResult {
 unsigned long long id;
 SendError sendError;
 };
 SendResult send(const SMS_Data & data,
 const SMS_Address & address,
 std::shared_ptr<SendCb> cb);
 // ...
};
class SMS_Channel::Cb {
public:
 virtual void lostSmscConnection() = 0;
 virtual void dataReceived(
 const SMS_Data & data,
 const SMS_Address & to,
 const SMS_Address & from) = 0;
 // ...
};
class SMS_Channel::SendCb {
public:
 virtual void okPoR(?unsigned long long id,
 const SMS_Data & sentData,
 const SMS_Address & wasTo) = 0;
 virtual void errorPoR(?unsigned long long id,
 const SMS_Data & sentData,
 const SMS_Address & wasTo,
 const SMS_Data & responseData) = 0;
 // ...
};

Listing 3
MAY 2015 | | 7{cvu}

Writing Good C++ APIs (continued)

connect to in order to send a message. PoR stands for ‘Proof of Receipt’
and is either a positive or negative acknowledgement to a sent message.)

The abstraction captured in this API is about sending data, receiving data
and reacting to events.

When we have a connection to an SMSC we might at any time receive a
message, or lose the connection. Things like these, which are not related
to any specific message we send, are handled in the SMS_Channel::Cb
call-back that is passed to the constructor. The SMS_Channel class might
cooperate with some event-dispatcher framework, or it might have an
internal thread that listens to input from the network. In either case the call-
back is called when there is an event that the application code needs to
handle. With these call-back base classes it is easy for the API designer to
tell the application programmer what events the application needs to
handle.

In a similar way the send member function takes a call-back object, that
is called to handle events that are caused specifically by sending the
message. This can be the reception of a positive or negative
acknowledgement ‘PoR’. As the application code has probably exited the
local function scope where the send member function was called long
before the call-back is called, the call-back is this time passed as a
std::shared_ptr. Without a call-back class like this, it is quite hard
to communicate to the application programmer what events the application
code needs to handle.

The SMS_Channel::Cb is passed as non-const reference. This is not
an obvious choice. The non-const reference prevents the user from
creating a temporary object in the call to the SMS_Channel constructor
(which can be seen as a very desirable thing to do). On the other hand, a
const reference would require all the call-back member functions to be
const, and thus prevent the call-back object from changing state. I made

the judgement that the possibility to change state and keep state between
call-back invocations is more valuable.

Allowed order to call function in an interface
If an interface has several functions, the application programmer should
be allowed to call them in any order that is allowed by the syntax.
Remember, it should be ‘impossible’ to use the interface incorrectly. This
can be a real challenge for the API designer.

One way to solve this is to use the C++ syntax rules to limit the possible
order that functions may be called in. If we look back at the database API
example the Statement constructor needs a Connection as an
argument. This is an effective way of specifying the order. It does also
specify the order of destructions (and the API user will do it correctly
without any focus on order requirements).

Conclusions
It is hard to write a good C++ API. There are many pitfalls. By keeping
an open eye for the pitfalls and by thinking about the API from the
viewpoint of how we would like to use it as application programmers, I
think that we can improve our API designs. Whenever an application
programmer asks questions about an API that I wrote, I think that it is
important to not only answer the question, but also to analyse if the
question is a sign that the API design should be improved. I hope that some
of the readers have found some useful hints in this article, and that maybe
some other readers have silently nodded and recognized pitfalls and good
practices from their own experience.
Writing a Technical Book
Adam Tornhill discusses motivation, publishing and

how to stay focused without ruining your life.

o you dream of writing your own technical book? I hope you do –
our programming profession needs more high-quality books. In our
fast evolving field there’s an endless amount of new topics to cover

and timeless ideas to rediscover. This article is here to help you get started.
I’ll make sure to give you a high-level overview on everything from the
initial planning to tips on different publishing models. You’ll also learn
about the motivational hacks I used to stay on track and make a steady
progress on my own books.

Why care?
Well, there are certainly people with deeper insights than me. But what I
can share is advice from a perspective that might be close to where you
are. I’m not a professional author in the sense that I make a living from it.
Instead I balance a full-time job, a family and something resembling a
social life with my writing activities. That means I had to learn to use my
time efficiently.

My writing career has also been non-traditional in the sense that I started-
out with self-publishing. I wrote two books on my own before I decided
to get a publisher. That means I can compare these competing models. As
you’ll see, there isn’t a clear-cut between them; Both models have their
advantages and drawbacks. I tell you more about it soon. I’ll also share

my experience of working with a publisher, what they can do for you and
what you can expect when it comes to royalties.

All my advice is subjective. This is what worked for me. I view this article
as the kind of guide I’d like to send back in time to my younger self to save
both time and effort. Since I cannot do that (yet), I decided to share it with
you. I hope you’ll find it just as useful as my younger self would.

Start small
How often have you heard that writing a book is hard work? A work that
will consume all your waking time, ruin your social life and leave you with
less monetary return than what you’d earn from refunding deposit bottles.
I won’t dispute it – there's a lot of truth to it. That’s why you need to
approach your book like you would take on any other large project that
affects your life.

 D

ADAM TORNHILL
With degrees in engineering and psychology, Adam
tries to unite these two worlds by making his technical
solutions fit the human element. While he gets paid to
code in C++, C#, Java and Python, he’s more likely to
hack Lisp or Erlang in his spare time.
8 | | MAY 2015{cvu}

Returning these bottles (Figure 1) earns me more money than an hour of
writing does.

While I wanted to write a book for a long time, that’s not how I started.
Instead I tried to build my experience and develop my writing style in
smaller steps. The first pieces I wrote were articles. At that time, back in
2004, I’d come back to code in C after some intense years in object-
oriented land. That perspective made me approach the code in a different
way. More specifically, I realized that some principles I’ve learned could
benefit C programmers as well. I decided to do a write-up of my
experience.

These articles grew into a series I called ‘Patterns in C’ [1]. I published it
on my blog [2] and in C Vu. By starting small I got to develop my own
voice. In fact, as I re-read the articles now, I note the gradual change in
style over the course of the series.

I recommend a similar approach: get started by writing smaller pieces on
a regular basis. You’ll find that you learn a lot that translates to larger
writing projects. It’s also a way to save time once you embark on your full
book. Writing is just like any other activity: the more you practice, the more
fluent and easy it comes. This is particularly important if you, like me,
aren’t a native English speaker (I grew up bilingual with Swedish and
Czech and had to practice a lot to get a decent command of the English
language).

You’ll notice that all the practice you put in lets you write faster. That’s a
good thing since it allows you to spend more time on background research,
structure and re-drafting your writing. Remember, what makes good
writing is constant re-writing. Often, writing the initial version of a chapter
or article takes-up less than half of the total time spent on it. Practice gives
you the margin you need.

Expand your horizon
Once you’ve created a collection of blog posts or articles you might want
to take the next step. You’re fortunate; today, it’s easier than ever to grow
your collection into a book.

My first book was more or less an experiment to gain experience with a
larger format. I had read about Leanpub, the new self-publisher start-up,
and wanted to give it a try. I decided to package my article series on
‘Patterns in C’ [1] into a book. I’m glad I did since it taught me a lot. It’s
also a motivational boost once the first royalties from your own writings
start to come in. It probably won’t be much money, but trust me on this
one; You can’t put a price on motivation. The knowledge that someone
pays real money to read your work will help you keep going.

I’ll discuss self-publishing in a minute. But first, let’s consider the reasons
why you should write a book.

Money and motivation

Ever heard that 95 percent of all programmers never read a technical book?
Unfortunately that’s a pretty precise estimate (perhaps the only precise one
within software). For you, as an aspiring author, it means your potential
market is limited from the start. Technical books just don’t sell well. And
the rare exceptions, classics like Design Patterns or Refactoring, are just
that: exceptions. We’ll have a discussion about royalties soon, but my
advice is that money shouldn’t be your primary motivation. Fortunately
there are many other rewards for you.

One of the biggest wins of writing comes when you view it as part of a
learning process. When you try to explain a concept to someone else,
something amazing happens. The process of explaining gives you a new
perspective. You’ll find that you learn just as much about the subject as
your readers do. The knowledge you gain is the most valuable part. It will
transfer to your day job and make you a better programmer.

Another big reward is the feeling of achievement. Through your writing
you’re able to affect people and change the course of their technical lives.
Over the years I’ve received emails from readers all over the world.
There’s something deeply fascinating about that and it gives you
something that’s worth more than the next royalty cheque.

Finally, there’s the very act of creating something. If you look into
motivational psychology you’ll find that what makes us happy isn’t
necessarily fame or commercial success. Happiness is grown when you
work towards challenging, yet achievable, goals. Writing about a complex
topic like programming will put you right in that spot.

Let me share a story. My second book, Lisp for the Web [3], wasn’t
something I planned. Years earlier I had published an article with the same
name. Around that time the Lisp language experienced a small
Renaissance. Paul Graham had written about how Lisp allowed his start-
up to develop at a higher pace and outperform their competitors when
developing a web application.

So Lisp was cool again. But there was virtually no material available on
how you actually approach web development in Lisp. I decided to find out
and share what I learned.

The ‘Lisp for the Web’ [3] article was as close to a hit as I probably ever
get. My mailbox flooded with comments and nice feedback. If I was smart
I should have evolved it into a book right away. Since I wasn’t, I just let
the article stick on my homepage and get outdated. Never let an
opportunity slip like that, please.

Six years later I started to feel sad about the state of my article. The libraries
I used for the code had evolved, some of the open-source packages were
abandoned and my sample application didn’t even work anymore. I didn’t
want people interested in Common Lisp to come to my article, become
frustrated when it didn’t work and were thereby discouraged from learning
Lisp. I decided to give the article a face lift and get rid of the bit rot in the
process.

Since I was already familiar with Leanpub I evolved the article into a short
book. A model like Leanpub fits this material well. Because they only do
e-books, it’s easy to keep the material up to date as the technologies
advance. Another advantage is that self-publishing allows you to control
the price. Let’s see what that means to you.

Experiment with your book price

Most self-publishing services let you specify the sales price yourself. How
much of that do you get? Well, that varies a lot. At Leanpub you get a
royalty rate of 90 percent. As you’ll see when we discuss publishers, 90
percent is an astronomical rate. Compare this to Amazon where you get
either 35 or 70 percent. Of course, the royalty rate alone isn’t the whole
story. Amazon probably lets you reach more people. The good thing is that
you don’t have to choose as long as you retain the copyright yourself.

So what’s an appropriate price for a book? It depends on your goals. With
Lisp for the Web [3] my main motivation was to give something back to
the community. Since I wrote the book to be read, I used the option to make
it available for free. I also specified a suggested price of 4.99$. To date,
more than 1300 people have downloaded Lisp for the Web. Of those,
approximately 20 percent chose to pay for it. A pleasant surprise is that
some readers pay more than the suggested price. Programmers are good
people.

Making your book available for free could be a good business model. It
helps you build a personal brand and may help you boost your main
business. If you’re a consultant or want to use the book to build buzz
around a certain product you’ve invested in, the free as in beer model may
be just right.

Fi
gu

re
 1
MAY 2015 | | 9{cvu}

Of course, free books is just one possible segment. You’ve invested a ton
of time and expertise in your book. Charging 10–20$ for all that is still a
bargain to any reader. When we buy a technical book, our primary
investment isn’t the money we pay for it but the time we spend reading it.
So my advice is to look at the price of similar books and charge at least
the same amount yourself; If someone’s interested in your book, a few
dollars extra won’t stop them from buying it.

Decide your publishing model
So far I’ve only talked about self-publishing. While I like that model, a
good publishing company has a lot to offer. It’s also a radically different
way to work that will affect your writing experience.

After self-publishing two books I got a contract with the The Pragmatic
Bookshelf [4] for my new book, Your Code as a Crime Scene [5]. My
experience has been almost exclusively good and, thanks to the
Pragmatics, I managed to write a much better book than I could have done
on my own. You see, a good publisher will do a lot for you:

 Contract equals motivation: Your book is only in an early stage, yet
someone already believes in it and is prepared to invest time and real
money in making your vision come true. Getting a publisher is a
motivational boost that helps you get started.

 You get a project editor: Your editor is a skilled author that will
coach you, provide continuous feedback and review your material as
you write. You’ll spend a lot of time with your editor so make sure
it feels right from the very start.

 Focus the message: Let’s admit it – we programmers love to add
cool stuff to our creations. Writing a book is no different. You’ll
probably find that you try to cover too much ground. A good
publisher helps you focus on the topics that really matter to your
readers.

 A step up in quality: Publishers do a lot of hard work for you. They
provide a copy editor, design your cover and make sure to index
your book. If you self-publish, you want to hire someone to do that
for you. It makes a marked difference.

 Gain status: While anyone can self-publish a book, getting your
work out under the brand of a respected publishing house means
something in our industry. It gives you credibility and makes people
pay attention to your work.

With the benefit of hindsight, would I go down the publishing route again?
Yes, definitely. The Pragmatics are amazing and I’m happy that I worked
with them. I learned a lot and I’d definitely recommend them to you. When
I write my next book, I’ll consider the Pragmatics again.

That said, you may well find that self-publishing fits you better. Self-
publishing has some real benefits:

 You’re in control: When you self-publish you can be as provocative
as you want, you get to use your own style and have full control over
every word, image and marketing step. After all, it’s your vision and
here you own it.

 The topic is yours: Perhaps you like to explore non-mainstream
techniques and esoteric programming languages? That’s all good
and it’s an important way to grow as a developer. However, the
market for embedded Idris programming or recursive decent parsers
in colorForth is unfortunately quite limited. As a consequence, you
may be unlikely to interest a publisher in the stuff you want to write
about. Self-publishing lets you ignore the market and write the kind
of book you care about. Remember, the main value of writing a book
is the learning experience you’ll go through.

 Write in an agile way: An interesting trend is that several authors
now release their work in a very early stage. Some books meet their
audience with little more than a planned table of contents. This lets
you publish your work early, get feedback and improve as you go
along.

 Retain the copyright: Since you own your own work, you’re free to
re-package it and publish it any way you want. Perhaps you want to

re-work parts of it into another book? Or you want to publish
individual chapters as articles on your blog? That’s fine – you own
it.

From my experience, giving up full control over my work was the hardest
step. A good publisher, like the Pragmatics, will of course still listen to you.
But you will have to give up on some of your own ideas. When you self-
publish, you own every step of the process. That’s important to remember
as you chose your publishing model.

Find a publisher

While my personal experience with a publisher has been great, everyone
hasn’t had the same fortune. Publishers differ a lot. You can see that in the
books you buy yourself. Some publishers serve as a quality mark while
others vary much more in what they allow to pass through.

You can build on that when searching for a publisher. Consider your
favorite technical books – who published them? Since you want nothing
but the best for your own book, that’s the route you want to take. Sure,
you as the author are the most important ingredient to your book, but a
publisher will affect your work at a profound level. Make sure you know
why you choose the publisher you do.

Once you’ve narrowed the field of potential publishers you need to
consider what they offer you. Will they do both print and e-books? What
distribution channels do they use? How can they help market your book?
And what about the royalty rate?

When I started to consider a publisher I had narrowed my choice to four
different companies. At the end I only contacted The Pragmatic Bookshelf
since they were the only publisher that offered a royalty rate that felt fair.
At the Pragmatics you get 50 percent of the gross profits on your book.
Other publishers typically offer a royalty rate of 7-15 percent, perhaps with
a possible advance pay.

Of course, the royalty rate is just one factor to consider; Remember, you’re
unlikely to make much financially from the sales alone. Most of the money
you make will come from indirect sources like your stronger personal
brand, related training courses or increased salary since you’re now a
published author.

Get a contract

Once you’ve decided upon a publisher you need to put together a proposal
for your book. The publisher typically specifies what your proposal should
include. In general, they want the following:

 Your idea: Provide a short overview of the topic you plan and how
you want to approach it. Draft a table of contents with all key
chapters. You’ll probably change it later, but this helps making your
idea more concrete to the people that will review it.

 A writing sample: To write a book you need to show your publisher
that you can, well, write. Make sure to polish your sample. Once you
have a draft, put it away for some days before you re-visit it. That
simple trick gives you a more unbiased view of your writing and
you’re likely to discover gaps and improvements that you had
overlooked the first time.

 Motivate the book: You need to tell them why your book is a good
idea. Speculate a bit about the potential market and make sure to
communicate why you’re the best possible author to capture this
idea.

Your Code as a Crime Scene wasn’t my first proposal to the Pragmatics.
Actually, I’d sent them Lisp for the Web and offered to do an extended
version of that book. Now, something unexpected happened. The publisher
replied that they weren’t interested in my Lisp book but that they liked the
writing style. They also showed that they cared by doing some quick
research on me. That’s where they found my online plans for this strange
code as a crime scene stuff. So, the publisher asked if I wanted to propose
that book instead. I did and got my contract.

The moral of this story is that even if you get a rejection, good things may
happen. Don’t give up. Consider it a starting point instead. Re-shape your
10 | | MAY 2015{cvu}

book, take a different angle and try again. The publishers need you so
they’re happy to get proposals. Remember, you as a potential author is the
one that’s adding the most value. Without authors there wouldn’t be
anything to publish.

Master the writing process
Writing is a skill like so much else. There are several good books that help
you improve as a writer. My personal favorites are The Elements of Style
(Strunk & White) and Keys to Great Writing (Wilbers). I can’t compete
with those, so let’s look at the surrounding activities instead.

Chose your tools wisely

Writing a book is quite similar to programming. In fact, I recommend the
same tools. Write in a pure text format, for example markdown, and use a
text editor that supports your format.

You’ll find that you spend a lot of time re-writing. In order to do that
efficiently you want to put your book under version-control. If you stick
to my advice and use a simple text format for markup, you’ll be able to
compare revisions and rollback edits that didn’t work well.

Whatever you chose, don’t make the same mistake as I did initially and
think that a word processor like Word or OpenOffice is good for, well,
word processing. They’re not. Today’s books are delivered in a variety of
formats like MOBI, EPUB, HTML and the humble dead tree. Converting
from a Word document to one of those formats is just painful. Don’t go
there.

Plan your book

Start with a detailed outline of your book. I can’t stress the importance of
this enough. In the past, I used to skip this step and every time I did it came
back to bite me. The result is a trail of abandoned book projects. You don’t
want that.

When I say ‘detailed outline’ I mean it. Write a short overview of each
chapter and capture its key points and take-aways. This step helps you fit
the individual pieces into a coherent whole.

You’ll probably find that some chapters don’t quite fit the overall structure
and tone of the book. In that case, just drop them and keep the material for
other purposes. You also have to be prepared to change course and narrow
the scope. Since you have it all in version-control, you can always go back
if you need to.

It’s during this planning stage that writing departs from programming;
Writing a book is more predictable. There are less things to discover. As
such, the more time you spend up front, the easier the rest of your writing.
I promise, you’ll still have plenty of opportunities to develop ideas that
pop-up and the new connections you make as you progress.

Stay on track

Remember, writing a book is time consuming. I often got the advice to
reserve dedicated writing time. Sure, it’s possible to spare a day or two but
it’s not enough to make any real progress. If too much time passes between
your writing sessions you’ll lose good ideas, have a harder time
maintaining flow once you write and, worse, it gets easier to just drift away;
Before you realize it, a whole month has passed without a written word.
That’s how book projects get abandoned.

So do reserve the days you can. Do invest some of your holiday to move
your book forward. But you need more. I recommend a complementary
approach that lets you make progress on your book while at the same time
balancing work and other obligations.

The way I do it is to print a calendar and nail it to the wall as you see in
the picture below. Every day that I write at least 30 minutes on the book
I’m allowed to cross out that day in the calendar. The goal is to build the
longest, unbroken chain of productive days. (Figure 2)

The key here is to set a realistic goal. I often wrote several hours a day,
but my goal was a modest 30 minutes. That’s really nothing and it’s always
do-able. I wrote in airports, on trains and in cars (you see – if you ever

needed an argument for self-driving cars – here you go). I wrote on my
birthday, I wrote with fever after catching the ’flu. I even wrote on the day
our cellar got flooded in the worst rain of the past 150 years. After pumping
out water and losing a fight to mother nature I was exhausted. But still –
30 minutes? I can do that.

When you write every day you stay on track. You make progress and keep
your ideas alive in your head. Before you know it you’ve completed one
more chapter and moved closer to your goal.

Reflect your learning

Once you have finished your book you’ll look differently upon your
material. Remember, writing is a learning experience and you have a much
deeper understanding of your topic afterwards. You want to reflect that
learning in the early chapters you wrote. That’s why it is important to go
back and improve your material.

Of the whole writing process, this is the hardest step. Not from a technical
point of view but from a motivational. You’re done and you’re probably
mentally exhausted from the whole project. Yet you’ll find that now is the
opportunity to take your book to the next level. To move beyond good
enough to just great.

Market and promote your work

If you have a publisher they’ll help you market your work. But even in that
case much of the responsibility is yours.

There are several things you can do to spread the word about your work.
Give away free copies, lots of them. Provide free material on the book’s
homepage. Talk at conferences and publish articles that cover some of the
highlights of your book. Record podcasts and make short videos to
demonstrate some core ideas.

The whole point is to get people to talk about what you have done. Since
I personally love to speak at developer conferences and share what I’ve
learned, that’s what I focus on. That may not be for everyone. But whatever
you chose, make sure you enjoy it.

Let’s get started
We’re through our quick tour of the book writing landscape now. Since
you've made it this far, I conclude that you’re serious about your book
project. That’s great! It’s well-worth the effort as long as you manage to
find a sustainable pace. Remember, the book’s going to consume much of
your time. It’s going to be hard and frustrating. It’s also one of the most
rewarding things you can do as a programmer.

References
[1] https://leanpub.com/patternsinc
[2] http://www.adamtornhill.com/articles.htm
[3] https://leanpub.com/lispweb
[4] https://pragprog.com/
[5] https://pragprog.com/book/atcrime/your-code-as-a-crime-scene

Figure 2
MAY 2015 | | 11{cvu}

https://leanpub.com/patternsinc
http://www.adamtornhill.com/articles.htm
https://leanpub.com/lispweb
https://pragprog.com/
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene

Split and Merge – Another Algorithm for
Parsing Mathematical Expressions

Vassili Kaplan presents an alternative to Dijkstra’s algorithm.

o parse a string containing a mathematical expression (for example,
3 + 4 * 2 / (1-5)2) a Shunting-yard algorithm [1] created by Edsger
Dijkstra is often used. It converts the expression to Reverse Polish

notation and then uses the postfix algorithm [2] to evaluate it.

In this article we present another algorithm for parsing a mathematical
expression. It consists of two steps as well – firstly creating a list of
structures, each containing a number and an action, and secondly merging
all the structures together to get the expression result.

Even though this algorithm has same time complexity as Dijkstra’s, we
believe it is simpler to code. We will discuss some examples of using it
and present its implementation in C++.

Splitting an expression to a list of structures
The result of the first step of our algorithm is a list of structures. Each
structure consists of two elements – a real number and an action. An action
can be any of add, subtract, multiply, divide, power, or ‘no action’. The
special ‘no action’ is assigned to the last member of the whole expression
or to the last member before a closing parenthesis. For convenience we
denote this ‘no action’ with the symbol ‘)’.

Example 1

Suppose the expression string is "3 + 2 * 6 - 1". Then the result of the first
step will be:

Splitting ("3 + 2 * 6 - 1") [3, '+'], [2, '*'], [6, '-'], [1, ')']

Note that action (operation) priorities are not taken into account at this step.

If one of the tokens is a function (e.g. sine, cosine, log, etc.), a special
constant (e.g. pi) or an expression in parentheses then the whole algorithm
(both steps) will be applied to this token first, which is then replaced by
the calculated result. This will be done recursively to all nested functions
and expressions.

Therefore, after finalizing this first step, all of the functions, constants and
parentheses will be eliminated.

Merging the elements of the created list of structures
The second step is an actual calculation done by merging the elements of
the list of structures (each one consisting of a number and an action) created
in the first step.

We attempt to merge each structure in the list with the next, taking into
account the priority of actions.

Priorities (from highest to lowest) of the actions are:

 Power (‘^’)

 Multiplication (‘*’) and division (‘/’)

 Addition (‘+’) and subtraction (‘-’)

 ‘No action’ (‘)’)

Merging can be done if and only if the priority of the action in the first
structure is not lower than the priority of the second structure. If this is the
case, merging consists of applying the action of the first structure to the
numbers of both structures, thus creating a new structure. The resulting
action of this new structure will be the one from the second structure.

E.g. merging [5, '-'] and [4, '+'] will produce [5 - 4, '+'] = [1, '+'].

But if the second structure priority is higher than the first one we cannot
merge the current structure with the next one. What happens then?

Then we merge the next (second) structure with the structure next to it, and
so on, recursively. Eventually the merging will take place since the last
element in the stack always has a ‘no action’ which has the lowest priority.
After merging the next element with the structures following it, we re-
merge the current element with the newly created next structure (see
example 2 below).

Example 2

Let’s merge the elements created in example 1:

[3, '+'], [2, '*'], [6, '-'], [1, ')']

We always start with first element in the list, in this case element [3, '+'].
Note that [3, '+'] cannot be merged with [2, '*'] since the action ‘+’ has a
lower priority than ‘*’.

So we go to the next element, [2, '*'], and try to merge it with [6, '-']. In
this case the multiplication has higher priority than the subtraction so we
can merge the cells. The action of the resulting structure will be the one
of the second structure, i.e. ‘-’. So the result of merging [2, '*'] and [6, '-']
will be [2 * 6, '-'] = [12, '-'].

This resulting structure will be merged with the next structure, which is
[1, ')']. Since the multiplication has a higher priority than ‘no action’, we
can merge these two elements:

Merging ([12, '-'], [1, ')']) [12 - 1, ')'] = [11, ')'].

Now we can remerge this result with the first structure [3, '+']. Remember
that we could not do the merge first because the addition action of the first
structure had a lower priority than the multiplication action of the second.
But after merging the second structure with the rest, its action became the
‘no action’, so now the merging may take place:

Merging ([3, '+'], [11, ')']) [3 + 11, ')'] = [14, ')'].

We are done since only one structure is left after merging.

So the final result of applying two steps of the Split and Merge algorithm is:

"3 + 2 * 6 - 1" [3, '+'], [2, '*'], [6, '-'], [1, ')'] [14, ')'].

Therefore, 3 + 2 * 6 – 1 = 14.

Complete processing examples
If the expression contains functions or other expressions in parentheses
then those expressions will be calculated recursively first. Let’s see how
it is done it in the following two examples.

Example 3

Let’s calculate the expression "2 ^ (3 - 1)" using this algorithm.

1. Splitting ("2 ^ (3 - 1)") [2, '^'], [Calculate "3 - 1", ')']

Now we need to calculate "3 – 1" and then return to where we were.

 T

VASSILI KAPLAN
Vassili Kaplan has been a Software Developer for
almost 15 years, working in different countries and
different languages (including C++, C#, and Python).
He currently resides in Switzerland and can be
contacted at vassilik@gmail.com.
12 | | MAY 2015{cvu}

To calculate it we need to apply both steps of the algorithm, merging and
splitting:

1.1 Splitting ("3 - 1") [3, '-'], [1, ')'].

1.2 Merging ([3, '-'], [1, '^']) [3 - 1, ')'] = [2, ')'] 2.

Now we put this result back to 1:

[2, '^'], [Calculate "3 - 1", ')'] [2, '^'], [2, ')']

2. Merging ([2, '^'], [2, ')']) [2^2, ')'] = [4, ')'] 4.

Therefore the result of the expression is: "2 ^ (3 - 1)" 4.

Example 4

Let’s calculate the expression "2 * cos (pi)" using this algorithm.

1. Splitting ("2 * cos (pi)") [2, '*'], [Calculate "cos(pi)", ')']

Calculating "cos(pi)":

1.1 Splitting ("cos (pi)") [cos(pi), ')'] [cos(3.14…), ')']
 [-1, ')']

1.2 Merging ([-1, ')']) -1

Note that pi is one of the ‘special’ constants hardcoded in the splitting
module. It is replaced by its numerical value in the splitting part of the
algorithm.

Replacing the expression we’ve split with the result of -1, we get:

[2, '*'], [Calculate "cos (pi)", ')'] [2, '*'], [-1, ')']

2. Merging ([2, '*'], [-1, ')']) [2 * (-1), ')'] = [-2, ')'] -2.

Therefore the result of the expression is: "2 * cos (pi)" -2.

Implementation in C++
The entry point is the following process() function which calls
preprocessing of the passed string and then loadAndCalculate()
function which actually implements the splitting of the passed string into
a list of structures and then merging the elements of this list.

 double EZParser::process(const string& data)
 {
 string cleanData;
 EZParser::preprocess(data, cleanData);
 size_t from = 0;
 return loadAndCalculate(cleanData, from, '\n');
 }

The preprocessing just removes the blank spaces from the passed string
and checks that the number of opening parenthesis matches the number of
closing ones. We will skip this function for brevity. We’ll also skip the
CalculationException class which is a simple wrapper over the
standard exception.

The main function that performs splitting into the list of structures and then
calling the merging function is loadAndCalculate(). First it creates
and fills the list, implemented as a vector, and then calls the merge()
function to process it further (see Listing 1).

The stillCollecting() function just checks that we are still
collecting the current token (i.e. there is no new action and no new
parentheses in the next character) (see Listing 2).

UpdateAction() function looks for the actual action corresponding to
the last extracted token. This is not always the next character since there
can be one or more parenthesis after the token. In case there is no action,
the closing parentheses will be returned. (See Listing 3.)

The implementation of the second part of the algorithm, merging the cells
created in the first part is below. Note that this function calls itself
recursively in case the priority of the current element is less than the
priority of the next (Listing 4).

When extending this implementation, e.g. with ‘||’, ‘&&’, etc., the two
functions in Listing 5 must be adjusted.

An arbitrary number of functions and constants may be added to the
implementation. In this implementation we use an ‘identity’ function to

calculate an expression in parenthesis. Listing 6 contains just some of the
functions.

The functions in Listing 7 are used in the first step of the algorithm via the
getValue function, when creating the list of structures (see function
loadAndCalculate() in Listing 1 above).

Complexity and conclusions
Each token in the string will be read only once during the first, splitting
step.

Suppose that there are n characters in the expression string and that the first
step leads to m structures for the second step. Then in the second step there

// data contains the whole expression, from is an
// index pointing from which character the
// processing should start. The end character is
// either '\n' if we want to calculate the whole
// expression or ')' if we want to calculate an
// expression in parentheses.
double EZParser::loadAndCalculate
 (const string& data, size_t& from, char end)
{
 if (from >= data.size() || data[from] == end)
 {
 throw CalculationException
 ("Loaded invalid data " + data);
 }
 vector<Cell> listToMerge;
 listToMerge.reserve(16);
 string item;
 item.reserve(16);

 do
 { // Main processing cycle of the first part.
 char ch = data[from++];
 if (stillCollecting(item, ch))
 { // the char still belongs to
 // the previous operand
 item += ch;
 if (from < data.size() && data[from]
 != end)
 {
 continue;
 }
 }
 // We finished getting the next meaningful
 // token. The call below may recursively
 // call the function we are in. This will
 // happen if the extracted item is a
 // function itself (sin, exp, etc.) or if
 // the next item is starting with a '('.
 double value = m_allFunctions.getValue
 (data, from, item, ch);
 char action = validAction(ch) ? ch
 : updateAction(data, from, ch);
 listToMerge.push_back(Cell(value, action));
 item.clear();
 }

 while (from < data.size() && data[from] != end);
 if (from < data.size() && data[from] == ')')
 { // End of parenthesis: move one char forward.
 // This happens when called recursively.
 from++;
 }
 Cell& base = listToMerge.at(0);
 size_t index = 1;
 return merge(base, index, listToMerge);
}

Listing 1
MAY 2015 | | 13{cvu}

14 | | MAY 2015{cvu}

bool EZParser::stillCollecting
 (const string& item, char ch)
{
 return (item.size() == 0 &&
 (ch == '-' || ch == ')')) ||
 !isSpecialChar(ch);
}
bool EZParser::isSpecialChar(char ch)
{
 return validAction(ch) || ch == '(' ||
 ch == ')';
}
bool EZParser::validAction(char ch)
{
 return ch == '*' || ch == '/' || ch == '+' ||
 ch == '-' || ch == '^';
}

Li
st

in
g

2

char EZParser::updateAction(const string& item,
 size_t& from, char ch)
{
 if (from >= item.size() || item[from] == ')')
 {
 return ')';
 }
 size_t index = from;
 char res = ch;
 while (!validAction(res) && index < item.size())
 { // We look to the next character in string
 // until we find a valid action.
 res = item[index++];
 }
 from = validAction(res) ? index
 : index > from ? index - 1
 : from;
 return res;
}

Li
st

in
g

3

double EZParser::merge(Cell& current,
 size_t& index, vector<Cell>& listToMerge)
{
 if (index >= listToMerge.size())
 {
 return current.value;
 }
 while (index < listToMerge.size())
 {
 Cell& next = listToMerge.at(index++);
 if (!canMergeCells(current, next))
 { // If we cannot merge cells yet, go to the
 // next cell and merge next cells first.
 // E.g. if we have 1+2*3, we first merge
 // next cells, i.e. 2*3, getting 6, and then
 // we can merge 1+6.
 merge(next, index, listToMerge);
 }
 mergeCells(current, next);
 }
 return current.value;
}

bool EZParser::canMergeCells(const Cell& base,
 const Cell& next)
{
 return getPriority(base.action) >=
 getPriority(next.action);
}

Li
st

in
g

4

size_t EZParser::getPriority(char action)
{
 switch (action)
 {
 case '^': return 4;
 case '*':
 case '/': return 3;
 case '+':
 case '-': return 2;
 }
 return 0;
}
void EZParser::mergeCells(Cell& base,
 const Cell& next)
{
 switch (base.action)
 {
 case '^': base.value = ::pow(base.value,
 next.value);
 break;
 case '*': base.value *= next.value;
 break;
 case '/':
 if (next.value == 0)
 {
 throw CalculationException
 ("Division by zero");
 }
 base.value /= next.value;
 break;
 case '+': base.value += next.value;
 break;
 case '-': base.value -= next.value;
 break;
 }
 base.action = next.action;
}

Listing 5

class EZParserFunctions
{
public:
 typedef double (EZParserFunctions::*ptrFunc)
 (const string& arg, size_t& from);
 EZParserFunctions();
 double getValue(const string& data,
 size_t& from, const string& item, char ch);
 double identity(const string& arg,
 size_t& from);
 double sin(const string& arg, size_t& from);
 double pi(const string& arg, size_t& from);
 // …
 static double strtod(const string& str);
protected:
 map<string, ptrFunc> m_functions;
};
EZParserFunctions::EZParserFunctions()
{
 m_functions["sin"] = &EZParserFunctions::sin;
 m_functions["pi"] = &EZParserFunctions::pi;
 // …
}
// This function is used to process the contents
// between ().
double EZParserFunctions::identity
 (const string& arg, size_t& from)
{
 return EZParser::loadAndCalculate(arg, from,
 ')');
}

Listing 6

will be at most 2(m-1) - 1 = 2m - 3 comparisons (in the worst case) to merge
all of the structures. Therefore the time complexity will be:

O(n + 2m - 3) = O(n).

The main difference between the Split and Merge and the Dijkstra
algorithm is that the former uses potentially many recursive calls whereas
the later uses no recursion. So the actual performance gain will depend on
a particular implementation language and the compiler, in particular how
well the recursion is managed.

References
[1] Shunting-yard algorithm,

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
[2] Reverse Polish notation

http://en.wikipedia.org/wiki/Reverse_Polish_notation

double EZParserFunctions::sin(const string& arg,
 size_t& from)
{
 return ::sin(EZParser::loadAndCalculate(arg,
 from, ')'));
}
double EZParserFunctions::pi(const string& arg,
 size_t& from)
{
 return 3.141592653589793;
}

Li
st

in
g

6
(c

on
t’d

) double EZParserFunctions::getValue
 (const string& data, size_t& from,
 const string& item, char ch)
{
 if (item.empty() && ch == '(')
 {
 return identity(data, from);
 }
 map<string, ptrFunc>::const_iterator it
 = m_functions.find(item);
 // The result will be either a function or a
 // real number if there is no function.
 return it == m_functions.end() ? strtod(item)
 : (this->*(it->second))(data, from);
}
double EZParserFunctions::strtod(const string&
str)
{
 char* x;
 double num = ::strtod(str.c_str(), &x);
 if (::strlen(x) > 0)
 {
 throw CalculationException
 ("Could not parse token [" + str + "]");
 }
 return num;
}

Listing 7

Split and Merge (continued)
Using 32-bit COM Objects
from 64-bit Programs

Roger Orr explains how to cross the platform
boundary in COM libraries.

icrosoft introduced COM – the ‘Component Object Model’ – in the
early 1990s and it has proved to be remarkably resilient even though
the computing world has changed quite a bit since those days – for

example most people who run Windows are now running it on 64-bit
hardware. However, a large number of the programs and components that
run in such environments are still 32-bit for a variety of reasons, some
better than others.

While Microsoft have done a pretty good job of integrating a mix of 64-
and 32-bit applications there can be a problem when it comes to using older
32-bit COM components in a 64-bit application as Windows does not
allow a mix of 32-bit and 64-bit user code in a single application. This
means a 32-bit COM DLL cannot be used by a 64-bit application (although
a 32-bit COM EXE can.)

There are a variety of solutions to this problem. The best solution is to use
a 64-bit version of the COM DLL as this will provide the best integration
with the 64-bit application. However this requires that a 64-bit version
exists, or can be produced; this is not always the case.

An alternative solution is to host the 32-bit COM DLL inside a 32-bit
application and use this hosting application from the 64-bit application.
Microsoft provide an easy-to-use standard example of such a solution in
the form of a DllHost process.

This article describes how to use this DllHost mechanism and highlights a
couple of potential issues with this as a solution that you need to be aware of.

Demonstration of the problem
We can quickly show the problem by writing an example 32-bit COM DLL
in C# and trying to use it with the 32-bit and the 64-bit scripting engines
(Listing 1). (In general the 32-bit COM DLLs likely to need this solution
are probably written in some other language, such as C++, but the C#
example has the benefit of being short!)

This can be turned into a COM object from the Visual Studio ‘Developer
Command Prompt’ using:

 csc /t:library CSharpCOM.cs

and then registered (from an administrator command prompt) using:

 RegAsm.exe CSharpCOM.dll /codebase

 M

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk
MAY 2015 | | 15{cvu}

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://en.wikipedia.org/wiki/Reverse_Polish_notation

(You may need to provide the full path to RegAsm.exe, such as:
C:\Windows\Microsoft.NET\Framework\v4.0.30319\RegAsm.exe)

Note: you are likely to get a warning about registering an unsigned
assembly – we are not concerned about that for the purposes of this
demonstration.

Next create a VB script that loads and uses this COM object:

 Set obj = WScript.CreateObject
 ("CSharp_COMObject.CSharp_Class")
 WScript.Echo obj.GetData

and invoke it with the 32-bit scripting engine:

 c:\windows\syswow64\cscript.exe /nologo
 exercise.vbs

If all has gone according to plan this will produce the output:

 Hello from 32-bit C#

Now try to invoke it using the 64-bit scripting engine:

 c:\windows\system32\cscript.exe /nologo
 exercise.vbs

This will fail with the error message:

 WScript.CreateObject: Could not locate automation
 class named "CSharp_COMObject.CSharp_Class".

This demonstrates the typical issue when trying to use a 32-bit COM object
from a 64-bit application (or vice versa). While the precise error message
may vary a little depending on the hosting application, the basic problem
is that the 64-bit application cannot locate the 32-bit COM object.

Configuring the COM object to use DllHost
In order to make use of the standard DllHost mechanism we simply need
to add a couple of registry keys to the system. Microsoft have used the term
‘DllSurrogate’ for this mechanism and this name is used in one of the
values written into the registry.

We need to add a new value to the CLSID for the class(es) affected and
this change must be made in the 32-bit area of the registry. We must then
also define a new application with a blank DllSurrogate.

In our example the target CLSID is {1C5B73C2-4652-432D-AEED-
3034BDB285F7} (the GUID we provided for our COM class in the C#
source code) and we need to create a new GUID for our DLL surrogate.
(Strictly speaking you do not need a new GUID for the AppID; some
people recommend that you re-use the CLSID. I prefer using a new GUID

for clarity.) I’ve split the lines up with the ̂ continuation character for ease
of reading:

1. Get a new GUID for the DllSurrogate

 C:> uuidgen -c
 308B9966-063A-48B8-9659-4EBA6626DE5C

2. Add an AppID value to the (32-bit) class ID

 c:\windows\syswow64\reg.exe add ^
 HKCR\CLSID\{1C5B73C2-4652-432D-AEED-3034BDB285F7}^
 /v AppID /d {308B9966-063A-48B8-9659-4EBA6626DE5C}

3. Create a new AppID

 reg.exe add HKCR\AppID\ ^
 {308B9966-063A-48B8-9659- 4EBA6626DE5C} ^
 /v DllSurrogate /d ""

Now we can successfully use the COM object from the 64-bit scripting
engine:

 c:\windows\system32\cscript.exe /nologo
 exercise.vbs
 Hello from 32-bit C#

Removing the COM object and the surrogate
If you like keeping your computer tidy and would like to unregister the
COM object, you can do this by reversing the installation above with the
following commands:

 reg.exe delete HKCR\AppID\ ^
 {308B9966-063A-48B8-9659-4EBA6626DE5C}

 c:\windows\syswow64\reg.exe delete ^
 HKCR\CLSID\{1C5B73C2-4652-432D-AEED-3034BDB285F7}^
 /v AppID

 regasm.exe CSharpCOM.dll /u

How does it work?
If you use the task manager or some similar tool to examine the processes
running in the computer you will see an instance of the Dllhost.exe process
start and then disappear after a few seconds.

The command line for DllHost contains the CLSID of the target class and
this (32-bit) process actually creates the 32-bit COM object using this
CLSID and makes it available to the calling application, using cross-
process marshalling for the calls between the 64-bit application and the 32-
bit target object.

When the COM object is destroyed, DllHost hangs around for a few
seconds, ready for another process to create a COM object. If none does
it times out and exits.

Some differences from in-process COM objects
There are a number of differences between a ‘normal’ in-process COM
object and this externally hosted object.

The first obvious difference is that each call into the COM object now has
to marshall data between the calling process and the DllHost process. This
is obviously going to introduce a performance overhead. It is hard to tell
how significant this performance overhead will be; it depends on the
‘chattiness’ of the COM interface and the sizes of the data items being
passed around.

Some COM interfaces pass non-serialisable values around (for example,
pointers to internal data structures) and these will require additional
support of some kind to work successfully in the Dll surrogate
environment.

Another difference is that the same DllHost process may host COM objects
for a number of different applications at the same time. While this is
perfectly valid according to the rules of COM, there are a number of cases
where problems can arise – for example if the implementation makes

namespace CSharp_COMObject
{
 using System.Runtime.InteropServices;

 [Guid("E7C52644-7AF1-4B8B-832C-23816F4188D9")]
 public interface CSharp_Interface
 {
 [DispId(1)]
 string GetData();
 }

 [Guid("1C5B73C2-4652-432D-AEED-3034BDB285F7"),
 ClassInterface(ClassInterfaceType.None)]
 public class CSharp_Class : CSharp_Interface
 {
 public string GetData()
 {
 if (System.Environment.Is64BitProcess)
 return "Hello from 64-bit C#";
 else
 return "Hello from 32-bit C#";
 }
 }
}

Li
st

in
g

1

16 | | MAY 2015{cvu}

Using 32-bit COM Objects from 64-bit Programs (continued)

assumptions about being able to share internal data between separate COM
objects.

Additionally, some in-process COM objects are written with some
assumptions that the calling application code is in the same process as the
COM object. For example, the name of a log file might be based on the
name of the application. This may be an insurmountable problem for using
this solution, although if the COM interface is in your control you might
be able to enhance it to provide additional methods to support out-of-
process operation.

Multiple classes
If your COM DLL provides a number of different COM classes, you might
wish to host them all inside the same DllHost instance. You can do this by
using the same AppID for each class ID; the first COM object created will
launch the DllHost and each additional object created by the application
will simply bind to an object in the same DllHost.

Calling 64-bit COM objects from 32-bit applications
The commonest use case for Dll surrogates is allowing a legacy 32-bit
COM object to used in a new 64-bit application, but the same mechanism
does work in the other direction, although it is less common for this to be
necessary.

You need to add the same registry keys as above, but this time the CLSID
will be the one in the 64-bit registry hive so you will use the 64-bit reg.exe
from the normal directory C:\Windows\System32.

A note on 64-bit .Net COM objects
In this article I have used a simple C# COM object to demonstrate the
problem of 64-bit programs using 32-bit COM objects and how to solve
this by using a Dll surrogate.

A native COM DLL, for example written in C++, is built for either 32-bit
or 64-bit use and can only be loaded by a program of the same bitness. In
this case the Dll surrogate or an equivalent is the only way that the native
COM DLL can be used by a program of different bitness.

C# programs, though, are ‘bit-size agnostic’ by default – the same C#
program can run in 32-bit or 64-bit mode and the same C# assembly can
be used from both 32-bit and 64-bit programs. (This works because there
are two .Net virtual machine implementations, one for 32-bit programs and
one for 64-bit ones.)

So the DLL surrogate approach used in this article is actually required only
in the case of legacy COM DLLs, as .Net COM objects can operate in this
dual-mode fashion.

The fundamental reason why our C# COM object could be used by 32-bit
programs but not by the 64-bit scripting engine was because it had been
registered with the 32-bit regasm program, which only writes entries to
the areas of the system registry read by 32-bit programs. If you register
the C# COM DLL with the 64-bit regasm, for example:

 C:\Windows\Microsoft.NET\Framework64\v4.0.30319\
 RegAsm.exe CSharpCOM.dll /codebase

then the C# COM object will be usable directly by a 64-bit program without
needing to use a Dll surrogate. However this is only true for .Net
assemblies, whereas the Dll surrogate approach works with native DLLs
as well.

Summary
While many users of Windows will be able to make use of 64-bit
applications with 64-bit COM objects it is good to know that, subject to a
few restrictions, you can make use of a mix of 64-bit and 32-bit
components by setting only a few registry keys.

Further information
There is some Microsoft documentation about all this at:

ht tps:/ /msdn.microsoft .com/en-us/library/windows/desktop/
ms695225%28v=vs.85%29.aspx

While the technique has been available for some time, there was initially
a lack of documentation about the process and, in my experience anyway,
few people are aware of the existence of this technique.
Raspberry Pi Linux User Mode GPIO
in C++ – Part 1

Ralph McArdell expands the Raspberry Pi with a C++ library.

started experimenting with general purpose input/output (GPIO) with a
Raspberry Pi using Python [1, 2] which enabled the reading and writing
of Boolean values representing on/off states (in fact high/low voltage

states) – reading switch states, turning lights on and off and the like. Shortly
after I had the Python Raspberry Pi GPIO library up and running the
original Gertboard [3] kit was released. The Gertboard interfaces to the
Raspberry Pi via its P1 IO expansion header connector (J8 on later B+/A+/
2.0 models) and provides a smorgasbord of hardware devices that use a
variety of peripheral interfaces. So I ordered and built one enabling me to
play with peripheral IO beyond basic GPIO. At the time the Gertboard had
test and example C code available for Linux [4], particularly Raspbian the
Raspberry Pi specific Linux distribution. Similar to the Python case I felt
the provided C code could be expressed more cleanly. I thought it would
be interesting to see what advantages C++, hopefully C++11, features and
idioms might provide.

A thought: germ of a library
The originally provided Gertboard test and example C code, in a fashion
similar to the Wiring Pi library [5], manages the Raspberry Pi’s BCM2835
processor’s peripherals by directly accessing peripherals’ memory
mapped control registers from user mode by using mmap to map sections
of the /dev/mem physical memory device. A single function sets up
mmap-ed regions in a rather long winded and repetitive way for all
supported peripherals – even if only one or two peripheral regions are
required. Oddly, for each mapped register-block a block of free-store is

 I

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect
to stop learning or improving his skills.
MAY 2015 | | 17{cvu}

https://msdn.microsoft.com/en-us/library/windows/desktop/ms695225%28v=vs.85%29.aspx

first allocated which is larger than required to ensure a correctly aligned
block can be passed to mmap. When done of course all these resources have
to be explicitly released.

It occurred to me that in C++ I would wrap mapped of parts of /dev/mem
in a resource managing type that used the RAII (Resource Acquisition Is
Initialisation) [6] idiom. It was this thought that was to lead to a Raspberry
Pi user mode C++ library. So putting some code where my brain was, so
to speak, I went ahead and implemented such a beast. The result was a class
template called phymem_ptr, with most of the implementation being
taken care of by the non-template base class raw_phymem_ptr which
works with un-typed pointers (void*) .

Having implemented, and tested, phymem_ptr using Phil Nash’s Catch
library [7], I re-implemented one of the simpler Gertboard example
programs – ocol.c – in C++ using phymem_ptr. I felt the result was a
definite improvement but more could be done and the obvious next step
seemed to be to start with basic GPIO and, following my thinking with the
Raspberry Pi GPIO Python library, model the abstractions after C++
library IO. Of course as this would be solving essentially the same problem
as the Python GPIO library there were bound to be other concepts that
would transfer to the C++ implementation – a notion of GPIO pin number
as represented in the Python library as the PinId type for example.

In the beginning…
Having decided to write more than phymem_ptr, its tests and the ocol-
in-C++ example it was time to bootstrap a project. Things such as project
name, licensing terms, directory structure and what development process
to utilise had to be decided.

The name rpi-peripherals was chosen for the library (though
embarrassingly due to a typo it was rpi-periphals for quite a while –
doh!). The longer term ‘peripherals’ was chosen rather than ‘gpio’ as the
intention was for the library to provide support for more than just basic
GPIO. As there was no reason to do otherwise the same dual BSD/GPL
licensing used for the Python Raspberry Pi GPIO library was selected.

A fairly standard project directory structure was devised having few files
in the project root and source, build and outputs etc. in various
subdirectories such as src, bin, lib. At the time of writing all the source
with the exception of header files required for the public interface of the
library is in the src subdirectory with no further division. On the other
hand all test and example source are in subdirectories tests and
examples of src respectfully.

I did not want the library to require any development tools other than what
could be expected to be installed on a typical Raspberry Pi Raspbian
installation (plus git – keep reading…). That meant using the Raspbian
distribution’s default version of g++ (4.6.3) and I fell back to using make
– well GNU make – and wrote a Makefile for (and placed in) each
directory in which code was to be compiled, as well as a top level
Makefile as a driver and a common file, makeinclude.mak, that
defined common values such as directory and file names and tool names
and flags. Code was developed on a Raspberry Pi running Raspbian, edited
from a Windows session in Notepad++ with builds, tests etc. run via ssh
accessed from a Ubuntu Desktop Linux virtual machine. The project was
placed under git source control on GitHub as dibase-rpi-peripherals [8].
As previously mentioned Phil Nash’s Catch library was used for tests,
which was added to the repository as a git sub-module.

Rather than use GitHub’s repository wiki for documentation, as was done
for the Python Raspberry Pi GPIO library, this time Doxygen commenting
was used in header files, and a Doxygen project configuration Doxyfile
was added to the project.

What did you want for starters?
The scope for the initial functionality was mostly a subset of that of the
Python Raspberry Pi GPIO library:

 Targeting only Raspberry Pi Linux distributions, especially
Raspbian

 Single GPIO pin input and output, with no edge event support

 A pin id abstraction

 Internal pin in use / pin free resource management

 Library specific exception types

Since the development of the Python Raspberry Pi GPIO library a major
Raspberry Pi board revision had taken place that changed some of the pin
assignments on the Raspberry Pi P1 connector and added a new P5
connector with additional GPIO pins. This meant that converting a P1
connector pin number to a BCM2835 GPIO pin number was no longer a
simple fixed mapping. It was now dynamically dependent on which board
revision the code was running on. Additionally, of course, the newer
boards had a P5 to BCM2835 pin mapping. Hence additional support for
determining a board revision was needed.

Following the initial development of the library there have been further
additions to the Raspberry Pi family in the form of the A+, B+, compute
module models and now the Raspberry Pi 2.0 B model. I am yet to find
the time to completely update the library to support all these board
versions’ GPIO specifics.

First cut
The library usage would be broadly similar to the Python Raspberry Pi
GPIO library: an object representing an input or output pin would be
associated with a GPIO pin by opening the required pin which would be
specified as a pin id type instance. If valid and the pin is not in use the open
request would be successful and the GPIO pin object could be used to either
read or write Boolean values from/to the associated GPIO pin. On GPIO
pin object destruction the pin would be marked as free for further use.

Here we have several types of object: input and output pin objects, pin id
objects, some form of GPIO pin allocation management object and of
course direct access via a phymem_ptr to the GPIO peripheral’s registers.

Rather than mapping the BCM2835 GPIO peripheral’s registers as an array
of structure-less 32-bit words (i.e. unsigned integers), as had been done for
the original ocol-in-C++ example, it seemed more reasonable to provide
a type reflecting the BCM2835 GPIO peripheral’s register layout that
could be used to specialise phymem_ptr.

This rough structure outline is shown in Figure 1.

The ipin, opin and pin_id types are intended as the public interface
to the library while the rest would be internal to the library – in fact during
refactoring after the initial development phase such code was placed into
a separate inner namespace called internal and the header files for the
public entities were moved from the project src to the include
directory. The ‘o’ and ‘i’ prefixes to ipin and opin were taken from C++
IOStream library std::istream and std::ostream naming.

So how do I register?
In order to create a structure representing the GPIO peripheral’s register-
block detailed knowledge of register layout, usage and location are
obvious requirements. Such detailed technical information is to be found

Figure 1
18 | | MAY 2015{cvu}

in the Broadcom BCM2835 ARM Peripherals document [9], although as
it contains errors and omissions the errata page at eLinux [10] is also
useful.

As an aside: when perusing the Raspberry Pi’s Linux kernel source code
[11] you will find very little specific BCM2835 support [12]; most chip-
specific support appears to be provided by the BCM2708 specific code
[13]. It is to be assumed that this chip is very similar in its peripheral
support to the Raspberry Pi’s BCM2835, so detailed BCM2835 specifics
may well apply to the BCM2708 as well.

Separating the mapping of peripheral register block addresses with
phymem_ptr and the register block layout representation as manifested
by the gpio_registers class type for the GPIO peripheral allows
instances of register layout representation types to be arbitrarily created in
memory – as function-scope automatic objects for example. This allows
easy unit testing of the representation type to ensure it is sane before having
to rely on it when mapped over a peripheral’s register block and fiddling
with real peripheral registers.

It seemed that adding operations (member functions) for manipulating the
fields of the GPIO peripheral’s registers would be convenient for users of
the gpio_registers type and would allow such operations to be fully
unit tested. However, a balance had to be struck between spending time
developing an all-singing all-dancing set of operations and just getting
things done. The balance point I chose was to implement operations to
access single fields. Many peripheral fields are bit fields and so in certain
scenarios reading or writing to multiple bits fields in one go could be more
efficient. I left this as optimisation territory, facilitated only by having all
register data members be public. In fact the gpio_registers class type
was implemented as a struct. I felt this was justified as it was intended
to be a low-level type internal to the library.

I decided against using C/C++ bit fields – instead using 32-bit unsigned
integer types as register data members with access via individual member
functions. I suppose I could have looked up the specifics of the GCC bit
field implementation, checked whether they were compatible (e.g.
guaranteed 32-bit reads and writes for underlying 32-bit integer field
types) and if they were then utilised unions to allow accessing whole
registers or bit field parts thereof. Such a scheme would probably cover
many, maybe even most, cases.

As the gpio_registers struct was a direct reflection of the GPIO
peripheral’s registers and fields I decided that all registers would be
represented by data members and operation member functions would be
provided to access all fields even if they were not known to be needed. One
quite major upside of this decision is that it made me really read and
understand the associated documentation – making me more able to later
decide on what would be needed!

What pin was that?
The need to identify and validate GPIO pin numbers and their
encapsulation in the pin_id type has been mentioned in connection with
the public ipin and opin types. However, it turns out, unsurprisingly
when you think about it, that the GPIO peripheral has many register-sets
containing fields for each of the BCM2835’s 54 GPIO pins. Thus
operations often need to specify which GPIO pin they were to be applied
to. As the pin_id type would obviously be useful as a GPIO pin id
parameter type in these cases its implementation occurred earlier than I
originally anticipated.

The basic idea behind the pin_id type is that instances may be explicitly
constructed from a suitable integer type, and may be converted back to an
integer type. However during construction the range of the integer passed
is validated to ensure it is in the required range. If it is not a
std::invalid_argument exception is thrown. Hence, barring
deliberate malice, if you have a pin_id object you know it represents a
valid GPIO pin number. Only allowing explicit construction makes clear
what the number represents.

To support using Raspberry Pi P1 or P5 connector pin values the base
pin_id type is sub-classed to provide the logic for mapping from one

value to another by the rather clumsily named rpi_version_mapped_
pin_id which provides a single, rather cumbersome, constructor. This
class is not meant to be used directly, rather its two sub-classes p1_pin
and p5_pin are designed to be used directly and provide constructors that
require only a connector pin number as parameter, which is passed along
with a bunch of fixed values relevant for each connector to their base
rpi_version_mapped_pin_id constructor. Note that this is a case
where a base class destructor does not need to be virtual as by design all
pin_id sub-types add no extra state that might require cleaning up. Once
successfully constructed a pin_id or sub-type instance always represents
a valid BCM2835 GPIO pin number value.

The rpi_version_mapped_pin_id type’s constructor takes a 2-
dimensional array mapping connector pin numbers to BCM2835 GPIO pin
numbers for each supported major Raspberry Pi board revision – termed
versions, along with dimension size values: the number of pins and number
of versions supported by the mapping array. A major revision here is one
that changes available connectors and/or GPIO pin associations with
connector pins.

The implementation logic makes use of the rpi_info type that lives in
the outer rpi namespace and provides an interface to obtain information
on the Raspberry Pi system the code is running on. It currently only
provides Raspberry Pi raw revision and version information, derived from
the Revision entry in the Raspbian /proc/cpuinfo pseudo file.
There is no formula to map revisions to versions and relies on published
information [14]. Of course this means rpi_info code will require
updating to take advantage of future major board revisions. However the
mapping arrays used by p1_pin and p5_pin would also require
updating, and of course support for any new connectors would need to be
added. This is an area of the code base that is likely to change while adding
support for all the various Raspberry Pi models now available.

To support referring to Raspberry Pi P1 and P5 connector pins by name I
created a set of static global constant pin_id objects. These are created
by specialisations of special static pin id type templates static_pin_id,
static_p1_pin and static_p5_pin that contain no data providing
just a single conversion operator member function that converts to a
pin_id. Each template takes a single integer template parameter
representing a connector pin or BCM2835 GPIO pin number. Each
conversion function defines a static object of pin_id type or associated
sub-type. For the P1 pins that changed between board versions and the P5
pins, if none are used then the rpi_info machinery should not be
required. Those P1 pins that did not change between board versions are
defined directly as their associated BCM2835 GPIO pin value by
static_pin_id objects. The case for using static_pin_id objects
over just defining global constant pin_id objects is not as great as for the
use of static_p1_pin and static_p5_pin objects. The main benefit
would be ensuring initialisation before use of the function-scope static
pin_id object.

A future direction for pin_id et al. would be to investigate whether use
could be made of constant expressions (constexpr).

Excuse me, is that pin free?
GPIO pins are a resource and as such I had to decide on an allocation
policy. The easy part was deciding that a pin should not be permitted to
be used by more than one object at a time within the same process.
However the inter-process policy is not so easy. For a start there is no
magic system wide registry of in use GPIO pins, so any policy
implemented would have to rely on other processes doing likewise. There
are various possible policies, including:

 Ignoring the issue and only track pin usage within a process

 Require pins to be marked as allocated beforehand by some other
agent, and presumably marked as free after executing by a similar
external agent

 Require that pins are marked as free for use before allocation and
mark them as allocated/free as required.
MAY 2015 | | 19{cvu}

How to determine whether a pin was in use or free was another choice.
This boiled down to either devising some sort of custom registry which
would not be too useful if only my library used it or use some pre-existing
indicator that might also allow such in use/is free information to work
between libraries.

The most obvious policy, and the one I decided
on, was to follow that which I had used for the
Python Raspberry Pi GPIO library: check to see
if a pin was in use by checking to see if it was
exported from the /sys/class/gpio/
driver. If not then export it to acquire the pin and
un-export the pin to release it. This scheme is in
no way water tight. For a start any process with
sufficient access rights can un-export an
‘allocated’ pin at any moment. Then there is the
matter of un-clean exit from a process leaving
pins marked as unavailable because the un-
exporting de-allocations failed to run – the main
problem here is with signals, especially
SIGKILL, that cannot be caught and handled to
force de-allocation before unceremonious exit.

This is all taken care of by the pin_allocator type. Or to be precise
the pin_allocator type alias as it is a typedef for a specialisation of
the pin_cache_allocator class template that provides the intra-
process allocator logic by deferring decisions initially to an alternate
allocator whose type is provided by the single template type parameter and
caches the results. The pin_allocator type alias specialises
pin_cache_allocator with the pin_export_allocator that
provides support, with the help of a sys file system module, for allocating
by exporting from /sys/class/gpio/ and de-allocating by un-
exporting.

It’s a wrap!
The services of gpio_registers and pin_allocator types are
wrapped up behind the public interface types ipin and opin. As
mentioned previously the ipin and opin types provide an abstraction
modelled after the C++ IOStream library. In particular those of the
std::ifstream and std::ofstream types (or any other
specialisation from the underlying basic-templates). Operations on single
bits are quite limited compared to those on streams of characters so other
than providing open and close semantics the only other operations from
the IOStreams types that really applied were get for ipin to read the
Boolean value of a GPIO pin and put for opin to write, or set, the Boolean
value of a GPIO pin.

There is quite a lot of common functionality around the implementation
of the open and close operations of ipin and opin. This was pulled out
into a common base type pin_base having a totally protected interface.
Following the std::ifstream and std::ofstream examples I
originally provided explicit open and close operations which were
called as appropriate by ipin and opin constructors and destructors.
Later, having observed that a purer form of RAII that only allowed
resources to be acquired through construction was proving to be a Good
Thing™, I refactored ipin, opin and pin_base to remove the default
constructors and the open and close member functions which
considerably simplified the implementation.

Each ipin and opin instance needs to acquire a GPIO pin for use if
available, access the GPIO register block and, of course, to release the pin
when done. Unsurprisingly pin_id objects are used to pass around GPIO
pin values. As they appear in the public interface of the public library types
ipin and opin, pin_id and related types are also part of the library’s
public API.

Each BCM2835 has only one set of GPIO pins so there need only be one
instance of the pin_allocator type. Likewise, they only have one
GPIO peripheral register block hence there only needs to be a single
instance of gpio_registers mapped to the relevant physical memory

address as a phymem_ptr<volatile gpio_registers> (the type
pointed to by the phymem_ptr specialisation is qualified volatile
because the hardware at the mapped locations are not memory but device
registers that have to be accessed in the prescribed way and so the compiler
is not free to assume it knows what is going on).

So without getting overly sophisticated the
obvious pattern to use here was SINGLETON (I’ll
wait until some of you have recovered your
composure…).

For those wondering about systems using
multiple BCM2835 chips that as they have their
peripheral registers’ memory locations hard-
baked into the silicon such systems would not be
feasible, GPIO and peripherals wise, without
doing something exotic.

So what was needed was a singleton class
con ta i n i ng a pin_allocator a n d a
phymem_ptr<volatile
gpio_registers> with the single instance
being accessed via an instance member
function that returned a reference to the function

local static instance. Singletons of this form are sometimes known as
Meyers Singletons [15] after advice given in Scott Meyer’s book Effective
C++ [16]. In fact this type was implemented as a struct called
gpio_ctrl that allows direct access to the singleton’s allocator and
GPIO registers members. The implementation was initially placed within,
and local to, the implementation file for the ipin, opin and pin_base
classes as there was at the time no need for anything else to access it. This
changed later on and at that time gpio_ctrl was moved out into its own
library-internal header and implementation file.

Testing, testing
Unit tes t ing has already been mentioned in re la t ion to the
gpio_registers type. However, after a while the project settled into
three classes of tests:

 Unit tests that relied on nothing else and could in theory be built and
executed on another platform.

 Platform tests, a form of integration tests that required a Raspberry
Pi and/or Linux/Raspbian operating system services such as /dev/
mem or /sys/class/gpio/.

 Interactive tests, a form of platform integration tests that
additionally require some user action. Usually this meant ensuring
the hardware was suitably connected for the tests and often that the
tester perform a requested action with the test hardware such as
closing or opening a switch or confirming that the expected result
such as a lamp lighting or turning off occurred.

Each class of test has its own executable. Unit tests do not require any
special access to execute but the two integration test varieties generally
require root access via sudo or similar – as do applications – including
examples – built with the library.

Unit and platform tests can be run quickly as regression tests and could be
run automatically. Interactive tests take a bit more time and care and
obviously need to be run manually. The Catch test runner feature allowing
the use of wildcards in the specification of which tests to execute is
especially useful for only running the group of interactive tests that are
currently of interest, especially as the hardware to support other interactive
tests may not be wired up at the time.

It has occurred to me that it would be possible to create a specialist piece
of hardware – a custom circuit board or similar – designed specifically to
support the sort of testing performed by the interactive tests. It might even
be possible to arrange for many tests to be performed and verified
automatically. Such a device combined with the test software would I
suppose be similar to ATE – Automated Test Equipment. It would
however be quite involved and would almost certainly be overkill.

it would be possible to
create a specialist piece
of hardware – a custom

circuit board or similar –
designed specifically to

support the sort of
testing performed by the

interactive tests
20 | | MAY 2015{cvu}

Raspberry Pi Linux User Mode GPIO in C++ – Part 1 (continued)
References
[1] Raspberry Pi Linux User Mode GPIO in Python, CVu, Volume 27

Issue 1, March 2015
[2] Github repository for the Python Raspberry Pi GPIO library:

https://github.com/ralph-mcardell/dibase-rpi-python
[3] Gertboard Raspberry Pi IO expansion board:

http://www.raspberrypi.org/archives/411
[4] Available for download as the ZIP file gertboard_sw_20120725.zip:

http://www.element14.com/community/servlet/JiveServlet/
download/38-101479

[5] The Wiring Pi Library:
https://projects.drogon.net/raspberry-pi/wiringpi/

[6] See for example:
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

[7] Catch: C++ Automated Test Cases in Headers
https://github.com/philsquared/Catch

[8] GitHub repository for the C++ rpi-peripherals library:
https://github.com/ralph-mcardell/dibase-rpi-peripherals

[9] BCM2835 ARM Peripherals: http://www.raspberrypi.org/wp-
content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

[10] eLinux BCM2835 ARM Peripherals errata page:
http://elinux.org/BCM2835_datasheet_errata

[11] Raspberry Pi Linux source code Github repository:
https://github.com/raspberrypi/linux

[12] Raspberry Pi Linux kernel source BCM2835 specific support:
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-
bcm2835 (note: for the rpi-3.10.y branch, use branch selection
dropdown to select another)

[13] Raspberry Pi Linux kernel source BCM2708 specific support:
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-
bcm2708 (note: for the rpi-3.10.y branch, use branch selection
dropdown to select another)

[14] eLinux RPi HardwareHistory page:
http://elinux.org/RPi_HardwareHistory

[15] See for example the second variant presented in:
http://www.devartplus.com/3-simple-ways-to-create-singleton-in-c/

[16] See Scott Meyer’s site at: http://www.aristeia.com/books.html
Standards Report
Mark Radford reports the latest from the

C++ Standards meetings.

ello and welcome to my latest standards report. Not only is it my
latest report but, it will also be my last, because I’m not continuing
as Standards Officer after the forthcoming AGM (that is,

forthcoming at the time of writing, it will have happened by the time this
report appears in print).

The next full C++ WG21 (ISO) committee meeting is not until May. It will
be held from the 4th – 9th May in Lexana, KS, USA. Unfortunately the
pre-Lexana mailing isn’t yet available – and probably won’t be by the time
I have to submit this report for publication – so I won’t be able to discuss
it. The only thing that’s happened since my last report is the meeting held
in Cologne, Germany, in the final week of February, by the Library
Working Group (LWG). Therefore, while I have a little information on C
standardisation progress, the majority of this report will be concerned with
the Cologne LWG meeting.

The Cologne LWG meeting
The Cologne meeting set out to review all the papers that make up the
inputs into both the Concurrency TS and the Library Fundamentals TS v2.
The objective being to move things along by having the papers reviewed
and updated in time for the Lexana meeting. If this could be achieved, then
further work on the papers at Lexana will be minimised or (ideally) not
necessary at all. Note that there was much more on the agenda for Cologne.
However, I can’t report everything, so I’ll focus on the Concurrency TS

 H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
MAY 2015 | | 21{cvu}

https://github.com/ralph-mcardell/dibase-rpi-python
http://www.raspberrypi.org/archives/411
http://www.element14.com/community/servlet/JiveServlet/download/38-101479
http://www.element14.com/community/servlet/JiveServlet/download/38-101479
https://projects.drogon.net/raspberry-pi/wiringpi/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://github.com/philsquared/Catch
https://github.com/ralph-mcardell/dibase-rpi-peripherals
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://elinux.org/BCM2835_datasheet_errata
https://github.com/raspberrypi/linux
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-bcm2835
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-bcm2835
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-bcm2708
https://github.com/raspberrypi/linux/tree/rpi-3.10.y/arch/arm/mach-bcm2708
http://elinux.org/RPi_HardwareHistory
http://www.devartplus.com/3-simple-ways-to-create-singleton-in-c/
http://www.aristeia.com/books.html

and Fundamentals TS v2 because these are listed in the meeting agenda
as being the highest priorities for the week.

The inputs into the Concurrency TS consist of three papers: ‘C++ Latches
and Barriers’ (D4281), ‘Atomic Smart Pointers’ (N4162), and
‘Improvements to the Concurrency Technical Specification (Working
draft)’ (N4123). Inputs into the Fundamentals TS consist of six papers:
‘Generic Scope Guard and RAII Wrapper for the Standard Library’
(N4189), ‘Extending make_shared To Support Arrays’ (N3939),
‘Multidimensional bounds, index and array_view’ (N4346), ‘Const-
Propagating Smart Pointer Wrapper’ (N4372), ‘make_array’ (N4315), and
‘Source Code Information Capture’ (N4129).

Concurrency TS
‘C++ Latches and Barriers’ (D4281) was a paper that received quite a lot
of time. The version under discussion had the number N4392 at the top of
it, so I’m assuming that’s the number it will go by in the pre-Lexana
mailing, although it was discussed as the (not publicly available) draft
paper D4281. This paper has been through a few revisions, the most recent
to appear in a mailing being N4204 in the pre-Urbana mailing. D4281
focuses on wording for the Concurrency TS. Further, Concepts have been
removed from this edition.

I’ll give a short summary of what latches and barriers are. A latch is a
synchronisation object which maintains a counter and blocks all
participating threads until the counter is decremented to zero, at which
point all the threads are unblocked (see N4204 for an example). A barrier
causes a number of threads to block until all threads catch up, at which
point all the threads are unblocked. There are two types of barrier:
barrier and flex_barrier. In the latter case, when all the threads
catch up and before all threads proceed, one thread is released to execute
the completion phase, i.e. code passed to the flex_barrier’s
constructor in the form of a function object.

The group discussed this paper four times during the week, with some of
the discussion being at a very detailed level. Also, the draft changed during
the week because the authors were able to provide updates in response to
comments passed on to them from the meeting. At the end of the Friday
session it was decided to hand the paper back to SG1 (Concurrency and
Parallelism) for them to review it once more with the recent changes, and
to move it to ‘ready’ status assuming they are satisfied.

‘Improvements to the Concurrency Technical Specification (Working
draft)’ (N4123) was discussed on Wednesday and Thursday. Much of the
discussion centred on getting the wording right. Actually the paper being
reviewed wasn’t strictly N4123, rather it was N4107 with N4123 merged
in i.e. the meeting reviewed the working draft of the Concurrency TS plus
the improvements. Unfortunately it is not clear to me, from the minutes of
the discussion, what the actual conclusion was. However, it is listed as
having ‘revisions expected’ on a document status page (on the WG21
internal wiki). I’m assuming this means a revised paper, which addresses
issues raised in Cologne, is expected to be available for Lexana.

‘Atomic Smart Pointers’ was not discussed as it was moved to ‘ready’ in
Urbana i.e. it was not necessary for the Cologne meeting to discuss it
further.

Library Fundamentals TS
‘Generic Scope Guard and RAII Wrapper for the Standard Library’
(N4189) takes the well known RAII idea and generalises it. There are two
variations: one just executes a function on destruction, while the other
holds a resource for which it executes a ‘deleter’ on its destruction. The
discussion of this paper that went into some detail. For example: the
headers it describes are quite fine grained, whereas the library has
traditionally preferred coarser headers. The reason for this is build speed:
touching the file system will slow down the build. The conclusion was to
have just one header. This may seem picky, but it is an example of the
responsibility the standards committee has i.e. its decisions affect all C++
users. In any case there were several issues that lead the meeting to
conclude that this paper is unlikely to be ready in time to make it into

Fundamentals v2. The conclusion was to return the paper (with comments)
to the Library Evolution Working Group (LEWG) for further work.

‘Multidimensional bounds, index and array_view’ (N4346) proposes
library components to enable contiguous memory to be viewed as
multidimensional. Note the more recent versions have concentrated on
proposing formal wording without giving an overview. To get the
overview you need to go back to an older version, N3851, which can be
found in the pre-Issaquah (January 2014) mailing. Again, the discussion
was detailed and several issues were raised. However, the conclusion was
that the paper was in good shape to make progress at the forthcoming
Lexana meeting, provided it is revised to address the issues raised in
Cologne.

‘Const-Propagating Smart Pointer Wrapper’ (N4372) offers help with the
problem that it is possible, in a const member function, to call non-
const member functions on some (smart) pointer types (because C++
considers the underlying pointer type for treatment as const, not the
object it points to). It proposes propagate_const, a wrapping smart
pointer that has const and non-const operator-> overloads, that
return a const pointer and non-const pointer, respectively. This paper
was discussed three times during the week: on Monday when some issues
were raised, on Tuesday after the author (Jonathan Coe, who was at the
meeting) had made some revisions, and again on Wednesday following
further revisions. At the end of the Wednesday discussion the meeting
concluded that the paper was ready to make progress at Lexana.

‘make_array’ (N4315) proposes a simple utility for constructing a
std::array (the paper points out that we have make_pair() and
make_tuple(), but we lack the analogous creation function for
std::array). In this case the discussion was short and and conclusion
was that this is another paper in good shape for Lexana.

‘Source Code Information Capture’ (N4129) is a proposal for a library
class (well, struct) source_context: when source_context is
constructed, by way of implementation ‘magic’, it gets information such
as the line number, the file name and function name of its construction.
The idea is to avoid having to sprinkle macros (e.g. __FILE__)
throughout the code, in order to have this information available in the code
for logging purposes, for example. This paper was not discussed in
Cologne because the author (Robert Douglas, who was unable to attend)
intends to revise the paper and present the revision at the Lexana meeting.

‘Extending make_shared To Support Arrays’ (N3939) was not discussed
as the LWG is awaiting a further revision.

C standardisation
Before I finish, I have a little information on C standardisation progress.

There has been a slight hiccup with part 2 of their floating point TS. There
were some staff changes at ISO, and this lead to confusion about the status
of this TS, with the result that it was published in error. The published
version has not been reviewed by the floating point study group, or by
WG14. When this reviewing has been done, a corrected version will be
published. Meanwhile parts 3 and 4 (of this TS) are going through the DTS
ballot. An early draft of part 5 (N1919) is now available.

Finally
That brings me to the end of my final standards report. Thank you to those
people who have provided me with support and feedback over the three
years I’ve been writing these reports. I assume Jonathan Wakely, as the
only candidate, will be elected to take over as Standards Officer. I wish
him well and step down knowing the standards reports are in safe hands.

If you read something in C Vu that you particularly
enjoyed, you disagreed with or that has just made you
think, why not put pen to paper (or finger to keyboard)
and tell us about it?
22 | | MAY 2015{cvu}

Code Critique Competition 93
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I’m trying to use the new(ish) unordered_map. and my simple test
program works with some compilers and options but not with others. I
can’t see why it wouldn’t work consistently – are some of the compilers
just broken? I do get a compiler warning about conversion from string
constant to cstring – is that what’s wrong?

Can you explain what is wrong and help this programmer to fix (and
improve) their simple test program? The code is in Listing 1.

Critiques

Tom Björkholm <accuml@tombjorkholm.se>

There are several problems with this code in Code Critique 92.

The main problem is a confusion about values and pointers. The way the
code is written it stores pointers (addresses to memory locations) not string
values in the unordered map. This is a fundamental problem. The C++
standard containers are designed to hold values not pointers.

More specifically the values stored in the container addresses are the
pointers (memory address values) not the strings at those memory
locations. This is fundamentally flawed as in any real program those
memory locations would probably be used for other data later in the life
of the program, causing the program to crash (or exhibit other strange
behavior such as incorrect results).

So why does this work at all? Why doesn’t this program crash at once?
The reason is that only compile time constant strings are used as data in
this example. The strings "roger", "chris", etc. in the main program
are all compile time constant strings. These strings are stored by the
compiler in a (usually read-only) data segment. Thus, in this example the
data on the memory locations used, does not change.

The fact that the compiler is supposed to store these compile-time constant
strings in read-only memory is the reason for the compiler warning. Having
a non-const pointer to data that is a compile-time constant is not good.
The warning can be fixed by changing

 typedef char *cstring;

to

 typedef const char *cstring;

With this change, there are no compiler warnings, but the program is still
fundamentally broken as the key used for lookup in the map is the value
of a memory address, not the name string.

So why does this produce the expected result on some compilers? Some
compilers notice that the identical string "roger" appears both in one of
the add() function calls and in the get() function call. The compiler is
then free to store the string only once in memory, and use the same address
(i.e. pointer value) in both function calls. However, the compiler is also
allowed to store both strings "roger" in memory at different addresses.
With a compiler that stores the string "roger" at only one memory
location, the program produces the expected result. But that is because of
a comparison of memory addresses used as keys, not because of a
comparison on key strings.

The correct way to fix this program is to use std::string instead of
character pointers. Then the values stored in the unordered_map are real
string values, and the keys that are compared are the strings (not the
memory locations).

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <string>
#include <unordered_map>
typedef char *cstring;
typedef std::unordered_map<cstring, cstring>
AddressMap;
// Hold email addresses
class Addresses
{
public:
 // add addr for name
 void add(cstring name, cstring addr)
 {
 addresses[name] = addr;
 }
 // get addr from name or null if not found
 cstring get(cstring name)
 {
 if (addresses.count(name))
 {
 return addresses[name];
 }
 return 0;
 }
private:
 AddressMap addresses;
};

int main()
{
 Addresses addr;
 addr.add("roger",
 "rogero@howzatt.demon.co.uk");
 addr.add("chris",
 "chris@gmail.com");
 cstring myadd = addr.get("roger");
 if (myadd == 0)
 {
 std::cout << "Didn't find details"
 << std::endl;
 return 1;
 }
 std::cout << "Found " << myadd << std::endl;
}

Li
st

in
g

1

MAY 2015 | | 23{cvu}

The get function can also be improved. As it is written now the lookup
is done twice, once to count the number of matching elements (zero or one)
and once to find the element to return. (In general it is a good habit to avoid
count() and size() if the task can be solved by using empty() or
find() instead.)

When std::string is used for the keys and values, it will no longer be
possible to indicate ‘not found’ as a null pointer. Not found can either be
indicated using an empty string, or the get() method could return a
struct with a string value and a bool flag.

Personally I would have used a using alias inside the Addresses class
instead of a global typedef, but this is a matter of personal style
preferences. To keep the program recognizable to the original author, I
have opted to not make changes based on personal style preferences. I have
opted to let the empty string indicate not found here (as no valid email
address can be the empty string). The complete fixed program would then
be:

 #include <iostream>
 #include <string>
 #include <unordered_map>
 typedef std::unordered_map<std::string,
 std::string> AddressMap;
 // Hold email addresses
 class Addresses{
 public:
 // add addr for name
 void add(const std::string & name,
 const std::string &addr){
 addresses[name] = addr;
 }
 // get addr from name or null if not found
 std::string get(const std::string & name) const
 {
 const AddressMap::const_iterator it =
 addresses.find(name);
 if (addresses.end() != it) {
 return it->second;
 }
 return "";
 }

 private:
 AddressMap addresses;
 };

 int main() {
 Addresses addr;
 addr.add("roger",
 "rogero@howzatt.demon.co.uk");
 addr.add("chris",
 "chris@gmail.com");
 std::string myadd = addr.get("roger");
 if (myadd == "") {
 std::cout << "Didn't find details"
 << std::endl;
 return 1;
 }
 std::cout << "Found " << myadd
 << std::endl;
 return 0;
}

Simon Brand <simonrbrand@gmail.com>

Note: Any standards references are from C++ draft N4296 (http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf).

You are coming across an issue because you are attempting to use
cstrings as keys.

Why is this an issue? Because cstrings are simply pointers to a
contiguous area of memory which is null-terminated. If you attempt to

check two cstrings for equality using operator== you are checking
if they point to exactly the same area of memory, not if the data they point
to is the same.

To see why this causes an issue with unordered_map, we need to know
a little about how it is implemented. An unordered_map is an
implementation of a hash map (§23.2.5.9) (some nice explanations here:
http://stackoverflow.com/questions/730620/how-does-a-hash-table-
work), so it needs a hash function to convert a key into a bucket index, then
a comparison function to resolve collisions where keys hash to the same
bucket.

§23.5.4 outlines the unordered_map class template, which can
optionally take in functors as template arguments to use as the hashing and
equality functions. Now we can see that unordered_map uses
std::equal_to<Key> as its default equality function and
std::hash<Key> as the hashing function. Unless otherwise specialised,
equal_to simply invokes operator==, and it has no specialisation for
char* (§20.9.6). This means that whenever you try and perform a key
comparison in the map, you are just comparing the pointers. std::hash
is implemented such that if k1 == k2, hash(k1) == hash(k2)
(§23.2.5.1.4), so the same applies. As such, using char* as the key type
in unordered_map means that the keys must be pointing to the same part
of memory.

So why does this work for some compilers and not for others? The answer
is optimisation. Most compilers will see that you have used the same string
literal twice and so will just use the same memory for any instances of that
literal. In this example, both times you use "roger", you could be getting
pointers to completely different areas of memory, but the compiler
optimises and just reuses the same data. Now when you hash or compare
your keys, you just so happen to be passing the same pointer in due to a
compiler optimisation, so you get the expected result. If you were, for
example, reading the string in at runtime, this would fail every time on a
conforming compiler.

By now you might be thinking “Why didn’t I notice I was comparing
pointers?”. I think your problem is that you typedef’d char* to
cstring. Hiding implementation details like that is often a good idea, but
using raw pointers is often error prone, so you just make yourself
complacent by trying to forget that you’re using pointers.

In the case of AddressMap, this abstraction is a really good idea because
if you want to change the implementation of your class to use ordered maps
instead, you just need to change it in one place. A possible improvement
to this would be:

 class Addresses
 {
 private:
 using map_type =
 std::unordered_map<cstring, cstring>;
 }

This is called a nested type name (§9.9) and is preferable to your version
because it doesn't pollute the global namespace. Making it private ensures
that you don't leak implementation details. Substituting the typedef for
an alias declaration (§7.1.3.2) is mostly just for consistency here. This
syntax is more powerful as it allows you to use templates in your type alias,
which you can’t do with typedefs. Because it provides a superset of
functionality, I prefer to use it everywhere I’d usually use a typedef
(Scott Meyers discusses this in Item 9 of his book Effective Modern C++).

I’ll now outline a couple of ways to fix your code.

Version 1

As a preface to this fix, this is more an example for completeness of how
you could use a char* in an unordered_map. As I’ll show later, you
should not do this and use std::string instead.

As stated above, the issue is that unordered_map compares your
char*s by their pointer, not by the string they point to. In order to modify
this, we can pass a hash and comparison function in to our map as either
a template or constructor argument.
24 | | MAY 2015{cvu}

http://stackoverflow.com/questions/730620/how-does-a-hash-table-work
http://stackoverflow.com/questions/730620/how-does-a-hash-table-work
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

 struct AddressHash
 {
 //taken from Stroustrup's The C++
 //Programming Language
 size_t operator()(const char* ptr) const {
 size_t h = 0;
 while (*ptr)
 {
 h = h << 1 ^ *ptr;
 ++ptr;
 }
 return h;
 }
 };

 struct AddressComparison {
 bool operator()(const char* str1,
 const char* str2) const {
 return strcmp(str1, str2) == 0;
 }
 };

This all looks fine, but because we are using pointers, this will fail if we
add a pointer in which is later invalidated. For example:

 void addstuff(Addresses &addr)
 {
 char rog[6] = "roger";
 addr.add(rog,
 "rogero@howzatt.demon.co.uk");
 }

That call to addr.add will decay the char[] to a char*, copy the
pointer (not the data) and store it in the map. Then when the function exits,
the char[] which holds the string is destroyed, so trying to access it
through the pointer we saved is undefined. Oops! We could probably solve
this issue by adding a level of abstraction and managing copies to these
strings, but therein lies madness. If only there were a class which is like a
char* but has sensible value semantics...

Version 2

I know, we’ll use std::string instead!

std::string already has the comparison and hashing functions we
need, so simply modifying your interface like so fixes most of our issues:

 typedef std::unordered_map<std::string,
 std::string> AddressMap;

 class Addresses {
 public:
 void add(const std::string &name,
 const std::string *addr)
 std::string &get(const std::string &name)
 };

Another problem is the use of f lag values for the return of
Addresses::get. Returning a value which means an error has occurred
and assuming that the client will remember to check for it is usually ill-
advised. It’s better to throw an exception so that they need to deal with it
unless they want their application to crash and die. Fortunately,
unordered_map::at already does this, throwing an out_of_range
exception if the key doesn’t exist. Now we can modify our get function
like so:

 std::string &get(const std::string &name)
 {
 return addresses.at(name);
 }

You should always ensure that your functions are named in a way which
correctly reflects their semantics. The function add is maybe a bit
misleading, because you could pass in a key which already has a value and
it would be updated rather than adding a new entry. We could call it
something like addOrUpdate, but there’s already a more natural version:

 std::string &operator[] (
 const std::string& key)
 {
 return addresses[key];
 }

Now we can update our code like so:

 int main()
 {
 Addresses addr;
 addr["roger"] =
 "rogero@howzatt.demon.co.uk";
 addr["chris"] = "chris@gmail.com";
 try
 {
 std::string &myadd = addr.get("roger");
 std::cout << "Found " << myadd
 << std::endl;
 }
 catch (const std::out_of_range& oor)
 {
 std::cout << "Didn't find details"
 << std::endl;
 return 1;
 }
 }

We should now check our functions to ensure that they are const-correct,
flexible and fast. Our operator[] takes a const std::string&,
returns a std::string& and is not marked const. The lack of const
is correct, because calling operator[] on an unordered_map adds a
new key if one does not exist. Returning a std::string& is correct,
because it allows us to update the object held in the map. Taking the
argument as a const reference, however, can be improved. Imagine we
are populating our map with data parsed from a large external file like this:

 while (stillHaveData())
 addr[getNextKey()] = getNextValue();

The only use for the return value of getNextKey() is to store it in our
internal map. It can’t possibly be used anywhere else, because we don’t
store a reference or pointer to the data. Unfortunately, because
operator[] is taking its argument as a const&, we are going to be
copying every single key string into the map. This could get expensive;
we’d much rather just reuse the data rather than copying it. To achieve this
we can implement perfect forwarding (http://thbecker.net/articles/
rvalue_references/section_07.html) on operator[]: if it is passed an
lvalue, copy it; if it is passed an rvalue, move it.

 template <typename T>
 std::string& operator[] (T&& key)
 {
 return addresses[std::forward<T>(key)];
 }

This is much more efficient, as std::forward (§20.2.4) ensures that the
reference type is preserved through our call, so the correct version of
std::unordered_map::operator[] is called and the copy is
avoided if necessary. We get this efficiency for free with the actual
assignment, because std::string provides a move constructor which
will be called when we attempt to assign an rvalue.

Now for our get function. It takes a const std:string&, returns a
std::string& and is not marked const. We want to be able to check
the contents of the map when we have a const Addresses object, but
also to use it to update values when it’s non-const, so we need a const
and non-const version of the function. Taking the argument by const&
is fine here, as we aren’t going to be doing a copy. We could optimize by
using std::experimental::string_view, and you should
certainly have a look at that class, but you can be forgiven for waiting until
it’s actually in the standard. Returning by std::string& is correct as
we want to be able to update our value if possible, but it needs to be a
const& when using a const Addresses. Now the function looks like:
MAY 2015 | | 25{cvu}

 const std::string &get(
 const std::string &name) const
 {
 return addresses.at(name);
 }
 std::string &get(const std::string &name)
 {
 return addresses.at(name);
 }

Now the final version of our class:

 class Addresses
 {
 public:
 template <typename T>
 std::string &operator[] (T&& rhs)
 { return addresses[rhs]; }
 const std::string &get(
 const std::string &name) const
 { return addresses.at(name); }
 std::string &get(const std::string &name)
 { return addresses.at(name); }
 private:
 using map_type = std::unordered_map<
 std::string, std::string>;
 map_type addresses;
 };

Jim Segrave <jes@j-e-s.net>

The problem of compiler errors is trivial to fix – string literals have the
type char const *, but the add() member function expects arguments
of char *. A char const * can only be used with a cast. Changing
the typedef of cstring to be typedef char const * will stop the
compiler errors and the program will work.

But there are larger problems.

The keys to the map are pointers to char arrays. Two separate character
arrays with identical contents will produce two separate entries in the map.
For example, a get() for the name "roger" which uses a different
character array to hold the text "roger" than the one used for inserting
will not find the entry. The key needs to be the actual value, not a pointer
to the value. Further the key has to remain valid and unchanged as long as
the map exists, which is not a guarantee that a pointer can make.

The values are also stored as pointers to character arrays, which opens new
opportunities for failures. What happens if the array passed as a value for
the address goes out of scope? You now have an invalid pointer in the map
and if you do a lookup and get that pointer returned, any use of it leads to
undefined behaviour. What happens if you look up an entry and keep the
pointer to the address character array and that array goes out of scope? You
now have a dangling pointer which is an invitation to undefined behaviour.

My updated version stores a copy of the text of the name, so the lifetime
of the name passed to the add() member function no longer affects the
map. Since I’m copying the text, using a std::string instead of a
character pointer adds flexibility – the name can be a string literal, a char
array or a std::string.

I changed the map so that the address stored is a shared_ptr to a newly
allocated copy of the string originally passed to the add() member
function. Now if the string passed to add() is deleted, the contents of the
map are still valid. If you use get() to obtain a pointer to an entry in the
map, that pointer will remain valid even if the map itself is deleted. Only
when the map is deleted and all the pointers to data that was in the map
are deleted do all the address strings get removed, but you don’t have to
do the bookkeeping to make that happen.

In order to test the map fully, I added a function to exercise the map. It
uses an array of structs holding a name and address, so adding additional
test cases requires simply inserting a {name, address} braced pair into the
array. It inserts all the pairs from the array, then looks up each name in the

array to see that the address data is correct. It correctly flags when a name
is entered twice with different addresses.

It then looks up a name known not to be in the map to test the not-found
behaviour. It also deliberately updates an entry with an address taken from
a local variable which will go out of scope when the function returns. In
main, that entry is looked up and the address is checked to see that it
matches what was in the local variable.

My updated version

 #include <iostream>
 #include <string>
 #include <unordered_map>
 #include <memory>
 using std::string;
 using shp = std::shared_ptr<string>;
 typedef std::unordered_map<string, shp>
 AddressMap;
 // Hold email addresses
 class Addresses
 {
 public:
 // add addr for name
 void add(const string& name,
 const string& addr)
 {
 addresses[name] =
 std::make_shared<string>(addr);
 }
 // get shared ptr to addr from name or null
 // if not found
 shp get(string name)
 {
 if (addresses.count(name))
 {
 return addresses[name];
 }
 return shp(nullptr);
 }

 private:
 AddressMap addresses;
 };

 // pairs of names and addresses for testing
 struct test_val {
 string name;
 string addr;
 };
 test_val tests[] = {
 {"roger", "rogero@howzatt.demon.co.uk"},
 {"chris", "chris@gmail.com"},
 // duplicate name with different address
 {"roger", "rogero@gmail.com"},
 };

 // test insertions and lookups, including a
 // deliberate lookup failure
 // Update an entry with local auto strings for
 // the name and address
 void test_map(Addresses& a) {
 // remember longest name so we can create a
 // name known not to be in the map
 string longest = "";
 for(auto test: tests) {

 if(longest.size() < test.name.size()) {
 longest = test.name;
 }
 a.add(test.name, test.addr);
 }
26 | | MAY 2015{cvu}

 // check that all the names have been
 // inserted correctly
 // (the duplicated name will generate an
 // error report)
 for(auto test: tests) {
 shp addr = a.get(test.name);
 if(addr == nullptr) {
 std::cout << "Insert of " << test.name
 << " failed" << std::endl;
 }

 if(*addr != test.addr) {
 std::cout << "Expected lookup of "
 << test.name
 << " to return " << test.addr
 << " but returned "
 << *addr << std::endl;
 }
 }
 // update an entry using a local auto
 // variable
 string new_val{"auto_variable"};
 string new_name{"test_auto"};
 a.add(new_name, new_val);

 // generate a name known not to be in the
 // map
 if(a.get(longest + "x") != nullptr) {
 std::cout << "Map reported that "
 << longest << " is in the map, "
 "although it should not be"
 << std::endl;
 }
 }

 int main()
 {
 Addresses addr;
 test_map(addr);
 // at this call to addr.get, the string used
 // to set the address is gone
 shp check = addr.get("test_auto");

 if(check == nullptr) {
 std::cout << "Failed to find entry for"
 " \"test_auto\""
 << std::endl;
 }

 if(*check != "auto_variable") {
 std::cout << "Expected lookup of"
 " \"test_auto\" to be "
 << "\"auto_variable\""
 << " but got "
 << *check << std::endl;
 }
 }

James Holland <James.Holland@babcockinternational.com>

I can understand the programmer being baffled by the program behaving
differently when using different compilers. After all, although it may not
be perfect, the source code seems reasonably well constructed and should
work as expected. So what is going on? Before we dig deeper, let’s get rid
of the warning message issued by some compilers.

Literal strings such as "roger" are considered to be constant and,
therefore, should be incapable of being modified. The warning is saying
that a pointer of type char * is being assigned the address of the first
character of a constant string thus allowing the string to be modified by
use of the pointer. This makes a mockery of the fact that the string is meant

to be constant. Such assignments have been deprecated since C++98 and
so compilers should, at least, issue a warning. Sadly, not all do. What is
required is a pointer that is incapable of changing what it is pointing to.
This is easily achieved, in this case, by adding a const to the declaration
of cstring giving typedef const char * cstring. This will keep
compilers happy.

Unfortunately, removing the warning has not altered the behaviour of the
code. It still produces different results on different compilers. So
something else must be causing the problem. It turns out to be a
combination of the type of the unordered map key and the way in which
some compilers optimise the code. Let’s start with the key type.

From the sample code, it can be seen that Addresses member functions
add and get have parameters of type cstring where cstring is a
typedef for const char * (the const has just been added as described
above). The strings that are passed to the functions are of type const
char[n] where n is the length of the string. For example, "roger" is of
type const char[6]. This difference in type is permitted because array
types decay into pointers as they are assigned to the function parameters.
The body of the functions, therefore, deal with pointers to strings.

Also, the unordered map has been defined to have both key and value of
type cstring. In other words, the key is a pointer to a string and not the
string itself. This is important because the unordered map determines
whether an entry already exists by discovering whether any of the stored
pointers have the same value as the address of the string passed (in our
case) to its operator[] function. The address of a string is simply the
location in memory where it is stored. So, the question is at what memory
location is a string constant stored. This brings us back to compiler
optimisations.

One compiler optimisation technique is called string pooling. This
involves placing only one copy of identical string constants in memory
instead of having multiple copies of the same string. If this optimisation
takes place, p and q in the following code would be equal in value.

 const char * p = "This is a string";
 const char * q = "This is a string";

If this optimisation is not performed, the value of p and q would be
different as two separate, but identical, strings would be stored.

This optimisation is critical to the program as to whether strings will be
found. If string pooling takes place, the string "roger" used in the add
function will have the same address as the identical string used in the get
function. The unordered map’s count function will, therefore, consider the
string as found. If string pooling does not take place, the two strings,
despite being identical in value, will have different addresses and so a
match will not be found.

Incidentally, and ignoring the identified problems for a moment, there is
an inefficiency in the get function. Two searches of the unordered map
are made; one in the count function and one in the operator[]
function. The hash calculation is, therefore, performed twice. Clearly, it
would be more efficient if the hash value was calculated once. This can be
achieved by using the unordered map’s find function as follows.

 cstring get(cstring name)
 {
 return addresses.find(name) ==
 addresses.end() ? nullptr : name;
 }

Clearly, it is not acceptable for the behaviour of the program to depend on
compiler optimisations. Fortunately, there are a few things that can be done
to remedy the situation.

As stated above, the unordered map compares the value of pointers to
strings to determine whether strings are identical and (as also explained
above) this only works when string pooling takes place. What is really
wanted is to compare the strings themselves, not the pointers to the strings.
Doing this would result in the software behaving as expected irrespective
of whether string pooling was in effect. This can be achieved by providing
a user-defined hash function and equivalence criterion. These take the
MAY 2015 | | 27{cvu}

form of function objects that are passed to the constructor of the unordered
map.

A suitable function object that defines the hash function is shown below.

 class String_hash
 {
 public:
 std::size_t operator()(cstring s) const
 {
 return std::hash<std::string>()(s);
 }
 };

Providing a good hash function can be difficult so I have cheated somewhat
by using the hash function supplied by the standard library. The library
provides hash functions for most common types. In this case I have used
std::string. The constructor of std::string takes the pointer to a
char and creates an std::string object that is passed to std::hash
from which the hash code is generated.

A suitable equivalence criterion function object is shown below.

 class String_equal
 {
 public:
 bool operator()(cstring s1, cstring s2)
 const
 {
 return strcmp(s1, s2) == 0;
 }
 };

The strcmp function takes a pointer to each of the strings to be compared
and returns a value of zero if the two strings are equal. This value is
compared with zero to give a return value of true if the two strings are
identical and false otherwise. Note that the strcmp function is made
available by adding #include <cstring> to the program.

The two function objects are passed, as template arguments, to the
unordered map constructor as shown below.

 typedef std::unordered_map<cstring, cstring,
 String_hash, String_equal> AddressMap;

The program will now work as expected and does not depend on any
compiler optimisation techniques. It has, however, been quite an effort to
get to this stage and the modifications were not all that intuitive. There
must be a simpler way of achieving our goals.

The problem lies in not choosing language features that provide the right
level of abstraction. The student programmer has chosen cstrings (as
provided by the original C programming language) to represent ordinary
textual strings. While these can be used, they do have disadvantages. One
problem is that they do not behave quite as the novice may expect. For
example, I am sure the student was under the impression that the strings
themselves were being stored in the map. This illusion may have been
reinforced by naming the first deftype cstring. The name implying,
perhaps, that strings are being stored, whereas the deftype actually refers
to a pointer to chars. Also, the student included the unnecessary library
header <string> thus giving the impression that strings were being
manipulated.

The standard library provides a string class (std::string) that is
designed to be intuitive and to present few or no problems to the user. It
is this class that should be used in place of cstrings. The std::string
class is a more appropriate level of abstraction for this application (and just
about all others).

Rewriting the program to use std::strings gives the following.

 #include <iostream>
 #include <string>
 #include <unordered_map>

 typedef std::unordered_map<std::string,
 std::string> AddressMap;
 class Addresses

 {
 public:
 void add(std::string name, std::string addr)
 {
 addresses[name] = addr;
 }
 std::string get(std::string name)
 {
 return addresses.find(name) ==
 addresses.end() ? "" : name;
 }
 private:
 AddressMap addresses;
 };

 int main()
 {
 Addresses addr;
 addr.add("roger",
 "rogero@howzatt.demon.co.uk");
 addr.add("chris", "chris@gmail.com");
 std::string myadd = addr.get("roger");

 if (myadd == "")
 {
 std::cout << "Didn't find details"
 << std::endl;
 return 1;
 }
 std::cout << "Found " << myadd << std::endl;
 }

Making the interface of Addresses as similar as possible to the original
has resulted in slightly awkward code in the get function. The unordered
map’s find function returns an iterator that is used to determine whether
the string was found. If the iterator has a value of ‘one passed the
end’(indicating that the string was not found), a null string is returned from
get; otherwise the located string is returned. In the main program, the
string returned from get is compared with a null string to determine
whether the email details were found. Despite this, the software is easy to
understand and behaves as expected regardless of compiler optimisations;
something that could not be said for the original version.

Paul Floyd <paulf@free.fr>

The non-answer which fixes the warning is to change the cstring
typedef to use const char*.

The fundamental issue is that the std::unordered_map does not have
a hash function that hashes the string content of pointers to character arrays
(C strings if you prefer). It will hash pointers and std::strings. So in
this case, it is the string pointer that is being hashed. Assuming that it’s
the C string contents that you want to use as the key, then this will work
as long as there is a 1:1 relationship between the pointer and the string. If
string literals (as in this case) are de-duplicated, then it will work. This is
not guaranteed, resulting in implementation defined behaviour. I did try
this with a few compilers (and debug/optimized modes), and it worked in
all cases.

To make this work reliably, use a std::string, which does have a hash
function defined for it, e.g.,

 typedef std::unordered_map<
 std::string, std::string> AddressMap;

I don’t think that the add function serves much purpose.

The get function does avoid inserting/returning a default element as
operator[] would do. However, it could also be modified to avoid two
lookups:

 std::string get(const std::string& name)
 {
 AddressMap::const_iterator citer =
 addresses.find(name);
28 | | MAY 2015{cvu}

 if (citer != addresses.end())
 {
 return citer->second;
 }
 else
 {
 return std::string();
 }
 }

Incidentally, I don’t like inline bodies in class definitions. I always try to
put them outside as ‘inline’.

It isn’t clear to me whether empty strings should be allowed in the map.
If so, this would cause problems as here an empty string is being used to
test whether the key was found in the map. Here the add function could
be useful, by not allowing empty strings to be added.

Testing wise, at least one test that is expected to fail should be added.

Commentary
This problem amused me because the code worked because of string
pooling – this is a well known problem with Java code (where using ==
on strings has the same sort of issues as in this case) but less common in
C/C++!

I don’t think there is much left to add to the comments made in the critiques
above. I was interested to notice that after, converting the solution to use
std::string, two of the entries check for failure of get() by using if
(value == "") – I feel in this case it is more readable to use if
(value.empty()) but ‘your mileage may vary’.

I was a little surprised that none of the entries added any input validation
to the add method – in particular it would seem sensible to prevent adding
the ‘not found’ value!

The winner of CC92
There were some good critiques in this batch and it wasn’t easy to decide
which one was best. Nearly everyone explained about the need for adding
const to the typedef, but then explained that this wouldn’t solve the
underlying issue. I particularly liked Tom’s well-placed reminder that the
‘standard containers are designed to hold values not pointers’ as this gives
the programmer a higher level explanation of what the issue is.

Jim’s approach of using a shared_ptr was quite elegant, and nicely
solves the problem of reporting failure from get, but I fear this makes the
solution harder to use. Is in this case an empty email address seems a
perfectly good way to indicate ‘not found’. I liked Simon’s approach to
handling failure in the get function by using the at method in
std::unordered_map, this also allowed him to support const
correctness which was something other solutions didn’t explain (even
when const was added to a signature.)

Overall I felt Simon’s solution was the most complete (although it did omit
explaining the compiler warning) and so I have awarded him the prize
against fairly stiff competition. Thanks to all the entrants!

Code Critique 93
(Submissions to scc@accu.org by June 1st)

I’m trying to write a simple program to demonstrate the Mandelbrot set
and I’m hoping to get example output like this Figure 1, but I just get 6
lines of stars and the rest blank. Can you help me get this program
working?"

Can you find out what is wrong and help this programmer to fix (and
improve) their simple test program? The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

 *

 * **********

 * ** **********************
 ******* **********************
 ********* **********************
 ********* **********************
 * ********* *********************

 * ********* *********************
 ********* **********************
 ********* **********************
 ******* **********************
 * ** **********************

 * **********

 *

Figure 1

#include <array>
#include <complex>
#include <iostream>

using row = std::array<bool, 60>;
using matrix = std::array<row, 40>;

std::ostream& operator<<(std::ostream &os, row
const &rhs)
{
 for (auto const &v : rhs)
 os << "* "[v];
 return os;
}
std::ostream& operator<<(std::ostream &os, matrix
const &rhs)
{
 for (auto const &v : rhs)
 os << v << '\n';
 return os;
}

class Mandelbrot
{
 matrix data = {};
 std::complex<double> origin = (-0.5);
 double scale = 20.0;
public:
 matrix const & operator()()
 {
 for (int y(0); y != data.size(); ++y)
 {
 for (int x(0); x != data[y].size(); ++x)

Listing 2
MAY 2015 | | 29{cvu}

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.

Astrid Byro (astrid.byro@gmail.com)
The Design and
Implementation of the
FreeBSD Operating
System (2nd Edition)
By McKusick, Neville-Neil and
Watson, published by Addison
Wesley, ISBN: 976-0-321-96897-5

Reviewed by Alan Lenton

There are some books that the word
‘comprehensive’ doesn’t even come near to
describing. This is one such book! If you want
to know the details of any part of the FreeBSD
operating system then this, together with the
source code, is the reference book for you.

The book doesn’t just cover the workings of the
kernel, it also goes into details of the I/O
systems, IPC, and startup/shutdown (init, of
course. If you want the newfangled, monolithic,
systemd, you need to look elsewhere). I found
the IPC section particularly useful. I have other
books that cover the issue, but I found the
exposition in this book very clear and in depth.

‘Since FreeBSD is a ’nix, much of what is in this
book is relevant to other variants of Unix, and
while an application programmer might not
need to know what’s going on under the hood,

any more than you need to be a car mechanic to
drive a car, it certainly helps to write efficient
programs.

For someone studying operating systems at
college, this book should be high on the ‘must
have’ list, you would have to buy several other
books to cover the topics in the depth it does.
Even then, the coverage wouldn’t have the
cohesiveness this book has.

All in all, I would definitely recommend this
book to anyone with an interest in modern Unix
operating systems. You may be able to get
cheaper books, but you won’t get one that’s so
comprehensive!

Learning PHP, MySQL,
JavaScript, CSS &
HTML5 3rd Edition
By Robin Nixon

Reviewed by Ian Bruntlett

The 4th edition of this book
has now been published.

This is a big book – both in
size (676 pages plus index) and content
– 3 programming languages and 2
markup languages. It has taken me
fairly intensive reading since June to

finish this book. Whilst it is pretty much self
contained, I found that I needed to already have
systems administration and HTML experience.
Which I had and augmented with some
questions answered for me on accu-general. I
feel that the book would have better served the
reader if it had listed key reference websites for
the systems covered by this book.

A lot of semi-colons are involved with the
programming languages. I think Shakespeare
had it nailed when he wrote: “Some are born
with semi-colons, some achieve semi-colons
and some have semi-colons thrust upon them”.

For those not familiar with LAMP (Internet)
development, there is server stuff
(Administration, Apache, MySQL) and client
side stuff (JavaScript, HTML and CSS). Most of
which is covered by this book.

I have found that my intention to read this book
seven days a week was a bit misguided. I
discovered that if you don’t take time off, your
body will force you to take time off.

The initial chapters cover a bit about HTTP,
setting up a development server using the Zend
Server install files. I use Ubuntu these days so I
much preferred to use its built-in package
30 | | MAY 2015{cvu}

Code Critique Competition 93 (continued)

private:
 double xcoord(int xpos)
 {
 return origin.real() + (xpos -
 data[0].size()/2) / scale;
 }
 double ycoord(int ypos)
 {
 return origin.imag() + (data.size()/2 -
 ypos) / scale;
 }
};
int main()
{
 Mandelbrot set;
 std::cout << set() << std::endl;
}

 {
 std::complex<double>
 c = (xcoord(x), ycoord(y)), z = c;
 int k = 0;
 for (; k < 200; ++k)
 {
 z = z*z + c;
 if (abs(z) >= 2)
 {
 data[y][x] = true;
 break;
 }
 }
 }
 }
 return data;
 }

Listing 2 (cont’d)Li
st

in
g

2
(c

on
t’d

)

management system instead. I managed to get it
to work with that.

The PHP section spans five chapters
(Introduction. Expressions and Control Flow,
Functions and Objects, Arrays, Practical
things).

The next two chapters cover MySQL
(Introduction, Mastering). My go-to facility for
databases is no longer fopen, fseek, fread,
fclose. There are a couple of appendices on
MySQL as well (FULLTEXT stop words, a
selection of MySQL functions) .Chapter 10
covers accessing MySQL using PHP. This is
where this book earns its keep. Chapter 11
covers using MySQLi but the book’s website
has an updated chapter 11 which tells you how
to use the MySQLi PHP object oriented system
in preference to the older system.

Most of the remaining chapters of this book
cover client side stuff (HTML forms, Cookies,
Sessions and Authentication, JavaScript
(Exploring , Expressions and Control flow,
Functions, Objects and Arrays). There is a
chapter that brings JavaScript and PHP
validation together, followed by an Ajax
chapter, CSS chapters and a guide to new things
in HTML5.

Finally, the book has a “Bringing it all together”
chapter which implements a social networking
site.

Conclusion. I have gone from a person who
looks at websites and asked “How do they do
this?” to “A-ha!, I know how to do that!”. Once
I got going, I really enjoyed this book. Highly
Recommended.

Developing Quality
Technical
Information: A
Handbook for Writers
and Editors, 3rd Ed.
By Michelle Carey, Moira
McFadden Lanyi, Deirdre
Longo, Eric Radzinski,
Shannon Rouiller, Elizabeth Wilde, published June
2014, ISBN: 9780133118971, 587 pages

Reviewed by Paul Floyd

Recommended

Well, I’m neither a writer (the odd thing for the
ACCU journals apart), nor an editor.
Nevertheless, I would recommend this book for
anyone who writes software that has any sort of
user interface. I was expecting a fairly dry text,
reflecting the dry text that is most technical
documentation. That isn’t what I found. I had
jumped to the conclusion that ‘Technical
Information’ equates to ‘User Guide and
Technical Reference’. This book does cover
‘Technical Information’ in the widest sense.
Early in the book, the authors state that the large
majority of users don’t read the manuals, and
either ask colleagues or search for information
on Google. So in order to convey the
information required to use software a
significant part of this book covers GUI design

and usability (with the emphasis on style,
consistency, progressive disclosure, tooltips and
contextual help). Another chapter that is
‘modern’ and far from dusty printed manuals is
one covering search and information retrieval.

The tone is not prescriptive. There are a lot of
guidelines, and many examples, in particular
examples of poor interfaces and documentation
followed by one or two improved versions, with
the accompanying text pointing out the
problems in the original and why the changes
improve things. There is a fairly strong emphasis
on conveying information in a way that is task
oriented and minimalist. The final chapter on
testing and reviewing was a nice rounded ending
to the book.

There are a couple of chapters on clarity and
style that fell into the classic tech writing
stereotype that I half expected, but even these
were concise and quite pleasant to read.
Altogether a thoroughly professional piece of
work.

Effective Ruby: 48
Specific Ways to Write
Better Ruby
By Peter J. Jones, published by
Addison-Wesley, 211 pages,
ISBN-13: 978-0-13-384697-3

Reviewed by Simon Sebright

Highly recommended

This is another book in the Effective
series, started by Scott Meyers and lives
up to that tradition well. Material is
presented in 48 ‘Items’, each of which
is a nice readable and understandable chunk
from just over a page to several pages in length.
Items are well-grounded and technically
proficient. You can dip in and out – there is no
need to read them strictly in order.

The items are grouped into the following
Chapters (themes):

1. Accustomising Yourself to Ruby (things
like equality, constants and warnings)

2. Classes, Objects, and Modules

3. Collections

4. Exceptions

5. Metaprogramming

6. Testing

7. Tools and Libraries

8. Memory Management and Performance

The book is aimed at people who already know
ruby to a reasonable level, it is not an
introduction to the language or for beginners in
programming. I fitted into this category and
found the book not only very readable (well
written and with a good sprinkling of humour),
but also extremely informative and useful in
how I should use the language.

Although there is a chapter on tools, this book
will not introduce to Rails, or any of the bigger
topics – for that you’ll need to find another book!

I highly recommend this book to anyone using
Ruby regularly who cares about how they write
software and wants to get better at it.

SOA With Java:
Realizing Service-
Orientation with Java
Technologies
By Thomas Erl, Andre Tost,
Satadru Roy, Philip Thomas,
edited by Thomas Erl,
published by Prentice Hall,
ISBN-13: 978-0-13-385-903-4

Reviewed by Neil Youngman

SOA with Java bills itself as “The definitive
guide to building service oriented solutions with
lightweight and mainstream Java technologies”.
The foreword states that this is a self contained
book, suitable for a complete novice, but
according to the introduction it assumes a basic
knowledge of fundamental service orientation.
While the pre-requisites are not entirely clear,
this book should not be approached without a
basic understanding of Java and XML.

There are a large number of SOA related
standards defined for Java and without a good
guide it can be quite hard to understand the
relationship between the many different
standards. SOA with Java tries to walk the
reader through all the major standards, giving
their historic context and examples. It also
introduces the Glassfish, WebSphere and
Weblogic platforms. As it only has 400 pages,
excluding appendices, to achieve this, it is quite
a challenging goal.

The writing is quite dense, but mostly clear. At
times it can be too abstract and jargon laden and
the jargon is not always explained beforehand,
but, if you stick with it most of the jargon is
explained eventually.

When discussing specific technologies there are
plenty of examples, however they are quite
brief, and running through the book are case
studies, which I assume are imaginary, which
also help to illustrate the intended use of the
technologies.

Chapters 1 and 2 introduce you to the book and
the case studies. Chapters 3 to 6 make up Part 1I–
fundamentals and run through terminology,
Java and XML standards and APIs, and the
basics of SOAP and REST technologies. Part II
– Services consists of Chapters 7 to 9 and takes
the reader through service orientation principles
and various different types of service. Part III –
Service Composition and Infrastructure
contains chapters 10 to 12 and covers task
services, service composition and the use of
Enterprise Service bus technologies. Finally the
appendices are grouped as Part IV.

Overall this book seems to me to offer a good
overview of the SOA standards for Java. It
doesn’t provide sufficient detail to be a
reference for any of the Java SOA standards and
frameworks, but it gives a good overview which
could be a good starting point for selecting
technologies of interest for further investigation.
MAY 2015 | | 31{cvu}

32 | | MAY 2015

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

This is quite a difficult chair’s report
to write – because of the lead time on the
production of CVu I’m writing it in the week
before Conference and the ACCU AGM.
Sometimes things just don’t work out
conveniently!

Looking at things in a wider context, it’s
interesting to note that March this year marked
the 30th anniversary of the publication the GNU
Manifesto by Richard Stallman. Its publication
drew a line in the sand, on one side open source
software, on the other proprietary software.

The rest of us have had to make compromises on
this over the succeeding 30 years, but Stallman
never backed down. As he said at the time in Dr
Dobb’s Journal:

I consider that the Golden Rule requires
that if I like a program I must share it with
other people who like it. Software sellers
want to divide the users and conquer
them, making each user agree not to
share with others. I refuse to break
solidarity with other users in this way. I
cannot in good conscience sign a
nondisclosure agreement or a software
license agreement.

The deed followed the word and Stallman went
on to set up the Free Software Foundation,
which brought us all those goodies like the gcc

compiler suite, emacs (no, I’m not going to get
into an argument about whether Vi is better), and
the Bash shell.

When in 1992 Linus Torvalds released the Linux
kernel under the GNU GPL, the stage was set
for an open source operating system running on
cheap commodity hardware that would
completely change the nature of the server
market, and the way people thought about and
used open source.

And the rest, as they say, is history.

As the Grateful Dead so aptly put it “Lately it
occurs to me what a long, strange trip it’s been."

I wonder what the next 30 years is going to be
like?

Java SE 8 for
Programmers (Deitel
Developer)
By Paul Deitel and Harvey
Deitel, published by Prentice
Hall, ISBN-13: 978-0-133-
89138-6

Reviewed by Stefan Turalski

Sooner or later most coder-readers will bump
into a work by Paul and Harvey Deitel (Deitel
& Associates Inc). The father and son duo
published a few dozens of books and recently
ventured into creating video tutorials, focusing
on a range of mainstream programming
languages (usual mix of C, C++, C#, Java,
Visual Basic with an odd publication on Python,
Perl, even Swift). The target reader of Deitels’
‘for programmers’ book series is a ‘programmer
with a background in high-level language
programming’. A person willing to invest time
in going over a 1000-pages volume covering
every aspect of a given language from
fundamentals into intermediate subjects,
studying numerous listings of small programs
which illustrate core concepts, bare UML
diagrams etc. In other words, someone, who is
comfortable with a pre-Internet era style
textbooks and learns best from this type of
publication.

With the above prelude, I recommend the Java
SE 8 for Programmers as a rather good book,
especially for me, a developer working with C-
languages for the last decade or so, who
dabbling in Hadoop and Spark needs to catch up
with developments in Java camp. As we are
dealing with the 3rd edition of the book, the
fundamentals are covered clearly and concisely
and I found no issues in that department.
Therefore, I will focus on what might interest
ACCU readers the most – coverage of Java 8

futures. Regrettably, that is where the book falls
a bit short.

I could forgive few chapters on Swing and
limited focus on JavaFX, after all probably most
developers are still supporting older
applications. Similarly, I would not expect to see
coverage of Oracle Nashorn (a new JavaScript
engine within JVM) in an intermediate level
book. In fact, new features, such as lambdas and
streams got appropriate coverage, concurrent
collections got mentioned (albeit very briefly),
and so did parallel sorting. However, a new date-
time API was introduced only in passing, which
is rather strange as the previous API is now
marked as deprecated. Deitel admits that
concurrency is best left to experts, therefore I
would not expect to see stamped locks (which
allow writing really fast code, but may also lead
to writing a self-deadlocking threads). However,
in my humble opinion, the new concurrency
adders (LongAdder) should be featured as
these simplify complex code. Similarly, I
was nicely surprised by the attention
given to SecureRandom, which
seriously simplify random number
generation for non-critical purposes,
yet I could not find adequate
coverage of the new optional
references (Optional<T>), and
I do not recall new ‘exact’
methods on the Math interface
(which will throw exceptions if
the results overflow).

Despite these few rather minor
shortcomings, Java SE 8 for
Programmers is a serious offer,
less dry than the Java SE 8
edition of The Java® Language
Specification by Gosling, Joy,
Steele, Bracha, Buckley or the 9th
edition of Java The Complete

Reference by Schildt. Still, I would recommend
the last position, if you were looking for a
reference that will serve you for a bit longer.
Additionally, if your goal is to just get up to
speed with Java 8, I would suggest Horstmann’s
Java SE 8 for Really Impatient, Warburton’s
Java 8 Lambdas if you are after the functional
programming perspective as well,
Liguori&Liguori’s Java 8 Pocket Guide if you
are after, well… pocket guide, and finally Urma,
Fusco and Mycroft’s Java 8 in Action, which is
a really serious book if you are willing to dive a
bit deeper.

Nonetheless, if you are in the market for an
intermediate Java book that will introduce you
to modern Java in an informative and engaging
style, and you are ready to just skim a first few
introductory chapters, the Java SE 8 for
Programmers is a really good textbook; I can
fairly recommend it.

Bookcase (continued)

	CVu27-2.pdf
	In Between
	Wallowing in Filth
	Writing Good C++ APIs
	Writing a Technical Book
	Split and Merge – Another Algorithm for Parsing Mathematical Expressions
	Using 32-bit COM Objects from 64-bit Programs
	Raspberry Pi Linux User Mode GPIO in C++ – Part 1
	Standards Report
	Code Critique Competition 93
	Bookcase
	View from the Chair

