

MAR 2015 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Private Funding
ecently a large manufacturer of consumer ‘smart’
televisions came under fire when it emerged that
the voice recognition feature built-in to the

devices was recording the audio and sending it off to
some 3rd party for analysis. The company later made
clear who the 3rd party was, and also the fact that the
devices were using industry standard encryption to send
the data, and that the listening feature had to be
intentionally activated (i.e., the TV wasn’t always
listening). There are similar parallels with a certain well-
known search provider using voice recognition for searching
– a quick Goo...sorry, search for ‘Ear of Sauron’ should
enlighten those not already familiar with this. Such stories
aren’t unique, nor are they even new, but it seems that they
are becoming more prevalent.

That’s either because it’s happening more often, or
because people are starting to sit up and take notice. Or
both, of course. It’s different to the idea of the
government having an open licence to eavesdrop on all
your communications in the name of national security –
although that too has become a hot topic in the media. The
idea that the consumer electronics and Internet Browser
companies might be selling our data for the purposes of either advertisement
targetting or just simply reducing the unit cost of their goods is unsettling to many
people. And yet, many many more people are happy for that to happen, and freely
give their privacy away in return for some free or cheap service that they value more.
Which raises the point that if the vast majority of people don’t value their privacy
enough to complain about it being eroded, then everyone will lose it. Which is why
the fact that these things are hot topics is important.

Of course, in the matter of voice recognition for TVs or searching, if you’re
unconvinced that your data is not being mis-used to make someone else money, then
at least you’re maybe in a better position than many other people in that you might be
able to make your own voice recognition feature and use that, instead of trusting to
someone else’s. Perhaps it’s time for another hobbyist electronics revival. If you do,
then I expect lots of other readers would be delighted to read about it here!

R
Volume 27 Issue1
March 2015

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Silas S. Brown, Ian Bruntlett,
Thaddaeus Frogley,
Pete Goodliffe, Ralph McArdell,
Chris Oldwood, Roger Orr,
Mark Radford, Emyr Williams

 ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe STEVE LOVE

FEATURES EDITOR

2 | | MAR 2015

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
21 Kevlin Henney: An Interview

Emyr Williams
conducts another
interview.

21 Code Critique Competition
Competition 92 and
the answers to 91.

26 Standards Report
Mark Radford
reports on the latest
C++ Standardisation
proceedings.

REGULARS
28 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 27.2: 1st April 2015
C Vu 27.3: 1st June 2015

Overload 127:1st May 2015
Overload 128:1st July 2015

FEATURES
3 Coders Causing Conflict

Pete Goodliffe lights the blue touch paper and retires
to a safe distance.

5 Using ACCU Membership for Unique IDs
Silas S. Brown considers the case for identity.

6 LAMP on Ubuntu
Ian Bruntlett shares his notes on setting up a basic
web application.

8 The Developer’s Sandbox
Chris Oldwood wants to be in control.

11 What do people do all day?
Thaddaeus Frogley shares his day to day activities as
a games programmer.

13 Simple Android programming with WebKit
Silas S. Brown shares his trials with developing for
mobile devices.

15 Raspberry Pi Linux User Mode GPIO in Python
Ralph McArdell finds stream based input/output to be
more convenient.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer #91
Coders Causing Conflict
Pete Goodliffe lights the blue touch paper and

retires to a safe distance.

Words kill, words give life;
they’re either poison or fruit – you choose.

~ Proverbs 18:21 (MSG)

nless you’re a recluse, you will not go through life without meeting
conflict in some form or other. It’s a fact of human existence. No one
is immune; conflict is inevitable.

For the programmer, conflict can be bad: non-productive and hurtful. Have
you ever written some code and then feared jibes from your colleagues?
No fool would write code like that, are you stupid or something?

Sadly, statements like that are not unheard of in the workplace. But they
are clearly not at all appropriate. No one should suffer aggressive criticism,
be demeaned, or needlessly discouraged. That kind of conflict is dangerous
– it can knock your confidence and ruin effective team work.

But (and pay attention now) conflict is not necessarily a Bad Thing.

There is a valid place for healthy discord in the construction of high quality
software. ‘Conflict’ does not necessarily mean war. Conflict doesn’t have
to be an out-and-out shouting match, a cat fight, a tirade of unhealthy
criticism, or a form of passive-aggressive power struggle. It can simply be
a disagreement that, once resolved, will lead to a better solution. We can
use conflict for good.

Perhaps we can use different terms to avoid confusion, or make this sound
less sensational. We’ll talk about ‘disagreement’ versus ‘conflict’.
Whereas conflict is confrontational, aggressive, abrasive disharmony,
‘disagreement’ is just what it says: failure to meet consensus on a matter.
Sometimes it can be a deep, strong disagreement. But it doesn’t have to
be disrespectful, rude, or acrimonious.

It’s perfectly possible, even expected, to like and respect a person,
but to not agree with a coding decision they’ve made.

We must learn to harness disagreement to craft better code, and to not take
it as a judgement of (in)ability. Being challenged about your opinion, or
about the quality of a design can lead to unexpected solutions. Other
people’s thoughts and opinions can spark an idea that will lead to an
ultimately better solution. Indeed, without conflict we might only make
inspired boring, incorrect software. In this respect, conflict is natural,
normal, even necessary.

We don’t have to turn all ‘disagreement’ into ‘conflict’. Indeed, the
professional programmer actively seeks to avoid doing so.

In this article, we’ll look at how we can be good programmers, good team
mates, and use conflict/disagreement for the benefit of the code, the
developers, and the customer.

Reactions
What’s your natural reaction when someone disagrees with you?

Some programmers respond well: phlegmatically, with good grace, not
taking offence. Other programmers take it incredibly personally, and the
merest whiff of disagreement knocks their confidence.

I remember once being involved in a heated design discussion about a
software system, in which a number of programmers were becoming
increasingly animated about their opinions. It was a loud discussion, with
much hand waving and some energetically expressed points. At no point
was anyone being rude, or personally insulting. We were enjoying the

design experience; we really cared about exploring to find the best result.
However, there was one programmer who sat on the periphery, and
couldn’t engage. Personal circumstances had led to him being more timid
and reserved, and he didn’t feel able to contribute at the same level as his
colleagues. He felt that the discussion was a fight; and feared the outcome.
In our excitement we didn’t realise he felt intimidated by the discussion.
We missed his input, and he felt unable to contribute.

This shows how different people view disagreement in different ways, and
can react and engage differently.

People view and engage in disagreements in different ways. To
work effectively in a team you must appreciate this, and be able to
relate to team-mates appropriately.

These different reactions stem from a person’s temperament, culture, and
their personal situation. It may even depend on how much sleep they had
last night (parents of young, sleepless, children know what I mean). Of
note: be careful about making generalisations around gender. I know some
very timid, introverted male programmers who struggle with criticism and
some female coders who can put their point across with force!

Reacting well
Disagreement is not undesirable or to be avoided. Handled in a
constructive and appropriate way it is a very healthy thing indeed. It’s the
way we choose to react that determines whether it's productive or
dysfunctional. There are a few key things that help us react well.

Avoid being defensive

When someone disagrees with you, the natural human reaction is to
become defensive and argue. But stop; try to avoid this as a first reaction,
arguing further rarely helps resolve anything. Rather than assert your
opinion, consider whether they do have a valid point. Perhaps you should
revise your opinion, especially if it was a decision you made some time
ago. Circumstances change over time, code never stands still, designs
evolve, and the assumptions around which you made a decision may no
longer be valid.

Beware of pride

It’s good to take pride in your work, to care about what you craft. But don’t
be too proud of yourself, and fear a public dent in your public profile.

Pride can turn a simple disagreement into a full-on quarrel. Don’t let your
fear of being shown to be wrong lead to acrimonious conflict. When you
realise you’ve made a mistake be prepared to admit this, rather than
continue to fight to save face.

And of course, when you are wrong, don’t be too proud to admit it.
Gracefully.

Expect to be wrong

Remember that you will not always be right. Expect this.

 U

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
MAR 2015 | | 3{cvu}

Since there is almost always more than one way to solve a
problem, a good discussion may throw up a new, better,
alternative. The best software development is collaborative,
drawing on the abilities of an entire team; harnessing the
wisdom of their crowd.

Don’t make it personal

Jerry Weinberg, in his seminal book The Psychology of Computer
Programming [1], speaks of egoless programming. This is a great
illustration of an appropriate reaction when your work is criticised. Leave
personal feelings at the door, don’t take offence, look at your work
impartially.

Now it’s true that we can’t completely disconnect from this. Nor should
we: taking as pride in what you craft leads to a better outcome. But don’t
see everything as a personal attack.

Don’t avoid disagreement

One technique to avoid conflict is to actively avoid situations where it
might arise. Don’t ask people’s advice. Don’t review code. Don’t have
design meetings. Don’t engage in water-cooler design discussions.

That’s not a winning approach.

’Remember how Conway’s Law teaches us that a software’s design tends
to follow the lines of communication in the team that built it. In order to
construct cohesive, well-functioning software, we need a cohesive well-
functioning team!

Otherwise form will follow dysfunction; if you avoid talking to people
(say, in order to avoid confrontation) then your software will also have
poorer internal communication.

Take responsibility for respect

Mature programmers take responsibility for fostering healthy
communication in the team. To do this, we must learn to interact well, to
handle conflict professionally, and to respect people.

If you respect the people you talk to, you will try to disagree without being
disagreeable. A good lens to view this through is the Retrospective Prime
Directive [2]:

Regardless of what we discover, we understand and truly believe that
everyone did the best job they could, given what they knew at the time,
their skills and abilities, the resources available, and the situation at
hand.

In any discussion, it is sensible to assume that the people you discuss with
are working to the best of their knowledge and ability, and that they are
working for the best software outcome, not to apportion blame or make
you look silly.

The atmosphere of a team is not determined solely by the leader; it is
defined by the members of that team. There are certain team values that
make this work: everyone is valued; everyone is important; everyone has
a right to be heard, and has as valid point to make.

How to disagree well
How we handle conflict determines whether it is productive or destructive.
Handled well, disagreement will lead to novel solutions, to learning, and
to better software. Handled badly, though, it can lead to bitterness and
resentment. Badly handled conflict can even lead to violence. (Yes, it’s not
stereotypical for programmers to resort to fisticuffs, but weirder things
have happened.)

Learn to deal with conflict well. Meet criticism and disagreement
with an open mind, not snappy reactions.

Dealing well with conflict is an important life skill. It’s something many
of us have to learn; few people are naturally politically savvy. Whilst you
should definitely not aim to manipulate people, knowing how to interpret
people’s reactions and deal with them sympathetically and appropriately
will definitely help you become a better programmer. This, too, is not
stereotypically a strong point for introverted developers.

Listen

Remember that a conversation involves listening as well as talking. Make
sure you actively listen to other people. It can be very tempting to presume
you know what another person thinks, and to start arguing with this. But
you may not yet accurately understand their opinion. Stop. Listen.
Actively.

If nothing else, this is a form of giving them respect.

You don’t want to waste your time arguing with an opinion that no one
has! So first listen. And try to understand their opinion. A classic technique
is to repeat back their point of view, reinforcing their point in your mind,
and forcing you to listen. Doing this also gives you more time to formulate
a considered response.

Know when to stop

Sometimes you won’t reach an agreement. Know when conversation is no
longer productive. Be able to end conversation gracefully without having
reached a conclusion. Perhaps schedule another time to discuss the matter
after you’ve had time to walk away and consider it for a little longer.

Don’t keep fanning the flames of a destructive conversation.

Sometimes you can start disagreeing with someone by mistake! You’re
talking at cross purposes, when actually you have the same opinion. When
you realise you’re ‘strongly agreeing’ stop the pointless prattle and move
on!

Talk well

Whilst listening is crucial, it helps to be able to articulate your point well.
How often have you been frustrated by an inability to explain a point well
in the heat of discussion, when a multitude of erudite descriptions enter
your mind after the conversation has finished?

Practice:

 saying things succinctly (why use 100 words when 10 will do?)

 not ‘talking over’ other people – let them finish

 explaining your idea from the other person’s perspective; they don’t
have all of your tacit knowledge

 make sure they understand the point that you are making correctly
(without patronising them!)

 watch the kind of words you use; words have power, you can’t take
them back – there is no control-z for a conversation!

Understand your emotions

Dealing with emotions that arise during ‘heated’ discussions can be tricky.
Anger, frustration, disappointment, insecurity, and pride can all begin to
make you behave less rationally. Do you feel threatened or excited,
empowered or emasculated? Do you tend to cave in when heated
discussion picks up, or instead feel a rising need to validate yourself; to
‘win’ and become Top Dog?

Identify how you tend to react in these kinds of situation. This can help
you adapt unhealthy and non-constructive behaviours, and
plan out ways to improve your behaviour for the next time.

Reflect on this now.
When you realise you’re ‘strongly agreeing’
stop the pointless prattle and move on!

Leave personal feelings at the door, don’t
take offence, look at your work impartially.
4 | | MAR 2015{cvu}

Using ACCU Membership for Unique IDs
Silas S. Brown considers the case for identity.

ava package names, SGML/XML schema names and similar things are
often expected to include the developer’s domain name to ensure
uniqueness. While this in itself certainly doesn’t provide any real

security (others can falsely use your domain name simply by typing it),
and it doesn’t even guarantee uniqueness over time (if in future you
transfer ownership of your domain to someone else, then your old code
will be using names you no longer own), but in conjuction with other
measures it does seem reasonable – that is, if you happen to have a domain
name handy.

You could use a subdomain that you obtained on one of those ‘free
dynamic DNS’ services, but your continued ownership of this will depend
on the whim of that company. But it might be easier, and also more reliable,
to simply use the domain of a long-established organisation of which you
are a member, and add in your membership number or user ID to make
sure it’s unique. For example if I were to say

 package org.accu.m94137.appName;

(94137 being my ACCU membership number), that shouldn’t collide with
anything by mistake. Notice that the package name does not have to be a

real domain: ACCU don’t have to set their DNS server to actually resolve
m94137.accu.org to an IP address, nor to set up a machine at that IP to
handle any particular query that says it’s for m94137.accu.org; it’s only
for uniqueness.

If the ACCU committee could state officially that members are entitled to
use their membership numbers on accu.org when they need domain-based
unique IDs, that would be extra reassurance that ACCU won’t be using
these subdomains for some other purpose later, and would confer a small
extra benefit to members at negligible cost to the ACCU. But even if they
don’t officially commit to this, I think the chances of collision are very
slight.

J

Coders Causing Conflict (continued)

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
Watch your body language

Having a passion for your opinion, and caring about the code means that
you’re involved. This is a good thing. You get animated in discussions.
You wave your hands, speak excitedly. You’re anxious to get your point
across, to share the marvellous insight that you just had.

But don’t be overbearing.

Don’t reinforce a power struggle with your body language. Speak softly,
don't raise your voice or call the other person stupid.

Avoid a closed or confrontational posture that conveys you do not respect
or value the other person.

Seek another opinion

If you can’t reach a consensus, bring someone else in for a casting vote.
This is a straightforward strategy to resolve a disagreement, if you all
respect the third party.

But remember that sometimes adding more people can sometimes make
it harder to reach a single point of agreement, as there are more voices to
be heard!

What if you spot others arguing? Should you step in to help resolve
conflict? Should you offer to be the third party? It may not be your battle
to get involved with. But it may be worth helping resolve. Again, treat
others with respect. Perhaps you should first ask if you can help in any way.

The resolution
You don’t have to agree with everyone all of the time. And you don’t have
to hide from conflict; it can be a healthy part of collaborative software
development. Disagreeing openly can foster conversations that lead to
better software.

 However, it’s important to always treat people with respect. Healthy
communication builds a team, it is never unnecessarily rude,

personal, demeaning or political. Be aware that healthy
disagreement can turn into bitter conflict. n

Questions
1. What do you recall as the greatest moment of conflict you’ve

encountered in your programming career? How did you resolve it?
What were the results of that conflict (both on the software, and the
team)?

2. Do you think you are currently the cause of more disagreement or
resolution in your project?

3. Does conflict tend to arise more between closely working people in
the same team (e.g. developers-with-developers, or developers-
with-close-knit-testers), or between departments (e.g. developers-
with-management)? Why?

4. What do you think are the most important skills needed to resolve
conflicts effectively?

5. How do these skills fit into your daily coding regimen?

6. What measures (if any) can a team/company adopt to prevent
conflict, or to help resolve conflict in a healthy way? What have you
seen that actually works?

7. Do cultural differences play any part in the shape of healthy working
relationships, and the way you work with team members? Why?

Reference
[1] Gerald Weinberg (1971) The Psychology of Computer Programming
[2] http://www.retrospectives.com/pages/retroPrimeDirective.html

Pete’s new book – Becoming a Better Programmer –
has just been released. Carefully inscribed on dead
trees, and in arrangements of electrons, it's published
by O'Reilly. Find out more from http://oreil.ly/1xVp8rw
MAR 2015 | | 5{cvu}

http://www.retrospectives.com/pages/retroPrimeDirective.html

IAN BRUNTLETT
On and off, Ian has been programming for some years.
He is a volunteer system administrator for a mental health
charity called Contact (www.contactmorpeth.org.uk).

LAMP on Ubuntu
Ian Bruntlett shares his notes on setting up

a basic web application.

ometime in 2014 I started working my way through an Internet
programming book – Learning PHP, MySQL, JavaScript, CSS &
HTML5 (LPMJ). Whilst it is a good guide, I had to research certain

system administration details myself. This document was written using my
personal notes, text books and a computer with a fresh install of Ubuntu
14.10. As approved of by that book, I have reused some of their examples.
Please note this is a study exercise – commercial websites are likely to do
things differently for scalability and security.

First my personal preferences. I installed Synaptic Package Manager
because I like its front end – it helps me explore the packages available. I
also installed ttf-mscorefonts-installer which in turn installs some free
fonts from Microsoft – in particular it provides me with Times New Roman
and Comic Sans MS. I also installed an editor – emacs – because I like it :)

Packages to install..
Here are the actual names of the packages involved:

 apache2, apache2-doc – this is the webserver and its documentation
in particular /usr/share/doc/apache2-doc/manual/en/index.html

 mysql-server, mysql-client (for the server you will need to decide on
a ‘root’ MySQL password – this is not the same as your ‘root’ Linux
password). Do not lose it.

 php5, php-doc (manual in /usr/share/doc/php-doc/html/index.html)

 php5-mysql

Setting files up
Start up a terminal window/shell window. When you are typing these
commands, replace ian with your username. Type in this command:

 sudo chown ian:ian /var/www/html

The directory /var/www/html is used by Apache to find its HTML files.
This command changes the owner and group ID of that folder so that you
can put your HTML files there. There is an index.html file, owned by root,
already in that directory. To view it, start a web-browser and type in an
address of localhost. You should see the Apache2 Ubuntu Default Page.
As we are going to modify that file for our own purposes, do this:

 cd /var/www/html
 mv index.html index_original.html

From now on I am going to refer to var/www/html as ‘HTML Home’.

Our first webpage
Still in HTML Home, start a text file and type in Listing 1, saving it as
index.html.

You can then check the integrity of the HTML script by clicking on the
‘Site to validate etc’ link, select ‘Validate by File Upload’ and use the
‘Browse’ button to get to /var/www/html/index.html

Configuring Apache for ease of development.
Apache – displaying errors present in PHP.

To display syntax errors, assign rights to edit /etc/php/apache2/
php.ini and in that file, set these settings on: display_errors,
display_startup_errors.

They are very useful. After changing these settings either send the Apache
process a SIGHUP or reboot your computer.

When you want to use your development computer as a webserver (not
a lwa ys t he be s t i dea) , s e t t he se (display_errors ,
display_startup_errors) settings to Off.

Our first piece of PHP5
Insert this line into index.html:

 An
 almost blank PHP file.

And put the HTML file in Listing 2 in HTML Home, named blank.php.

Save it, press F5 and click on ‘An almost blank etc’ file. In the <h2> tag
pair, you should notice there is a bit of PHP there. Congratulations, you
have created and run your first PHP programme.

 S

Listing 1

<!DOCTYPE html>
<html>
 <head>
 <title>Ian's LAMP index.html</title>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8">
 </head>
 <body>
 <h2>Ian's LAMP files test area</h2>

 Site to validate HTML5 files.

 </body>
</html>

Listing 2

<!DOCTYPE html>
<html>
 <head>
 <title>Ian's LAMP experiments</title>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8">
 </head>
 <body>
 <h2>Ian's LAMP <?php echo __FILE__ ?> for CVu
 magazine </h2>
 <p>
 <?php
 echo "blank";
 ?>
 </p>
 </body>
</html>
6 | | MAR 2015{cvu}

www.contactmorpeth.org.uk

Our system has been set up to have a webserver (Apache), a scripting
language (PHP5) and a database server (MySQL).

Creating a database
Go to a command prompt and type in “mysql -u root -p” and type in your
MySQL root password. This gets you to the MySQL command prompt.

 ian@turing:/var/www/html$ mysql -u root -p
 Enter password:
 Welcome to the MySQL monitor. Commands end with
 ; or \g.
 (some redundant details removed).
 Type 'help;' or '\h' for help. Type '\c' to clear
 the current input statement.
 mysql>

Before we can store any information, we need to set up a database. Type
in these commands:

 create database publications;
 use publications;

And you should see:

 mysql> create database publications;
 Query OK, 1 row affected (0.00 sec)
 mysql> use publications;
 Database changed
 mysql>

Creating a database table
Also at the MySQL prompt, type:

 drop table classics;
 CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 isbn CHAR(13),
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year),
 PRIMARY KEY (isbn)
) ENGINE MyISAM;

Populating a database table
Here are some SQL statements to populate the above classics table:

 INSERT INTO classics (author, title, category,
 year, isbn)
 VALUES('Mark Twain','The adventures of Tom
 Sawyer','Fiction', 1876,'9781598184891');

And to verify that those statements worked, type this into a MySQL
prompt:

 select * from classics order by author;

You should get the result shown in Figure 1.

Accessing a database on a web page
First you need to have database login details. In the LPMJ book, a file
called login.php is used. Type Listing 3 into /var/www/html/
login.php :

+---------------------+------------------------------+-------------+------+---------------+
| author | title | category | year | isbn |
+---------------------+------------------------------+-------------+------+---------------+
| Mark Twain | The adventures of Tom Sawyer | Fiction | 1876 | 9781598184891 |
+---------------------+------------------------------+-------------+------+---------------+
1 row in set (0.00 sec)

Fi
gu

re
 1

Listing 3

<?php // login.php
 $db_hostname = 'localhost';
 $db_database = 'publications';
 $db_username = 'root';
 $db_password = 'Your Password Here';
?>

Listing 4

<!DOCTYPE html>
<html>
 <head>
 <title>Ian's LAMP and PHP experiments</title>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8">
 </head>
 <body>
 <h2>Ian's LAMP <?php echo __FILE__ ?> from
 Chapter 10 Accessing MySQL Using PHP</h2>
 <p>
 Doing database stuff
<?php
 function connect_to_db($host,$user,$passwd)
 {
 echo "
Hi from connect_to_db()
";
 echo "
login details : Username $user,
 Hostname $host
";
 $db_server = mysql_connect($host, $user,
 $passwd);
 print "
db_server = $db_server
";
 if (!$db_server) die("Unable to connect to
 MySQL: " . mysql_error());
 else echo "Connected to server
";
 mysql_select_db("publications")
 or die ("Unable to select database: "
 . mysql_error());
 echo "Database selected
";
 return $db_server;
 }
 function one_at_a_time_results($result)
 {
 echo "Hi from one_at_a_time_results $result

";
 $rows = mysql_num_rows($result);
 for ($j=0; $j<$rows; ++$j)
 {
 echo 'Author: ' . mysql_result
 ($result, $j, 'author') . '
';
 echo 'Title: ' . mysql_result
 ($result, $j, 'title') . '
';
 echo 'Category: ' . mysql_result
 ($result, $j, 'category') . '
';
 echo 'Year: ' . mysql_result
 ($result, $j, 'year') . '
';
 echo 'ISBN: ' . mysql_result
 ($result, $j, 'ISBN') . '

';
 }
 }
MAR 2015 | | 7{cvu}

In The Toolbox #10

LAMB on Ubuntu (continued)
Li
st

in
g

4
(c

on
t’d

) Then you need a programme to access the database in HTML Home.
Something like /var/www/html/db_experiment.php (Listing 4).

Once that programme is stored, it can be run from within a web browser.
Star t a browser and type in this address : h t tp : / / localhos t /
db_experiment.php

You should see something like Figure 2.

And that’s it!

 function row_at_a_time_results($result)
 {
 echo "Hi from row_at_a_time_results $result

";
 $num_rows = mysql_num_rows($result);
 for ($j=0; $j<$num_rows; ++$j)
 {
 $row = mysql_fetch_row($result);
 echo 'Author: ' . $row[0] . '
';
 echo 'Title: ' . $row[1] . '
';
 echo 'Category: ' . $row[2] . '
';
 echo 'Year: ' . $row[3] . '
';
 echo 'ISBN: ' . $row[4] . '

';
 }
 }
 require_once 'login.php';
 $db_server=connect_to_db($db_hostname,
 $db_username,$db_password);
 $query = "SELECT * FROM classics";
 $result = mysql_query($query);
 if (!$result) die ("Database access failed: "
 . mysql_error());
 echo "Query $query succeeded

";
 //one_at_a_time_results($result);
 row_at_a_time_results($result);
 mysql_close($db_server);
?>
 </p>
 </body>
</html>

Ian's LAMP /var/www/html/db_experiment.php from
Chapter 10 Accessing MySQL Using PHP

Doing database stuff
Hi from connect_to_db()

login details : Username root, Hostname localhost

db_server = Resource id #2
Connected to server
Database selected
Query SELECT * FROM classics succeeded

Hi from row_at_a_time_results Resource id #3
Author: Mark Twain
Title: The adventures of Tom Sawyer
Category: Fiction
Year: 1876
ISBN: 9781598184891

Figure 2
The Developer’s Sandbox
Chris Oldwood wants to be in control.

e often talk about developers working in ‘isolation’ or use the
term ‘sandbox’ to describe an environment that cuts ourselves off
from the outside world. But what exactly do we mean by these

terms – what is on the inside and what is on the outside? There are often
many different sandboxes in the development process too, for example the
build pipeline and the various test environments. Some of these are ‘larger’
than others, where size could be measured in terms of the number of
processes, machines and network paths collaborating together.

The aim of this article is to look at various different sizes of development-
level sandboxes and explain what problems I’ve commonly encountered
when using them. As will become apparent later you’ll see what I
personally consider is the ideal sandbox for day-to-day, user-story
development work. That last qualification is important because when I’m
doing support or localised system-level testing I probably need to loosen
the sandbox constraints to bring in some external dependencies, but ideally
under tightly controlled conditions [1].

Component/integration/acceptance tests
To be doubly clear this is not about unit tests – it’s about developing and
running component, integration and acceptance level tests. Unit tests
naturally have no dependencies but once we have run those and our
confidence starts to build it’s nice to start bringing in fast running tests that
talk to real dependencies to start gaining further confidence that all the

units have been assembled correctly and are still working together as
intended.

The kinds of services I’ve been developing in recent years have been
developed outside-in, starting with a failing acceptance test and then
moving inside the service, sometimes leading to writing a combination of
integration, component and/or unit tests before ‘unwinding the stack’.
Whilst they often have a real (e.g. out-of-process) database and messaging
service in play for the acceptance tests they all still run to completion
within a couple of minutes. Even so they exercise the majority of code
paths which leads to high degree of confidence in the functional aspects
of any change before it is committed by the developer.

Hence this article is about where those ‘heavier’ 3rd party dependencies
live and how we can cope with the potential disruptions they have a habit
of producing. Once we leave the simplicity and beauty of the in-memory
sandbox that unit testing provides we enter a realm where side-effects can
become persistent. If we’re not careful we start chasing our own tails due

 W

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
8 | | MAR 2015{cvu}

to test failures outside our control, or worse, start to ignore test failures we
believe our changes could never have caused; that is the start of a very
slippery slope.

Network-level sandbox

At the extreme our degree of isolation might only be to avoid us affecting
the production system. More typically we create named environments,
such as DEV and UAT, which are usually partitioned on a (virtual)
machine-wide basis.

From a developer’s perspective this kind of environment means there is
some form of shared infrastructure in use, such as a database, file share or
message bus. Once we have any form of shared resource we start to bring
in the possibility of noise to the development process, which, as mentioned
earlier can manifest itself as test failures outside our control. Nothing kills
a state of ‘flow’ more readily than an unexpected test failure and shared
resources increase the likelihood of that happening.

When any test fails my immediate reaction is that it’s my fault – I’m always
guilty until proven innocent. Not every line of code (production or test) I
come across is easy to reason about and so I have to assume the worst.
Tolerating transient test failures just leads to distrust and an eventual
‘blindness’ whereby the test provides no value
because its failure is ignored. Eventually someone
will get fed up and just comment the test out
altogether or add the ‘ignore’ attribute so that it
never runs. Now the test is just an illusion that buys
us false hope.

Barriers

Years ago the need to share infrastructure was borne
out of cost – not every developer could afford to have an instance of SQL
Server or Oracle on their machine due to the high licensing costs. In today’s
world there are ‘developer’ editions of the big iron products which help to
alleviate this cost. The NOSQL databases are usually free and only come
with the kind of limitations a developer would never breach as part of their
normal development cycle anyway. The same goes for web servers and
message queuing products too. What is more likely to make this set-up
unusable is either a draconian usage policy [2], where you have no rights
to install anything, or the machine is woefully underpowered and couldn’t
take the extra strain of additional services in tandem.

Putting aside these reasons why you might have to suffer the sharing of
services another problem they create is that it can make remote working
even more painful. If the organisation does not provide a VPN or some
form of remote desktop then you cannot easily work outside the confines
of the office. Even with a decent broadband connection I’ve seen test suites
take an order of magnitude longer to run because of the latency that starts
to dominate on all the underlying remote service connections created
during the test runs. In some cases the firewall covering the VPN may only
be configured for the ‘standard’ network traffic (think SharePoint) and so
you might be blocked from accessing your modern NOSQL database due
to its use of unusual port numbers. As for working on the train during your
daily commute or business trip, that would just be a non-starter.

Partitioning data

The usual technique for dealing with shared infrastructure is to partition
either at the schema-level or data-level. For databases you can have your
own named database within an instance and for message queues the queue
name could encompass some derivable prefix or suffix, such as your login
or developer machine. These values work nicely for an out-of-the-box
configuration option but as we shall see later being able to easily override
them, such as through a defaulted environment variable, is often desirable
anyway [1].

At least with this kind of partitioning you are only really sharing the service
itself with other developers. Hopefully the product is reliable, which is
presumably why you picked it, the data volumes are low, and so the
chances of failure are mostly down to hardware issues of some description.

The use of virtual servers would make this kind of problem largely a thing
of the past if it wasn’t for all the bureaucracy that can be required to get
the VM up and running again on another host. The security patching cycle
that goes on every month has also been known to take down a crucial
development server or two in the past so it’s not all plain sailing.

The second option is to partition at the data level. This usually involves
adding prefixes and/or suffixes to the data in such a way that you can
uniquely identify your own test data to distinguish it from your
colleague’s. This can be a useful technique but it starts to have an impact
on both your production and test code as your design inherently has to
acquire the ability to pre and post-process data down in the stack. If you’re
lucky this will already be a required part of the design and the application
of some classic design patterns, such as DECORATOR, will minimise the
impact. If not you’re adding complexity to the code which might be
avoidable via other means. Granted it may not be a huge leap in
complexity, but it is still something which differs (code wise) between
what you run in development and what is actually running in production.

Due to the potentially low-level nature of trying to work this way, it also
affects the way you write your tests. Now you have to be mindful of other
developers and so can’t just truncate a data table or purge a message queue.

Instead you have to delete only your own data from
a table or carefully drain the message queue without
disturbing the order of other messages. I’m not even
sure the latter is entirely possible (I’ve only seen
teams take the hit on the disruption when tests are run
concurrently, i.e. just keep running them until they
do pass).

Sometimes you are not in complete control of all the
data which is generated – database identity columns

are a case in point. If you rely on them to generate the IDs for your entities
you either have to write a different query to identify your data or make sure
you capture the identity values in some way so you can refer to them later.
Identity columns might not partake in transactions so you can’t assume that
N inserts will result in rows with N consecutive identity values when run
concurrently with other tests.

Aside from server failures the other big disruption to using shared
relational databases with data-level partitioning is schema changes. If
another developer needs to change the schema or some shared code, such
as a stored procedure, it affects everyone. This also implies that the
database must always be running the latest code – reverting the database
back to match the current production schema is out of the question without
interfering with the rest of the team. Whilst NOSQL databases are
inherently schema-less this does not mean schema problems do not
happen. On a fast moving codebase with heavy refactoring the schema may
be changing rapidly without formally bumping any internal ‘schema
version number’ such that breaks in serialization occur. They should be
infrequent, but it’s important to be aware that it’s still possible when
sharing infrastructure.

Machine-level sandbox
Being able to work isolated from the rest of the team (infrastructure wise)
is a useful step up. Once you remove what’s going on around you from
the potential sources of noise you then only have yourself to blame when
something goes wrong; although maybe a group policy update or security
patch will still catch you unawares every now and then.

Being master of your own castle gives you the power to play and tinker to
your heart’s content without the fear of disrupting your entire team. Want
to restart your database, IIS, or the messaging service to blow away the
cobwebs? No problem, just do it as there’s no need to coordinate this kind
of activity with everyone else.

This doesn’t mean that your setup can be entirely ad hoc though. Although
you can assume that the service name will be ‘localhost’ in any
configuration it helps if developers stick to a consistent set of port numbers,
etc. so that the default configuration stored in the version control system

the sharing of
services ... can make
remote working even

more painful
MAR 2015 | | 9{cvu}

should just work on any developer’s machine. This is especially useful for
getting a new joiner up and running quickly.

Shared local services

Exactly because everything is running locally on every developer’s
machine you don’t have to play games with the names of databases or
message queues as you can all use the same name. The ability to easily
configure such settings is useful for other test environments or scenarios,
but for the common case – developing user stories on the default
integration branch (e.g. trunk) – it should just work as is.

Whilst this set-up is more stable than having to share infrastructure it does
not come without it a few of its own problems. Sometimes you might feel
like a part-time system administrator, which is A Good Thing from a
DevOps perspective, but can be a distraction when you really just want to
get your story finished. For example IIS and IIS Express play games in the
background that can leave your test failing, despite you putting in the
working implementation, only to find it was still using the old, cached
failing implementation. User rights are another area of contention as
services tend to run under privileged accounts which makes debugging
harder. Being forced to develop as an administrator
is not a good habit and is probably what makes some
companies nervous enough to disallow any local
administrative rights altogether [2].

Not sharing services also implies that there are many
more copies of that service around, which means that
there will likely be different variations as each
developer upgrades his or her machine at different
times. Whilst ‘it works on my machine and the build
server’ is great for your confidence, you might still
end up helping out the one colleague who can’t get it
working on their machine because of some weird
issue related to them having a different version of a
product or driver. Of course this kind of problem can be easily mitigated
by having some notes on a wiki or a set of scripts that ensure everyone gets
to install the same version at each upgrade. This also ensures that those
who may be inclined to always get the latest and greatest beta directly from
the vendor are also in sync.

Internal services

3rd party products are, or should be, fairly stable. Aside from bug fixes
one doesn’t tend to switch major versions of a database on a whim so the
problems cited above are probably a little over dramatic. Where this
problem can start to creep in is with internal (i.e. the business’s) services
which you’d hope would evolve more rapidly as the company’s priorities
change. If you work on a team that is responsible for developing a number
of small, independently deployable services, then you will have to decide
how much coupling you want to take-on to balance detecting API breaks
early versus reducing disruption to others though API breaks unrelated to
what they are working on.

When the team develops a number of services that are dependent on one
another, even if they’re independently deployed, there is a temptation to
either include them all in the same solution, or try and reuse them for
integration and acceptance testing. Doing this in the build pipeline makes
perfect sense as you are usually interested in building layers of trust by
integrating more services to ensure they still work together. However, I’m
not convinced that this set-up is quite so desirable on a developer’s
workstation.

If you’re working on the interface between the two services then you’re
probably interested in those problems showing up. The majority of the time
however is unlikely to be spent that way and other features will should not
be directly dependent either as that would be a sign of unnecessarily tight
coupling. If those services are not mocked locally within the solution, then,
any time you integrate upstream changes for the solution you’re working
on, you need to update the dependent solutions too, lest you run the chance
of an ‘impedance mismatch’ occurring when running unrelated tests.

Part of the motivation for moving to much smaller services with more well
defined contracts is to decouple their evolutions and that has a knock-on
effect into the amount of isolation you can afford to take on. This is
especially true when you have a build pipeline that can easily verify each
service in isolation and then deploy the services together and verify their
respective contracts are being honoured by their consumers.

Source folder sandbox
One of the key concepts that the rise in Functional Programming is
bringing to the forefront is the notion of side-effects, and that is exactly
what makes testing noisier than it should be. Most of the problems
mentioned above are the result of side-effects – the output of binaries and
test run data that leaks outside the (supposedly transient) test environment.
This leaked state then pollutes further test runs for ourselves and
potentially others until we can revert back to a known good state.

Whilst isolation at the machine-level generally provides us with our
biggest bang-for-buck, it’s possible to strive to eliminate even the use of
shared local services so that each source folder becomes an independent
test environment. Some of the systems I’ve worked on have been able to

have two source folders of two different revisions of
the same product be built and tested concurrently.
This then easily leads to an ability to run them side-
by-side too which has been very useful for
investigating unintended differences not picked up
by the automated tests.

What makes this finer-grained sandbox achievable is
the ability to host more of the dependent services in-
process, or if out-of-process, then it should be
configured, started and managed by the test suite
itself rather than being a classic machine-wide
daemon. For databases this could be done using an in-
process version like SQL Server Compact Edition or

SQLite [3], or an out-of-process mock such as CouchbaseMock [4]. With
.Net based web APIs the newer OWIN stack is designed to support hosting
multiple APIs in the same process, albeit under different app domains.
Even the traditional TIBCO messaging service can be started on-the-fly.

Naturally this implies that for a distributed system you are not running
exactly the same versions of the those services, but the point of the exercise
is not to replicate the production environment, but to trade-off ease of
development with the ability to pick up fundamental bugs caused by simple
integration mistakes. It’s always easier to debug on your local machine as
you have your entire toolbox at your disposal.

Running two codelines [5] side-by-side where there are services that listen
on network ports likely won’t work out-of-the-box as it’s often easier to
fix the port numbers to create a more deterministic configuration.
However, as was mentioned earlier, it helps if key settings such as these
can be easily tweaked, perhaps through the use of environment variables,
to make it painless to expand the sandbox as needed.

Epilogue
I once started a new job and was presented with a 50-page document
describing what I needed to do to set-up my development machine.
Admittedly it covered a few other things as well, but even so the process
seemed far too convoluted just to get into the code.

Nowadays I’d expect to install the core language toolset and the version
control client and pretty much be done, at least, to get started that is. From
this meagre configuration I should then be able to create a working copy
of the latest source code from the repo, build it and run the core test suites
to verify that I’m all set up. At this point I should now be in a position to
start making most normal code changes that could be pushed to production
via the standard build pipeline. The only scenarios initially out of my reach
would require me to know more about a production-like set-up, but that
will come in due course.

It’s not always possible to create and develop in the sandbox of your own
choosing but where possible I’ve found it well worth the effort to strive to

you don’t have to
play games with the
names of databases
or message queues

as you can all use
the same name
10 | | MAR 2015{cvu}

The Developer’s Sandbox (continued)
remove as much noise as possible from sources outside my control. The
more constrained you make your sandbox the more confident you feel
about exploring the codebase and the system without constantly looking
over your shoulder to see if any of your meddling has disturbed your team
mates.

References
[1] ‘Testing Drives the Need for Flexible Configuration’, Chris

Oldwood, Overload 124
[2] ‘Developer Freedom’, Chris Oldwood, C Vu 26-1
[3] http://www.sqlite.org
[4] https://github.com/couchbase/CouchbaseMock
[5] SCM Patterns by Stephen P. Berczuk with Brad Appleton
THADDAEUS FROGLEY
Thaddaeus started programming on the ZX81 when he
was 7 years old, and has been hooked ever since. He
has been working in the games industry for over 20
years. On Twitter he is @codemonkey_uk or reach him
by email: thad@bossalien.com

What Do People Do All Day?
Thaddaeus Frogley shares his day to day

activities as a games programmer.

work as a programmer for BossAlien, an award-winning game
development studio based in Brighton, UK. We are part of the broader
NaturalMotion team based in Oxford and largely operate as an

independent studio.

I am currently the lead programmer on the client team of CSR Racing, a
popular drag racing game for mobile phones and tablets. We operate as a
live-game team on CSR Racing, meaning we work on updates, listen
closely to player feedback, add content and features and fix bugs. My time
is split between team leadership work, programming and what we refer to
as ‘data-wrangling’.

The team
Our office of about 60 staff in Brighton maintains a relaxed informal
atmosphere and internal work culture.

The programmers have a range of seniority, from fresh graduates all the
way through to grizzled veterans, with years of experience distributed in
exponential steps.

We have a mostly open plan office on a single floor, with two meeting/
conference rooms, teleconferencing facilities, a kitchen and a shower.
Some people, myself included, use standing desks. There is music played
in the office which draws from a shared playlist, with different parts of the
office having separate control over volume. People play musical
instruments, nerf guns and board games at work.

The software
The game client is written mostly in C# (221kloc) and is based on Unity3D,
a very popular game engine. In addition to C#, we work with Objective C
(25kloc) on iOS, and Java (34kloc) on Android. The server side, both
player facing APIs, and internal tools are written in PHP and C#, but that
is handled by the infrastructure team, so I don’t have to worry about it. We
also use a number of 3rd party SDKs, libraries and plug ins.

In addition to the code itself, the game also consists of ‘prefab’ files, which
describe much of the visual and logical structure of the game, including
the UI, in a proprietary format specific to Unity3D. Most of these are
created using the GUI tools that make up the Unity3D editor, but total
1304kloc! Finally, there are the binary assets: audio, graphics, textures,
geometry and other non-textual data. In total the working copy is ~7GB,
and the built deliverable is close to 300MB per platform.

We use git to manage all the source assets and the build products. We have
recently had to take corrective action and reorganise to reduce the size of
the full repo, which had ballooned to 35GB. This was done by purging the
build products from the main repo. We have started to use git submodules
to support reuse and to logically separate other parts of the repo.

We use feature and release branches in git. As I write this, there are
currently 49 branches on the remote. We also have, independent of git, a
system for delivering game assets (art, and configuration files, we aim to
be able to control as much as we can via data that we deliver live over S3),
which has its own branching system. This means we often have a parallel

 I This article was inspired – you could even say ‘requested’ – by Chris
Oldwood’s post on accu-general:

A plea – more articles on what kind of programming you do
Hi All,

Something I’ve tried to do in my own articles in C Vu and
Overload is to try and give some context to the kind of
programming I do, because I know it’s different from what many
others do. In particular I’m interested to know what kinds of
constraints, or lack of them others have to put up with.

For example, I remember an accu-general thread about unit
testing and how that might/might not be as easy to apply in the
gaming industry. Those in the embedded market have
historically avoided C++, when perhaps it’s certain features of
C++ they couldn’t afford. Floating-point maths is apparently a no-
no in finance, unless you’re doing large volumes of risk
calculations and then performance trumps precision (well, in the
bits of finance I worked in). How does the inability to patch a video
game because it’s delivered on a read-only cartridge affect the
development process?

I don’t know about anybody else in ACCU, but I want to know
more about the kinds of stuff other people do. And in particular
what makes it different to what I do. I appreciate it’s often tricky
to know what’s different (unconscious incompetence) but in
those cases when you have had to make a trade-off – what was
it and why? When have you read a blog post or book about some
cool technique and then shouted at it because it has no place in
your industry/organisation/etc?

I’m sure the editors of our C Vu and Overload journals would be
more than happy to receive more content...

Hopefully, this will become a series.

The inspiration behind the series...
MAR 2015 | | 11{cvu}

http://www.sqlite.org
https://github.com/couchbase/CouchbaseMock

branch structure. Our builds – asset system – exists in three stacks: Dev,
QA, and Release. These various orthogonal configuration axis provide us
with a lot of power and flexibility, but can be quite confusing for the
uninitiated.

We avoid code ownership and try to share knowledge about systems
around the team, using a mixture of code review, mentorship, regularly
changing areas of responsibility and documenting work flows. Code is
expected to be self-explanatory first and well commented second. We
don’t have a fixed coding style or standard, instead using the convention
that your code should be consistent with the code around it.

The builds for QA and for Release are produced by a build machine, using
Pulse, and a set of custom build scripts. A change (code or art) can be tested
in the editor in seconds. Certain asset changes need to be ‘bundled’, which
can take a minute or so. A development build can be created and deployed
to a device in the time it takes to make a cup of tea. Iteration times are very
important and anything that slows the team down is considered a high
priority problem.

The hardware
Most of the programmers have Apple laptops with external monitor(s),
keyboard, mice and headphones. Specific individuals may have a PC or
Windows laptop instead or as well depending on what their work requires.
Most of the build machines are Mac Minis or retired laptops. People can
take their laptops home and can work remotely if required. We have a
single rack of servers for internal services, file shares, routers, etc., using
AWS for the player facing servers. There is a pool of iOS and Android
devices of for testing development builds on.

The process
We have to juggle a surprising number of challenges. Players in CSR
Racing are always looking for new content and new things to do, so we
are consistently adding new features based on demand. It’s critical for us
to listen to and respond to player feedback. There are also new platform
updates to be aware of, so we are always working hard to keep SDKs for
integrations with external services up to date. We also have to be mindful
to harden our system security as hackers sometimes look to cheat and
exploit the game. As a competitive game, it’s critical that we maintain a
consistent level of fairness.

We have a release and high level features plan, which is discussed
regularly. The time line for this is maintained centrally across teams and
is frequently updated and referred to, with notes about staff vacancies and
other important calendar events. We closely monitor progress and shift
resources to where they are needed in order to keep our commitments. We
regularly discuss capacity and strive not to over commit. Overtime is rarely
requested, and is never obligatory. Individual tasks and bug reports are
kept track of using JIRA. Work is organised into releases of two types:
Code Drops, and Data Pushes. With code drops we are gated by the
platform holders and have roughly a 3-week latency from a Release
Candidate to the update going live on App Store(s). A Data Push, on the
other hand, contains no code (though some configuration files come close
to a complexity that could be described as programming!), but game data
that is pulled by clients with an internet connection from our S3 file store.

This doesn’t go through a publisher approval process and can be subject
to change as little as hours before it is published to players.

Whatever is pending release, our QA team is also constantly working on
testing features in various stages of development. Email is an important
tool for our asynchronous communications within the team, but we also
have lots of face-to-face time, including regularly scheduled one-on-one
chats.

We are able to release different code and data for each of the platforms we
support, but we strive for feature parity and same day releases on all
platforms.

Every day is different, but for me a typical day might start with reviewing
the previous day’s commits, and setting up any relevant code reviews. I’ll
likely then check my email, respond to questions about the project and do
some code reviews. I’ll check JIRA and possibly triage any new bugs with
the QA lead, and the project manager. If it’s a Tuesday or a Thursday, we’ll
have a core team stand up meeting. I am responsible for the overall
technical health of the project, so I have to play it by ear, identifying things
that need doing, and either doing them, or making sure the right person
does. This might be debugging and bug fixing, implementing new code,
or helping plan code work. It could be auditing the branches in git and
making sure the features get merged in where they are needed. Sometimes
it’s testing, sometimes it’s setting up data to implement new features using
data driven systems. We have kick-off meetings, and post-mortems for
bigger chunks of work, so we can reflect on and improve our processes
actively. Our general philosophy is to let people use the tools they prefer.
I use Sublime, and TextWrangler. Some people use Xameran, others use
MonoDevelop. The technology stack we use means debugging often has
to be done via logging, as remote debugging the C# using MonoDevelop
has stability problems. In addition to using git on the command line, we
use SourceTree.

Recruitment is an important part of the company strategy, so group CV
review is a regular feature of office life. Applicants who pass the CV screen
are invited to do a remote code test, the results of which are discussed by
the whole code team. The ones that pass that filter are invited to come in
for a face to face interview.

The future
CSR Racing continues to be one of the world’s most popular racing games
on mobile and tablet.

Our goal is to continue to delight players – both those new to CSR Racing
and veterans.

While we do that, we try to improve the tools, workflows and the code itself
so that all this can be done at the same rate, but with fewer people, freeing
up more of the team to help with the development the company’s next
game(s).

End
If you’d like to hear more about the development of CSR Racing, I will be
talking about it on Wednesday the 22nd of April, at the ACCU 2015
Conference in Bristol.
12 | | MAR 2015{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines.

We need articles at all levels of software development experience; you don’t have to write about rocket science or
brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

Simple Android programming with WebKit
Silas S. Brown shares his trials with

developing for mobile devices.

don’t like modern smartphones. It seems the
manufacturers are trying to trick people into thinking
that the lack of real buttons is some kind of progress,

as a lame excuse for their having become too lazy to make
keyboards. Nowadays if you want a keyboard you are
expected to buy it as a separate add-on and perform a
juggling act on the streets.

I’m still waiting for the great keyboard revival, but
meanwhile other people are asking me to develop for
touch devices and I reluctantly bought a Sony Xperia Z
Ultra for a project. Much to my annoyance, within one
month of purchase it started registering false screen-
presses by detecting moisture from my breath: they
obviously didn’t realise people with limited eyesight
might hold it close. And needless to say I can hardly type
on the thing (an application called ‘Hacker’s Keyboard’
with its good Dvorak layout helped a bit, but it’s still not
as good as a real keyboard); the pocket Bluetooth
keyboard I ordered never turned up.

Anyway, the canonical way to program these things is to
download the Android Developer Tools (ADT) [1]. The
Eclipse-based ADT is a bit – how should I put this? –
‘wobbly’. Not every version installs OK. One version I
downloaded ended up not being able to create new
projects (well, it could create new projects, but the empty
project wouldn’t build, although it could still open
projects created with an earlier version of ADT).
Sometimes when using ADT you have to wait for it to
finish its background operations before it’ll do what you
want without errors, because the code that’s supposed to
do this automatically doesn’t always work. Sometimes
there are other timing-related bugs, so you generally have
to act nice and slowly as if not to confuse the poor
computer. Sometimes you have to press F5 on the
Package Explorer to force a refresh, although that’s
supposed to happen by itself when necessary but it doesn’t
always work. And every version of the ADT is different,
so if I tell you what to do in one version then the
instructions likely won’t work in another. Bring back the
command line!

If you do manage to create a project that builds, I’d suggest
the first thing you should do is to create a WebView and
write some HTML for it. That way you can get an
application up and running quite quickly. The HTML can include
Javascript that calls back into the Java code (and, as it turns out, C code:
more on this later), or you could just write a Javascript-based Web
application and use ADT to package it into an ‘app’ as a convenience for
offline use (but please don’t write an app that just browses an online site
with no additional functionality: apps like that are generally annoying, as
users tend to think ‘I can browse the web myself thank you very much’;
to justify a dedicated app, it either has to include its own offline content
or else apply some kind of offline processing to the pages it retrieves so
it’s not just a poor imitation of the general Web browser).

The project’s res/layout/activity_main.xml file should look like
Listing 1, and the code itself should be something like Listing 2. Then you
can place the HTML into the assets folder, the main file being

index.html: I would suggest making it ‘mobile friendly’ as in Listing 3.
Then refresh the ADT (highlight the Package Explorer and press F5), wait,
and try it out with Run / Run As / Android application. ADT will use a
real device if connected, otherwise it will start an emulator, and either way,
if it works, you’ll be left with an APK file in the bin directory which you
can distribute to others if they have ‘Unknown sources’ enabled in their
‘Application settings’ or ‘Security’.

 I <?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 android:orientation="vertical">
 <TextView
 android:layout_height="wrap_content"
 android:layout_width="fill_parent" />
 <WebView
 android:id="@+id/browser"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent" />
</LinearLayout>

Listing 1

import android.webkit.WebView;
import android.app.Activity;
import android.os.Bundle;
public class MainActivity extends Activity {
 WebView browser;
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 browser = (WebView)findViewById(R.id.browser);
 browser.getSettings().setJavaScriptEnabled(true);
 int size=Math.round(16*getResources().getConfiguration()
 .fontScale);
 browser.getSettings().setDefaultFontSize(size);
 browser.getSettings().setDefaultFixedFontSize(size);
 browser.getSettings().setDefaultTextEncodingName("utf-8");
 browser.loadUrl("file:///android_asset/index.html");
 }
}

Listing 2

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

<html>
 <head>
 <meta name="mobileoptimized" content="0">
 <meta name="viewport" content="width=device-width">
 </head>
 <body>
 You should not have to zoom in to see this.
 </body>
</html>

Listing 3
MAR 2015 | | 13{cvu}

Notice Listing 2 has three ‘size’ lines to set the font size according to the
system’s font size setting. I’m putting this in ‘right off the bat’ because I
believe getting it right is important (some people need big print, and, if you
don’t, you probably will when you’re older). It’s a pity Google didn’t make
this the default behaviour with their WebView component.

There are quite a few things missing from our application: the Back button
won’t work, ‘pinch to zoom’ won’t work, Javascript alerts won’t work,
local storage won’t work, the page state is reset when you rotate your
device, and there is so far no way to specify that certain links should open
in the ‘real’ browser rather than our app. All of these can be fixed by adding
more code to ‘switch things on’, and it gets tedious, so if you’re interested
I’ll refer you to my ‘html2apk’ code [2], which addresses all of these issues
and also adds a Javascript object for clipboard interaction.

Adding Java and C functionality
You can provide extra Javascript objects implemented in Java by writing
something like Listing 4. Then you can call these from the Javascript in
your web pages, e.g. document.write(myObject.test('hi'));

To write in C, you’ll additionally need to download the Android NDK
(Native Development Kit?) [3]. You’ll then need a JNI directory,
containing an Android.mk file like Listing 5 and an Application.mk
file like this:

 APP_PLATFORM := android-1
 APP_ABI := armeabi

Then your my_program.c should start with #include <jni.h> and
should incorporate funct ions l ike Lis t ing 6. Then back in
MainActivity.java you’ll need something like this to make your C
function available to Java:

 static { System.loadLibrary("MyProgram"); }
 static synchronized native String jniMyFunc
 (String in);

After that, you can make it available to your Javascript by changing Listing
4 to call your newly-available C function. I’d suggest not bothering with
C on Android unless you have either a lot of existing C code or a dire need

for speed: Java or even JavaScript is enough for most simple purposes and
involves less setup on this platform.

Publishing
When you’re ready to ship your ‘app’ (I tend to use the full word
‘application’, but these 4-syllable words are hard I know) on the so-called
‘Play Store’ (are we all children now? are all Android versions named after
sweets as a childish rebellion against some other company using healthy
fruit?), you’ll have to use File / Export / Export Android Application (it
lets you create a keystore and private signing key), then pay for your Play
Store account (I really think it should be free to upload if you’re doing the
platform a favour by contributing a completely free and no-adverts app for
the benefit of the community, but at least the payment is only a one-off;
Apple have a higher payment and they make you renew every year, which
is why they won’t be getting any iOS apps off me anytime soon), and
finally upload the APK and wait for it to be published on the Store. You
could just skip all this and have your users download the APK file from
your own site with ‘Unknown Sources’ enabled, and you might wish to
do it this way for a private app that you don’t want the entire public to see,
but having your app on the Play Store is a significant convenience for many
users.

When uploading future versions, you’ll need to increase the version
number in the AndroidManifest.xml file (otherwise Play Store won’t
accept it), and I’d suggest mirroring that change in the second copy of
AndroidManifest that’s in the bin directory (the mirroring is supposed to
be automatic, but due to general ‘wobbliness’ it seems that doesn’t always
happen). I’d also suggest using the Play Store ‘beta test’ facility just to
double-check your app did not somehow get corrupted during the upload
process as one of mine did. I don’t see how, as they’re cryptographically
signed, but somehow an app which worked perfectly well for me didn’t
work after my friend had uploaded it to his account on the Store: the
Javascript-to-Java callback wouldn’t run. By that time we had over 1000
users, most of whom had automatic updates enabled on their devices, so I
got several phone calls, making me feel like Star Trek’s engineer Scottie
having to fix the engines quickly before the ship explodes, and all I did
was to increase the version number one more time and ask my friend to
re-upload, after which the problem mysteriously disappeared. But not
before several users had turned off automatic updates on their devices
(which is a worry: I hope their devices will still get the security-critical
updates). After that we decided, no matter how well an APK file works
for us, we’ll always use the Play Store’s own Beta Test facility to double-
check nothing bad somehow happened during the upload process. I still
don’t know what happened (do Google servers introduce bit-flips
sometimes?) – everything about this platform seems to be ‘wobbly’.
Please don’t run anything safety critical on it.

References:
[1] http://developer.android.com/sdk/
[2] http://people.ds.cam.ac.uk/ssb22/gradint/html2apk.html
[3] https://developer.android.com/tools/sdk/ndk/

class MyObject {
 public MyObject() {}
 @android.webkit.JavascriptInterface
 public String test(String in) {
 return "You called test with "+in;
 }
}
browser.addJavascriptInterface(new MyObject(),
 "myObject");

Li
st

in
g

4

JNIEXPORT jstring JNICALL
Java_your_package_name_here_MainActivity_jniMyFunc
 (JNIEnv *env, jclass theClass, jstring jIn) {
 char *i=(char*)(*env)->GetStringUTFChars(env,jIn,NULL);
 char *o=malloc(strlen(s) + 20);
 // TODO: check o != NULL
 strcpy(o, "You wrote ");
 strcat(o, i);
 (*env)->ReleaseStringUTFChars(env,jIn,startPtr);
 jstring ret=(*env)->NewStringUTF(env,o);
 free(o); return ret;
}

Li
st

in
g

6

LOCAL_PATH:= $(call my-dir)
LOCAL_SRC_FILES := my_program.c
LOCAL_MODULE := MyProgram
LOCAL_MODULE_FILENAME := MyProgram
include $(BUILD_SHARED_LIBRARY)Li

st
in

g
5

14 | | MAR 2015{cvu}

http://developer.android.com/sdk/
http://people.ds.cam.ac.uk/ssb22/gradint/html2apk.html
https://developer.android.com/tools/sdk/ndk/

Raspberry Pi Linux User Mode GPIO in Python
Ralph McArdell finds stream based input/output

to be more convenient.

n this article I am going to discuss an alternative approach to using GPIO
on a Raspberry Pi in Python to that taken by an early version the
RPi.GPIO package [1]. The approach occurred to me in 2012 while

making a start at hardware interfacing and programming using a Raspberry
Pi with some LEDs, switches and the like that had been collecting dust for
20 to 30 years. To read and write data to the GPIO lines, I thought I would
start with Python and the RPi.GPIO package.

After playing with RPi.GPIO it became clear that it had a few
shortcomings, most obvious of which was that there was no support for
waiting on a change in GPIO input pin value. You had to poll input pins
to read their value and could not wait for input pin state change notification
events. I knew the sys filesystem GPIO interface supported this as I had
read the Linux kernel documentation on GPIO [2], and even the GPIO sys
file system supporting source code used by the Raspberry Pi’s Linux
kernel [3].

There were other ways that RPi.GPIO went about things that seemed a bit
awkward to me, such as the fact that each read or write needed to open,
write to and close various files in addition to the read or write associated
with the GPIO operation. Another was the pin identification number mode
used to indicate whether pin numbers represented raw GPIO pin numbers
or Raspberry Pi P1 connector pin numbers. It all worked but seemed a bit
clunky and inefficient. As RPi.GPIO was at an early stage of development,
I would not be surprised if more recent versions have addressed many – if
not all – of my concerns.

Putting my research into the Linux user space sys filesystem GPIO support
to good use, I had hacked together some proof-of-concept Python code that
allowed waiting on input pin edge events. The additional I/O for each pin
read or write I thought could be reduced by having some concept of an open
pin – which implies a matching concept of a closed pin. Once I started
thinking in terms like open and close, the idea to look at Python’s stream
I/O for possible concordance popped into my head (I should note that I am
not a full time Pythonista). After some poking around I found the open and
I/O documentation pages for Python 3 [4, 5].

This led me to become side tracked from other Raspberry Pi I/O interfacing
I had intended to look into to investigate further whether a similar model
could be used for GPIO, that is: an open function returns an initialised
object for the I/O operations requested that is associated with a GPIO pin.
Like the Python 3 stream I/O implementation the exact type of the object
returned would depend on the requested I/O mode for a pin. It also occurred
to me that the abstraction could be extended to cover groups of pins.

The results of my investigation are freely available on Github [6] as the
Python 2.7 package dibase.rpi.gpio. It currently is not a fully packaged
Python module and I have only updated the pin id support to cater for the
Raspberry Pi revision 2.0 boards’ GPIO pin layout and not the newer B+,
A+ and compute module variants. There is documentation available on the
Github repository’s wiki [7], which explains how to use the package. In
the rest of this article I would like to go into some of the design decisions
and implementation details.

The big picture
As I have mentioned, I was basing the overall ‘shape’ of the package on
that of the Python 3 stream I/O. In addition to an open function and the
types for the objects returned by open, the Python 3 stream I/O defines
some abstract base classes, some of which provide default

implementations for some methods, which as a long time C++ practitioner
seemed perfectly reasonable to me.

With stream I/O, we use a pathname string to identify the item to be
opened. For GPIO, pins are identified by a value that is in a (small) subset
of the positive integers. It seemed to me some concept of a pin id would
be useful to validate such values and to support both Raspberry Pi P1 pin
values (and maybe names) and the underlying chip pin id values.

One of my pet hates in code are magic values – numbers definitely and
often strings as well – and the GPIO sys filesystem interface has many
magic strings to build pathnames and for special values written to files. So
some way to abstract and centralise such magic knowledge seemed
appropriate.

As with most code modules there would almost certainly be a set of errors,
in this case most likely in the form of exceptions that would be required.

So to recap the package would require:

 an open function – in fact I ended up with two: one for single pins
and one for groups of pins

 GPIO abstract base classes

 a set of concrete classes fully implementing the ABCs to handle the
GPIO operations

 pin id value, validation and mapping abstractions

 abstractions for magic knowledge such as pathnames

 exception classes

What bases?
The set of abstract base classes and the operations they support would need
to be different from the stream I/O case. While there would be a case for
a root GPIO abstract base class similar to the Python 3 IOBase type that
declared operations common for all GPIO modes, the set of those
operations would differ. In particular it seemed a good idea to separate out
the read and write operations into separate sub-abstract base classes as
bidirectional I/O is not supported by the BCM2835 chip used by the
Raspberry Pi – that is a GPIO pin is either input or output but not both. A
further distinction was whether read operations block on-edge events or
not.

My first thought, depicted in Figure 1, was that GPIO blocking reader types
would be a sub-type of (non-blocking) GPIO reader types.

 I Figure 1

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect to
stop learning or improving his skills.
MAR 2015 | | 15{cvu}

But when it came time to actually testing and implementing a blocking read
type it became apparent that the read operation would benefit from a
timeout parameter which, obviously, is not required in the polling only
reader case, so the actual GPIO abstract base class hierarchy ended up as
shown in Figure 2.

For the GPIOBase class, I started by cherry-picking obviously useful
methods from IOBase: close, closed, readable and writable.

To distinguish blocking readers from non-blocking readers I added a query
method in the style of readable and writable: blocking.

As a GPIO pin was represented in the sys filesystem by a specific file path
that would be open so as to be written to or read from, there would be a
file descriptor that could be said to be associated with each pin – so I also
initially included a fileno method. However, later on I realised this did
not scale to the pin group case, as a group of pins would be associated with
a group of file descriptors so the fileno method of GPIOBase was
replaced by a method called file_descriptors instead which returns
a list of file descriptors. The fileno method was then defined for each
single GPIO pin implementation class in terms of
the file_descriptors method.

The readable, writable and blocking
q u e ry m e t h o ds a r e d e f i n e d b y t h e
GPIOWriterBase, GPIOReaderBase and
GPIOBlockingReaderBase to return True or
False as appropriate.

The GPIOWriterBase, GPIOReaderBase
and GPIOBlockingReaderBase base classes
also add the appropriate write or read operation.
write takes the value to be written and read
returns the value read; GPIOBlockingReaderBase’s read also takes
a timeout parameter. Implementations can take advantage of the Python
type system so that the values read or written can be either single or
multiple GPIO pin values in various forms allowing single pin and group
of pins implementations to use the same interfaces.

What did you want to open?
With stream I/O, what is to be opened is specified as a pathname string.
With GPIO, a single or group of GPIO pins would be opened and GPIO
pins are identified by a small positive integer specific to the chip(s) in
question. These numbers, formatted as strings, are used in the GPIO sys
file interface. The raw values for the Broadcom BCM2835 chip used in
the Raspberry Pi have values in the range [0, 53]. However only a subset
of these are wired up for user use on the Raspberry Pi board via the P1
header connector, and the unpopulated P5 header added to revision 2.0
boards. Most of these GPIO pins have alternative functions other than
simple GPIO as detailed in the Broadcom BCM2835 ARM peripherals
document [8].

I wanted to be able to refer to pins in various ways: raw chip GPIO pin
number, Raspberry Pi P1 connector pin number and, preferably, by a name
indicating the function of the pin, as used by the Raspberry Pi circuit
diagram [9] and elsewhere. Additionally it would be nice to prevent
inadvertently specifying a raw GPIO pin number which was not available
via the P1 connector, but not prevent specifying such pins altogether. At
the time there was only one revision of the Raspberry Pi circuit boards so
there was no P5 and no complications as to which chip GPIO pins were
brought out to which P1 pins. Sometime after the initial implementation I
got around to extending the pinid module to support Raspberry Pi revision

2 board GPIO [10] – including P5 – with mapping and validation
performed with respect to the revision of the Raspberry Pi board in use.

The design I went with has a primary class called PinId, which is
supported by various validation and mapping classes. PinId extends int
and provides class methods to create pin ids from integer values that
represent either raw GPIO pin numbers (gpio, any_chip_gpio) or
Raspberry Pi P1 and P5 connector pin numbers (p1_pin, p5_pin). In all
cases, a PinId object is returned if the passed value is valid; otherwise,
an exception is thrown. The value of this object is an int in the range [0,
53] representing a BCM2835 GPIO pin value. The validations and possible
mappings performed vary for each of these factory methods: gpio and
any_chip_gpio do no mapping but check the value is in the valid set
of pins: [0, 53] for any_chip_gpio, and only the GPIO pin numbers of
those pins that are connected to the P1 or P5 connector for gpio. p1_pin
and p5_pin first map the passed pin value from a P1 or P5 pin number
to the BCM2835 GPIO pin it connects to, if any, and if good returns the
value from gpio for this mapped pin number.

In addition to the four factory methods, PinId also provides class methods
named for each Raspberry Pi P1 and P5 connector GPIO pin, each having
the form pN_xxx, where N is 1 or 5 and xxx is the function name of the
pin in lowercase – p1_gpio_gclk for example. Each of these methods
takes no parameters (other than the class) and calls the p1_pin or p5_pin
factory method with the P1 or P5 pin number having that function. Note
that while the functions for P1 pin names should never currently fail as in
both current boards revisions the same set of pins connect to GPIO pins,
the functions for P5 pin will fail and raise an exception if called while

running on a revision 1 board that has no P5
connector.

Originally the pinid module was totally self-
contained with all the data for mapping and
validation of integer pin values defined within the
module. Annoyingly having to be hardware-
revision aware blows that out of the water. Now
the major rev i s ion as p rov ided by the
dibase.rpi.hwinfo module is used to
switch the sets of P1 and P5 connector-pin-
to-GPIO-pin maps to those relevant for the

board revision in use. In order to do this the /proc/cpuinfo pseudo file
has to be interrogated – although once read the data is cached.

Do what, how?
The Python stream I/O open function – similar to the C library fopen
function – takes a second parameter specifying the so called mode in which
to open the item specified by the file argument. The GPIO open functions,
open_pin and open_pingroup, follow this model. There seemed no
immediate need for further parameters such as the Python open function’s
buffering parameter.

Like the stream I/O open function, the mode parameters of open_pin
and open_pingroup are expected to be short strings. From open I kept
the r and w characters for read (input) and write (output) modes – although
only one can be specified – and added an optional second character that
indicates the blocking mode for pin reads – the choices are N: none, R:
block only until a rising edge transition from low to high, F: block only
until a falling edge transition from high to low and B (for ‘both’): block
until either change transition. The only valid blocking mode for pins
opened for writing is none. If the second blocking mode character is not
given then it defaults to none. If no characters are given (i.e. an empty
string is passed) then the default of non-blocking read mode is used (i.e.
it is a synonym for rN); this is the default if no mode argument is given.

When I came to implement pin groups it occurred to me that such groups
can be given either as a set of bits in an integer or as a set of Boolean values
in a sequence and this added two additional mode characters I: multiplex
pin group values into the lower bits of an integer and S: pin values are
discrete Boolean values in a sequence. These are notionally the third
character in the mode string but can be the second, in which case the

Fi
gu

re
 2

prevent inadvertently
specifying a raw GPIO

pin number which was
not available via the P1

connector
16 | | MAR 2015{cvu}

blocking mode defaults to none. Note that the format of the data
representing a pin group is set when opening a group of pins – as each
variant is handled by a separate class.

Open unto me...
The open_pin and open_pingroup functions parse the mode string to
determine the specific type of object to create and return. The returned
object will conform to one of the three abstract base class types
GPIOWriterBase, GPIOReaderBase
o r GPIOBlockingReaderBase ;
however, the types returned from read and
passed to write will differ. open_pin,
for single pins, always traffics in Boolean
values and, when writing, values that can be
converted to Boolean via the usual Python
conversion rules – with the exception that a
string 0 (a zero character) converts to
False – i.e. a low pin state. open_pingroup, on the other hand, traffics
either in integer values or in sequences of Boolean values – which when
writing each value can be a value convertible to Boolean, with 0 values
converting to False.

As implementation proceeded it became obvious that the various modes
– direction, blocking and (for pin groups only) data format – had various
related aspects. For example direction mode was specified, and needed
checking, as a character in open_pin and open_pingroup mode
parameter strings; likewise, a given direction mode dictates the string
written to a GPIO pin’s sys file system direction controlling file. It seemed
natural then to group all of these concerns into a class. Hence there are
supporting types DirectionMode, BlockMode, and (for pin groups
only) FormatMode that handle the various aspects of each of the modes.

How common!
As mentioned in the pre-amble, one of the things I wanted to achieve was
to reduce the per-IO call overhead by moving certain repeated operations
to a once-performed open and, thereby, the inverse operations to a once-
performed close. In fact the open logic ends up in the __init__ methods
o f t he GPIOWriterBase , GPIOReaderBase o r
GPIOBlockingReaderBase implementation classes. In order to be
good citizens, a pin or pin group should close itself when destroyed and
support the Python with statement that controls context management –
similar to using in C# or RAII in C++. All this adds quite a lot of boiler
plate to a class' implementation.

Luckily it turned out that much of this code was common to either the pin
or pin group implementations of GPIOWriterBase, GPIOReaderBase
and GPIOBlockingReaderBase and so could be pushed up into a
common base class: _PinIOBase for pin implementations and
_PinGroupIOBase for pin group implementations. This reduced the
specific implementation classes to having to usually only implement (an
often minimal) __init_ method and the write or read I/O method. The
exception being the PinBlockingReader class which annoyingly
needed to add extra validation in the middle of the otherwise common base
__init__ processing flow. This was achieved using the template
function pattern and having the base __init__ call out to an overridable
method ca l led cb_validate_init_parameters which
PinBlockingReader overrode to inject its additional logic while the
other two pin implementation GPIO classes relied on the default base
behaviour.

Some nitty gritty details...
So what exactly did I change in the flow of calls to the sys file system, from
that performed by the early RPi.GPIO package?

First you have to understand how you get access to a GPIO pin via the sys
file system interface.

A pin has first to be exported by writing its chip GPIO number ([0, 53] in
this case) to an export file. On doing this the driver creates and populates

a pseudo directory for that pin, if it is available – meaning not already
exported. When done with a pin it is unexported by writing the GPIO
number to an unexport file, which removes the directory created by writing
to export.

Once exported, the desired direction and – in my package’s case – edge
modes are set by writing specific values to specific (pseudo) files in the
exported pin’s directory and the file to which values are read or written to
opened as appropriate. Then the file is closed and the pin unexported.

In the early RPi.GPIO package I played with
each read or write (input or output) from/to
a pin, went through the whole process of
unexporting if exported, (re-)exporting the
pin, setting up the direction (another file
open, write and close), writing or reading
the value and unexporting the pin.

In my model I export the pin, set the
direction and edge modes and open the

value file for the pin, during object creation via open_pin. The read/write
operations do not need to repeat those steps and just get on with the reading
or writing to the open value file. Then on close the value file is closed and
the pin unexported.

I chose a policy that it was an error if a pin were already exported when
attempting to open it because it could be exported and used by a separate
process in a different way (for output instead of input say). The code
therefore checks to see if such a directory exists before trying to export a
pin and raises a PinInUseError if it is. Note that this is not 100%
foolproof as a pin could have its exported state change between the check
and actually trying to export the pin. However, in most use cases one would
expect GPIO pin use to be fairly static and so such a situation should only
occur by accident when initially setting up pin / process assignments or
during revamps of such assignments.

This policy does have one ramification though: a pin must be unexported
when it is finished with otherwise the next execution of the program using
the pin will fail as it will still be exported and therefore deemed to be in
use. Hence the effort to ensure a pin is closed correctly: by calling close
explicitly, when an object is destroyed and on exit from a with statement
block that is controlling such an object.

However, such a situation may arise in which a pin is left exported
(especially during development and testing!) so I added a function called
force_free_pin, which will unexport a specified pin if it is exported
and return a Boolean indicator as to whether it did so. However, I found
that using pin and pin group I/O objects controlled by a with statement
to be an effective way of preventing pretty much all such mishaps (I
suppose it is possible that the process terminates in a way that is outside
the control of the Python runtime which would presumably defeat any
clean-up).

As to the matter of reading and writing high and low values from or to a
pin, well non-blocking reads and writes are a matter of reading or writing
'1' or '0' from/to the zeroth position of the open value file. Blocking reads
involve using the select system function – which is presented as the
Python select.select function – to wait on the value file or timeout
expiration and then – if not a timeout – performing a read as per the non-
blocking case.

For pin groups, there are six classes implementing pin groups – three
trafficking in pin values multiplexed into the lower bits of an integer and
three trafficking in sequences of Boolean values. They rely on the single
pin types by calling pin_open for each pin in the group passing in the
same mode for each pin. Closing a pin group just iterates through the
sequence of open pin objects and calls close on them. As for single pin
GPIO objects, __del__ and __exit__ call close to ensure all pins in a
group are closed.

Pin group non-blocking reads are simply a matter of reading each pin and
composing the correct type of composite value. Pin group writers cache
the current value and use it to only write to pins whose state has changed.
The two pin group blocking reader types pass all the group's pin objects

a pin could have its exported
state change between the

check and actually trying to
export the pin
MAR 2015 | | 17{cvu}

Raspberry Pi Linux User Mode GPIO in Python (continued)

(which support a fileno method) to select.select and so wait on a
change to any of the group's pins. They also use a cached value and only
update those pins values that were indicated as changed from the
information returned from select.select.

Odds and sods
As with any set of code, as you go along error conditions pop up and to
cater to those in the GPIO package I created a module – gpioerror – for
GPIO specific errors. There is a top level exception called GPIOError
which sub-classes the Python Exception type from which all the other
GPIO specific exceptions derive - although some do not do so directly but
sub-class other GPIO exceptions. Currently each exception class simply
defines a static error string as its doc comment and passes its doc comment
to its super class in its __init__ method.

I have mentioned that the sys file system for GPIO relies on specific
pathnames and values to be written to files. Special values written to files
are generally specified by the pin module types that group the related
aspects of direction and blocking modes. The sys file system pathname
magic strings and knowledge of how to create specific pathnames form a
set of functions in a sysfspaths module – some of these are nullary
functions (take no arguments) that return static path fragments – the
gpio_path function returns the base absolute path to GPIO support in
the sys file system for example. Other function take a pin id value and use
this to create and return pin specific paths – the direction_path
function returns the path to the direction (pseudo) file for a given pin id
number for example.

Testing, testing...
In case you were wondering, yes, there are tests and yes, they were
developed in step with the code they tested. There are two sets of tests –
unit tests which, as per usual, do not rely on any modules other than that
under test and what I called at the time system tests – which in this case
meant tests that had to be executed on a specific system – a Raspberry Pi
running Raspbian or compatible Linux system in this case. In the time since
I named them I have thought of an alternative name that I think is less
ambiguous: platform tests – tests that need to be executed on a specific
platform. Some of the so-called system tests require user interaction –
either to create input (e.g. toggle switches) or observe output (e.g. check
on the lit state of an LED). Since creating such tests I have tended, in other

projects, to split out tests which require user interaction and call them
interactive tests. Note that platform and interactive tests are probably sub-
types of integration tests, although I suppose it could be argued that some
of them tend towards the usual meaning of system tests.

References
[1] RPi.GPIO: http://pypi.python.org/pypi/RPi.GPIO
[2] Documentation/gpio.txt in the Linux kernel tree, as located at:

https://github.com/raspberrypi/linux/blob/rpi-3.2.27/
Documentation/gpio.txt

[3] As far as I could tell this was the generic support provided by gpiolib:
https://github.com/raspberrypi/linux/blob/rpi-3.2.27/drivers/gpio/
gpiolib.c

[4] http://docs.python.org/3.3/library/functions.html#open
[5] http://docs.python.org/3.3/library/io.html
[6] https://github.com/ralph-mcardell/dibase-rpi-python
[7] https://github.com/ralph-mcardell/dibase-rpi-python/wiki
[8] http://www.raspberrypi.org/wp-content/uploads/2012/02/

BCM2835-ARM-Peripherals.pdf
[9] http://www.raspberrypi.org/wp-content/uploads/2012/10/

Raspberry-Pi-R2.0-Schematics-Issue2.2_027.pdf
[10] http://www.raspberrypi.org/archives/1929
Kevlin Henney: An Interview
Emyr Williams continues the series of interviews

with people from the world of programming.

or regular attendees of the ACCU Annual conference, Kevlin doesn’t
really need an introduction. He is a well-known author, engaging
presenter, and a consultant on software development. He was the

editor for the book 97 Things Every Programmer Should Know, and has
given keynote addresses not just at ACCU but at other conferences as well.

How did you get in to computer programming? Was it a sudden interest?
Or was it a slow process?

I was aware that computers could be programmed, and the idea
sounded interesting, but it wasn’t until I was able to actually lay
hands on a computer that I think it occurred to me that this was a
thing that I could do myself.

What was the first program you ever wrote? And what language was it
written in? Also is it possible to provide a code sample of that language?

I can’t remember exactly, but I suspect it probably just printed
"Hello" once. I strongly suspect that my second program printed
"Hello" endlessly – or at least until you hit Ctrl-C. It was written in
BASIC, and I strongly suspect that it was on a UK-101, a kit-based
6502 computer.

 F

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
18 | | MAR 2015{cvu}

http://pypi.python.org/pypi/RPi.GPIO
https://github.com/raspberrypi/linux/blob/rpi-3.2.27/Documentation/gpio.txt
https://github.com/raspberrypi/linux/blob/rpi-3.2.27/drivers/gpio/gpiolib.c
http://docs.python.org/3.3/library/functions.html#open
http://docs.python.org/3.3/library/io.html
https://github.com/ralph-mcardell/dibase-rpi-python
https://github.com/ralph-mcardell/dibase-rpi-python/wiki
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/10/Raspberry-Pi-R2.0-Schematics-Issue2.2_027.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/10/Raspberry-Pi-R2.0-Schematics-Issue2.2_027.pdf
http://www.raspberrypi.org/archives/1929

These days I am more likely to disavow any knowledge of BASIC
than I am to provide code samples in it – but I think you can
probably guess what those examples I just mentioned would look
like!

What would you say is the best piece of software you’ve ever written?
The one you’re most proud of?

Difficult to say. Possibly the proof-of-concept C++ unit-testing
framework I came up with a couple of years ago, that I dubbed LHR.
I don’t know if it’s necessarily the best, but it incorporated some
novel ideas I’m proud of.

What would you say is the best piece of advice you’ve ever been given
as a programmer?

To understand that software development concerns the management
of complexity.

If you were to go back in time and meet yourself when you were starting
out as a programmer, what would you tell yourself?

As a professional programmer? Don’t worry, it’s not all crap. As a
schoolboy? Yes, it really can be as much fun as you think it is..

Do you currently have a mentor? And if so, what would you say is the
best piece of advice you’ve been given by them?

I don’t currently have anyone I would consider a mentor, but there
are a number of people I make a point of shutting up and listening to
when they have something to say.

You are well known for giving excellent talks on various topics to do with
Software Engineering, I recall the one you did at ACCU Conference last
year. How did that come about? And how scary was it to leave the
security of a regular 9 to 5 job and go solo?

I worked as a principal technologist at QA, a training and
consultancy company, for a few years. Training was part of my job
role and that gets you comfortable with presenting and thinking on
your feet. Conference presentations are a little different as the
objective of a talk and the environment of a conference are not the
same as a course or a workshop, but there’s enough overlap that
practice at one supports practice in the other.

As a principal technologist at QA I enjoyed a great deal of autonomy
and so the transition to working for myself was not as jarring as it
might first appear. Meeting people at conferences also opened more
opportunities than I had perhaps realised were available when I was
associated with a larger company.

I’m not sure I could have gone straight from working for someone
to being independent. Actually, that’s not quite true: I went from
being an employee to being a contractor many years ago, but I didn’t
find that fulfilling.

And following on from that, what advice would you give to someone
who’s looking to go it alone?

Make sure you know what your motivation is for going it alone, that
your expectations are realistic and that you have some work lined
up!

I’m guessing you work from home, if so, how do you keep the balance
between work time and family time?

A question I’ve wrestled with for years and still not one I’m sure I
have a good answer to! I am, however, far better at turning off than
I used to be, recognising that work time is an interruption from
family time and not the other way around. As I travel a lot the work–
family distinction is often reinforced by whether I’m at home or
away, so I try to get more work-related things done when I’m away
because it doesn’t distract from family. I notice that when I’m
working and at home the context switch can be harder because the
context is effectively the same.

How do you keep your skills up to date? Do you get a chance to do some
personal development at work?

I attend conferences, I talk to people I meet (and people I don’t meet)
and I read. I probably get a lot more breadth than depth, but I temper

that by focusing on things that interest me – so I’ll freely admit to
being more driven by interest than necessity.

I’ve seen that you contribute to the Boost libraries as well. How did you
get involved in that? And what advice would you give to a prospective
developer looking to get involved in such a project? Or any open source
project for that matter.

My involvement came about primarily because of my involvement
in the C++ standards committee and writing articles about C++.
That said, although I have a continued interest in Boost, I am no
longer an active contributor, having long ago passed maintenance of
my contributions to others.

As for advice on doing it: if you think you want to get involved, then
you should. It’s worth spending your time familiarising yourself
with the ins and outs and mores of your project of interest, asking
questions, getting a feel for what you can best contribute and how.
If you’re a developer, don’t assume it’s going to be coding where
you stand to learn or contribute the most – maybe it’s code, maybe
it’s tests, maybe it’s documentation, maybe it’s something else.

What would you describe as the biggest “ah ha” moment or surprise
you’ve come across when you’re chasing down a bug?

That good practice I ignored? I shouldn’t have ignored it. I don’t
know if that’s the biggest surprise – in fact, it’s the exact opposite –
but it’s the biggest lesson. There’s nothing quite like the dawning,
creeping realisation that the bug was easily avoidable.

Do you have any regrets as a programmer? For example wishing you’d
followed a certain technology more closely or something like that?

Listing regrets or indulging in regret is not something I really do,
which I would say is no bad thing – and not something I regret..

Where do you think the next big shift in programming is going to come
in?

Realising that there are few big shifts in programming that change
the fact that, ultimately, it’s people who define software. We have
met the enemy and he is us.

Are you working on anything exciting at the moment? A new book? Or
a new piece of software?

There’s a couple of code ideas I’m kicking around that I think are
quite neat, but perhaps more for my own interest, and a couple of
book projects that have my eye.

Finally, what advice would you offer to kids or adults that are looking to
start a career as a programmer?

Look at what’s happening now, but also look at what’s gone before.
If you can figure out they’re related, you’re doing better than most.
MAR 2015 | | 19{cvu}

It may not be the software. How clear are the release notes? What
about the product manual, online help, training materials, ...?

Changes may meet a business need, but if what worked
yesterday doesn’t work today, people may resent them. And when
today’s way involves extra steps, people work around them. After
all, their priority is getting the job done.

Result: those shiny new features remain unused, and your
application appears not to live up to its promise.

If you would like some help in turning nervous cats into contented
ones, get in touch.

Not quite the reaction
 you were expecting to

the latest release?

We demonstrate our commitment to professionalism by being members of
the Institute of Scientific and Technical Communicators, the UK professional
body for technical authors and related professions (visit www.istc.org.uk)

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

Code Critique Competition 92
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published
entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Note: If you would rather not have your critique visible online, please
inform me. (We will remove email addresses!)

Last issue’s code
I’m trying to migrate my skill set from C to C++ so thought I’d get started
with a simple program to fill in a set of strings and print them. But I’m getting
a compilation problem on the call to std::copy that makes no sense to
me, although I thought I’d copied it from some working code on the Internet.
Can you help me get it to compile?

Can you help this programmer to get past this presenting problem and help
them to identify any other issues with their code? The code is in Listing 1.

Critiques

Jim Segrave <jes@j-e-s.net>

There are a few problems with this code:

The test() function is passed the set by value, rather than by reference,
so the result of inserting a new string is lost when the function returns.

Every invocation of test() is done with a copy of the empty set as it was
first constructed in main(). Changing this to take the set by reference:

 void test(std::set<T, U>& s, T p)
 ^

will cause the set s in main() to be updated as each string is inserted.

A minor point – there’s no std::endl on the print when the string passed
to test() is already present, so the following invocation of test()
appends its output on the same line.

In main(), the invocation of copy() should be passed the return values
of the member functions begin() and end(). The member name,
standing alone is a pointer to the function, not an invocation of the function
to get the iterators for begin and end. clang++ prints a reasonably clear pair
of error messages:

x.cpp:22:15: error: reference to non-static member
function must be called; did you mean to call it
with no arguments?
 std::copy(s.begin, s.end,
 ~~^~~~~
 ()
x.cpp:22:24: error: reference to non-static member
function must be called; did you mean to call it
with no arguments?
 std::copy(s.begin, s.end,
 ~~^~~

clang++ then generates a working executable by treating it as though the
parentheses had been present. It is arguable whether it should be this
helpful or should treat this as a fatal error and not produce an executable.

g++ produces an accurate but rather opaque pair of error messages. Within
them is the information you need, but it can be hard to see what it’s trying
to tell you is wrong:

/usr/lib/gcc/x86_64-pc-linux-gnu/4.8.3/include/g++-
v4/bits/stl_algobase.h:450:5: note: _OI
std::copy(_II, _II, _OI) [with _II =
std::_Rb_tree_const_iterator<const char*>
(std::set<const char*, bool (*)(const char*, const
char*)>::*)()const noexcept (true); _OI =
std::ostream_iterator<const char*>]
 copy(_II __first, _II __last, _OI __result)
 ^
/usr/lib/gcc/x86_64-pc-linux-gnu/4.8.3/include/g++-
v4/bits/stl_algobase.h:450:5: note: no known
conversion for argument 1 from '<unresolved

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <iterator>
#include <set>

// compare *contents* not raw pointers
bool string_less(char const *, char const *);

template <class T, class U>
void test(std::set<T, U> s, T p)
{
 if (s.insert(p).second)
 std::cout << "Added " << p << std::endl;
 else
 std::cout << p << " already present";
}

int main()
{
 std::set<char const *,
 decltype(&string_less)> s(string_less);

 test(s, "A");
 test(s, "B");
 test(s, "AB");

 std::copy(s.begin, s.end,
 std::ostream_iterator<
 char const *>(std::cout , " "));
 return 0;
}

bool string_less(const char *s, const char *t)
{
 while (*s == *t)
 {
 s++;
 t++;
 }
 return(*s < *t);
}

Li
st

in
g

1

MAR 2015 | | 21{cvu}

overloaded function type>' to
'std::_Rb_tree_const_iterator<const char*>
(std::set<const char*, bool (*)(const char*, const
char*)>::*)()const noexcept (true)'

Which does tell you that it can’t convert the pointer to function end into
an iterator. The compile fails.

When this is fixed and the print succeeds, there is no std::endl, so the
list of set members will spill onto the command line prompt at program
exit.

Finally, the string_less() function has a severe problem:

 bool string_less(const char *s, const char *t)
 {
 while (*s == *t)
 {
 s++;
 t++;
 }
 return(*s < *t);
 }

What happens when the strings s and t are identical? The while loop
carries on past the terminating nul character and your program is off into
undefined behaviour. After fixing the parameter to test() to be a
reference, try duplicating the first invocation of test(s, "A"). On my
machine this led to an immediate SIG_SEGV and core dump.

The fix is simple – before checking if *s == *t, check that *s is not zero:

 while(*s && (*s == *t))

And to close, not a critique, but whenever I see something like:

 test(s, "A");
 test(s, "AB");
 tets(s, "B");

I think to myself that there ought to be a better way to do this so that adding
or removing tests is less work.

If we use an array of pointers to const char, we can iterate through the
array running the test on each char *:

 const char * test_vec[] = {"A", "A", "AB",
 "B", "", "ABC", "", "foo", "\xe2\x82\xac"};
 for(auto sp: test_vec) {
 test(s, sp);
 }

Now adding or removing test cases involves only adding or removing a
quoted string in test_vec’s initialiser list.

My resulting version of this program:

 #include <iostream>
 #include <iterator>
 #include <set>

 // compare *contents* not raw pointers
 bool string_less(char const *, char const *);

 template <class T, class U>
 void test(std::set<T, U>& s, T p)
 {
 if (s.insert(p).second)
 std::cout << "Added " << p << std::endl;
 else
 std::cout << p << " already present"
 << std::endl;
 }

 int main()
 {
 std::set<char const *,
 decltype(&string_less)> s(string_less);
 const char * test_vec[] = {"A", "A", "AB",
 "B", "", "ABC", "", "foo", "\xe2\x82\xac"};

 for(auto sp: test_vec) {
 test(s, sp);
 }
 std::copy(s.begin(), s.end(),
 std::ostream_iterator<
 char const *>(std::cout , " "));
 std::cout << std::endl;
 return 0;
 }

 bool string_less(const char *s, const char *t)
 {
 while (*s && (*s == *t)) {
 s++;
 t++;
 }
 return(*s < *t);
 }

Tom Björkholm <gr@tombjorkholm.se>

When reading the code of Code Critique 91 there are five problems in the
code that immediately come to mind: 1. The function test() inserts into
a local copy of the set 2. There is not much use having test() as a
template here 3. The set stores pointers not objects. 4. The parenthesis are
missing on s.begin() and s.end() 5. string_less() comparison
will fail for identical strings

Let’s look into them in order.

1. The function test() inserts into a local copy of the set

As the function test is defined

 void test(std::set<T, U> s, T p)

the arguments are passed by value. I.e. inside the function test the variables
s and p hold copies of the values in the calling function. Adding a value
to the copy of the set inside test, does not affect the set in main. The set
must be passed by reference void test(std::set<T, U> & s, T p)

2. There is not much use having test() as a template here

The function test is only called with one type. Templates are used if you
want to express code so that it can be used with many types. As there is
only one type here, you can just as well write it as normal function:

 void test(std::set<const char *,
 decltype(&string_less)> & s, const char * p)

Especially for a novice C++ programmer it is easier to understand the C++
compiler errors in a normal function than in a template function.

We will get back to this function as changes below will introduce more
changes to it.

3. The set stores pointers not objects

The C++ standard containers (like set) are intended to store values. Here
the set store pointer (i.e. pointers to characters interpreted as C style
strings). This is not good. If the pointed to objects (characters) goes out of
scope, we will be left with dangling pointers (pointing to the memory
location where the objects once was).

In this particular case the code does not crash (when using the clang
compiler on OS X), because the C style strings happen to be compile time
constants that remain at their memory location.

To fix this use the C++ std::string to store the strings (real values),
instead of just pointers. This is easy.

Just change the first line of main() to

 std::set<std::string> s;

Add the line

 #include <string>

change the test function to

 void test(std::set<std::string> & s,
 const std::string & p)
22 | | MAR 2015{cvu}

and change the ostream_iterator to

 std::ostream_iterator<std::string>

You will see the complete code together with other fixes below.

4. The parenthesis are missing on s.begin() and s.end()

The algorithm std::copy takes iterators as arguments. The member
functions begin() and end() of the set return an iterator to the
beginning and to the end (one past the last element) of the set. Thus, you
have to call begin() and end() to get the iterators to pass to
std::copy. When you leave out the parenthesis you pass the function
pointers to copy instead of the iterators. Write that line as

 std::copy(s.begin(), s.end(),
 std::ostream_iterator<std::string>(std::cout,
 " "));

5. string_less() comparison will fail for identical strings

If you have followed my advice to let the set store string objects instead
of character pointers, then the function string_less will not be needed
at all. If you for some reason want to have a string_less for C style
strings, then the loop must also handle the case of identical strings. Add a
test for terminating null byte.

 while ((*s == *t) && (*s != 0))

However, I do recommend that the set should store std::string instead
of pointers. Using std::set<std::string> the complete code will
be:

 #include <iostream>
 #include <iterator>
 #include <set>
 #include <string>
 void test(std::set<std::string> & s,
 const std::string & p)
 {
 if (s.insert(p).second) {
 std::cout << "Added " << p << std::endl;
 } else {
 std::cout << p << " already present"
 << std::endl;
 }
 }
 int main()
 {
 std::set<std::string> s;
 test(s, "A");
 test(s, "B");
 test(s, "AB");
 test(s, "A");
 std::copy(s.begin(), s.end(),
 std::ostream_iterator<std::string>(
 std::cout, " "));
 return 0;
 }

Or if you want to have test() as a template function (so that you can
brag that you have written a template function yourself ;-)

 template <typename T , typename U> void test(
 T & s, const U & p) {
 if (s.insert(p).second) {
 std::cout << "Added " << p << std::endl;
 } else {
 std::cout << p << " already present"
 << std::endl;
 }
 }

James Holland <James.Holland@babcockinternational.com>

I think either the student made a mistake when copying (by retyping) the
code or the Internet code was of very poor quality. Either way, the problem
with the std::copy function lies in the first two parameters. The names

are correct but they should be member functions of s not data members.
This is simply corrected by adding an empty parameter list to the names
as shown below.

 std::copy(s.begin(), s.end(),
 std::ostream_iterator<char const *>
 (std::cout, " "));

One can spend ages staring at the code in the hope of finding this type of
error. As the student suggested, the error message was not all that helpful.
At least now the code compiles without error and runs. There are, however,
some remaining problems.

One thing I found disconcerting is the definition of string_less(). If
two identical strings are compared, the string_less() will attempt to
access memory beyond the end of the strings. When attempting to confirm
this, I was surprised to find that it was never called. So I gave up, for the
time being, worrying about correcting string_less() and started to
track down why it was never called. The problem lies with the test()
function or, more specifically, with its first parameter. The set is being
passed into test() by value. In other words, a copy of the set is being
made and it is the copy into which test() inserts the string. After
test() displays whether or not the string was inserted, the copy of the
set is destroyed, leaving the original set without the string being inserted.
In fact the original set always remains empty. This has two consequences.
Firstly, test() will always report that the string is being added. This is
because, as the original set never has a string inserted, the copy will always
be empty on entry to test(). Secondly, and more importantly, it explains
why string_less() never gets called. When inserting a string into an
empty set, there is no need to compare it with existing strings, as there are
none, and so string_less() is not called.

To correct the problem with test(), the set should be passed by
reference, not by value. This will result in the set (and now there is only
one set) being inserted with strings as expected. The signature of test()
is now as shown below.

 void test(std::set<T, U> & s, T p)

This brings me back to my concerns I had regarding the behaviour of
string_less(). Correctly writing this function from first principles is
a bit tricky and so I won’t attempt it here. Fortunately, there is a standard
function that almost does what we want, namely strcmp(). This function
compares two strings and returns a negative integer if the first string comes
before the second string, zero if the two strings are equal and a positive
number if the first string comes after the second string. I am sure the
student knows that, being a C programmer. All that needs to be done is
to determine whether the value returned from strcmp() is less than zero.
string_less() can, therefore, be rewritten as shown below.

 bool string_less(const char *s, const char *t)
 {
 return strcmp(s, t) < 0;
 }

The test() function is still not quite right as the statement that informs
us that the string is already present should print a ‘new line’ after printing
the text. Once this is corrected, the program is in a state where it will work
as expected.

The code is, however, quite involved and not all that intuitive. The main
reason for this is that text is represented by C-style strings. This causes
difficulties, especially when storing them in a container, such as an
std::set, as is done here. It is far better to use C++’s std::string
for representing text. The main advantage is that std::string has the
< operator built in and so std::strings can be easily compared. This
removed the need to write a bespoke comparison function as was the case
in the original code.

As the student is just beginning to learn C++, it is best to start with a simple
example. I feel that defining test() as a function template only serves
to complicate matters at this stage. Templates can be tackled at a later date.
It would appear from the code example that the student is interested in the
use and storage of strings. This is a good place to start and the example
can be modified to demonstrate this. All that remains to do is to remove
MAR 2015 | | 23{cvu}

the template clause from test(), to change template parameter of the
ostream_iterator object passed to the copy function from char
const * to const std::string, and to add the #include directive
for std::string. The resultant program is listed below.

 #include <string>
 #include <iostream>
 #include <iterator>
 #include <set>
 void test(std::set<std::string> & s,
 std::string p)
 {
 if (s.insert(p).second)
 std::cout << "Added " << p << std::endl;
 else
 std::cout << p << " already present"
 << std::endl;
 }
 int main()
 {
 std::set<std::string> s;
 test(s, "A");
 test(s, "B");
 test(s, "AB");
 test(s, "AB");
 std::copy(s.begin(), s.end(),
 std::ostream_iterator<std::string>
 (std::cout, " "));
 return 0;
 }

Getting code examples from questionable websites is probably not the best
way to learn C++. One site that is a good starting point is isocpp.org from
where excellent books, for novices and for those with more experience, are
suggested. Everyone should join ACCU, of course, for news of
conferences, book reviews and much more.

Alex Paterson <alex@tolon.co.uk>

Quick solution: fixing the code

Ok, moving quickly on this one, because solving the coding errors isn’t
the real issue here:

The call to s.begin should be s.begin() in the std::copy line. Ditto
for s.end.

The implementation of string_less does not check for the end of the
string. To be correct it should check for null, assuming that we are dealing
with null-terminated strings. E.g.

 bool string_less(const char *s, const char *t)
 {
 while ((*s == *t) && (*s != 0) && (*t != 0))
 {
 s++;
 t++;
 }
 return(*s < *t);
 }

However, there is already a method that does this for us, strcmp, so we
can reduce string_less to:

 bool string_less(const char *s, const char *t)
 { return strcmp(s,t) < 0; }

Finally, the test() method should take its first parameter (the container)
by reference (&) and the second parameter (the value) by either const-
reference (const&) or rvalue (&&). As it currently stands, the method is
taking a copy of the container and adding the string to the copy, which has
no effect on the container declared in main().

Long solution: fixing the design

Right, now let’s get onto the real problem. I know this is probably only a
piece of code for experimental purposes, but in the C++ world, we really

should be taking advantage of RAII (Resource Acquisition Is
Initialisation) and moving beyond dealing with naked pointers (a.k.a. raw
or dumb pointers) – they should only be used as a last resort, say when we
need to interface with an API for an external library or operating system
call. Don’t get me wrong, syntactically it’s C++ alright, but dealing with
naked pointers like this means that it is not quite in the true spirit of C++.

What’s wrong with naked pointers?

The main issue with naked pointers is making sure that the memory is freed
only after we’re finished with it and not before; freeing memory before
we’re finished using it is an error and will result in undefined behaviour,
whilst not freeing the memory at all leaks memory. Whilst this might sound
trivial when considering memory allocation within a single function, it
becomes more of a problem when memory allocation and deallocation is
split across different functions, classes or libraries.

Moving away from pointers is a crucial concept to move from the low-level
world of assembly and C into a the higher level abstraction of C++ and
object-oriented programming in general. In the case of strings, the standard
C++ library allows us to switch from const char * to std::string
to automatically manage the dynamic allocation and deallocation of
strings. Similarly, it also allows us to deal with strings in a more abstract
sense, so we can iterate over the characters of a string until we reach the
‘end’ rather than previously checking for a ‘null character’. Specifically
to this case, we can take advantage of the fact that operator< is defined
for the std::string class, so we don’t need to write our own function.

Encapsulation

Encapsulation is a concept that is more prevalent in C++ than C, I guess
mainly due to C++ being an object-oriented language. In the problem code
extract, the test method is separated from the container, but really in an
object-oriented domain, it should be tied to the collection type that it refers
to, as shown below.

Whilst this adds many extra lines, it helps to provide encapsulation, where
implementation detail is hidden and provides the key concepts of high
cohesion and low coupling. The cohesion comes from having the test
method and print output encapsulated in the TestContainer type. The
low coupling comes from removing the container type information from
the main method as well as the detail of how to print out the container to
std::cout.

To aid readability (and therefore maintainability), the conditional in the
test method could be replaced with a separate method, making the logic
clear. I must admit that I wasn’t aware that set::insert returned a
pair<> that could be used to determine whether the value was added or
not, so it is probably beneficial to highlight this in the code to aid other
programmers who read it (and ourselves when we read it again months or
years later).

Improved code, OO style
 #include <iostream>
 #include <iterator>
 #include <set>
 template<typename ValueType>
 class TestContainer
 {
 public:
 TestContainer& insert(const ValueType& v)
 {
 if (WasInserted(m_set.insert(v)))
 std::cout << "Added " << v << std::endl;
 else
 std::cout << v << " already present"
 << std::endl;
 return *this;
 }
 template<typename StreamType>
 void print_to_stream(StreamType& s) const
 {
 std::copy(
 m_set.begin(),
24 | | MAR 2015{cvu}

 m_set.end(),
 std::ostream_iterator<std::string>
 (s, " "));
 }
 private:
 //! Simply extracts the result of the set
 //! insertion, which indicates whether the
 //! value was added to the set or not.
 template<typename T>
 bool WasInserted(const T& insertResult)
 { return insertResult.second; }
 std::set<ValueType> m_set;
 };
 int main()
 {
 TestContainer<std::string> s;
 s.insert("A").insert("B").insert("AB");
 s.print_to_stream(std::cout);
 return 0;
 }

Improved code, functional style

Of course, a more pure functional approach would keep the container type
and the methods related to it separate.

 #include <iostream>
 #include <iterator>
 #include <set>

 //! Return the second element from the pair<>
 //! value that was returned from a call to
 //! set::insert. This indicates whether the
 //! value passed to insert was added or not.
 template <typename T>
 bool WasInserted(const T& t)
 { return t.second; }
 template <class T, class V>
 T test(const T& tOldContainer, const V& val)
 {
 T tNewContainer(tOldContainer);
 if (WasInserted(tNewContainer.insert(val)))
 std::cout << "Added " << val << std::endl;
 else
 std::cout << val << " already present"
 << std::endl;
 return tNewContainer;
 }

 //! Copy the elements of a container to a
 //! stream. One use is to print the elements
 //! of a container to std::out.
 template<typename StreamType,
 typename ContainerType>
 void print_to_stream(StreamType& s,
 const ContainerType& c)
 {
 std::copy(
 begin(c),
 end(c),
 std::ostream_iterator<std::string>
 (s, " "));
 }
 int main()
 {
 std::set<std::string> s;
 s = test(s, "A");
 s = test(s, "B");
 s = test(s, "AB");
 print_to_stream(std::cout, s);
 return 0;
 }

Commentary
This problem hinges on the difference between a pointer to a member
function and the value resulting from calling a member function. As Jim
found, clang++ tries to be helpful and guesses what was meant. While this
is correct, in this case, I share Jim’s concern that this may not be helpful
in general.

Of course, there were other problems with the code. Passing the set into
the test function by value not by reference was wrong here – but the
program is correct code in both cases and it is hard for automated tools to
detect this sort of semantic issue. One of the slight concerns over the use
of auto in recent C++ code is the way it can hide whether the actual type
is a value or a reference in cases where this matters a great deal.

What no-one really challenged about the program is that it isn’t actually a
useful test. The program writes output and returns 0 – whether or not the
bug is fixed. A more useful test would report success or failure, so it is
obvious without needing to read the test in detail whether or not the code
is behaving as expected.

James did point out that the test did not exercise the string_less
function in the original code, and his solution does try testing "AB" twice
– but without testable success criteria it is not obvious what output from
the program is actually correct.

I would encourage the programmer to decide what it means to pass the test
here and to ensure the code unambiguously reports success only if this
occurs.

The final niggle I have with the code is the use of std::copy to print the
set. The ostream_iterator will place a copy of the delimiter after each
element output, including the last one, and in some environments this
trailing space can cause problems. This becomes a bigger problem when
the delimiter is visible, for example trying to use a comma.

Unfortunately C++ doesn’t yet have a standard way to fix this although
there are some active proposals for delimited iterators so watch this space!

The winner of CC91
All four critiques identified the major problem and suggested how to fix
it and all also noted the problem with string_less on equal strings.

Two people suggested implementing string_less with strcmp
(although no-one pointed out this may also be more efficient than the hand-
rolled string code, especially for larger strings, as library writers are likely
to deliver an optimised implementation).

Several people recommended using std::string instead of character
pointers and I would generally follow this recommendation myself too.
Alex gave a good summary of why this is generally better.

Jim improved the test generation by making it data driven, which makes
it very easy to change. It is all too easy to write test code using copy and
paste resulting in a lot of unnecessary duplication.

In addition to the critique itself, James also pointed the programmer to
some further useful sources of information; so I have awarded him the
prize for this critique by a short head.

Code Critique 92
(Submissions to scc@accu.org by April 1st)

I’m trying to use the new(ish) unordered_map. and my simple test
program works with some compilers and options but not with others. I
can’t see why it wouldn’t work consistently – are some of the compilers
just broken? I do get a compiler warning about conversion from string
constant to cstring – is that what’s wrong?

Can you help this programmer to get past this presenting problem and help
them to identify any other issues with their code? The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.
MAR 2015 | | 25{cvu}

Standards Report
Mark Radford reports on the latest C++

Standardisation proceedings.

ello and welcome to my latest standards report.

In this report I’m rather short of events to report on. There have been
no more full ISO C++ meetings, and the next one will be after I have

to ship this report (sorry, I don’t have any information at the moment on
what’s happening in the C standards process). There will be a BSI C++
Panel meeting on Monday 9th February, but this time I can’t attend and
I’m not likely to see the minutes in time to write anything about it before
I have to ship this report. There has, however, been an ISO C++ meeting
dedicated to discussing the Concepts TS; this took place in Skillman, HJ,
USA on the 26th, 27th and 28th of January this year. I wasn’t there, but
one of my BSI C++ Panel colleagues was [1], so I have information on the
proceedings.

Also a couple of C++ topics – namely, uniform call syntax and the
overloading of operator dot (which I discussed briefly in my last report) –
have come up recently. If either/both of these are achieved it would have
an impact on the way C++ code is designed. Therefore both topics are
important and merit some detailed coverage.

Skillman
The purpose of the meeting was to continue to review the Concepts
document, and to determine the document’s readiness for PDTS
publication. The meeting also agreed on the categorisation of issues found.
While there were more than two categories, the fundamental point was
whether or not an issue needed fixing before the PDTS could ship. Happily,
during the process it was found that none of the issues were serious enough
to prevent shipping!

Unfortunately, extreme weather conditions on the first day of the meeting
dictated that it needed to be adjourned at lunch time. For the same reason
it was decided not to meet face-to-face the following day, but to have a
teleconference instead. Andrew Sutton, the Concepts document author,
was asked to address the issues that had been found in time for the
following day, so the changes could be reviewed by the meeting.

When the meeting reconvened, it began by going through the updated
version of the paper. There were some additional comments, including
issues raised (while the meeting was taking place) on the BSI C++ Panel
reflector. However none of the new issues were serious enough to delay
shipping. Therefore, the outcome was to move the document (with some
editorial fixes) to PDTS.

Of course, the big question now is whether or not Concepts can make it
onto C++17. The problem is that not everyone is convinced we have the
right design. No one has a problem with the current Concepts design going
into a TS, but that’s a very different thing from the International Standard
(IS). While a TS can be a stepping stone to a feature going into the IS, the
TS is also a proving ground i.e. something compiler writers can implement
so real world experience can be obtained before a feature is committed to
the IS.

 H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
26 | | MAR 2015{cvu}

#include <iostream>
#include <string>
#include <unordered_map>
typedef char *cstring;
typedef std::unordered_map<cstring, cstring>
AddressMap;
// Hold email addresses
class Addresses
{
public:
 // add addr for name
 void add(cstring name, cstring addr)
 {
 addresses[name] = addr;
 }
 // get addr from name or null if not found
 cstring get(cstring name)
 {
 if (addresses.count(name))
 {
 return addresses[name];
 }
 return 0;
 }

Li
st

in
g

2 private:
 AddressMap addresses;
};

int main()
{
 Addresses addr;

 addr.add("roger",
 "rogero@howzatt.demon.co.uk");
 addr.add("chris",
 "chris@gmail.com");

 cstring myadd = addr.get("roger");
 if (myadd == 0)
 {
 std::cout << "Didn't find details"
 << std::endl;
 return 1;
 }
 std::cout << "Found " << myadd << std::endl;
}

Listing 2 (cont’d)

Code Critique Competition #92 (continued)

Talking of real world experience, note that there is a Concepts branch of
GCC; there was hope that the Concepts branch could be merged into GCC
5, but unfortunately this is now not going to happen as progress on the
branch was not quite rapid enough. I don’t have the details to hand, but
anyone interested in playing with this implementation should have little
difficulty in finding the branch, which is publicly available.

Uniform Call Syntax
I see this topic is once again under discussion, having been discussed on
and off for over a decade (many of the discussions being informal). A
discussion on the Evolution Working Group (EWG) reflector drew my
attention to it, that discussion having been sparked by two papers in the
pre-Urbana mailing: ‘Unified Call Syntax’ (N4165) is by Herb Sutter [2],
and ‘Call syntax: x.f(y) vs. f(x,y)’ (N4174) is by Bjarne Stroustrup [3].

There are several good motives for doing this. One example is greater
flexibility for generic programming: given a template parameter T, when
invoking an operation involving T the generic code has to commit itself to
assuming one syntax or the other i.e. member function or free-standing
function.

Historically, when this topic has been discussed, there has been an implicit
assumption that the free-standing call syntax would potentially call a
member function. A simple example is: f(x) could potentially call
x.f(). However, in ‘Unified Call Syntax’, Herb Sutter looks at the
problem the other way, suggesting that x.f() could also potentially call
f(x). Note that, in particular, he says if the call can be resolved by a
member function, then no further lookup should take place. This avoids
any impact on existing code. Meanwhile, in ‘Call syntax: x.f(y) vs. f(x,y)’,
Bjarne Stroustrup does not take any one viewpoint. Instead he presents a
discussion of all the approaches to unifying the call syntax; this does not
just involve syntax, as there are also various approaches to how the
semantics would work: for example, if the f(x) syntax is preferred,
should member functions be looked up only if no non-member match is
found, or should they be included as equals for overload purposes? Note
that the latter option is a silent breaking change, so I hope its inclusion
extends to simply stating the complete set of options for comparison. I get
nervous when I see such a silent breaking change even mentioned!

Anyway, I’ve said enough about those two papers in this report. Both are
publicly available, so anyone who wants to know more can download
them. I’ll move onto ‘Call Syntax Questions’ by Bjarne Stroustrup, a paper
which he circulated on the EWG reflector and which is not currently
publicly available. Currently, I don’t know whether or not it will be
included in a future mailing. Actually, I suspect it won’t be: looking at the
introductory remarks, there is an indication that feedback on this paper will
be used to revise the original (N4174) paper. As I write this I see the new
(Feb 2015) mailing has just been published [4], but I can’t see any new
papers on this topic, or any updated editions of the two exiting papers.

‘Call Syntax Questions’ makes some compelling arguments against the
x.f() syntax. For example: it feels “too object-oriented” may sound like
an objection based on taste, but it starts to look like requiring x.f() is in
rather bad taste when you consider that x.sqrt() looks rather strange,
and 2.sqrt() just looks plain wrong! This is C++ of course, and what
looks right/wrong in C++ isn’t necessarily the same as in other languages.
Further, moving towards member function syntax encourages making
functions members, thus increasing coupling. Finally, what about lambda
functions passed as template arguments? They must be called using the
f(x) notation. To quote the paper: “Not all opposition to x.f(y) is
emotional and aesthetic”.

Operator Dot
In my last report I talked briefly about “Operator Dot” by Bjarne Stroustrup
and Gabriel Dos Reis (N4173). This is the latest in a series of proposals
to make “operator dot” overloadable (the paper mentions several of its
predecessors). Clearly, the overloading of operator dot has its applications:
smart references (by analogy with smart pointers) are an obvious one, and
the facility to write proxy classes more easily is another. This proposal has

been very well received and there is general agreement that the work
should continue. However there are some concerns.

One of the concerns is the possibility of introducing silent changes to
templates. For example, consider the following fragment:

 struct X
 {
 X& operator=(int i);
 int i;
 };

 struct T
 {
 X theX;
 T& operator=(int i);
 };

 T t;
 t = 42;

What you have to remember here is that t = 42 actually says
t.operator = (42), which means that if T is modified as follows (i.e.
with the added operator dot):

 struct T
 {
 X theX;
 T& operator=(int i);
 X& operator.() { return theX; }
 };

the actual meaning is t.operator.().operator = (42), which in
turn means the assignment is really to x and not to t. If T were used as a
template argument this would bring about a silent, and probably surprising,
change to the code’s semantics [5].

Looking at this now, I’m wondering how much of a problem it really is.
I’m thinking that overloading operator dot is really a design feature of a
class, because it’s a smart reference or some kind of handle i.e. it’s not
really the sort of thing likely to be added later on. Also, C++ is full of
features that potentially cause pitfalls, and programmers should always
think about the possible consequences of changing code. I know the fact
that pitfalls are already in the language isn’t a reason to add more.
However, overloading operator dot does have benefits, and the standards
committee must always weigh up the benefits afforded by a new feature
versus the problems it (potentially) causes. Anyway, the jury is still out on
operator dot, but I think it’s one to watch with interest.

Acknowledgements/References
[1] Thanks to Dinka Ranns for the excellent reports (posted to the BSI

C++ Panel reflector) from Skillman, on which I have drawn in my
report.

[2] ‘Unified Call Syntax’ (N4165) is by Herb Sutter can be found at:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/
n4165.pdf

[3] ‘Call syntax: x.f(y) vs. f(x,y)’ (N4174) by Bjarne Stroustrup can be
found at: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2014/n4174.pdf

[4] The latest mailing can be found at: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/#mailing2015-02

[5] Thanks to Roger Orr for helping me understand this.

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?
MAR 2015 | | 27{cvu}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4165.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4174.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4174.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/#mailing2015-02
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/#mailing2015-02

28 | | MAR 2015

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

Time for another edition of CVu.
Considering that this esteemed publication only
comes out every two months, demands for my
contribution seem to arrive much more
frequently than I would have expected!

So what’s been going on since I last put fingers
to keyboard?

Well, we had a long committee meeting, at
which the main topic was the future of ACCU.
The good news is that the committee does
believe that ACCU has a future! However, it will
take time and effort to rebuild the membership
up to its former levels. There was much
discussion, and eventually the committee took a
position on three specific issues.

First, the committee decided to recommend to
the Annual General Meeting (AGM) that the
membership dues remain at the same level as
this year for the next year. As I understand it, we
are doing well enough to meet our current
obligations, although not well enough to start
holding committee meetings in the Bahamas...

Secondly, it was the committee’s view that the
magazines, CVu and Overload, should remain
printed publications. There were a number of
suggestions sent in suggesting that the
publications, or perhaps one of them, should
become e-publications. However, it’s my
experience that a large proportion of the
membership are firmly attached to print
publications. That’s perhaps not surprising in
view of the problems in using e-book readers to
read technical publications, especially ones that
have fixed font code and diagrams.

It may be that in a few years time, e-books will
have the bugs worked out of them and have
become the preferred way of consuming
‘printed’ matter. At that stage we can re-open the
matter, and, perhaps take a different decision. In
any case, I personally would definitely want to
see a decision from the whole membership
before embarking on a change of that
magnitude.

As an aside I’d like to thank those of you who
took the trouble to write in with suggestions on
this and other issues, the ideas were very helpful.

However, given the extent to which the cost of
publishing and distribution dominate ACCU’s
finances, the committee did feel that it should
look into whether we should have a single 48
page magazine six times a years, rather than the
existing two 24 page magazines. Doing so
would cut the cost of distribution (though not by
half). The committee didn’t take a position on
this, and the magazine editors would
undoubtedly need to have a say in this decision
before it’s taken. I will be interested to hear
opinions on this matter at the Annual General
Meeting, and at Conference this year (more on
that later).

The third thing the committee discussed was
how to rebuild the membership, not to mention
keeping the ACCU relevant to the existing
membership! To cut a long story short, it is the
committee’s belief that the way to do this is by
nurturing and building up strong local groups.
That will be what the committee will be
proposing at the AGM. This will involve all
sorts of issues from funding through to building
up speakers lists and giving advice on how to set
up regular local meetings. We were fortunate to
have Nigel Lester from the Oxford local group
in attendance at the committee meeting, and his

contribution to the discussion was extremely
valuable.

I mentioned conference earlier on. We (‘we’
being the ACCU) have a 90 minute slot at the
conference on Friday afternoon. Tentatively,
I’ve organized it into two 45 minute sessions;
one to discuss local groups – hopefully with
Nigel on hand for high grade advice, and one to
discuss writing for our magazine, hopefully with
our editors in attendance. I know that there are
lunchtime and evening Birds of a Feather
meetings most days, but this will mean we can
have a decent discussion without everyone
munching food, or rushing off to get Lakos-ed!
And, you can still have BoFs as well, should you
so wish...

Well, I think that's about all there is for this issue
– hopefully I’ll meet some of you at the ACCU
Conference this year.

	CVu27-1.pdf
	Private Funding
	Coders Causing Conflict
	Using ACCU Membership for Unique IDs
	LAMP on Ubuntu
	The Developer’s Sandbox
	What Do People Do All Day?
	Simple Android programming with WebKit
	Kevlin Henney: An Interview
	Raspberry Pi Linux User Mode GPIO in Python
	Standards Report
	Code Critique Competition 92
	View from the Chair

