

NOV 2014 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Community service
here is change in the wind here at C Vu. It happens
from time to time, because if it didn’t it would be
terribly boring!

C Vu has been the ACCU members’ magazine since
1987, and in the intervening years it’s changed quite a bit.
The last big change saw C Vu take the format (roughly)
you now see, in April 2006.

The next change being considered is the idea of opening up
selected articles and items from the magazine to non-
members as part of the online presence of the magazine. Both
C Vu and Overload – our sister publication – are available on
ACCU’s website in PDF format, although currently C Vu is
restricted to members only. However, it is hoped that making
some of the articles we get for C Vu publically available
might persuade more people to pay up, join up, and get the
whole thing every two months – which obviously is a win
for us as a magazine, and for them! The plan would be that
selected items would be made available some time after
publication, rather than immediately as is the case with
Overload.

Your thoughts on this to the usual address will be much appreciated.

In the April 2006 edition I mentioned previously, the editor at the time, Paul Johnson,
reported the demise of one of the last remaining print-copy magazines for
programmers: CUJ. At the present time, I am aware only of C Vu and Overload being
available in paper copy for programmers. There are many online magazines, blogs
and other websites, but a printed magazine has the benefit that if you leave it lying
around at work, someone who’s never seen on may pick it up and flip through it, and
might even like what they see.

I feel strongly about C Vu – and Overload, it’s not all editorial bias! – that they
perform a very important, even vital, role in publishing articles that are (and here’s
the really important bit) peer reviewed. The truth is that anyone can write a blog or
respond to a question on one of the many tech-community websites, and whilst there
is opportunity for people to make comments on those posts, it’s not the same thing as
having an article published that’s been reviewed and critiqued by your peers. There
aren’t too many places left that make that claim, so help us to ensure that C Vu and
Overload are able to continue this crucial service for all of you!

T
Volume 26 Issue 5
November 2014

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Silas S. Brown, Frances
Buontempo, Pete Goodliffe,
Ralph McArdell, Chris Oldwood,
Roger Orr, Mark Radford,
Giuseppe Vacanti, Emyr
Williams

 ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | NOV 2014

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
15 Code Critique Competition

Competition 90 and
the answers to 89.

19 ACCU London – October 2014
Chris Oldwood
reports from the
latest meeting of the
London Chapter.

20 Seb Rose: An Interview
Emyr Williams
continues the series
of interviews with
people from the
world of
programming.

22 Standards Report
Mark Radford reports
the latest developments
in C++ Standardization.

REGULARS
23 Bookcase

The latest roundup
of book reviews.

24 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 26.6: 1st December 2014
C Vu 27.1: 1st February 2015

Overload 125:1st January 2015
Overload 126:1st March 2015

FEATURES
3 Playing By The Rules

Pete Goodliffe makes up his own rules.

4 Taming the Inbox
Chris Oldwood shares his tactics for keeping on top
of the mail.

6 Const and Concurrency (Part 1)
Ralph McArdell comments on comments to Herb
Sutter’s updated GotW #6b solution.

8 Parsing Configuration Files in C++ with Boost
Giuseppe Vacanti describes how to deal with
program options, C++ style.

10 Perl is a Better Sed, and Python 2 is Good
Silas S. Brown sweats the differences between tools
on common platforms.

12 Debuggers Are Still For Wimps
Frances Buontempo shows how to remote debug
python from Visual Studio.

13 A Cautionary Tale
[This article is only available in the printed version of
CVu due to rights issues.]

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

NOV 2014 | | 3{cvu}

Playing By The Rules
Pete Goodliffe makes up his own rules.

If I'd observed all the rules, I'd never have got anywhere.
~ Marilyn Monroe

e live our lives by many rules. This could be a dystopian
Orwellian nightmare, but it’s not. Some rules are imposed on us.
But some we set ourselves. These rules oil the cogs of our lives.

Rules facilitate our play, describing how a game works: saying who has
won and how. They make our sports fair and enjoyable, and provide plenty
of opportunity for (mis)interpretation (see soccer’s off-side rule).

They impinge on our travel, where security rules dictate you can only carry
so much liquid, and no sharp objects, on airplanes. They describe traffic
speed limits, and how to safely navigate a path on the road. Such rules
ensure the safety of all.

Rules bound our social norms, stating that it’s not appropriate to lick a
stranger’s ear when you first meet them, no matter how tasty it looks.

Yes, we live our lives continually observing a set of rules. We’re so used
to this that we often don’t think about them.

Unsurprisingly, the same holds in our development work. There are a wide
range of rules we follow at the codeface. Development process norms.
Mandated toolchains and workflows. Office etiquette. Language syntax.
Design patterns. These are the things that define what it is to be a
professional programmer, and the way we play the development game with
other people.

If you join a new project, there are various rules that you’d expect to be in
place. Rules governing the responsible creation of high-quality code.
Rules governing working processes and practices. And specific rules about
the project and problem domain: perhaps legal regulations in force for
financial trading, or safety guidelines for health markets.

These rules they help us work well together. They help orchestrate and
harmonise our efforts.

We need more rules!
But sometimes all of these rules, good as they are, aren’t enough.
Sometimes the poor programmers need more rules. Really, we do.

We need rules that we’ve made ourselves. Rules that we can take
ownership of. Rules that define the culture and working methods of
development in our particular team. These needn’t be large unwieldy
draconian edicts. Just something simple you can give new team members
so that they can immediately play the game with you. These are rules that
describe something more than mere methods and processes; they are rules
that describe a coding culture – how to be a good player in the team.

Programming teams have a set of rules. These rules define what
we do and how we do it. But they also describe a coding culture.

Sound sane? Well, we think so. Our team’s Tao of development is summed
up in three short complementary statements. From these all other practices
follow. These statements are now enshrined in our team folklore, have
been printed out in large, friendly letters, and emblazon our communal
work area. They reign over all we do; whenever we face a choice, a tricky
decision, or a heated discussion, they help to guide us to the right answer.

Are you ready to receive our wisdom? Brace yourself. Our three earth-
shattering rules for writing good code are:

 Keep it simple

 Use your brain

 Nothing is set in stone

That’s it. Aren’t they great?

We set these rules because we think they lead to better software, and have
helped us become better programmers.

They perfectly describe the attitude, the sense of community, and the
culture of our team. Our rules are purposefully short and pithy; we don’t
like lengthy bureaucratic dictats or unnecessary complication. They
require developer responsibility to interpret and follow; we trust our team,
and these rules empower the team. They are always new ways to apply
them in our codebase; we are always learning and seeking to improve.

Set the rules
These rules make sense to us, in our project, in our company, and in our
industry. They may not have the same import for you.

What rules are you currently working to? That is, apart from the ban on
licking your colleagues’ ears. Do you have a coding standard (either
formal, or informal) in place? Do you have development process rules
(perhaps the likes of: Be in for 10 a.m. because we have a stand-up meeting.
All code must be reviewed before check-in. All bug reports must have clear
repro steps before being handed to a developer)?

What rules govern your team culture? What informal, unwritten ways of
collaborating, or approaches to the code, are particular to your team?

Consider formulating a small, simple set of rules that you can define your
coding culture with. Can you distill it to something pithy like our three
rules?

Don’t rely on vague unwritten team ‘rules’. Make the implicit rules
explicit, and take control of your coding culture.

In the spirit of our third rule, don’t forget that nothing is set in stone –
including your rules. Rules are there to be broken, after all. Or rather, rules
are there to be remade. Your rules may justifiably change over time as your
team learns and grows. What is pertinent now may not be in the future.

Questions
1. List the software development process rules currently in place in

your project. How well are these enforced and followed?

2. How does this project’s culture differ from your previous projects?
Is it a better or worse project to work in? Can the difference be
captured or improved in a rule?

3. Do you think your team would rally around an agreed set of rules?

4. Does the shape, style, and quality of your code have any effect on a
projects’ coding culture? Does the team shape the code, or does the
code shape the team?

 W

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

Pete’s new book – Becoming a Better Programmer –
has just been released. Carefully inscribed on dead
trees, and in arrangements of electrons, it's published
by O'Reilly. Find out more from http://oreil.ly/1xVp8rw

Becoming a Better Programmer #89

In The Toolbox #9
Taming the Inbox
Chris Oldwood shares his tactics for keeping on top of the mail.

ne of the things you get to deal with in ‘The Enterprise’ is how to
manage the ton of email you get every day. For some reason
corporate culture loves it. And I hold my hand up too as being one

of those people who has probably overused it. Your inbox is bombarded
every day by emails from various sources, such as the company’s latest
results or PR exercise, support notifications to keep you ‘in the loop’,
location aware messages to find the owner of the dropped mobile phone,
meeting invites, etc.

What I find confusing is the number of people who deal with this by
burying their head in the sand, i.e. they just leave everything in their inbox
and make no attempt to configure their email client to relieve (some) of
the burden. When you do send them an email they seem surprised when
you follow up in person and they say, “Sorry, I didn’t see that message”.
In many cases these are developers who would never dream of sticking all
their source files in a single source folder, and yet the same rules to manage
complexity in software don’t seem to apply to email.

In one sense I envy their attitude towards email – I wish I could be so blasé
about the whole affair and just grumble about how much it interrupts my
day and is just another distraction from writing code. But the thing is, it
isn’t and hasn’t been for a long time as I’ve learnt to manage it, just as I’ve
learnt to manage the complexity of the code I work on. What follows below
are the practices I’ve developed to manage my email load. Of course one
size never fits all, but you may either find some solace in my habits or
confirm my position as a slave to an anachronism.

Message status
Given the environments I work in Microsoft Outlook is the email client of
choice and it has one of the worst default settings I’ve ever come across:
‘mark item as read when selection changes’. This means that every time
you click (or cursor up/down) to another message in your inbox the
previous one will be marked as read – irrespective of whether you actually
read it or not. Given that your focus is on the target email, not the ones
along your journey, you probably won’t even notice the change in status
of the ones you accidentally clicked on. If you are going to leave everything
in your inbox, the read/unread status is probably the only way you’re going
to know what you have and have not attended to, so you owe it to yourself
to switch this off. I don’t leave emails in my inbox but I still turn it off as
the ‘read status’ is one of my indicators for what I’ve yet to attend to.

Our esteemed C Vu editor informs me that this is also the default setting
on a number of other email clients. If anyone can enlighten me to why this
is the choice of the masses please send a postcard to the usual address, i.e.
accu-general.

Filtering messages
My primary filter for what order to look at emails is not whether it’s been
read or not, but which folder it’s in. After turning off the setting above I
start to consider how I need to filter any incoming email so that stuff that
is likely to demand my attention stays in the inbox (i.e. my highest priority
mailbox) whilst the less exciting emails end up in some other folder. In
either case it remains in an unread state as even the lowest priority of emails

may have some redeeming content unless I know for sure I will have no
false positives with a rule (e.g. I can match on an email address from an
automated account).

As a general rule anything not addressed directly to me, or directly to my
team’s email distribution list(s) goes into the bin (the Deleted Items folder
in Outlook). So much email comes through on so many email lists that
aggregate various other lists ad infinitum that it would be a chore to
continue maintaining the default rule by adding each new corporate spam
list as it shows up. Hence I prefer a white-list to a black-list, where the
white-list is me and my team mates.

That simple rule often suffices for many organisations, but it depends on
how entrenched you are in the company, or whether you have a support
role as well. Support is often done through an email list that I may or may
not be interested in depending on the support rota. As such I may create a
custom folder, perhaps under the Inbox, for mail addressed to the support
account.

I have known an organisation get wise to this ‘tactic’ of filtering internal
spam by using read receipts to monitor consumption. They then started
addressing mail to everyone directly (or perhaps it was just me because
they knew I was not only binning it, but marking it as read automatically
too). For these occasions the other filtering rules can usually be effective,
such as matching a text string like ‘Monthly Update from the CEO’.
Hopefully by now we’ve reduced the burden so much that the odd false
negative is not too onerous to deal with manually.

When to read
I know many people find email a huge distraction and dislike being
interrupted when in a state of ‘flow’. Personally it’s been so long since I’ve
ever achieved a state of flow I’m not sure what it looks like. A large part
of that is probably down to having four children – their constant need for
attention means I’ve developed the ability to context switch at will.
Whether I’m anywhere near as effective being this way is likely open to
debate, but it does mean I can attend to trivial emails without really pausing
for thought.

The little envelope that Outlook displays in the notification tray can either
be a useful little reminder to catch up on your mail or a horrible nag
depending on how distracting you find tray icons. Toast-style notifications
at least answer the question that the little icon only teases at – who’s it from
and could it be worth reading now? However their effectiveness even for
someone like me depends on them being the exception rather than the
norm. In an email heavy environment all these indicators, along with
playing a sound when a new message arrives, can seem like you’re at a
fireworks display.

One problem with being elevated from last-through-the-door to longest-
serving-member means that you acquire an awful lot of knowledge and
experience that others (unfortunately) start to rely on. Even if I’m not the
only one who knows the answer, if I feel someone is blocked in their work
and I have the ability to reply quickly and that would unblock them, then
I feel the team wins. However this kind of helpfulness does nothing to
improve your own productivity and can lead to awkward questions if your
company measures value in lines of code.

As such my emails are dealt with in one of two ways. If the email is
relatively short and can be answered within a couple of minutes I’ll just
do it there and then. Rather than handle a single email, naturally I’ll handle
all the quick ones in succession. Of course because I do it that way my
inbox never accumulates and so it mostly stays empty. Any that are too

 O

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
4 | | NOV 2014{cvu}

long to read or reply to immediately stay marked as unread so that I know
I still need to look at them properly later.

That generally leaves the longer emails addressed to me and any others that
were filtered automatically into the lower priority folders. These I can
tackle at a time when a natural break occurs, such as running the clean +
build + tests after integration and before checking in, or after one story is
finished and I’m ready to pick up the next, or before resuming a story after
having coffee/lunch, etc. This kind of email tends to be pretty rare these
days as it can often be converted to a formal project task if the answer
would be better served as a wiki page, or by teeing up a face-to-face chat
to explore a problem directly (high-bandwidth communication).

If I’m on support then the priorities change so that I scan the support folder
first and will probably interrupt my flow to handle a potentially lengthy
support email as that is usually far more important.

Finally that just leaves the stuff that goes straight in the bin, but still marked
unread, which I’m pretty sure is just junk. Most of the time I won’t even
go past the subject line and will either block select and mark as read or use
the folder option ‘mark all items read’ for ease. Very occasionally
something interesting gets filtered by mistake and so I might dealt with it
then or move it back to my inbox to peruse later.

You might have noticed I’ve not mentioned the message priority
anywhere. That’s because I completely ignore it. Putting the word
‘URGENT’ in the subject line in capital letters does not make me feel the
need to respond any quicker either. The priority flag is usually just an
indication of their work priorities, not mine.

Message archives
Back when disk space was measured in MB it was not possible to keep
every email sent, especially when they contained attachments. These days
it’s entirely possible to never delete anything ever again. The problem now
is searching a vast email archive for the answer to that question you’ve just
been asked… once again.

Rather than leave all my mail in the Inbox or ‘soft-deleting’ by moving it
to the Deleted Items folder I developed a habit of creating a top-level
archive folder with a set of suitably named sub-folders used to group
emails into more manageable chunks. For example on my current project,
which I’ve only been in for a few weeks, I already have the following
folders: Build, Design, Infrastructure, Releases, Security and Tools. In
essence I group emails just like I group code into namespaces.

Once I joined the corporate circle I found this technique to be very
valuable. It has proved to be a good defence mechanism to remind both
team insiders and outsiders about a prior conversation when amnesia
appears to have set in. One manager I worked for asked the same question
time-and-again and so I used to dig out the last copy of the email I
forwarded him and prefixed it once more with ‘Here it is, again’. This kind
of passive-aggressive behaviour changed nothing of their behaviour but at
least I got to chuckle as the email grew longer and longer with each new
occurrence.

Earlier I mentioned that I can often answer an email very quickly and this
easily searchable archive is one reason why that becomes possible. Even
with years of accumulated emails it becomes relatively easy to find stuff.
Naturally the tool’s search feature is a good start, and narrowing to just
one folder speeds things up immensely. Sometimes though I can’t
remember a distinct enough term to search on and so a manual search is
required. This might seem like the proverbial ‘needle in a haystack’ but
with a good folder structure you’ll be surprised how quickly you can hone
in on something just by flicking down the subject lines.

So, what do I archive? I keep every non-trivial, team-relevant conversation
that passes by my inbox. Although in some cases I have kept even the
replies that just say ‘thanks’ as proof that the email must have been read
by the recipient (in case they plead ignorance). That might seem like a lot
of mail but once you have a good archive structure it only takes moments
to read it and file it away. In the past I tried to keep only the most recent
message in any conversation but I found that became more of a burden and
if the thread diverged it became hard to know which to keep.

One other reason for not just leaving everything in the bin or the inbox (if
you want a record kept somewhere) is that some companies have a policy
of deleting mail older than, say, 3 months in either of these two folders.
Ironically, rather than attempt to reduce its dependency on the tool they
prefer to recycle the storage more quickly.

Occasionally one archive topic’s folder might get too general and so I then
split it or create subfolders. I leave the existing pile in place and then start
afresh which creates a sort of multi-level cache when searching. However
these days I’ve done it so many times that I generally adopt the same
structure each time and have a feel for what sort of breakdown is likely to
work.

My original goal for all this hoarding was to allow me to dump the entire
contents of my mailbox into a .pst file on some file share when I left so
that any knowledge acquired was still accessible to others after my
departure. While I have done this on later contracts I didn’t in the early
days because I was fearful that an email with a sensitive conversation in
it might leak out. Consequently my desire to be able to just dump my
mailbox on exit has helped keep me a little more honest too.

Handling request timeouts
Most replies will either be part of an ongoing conversation, in which case
the original email can be archived, or will involve me firing off a request
to which I will eventually expect a reply. I like to manage my Sent Items
folder in a manner similar to my inbox (it is a mirror image after all) so I
archive sent emails too alongside the ones received.

I used to use a special archive folder called ‘_pending’ (the leading
underscore sorts the mailbox at the top) to act as a reminder of how far the
conversation has gone. However I eventually realised that by emptying the
Sent Items folder in the same way as my Inbox I could leave pending items
in there instead.

Treat the disease
By now I suspect many of you are screaming at this article telling me to
treat the disease, not the symptoms. And you would be right. In some cases
the burden of team communication by email has lessened over the years
as common uses have been replaced by the daily stand-up, pair
programming, code reviews, IRC style chat [1], wikis, feature trackers, etc.
Convincing your own team to make better use of face-to-face
communication or other tools is usually within your own control.

The question is how to convince those outside your control that you don’t
want the deluge of spam directed at you. Where’s the link at the bottom
of the weekly timesheet reminder that allows me to unsubscribe? Perhaps
corporate email software will one day evolve to a point where all email
lists become opt-in, not impossible to opt-out of. Until that day comes I’ll
continue to opt-out where possible using automatic filtering rules and opt-
in for stuff that actually has some value for me and my team.

References
[1] ‘In The Toolbox – Team Chat’, C Vu 25-2, August 2013
NOV 2014 | | 5{cvu}

Const and Concurrency (Part 1)
Ralph McArdell comments on comments to Herb Sutter’s

updated GotW #6b solution.

 have been following Herb Sutter on his Sutter’s Mill [1] website and
while reading, in 2013, GotW #6b Solution: Const-Correctness, Part 2
[2] and the comments subsequently posted, some thoughts popped into

my head.

For those in need of a reminder or enlightenment, GotW is the commonly
used short-form term for Herb Sutter’s ‘Guru of the Week’ C++ posers.
The ‘GotW #6b Solution: Const-Correctness, Part 2’ article is Herb’s
posted solution to the GotW #6b poser which concerns consistent usage
of const and mutable in C++ to write safer code. The posed task for
which the article provides Herb’s solution is to add or remove const to/
from the shown polygon class which caches the result of area
calculations, with bonus points awarded if you could point out undefined
results or uncompilable code caused by the erroneous use of const. The
solution includes concurrency and synchronisation concerns including
whether to protect the cached, double, area member by a mutex or make
it std::atomic<double> (which is where mutable makes an
appearance).

The first comments to catch my eye were about the overhead that may be
incurred by std::atomic being only to do with what liberties the
compiler can take with respect to optimising writes. This raised an eyebrow
as I was under the impression that the need to force atomic operation effects
to be globally and consistently visible has more of an effect on
performance than reordering write restrictions. Even where a processor has
atomic memory update support there is still a cost [3, 4] – although that
cost is significantly lower in modern processors.

However, the main focus of my thoughts has to do with various comments
noting that modifying the set of points added to objects of the problem’s
polygon class is not synchronised and performing such changes
concurrently with other operations without external synchronisation will
end in tears and confusion! One suggestion was to do all the updates on a
single thread then allow shared concurrent read access to the finalised
polygon. This got me speculating as to how to enforce such a usage pattern,
rather than just arrange for violations to such usage to not occur by
convention and hope everyone plays along.

What follows is the result of me following up on these initial thoughts,
along the lines of “let’s see where this goes…”, and as such is not intended
to necessarily solve any real world problems or even to produce any
workable solutions. It is assumed that the types involved, like the GotW
6B polygon class, do not have immutable instances so any thread could
potentially modify an instance at any time. If nothing else maybe these
musing will serve as an example as to why immutability can be a good
thing.

So, the pattern is:

1. Create an object – e.g. a polygon as per GotW 6b; this occurs on a
single thread.

2. On this thread perform updates to this object (e.g. add points to the
polygon).

3. Having performed all updates share the polygon for read-only
access from potentially many threads concurrently.

The above omits what to do when we wish to delete the object – which of
course should be considered a mutating operation! The simplest option
might be:

4. When all threads using the object have died the object may be
deleted.

Although this seems somewhat restrictive.

During the initial updating phase read-access will, in general, also need to
be restricted to access by a single thread. Step 2 could be relaxed to allow
access on different threads so long as access only occurred on one thread
at a time. It would be nice to relax step 4 to allow the object to be safely
deleted without all the reader threads having to terminate first.

Thus mutating and non-mutating (or const in C++ terms) operations have
different usage restrictions:

 Mutating operations are allowed to be used initially from a single
thread then disallowed.

 Non-mutating operations are allowed to be used initially from a
single thread then from multiple threads.

Let’s consider restricting multithread access first. An obvious lock-based
approach would be to create an object in a locked, mutable, state and then
change the state to being immutable and release the lock. This does not
help with the deletion problem though. Using a readers-writer or readers-
upgrade-writer lock could potentially solve this issue: create in mutable,
write-locked state, when done setting up the object’s state move to the
immutable readers-locking state, when wanting to destroy the object
obtain a writer lock, possibly via an upgrade lock.

Such locking strategies allow for more flexible usage patterns than we
require here. Because multithread access is forbidden when in the initial
mutable state we can just treat such accesses as errors when in this state.
It would be nice to be able to prevent such usage by failing compilation –
possibly restricting usage patterns such as use as stack objects only – but
(I am fairly certain) this is not attainable. Hence we should look to
detecting and raising such misuse as errors at runtime.

One obvious approach would be to use a std::atomic<bool> flag
instance member that is tested, set and reset around each mutating
operation. An exception is thrown if testing the flag indicates the method
is currently being used by some other thread (see Listing 1).

This will be monotonous to do repeatedly but the logic could be centralised
– for example bundled up into a functor using execute-around to plumb in
the boilerplate code around the actual work passed as a lambda function.
A rough bare bones implementation might look like Listing 2.

 I

RALPH MCARDELL
Ralph McArdell has been programming for more than 30
years with around 20 spent as a freelance developer
predominantly in C++. He does not ever want or expect to
stop learning or improving his skills.

void the_type::mutating_operation()
{
 bool expect_false{false};
 if (!in_use.compare_exchange_strong
 (expect_false, true))
 {
 throw std::runtime_error
 {"!!Concurrent access: illegal usage!!"};
 }
 // Do state changing stuff…
 in_use = false;
}

Listing 1
6 | | NOV 2014{cvu}

Which reduces the mutating operation implementation to:

 void the_type::mutating_operation()
 {
 exclusive_exec([&]()
 {/*Do state changing stuff…*/;});
 }

In which exclusive_exec is an instance member of the_type of type
enforced_exclusive_executor.

Other than the various overheads incurred this technique’s main problem
is not necessarily detecting access by multiple threads immediately, if at
all. This means that pattern-misuse exceptions are raised indeterminably.
Then of course there is the question of what to do about non-mutating
operations that do not alter the object’s state.

A better approach may be to work with a token: if the token matches the
current valid token then updates are OK otherwise it is erroneous usage.
A convenient token would seem to be a thread id, represented in C++11
by the std::thread::id type (see Listing 3).

update_id i s an ins tance member of the_type o f type
std::thread::id which is initialised to the thread id of the thread
creating the object. Of course the check logic can be pulled out – for
example into a private instance method maybe called something like
validate_call_context() (see Listing 4).

This scheme will throw an exception any time any thread other than that
the object expected to be called on calls any instance member function that
validates its call context – which should be most if not all operations. The
scheme has potential to be extended. Transferring the call context to
another thread is simply a matter of updating the value of the object’s
update_id to the id of the new calling thread. As such a transfer only
makes sense during the initial updating stage of the object, like all such
operations during this stage, it would be restricted to being performed only
by the current calling context. As a bonus when moving to the shared,
immutable state the calling context can be ‘transferred’ to the single
distinct std::thread::id value that does not represent a thread – as
produced by default constructing a std::thread::id object – which
would ensure that all operations that validate their call context will fail.

A concern is that as std::this_thread_get_id() is called for each
validation it should be a cheap – preferably very cheap – operation which
may not be the case for all implementations.

I shall pause here and defer developing my musings further for a later
article.

References
[1] http://herbsutter.com/
[2] http://herbsutter.com/2013/05/28/gotw-6b-solution-const-

correctness-part-2/
[3] ‘Is Parallel Programming Hard, And, If So, What Can You Do About

It?’ v2013.01.13a especially sections 2.1.3, 2.21, 2.2.3
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/
perfbook.html

[4] What Every Programmer Should Know About Memory, section
6.4.2 http://www.akkadia.org/drepper/cpumemory.pdf

class enforced_exclusive_executor
{
 std::atomic<bool> in_use;

public:
 enforced_exclusive_executor() : in_use{false}
 {}

 template <class WkFnT>
 void operator()(WkFnT do_work)
 {
 bool expect_false{false};
 if (!in_use.compare_exchange_strong
 (expect_false, true))
 {
 throw std::runtime_error
 {"!!Concurrent access: illegal usage!!"};
 }
 do_work();
 in_use = false;
 }
};

void the_type::validate_call_context()
{
 if (std::this_thread::get_id()!=update_id)
 {
 throw std::runtime_error
 {"!!Concurrent access: illegal usage!!"};
 }
}

void the_type::mutating_operation()
{
 validate_call_context();
 // Do state changing stuff…
}

Listing 4Li
st

in
g

2

void the_type::mutating_operation()
{
 if (std::this_thread::get_id()!=update_id)
 {
 throw std::runtime_error
 {"!!Concurrent access: illegal usage!!"}; }
 // Do state changing stuff…
}

Li
st

in
g

3

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
NOV 2014 | | 7{cvu}

http://herbsutter.com/
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.akkadia.org/drepper/cpumemory.pdf

Parsing Configuration Files in C++ with Boost
Giuseppe Vacanti describes how to deal with

program options, C++ style.

n the (Unix) world of command-line tools I inhabit, parsing
configuration files is a common first step most of my tools perform
before starting a long and complex computation. Although command-

line tools may make you think of command-line switches, I often write
simulation or data analysis tools that require up to a few tens of parameters
to describe either an experiment or a complex geometrical model: not
something you want to type out often on the command line. Storing the
parameters in a file, possibly allowing the user to perform a command line
override of some of them, is one possible solution.

After thinking about the format of these configuration files, I chose to use
the INI format. The latter is loosely defined, and a number of variations
on the theme exist, some of them rather complex, involving nested sections
and entries extending over multiple lines. I have settled for the classical
format consisting of a series of key=value lines, possibly grouped into
sections, like the following example:

 energy = 10
 mass = 22
 [detector]
 position_x = 1
 position_y = 2
 position_z = 3
 [detector.material]
 atomic_number = 43

I am aware that the format has some limitations, especially when it comes
to string values that either extend over multiple lines or contain escaped
characters, but I do not care for these features.

There are a number of libraries able to read INI files, but most of them
require the client to perform all the work of checking whether parameters
are present (or misspelled), and to what type they should be converted. For
instance:

 ini_file i_f(file_name);
 if(i_f.has_key(section_name, key_name)){
 cout << i_f.key<double>(section_name,
 key_name) << endl;
 }

Why this is so can be understood by building a minimal INI file parser in
C++. In this parser the INI file could be represented by a map<string,
map<string, string> >, and with a bit of encapsulation one would
arrive to the interface in Listing 1.

With such a parser the number of checks and conversions the client must
perform in order to extract all the required parameters is large, and prone
to error.

Enter the Boost library Program Options [1]. The main purpose of the
library is to parse command line options, but it offers the possibility to read
the options from an INI file, which is exactly what I want. Additionally,
the library will check whether a key has a value that can be converted to
the appropriate type, it can deal with duplicate/multiple entries (allowed
or not allowed), can be used to provide default values for missing keys,
and more. In the following I explain how to use the library for this purpose.

Let’s start by going back to my sample INI file, and let us map it to a
configuration data structure like the one in Listing 2.

Listing 3 is the piece of code that reads the parameters from the
configuration file and assigns them to the appropriate variable in the data
structure.

The library lives inside the namespace boost::program_options,
here shortened to po.

We must first define a variable of type po::options_description,
and add options to it. We do this by associating a name to a type and the
corresponding variable in the configuration structure. Note that keys in a
section have their name prefixed with the section name.

Having filled in the options description we can parse the configuration file
(in this case passed in through the standard input, but any istream will do).
As you can see, we need three lines of code to do this. The reason is that

 I

GIUSEPPE VACANTI
Giuseppe Vacanti is a physicist who works at a small high-
tech company in the Netherlands, and who likes to solve
problems with C++ and Python. He can be reached at
giuseppe@vacanti.org

class ini_file {
 public:
 ini_file(istream & is) { ... }
 bool has_key(const string & section,
 const string & name) const {
 Iter p = m_ini.find(section);
 bool ret_val = false;
 if(p != m_ini.end()){
 section_t & sec = m_ini[section];
 ret_val = sec.find(name) != sec.end();
 }
 return ret_val;
 }

 template<typename T> T key(const string &
 section, const string & name) const {
 assert(has_key(section, name));
 return boost::lexical_cast<T>
 (m_ini[section][name]);
 }

 private:
 typedef map<string, string> section_t;
 typedef map<string, section_t> ini_t;
 typedef ini_t::const_iterator Iter;
 mutable ini_t m_ini;
};

Listing 1

struct configuration {
 unsigned int version;
 double energy;
 double mass;
 struct detector {
 double position_x;
 double position_y;
 double position_z;
 struct material {
 double atomic_number;
 } material;
 } detector;
};

Listing 2
8 | | NOV 2014{cvu}

the library allows one to merge options from multiple sources (for instance,
default values from a configuration file that can be overridden on the
command line), so that multiple calls to po::store may have to be
executed before calling po::notify, that actually makes the parsing
happen.

I mentioned earlier that the library has a number of features that simplify
the life of the programmer.

Type checking
A first feature worth mentioning is that if the key value cannot be converted
to the type specified, an exception will be thrown. For instance, if the
configuration file contained the key

 version = one

the program would be terminated with something like Listing 4.

Key name checks
What happens if the configuration file contains an extra key, or a key
whose name is misspelled? This behaviour can be configured, but in most
cases you’ll want the program to tell you by disallowing keys whose name
has not been registered, as shown in the example. In this case, if we had

 versionx = 1

another exception would be thrown, with the message

 what(): unrecognised option 'versionx'

Default values and required keys
What if one of the keys is missing from the configuration file? For instance,
comment the version key out:

 #version = 1

Without any measure from our part, the variable version will be
uninitialized, and it will be assigned some random bit pattern:

 version=1710991640
 energy=10
 mass=22

etc

We have now two options. The first one is to give certain keys a default
value, by writing for instance:

 ("version", po::value<unsigned int>
 (&cfg.version)->default_value(99))

The second is to make version mandatory

 ("version", po::value<unsigned int>
 (&cfg.version)->required())

which leads to an exception when version is absent:

 what(): the option 'version' is required but
 missing

Multiple key instances
By default each key can appear only once in a configuration file, or an error
is generated:

 what(): option 'version' cannot be specified
 more than once

But for some keys it may make sense to have multiple values, for instance

 energy = 10
 energy = 20

We make this possible by changing the declaration of energy to

 std::vector<double> energy;

and the option description to

 ("energy",
 po::value<std::vector<double>>(&cfg.energy))

Multiple configuration sources
There can be multiple sources of configuration data, and these can be
processed one after the other to obtain the final configuration. In my case
the user may want to have a standard configuration file, and then under
some circumstances modify one or more parameters without modifying
the standard configuration file. This can be achieved by adding a second
call to po::store, before the first one (the value of a key is set by the
first parser that encounters the key name):

 po::store(po::parse_command_line(argc, argv,
 desc), vm);

So now the usage is as shown in Listing 5.

configuration cfg;

namespace po=boost::program_options;
po::options_description desc;
desc.add_options()
 ("version", po::value<unsigned int>(&cfg.version))
 ("energy", po::value<double>(&cfg.energy))
 ("mass", po::value<double>(&cfg.mass))
 ("detector.position_x", po::value<double>(&cfg.detector.position_x))
 ("detector.position_y", po::value<double>(&cfg.detector.position_y))
 ("detector.position_z", po::value<double>(&cfg.detector.position_z))
 ("detector.material.atomic_number",
 po::value<double>(&cfg.detector.material.atomic_number))
 ;
const bool allow_unregistered = false;
po::variables_map vm;
po::store(po::parse_config_file(std::cin, desc, allow_unregistered), vm);
po::notify(vm);

Li
st

in
g

3

> ./main < example1.cfg
terminate called after throwing an instance of
'boost::exception_detail::clone_impl<boost::exception_detail::error_info_injector<boost::program_option
s::invalid_option_value> >'
 what(): the argument ('one') for option 'version' is invalid
Aborted (core dumped)

Li
st

in
g

4

NOV 2014 | | 9{cvu}

Parsing Configuration Files in C++ with Boost (continued)
Properties file format
You will have certainly noticed that in the options description code, keys
in a section are specified as section.key, à la properties file. And in
fact, the library can also ingest a properties file.

Custom types
The library support custom types, as long as they can be handled by Boost
Lexical Cast. For a type to be handled by Lexical Cast it must be
OutputStreamable, InputStreamable, CopyConstructible, and
DefaultConstructible. If your type can be constructed from a string of
tokens without any white space character in it, then there is nothing special
you have to know.

On the other had, if you have a type like

 struct special_type {
 double x, y;
 special_type(double x_, double y_) : x(x_),
 y(y_) {}
 special_type() : x(0), y(0) {}
 };

things are not obvious (I had to dig into the Boost archives [2] to figure
this one out), and the input stream operator for your type must be written
as illustrated below because Lexical Cast does not ignore white space. See
Listing 6.

Now the following works

 special_type st =
 boost::lexical_cast<special_type>("12 13");

and as a consequence Program Options can handle something like

 special = 99 101.1

and on the command line you can say --special="100 200".

Options style
Being primarily intended for the command line the Program Options
library can be configured to handle command line options in various
manners (one or two dashes, case sensitive or not etc.). Most of the default
style options are not going to cause any surprise, but you want to be aware
of the fact that by default Program Options will accept a shorter spelling
of an option (or key in a configuration file) if it unambiguously identify
the complete option. This is possibly not what you want, in which case you
will have to alter this behaviour. Note that this only applies to the command
line parser, because the configuration file parser is very strict, case
sensitive, and does not allow shortening of the keys.

By combining INI/properties file parsing and command line options
parsing in one interface, the Boost Program Options library allows one to
easily layer multiple input sources and feed data of moderate complexity
into a program. While the file format it supports is not as rich as others,
the library has additional functionality that makes it worth considering.

References
[1] Available at http://www.boost.org/
[2] Start here for the complete story: http://stackoverflow.com/

questions/10382884/c-using-classes-with-boostlexical-cast

>./main --mass=99 --energy=123 < example1.cfg

version=1
description=this is the description
energy=123
mass=99
detector.position_x=1
detector.position_y=2
detector.position_z=3
detector.material.atomic_number = 46

Li
st

in
g

5 std::istream & operator>>(std::istream & is,
 special_type & val)
{
 is >> val.x;
 if((is.flags() & std::ios_base::skipws) == 0)
 {
 char whitespace;
 is >> whitespace;
 };
 is >> val.y;
 return is;
}

Listing 6
Perl is a Better Sed, and Python 2 is Good
Silas S. Brown sweats the differences between tools on

common platforms.

f you’ve done any Unix shell scripting, you’ve probably come across
the Stream Editor (sed). It’s most often used for simple substitution, for
example:

 for N in *.wav ; do lame "$N" -o "$(echo "$N"|sed
 -e 's/wav$/mp3/')"; done

which goes through all *.wav files and calls the MP3 encoder ‘lame’ on
each one, passing a -o parameter as the filename with the wav at the end
changed to mp3 – it’s the sed -e s/x/y/ that does this substitution.
[The -e argument allows you to provide multiple commands for a single
invocation. Ed]

In this example, the $ at the end of wav is there so that the substitution is
made only at the very end of the filename; I don’t want to confuse things

if a filename happens to contain ‘wav’ part-way through. In other situations
you might want to add a g after the closing / to globally replace a regular
expression many times in a line.

As this example shows, however, you do have to think carefully about your
regular expressions (regexps), especially if you don’t know what input
you’re going to get. In the above example, if I knew in advance exactly

 I

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
10 | | NOV 2014{cvu}

http://www.boost.org/
http://stackoverflow.com/questions/10382884/c-using-classes-with-boostlexical-cast
http://stackoverflow.com/questions/10382884/c-using-classes-with-boostlexical-cast

which filenames the command will be working with – say, a particular set
of a dozen or so .wav files – and I knew that none of them contain the
letters ‘wav’ except at the very end of the filename, then I wouldn’t need
to worry about including the $ character in the regexp. (Also, if I knew
there were no spaces or other special characters in the filenames, then I
wouldn’t have to put quite so many quote marks around everything.) But
if, instead of writing a one-liner to do something with a particular set of
filenames, I’m writing a script that I’ll be using
later, or even sharing with other people, then I
must be more careful.

Sed is a fairly universal tool: it’s installed ‘out
of the box’ on nearly every version of Linux,
even many small ‘embedded’ versions, and also
on other Unix systems, such as BSD and its
derivative Darwin which runs Mac OS X. So if
you use sed for small jobs like this, it should
work on all of these systems. At least, that’s the
theory.

In practice, there are a few annoying differences
between BSD’s version of sed (on the Mac) and
GNU’s version of sed (on Linux). If you develop
and test a script on Linux, it might not work on
the Mac, and vice versa. For example, on Linux
you can include \n in the replacement string to
indicate an extra newline should be added, but you can’t do that on the
Mac’s version of sed.

Yes you can install GNU tools on the Mac, but I like my scripts to be able
to run ‘out of the box’ to the extent possible, without requiring the
installation of too much extra software. That’s because I often need to run
my scripts on other people’s computers (or give them to others to run), so
I want to make a reasonable attempt to minimise the amount of system
setup that’s needed before the script will run. (That’s also why I tend to
be parsimonious about how many third-party libraries my programs rely
on: if such libraries won’t already be there on the system, and aren’t very
easy to bundle, then they’d better be good enough to be worth the hassle
of an extra dependency. A large library I want to make extensive use of,
like the Tornado web framework in Python, might be a justifiable
dependency, but I wouldn’t want to bring in an extra dependency just to
save myself from writing a 10-line function – not unless I know for a fact
that I’ll never have to set up this program with its dependencies anywhere
else. The trouble with dependencies is you never know when someone will
come along with a system on which they don’t compile, or doesn’t give
them enough rights to run the installer, or something, and if it’s not your
code then it’s that much harder to figure out what to do about it.)

And so we come to perl. I’m not an expert perl programmer (most of the
perl I’ve done has been making changes to other people’s scripts rather
than writing my own), but perl does have a very nice (and often
overlooked) command-line option to sort-of ‘emulate’ sed: the -p option.
Try:

 perl -p -e 's/wav$/mp3/'

and you’ll find it behaves just the same as sed -e, except it’s the same
across Linux and BSD (and supports things like ‘newline in replacement
text’ on both platforms). Also, you don’t have to put backslashes in front
of any parentheses you use (in fact you shouldn’t), which makes your
regexps more readable. The other thing to watch for is, if you’re doing
multiple substitutions then you should separate them with semicolons
rather than supplying additional -e commands as with sed.

Apart from these minor differences to be aware of (which generally go in
perl’s favour), perl -p is more or less a ‘drop-in replacement’ for most
uses of sed, except it’s more powerful (and you don’t have to backslash-
escape so much) and it’s more likely to work across platforms. So if you
find yourself using sed -e in scripts a lot, I’d recommend being aware
of this.

Of course, there will be some ‘embedded’ systems out there that have sed
but not perl. But generally speaking, perl is quite ubiquitous these days,

and it has for some years ‘settled down’ to a nice stable language that’s
not likely to change under your feet, so it is very well suited for use in shell
scripts like this.

What I call a ‘stable’ language, some people might call ‘stagnated’. But I
don’t see what’s wrong with a bit of stability: if you want your code to be
portable to many systems ‘out there’ with minimum fuss, it’s probably
easiest if you’re using a language that has ‘settled down’ to being pretty

much the same everywhere, even if this does
mean you’re ‘living in the past’ to an extent.

Python 2 is now a nice stable language as well,
especially since Python 3 has syphoned off all
new development but Python 2 is still (just
about) supported for essential bug fixes and
security checks. Python 2 is pre-installed on
nearly every Linux and Mac OS X machine, is
available for all kinds of older systems that
Python 3 has yet to be back-ported to – Windows
Mobile, Android SL4A, Series 60, EPOC, even
RISC OS – and there’s also a tool to turn a
Python program into a standalone Windows
executable, including interpreter, which can be
run without needing any administrator
privileges on the Windows machine (later
vers ions of th is tool began to require

administrator privileges, which rules out use in a computer lab; I have a
nice early version which even lets me update the Windows package from
the comfort of Linux without having to go into Windows at all, athough it
does mean I can’t add new libraries to it).

It’s even possible to write code in such a way that it will run on very old
2.x versions of Python, on older systems. For example, for Python 2.2 and
earlier, do this:

 try: True
 except: exec("True = 1 ; False = 0")

which defines True and False as variables if the keywords don’t yet
exist. And try to avoid writing ‘string1 in string2’ where string1 can be
more than one character (not supported in versions of Python before 2.3).
You could also do:

 try: set
 except:
 def set(l):
 d = {}
 for i in l: d[i]=True
 return d

to emulate the set() constructor (from a list) on versions of Python before
real sets were introduced.

But these days I usually target Python 2.7 if there is no great need to be
that multi-platform (i.e. the script I’m writing will probably not be useful
on Series 60 etc, but I still want it to work on any Linux or Mac system
from the last few years). Even still, I try to code in such a way that it won’t
be that much of a hassle to back-port to earlier versions of Python 2 if
necessary (although if I have to depend on a library like Tornado then
there’s no point even trying to support versions of Python that are older
than the library supports – or at least there’s no point going before the
oldest version of Python that’s supported by the oldest sensible version of
the library).

I do remember writing for Python 1.x, and I’m glad I’m not doing that any
more. But it now seems Python 2 has reached a nice balance of features
and stability, and I really don’t see the need to move to Python 3: its
advantages are not worth the extra dependency of installing it on every
system I want my programs to work on (including older Mac OS X
machines). Perhaps a Python 3 enthusiast would like to point out what’s
so good about Python 3? But it had better be amazingly outstanding if I
have to insist all my users install it first instead of using what’s already on
their systems.

I often need to run my
scripts on other people’s
computers (or give them

to others to run), so I want
to make a reasonable

attempt to minimise the
amount of system setup

that’s needed
NOV 2014 | | 11{cvu}

Perl is a Better Sed, and Python 2 is Good (continued)

Debuggers Are Still For Wimps
Frances Buontempo shows how to remote debug python from

Visual Studio.

uppose you have a script you want to run on Linux and you only know
how to drive the Visual Studio debugger. By installing an add-in for
Visual Studio locally, installing the python tools for Visual Studio

debugging on the remote machine, e.g. with pip install
ptvsd==2.0.0pr1 and adding a (minimum of) a couple of lines to your
script you can debug in Visual Studio even if the remote machine is running
Linux. The additional lines are highlighted in the script in Listing 1.

Be wary of line endings in VS, which may be inappropriate for Linux.
More details are available online. [1]

You’ll also need to install the ptvs from the relevant msi for your version
of Visual Studio. Then start the script on the Linux box:

 $python VSPyNoodle.py

It will hang, since it has a wait_for_attach call in main. ctrl-Z will
stop it on the remote box if something goes wrong.

Select ‘Attach to process’ in the Debug menu on Visual Studio, and change
the ‘Transport’ to ‘Python remote debugging (unsecured)’. Add the secret
(joshua in this script) @ hostname to Qualifier, for example:

 joshua@hostname

Hit ‘Refresh’. It should find the process running on the Linux box and add
the port it uses to the Qualifier. Select your process in the list box and hit
‘Attach’ then debug as you are used to in VS.

If it complains about stack frames and not being able to see the code you
may need to make a VS project from a local version of the code. having
made sure it exactly matches the remote code.

Reference
[1] See https://pytools.codeplex.com/

wikipage?title=Remote%20Debugging%20for%20Windows%2C%
20Linux%20and%20OS%20X

S

FRANCES BUONTEMPO
Frances has a PhD technically in Chemical
Engineering, but mainly programming and learning
about AI and data mining. She has been
programming professionally for over 12 years. She
can be contacted at frances.buontempo@gmail.com.

#!/usr/bin/python

"""
You will need to insert both these in your script
The remote box requires the ptvsd package
(otherwise the import fails)
"""
import ptvsd
ptvsd.enable_attach(secret = 'joshua')
#use None instead of joshua but that is not
secure
#The secret can be any string - but this is not
#properly secure

def say_it(it):
 """
 This inserts a breakpoint
 but you can add new breakpoints in Visual
Studio
 if required too/instead
 """
 ptvsd.break_into_debugger()
 print(it)

if __name__ == "__main__":
 #pause this script til we attach to it
 ptvsd.wait_for_attach()
 say_it("Hello world")

Li
st

in
g

1

Incidentally, this year the Ubuntu distribution of Linux declared an
intention to eventually ship only Python 3 by default, and to make Python
2 an optional package. This has not yet come to fruition, but if it does, it
still won’t help non-Ubuntu distributions, or BSD, especially all the older
Mac OS X machines that for various reasons might not be upgradable to
whichever future version of Mac OS X actually ships Python 3 by default
(as far as I know none of the existing versions of Mac OS X do this). In
the current climate, if Ubuntu were to ship Python 3 by default then I’d
just tell Ubuntu users to install the Python 2 package, because I’m
concerned about all those other systems as well, some of which don’t have
easy-to-use package managers like Ubuntu does. But I don’t understand
why anyone would want to ‘kill off’ Python 2 anyway: why can’t they
leave it alone like Perl 5 as a super-stable ubiquitous tool? Yes I’m all for

playing with new languages, but not when I’m trying to write something
that’s supposed to run everywhere (well, not unless I can first compile my
code into a more widespread language to ship, but that’s not the case with
Python – if you want it to run somewhere then you need a suitable version
of Python ‘on site’ there, and that usually means Python 2).

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?
12 | | NOV 2014{cvu}

https://pytools.codeplex.com/wikipage?title=Remote%20Debugging%20for%20Windows%2C%20Linux%20and%20OS%20X
https://pytools.codeplex.com/wikipage?title=Remote%20Debugging%20for%20Windows%2C%20Linux%20and%20OS%20X

NOV 2014 | | 13{cvu}

This article is only available in the printed
version of C Vu due to rights issues.

C Vu magazine is available from www.accu.org

www.accu.org

It may not be the software. How clear are the release notes? What
about the product manual, online help, training materials, ...?

Changes may meet a business need, but if what worked
yesterday doesn’t work today, people may resent them. And when
today’s way involves extra steps, people work around them. After
all, their priority is getting the job done.

Result: those shiny new features remain unused, and your
application appears not live up to its promise.

If you would like some help in turning nervous cats into contented
ones, get in touch.

Not quite the reaction
 you were expecting to

the latest release?

Our employees are members of the Institute of Scientific and Technical
Communicators, the UK professional body for technical authors and related
professions. For more information about the ISTC, visit www.istc.org.uk

T 0115 8492271

E info@clearly-stated.co.uk

W www.clearly-stated.co.uk

Code Critique Competition 90
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published entries,
and to supply their own possible code samples for the competition (in any
common programming language) to scc@accu.org.

Note: we are investigating putting code critique articles online: if you
would rather not have your critique visible please inform me. (We will
remove email addresses!)

Last issue’s code
I'm trying to write a simple program to shuffle a deck of cards, but it
crashes. What have I done wrong?

The code is in Listing 1.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

enum
{
 black,
 red
};

enum
{
 Hearts,
 Diamonds
};

enum
{
 Clubs,
 Spades
};

typedef struct Card
{
 int color;
 int suit;
 int value;
} Card;

typedef Card Deck[52];

void LoadDeck(Deck * myDeck)
{
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i]->color = i % 2;
 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;
 }
}

Li
st

in
g

1

// -- example11.cpp –- (C++11 example)
#include <cassert>
#include "wrapped_vector.hxx"

int main()
{
 wrapped_vector<int> iVec;
 iVec.push_back(1);
 iVec.push_back(0);
 iVec.push_back(2);

 int total(0);
 for (auto & p : iVec)
 {
 total += p;
 }
 assert(total == 3);

 wrapped_vector<int>::dump();
}

void PrintDeck(Deck * myDeck)
{
 int i = 0;
 for(;i < 52; i++)
 {
 char *colors[] = {"black", "red"};
 char *suits[][2] =
 {{"clubs", "spades"},
 {"hearts", "diamonds"}};
 printf("Card %s %d of %s\n",
 colors[myDeck[i]->color],
 myDeck[i]->value,
 suits[myDeck[i]->color]
 [myDeck[i]->suit]);
 }
}

void Shuffle(Deck * myDeck)
{
 int i = 0;
 for (; i < 52; i++)
 {
 int n = sizeof(Card);
 int to = rand() % 52;
 Card tmp;
 memcpy(&tmp, myDeck[i], n);
 memcpy(myDeck[i], myDeck[to], n);
 memcpy(myDeck[to], &tmp, n);
 }
}

Listing 1 (cont’d)
NOV 2014 | | 15{cvu}

Critiques

Paul Floyd <paulf@free.fr>

Well, there’s quite a lot not to like in this example. On first reading, I didn’t
like the enums. There is redundancy – why two enums for the suits and
why a separate enum for the colour? The colour of a suit is something that
is ‘well known’. Also I didn’t like the inconsistent capitalization. In any
case these enums aren’t used. I would remove the color field of Card,
and infer the colour from the suit (see below for the corresponding change
to PrintDeck).

The main issue is that there is confusion as to what a Card and what a Deck
is. Specifically the LoadDeck, PrintDeck and ShuffleDeck take
pointer to Deck arguments and treat them as arrays. They should be treated
as pointers to arrays of Cards, not pointers to arrays of Decks. Simply
removing the asterisks in these prototypes (and changing -> pointer
dereferences to . member accesses) will fix this extra level of indirection.

Next, LoadDeck. This only iterates over 51 cards. I would recommend
using a constant like CARDS_IN_DECK = 52. I don’t like the single loop,
which works because 4 and 13 are relatively prime. If this code were used
for a game like ‘belote’, which uses 32 cards, then LoadDeck would no
longer work correctly. Two loops for suit and value would be a little more
verbose but much clearer.

PrintDeck just prints values from 0 to 12. Again much clearer would be
names and values offset by 1, e.g., using

 char *values[] = {"ace", "2", "3", "4", "5",
 "6", "7", "8", "9", "10",
 "jack", "queen", "king"};

The attempt to read the suit from the suits 2D array is wrong. This is a
2x2 array, but the ranges of the subscripts are 0..1 and 0..3. I would make
suits a 1D array and index it with the 0..3 suit field. Also I would infer
the colour from the suit, either directly in the code or by writing a little
function.

I can only see one fault in Shuffle. There is no test to see if i equals to,
in which case the second memcpy is undefined. This could be corrected
by using memmove or adding a little check like

 if (i == to)
 {
 continue;
 }

One last point. It bothers me using common names like red and black.
To avoid conflicts, I’d use some prefix like FooRed and FooBlack.

Silas S.Brown <ssb22@cam.ac.uk>

I’m writing this reply on a Psion Revo PDA (made in 1999) while visiting
my parents in rural West Dorset (with no Internet connection and not even
a phone signal), and as I don’t have a proper keyboard I’ll be brief. (The
reason why I say this at all is it might inspire other members, somehow or
other. I do wish someone would come up with a decent modern version of
the Revo though.)

Bug 1: there’s an inconsistency between LoadDeck, which says i<51 in
the for loop, and PrintDeck, which says i<52. Maybe the writer was
thinking <= instead of < when writing LoadDeck? Anyway it’s better to

keep it consistent and write <52 in both cases (I wouldn’t advocate using
a constant here, because anyone who knows about decks of cards in
Western culture will be familiar with the number 52, but that’s an opinion
that others are entitled to disagree with).

Bug 2: suit is set to i % 4 but there are only 2 suits of each colour.
(Personally I’d have dropped colour and just listed the 4 suits, perhaps with
a getColour function that effectively tests bit 2, but I won’t argue if you
want to represent colour explicitly.)

Bug 3: the modulus operations in LoadDeck will not do what I think you
meant. For example, all cards with odd value will also have colour set to
red, whereas all cards with even value will also have colour set to black.
Rather than trying to correct this using more complex assignments, I’d
suggest simply writing three nested loops thus:

 int pointer=0, color=0, suit=0, value=0;
 for (; color < 2; color++) {
 for (; suit < 2; suit++) {
 for (; value < 13; value++) {
 myDeck[pointer]->color=color;
 myDeck[pointer]->suit=suit;
 myDeck[pointer]->value=value;
 pointer++;
 }
 }
 }
 assert(pointer==52);

Note the final assert as a sanity check. (You could also add items like
MaxSuits and MaxValues to the ends of each enum, but it’s probably
not worth doing so in this small example.) Registers are cheap these days,
so it’s really no big deal to write multiple loops in this way, and it’s more
readable than the corrected version of the one-loop approach which I won’t
confuse you with.

The Shuffle function is OK (there are arguments about better
approaches but let’s not worry about that for now); you might want to think
about seeding the random number generator (if I had a copy of the standard
with me right now, I’d look up whether or not it’s done for you by default).

James Holland <James.Holland@babcockinternational.com>

Having had a quick look at the code and given the fact that it crashes, I get
the impression that the problem is all to do with pointers and structures.
In fact it is reminiscent of some of the items in Alan Feuer’s The C Puzzle
Book. I now wish I had paid more attention to what Alan was saying.
Despite this, and not being an expert on C, I thought I would make an
attempt to discover the defects in the code and get the program running.

The first thing to notice is that the three anonymous enumerated types at
the start of the listing are not referenced in the code, so I shall ignore them
for the time being. I now observe the main structure that represents the
deck of cards. It is an array of 52 cards. Each card being a structure
containing three integers representing the card colour, its suit and value
respectively. The fact that the colour of the card as well as its suit is being
stored is a bit of a worry. It is always possible to deduce the colour of the
card from its suit. Clubs and spades are always black and hearts and
diamonds are always red. Maintaining a variable to keep track of the card’s
colour is redundant and runs the risk of becoming out of kilter with the
colour of the suit. It is best removed.

The next thing to note is that the LoadDeck function initialises all but the
last card in the deck. The loop variable should loop from 0 until it is not
less than 52, not 51 as shown in the original listing.

The main problem lies in the way the loop variable, i, accesses the Deck
array. The code incorrectly manipulates the myDeck pointer as if it were
an array of pointers to a Deck. In fact, it is simply a single pointer to the
Deck. To correctly access the suit, for example, of the card with index i,
the following construction should be used.

 (*myDeck)[i].suit

int main()
{
 Deck myDeck;
 memset(&myDeck,0,sizeof(Deck));
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 Shuffle(&myDeck);
 PrintDeck(&myDeck);
 return 0;
}

Li
st

in
g

1 (
co

nt
’d

)

16 | | NOV 2014{cvu}

This first dereferences the myDeck pointer to obtain the first card in the
deck. The card with index i is then obtained by means of the [] operator.
Finally, the suit of the card is obtained. With the variable to store the card
colour removed, the LoadDeck function becomes as shown below.

 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for (; i < 52; i++)
 {
 (*myDeck)[i].suit = i % 4;
 (*myDeck)[i].value = i % 13;
 }
 }

We now come to the PrintDeck function. Again, the incorrect method
of referencing the cards in the deck has been used here and can be corrected
in the same way as for the LoadDeck function. Also, now that the variable
to store the suit colour has been removed, the way the suit colour is
obtained has to be amended. Specifically, the suits array within
PrintDeck has been simplified to become a one-dimensional array of
suit names. The colour of the suit can now be obtained by taking the suit
index of the card and determining if it is odd or even. If the suit index
is odd, the suit colour is red. If the suit index is even, the suit colour is
black. This is calculated by taking the suit index, dividing by 2 and using
the remainder as in index into the colours array. This is achieved using
the % operator. The revised PrintDeck function is shown below.

 void PrintDeck(Deck *myDeck)
 {
 int i = 0;
 for (; i < 52; i++)
 {
 const char *colours[] = {"black", "red"};
 const char *suits[] = {"clubs", "hearts",
 "spades", "diamonds"};
 printf("Card %s %d of %s\n",
 colours[(*myDeck)[i].suit % 2],
 (*myDeck)[i].value,
 suits[(*myDeck)[i].suit]);
 }
 }

The shuffle function, like the previous two, incorrectly references the
cards in the deck and can be corrected in a similar way.

 void Shuffle(Deck * myDeck)
 {
 int i = 0;
 for (; i < 52; i++)
 {
 int n = sizeof (Card);
 int to = rand() % 52;
 Card temp;
 memcpy(&temp, &(*myDeck)[i], n);
 memcpy(&(*myDeck)[i], &(*myDeck)[to], n);
 memcpy(&(*myDeck)[to], &temp, n);
 }
 }

The program should now work as expected. Incidentally, there is no point
in initialising the Deck array with all zeroes as is done in the second
statement of main(). The Deck is correctly initialised by the (revised)
LoadDeck function.

Marcel Marré <marre@links2u.de>

The code has several problems. The one actually leading to the crash is
two different interpretations of the Card member suit. In LoadDeck,
suit is initialised for each card with a value from 0 to 3. In PrintDeck,
however, the strings for the suits are arranged in a two-dimensional array
of two colours by two suits per colour. When these strings are used in the

printf statement, the Card’s suit ranges from 0 to 3, and we read beyond
the valid range of the array. We thus get an undefined char* for printf
to output, which is liable to crash.

Let us fix LoadDeck. Apart from the inconsistent initialisation of suit,
the function also initialises only a total of 51 cards. This does not lead to
a crash, because the whole deck has been memset with 0s. This does mean,
however, that one card is missing from the deck, and one card (value, suit
and color all 0) is in the deck twice.

A more readable, logical version of LoadDeck would therefore be:

 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for(; i < 52; i++)
 {
 myDeck[i]->color = i % 2;
 myDeck[i]->suit = (i / 2) % 2;
 myDeck[i]->value = i % 13;
 }
 }

The initialised deck is somewhat oddly sorted, so another change would
be to initialise value thus:

 myDeck[i]->value = (i / 4) % 13;

which is easier to follow.

Another point is that the enums were not actually used at all. Using them
to initialise a card is possible, although the following card:

 Card myCard;
 myCard.color = black;
 myCard.suit = Hearts;
 myCard.value = 5;

will be displayed as "Card black 5 of Clubs".

Commentary
The code demonstrates confusion with pointers and arrays, not helped by
the way that in C arrays will implicitly ‘decay’ to pointers to the first
element in the array. (There are other problems, but I think those were more
straightforward to understand and resolve.)

The code creates a single Deck object called myDeck and passes its
address to LoadDeck. Inside LoadDeck this pointer treated as an array
(myDeck[i]) of Deck objects. Unfortunately we’ve only passed in a
single Deck and not an array of them, so every iteration round the loop
after the first one accesses data beyond the end of myDeck and hence the
crash.

Following the array subscript we have a pointer – what is this actually
doing? Perhaps a simpler example will help:

 struct data { int field; } items[10];
 items->field;

The second line uses items which is of type ‘array of 10 struct data’
but this type decays to a pointer to the first item when used in this context.
The second line is equivalent to:

 items[0].field

So returning to LoadDeck the first assignment to myDeck could be
written as:

 myDeck[i][0].color = i % 2;

The pair of subscripts makes it a little more obvious what’s gone wrong,
as a Deck is a simple array of one dimension.

It can be helpful, even when the data type is an array, to wrap it inside a
struct for clarity.

 typedef struct Deck
 {
 Card card[52];
 } Deck;
NOV 2014 | | 17{cvu}

With this restructuring the ‘broken’ LoadDeck function no longer
compiles as the struct, unlike an array, is no longer interchangeable with
a pointer type; it can now be fixed by changing it to, for example:

 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for(; i < 52; i++)
 {
 myDeck->card[i].color = i % 2;
 myDeck->card[i].suit = i % 4;
 myDeck->card[i].value = i % 13;
 }
 }

While more verbose, it may be more understandable.

The winner of CC89
This critique contained several different problems as well as the ‘it crashes’
problem originally reported. The entrants did a pretty good job of
identifying these problems. Paul pointed out that the code relies on 13 and
4 being mutually co-prime and Silas noted that populating suit and
color separately was error-prone and the code as shown assigned the
wrong color to some of the suits. James actually changed the code to
remove the problematic field color. I thought Marcel’s explanation of why
the 2-dimensional suits array was wrong was the clearest.

Silas also pointed out that it would be a good idea to seed the random
number generator as otherwise the likelihood is that every run of the
program will shuffle the deck exactly the same way!

Overall it was a hard call but I eventually decided to award Silas the prize
for this code critique

Code Critique 90
(Submissions to scc@accu.org by December 1st)

I’m trying to instrument some code to find out how many iterator
operations are done by some algorithms I use that operate on vectors.
I’ve got some code that worked with C++03 and I’m trying to get it
working with the new C++11 features. Mostly the C++11 code is just
nicer but I can’t get my wrapper vector to work with the new style for
loop. I’ve stripped out the instrumentation for other methods in this
example code so it only counts the increment operations and when I
run the two simple examples below I get this output:

 C: >example03.exe
 Increments: 3

 C: >example11.exe
 Increments: 0

I expected the same output from both examples as all I’ve done is re-
write the for loop using the new style for syntax.’

Can you find out why it doesn’t work as expected and suggest some ways
to improve (or replace) the mechanism being used?

The code is in Listing 2.

 // Sort the constructors
 #if __cplusplus >= 201103
 using vector::vector; // Nice :-)

 #else
 // legacy: need to spell them out ...
 wrapped_vector() {}

 explicit wrapped_vector(size_type n,
 const T& value = T())
 : vector(n, value) {}

 template <class InputIterator>
 wrapped_vector(InputIterator first,
 InputIterator last)
 : vector(first, last) {}
 // ...
 #endif // C++11

 // print the stats
 static void dump();

 // instrumented iterator
 struct iterator : vector::iterator
 {
 typedef typename vector::iterator base;
 iterator() {}
 iterator(base it) : base(it) {}
 iterator& operator ++();
 // (other instrumented methods removed)

 static int increments;
 };

 // const_iterator (unused so removed)
};

#include "wrapped_vector.inl"

// -- wrapped_vector.inl --
#include <iostream>

template <typename T>
void wrapped_vector<T>::dump()
{
 std::cout
 << "Increments: "
 << iterator::increments
 << std::endl;
}

template <typename T>

typename wrapped_vector<T>::iterator&
wrapped_vector<T>::iterator::operator ++()
{
 base::operator ++();
 ++increments;
 return *this;
}

template <typename T>
int wrapped_vector<T>::iterator::increments;

// -- example03.cpp –
// (also works with C++11)
#include <cassert>
#include "wrapped_vector.hxx"

Listing 2 (cont’d)

// -- wrapped_vector.hxx --
#include <vector>

template<typename T>
struct wrapped_vector : std::vector<T>
{
 typedef typename std::vector<T> vector;
 typedef typename vector::size_type
 size_type;

Li
st

in
g

2

18 | | NOV 2014{cvu}

ACCU London – October 2014
Chris Oldwood reports from the latest

meeting of the London Chapter.

Lies, damned lies and estimates – Seb Rose
ow that I’m not working in London it’s a little more effort to make
it into town to catch up with the ACCU London crowd, but I managed
to make it along to the new Equal Experts offices near Warren Street

tube station to see Seb Rose talk about the thorny issue of estimates.

There was a good turnout of just over 30 people to hear Seb talk. There
was also some beer and nibbles laid on too which is always helps you deal
with skipping dinner, especially when you know you’ll be frequenting the
local pub afterwards.

The title for his talk comes from a misattributed quote of Disraeli, but it
nicely sums up what many people feel about the whole issue of attempting
to predict how long a software project, or even just a single task, will take.
The initial part of the talk focused on how bad we are at the process of
estimating and looked into some of the ‘science’, such as Planning Poker,
that suggests we are better at estimating relative to some known level of

complexity rather than trying to predict an absolute amount. However it
seems this has now been debunked too. Hopefully the crowd-sourcing
aspect still provides value, as does it being another conduit for
conversation and the breaking down of stories.

We didn’t just get to listen to Seb but got to take part in a little experiment
too. This involved us answering some general knowledge questions, such
as when Bram Stoker was born, with a range estimate rather than a single
value. The range however was supposed to be something we thought was

 N

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
NOV 2014 | | 19{cvu}

int main()
{
 wrapped_vector<int> iVec;
 iVec.push_back(1);
 iVec.push_back(0);
 iVec.push_back(2);

 int total(0);
 for (wrapped_vector<int>::iterator
 iter(iVec.begin()), past(iVec.end());
 iter != past; ++iter)
 {
 total += *iter;
 }
 assert(total == 3);

 wrapped_vector<int>::dump();
}

// -- example11.cpp –- (C++11 example)
#include <cassert>
#include "wrapped_vector.hxx"
int main()
{
 wrapped_vector<int> iVec;
 iVec.push_back(1);
 iVec.push_back(0);
 iVec.push_back(2);
 int total(0);
 for (auto & p : iVec)
 {
 total += p;
 }
 assert(total == 3);
 wrapped_vector<int>::dump();
}

Li
st

in
g

2
(c

on
t’d

)

Code Critique Competition 90 (continued)

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

Seb Rose: An Interview
Emyr Williams continues the series of interviews

with people from the world of programming.

eb Rose is well known to most ACCU members. For those who do
not know who he is, Seb is an independent software developer, trainer
and consultant based in the UK. He specialises in working with teams

adopting and refining their agile practices, with a particular focus on
automated testing.

Since he first worked as a programmer in 1980 (writing applications in
compiled BASIC on an Apple II) he has dabbled in many technologies for
many companies, including Linn Smart, Amazon and IBM. He has just
finished writing The Cucumber-JVM Book for The Pragmatic
Programmers. His website can be found at www.claysnow.co.uk

How did you get in to computer programming? Was it a sudden interest?
Or was it a slow process?

The maths department at my school had a PDP11 and a room with 8
terminals. I spent an afternoon watching someone write BASIC and
wrote my first program the next day. The head of department then
gave me a few photocopied sheets from Kernighan & Ritchie’s The
C Programming Language and I started learning more about what
was happening under the surface.

A few years later I got my first holiday job working at a service
station on the A3, getting paid the princely
sum of 60p an hour. It sounds grim, but I
earned enough to buy a record deck (anyone
remember the PL-512?), which meant I
needed even more money to buy albums. A
neighbour put me in touch with his accountant
who was in partnership with a guy in
Teddington who was writing accountancy
software in his attic. I went round for a chat
and showed off my BASIC skills and landed the job. He
apologetically told me that all he could afford to pay was £3 an hour
– a 500% pay rise! I was ecstatic and I’ve been programming (on
and off) ever since.

What was the first program you ever wrote? And in what language was
it written in? Also is it possible to provide a code sample of that
language?

BASIC. Nothing very exciting, just asking for input and printing out
a response. I then took a huge leap and tried to write a text-based
Dungeons and Dragons game in C. It never worked, but I spent
many a happy hour tinkering about with source code on huge print-
outs. I returned to BASIC (compiled for the Apple II) for my holiday
job and spent a lot of time doing screen layouts using 80 x 24 grids.
There were some lovely hacks for positioning the cursor at a specific
location on the screen which we used to access via GOSUBs
whenever we needed to present output.

What would you say is the best piece of advice you’ve ever been given
as a programmer?

Tricky question. Maybe the advice from Steve Freeman and Nat
Pryce to “Listen to your tests”. It’s all too easy to blame a technique
(or tool) that you’re trying to learn, when actually it’s your failings
in other areas that are the root cause of the problem. When I find it
hard to write a unit test, I remember their advice and look at the code
I’m trying to test with a critical eye.

The old favourite “don’t optimise (yet)” is regularly useful. As
developers we often think about performance prematurely. The
‘shameless green’ stage of TDD encourages us to get the test
working without thinking too hard about the design. It’s the
‘refactor’ step where we improve the design of the code, but even
here performance should generally be a subsiduary concern to
readability. There will always be situations where you need every
ounce of performance you can get, but they are few and far between
in most domains, and you should only pursue optimisation once you
actually have the data to show what actually needs optimised.

If you were to go back in time and meet yourself when you were starting
out as a programmer, what would you tell yourself?

I’d probably tell myself, “Good choice.” It’s hard to think of a career
that has so many varied opportunities or that would have allowed me
to work in so many different areas. I’ve been a freelancer for most

of my career, and the occasional breaks
between contracts have been invaluable for
learning new skills and trying different things.

I ran an organic smallholding for 12 years, at
the same time as working as a contractor. I tried
to have the contracts end in the spring, so that I
could spend the sunny, Scottish days doing
more physical work outdoors. For 3 years
around 2003 I ran the organic business full-

time and didn’t do any commercial programming. I actually found
that I spent more time at a desk during this period than I did when I
was contracting – maintaining the website and order system,
generating delivery reports, dealing with customers etc.

It was a relief to be able to return to programming when, after our
best year trading, the accounts showed I’d only made £12,000 from
delivering organic produce.

Do you currently have a mentor? And if so, what would you say is the
best piece of advice you’ve been given by them?

I haven’t got a specific mentor, but I treat most of the people I meet
as potential mentors in one way or another. Recently Jon Jagger told
me he spends 1/3 of his time earning money, 1/3 working on OSS
and 1/3 fishing. I’ll not be taking up fishing, but this seems like a
mix to aspire to.

How do you keep your skills up to date? Do you get a chance to do some
personal development at work?

I spend a lot of time reading blogs and books, as well as going to
conferences. In fact, you could say that my job IS keeping up to date, at
least with a small segment of the industry.

Twitter is a great source of information – not the throw-away one
liners, but the links to blogs that I wouldn’t normally notice.

And I organise the local BCS branch events, which forces me to talk
to a lot of people and actively seek out new and interesting topics
and speakers.

 S

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk

I treat most of the
people I meet as

potential mentors in
one way or another
20 | | NOV 2014{cvu}

www.claysnow.co.uk

ACCU London – October 2014 (continued)
90% accurate, which should have lead to us getting
around 9 out of 10 questions right. Of course most of
us were way out even with that kind of leeway.

This nicely brought home the point of how bad we
are at estimating and the quiz theme continued with
us trying to answer the age old question of ‘how long
is a piece of string’. Although again, rather than giving a measurement we
just needed to compare it to the others and say which was longer. Naturally
they weren’t all laid out end-to-end but looped around in different ways
to make the process much harder; another simple but effective game.

There were various references to popular books that cover these topics,
such as Waltzing with Bears and Impact Mapping, with plenty of quotes
and snippets that intrigued me. I already own a couple but suspect a visit
to my local online bookshop is imminent as there is plenty more to lap up
here, particularly in the area of breaking down user stories. One particular
slide with a flowchart titled ‘How to Split a User Story’ looked most
promising [1].

The final part of the talk looked at why we are often being asked to provide
these estimates in the first place – what use are they to The Management
that demands them? Seb delved into the area of Return on Investment
(ROI), which is a fairly simple calculation, assuming you can of course

quantify the ‘value’ that a project will bring. This area of business analysis
seems even murkier than the process of estimating that we are being asked
to do. Presumably this was aimed at internal projects as he’d already
covered estimating for external clients at the very beginning with a
selection of quotes from builders.

The talk lasted well over an hour and certainly provided plenty of leads
for those that wanted to learn more. The evening was rounded off nicely
with a trip to a local pub (Bree Louise) which had a number of real ales
on tap. This was a great reminder that I should make it into London more
often to catch these meet-ups.

Reference
[1] http://www.agileforall.com/wp-content/uploads/2012/01/Story-

Splitting-Flowchart.pdf

why we are often being asked to provide these
estimates in the first place – what use are they

to The Management that demands them?
What would you describe as the biggest “ah ha” moment or surprise
you’ve come across when you’re chasing down a bug?

Working with Weblogic in the early days of EJB 1.0 we were getting
inexplicable , intermittent failures. Days of investigation later,
having boiled the sample code down to something really small, it
became clear that there actually was a problem in the application
server. We submitted a bug report and, in due course, received a
patch. Months later the problem reappeared – the supplier had rolled
out an upgrade without the patch.

I remember the first time I heard you talk was at the
ACCU Conference where you were talking about Test
Driven Development. There has been a lot of talk of
late of TDD is dead (among the more extreme things
I’ve seen) (http://www.infoq.com/news/2014/06/tdd-
dead-controversy) I’m guessing you wouldn’t agree
with that assessment? Or is it a case of the way TDD is done, and how
it’s implemented that’s the issue?

I’m still talking about TDD. My current opinion is that TDD is a
technique that is generally useful, but that context is, as always, an
important consideration. The arguments stem from consultants
making general statements that address segments of the
development community without making it clear which segments
they apply to. I say more about this in my session “So long, and
thanks for all the tests” which is online at http://vimeo.com/
105861375

The short answer is that TDD is not dead, but neither is it a silver
bullet. It’s a useful technique to have in your toolkit, but like so
many techniques it’s easier to describe than do. That’s why I think
all developers should learn and practise TDD, at least until they
know it well enough to make a considered judgement about whether
it’s useful for them in their current role.

How scary was it to go from full time developer to freelance developer?
And how long did it take for you to feel confident to go for it?

I graduated in 1987 and did my first contract in 1992. In the
intervening period I did 2 full-time jobs, one for 8 months and one
for 5 months. So, I think it’s fair to say that I’ve always been
freelance. I guess that confidence has not been too much of a
problem for me.

That’s not to say that I haven’t worried about
where my next paycheck will come from. I have,
and at times where continuity is more important to
me, such as when my children were young, I have
returned to permanent employment. Strangely,
though, I’m generally less stressed working as an
independent than an employee – and I don’t think
I’m alone in this.

Do you have any regrets as a programmer? For example wishing you’d
followed a certain technology more closely or something like that?

I wish I’d read more books and bought fewer.

Where do you think the next big shift in programming is going to come
in?

I have no idea. In the nineties, when first introduced to HTML and
the internet, I said the equivalent of “it’ll never catch on.” Niels
Bohr is credited with saying “Prediction is hard (especially about the
future)” and I’m worse than most at making predictions.

Finally, what advice would you offer to kids or adults who are looking
to start a career as a programmer?

I think I’d give the same advice for any domain, not just
programming. Have a go. Do something that interests you and keep
trying. Qualifications may help, but enthusiasm and aptitude are by
far the most important ingredients.

TDD is not dead,
but neither is it a

silver bullet
NOV 2014 | | 21{cvu}

http://www.agileforall.com/wp-content/uploads/2012/01/Story-Splitting-Flowchart.pdf
http://www.agileforall.com/wp-content/uploads/2012/01/Story-Splitting-Flowchart.pdf

22 | | SEP 2014{cvu}

Standards Report
Mark Radford brings the latest news from

C++ Standardisation.

ello and welcome to my latest standards report.

Once again the timing of this report is a bit off. Why? Because the
big news should be that C++14 has become an international standard.

However, because of the timing, the chances are that everyone reading this
already knows about it (CVu has a production deadline approximately a
month before it appears in print, therefore I submitted my previous report
for publication just before C++14’s ratification). At the end of my last
report, I said that C++14 was at its Draft International Standard (DIS) stage
and, if none of the national bodies submitted a ‘no’ vote, then it could
become an international standard. That is what happened: by the end of
the DIS period (August 15th) all the member
countries’ national bodies had voted ‘yes’, and the
DIS became the ISO standard for C++14.

The above could happen owing to a recent change
in ISO procedures aimed at helping to speed up the
release of standards. Previously, if any national
bodies issued comments with their vote on the DIS
(even if it was a ‘yes’ vote) then there would be a
Final Draft International Standard (FDIS), and
another round of voting. With the recent change, if
the ‘yes’ vote is unanimous – even if there are
comments, which there can be, even with a ‘yes’
vote – an FDIS will be issued only if the standards
committee explicitly requests it.

Is there anyone out there with strong Ruby
knowledge? IST/5 – that’s the BSI committee
handling programming languages – is interested in
enrolling a Ruby representative. I don’t have any
more details: the obvious assumption is that this
would/could lead to the formation of a BSI Ruby Panel (just as there is a
BSI C++ Panel). In any case, if there is anyone out there able to (and
interested in) represent Ruby on IST/5, feel free to contact me in the first
instance and I’ll put you in touch with the right person.

I last reported on C standardisation a couple of reports ago, so here’s what’s
been happening since. Part 1 of the floating point TS is now published (last
time it had been approved but was awaiting publication). Part 2 (which,
last time, had recently been moved to the DTS stage) has now been
approved for publication, but is not yet published (but that’s just a matter
of time). Parts 3 and 4 have gone through their PDTS stage: the next WG14
(ISO C Committee) will consider responses to ballot comments on the
PDTS. There is a part 5 to come, but as yet no draft is available. There is,
however, a public draft of the document ‘Programming languages – C –
Extensions for parallel programming’ (N1862) available, which can be
found at: http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1862.pdf. I assume this is to be a TS (it looks like that sort of document
to me), but it doesn’t say so on the document and I don’t, as yet, have any
clarification.

The next ISO C++ meeting will be held in Urbana-Champaign, IL, USA,
3rd–8th November (which means by the time this report is published the

meeting will have already happened). I see that the mailing for this meeting
is not yet published (and probably won’t be before I submit this report for
publication), so I won’t be talking about any of the papers included in it.
There was a face to face meeting of SG1 (the study group for concurrency
and parallelism) in early September, and I can report briefly on day one of
that meeting (sorry but I don’t have any information about day two). More
of that below, but first let me mention that the transactional memory
extensions TS passed the ballot needed for the new work item to be official.
Therefore we now have: ‘TS 19841: C++ Extensions for Transactional
Memory’.

Moving on to the SG1 meeting, in my previous
report I pointed out that the ‘Executers and
Schedulers’ section had been removed from the
draft concurrency TS (N4107). Until its removal,
that section had come from the proposal ‘Executors
and schedulers, revision 3’ (N3785). It was
removed to allow for the consideration of the
‘ c o m p e t i ng ’ p r op o s a l ‘ E x e c u t o r s a n d
Asyn chr on ou s Oper a t i on s ’ (N40 46) by
Christopher Kohlhoff, the latter proposal having
received a very positive reception at the last ISO
meeting (Rapperswil). That’s where things had got
to before the SG1 meeting. When the meeting took
place a draft follow-up to N4046 was available,
containing actual wording for the TS (N4046 did
not contain wording, confining itself to a
description of the proposal, to check the level of
interest). Also available was a draft revision of an
N3785 follow-up, updated in response to N4046.

So far, so good, but then things started to go wrong. Originally there was
going to be no facility to attend the meeting remotely. Although this facility
was provided at the last minute, it was too late for Christopher Kohlhoff
(who was not able to attend in person) to be able to attend remotely. On
the other hand Chris Mysen (N3785 co-author) attended in person, and
therefore was able to represent that proposal and its draft follow-up.

The discussions ended in a straw poll, the result of which (fourteen in
favour, two against) suggested that Chris Mysen’s proposal should serve
as the starting point, and what parts of Chris Kohlhoff’s proposal cannot
be implemented in terms of it should be researched. The results are to be
discussed at the forthcoming Urbana-Champaign ISO meeting. I don’t
understand this as it seems to be starting in the wrong place, because Chris
Kohlhoff’s proposal has a far better track record of standing up to scrutiny
than Chris Mysen’s.

Before wrapping up I have some acknowledgements. Thanks to Roger Orr
for drawing my attention to the news about the transactional memory TS,
and for letting me know about the change in ISO procedure that allowed
C++14 to become an international standard without the need for an FDIS.
Thanks to Jamie Allsop for his excellent report (to the BSI C++ Panel) on
day one of the SG1 meeting (which he was able to attend remotely); I have
drawn heavily on Jamie’s report for my reporting on this meeting. Finally
thanks to BSI C Panel convenor Joseph Myers for updating me on C
standardisation progress.

 H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

if the ‘yes’ vote is
unanimous – even if
there are comments,
which there can be,

even with a ‘yes’ vote –
an FDIS will be issued
only if the standards
committee explicitly

requests it

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1862.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1862.pdf

NOV 2014 | | 23{cvu}

The Master Switch
By Tim Wu, published by
Atlantic Books, 368pp ISBN 978-
1-84887-9867

Reviewed by Alan Lenton

Highly recommended.

Subtitled ‘The Rise and Fall
of Information Empires’ Tim
Wu’s book is a tour de force history of the
four great information technologies of
the 20th Century – the telephone, radio/
television, movies, and the internet. The
book is both a history and an analysis of these
industries. The lessons we can draw from the
stories he tells have serious implications for the
current struggle over what is now known as ’net
neutrality.

The individual stories of the technologies
themselves are interesting enough in their own
right, but what is striking is the common themes
of the histories of the telephone, radio and
movies. In each case as the new disruptive
technologies came into existence and there was
a period of free for all, anarchy if you like, in
which innovators thrived, anyone could join in,
and the cost of entry was minimal.

Then came a period of consolidation, often
assisted by government desire to regulate and
consolidate. Politicians are notoriously wary of
their constituents doing this for themselves,
while the bureaucrats who run the regulatory
bodies always push for consolidation. After all
it's a lot easier to talk to, and come to agreement
with, a few large bodies that have a similar
culture, than hundreds of small organization
filled with fractious non-conformists!

And of course, once you have a monopoly or
semi-monopoly situation, it becomes easier to
suppress new, disruptive, innovations – the
suppression of FM radio in the early 30s by RCA
being a classic case. In other cases the leadership
of the monopoly involved simply could not
conceive of any way of working other than the
one currently in use. Thus the officials at AT&T

thought the concept of packet switched
networks (the basis of the internet) was
‘preposterous’. In fact, so wedded were the
AT&T officials to the circuit based network (the
AT&T slogan was One company, One system,
Universal Service), that they even turned down
a US Air Force offer to pay for an experimental
packet switched network!

But this isn’t just a technical history. It’s also a
social history of the struggle to keep those
technologies in the hands of ordinary people,
and that is as important as the technical issues,
because that is exactly what is happening now in
both the internet and the software forums. In the
internet the struggle is being waged under the
rubric of ’net neutrality, while the software
struggle is being waged through patent reform.

Both are important. At the moment anyone can
post material onto the net – you don’t require

anyone’s permission to do so, or to check what
you’ve written before it’s posted. Anyone can
write software – all you need is a general
purpose computer, usually a desktop PC, and a
compiler or a browser, depending on your
language of choice. Do I really have to tell you
that the politicians and big business would
prefer it otherwise?

We are on a cusp when it comes to questions of
how the new and currently cheap enabling
technologies of computing and the internet will
be used in the future, and Tim Wu’s readable and
fascinating book is an important chronology and
analysis of what happened on previous
occasions. We need to understand that and learn
its lessons, because those who fail to learn from
history are doomed to repeat it.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the
ACCU website, which contains a list of all of the books currently available. If there is
something that you want to review, but can’t find on there, just ask. It is possible that we
can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you
can have it. I will instruct you from there. Remember though, if the book review is such a
stinker as to be awarded the most un-glamorous ‘not recommended’ rating, you are
entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us
with books.

Astrid Byro (astrid.byro@gmail.com)

24 | | JAN 2014

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair @accu.org

There’s not a lot happening on the
surface at the committee at the moment. We are
looking at revised guidelines for the sponsorship
of local groups, and that should be available in
the near future. In the meantime I’m wrestling
with putting a discussion paper together to lay
out some guidelines for the future development
of ACCU.

The premise is easy. How do we reverse the
decline in membership, and build up a thriving
and dynamic organization? The solution is not,
and data is not easily obtainable. For instance,
I’d like to know to what extent the age of the
membership has changed since (say) the late
1990s, but no one thought to ask that at the time,
so I have no baseline. I suspect, but I have no
proof, that the membership has aged along with
the organization.

That makes a lot of difference. People who were
footloose and fancy free fifteen or twenty years
ago, by now will probably be married and have
children. Inevitably they will have less time to
devote to an organization like ACCU. So we
have to take that into account, when we decide
where we are going.

But, of course, that’s not the only thing that’s
changed. Even in the late nineties you could still
get into the profession of programmer without
formal qualifications, but that opening is now
really closed off, and you need a degree. This
has implications about where we look for new
and younger members.

Technology has changed. On a pure
programming level most of the C++
programmers among us are now writing code in
‘Modern C++’ , and new languages abound, as
do new versions of older languages. The rise of

mobile devices has given rise to a completely
different mindset for this sort of programming.

We haven’t quite got to the stage of computing
power as a utility yet, but cloud computing is
steadily making headway. In fact I suspect that
there will be a lot more private clouds around
than most people expect, especially given the
revelations about government snooping. In the
meantime we have seen the rise of DevOps, and
interesting new technologies like Docker, all of
which will change the environment in which we
work.

At a completely different level we are looking at
the start of the ‘Internet of Things’; if it really
does take off, and personally I think it will –
eventually. However, it will probably take a lot
longer than its proponents expect. That has
implications too, for the balance of how and
where programmers are employed.

A lot of programmers are currently employed by
software houses. Those of you who know me
will know that it’s my belief that a lot of large
organizations don’t yet realize that they are now
software houses. Banks are the classic case. The
people running them are under the illusion that
they are banks with a large software department,
whereas any rational analysis of their work
would make it clear that they are software
houses with a banking licence!

But I digress. My point is that, with the rise of
the Internet of Things, the balance will change,
as the number of embedded programmers
grows, and most of them will be working in
small software departments in businesses
producing physical objects with digital
controllers. Is this an opportunity, for instance to
provide the peer discussion and keeping up with
trends that we take for granted in larger
environments? If so, how do we do it?

But even our regular activities are subject to
change. At the moment our key activities are our
journals, the conference each year, and a small
number of local group meetings. But even these,
successful as they are, are products of the time
when we started the ACCU. Much publication is
going digital. On the conference side we see the
rise of webinars and the likes of TED. Local
meetings socially derive from the flourishing
pub culture of ten to fifteen years ago – a culture
which sadly no longer exists.

Does this mean we should abandon what we
already have, and jump onto the next passing
bandwagon? Absolutely not. The new stuff is
important. We ignore it at our peril, but to move
forward we need to build on what we already
have, and what our strengths are. And therein
lies the rub. How do we bring in the new,
without damaging the old?

Answers on a postcard – oops, sorry, showing
my age there – email to: chair@accu.org. All
suggestions will be read. Ones that I disagree
with will be ruthlessly trashed and ones that I
agree with will be ruthlessly ...assimilated...
without attribution!

Joking apart, I would welcome ideas from
members about how we should go forward in the
future. I know people have ideas – they don’t
have to be fully developed, and they don’t have
to be a master plan covering everything.

I could write a way forward without any input
from the members, but it would probably be very
one sided and would generate all sorts of angst.
More to the point, the more people who put their
ideas in at this stage, the wider choice of options
we will have for the future. By having this
discussion now, we are having it at a point where
we do have a choice of what to do. If we don’t
have this discussion soon we will have no
choices left to make!

	CVu26-5.pdf
	Community service
	Playing By The Rules
	Taming the Inbox
	Const and Concurrency (Part 1)
	Parsing Configuration Files in C++ with Boost
	Perl is a Better Sed, and Python 2 is Good
	Debuggers Are Still For Wimps
	ACCU London – October 2014
	Code Critique Competition 90
	Seb Rose: An Interview
	Standards Report
	Bookcase
	View from the Chair

